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C.

Abstract

Classification

Two reduced rank classification procedures, principal components clas-

sification and equal weights classification, are described and compared via

a simulation study to the standard, classification procedure to determine

their feasibilities as alternative classification procedures. First, a

justification for the development of these two reduced rank procedures is

provided. Then, the two reduced rank rules are derived. The simulation

design is described in detail. The simulation results demonstrate that the

reduced rank procedures are preferable to the standard procedure under

certain conditions, i.e., when they appropriately incorporate prior infor-

mation about population structure into their classification rules. Sugges-

tions for future research are offered.
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Reduced Rank Classification

Introduction

A recurring problem common to many applied disciplines is that of

assigning an individual to one of two or more distinct groups on the basis

of the resemblance of that individual's scores on a set of measures to

group profiles composed of the same set of measures. Classification is one

name that is often assigned to this problem. Industrial psychology, par-

ticularly personnel psychology, is fertile source of classification prob-

lems. The assignment of an applicant to a:. subgroup on the basis of his or

her scores on a test battery containing measures of mechanical aptitude,

clerical skills, psychomotor abilities, and vocational interest is a prime

example of a classification problem. Mastery testing is yet another basic

classification problem. Sometimes, classification problems are disguised,

appearing under different labels. When the criterion is the dichotomous

variable of group membership in either the successful or unsuccessful

group, the validation of a selection procedure can be recast as a classifi-

cation problem. In fact, the classification framework is preferred

whenever it is desirable to incorporate differential costs of misclassifi-

cation into the decision process.

Given a set of well-defined, mutually exclusive subgroups, the basic

classification strategy is to assign an individual to the sv%group that he

or she most resembles. Various mathematical definitions of "resemblance"

and associated classification rules have been developed and examined. A
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subset of these rules has been introduced to the applied psychologist via

books and. articles written by Huberty (1975), Overall and Klett (1972), and

Tatsuoka (1971, 1974, 1975). Mathematical introductions to the classifica-

tion prcblem are contained in Anderson (1958) and Rao (1952, 1965). A

comprehensive but mathematically demanding review of both historical and

recent developments in classification analysis can be found in Das Gupta

(1973)

0

Standard Classification Rule for the Two Group Case

Classification into one of two multivariate normal subpopulations has

been studied extensively in the mathematical statistics literature

(Cacoullos, 1973). For two multivariate normal subpopulations with a com-

mon covariance matrix, the sample "discriminant" function for the standard

density function approach to classification (Anderson, 1958: Rao, 1952,

1965) is

ws [ad [2-ci
.5(x1

4. 512)] b

where x
4

is a 1-by-p vector of observations on the p-dimensional random

variable X for the ith individual, 1,4 and 212 are sample centroids from

subpopulations k1 and k2, respectively, and the 1-by-p vector b contains

sample linear discriminant weights, which are obtained via

__
b =

(W 1
- x )C

-1
,

--

[1]

[2]

where C is the sample pooled within groups covariance matrix.

Classifications are based on the quantity in Equation 1, which is fre-

quently referred to as the Wald-Anderson statistic. Let (Li represent an

6
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estimate of ql, the prior probability of membership in subpopulation kl, or

the "base rate". One plausible estimator of ql is the proportion of indi-

viduals in the sample at hand that are from subpopulation k1, i.e., the

relative sample size. Likewise, let q2 represent an estimate of the prior

probability of membership in subpopulation k2. The basic classification

strategy goes as follows: Assign individuals with response pattern xi to

subpopulation k1 when WsN > 1+12 /ql, and to subpopulation k2 otherwise.

Note that the expression lntz] represents the natural logarithm function

evaluated at z.

In practice, it would be desirable to have and to use the classifica-

tion rule that yields optimal classification in the population, Unfortu-

nately, a researcher is usually limited to working with samples from the

population of interest and must settle for an estimate of the optimal rule

based on the sample data. Often these samples are small or moderate in

size. Under these conditions, a "sample-optimal" classification rule, such

as the rule described in the previous paragraph, might be developed that

"overfits" the original data, and which could, consequently, produce

severely suboptimal classifications in future samples from the same popula-

tion. Since a major goal in classification analysis is the correct assign-

ment of individuals of unknown origin, a rule developed in a sample should

he judged on the basis of its performance in the population rather than its

performance in the sample in which it was ,.eveloped.

When the costs of misclassification are equal, the expected performance

of a sample-optimal classification rule in future samples can be expressed
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as the probability of misclassification assozia d with use of that rule in

the population, i.e., the actual error rate. In many ways, the actual

error rate is the most important error rate associated with a sample clas-

sification.rule. It is a direct measure of how well a sample classifica-

tion rule can be expected to classify future observations from the popula-

tion of interest.

Concern for the actual error rate associated with a sample-optimal

classification rule is akin to interest in the cross-validity of a sample

least squares regression equation. The poor cross-validities obtained for

least squares regression equations developed in r.all to moderate sized

samples has led to a surge of interest in reduced rank regression proce-

dures (Herzberg, 1969; Einhorn and Hogarth, 1975; Dorans and Drasgow, 1978)

and other biased regression procedures (Winer, 1978) as alternatives to

ordinary least squares regression. Reduced rank procedures have been

demonstrated to be superior to ordinary least squares regression under

certain conditions. For example, Dorans and Drasgow (19.78) found that both

equal weights regression and principal components regression cross-

validated better than least squares regressior in populations characterized

by knowledge of a structure among the predictors and knowledge about the

directionality of predictor-criterion relationships. The success of

reduced rank regression procedures suggests that reduced rank classifica-

tion procedures might also be successful as alternatives to

classification directly on the basis of the original predictors.
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Purpose

Previously Dorans (1979), two reduced rank classification procedures

were developed and their viability examined as alternatives to the sten-

dard full rank classification procedure described earlier. In the full

rank procedure, the classification analysis is performed in the complete

p-dimensional predictor space. In contrast, for both reduced rank classi-

fication procedures, the classification analyses are performed in subspaces

of reduced dimensionality. In principal components classification, the

analysis is performed in. the space of the r(< p) largest components of a

standardized estimate of the total predictor covariance matrix. The analy-

sis is performed along a single dimension in equal weights classification.

Computationally, the two reduced rank procedures require the replacement of

Equation 1 with its reduced rank counterparts.

The basic rationale for reduced rank procedures is that in the many

instances where the "effective dimensionality" of a predictor battery is

smaller than its "apparent dimensionality", the information lost by dis-

carding dimensions is predominantly sample specific noise t:at, if used,

would produce classification rules with large actual error rates. To bor-

row a phrase from the literature on alternatives to ordinary least squares

regression, the reduced rank rules should, under certain conditions,

"cross- validate" better than the standard full rank rul.e, i.e., yield lower

actual error rates.

In the balance of this article, the two reduced rank classification

procedures are presented, and the details of a simulation study, designed

9
4.
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to identify some conditions under which each type of classification proce-

dure can be expected to yield acceptable actual error rates, are described.

Then, the results of the simulation are presented and discussed, and

suggestions are given for future research.

Classification on the r Largest Components

Tucker (1978) adapted the logic of principal components regression to

multiple group discriminant analysis. In the process, he addressed a num-

ber of interesting theoretical questions posed by this adaptation. In the

remainder of this section, two points made by Tucker that have implications

for the two subpopulation classification problem are mentioned. Then, the

logic of Tucker's reduced rank approach is adapted to the two subpopulation

classification problem.

The first step in principal components regression is to perform a com-

ponents analysis on the predictor intercorrelation matrix. In multiple

group discriminant analysis, there are three distinct covariance matrices

that are related via

E
xx

a E + E
8

, [3]

where E
xx

is the total covariance matrix, E is the within groups covariance

matrix and E
B

is the between groups covariance matrix. The existence of

three covariance matrices requires resolution of the following question:

Which matrix should be the object of rank reduction? Tucker addressed this

question analytically and empirically, concluding that rank reduction

should be performed on a total covariance matrix.
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Given that a total covariance matrix is the appropriate object for rank

reduction, a new question arises: How does one estimate the population

total covariance matrix E
xx

from sample quantities? Tucker also addressed'

this question, concluding that the appropriate estimate of Exx .depends upon

the nature of the sampling process that yields the final sample of observa-

tions. He distinguished between stratified random sampling and complete

random sampling.

Under stratified random sampling, entities are randomly sampled from

2ach subpopulation under the constraint that the relative sample sizes are

equal to their relative population sizes, i.e.,

n
k
/N = q

k
k = 1, 21 K [4]

For this type of sampling, Tucker (1978) derived the following estimate of

xx

Est
s [E xx] =

[BIG + (N - K)
-1

(N - K + 1) (WG), N
-1

, [5]

where BG is the sample between groups sums of products matrix, WG is the

sample pooled within groups sums of products matrix, N is the total sartrle

size, and K is the total number of subpopulations. Note that Est (E )
s xx

does not equal the total sums of products matrix f divided by total sample

size. Instead, T and Est
s
(E
xx

) are related via

Est
s [E xx] =

IT + WG/(N-K)]N-1 [6]

No constraints are placed on the relative sample sizes under complete

random sampling. Entities are sampled randomly from the population without

concern for the representativeness of the sample's final composition.
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Under the assumption of complete random sampling, Tucker (1978) derived the

following estimate of
Exx:

Est_r [EXX]
=I [BC + WG] IN - 1]-1 , [7]

the familiar unbiased estimate of the total covariance matrix.

The mathematics of Tucker's reduced rank approach to the multiple group

discriminant problem is simplified in the two subpopulation case. In the

balance of this section, the logic of reduced rank discriminant analysis is

adapted to the two subpopulation classification problem under cunsideration

in the present research.

The first step in reduced rank classification is to convert the esti-

mate of the population total covariance matrix into a correlation matrix.

This standardization eliminates the effects of different units of measure-

ment for the p predictors. Let the p-by-p diagonal matrix S2 be defined as

S2 = Diag(Est[Exx]) [8]

then the standardization is accomplished via

-1 -1
T = S (Est [Exx] )S [9]

such that the diagonal elements of' T are equal to one.

Next, a principal axis solution of T is obtained via

= VD
2
V' , [10 ]

where D
2
is a p-by-p matrix of eigenvalues written in descending order and

V is the corresponding matrix of column eigenvectors. At this point, the

rank reduction occurs as some decision rule is used to retain r roots. The

diagonal matrix D
r

2
contains the r retained roots and the p-by-r V

r
con-

tai: the corresponding eigenvectors. So far, the procedure just outlined

parallels the principal components regression procedure.

12
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Next, the p-by-r transformation matrix F

F = S
-1

V
r
D
r

-1
(N - 2)

.5

is applied to the scores on the p original predictors to obtain scores on

the r largest components,

x
Ti

= x F [12].

where x
Ti is a 1-by-r generalized row vector of scores on the r components.

These r component scores are uncorrelated in the total sample.

Since the goal is classification on the basis of the r largest compo-

nents, it is necessary to develop an analogue of Equation 1 for the r larg-

est components. Hence, quantities analogous to xi, xl, x2, and C are

required. In other words, the scores on the r largest components, the

samv.le centroids on the r largest , .ponents, and the component within

grovns covariance matrix are needed. The component scores are defined in

Equation 12. The remaining quantities can be readily obtained via

Cr = (N - 2)-1F'[WG]F = F'CF [13]

and

x
Tk

= x
k
F k = 1, 2.

- -
[14]

where x
Tk

is of order 1-by-r and C
r

is r-by-r.

The quantities in Equations 12, 13, and 14 can be combined to form a

sample classification function for the r largest components,

Ws
I = [x - .5(x + x )IC

-1
(x - x6S -T -T T 1 -T 2 r -T 1 -r2)1

13

[15]
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The expression in Equation 15 can be expressed in terms of the p original

predictors. Using the relationships in Equations 12, 13, and 14, Equation

15 can be rewritten as

Ws[Xri] - [xi - 5(11 +12)] F(F1CF)-1F'(, -:312)1. [16]

In sum, when classification is performed on the r largest components,

the discriminant weights used in the classification rule are defined as

b
T

= (x
1
- x

2
)F(F1CF)

-1
F' ,

-
[17 ]

which allows Equation 16 to be rewritten as

W
s

= [x
4

- .5(x
4

+
2 r

. [18]
-

In contrast, the discriminant weights used when classification is performed

directly on the original predictors are those depicted in Equation 2. As

expected, when all p components are retained for classification purposes,

the esultant rule is the standard full rank rule since, for r - p,

F - (N - 2)
.5

S
-1

V
r
D
r

-1
= (N - 2)

.5
S
-1

VD
-1

substituted into Equation 17 yields

b
T

=
1 2

)[S-1VD-1][(N-2)(D-lIPS-1)C(S-11/D-
1)] -1 [D-1v, s-1]

= (Tc1-72){S-1VD-1 i {(S-1VD-1)-1(C-1)(D-1V'S-1)-1][D-1V'S-1]

(/71-'72)C-1 b

[19 ]

[20]

In other words, the discriminant weights obtained via the principal compo-

nents procedure are identical to the discriminant weights used by the stan-

dard full rank procedure when all p (r = p) components are retained for

the classification analysis.

14
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Equal Weights Classification

The success of equal weights regression (Dorans and Drasgow, 1978) led

the author to wonder whether an equal weights classification procedure

would also be useful under certain circumstances. Since an equal weights

classification procedure has not appeared in the literature, it was neces-

sary to devise a classification analogue to equal weights regression.

The first step in equal weights regression is to obtain a composite of

standardized predictors. Likewise, the first step in equal weights regres-

sion should be the formation of a composite of standardized predictors.

'tucker's (1978) developments in reduced rank discriminant analysis suggest

that the predictors should be standardized with respect to the total sample

metric. Thus a standardization such as that depicted in Equation 9 is

required. Next, these standardized predictor scores are summed to obtain

composite scores for each individual. Let 1-by-p transformation vector t

be defined as

t = 1 S-1 [21]

where 1 is a 1-by-p row vector of ones and S
2

is defined in Equation 8.

Summing the standardized predictor scores is accomplished via

x
ti

x t' [22]

where x
ti

is the score for the ith individual in the unit weighted compos-

ite of the p standardized predictors.

Since the goal is development of a classification rule based on this

single equal weights composite, it is necessary to develop an analogue of

Equation 1 in terms of this composite. Thus, in addition to scores on the

15
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composite, which are obtained via Equation 22, the within groups variance

and sample means on this composite are needed. The sample means can be

obtain readily via

tk
t' k = 1, 2 .

and the within groups variance can be obtained via

s
t

2
= tCtI

13

[23]

[24]

The quantities in Equations 22, 23, and 24 can be combined to form a

sample classification rule for the equal weights composite,

Ws[xti] Pcti '5 (;t1 xt2)ist
-2

(xt1 x t2)
[25]

By using the relationships in Equations 22, 23, and 24, Equation 25 can be

expressed in terms of the p original unstandardized predictors as

Ws [xti] 1[254] [ 5 ic2)} (ICI' )-1105:1 .12) . [26 ]

By letting

b
t

= (i. - --2 W(tCt1)-it [27]

define the discriminant weights used in classification on the basis of the

equal weights composite, Equation 26 can be rewritten as

Wix = [x
4

- .5(i
1

+
2 t

' [28]
- -

In sum, two types of reduced rank classification rules have been

describe.; in this section. In the principal components classification

procedure, a standard classification analysis is performed on the r largest

principal components of a standardized estimate of the population total

covariance matrix. The sample classification rule for this reduced rank

procedure involves Equations 17 and 18. In the equal weights classifica-

tion procedure, a standard classification analysis is performed on a unit

1 6
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weighted composite of the standardized total group predictor scores. The

sample classification rule for this latter reduced rank procedure involves

Equations 27 and 28.

Both these reduced rank classification procedures are being studied as

potential alternatives to standard classification analysis performed

directly on the p original predictors. Equations 1 and 2 are used with

this classification procedure. The rationale for studying these reduced

rank alternatives is that they may be less susceptible to derivation

sample idiosyncrasies, and that, consequently, they may produce lower

actual error rages than the standard full rank procedure.

Expected Performances of the Reduced Rank Procedures

Under what conditions will reduced rank classification yield lower

actual error rates than classification performed directly on the basis of

the original predictors via the standard full rank procedure? This is an

empirical question. Apriori, the expectation is that both reduced rank

procedures should perform best in samples drawn from structured populations

that are amenable to reduced rank description. In contrast, classification

on the basis of the original predictors should perform best in samples

drawn from populations characterized by random structure.

Two classes of simulated populations were generated to test these

apriori expectations or hypotheses. In one class of populations, the teat

vectors and subpopulation centroids were placed in random directions within

an orthogonal reference system of dimensionality larger than the number of

predictors. Full rank classification, the standard procedure, was expected

17
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to perform better than the reduced rank procedures in this class of popula-

tions. The other class of populations was constructed within the framework

of the common factor model, such that relationships among the observed

predictors and group differences on the observed predictors were accounted

for by a small number of common factors. Apriori, the reduced rank proce-

dures were given the edge in these populations.

Recall that there are two types of reduced rank classification proce-

dures under investigation: principal components classification and equal

weights classification. Under what conditions should one of these proce-

dures perform better than the other? This is also an empirical question.

To address it, two subclasses of structured populations were constructed.

In both subclasses, relationships among the observed predictors were

described by a small number of common factors, and subpopulation centroid

differences on the p observed predictors were due solely to subpopulation

differences on the common factor centroids. The orientation of these com-

mon factor centroids was the feature distinguishing between the two sub-

classes of structured populations. In the fully structured subclass, each

of the common factors contributed equally to subpopulation discrimination.

The apriori expectation was that this subclass of structured population

favors the equal weights classification procedure. In the other subclass

of structured populations, the orientations of the common factor centroids

in the subpopulations were randomly directed. Principal components classi-

fication was given the edge in this partly structured class of structured

populations.
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In sum, two classes of populations were constructed in this research to

address the usefulness of reduced rank classification procedures: random

and structured. Within the class of structured populations were two sub-

classes: fully structured and partly structured. Standard full rank clas-

sification was given the apriorl edge in the random populations, while the

fully structured populations appeared most favorable to equal weights clas-

sification. The principal components procedure was expected to perform

better than the other procedures in the partly structured subclass of

structured populations.

Simulation Design

Random Populations

The class of random populations was constructed via 16 randomly direct-

ed vectors of unit length and two randomly directed centroid vectors of

variable 'length. First, consider the general case: constructing two

p-dimensional normal subpopulations, k1 and k2, that have the same

covariance matrix E, and centroids, and p2, respectively, for which the

population generalized distance (Mahalonobis, 1936) is fixed at a desired

value.

One begins by forming a p-by-p(p+r) matrix Z of random normal deviates,

where p > r. Each row of Z corresponds to one of the p observed predic-

tors. Each column of Z corresponds to one of p+r underlying orthogonal

dimensions. (The quantity p+r is not arbitrary: It is also the number of

underlying orthogonal dimensios in the structured populations.) Random

normal deviates are chosen to ensure that each of the p rows of Z repre-
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sents a random direction in a multivariate normal space of p+r dimensions.

The entries in Z are the weights describing the,perfect regression of the p

observed predictors onto the p+r underlying orthogonal dimensions. To set

the variances of the p observed predictors equal to unity, each of the p

rows of Z are rescaled to unit length.

Let Z represent the p-by-(p+r) matrix of p randomly directed vectors of

unit length in a multivariate normal space of p+r orthonormal dimensions.

The common within groups covariance matrix can be expressed as

= ZZ' . [29 ]

The p-dimensional centroids for subpopulations k1 and k2 are defined via

2t1Z' [30]

and

u2 p Z'
-2 -z2 [31]

where kel and E22 are l-by-(p+r) centroid vectors that are randomly directed

in the p+r orthonormal space. These two centroid vectors can be scaled

such that the population generalized distance (Mahalanobis, 1936)

6 2 = (11 - u )E-1(11 u )i [32]-4 -/ 1 2
= (p

zl
p
-z2

)Z'(ZZ')-1Z(p
zl -z

p
2
)'

is fixed at a desired value. For example, if 6
2
= 1 is the desired gener-

alized distance between subpopulations 1(1 and k2, the vectors Ez, and
1-1z2

are scaled such that the product in Equation 32 equals unity.

In this simulation, where p = 16 observed attributes and r = 3 common

factors, the same Z matrix was used for every random subpopulation. Hence,

the same covariance matrix E characterized every random subpopulation. For

20
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simplicity, the subpopulation centroid 21 was set equal to the null vector

throughout this simulation. This simplification does not limit the gener-

ality of the simulation because the important quantity is the centroid

difference (Pi
-2

- ).

A raw randomly directed 1-by-19 centroid vector
z2

was generated.

This vector was substituted irto Equation 31 to obtain a raw randomly

directed 1-by-16 centroid vector R2 for subpopulation k2. This raw

centroid vector was rescaled four times via Equation 32 to produce the

populations with the desired population generalized distances of 1, 2, 4,
0

and 8.

In sum, all four pairs of random subpopulations were characterized by

the same covariance matrix. The centroid vector for the first member of

each pair of subpopulations was the null vector. The four centroid differ-

ence vectors, are rescalings of each other, differing with respect to the

population generalized distance they produce when multiplied with the

population covariance matrix E via Equation 32.

Structured Populations

Both subclasses of structured populations were constructed on a factor

analytic foundation (Thurstone, 1947), First, cwAsider the general case:

constructing two p-dimensional ncrmal subpopulations that have an equal

covariance matrix E, and centroids wandand V , respectively, for which the

population generalized distance is fixed at some desired value. For

simplicity, the r common factors are orthogonal. A hypothetical p-by-r

factor weight matrix A can be devised. The elemeits of this matrix are

21
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scaled such that the sums of squares for the jth row of A equals the commu-

nality of the jth predictor, h
j

2
. The uniqueness of the predictor,

u , equals 1 - h
2

. Hence, there is a p-by-p diagonal matrix U with

elements ui.

The common factor model (Thurstone, 1947) postulates that the r mon

factors and the p unique factors are uncorrelated. Hence, the covariance

matril E can be expressed as

E = .= AA' + U2
1 U [33]

The centroids, v
4 and v,. on the observed predictors for subi.opulations k

1

and k2, respectively, are obtained via

and

-1 L -all -ul U -al + .ill

V = ru 1.1 ][---.1... II A' u U

1-12 ka2111p21 7 /-ia2A' + 21112U

1 Al

[

[34 ]

[35]

where the 1-by-r vector u and the 1-by-p vector
p

are the centroids on
-ak -uk

the common factors and unique factors, respeztively, for the kth subpopula-

tion. In these structured subpopulations, it it as.imed that centroid

differences on the observed predictors are due solely to differences on the

r common factors. In other words, the difference vector (u -
u2

) is
-ul

equal to the null vector. The scaling of the common factor centroids u
-al

and u
a2

is such that the product

2
6 = (1.1 - g-1

(1.1

i -2
- )i [36]-1 -2

=
1 -a2
- u )A1(AA' + U

2 -1
A(-a1

-a2
)'

is fixed at a desired value.
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In this simulation, where p = 16 observed predictors and r = 3 common

factors, the same A and U matrices were used for every structured sub-

population in both classes of structured populations. Hence, the same

covariance matrix E characterized every structured subpopulation.

The centroid vector for the first member of all eight pairs of struc-

tured subpopulations. was the null vector. An mentioned earlier in the

preceding section on random populations, this constraint does not interfere

with the generality of the simulation because the centroid difference vec-

tot (u
i

-
-2

) is significant, not its constituent elements.

The feature that distinguishes between the two subclasses of structured

populations is the manner by which the second population centroids u2 were

generated. Recall that in all structured populations, subpopulation dif-

ferences on the observed predictors are due solely to subpopulation differ-

ences on the r common factors. In the fully structured subclass of struc-

. tured populations, the three common factors contribute equally to sub-

population differences. In other words, the raw common factor centroid for

subpopulation k2 in the fully structured subclass is a vector of ones,

u
a2

= 1 11, [37]

To obtain a raw 1-by-16 centroid vector p2 in the completely structured

populations, Equation 35 was used. This raw completely structured centroid

vector was rescaled via Equation 36 four times to obtain the desired popu-

lation generalized distances of 1, 2, 4, and 8.

In the iirtly structured subclass of populations, the raw common factor

centroid for subpopulation k
2
was placed in a random direction in the
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three-dimensional common factor space. This random placement of the common

factor centroid
-u a2

sharply contrasts with its orderly placement it. the

completely structured subclass of structured populations. For the partly

structured subclass, however, the 1-by-3 vector of ones 11 was replaced by

the randomly directed common factor centroid. Again, Equation 35 was used

to generate a raw observed attribute centroid vector 22. The resultant

1-by-16 raw partly structured centroid vector was rescaled via Equation 36

four times to produce the desired population generalized.distances of 1, 2,

4, and 8.

In sum, 12 pairs of subpopulations were constructed in this simulation.

All four pairs of random subpopulationr were characterized by the, same

covariance matrix. All eight pairs of structured subpopulations were char-

acterized by the same covariance matrix chat 'offered from the first. The

centroid vector for the first member of all 12 pairs of subpopulations was

a null vector. Within each class (subclass) of population structure, the

four centroid vectors for the second member of the four pairs of sub-

populations were rescalings of each other, differing with respect to sub-

population separation c.s measured by the population generalized distance.

These four levels of population generalized distance were 1, 2,

4, and 8.

Sampling and Computation of Classification Rules

Random samples of equal size were drawn from each of the 24 sub-

populations at four levels of total sample size. The four total sample

size levels, N = 40, 80, 160, and 320, were chosen as representative of



Classification

22

four sample size to number of predictor (N to p) ratios often seen in prac-

tice. These N to p ratios are 2.5, 5, 10, and 20. Since there are two

subpopulations per total population, the equal subpopulation sample sizes

were: n
1
= n

2
= 20, 40, 80, and 160.

The sampling process involved the generation of sample within groups

sums of products matrices, WG1 and WG2, and sample centroids, x1 and x2.

Since the predictors follow a multivariate normal distribution, the sam-

pling distributions for the WGk are Wishart, depending only on the popula-

tion covariance matrix (E), the sample size (nk), and the number of predic-

tors (p) (Wishart, 1928; Wijsman, 1959; Odell and Feiveson, 1966). The

sampling procedure used in this simulation is very similar to that employed

by Herzberg (1969). There are, however, minor differences. Whereas

Herzberg sampled a single covariance matrix per sampling unit, two sums of

products matrices WG1 and WG
2
were generated per sampling unit in this

investigation. In addition, the widely known sampling distribution of the

mean was used in this research to generate two sample centroids, xi and x.2,

per sampling unit.

Fifty replications at each of the four sample size levels were drawn

from each of the 12 populations, yielding a total of 2400 pairs of

simulated random samples.

For each pair of random samples, both reduced rank classification pro-

cedures and the standard full rank procedure were used to develop sample

classification rules. The weights for the standard full rank classifica-

tion rule were obtained via (2). The weights for the principal components
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and equal weights classification rules were obtained via (17) and (27),

respectively. Since the sampling process in this simulation was of .a

stratified random nature, the estimate used for the population total

covariance matrix by the reduced rank classification procedures was that
C-

depicted in (5).

For each of the sample classification rules, the actual error rate

associated with that rule was computed via (Lachenbruch, 1975)

Ec - .51(-Ws*kj)/(Vw*).51+ .51)[(Ws*[1.121)/(Vw*).51 (38

P[z] is the cumulative normal density functio evaluated at z and

Ws*
[kJ

equals either Ws [4d, Wslud, or Ws" which h can be obtained

from Equations 1, 18, or 28, respectively. In Equation 38, the term VW* is

the variance of the linear composite formed by using b* in the population,

VW* = b*Ebict [391

where b* equals either b, b
T

, or b
t

, which are defined in Equations 2, 17,

or 27, respectively. The actual error rate serves as the major dependent

variable for assessing the performances of the two reduced rank procedures

as potential alternatives to the standard full rank classification

procedure.

Results

Summary information relevant to assessing the usefulness of the two

reduced rank procedures is provided in Tables 1, 2, 3, and 4. First, the

content of Table 1 is discussed. In this table, the optimal error rates

for each type of classification rula in each of the 12 populations are

presented. The optimal error rate is the probability of misclassification

26
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associated with the use of the optimal population classification rule:'in

the population. In other words, the optimal error rate is the lowest pos-

sible error rate attainable in the population for a particular type of

classification rule.

Examination of Table 1 reveals that, in every population, the standard
.

classification procedure, as expected, has the smallest optimal error rate,

and that this error rate is independent of the structure of the population.

For the standard classifi-stion procedure, the optimal error rates range

from a high of .31 in populations where the generalized distance is 1 to a

low of .08 in populations where the generalized distance is 8.

In contrast to the standard classification procedure, which makes no

structural assumptions about the population, the two reduced rank classifi-

cation procedures are sensitive to the structural characteristics of the

population. The equal weights classification procedure is particularly

sensitive to population structure. In the random populations, the optimal

error rate for the equal weights classification rules range from .47 when

the population generalized distance is 1 to .44 when the population gener-

alized distance is 8. In the partly structured populations, the perfor-

mance of equal weights classification improves, yet remains noticeably

poorer than the other two procedures, particularly for large populatioii

generalized distances. The optimal performances of the equal weights clas-

sification rules in the fully structured populations provide sharp con-

trasts to its optimal performances in the other two classes of populations.

In this subclass of structured populations, the differences between the
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Table 1

Optimal Error Rates for the Three Classification Procedures

in the Three Classes of Population Structure at the

Four Levels of Generalized Distance

'Population Structure

Distance Rule

ST
2

6 1 PC
EW

ST
6 4 81 2 PC

EW

ST
2
= 4 PC

EW

ST
2
= 8 PC

EW

Random
Structure

.31

.45

.47

.24

.42

.46

.16

.37

.45

.08

.25

.44

Partly
Structured

.31

.31

.36

.24

.24

.32

.16

.16

.26

.08

.08

.20

Fully
Structured

.31

.31

.31

.24

.24

.24

.16

.16

.16

.08

.08

.08

Standard Classification Rule - (ST)
Principal Components Rule With Three Components - (PC)
Equal Weights Rule - (EW)
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optimal performances of the three types of classification procedures are

negligible.

The principal components classification procedure performs well as the

standard full rank rule in both subclasses of structured populations. In

the random population, the principal components classification rules are

clearly inferior to the standard classification rule. In contrast.to the

equal weights procedure, however, the principal components procedure

exhibits noticeable improvement as the population generalized distance

increases in the random populations.

Performance in Random Populations

Table 2 summarizes the performances of the three types of classifica-

tion procedures in the four random populations. It contains the mean

actual error rates and associated standard deviations of the three types of

classification procedures for emy combination of population generalized

distance and total sample size. Each entry in this table is based on fifty

replications.

As predicted, the standard full rank classification procedure yields

the lowest mean actual error rates in all random populations at all four

levels of sample size. Clearly, the two reduced rank classification proce-

dures are inappropriate for this class o..! populations. To their credit,

however, the mean actual error rates for both reduced rank procedures..!

exhibit little sensitivity to changes in total sample size. In contrast,

the standard classification procedure is sensitive to changes in total

sample size. The relative insensitivity of the reduced rank procedures to

29
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/ Summary Statistics for the Four ClasSification'Procedures at

:Various Generalized Distances (6p2) and Total Sample Sizes (N)

in the Random Populations

Classification Procedure

N

Standard
Procedure

MEAN SD

Principal
Components

MEAN SD

6
2
= 1

P

Equal
Weights

MEAN SD

40 .40 .03 .46 .03 .49 .03
80 .37 .02 .46 .02 .49 .02
160 .34 .01 .46 .02 .48 .02
320 .33 .01 .46 .01 .48 .01

62.2
P

40 .35 .04 .43 .03 .48 .03
80 .30 .02 .43 .03 .48 .03
160 .27 .01 .43 .03 .48 .03
320 .26 .01 .43 .02 .47 .02

2
6 = 4
P

40 .26 .04 .37 .06 .48 .04
80 .20 .01 .37 .04 .47 .03
160 .18 .01 -..6 .03 .46 .02
320 4- .17 .00 , 5 .02 .46 .01

6
2 . 8

P

40 .16 .03 .24 .06 .46 .04
80 .12 .02 .24 .05 .45 .03
160 .10 .01 .24 .04 .44 .01

320 .09 .00 .24 .03 .44 .01

The principal components rules retained three components.
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sample size can hardly compensate, howler, for the poor actual error rates

that these prccedures exhibit in the random popUlations. Clearly, neither

reduced rank alternative can be preferred over the standard classification'

procedure in this class of random populations.

Performance in Fully Structured Populations

Table 3 summarizes the performances of the three types of classi-

fication procedures in the four fully structured populations. It is

identical in format to.Table 2. Recall that the covariance matrix in the

fully structured populations can be described by three common factors and

16 unique factors. In addition, subpopulation differences are due solely .

to differences on the common factor centroids with each common factor

contributing.equally to the common factor centroid differences.

Theyerformances of the standard classification procedure in these four

fully structured populations are very similar to the performances it exhib-

ited in the random populations. For example, its sensitivity to changes in

total sample size remains evident. While the performances of the standard

classification procedure in the random populations were clearly superior to

those of the two reduced rank procedures, the same pattern of performance

is clearly inferior to the performance patterns of the two reduced rank

procedures in these fully structured populations.

Both reduced rank classification procedures perform well in the fully

structured populations with the edge going to equal weights classification

because of its remarkable performances. At each combination'of sample size

and population generalized distance, the mean actual error rate for the

31
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Summary Statistics for the Four Classification Procedures at

Various Generalized Distances (8p2) and Total Sample Sizes (N)

in the Fully Structured Populations

Classification Procedure

N

'Standard

Procedure

MEAN SD

Principal
Components

MEAN SD

6
2

= 1
7

Equal
Weights

MEAN SD

40 .40 .04 .33 .02 .31 .00

80 .38 .02 .32 .01 '.31 .00

160 .34 .01 .32 .01 .31 .00

320 .33 .01 .31° .00 .31 .00

6
2

= 2

,
P

40 .34 .04 .26 .02 ..24 .00

80 .30 .02 .25 .01 .24 .00

160 .27 .01 .24 .00' .24 ..00

320 .26 .01 .24 .00 .24 .00

6
2

= 4
P

40 .26 .03 .18 .01 .16 .00

80 .21 .02 .17 .01 .16 .00

160 .18 .01 .16 .00 .i6 -.00

320 .17 .00 .16 .00 .16 .00

6
2

= 8
P

40 .16 .03 .09 .01 .08 .00

80 .12 .02 .08 .00 .08 .00

160 .09 .01 .08 .00 .08 .00

320 .09 .00 .08 .00 .08 .00

The principal components rules retained three components.
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equal weights classification rule is equal, to two decimal places, to the

population optimal error rate, and the associated standard deviation is, to

two decimal places, zero. Even at N 40, the sample equal weights classi-

fication rules yield a mean actual error rate equal to the optimal

error rate in the population, which is the lowest error rate possible.

Performance in the Partly Structured Populations

Table 4 summarizes the performances of the three types of classifica-

tion procedures in the partly structured populations. It is identical in

format to Tables 2 and 3. Recall that the only difference between the

partly structured populations and the fully structured populations is that

the common factor centroid differences in the former are randomly directed

in the three-dimensional common factor space.

In the partly structured populations, the equal weights procedure is

not appropriate. Hence, it performs poorly. It is inferior to the princi-

pal components procedure at all levels of sample size and population gener-

alized distance, and it is inferior to the standard classification proce-

dure at most combinations of generalized distance and sample size.

The patterns of performance for both the standard classification proce-

dure and the principal components procedure are very similar to those

patterns observed in the fully structured populations. The standard proce-

dure retains its sensitivity to changes in sample size. The principal

components procedure is unquestionably the preferred alternative to the

standard classification procedure in these partly structured populations.
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Table 4

Summary Statistics for the Four Classification Procedures at

Various Generalized Distances (6
2
) and Total Sample Sizes (N)

in the Partly Structured Populations

Classification Procedure

N

Standard
Procedure

MEAN SD

Principal
Components

MEAN SD

6
2
. 1

P

Equal
Weights

MEAN SD

40 .40 .03 ..33 .02 .38 .04

80 .37 .02 .32 .01 .37 .00

160 .34 .01 .32 .01 .37 .00

320 .33 .01 .31 .00 .37 .00

6
2

... 2
P

40 .34 .04 .26 .02 .33 .05

80 .30 .02 .25 .Q1 .32 .00

160 .27 .01 .25 .01 .32 .00

320 .26 .01 .24 .00 .32 .00

6
2

. 4
P

40 .26 .04 .18 .01 .27 .01

80 .21 .02 .17 .01 .26 .01

160 .18 .01 .16 .00 .26 .00

320 .17 .00 .16 .00 .27 .00

6
2

8
P

40 .16 .04 .09 .02 .20 .01

80 .11 .01 .08 .00 .20 .01

160 .10 .01 .0g .00 .20 .01

320 .09 .00 .08 .00 .20 .00

The principal components rules retained three components.
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Discussion

The adequacies of tne two reduced rank alternatives to standard full

rank classification were dependent on the structure of the predictor

battery and the nature of subpopulation .differences on the predictors.

Both reduced rank procedures were inappropriate in the random populations;

both were appropriate in the fully structured populations. In the partly

structured populations, the equal weights classification procedure per-

formed poorly, while the performances of the principal components zlassifi-'

cation procedure was very good. The performance of the standard full rank

procedure was invariant with respect to population structure, but exhibited

a disturbing dependence on sample size.

Populations with random structures are seldom seen in practice because

predictor batteries having the necessary features of a random population

are difficult to construct. It is conceivable that a random structure

might result from combining a jumble of measures for the purpose of trying

to see how things "fall-out". Even such a hodgepodge predictor battery may

exhibit an artif5cial structure imposed by unwanted factors such as method

variance. The standard classification procedure should be superior to the

two reduced rank procedure& in data sets that approximate random popula-

tions.

In the applied behavioral sciences, it is fairly common to observe data

sets that are structured and predictor batteries that are amenable to

reduced rank approximation. In these settings, the reduced rank classifi-
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cation procedures can utilize knowledge of the structural aspects of the

data to generate classification rules that exhibit better stabilities

(lower actual error rates) than the standard classification rules. The

adequacies of the reduced rank procedures depend upon he appropriateness

of the prior structural information that is incorporated into the process

of generating. classification rules by th se procedures.

In the fully structured populations, both reduced rank classification

procedures exhibited better stabilities than the standard procedure. The

performance of the equal weights procedure was particularly remarkable. Of

the three classification procedures, the equal weights procedure is the

least sensitive to derivation sample information. The rule for generating

the equal weights composite is determined apriori and exerts a considerable

amount of influence on the orientation of the equal weights composite in

the total predictor space. This influence is based on the implicit assump-

tion that subpopulation differences on all observed attributes are in the

same direction. In the fully structured populations, this implicit assump-

tion was true; hence, the very stable performance of the equal weights

procedure.

In the partly structured populations, the implicit assumption of a

common direction for subpopulation mean differences was wrong. The equal

weights procedure performed poorly in this class of populations. In

contrast, the principal components procedure performed as well in the

partly structured populations as it did in the fully structured popula-

tions. The stable performances of the principal components classification
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procedure in these two subclasses of structured populations hinged on its

capacity to use information about the effective dimensionality of the pre-

dictor space and on the appropriateness of this information. In both sub-

classes of structured pc,pulations, the decision to retain three components

was appropriate; hence, the principal components rules exhibit more stabil-

ity than the full rank rules. In the random populations, however, the

decision to retain three components was incorrect and, consequently, the

principal components procedure performed poorly.

In sum, the adequacy of the two reduced rank procedures depends upon

the appropriateness of the prior information that they incorporate into the

process of generating the classification rules. The equal weights proce-

dure requires appropriate information about the directionality of, sub-

population differences. The principal components procedure requires appro-

priate information about the effective dimensionality of the predictor

space. In contrast, the standard full rank procedure does not require

either type of information and is considerably more sample dependent, yet

less susceptible to poor performance because of inappropriate assumptions

about the structural characteristics of the data.

Future Research

At this point, it is important to recognize that these simulation

results should not be generalized in a thoughtless fashion. Each of the

three classes of population structure was represented by a single replica-

tion. The intent of this research was not to generate prescriptions that
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are applicable to any conceivable data set. Rather, this article intro-

duced two reduced rank classification procedures and demonstrated that

there are situations in which these two procedures are feasible alterna-

tives to the stat.dard classification procedure. Clearly, there is a need

for future research that would expand the boundaries of this simulation and

provide a more extensive specification of the conditions under which the

two reduced rank procedures can be expected to perform better than the full

rank procedure.

Examination of the sensitivity of the principal components procedure to

incorrect decisions about the number of components to retain for classifi-

cation purposes is one area for future research. Extension of these

reduced rank procedures to multiple group cases also merits further inves-

tigation. In addition, the usefulness of these procedures in real data

sets should be examined. Clearly, there exist many avenues for future

research on the two reduced rank classification procedures that were

described and investigated in this article.
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