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ABSTRACT
Most of the research on mathematical and scientific

thinking has been concerned with uncovering knowledge structures and
reasoning processes in people of different levels of competence. How
these structures and processes are acquired has only recently become
a major concern. Thus, some of the major research on mathematical and
scientific thinking is reviewed, giving particular attention to work
that sheds light on the processes of learning and development. Three
areas of research are addressed: (1) the role of organizing schemata
or structures in scientific and mathematical thinking; (2) the
spontaneous construction or application of theories (considering
investigations involving simple addition and subtraction); and (3)
imrlicit understanding expressed as the invention of procedures. The
research examined indicates that the kinds of schemata people have
made differences in their methods and levels of success in
problem-solving. In addition, the schemata of experts may either be
refinement of the schemata of novices in the same domain, or the
schemata between novices and experts may be in direct conflict. Other
research suggests that attention should be addressed to the processes
learners use to construct spontaneous theories. These theories,
because they are often "wrong," must ba constructed by the learners
themselves. (JN)
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MATHEMATICAL AND SCIENTIFIC,KNOWLEDGE: AN OVERVIEW

Lauren B. Resnick
Learning Research and Development Center

Department of Psychology
University of Pittsburgh

and

Rochel Gelman
Department of Psychology
University of Pennsylvania % )

Over the last decade cognitive psychologists have become increasingly
interested in studying learning and performance in specific domains of
knowledge. Meng the domains that have received a great deal of attention
are mathematics and sr*eince. Most of the research on mathematical and
scientific thinking ' een concerned with uncovering knowledge stru tures
and reasoning proces eople of different levels of competence. How
these structdres and p es are acquired has only recently become a
major concern. In this :view paper we will review some of the major
recent research on mathematical and scientific thinking, giving particular
attention to work that sheds light oft the processes of learning and
development. We will consider research in three areas of investigation:
(1) the role of organizing schemata or structures in scientific and
mathematical thinking; (2) the spontaneous construction or application of
theories; (3) implicit understanding expressed as the invention of
procedures.

THE ROLE OF ORGANIZING SCHEMATA IN THINKING

Researchers in the fields of cognitive development and cognitive
psychology have concluded that problem solving in mathematics and science
depends heavily on the kind of schemata,-or structures, that children and
adults bring to a problem. Although there have been challenges to Piaget's
description of the structures available to :hildren of different ages (see
Gelman and Baillargeon, 1983, for a recent review), the Piagetian notion
that individuals' cognitive structures determine the nature and ,power of
their problem-solving abilities has a close relative in the schema 1 theory
developed by cognitive scientists. In both accounts the available
structures, or schemata, limit the range of problems one can successfully
tackle. Further, which aspects of a problem are attended to, what
interpretations they receive, and how they are approached are heavily

1. In current cognitive science usage, a schema is a kind of prototype of
situation. It describes the relationships that will be true across a
number of specific situations. To take a simple example, a schema for a
restaurant visit specifies that there is a room with tables at which one
sits, thatone gives an order to a waiter or waitress, that food is brought
to the table, that at the end one pays for the meal, and so on.

Copyright 1)1984, Lauren Issuick, Rochel Gelmtan
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Mathematical and Scientific Knowledge

dependent on the interpretive structures or schemata brought to the

problem. Finally, it is recognized that these schemata are active rather

than passive. They do not wait around to be brougLt into play by some

input or sequence of expe;iences. Rather, they organize and direct

behavior that sometimes even supplies the kind of inputs these structures

require for their further elaboration.
4

Some of the most striking evidence for the conclusion that available

schemata determine the course of problem solving comes from work on the

difference between expert and novice problem solvers. It reveals that

experts have different schemata available to them, and hence reason

differently. Consider studies of physics knowledge.

In these studies good but beginuing students have been compared with

advanced students or teachers. The studies show first that one's initial
understanding, even of a simple textbook prablem, depends upon one's level

of knowledge in the field. Chi, Feltovich, and Glaser (1981) asked novices

and experts to sort physics textbook problems on any basis they wished.

Novices did so on the basis. of the kind of apparatus involved (levet",

inclined plane, balance beam, and the like), or the visual features of the

diagram accompanying the problem. Experts classified the same problems on

the basis of the underlying physics principle that was needed to solve the

problem (e.g., energy laws, Yewton's second law). Figure 1 shows some

typical novice classifications; Figure 2 shows the contrasting expert

classifications. Clearly, novices ate more at the mercy of the way the

problem is presented, while experts bring their own knowledge of important

principles to bear in a way that reshapes the problem, usually in a more

solvable form. This is much like the way in which good readers use their

past knowledge about the topic or the form of discourse to impose a useful
0 structure on a text, while beginning readers are much more victimized by

poorly written material or indirect forms of expresssion (see A. Brown's

paper in this collection).
c
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Diagrams Depicted from Problems Categorized Novices' Explanauons for Their Similarity
by Novices within the Same Groups Groupings

Problem 10 (11)

Problem 11 (39)

Problem 7 (23)

2

10M

Novice 2. "Angular velocity, momentum.
circular things"

Novice 3: "RotatiGnal :.inernartics. angular
speeds. angular velocities"

Novice 6: "Problems that have something
rotating: artfully soiled"

#to Novice I: "These dal with blocks on an
2 lb. Jo incline plane"

Novice 5: "Inclined plane problems.
coefficient of friction"

Novice 6: "Blocks on inclined planes
with angles"

Proo Iem 7 135)

Figure 1. Diagrams depicted from two pairs/of problems categorized by
novices as similar and samples of three novices' explanations for their
similarity. Problem numbers given are the chapter number and problem
number from Halliday and Resnick (Physics, Edition. New . York: John Wiley,
1974). (From Chi, Feltovich, and Glaser, 1981.)
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Dtagrems Depicted front Problems Catergonsed Experts' Explanations for .Thetr Simian!).

by Experts within the Same Groups Groupings

m

equilibrium

IFp *, Kr

mg

Expert 2 "Conservation of Energy"

Expert 3: "Work-Energy Theorem.
They are all straightforward

Expert canxpert 4 be done from *mangy
considerations. Either you should
know the Principle of Conservanon
of Energy, or work is lost
somewhere."

Exper 2. 'These can be solrmi by Newton's
Second Law"

Expert 3 "F ma: Newton's Second Law"

Expert 4. "Largely use F ma, Newton i
Secotd Law"

Figure 2. Diagrams depicted from pai4rs of problems categorized by experts

as similar and samples of three experts' explanations for their

similarity. Problem numbers given are the chapter number and problem

number from Halliday and Resnick (1974). (From Chi, Feltovich, and Glaser,

1981.)

Initial differences between experts and novices in sorting and

classifying problems are only the beginning, however. The process of

solution is also different. What novices usually do is translate the given

inforwation directly into formulas. They then wurk on the formulas using

rules of algebra, and usually they eventually come up with the right

answer. Experts, by contrast, do not begin by translating intWormulas.

Instead, they work for awhile on reinterpreting the problem and *ecifying

the various objects and relationships in the situation described. They may

draw diagrams to express these relationships. By the time they are ready

to write equations, experts have virtually solved the problem. They do
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much less calculation than novices--at least on the simple problems studied
so far j.n this research. Experts, in other words, construct a new version
of the' problem for themselves, one that accords with the information
actually given, but that is reformulated in terms of general principles ,nd
laws that make the solutions apparent (cf. Larkin et al., 1980).

Studies of people's knowledge of physics provide some of the most
compelling demonstrations of the way differences in the kinds of schemata
that are available affect problem solving. But these differences occur in
other domains as well. Similar 4ifferenc'es have been found in tasks as
divergent as interpreting x-ray photogra0s_ and solving arithmetic
problems. In each case, the more advanced problem solver does not simply
respond to the problem in the terms presented, but instead rcterprets it
in ways that reveal an underlying structure that makes the solution
sometimes appear self-evident to the problem solver. This characteristic
of "expert" problem solving_ can, even. be seen in the performances of'very
young children on arithmetic story problems. To illustrate we draw on the
work of Riley, Greeno, and Heller (1983), which analyzes the converging
data bases collected by Carpenter and 'Moser- (1982), Nesher (1982), and
Vsrenaud (1982) in three .differentcountries.

Riley and colleagues have identified three main clames of addition and
subtraction word problems:

clames

Those that involve a change schema that is, situations in which f.n
initial quantity is'nodified by virtue of its gaining or losing some
amount. Example: David has 15 marbles. He loses 6 in a game. 'How
many marbles does he have left?

2. Those that evoke a combine schema--that is, ones that describe the
combination of subsets into a superset, or the decomposition of a
superset into subsets. Example: In the class there are ps children.
Nineteen are boys. How many are girls?

3. Those that evoke a comparison schema. Example: Jack's group worked
hard and, Planted 12 trees. Donald's group was slower and planted
only 8 trees. How many more trees did Jack's group plant?

Among the 'most difficult problems for children are those that in'.olve the
comparison schema, and those that involve the change schema with the
starting set unknown--*for example: "Peter went out to play marbles with his
friends. lit; lost five marbles 'in the game and came home with only eleven
marbles in his pocket. How many did he have when he started out to play?"
Up to the age of eight or nine, children have a great deal of difficulty
with these problems, and they make characteristic errors. However;
individual interviews with children show that once they master these
problems, the answers become self-evident to the children. For Oa
Peter - and- his--marbles problem they say things like, "11 plus 5 is 16, so he
had 16 when he started," without being able to tell the interviewer how
they knew that they shoule add the two numbers. This is especially
striking when we consider that the story describes losing, and this would
most naturally prompt children to want to subtract instead of add (indeed

271.
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that Ad what many children who fail this kind of.problem do).

How do these "expert" eight and nineyearold problem solvers arrive at

the idea that they need to add to solve a problem in which a child loses a

number of things? That is the kind of question that was addressed.in two

recent efforts to build formal theories of the knowledge structures and

reasoning processes used by children when they solve story problems.

Riley, Greeno, and Heller (1983) developed a family of computer simulation

models that solve. Problems. from each of the three classes at three

different levels of competence. Only the most competent model_is able to

solve problems like those about Peter and-his,marbles. To do so, it first

classifies the problem as a change problem and then calls upon its change

schema to interpret the situation--much as the expert physicist sorts

proplems according to the kind of.physics laws they invoke. Then, in order

to season about a starting set of unknown size, it reinterprets the problem

in terms of a partwhole schema. In this reinterpretation, it recognizes

that the whole is made up of rwo subsets of marbles, the five that Peter

had at the beginning but lost and the eleven that he had atihe beginning

and kept. Because the partwhole schema specifies that parts can be

combined to make up a whole, the system "knows" that it should add .eleven

and five.

An alternative storyproblem theory developed by Briars and Larkin (1981)

solves these problems not by calling on a chanke schema but by constructing

a mental script that reflects realworld knowledge about separating and

combining objects rather than using the more abstract schema proposed by

Riley, Greeno, and Heller. The script describes the actions in the story

and allows the system to keep track.of the sets and subsets involved. Yet,

in Briars and Larkin's model, too, it proves possible to solve a difficult.

problem such as Peter and his marbles only by calling on a pertwhole

schema.

.THE SPONTANEOUS CONSTRUCTION AND APPLICATION OF THEORIES

Another recurrent finding in mathematics and science learning is thitt

people regularly construct theories for themselves. One line of evidence

for this is that the beliefs they hold about how the physical world works

or about the properties of numbers are not simple reprodiktions of what

they may have been taught. Studies of physics learning highlight the fact

that people bring with them to their school or university science courses a

tenacious set of "spontaneous theories" about how the physical world works

(see, for example, Champagne, Klopfer, and Gunstone, 1981; McCloskey, 1983;

Selman et al., 1981). These theories are often fundamentally inconsistent

with the modern scientific theories that are to be taught, but they are

robust and are not readily abandoned as the result of instruction. There

is evidence that students adopt the schooltaught theories for solving

textbook problems, but resort to their prior spontaneous theories when

asked to solve problems that are different from those irilled in class. Art

example comes from McCloskey's studies of university students' responses to

questions about the path of a moving object as it emerges from a circular

tube. They typically Answer that the object will continue to move around

in a circle, just as it did in the tube! Such answers are more consistent

10
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with the medieval impetus theory of moving inanimate objects than with that
of Newton.

Three lines of evidence. support the view that spontaneous or naive
theories are constructed in the dotain of mathematical' knowledge:' (1)
Children invent' procedures they could not have invented unless they had
constructed theoriek; (2) In some oases children systematically "err" in .a
way that can be traced to a. misapplication of their theory; and (3) In some
cases children work. through the implications of the knowledge they already
possess.

Simple Addition and. Subtraction

Coneider research on a problem in learning long,thought to be a prime
example of rote acquisition of associations: simple, single-digit -addition 4

and subtraction problems. School textbooks typically define addition as a

process of counting objects.to represent each addend, combining the subsets
thus created into a single large set, and then recounting the combined
set. Teachers generally expect children rather quickly to have memorized
the answers to simple addition problems (that is, to have learned the sums
table) and thus.to cease to depend upon any form of counting. .Research in
several countries, however, has snow made it cleA' that 'there is a period of
time-in which children continue to use a counting method to do addition.
Further, they use a different procedure from the' one they were *taught.-

Most :-hildren use a procedure that is more elegant than . the one they were
taught, because it minimizes the comp;,ttational steps and because it appears
to involve an intuitive appreciation of the Zmatheniatical principle of
commutativity.. What chi14ren typically do is behave as if they had a
counter in their heads. They initially set this ,ounter to the' larger of
the two addends, acid then increment it by a number of steps equivalent to
the smaller. For example, to add 3+5,, the child starts at 5 (even though
it is named .second) and counts. onC46.5.....61. 7, 8." The final count ("8")
is then given as the answer. This procedure has been docuMented-itt ,

reaction-timd and interview studies of a number of children in different
countries and of different measured mental abilities (Groen and Parkman,
1972; Svenson, .1975; Svenson and Broquist, 1975). A study by Groen and
ResniCk (1977) shows that the procedure can be invented by- children as
young as four or five years as a result:of practice\in addition--with no

direct *instruction, demonstration, or explanation.

A 3imllar story can be told' for ,ALbtraction. Typically, textbooks
demonstrate either of two procedures: a counting-out procedure in which a
starting set (the minuend) is established, a specified number of objects
(the subtrahend) is removed,-,' and the remainder counted; or a matching
procedure in which sets to .,represent two quantities are established,
objects from these sets are paired one - for --ones and the remaining unmatched
objects are counted. However, after practice, children do something rather
different from either of these: they either count down from'the minuend or
count up from the subtrahend: whichever will take the fewest counts. Thus,
for the problem 9 - 2 they say, "9...8, 7" and.anaWer "seven" and for 9 - 7
they say, "7...8, 9" and answer "two" (Wood, Resnick, and Groen, 1975;

Svenson and Redenborg, 1979). It is as if the children who invented this

1 1
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procedure understood the complementarity of addition and subtraction.

Further..e, it is not just a shortcuta cropping of redundant steps in

the &lg. -thlm that had been taught--for it involves, for each case, a

declaim, .,whether to count down or up. It involves a true invention of a

new procedure.

Studies of the above kinds demonstrate the centrality of invention even

in apparently simple and "rote" domains of learning. However, they should

not be taken to imply that inventions are always successful. Systematic

"errors" are well documented. Where they were once' attributed to

carelessness or lack of any systematic understanding of a system, they are

now recognized as being based on erroneous conceptions of how the system

works. In the ease of arithmetic it 'has been shown that systematically

used 'Wong procedures are'varianti cf the correct ones. They ax analogous

to - computer algorithms with "bugs" .n them, and thus have been labeled

"buggy algorithms." A finite number of bugs, which in various...combinations

make up several dozen buggy algorithias, have been identified for

subtractionwhich is the cost intensively studied arithmetic domain so

far. The children who display these buggy algorithms are systematically

applying rules that no one could have taught them (for presumably no one

would deliberately teach them a wrong rule). Buggy algorithms are, thus

clear examples of inventions that are unsuccessful.

Despite their failure as rules" of calculation, buggy algorithms

demonstrate An important characteristic'of human learning.and performance.

From close analysis It is clear that 'most of the various incorrect

algorithms that have been observed among children are small and often quite

sensible departures from the correct algorithm. As the examples in Figure

3 reveal, buggy algorithms tend to "look right" and to obey a large number

of the important rules for written calculation: the digit structure is

respected, there is only a single digit per column, all the columns are

filled, there are crossed out and rewritten digits, and so forth. Each

buggy algorithm looks like an orderly and reasonable response to a new

situation, although each violates a fundamental rule of the arithmetic

system: the necessity of maintaining the value of the top quantity whatever

patticular transformations or exchanges of gdantities may be made between

the columns in the written number.

Such buggy. 'algorithms point to a ,pervasive feature of learning and

cognitive performance: people seem to try to make sense out of the world,

and to create rules for acting in it, even given limited data; they do not

wait until all the information is in before they start to construct a

"theory" to account for what they have before:them. In the case of buggy

subtraction algorithms, children seem to construct a "theory of allowable

operations" that respects all the information they do have while ignoring a

mathematically important constraint that is apparently not adequately

stressed in primary school arithmetic teaching.

274
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704 60.4
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709 6008

=4,1JL 7
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004 0050

4W26, :ALL
4142.2. .30 30

7. N 0 Im 0. Whenever there is 0 on the bottom. 0 is wristlets' the mayor.
076 8./4

440 4437
=AUL

I. Clon'tOecrernobsti. When borrowing from a column in the too digit is 0.
the .dent rmentee the ale 10. but dos not change the PI to .rwri incrementing
the acme column.
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.=i1JUL

it 04
9. 7.sro-ins.csed4f4orrow. The saidortt *vital 0 as the Mime, in any C23funw: in which

the bottom digit 4 loner than the too.
326 542

a 1 0 .1. 0 0
10. IlarTow.Promaettooriftramd-OfZaro. if the too digit in the column being borrowed

from is 0, the =dirt borrow horn the bottom digit imaged. Mote: This aura must o.
combined with ether bug S or bug 6.1

704 80A

4SY /09

Figure 3. Samples of buggy subtraction algorithms invented by children,
(Adapted from Brown and Burton, 1978.)

A further consideration of the origins of buggy arithmetic algorithms
highlights this point. Brown and VanLehn (1982) have developed a computer
simulation program that invents the same subtraction bugs and therefore
makes substantially the same errors children do. This program serves as a
formal theor! of what children might be doing when they invent buggy
algorithms. According to this theory, buggy algorithms arise when the
procedures the child has previously learned are incomplete. The child,
trying to respond, eventually reaches an impasse, a situation for which no
action is available. At this point, the child tries to fix her procedure,
calling on a list of "repairs"--actions to try when the standard action
cannot be used. The repair list includes strategies such as performing the
action in a different column, or substituting an operation (such as

incrementing for decrementing). The outcome generated through this repair
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process is then checked by a set of "critics" that inspect the resulting

solution for conformity to some basic criteria, such as no empty columns,

only one digit per column, only one decrement per column, and the like.

Together the repair and critic lists constitute the key elements in a

"generate and test" problem-solving routine. This is the same kind of

"intelligent" problem-solving that characterizes many successful

performances in other domains (see Simon, 1976). With buggy algorithms, the

trouble seems to lie not in the reasoning processes but in the inadequate

data base applied. In particular, the critic lists do not contain criteria

that would reject repairs that violate the principle of maintaining

quantity equivalence. The invented algorithm is a sensible construction,

but on a data base that is incli,plete. It therefore turns out to be a

"buggy" rather than a successful invention.

Repair theory is, in fact, a detailed theory of acquisiton for a small

domain of arithmetic. Its broader implication is that cognitive theories

of acquisition must recognize people's tendency to organize and structure

wha. ever information they have--even though the information may be grossly

incomplete or downright inaccurate. People do not simply acquire

information passively until there is enough of it for correct rules and

explanations to emerge. Instead they construct explanations and rules of

procedure continuously, This tendency to construct ordered explanations

and routines can accoun: at least partly for the phenomenon, discussed

above in the context of physics learning, of spontaneous theories that are

resistant to change even when instruction (and thus better information)

does come along. The naive theories have been constructed to help the

individual make sense of the natw'al world. Like buggy algorithms, they

are partly correct. To give them up in order to accommodate the principles

of Newtonian mechanics is to give up a long-held system of knowledge, with

many i%terrelated schemata and domains of application, for a new theory

that is "incoherent" (because Unconnected either to other schemata or to

practical experience). It is not surprisingalthough it is

disturbingthat many students find it easier to simply reserve their

classroom-acquired theories for classroom situations and do not try to

apply them outside.

Measurement by Very Young Children

Preschool children have a very limited understanding of measurement, but

as Miller (1982) shows, this does not stop them from negotiating

measurement tasks. What they do provides support for the idea that they,

too, use an available theory, in this case one about counting, and do their

best. That is, they spontaneously misapply their implicit theories about'

numbers when confronted with the task of measuring continuous quantity. An

example comes from Miller's observations of what three-year-fold children

often do when they are asked to give two friends the same amount of water

to drink. They seem to think that this is accomplished by equating the

number of times they pour (independent of how long or how much they pour)

into each friend's glass. They fail to realize that the measurement of

continuous quantity requires that Or units to be counted be equal (see

Gelman and Baillargeon, 1983, for a discussion of similar tendencies in

14
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somewhat older children). No such problem arises when discrete objects are
s mply counted: indeed, as Gelman and Gallistel (1978) point out, any
c,llection of disparate objects can be counted. In the counting of

discrete objects, it does not matter whether the items are the same size,

color, shape, type, and so on. In contrast, it does matter what units are
counted in the act of measuring--they must be equal.

It is for this reason that one can say that the young children in

Miller's experiments misapplied their theory of counting to the task of

measurement. Still, although young children may have a limited
understanding of measurement and the requisite need for equal units, it is
nevertheless clear that they, too, invent solutiols to the problem at
hand--solutions that depend on an already available theory in a related
domain.

Infinity

For our final example demonstrating that children work up theories in the
domain of mathematics, we consider work on the development of a beginning
understanding of infinity (Evans, 1983; Gelman and Evans, 1981). Children
between the ages of five and nine participated in interview studies
designed toaesess their level of understanding that one may always add
"one" to a positive integer and get another number and thus that there is
no largest number. The children were first asked what was the biggest
number they could think of (or what they could count to). Tht,n they were
asked what would happen if one were added to their designated number, one

more to that number, one more again, and so on. Interspersed with the
questions about the effects of repeated addition were questions about
whether anyone could find a larger number than the child had, if anyone
could count past the place at which the child insisted on stopping (if he
did), whether there is a largest number, and the like.

Children's understanding of infinity was related to their ideas of what
constituted a "big" number and how well they could count. To illustrate,
many of the youngest children could count only to 20 or 30. The numbers
they mentioned as "the biggest" were usually less than 100 or else made-up
numbers like "twenty-eight-thirty-two." These children claimed they could
not add one to the number they said was the biggest they could think of.
Children classified at the second level of understanding of infinity
typically mentioned very large numbers, such as a million, in response to
the question about the largest number they could think of. They generated
large numbers in an organized fashion, even when their answer was
incorrect, such as that one million plus one is two million. Still, they
often said that there is a largest number to which nothing may be

added--whether or not they said they did not know what it was and/or that
no one ever could know. Some children at this level even said one could
keep adding and always get yet larger numbers, but paradoxically, insisted
that there must be a largest number. Thus, even though these children
recognized the effect of continued iteration on the size of a number, they
failed to recognize its consequences. Finally, the most advanced children
were not only able to give very large numbers like a million at the start.
They said that one can keep adding and thereby generating yet larger
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numbers, and that the count numbers are unbounded, 'chat is, that there is

no largest number.

How do such findings support the notion that children construct theories

about numbers? First, they illustrate that their concepts and abilities

are interrelated. Children who have limited Counting abilities take rather
smallish numbers to be the largest they or anyone could know (although they

muat hear talk of much larger numbers), use their limited knowledge as

evidence for there being a largest number, and hence deny that continued

iteration will necessarily yield larger numbers. Siegler and Robinson's

(1982) work with children of comparable ages suggests that these same

children we ld also lack an understanding of the baseI0 rule that

underlies the English (and most other European) countword sequence.

Second, they illustrate that children use what they know to make further

conceptual progress. As Gelman and Evans (1981) note, some of the more

advanced children came to the interview without having realized that there

is no largest number. Although the interviewer did interact with the

children, she never answered questions for them; she never said "there is

no largest number." It appears that the interview established conditions

under which the children were able to explore for themselves the

implications of the questions asked. Children who initially said that

there was s largest number came to realize that their belief in their

ability always to add to any number they could think of implied that there

was no largest number. The idea that some of the advanced children treated

the experiment as an occasion to explore the implications and limits of

their theories of number derives support from the fact that other children

who knew the answers at the outset of the interview said they had done just

this at an earlier time. They said they discovered that the numbers never

end on their own, or in conversations they initiated at home when they

found no matter how long they counted they never reached the end, or in

conversations about numbers with their peers. This is evidence for the

view that theories--or, more properly, pieces of theories--serve to

motivate furtner theory development (iZzlrmiloffSmith and Inhelder,

1974/75).

Although children in the early years of element,ry school did rather well

in the infinity study, they lacked complete understanding of the concept(s)

of infinity. Evans (1983) suggets that the children in these studies

revealed knowledge most closely approximating the 'ntuitive understanding

of the early Greeks. It is not unreasonable to propose that more modern

and formal concepts of infinity could prove as difficult to master as are

the more modern theories of physics. Cantor's proofs regarding transfinite

numbers bewilder many an undergraduate introduced to them by R.G. (just as

they outraged many of Cantor's contemporaries). Clearly then some theories

develop with relative ease and others with only considerable effort (for a

discussion, see the paper by Susan Carey in this collection). This does

not change the fact that theories, be they correct or not,, are constructed

by adults and children alike to make sense of matters scientific and

mathematical.
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THEORIES ARE OFTEN IMPLICIT IN PROCEDURES

Lauren B. Resnick, Rochel Gelman

Much of what people--especially young children--know is implicit in their
procedures, rather than being something they are able to make explicit.

The distinction between implicit and explicit knowledge is well known in
psycholinguistics. Young children are granted implicit knowledge of

linguistic structures well before they are granted explicit, or stateable

knowledge of any of these (Gleitman, Gleitman, and Shipley, 1972). They are
granted implicit knowledge because the sentences they speak can be shown
be rule governed. The strongest evidence for the latter inference comes
from those sentences that young children utter that they could never have
heard but that nevertheless can be traced to an implicit rule or

structure. A similar distinction is necessary in the domain of mathematics
knowledge.

When Gelman and Gallistel (1978) concluded that even young preschoolers
know how to count, they characterized this knowledge with reference to five
principles: (1) the oneone principle: each item in an array must be tagged
with one and only one unique tag; (2) the stableorder principle: the tags
used must be drawn from a stably ordered list; (3) the cardinal principle:
the last tag used for a particular count represents the cardinal number of
the array; (4) the abstraction principles: any set of items may be

collected together for a count; and (5) the orderirrelevance principle:

the order in which items in a set are tagged is irrelevant. Gelman (1982)

notes that although the evidence points to the conclusion that preschoolers
have implicit knowledge, it does not follow that they have explicit
knowledge of the counting principles. Thus, there is no reason to presume

that preschoolers can articulate the cardinal principle. Yet their

behavior supports the conclusion that implicit knowledge of it is

available. For example, when young children count large sets they often
err and fail to indicate the cardinal value represented. However, when
they watch a puppet count sets just as large and hear it answer an "how
many is that" question erroneously, they nevertheless often can say that
the puppet gave the wrong answer and then correct the puppet (Gelman and
Meek, 1983).

Greeno, Riley and Gelman (1984) show that one can describe the counting
principles with reference to a small set of action schemata. Referring to
this account as the conceptual competence the child brings to a counting
task, they develop a formal account of how the conceptual competence can be
linked to the performance competence that children exhibit on a range of
counting tasks. Performance competencies are granted when a child can

assemble a set of procedures that will produce the required performance

that adheres to the principles contained in the statement of conceptual
competence. Such efforts make it possible to articulate the notion of
implicit knowledge and hence circumvent the need to have people state their
knowledge before granting them an understanding of principles. What
follows provides support for the view that it is important to find ways of
using children's procedural performances as indicators of the nature of

their implicit understanding.
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Understanding Implicit in Children's Invented Addition Procedures

The role of conceptual understanding implicit in invenrad procedures is

revealed in work done by Robert Neches (1981; Resnick and Neches, 1983);

this work attempts to provide a formal account of how children invent the

addition procedure (described above) of counting on from the larger of the

two addends. Neches has constructed two versions of a computer simulation

program that begins with the procedure taught in school and modifies itself

so that after a number of problems it performs the procedure of counting on

from a larger number. These programs are of interest because they show how

a few simple heuristics for examining and modifying procedures can

cumulatively produce large changes in performance, without need for

external intervention. They are also of interest because comparison of the
two versions shows how mastery of a key (implicit) conceptual principle can

permit learning of a new principle. In the first version the program

(called RPM), can invent the count-up-from-larger procedure only if it

already "krews" that pairs of problems with the same addends are

particularly interesting. Such knowledge is needed because the system

proceeds by noticing that these "commutative pairs" yield the same answer,

and then applies a heuristic that selects the most efficient of two

procedures when the two yield the same answer. Counting-on-from-larger is

the procedure with the fewest counts needed, so it is selected.

Although this theory is plausible up to a point, it cannot account for

the finding (Groen and Resnick, 1977) that children invent the

count-on-from-larger procedure even when practice in addition has been

deliberately arranged so that commutative pairs never appear in

succession. RPM cannot invent under these conditions because the demands

on working memory become excessive. However, a second version of RPM can

solve this problem. In the second version, RPM is given at the outset a

strong version of Gelman and Gallistel's fifth principle of counting: the

principle of indifference to order--the concept that while number nanee

must be assigned in a fixed order when counting, it does not matter which

object receives which number name. In RPM's strong version of this

principle, the system is totally indifferent to which objects are counted,

and it treats as "the same quantity" any count of objects that arrives at

the same ending nueer regardless of which objects have been counted. With

this higher-level (but plausible for young children) understanding in its

repertoire, RPM is able to apply its procedure-changing heuristics without

an excessive demand on working memory. Although the new version of RPM

cannot be said to "know about" commutativity In the sense of explaining

it behaves "as if" it knew commutativity. It is a task for the next stage

of work on this problem to show that regular performances of this kind can

become the basis on which a learning system can construct new schematic (or

conceptual) knowledge.

Even when children are taught procedures directly, they often must

implicitly understand many underlying principles in order to successfully

incorporate those procedures into their own conceptual competence. This is

nicely demonstrated in a detailed case study of a child who took several

months to learn a procedure for equalizing two sets, even though that

procedure das directly demonstrated to him and required no arithemetic that
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2

costa beyond his capabilities at the beginning of the learning period. The
problems given to David were of the form, "You have four cookies and I hove
six. What can we do so we each have the same number?" At the beginning of

the study David was able to solve these problems in two ways. He could

find the difference between, the two sets and have the person with the

larger number give away that many ("You could sell two"), o: have the

person with the smaller number acquire that many more ("I could buy two").

He could also (in his'head) comEne the two sets and then give half the

total to each person ("We could put them in the middle and each take

five"). David could use theseprucedures interchangeably and with great

flexibility; he could also apply nem to quite large set sizes,

demonstrating very good facility with mental arithmetic. How4fer, he could

nor, even after it was demoustrated successfully, use a third procedure,
one of direct transfer from one set to another ("You could give me one").

An analysis of the formal demands of the buy/sell and transfer procedures
and of David's performances reveals what it was about transfer that gave

Divid difficulty. In buy/sell, only one of the two sets is changed, and it
is changed by exactly the difference between the tuo sets. The effect of

any mental operation is local--that is, what is done to one set does not

affect the other. In transfer, however, a change in one of the sets is

linked to. a change in the other. David had to coordinate these changes in

order to use the transfer procedure. In addition, the number of objects to
transfer is not directly derivable from the difference between the two

sets; it is half of that difference.

To master transfer David had to understand these two aspects of the

equalizing situation. His protocols, taken over a fivemonth period, how

that his first step was to understand the double effect of a transfer.
That is, for any two starting sets, if the experimeter suggested a number

'to transfer, he was able to state whether it would or would not equalize

the sets and why (that is, he could say how many each person would have

after the transfer). For several months, however, he could not decide

himself how many to transfer; he did not even have a systematic

trialanderror procedure. David's first step toward solving the problem
of how many to transfer was to construct a set of specific rules. About

three months after the beginning of the study, he was able to state that

any time, the difference between the sets was two, a transfer of one would

equalize them. He generated many examples of this, including a case where
the initial sets were 158 and 160; and a ease where the initial sets were
40 and 60 (which he said was a difference of 2 times 10, so one should
transfer 1 times 10t). He had thus used his understanding of the dual

effects of transfer to construct an empirical rule. However, he had not
yet mastered the principle of "splitting the difference." Further study of
David over the next two months showed that he eventually mastered this

principle as well. However, he showed this understanding first as a

procedure (he systematically found the difference between the two initial

sets and then transferred half of that difference), but he could not

.1101=1.=1

2. This case study is being conducted by Terry R. Greene.
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explain or describe what he was doing. Subsequently, he was able to

describe his procedure, although at the end of our observation period.he
could not yet explain why it worked.

SUMMING UP

The research we have described above establishes the outlines of a set of
questions on the nature of learning that have only begun to be addressed.

First, we know that the kinds of schemata that people have make a

difference in their methods and levels of success in problem solving. We

know that experts in any domain have different schemata from those of

novices in the same domain. Sometimes experts' schemata are elaborations

and refinements of those of novices. Sometimes, however, experts' schemata
are in conflict with novices'. In these cases, becoming an expert would
require giving up or substantially restructuring one's original, schema.

These novice-expert contrasts pose a problem in the psychology of

learning. Because all experts were once novices, we need to know what the

processes are by which people construct new schemata, or modify existing

ones.

Second, evidence that people tend to construct spontaneous theories

further underlines the importance of this fundamental question.

Spontaneous theories, because they are often "wrong" and it is thus certain
that no one would have taught them, have to be constructed by learners

themselves. What are the processes of such construction? Finally, the

research on the relations between understanding and procedural knowledge

helps to highlight our current lack of adequate theories how people

build and modify schemata. We are able to show quite clearly that

conceptual (schematic) knowledge underlies procedural inventions. We also

have a number of detailed models of how procedures are constructed by

people (see Anderson, 1981, as well as the work by Neches, 1981, and by

Greeno, Gelman, and Riley, 1984). But we do not yet have very specific

models or theories of how the schematic knowledge itself is constructed.

This is not likely to be a problem much longer, however. For many,

ourselves included, have turned our attention to this very matter (see, for
example, Sternberg, in press).
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