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ABSTRACT

Most of the research on mathematical and scientific

thinking has been concerned with uncovering knowledge structures and
reasoning processeS in people of different levels of competence. How
these structures and processes are acquired has only recently become
a major concern, Thus, some of the major research on mathematical and
scientific thinking is reviewed, giving particular attention to work
that sheds light on the processes of learning and development, Three
areas of research are addressed: (1) the rocle of organizing schemata
or structures in scientific and mathematical thinking; (2) the
spontaneous construction or applicaticn of theories (considering
investigations involving simple addition and subtraction); and (3)
imylicit understanding expressed as the invention of procedures. 7The
research examined indicates that the kinds of schemata people have
made differences in their methods and levels of success in

problem-solving.

In addition, the schemata of experts may either be

refinement of the schemata of novices in the same domain, or the

schemata between novices and experts may be in direct conflict. Other
research suggests that attention should be addressed to the processes
learners use to construct spontaneouys theories. These theories,
because they are often "wrong," must bz constructed by the learners
themselves., (JN)
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MATHEMATICAL AND SCIENTIFIC KNOWLEDGE: AN OVERVIEW

Lauren B. Resnick
Learn}ng Research and Development Center
Department of Psychology
University of Pittsburgh

and

Rochel Gelman
Department of Psychology .
University of Pennsylvania v
Over the last decade cognitive psychologiats have become increasingly
interested in studying learning and performance in specific domains of
knowledge. Atong the domains that have received a great deal of attention
are mathematics and s~ "snce. Most of the research on mathematical and

scientific thinking een concerned with uncovering knowledge stru tures
and reasoning proces: ‘eople of different levels of competence. How
these structutes and p es are ecquired has only recently becoue a
ma jor concern. In this :view paper we will review some of the major

recent research on matheuatical and scientific thinking, giving particular
attention to work that sheds 1light on the processes of learning and
development. We will consider research in three areas of investigation:
(1) the role of organizing schomata or structures in scientific and
mathematical thinking; (2) the spontaneous construction or application of
theories; (3) implicit understanding expressed as the invention of
procedures. ' '

THE ROLE OF ORGANIZING SCHEMATA IN THINKING

Resesrchers in the fields of cognitive development and cognitive
psychology have concluded that problem solving in mathematics and science
depends heavily on the kind of schemata,-or structures, that children and
adults brirg to a problem. Although there have been challenges to Piaget's
description of the structures available to :hildren of different ages (see
Gelman and Baillargeon, 1983, for a recent review), the Piagetian notion
that individuals' cognitive structures determine the nature and . power of
their problem-solving abilities has a close relative in the schema ! theory
developyed by cognitive scientists. In both accounts the available
structures, or schemata, limit the range of problems ome can successfully

tackle., Further, which aspects of a problem are attended to, what

interpretations they receive, and how they are approached are heavily

1. In current cognitive science usage, a schema is a kind cf prototype of a
situation. It describes the relationships that will be true across a
number of specific situations. To take a sinple axample, a schema for a
restaurant visit specifies that there 1s a room with tabias at which one
sits, that:one gives an order to a waiter or waitress, that food is brought
to the table, that at the end one pays for the meal, and so on.
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Mathematical and Scientific Knowledge

dependent on the interpretive structures or schemata brought to the
problem. Finally, it is recognized that these schemata are active rather
than passive. They do not wait around to be brougit into play by some
input or sequence of experiences. Rather, they organize and direct
behavior that 3ometimes even supplies the kind of inputs these structures
require for their further elaboration.

B .

N  some of the most striking evidence for the conclusicn that available

schemata determine the course of problem solving comes from work on the
difference between expert and novice problem solvers. It reveals that
experts have different schemata available to them, and hence reason
differently. Consider studies of physics knowledge. -

In these studies,” good but beginuing students have been compared with
advanced students or teachers. The studies show firsc that one's initial
understanding, even of a simple textbook problem, depends upon one's level
of knowledge in the field. Chi, Feltovich, and Glaser (1981) asked novicrs
and experts to sort physi¥s textbook problems on any basis they wished.
Novices did so on the bauis - of the kind of apparatus involved (leves,
inclined plane, balance beam, and the 1like), or the visual features of the
diagram accompanying the problem. Experts classified the same problems on
the basis of the underlying physics principle that was needed to solve the

_problem (e.g., energy laws, Newton's second law). Figure 1 shows some

typical novice classifications; Figure 2 shows the contrasting expert
clasgifications. Clearly, novices ate more at the mercy of the way tne
problem is presented, while experts bring their own knowledge of important
principles to bear in a way that reshapes the problem, usually in a more
solvable form. This is much like the way in which good readers use their
past knowledge about the topic or the form of discourse to impose a useful
structure on a text, while beginning readers are much more victimized by
poorly written material or indirect forms of expresssion (see A. Brown's
paper in this collection).

LS
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Diagrams Depicted from Problems Categorzed Novices' Explananons for Their Similanty
by Novices within the Same Groups Groupings
. Problem 10 (11) Novice 2: “Angulr velocity, momenitum,
circular things"
3 Novice 3: “Roratiunal .inemutics, angular

9 speeds, angular velocities’
* Novice 6: “Problems thst have somaething

rotaang:; angular speed”’

Problem 11 (36)

Novice 1: ‘“These deal with blocks on an
incline plane "

Novice 5: “Inclined plane oroblems,
coetticient of friction"

K22 .——e Novice 6: “Blocks on inclined planes
Ch \ with angles”

Problem 7 (23)

Propiem 7 (35)

—

Figure 1. Diagrams depicted from two pairsr6? problems categorized by
novices as similar and samples of three novices' explanations for their
similarity. Problem numbers given are the chapter number and problem
number from Halliday and Resnick (Physics, Edition. New . York: John Wiley,

1974), (From Chi, Feltovich, and Giaser, 1981.)

BEST COPY AVAILABLE

Yoo,

269



Mathematical and Scientific Knowledge

BEST COPY AVAILAg ¢

Dragrams Uepicred from Problems Catergonzed Experts’ Explananons for .Fhewr Similanty

by Experts within the Same Groups Groupings

Problem 8 (21) Expert 2 “Conservanon of Energy”
gm Expert 3: “Work-Energy Theorem.

K = 200 nt/m p —] They are el straight-forwerd

. sroams
1

Experi 4 '"These can be done from saergy
I 1Bm considerations. Either you should
equilibrium know the Principle of Conservanon
of Energy, or work is lost
somewhers,"

Problem 7 {35)

Proviem & (39) Exper 2: 'These can be tolved by Newlons
Second Law”
Expert 3- “F = ms: Newton's Second Law™
Expert 4. "Largely use F = ma; Newron's
Secord Law™
Problem 12 {23}

I Fp = Ky

7{6

m™

Figure 2. Diagrams depicted from pairs of problems categorized by experts
as similar and samples of three experts’ explanations for their
gimilarity. Problem numbers given are the chapter number and problem
number from Halliday and Resnick (1974). (From Chi, Feltovich, and Glaser,
1981.)

Initial differences between experts and novices in sorting and
classifying problems are only the beginning, however. The process of
solution is also different. What novices usually do is translate the given
{nforuation directly into formulas. They then wourk on the formulas using
rules of algebra, and usually they eventually come up with the right
answer. Experts, by contrast, do not begin by translating intq%gormulas.
Instead, they work for awhile on reinterpreting the problem and ecifying
the various objects and relationships in the situation described. They may
draw diagrams to express these relaticnships. By the time they are ready
to write equations, experts have virtually snlved the problem. They do

8
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much less calculation than novices——at least on the simple problems studied
so far in this research. Experts, 1in other words, construct a new version
of the problem for themselves, one that accords with the information
actually given, but that is reformulated in terms of general principles and
laws that make the solutions qppareut (cf. Larkin et al., 198G).

Studies of vpeople's knowledge of physics provide some of the most
compelling demonstrations of the way differences 1in the kinds of schemata
that are available affect problem solving, But these differences occur in
other domains as well. Similar Adifferences have been found in tasks as
divergent g8 interpreting x-ray photograpits and solving arithmetic
problems. In each case, the more advanced problem solver does not simply
respond to the proBlem in the terms presented, but instead ref~lerprats it
in ways that reveal an underlying structure that makes the solution
sometimes appear self-evident to the problem solver. This characteristic
of "expert” problem sdlving can,6 even . be seen in the performances of very
young children on arithmetic story problems. To illugtrate we draw on the
work of Riley, Greeno, and Heller (1983), which analyzes the converging
data bases collected by Carpenter and ‘Moser 0(1982), Nesher (1982), and
Vergnaud (1982) in three different countries.

Riley and colleagues have identified three wain clq.'es of addition and

subtraction word problems:

1. Those that involve a change schema——that is, situations in which 'n
initial quantity is'modified by virtue of its gaining or losing some
amount. Example: David has 15 marbles. He loses 6 in a game. °How
many marbles does he have left?

2. Thése that evoke a combine schema=—that 13, ones that describe the
combination of subsets into a superset, or the decomposition of a
superset into subsets. Example: In the class there are 35 children.
Nineteen are boys. How many are girls?

3. Those that evoke a comparison schema. Example: Jack's group worked
hard and planted 12 trees. Donald's group was slower and planted
only 8 trees. How many more trees did Jack's group plant?

Among the v"ost difficult problems for children are those that in.olve the
comparison schema, and those that involve the change schema with the
starting set unknown—for examplie: "Peter went out to play marbles with his
friends- He lost five marbles In the game and came home with only eleven
marbles in his pocket. How many did he have when he started out to play?”
Up to the age of eight or nine, children have a great deal of difficulty
with these problems, and they make characteristic errors. However,
individual interviews with children show that once they master these
problems, the answers become self-evident to the children. ' For tta
Peter~and-his—marbles problem they say things like, "1l plus 5 is 16, so he
had 16 when he started,” without being able tc tell the interviewer how
they knew that they should add the two numbers. This 1is especially
striking when we consider that the story describes losing, and this would
fsost naturally prompt children to want to subtract instead of add (indeed

»
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L
that 1s what many children who fail this kind of .problem do).

How do these "expert” eight- and nine-year—old problem solvers arrive at
the idea that they need to add to -solve a problem in which a child loses a
aumber of things? That is the kind of question that was addressed.in two
recent efforts to build formal theories of the knowledge gtructures and
reasoning processes used by children when they solve story problems.
Riley, Greeno, and Heller (1983) developed a family of computar simulation
models that solve problems - from each of the three classes at three
differant levels of competence. Only the most competent model is able to
solve problems like those about Peter and his.marbles. To do so, it first
classifies the problem as a change problem and tHen calls upon its change
schema to interpret the situation——much as the expert physicist sorts
problems according to the kind of physics laws they invoke. Then, in order
to Peason about a starting set of unknown size, it rainterprets the problem
in terms of a part—whole schema. In this reinterpretation, it recognizes
that the whole is made up of two subsets of marbles, the Ffive that Peter
tad at the beginning but lost and the eleven that he had at -the beginning
and kept. Because the part-whole schema sgpecifies that ﬁarts can be
combined to make up a whole, the system "knows™ that. it should add .eleven
and five. ' : "

An alternmative story-problem theory developed by Briars and Larkin (1981)
golves these problems not by calling on a change schema but by constructing
a mental script that reflects real-world knowledge abour separating and
combining objects rather than using the more abatract schema proposed by
Riley, Greeno, and Heller. The script describes the actions in the story
and allows the system to keep track of the sets and subsets involved. Yet,

{n Briars and Larkin's model, too, it proves possible to solve a difficult.

problem such as Peter and his marbles only by calling on a part-whole

schema. J
.THE SPONTANEOUS CONSTRUCTION AND APPLICATION OF THEORIES

Another recurrent finding in mathematics and science learning 1s that
people regularly construct theories for themselves. One line of evidence
for this is that the beliefs they hold about how the physical world works
or about the properties of numbers are not simple reprodictions of what
they may have been taught. Studies of physics learning highlight the fact
that people bring with them to their school or university science courses a
tenacious set of "spontaneous theories”™ about how the physical world works
(see, for example, Champagne, Klopfer, ard Gunstone, 1981; McCloskey, 1983;
Selman et al., 1981). These theoriles are often fundamentally inconsistent
with the modern scientific theories that are to be taught, but they are
robust and are not readily abandoned as the result of instruction. There
{s evidence that students adopt the school-tdught theories for solving
textbook problems, but resort to their prior spontaneous theories when
asked to solve problems that are diiferent from those Arilled in class. An
example comes from ¥cCloskey's studies of university students' responses to
questions about the path of a moving object as it emerges from a circular
tube. They tvpically answer that the object will continue to move around
{n a circle, just as it did ia the tube! Such answers are more consistent

10
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with the ‘medieval impetus theory of moving inanimate objects than with that
of Newton. L -

Three lines' of evidence. support the view that spontaneovs or naive
theories are constructed in the domain of mathematical’ knowledge: (1)
Children invent procedures they could not have invented unless they' had
constructed theories; (2) In some cases children systematically “err” in a
way that can be traced to a misapplication of their theory: and (3) In some
cases children work thrcugh the implications of the knowledge they already
possess.

L3

Simple Addition and ‘Subtraction - LN

Congsider research on a problem in learning long thought to be a prime
example of rote acquisition of associations: simple, single~-digit addition(~ 4
and subtraction problems. School textbooks typically define addition as a )
process of counting objects to represent each addend, combining the subsets "
thus created 1{nto a single large set, and then recourting the combined
set. Teachers generally expect children rather quickly to have memorized

*" the answers to simple addition problems " (that is, zo have learned the sums
table) and thus.to cease to depend upon any form of counting. Research in
several countries, however, has now made it cledr that ‘there is a period of
time ‘in which ch?’ldren continue to- use a counting method to do addit:ion.~
Further, they use a different procedure from the' one they were taughts
Mcst -hiidren use a procedure that is more elegant than . the one they were
taught, because it minimizes the compgtational steps and becauge it appears
to involve an intuitive appreciation of the ‘ mathematical principle of
cormutdtivity. What children typically do 1is behave as 1f_ they had a
counter in their heads. They initially set this .ounter to the®* larger of
the two addends, and then incremedt it by a number of steps equivalent to
the smaller. For example, to add 3+5, the child starts at 5 (even though
{t is named .second) and counts on: 5.....67 , 8." The final count ("8")
is then given as the answer. This . procedure has been documented - 1in , -
reaction—tiné¢ and interview stidies of a number of children in different
countries and of different measured mental abilities (Groen and Parkman,
1972; Svenson, .1375; 3venson and Broquist, 1975). A study by Groen and
Resnick (1977) shows that the procedure can be invented by- children as
young as four or five years as a result.of practice.in addition—with no
direct dnstruction, demonsgtration, or explanation. '

A simllar story can be told for -.ubtraction. Typically, textbook} ~
demonstrate either of two procedures: a counting-out procedure in which a
starting set (the minuend) ' is established, a specified number of objeces
(the subtrahend) is removed, . and the remainder counted; or a matching
procedure in which sets to .represent two quantities are established,
objects from these sets are psired one~for—one; and the remaining unmatched
ot jects are counted. However, after practice, children do something rather
different from either of these: they either count down from the minuend or
count up from the subtrahend, whichever will take the fewest counts. Thus,
for the problem 9 - 2 they say, "9...8, /" and answer "seven" and for 9 - 7
they say, "7...8, 9" and answer "two"” (Wood, Resnick, and Groen, 1975;
Svenson and Hedenborg, 1979). It 13 as 1f the children who invented this
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procedure understood the complementarity of addition and subtraction.

Furtherm" ., it is not just a shortcut—a cropping of redundant steps in
the alge .thm that had been taasght——for it involves, for each case, a
decisiou »whether to count down or up. It involves a true invention of a
new procedure. )

Srudies of the above kinds demonstrate the centrality of invention even
in apparently simple and "rote” domains of learning. However, they should
not be tuaken to imply that inventions are always successful. Systematic
"errors” are well documented. Whera they were once ' attributed to
care.essness or lack of any systematic understanding of a system, they are
now recognized as being based on erroneous conceptions of how the system
works. In the case of arithmetic, it has been showa that systematically
used ‘wrong procadures are”variantg ¢f the correct ones. They arg analogous

'to -computer algorithms with "bugs” .n them, and thus have been lahbeled

"buggy algorithms.” A firnite number of bugs, which in various.combinations
make up several dozen Imggy algorithus, have been identified for
subtraction—which is the wost intensively studied arithmetic domain so
far. The childrenm whe display these buggy algorithms are systematically
applying rules that no one could have taught them (for presumably no one
would deliberately teach them a wrong rule). Buggy algorithms are- thus
clear examples of inventions that are umsuccessful. : . T

Despite their failure as rules " of calculation, buggy algorithms
demonstrate gn 1mportant characteristic’ of human learning.and performance.
From close analysis it is clear that 'most of the various incorrect
algorithms that have been observed among childten are small and often quite

- sensible departures from the correct algorithm. As the examples in Figure

3 reveal, buggy algorithms tend to "look right” and to obey a large number
of the important ntiles for writtem calculation: the digit structure is
respected, there 1is only a single digit per colummn, all the columns are
fi1led, there are crossed out and rewritten digits, and so forth. Each
buggy algorithm looks like an orderly and reasonable response to a new
gituation, although each violates a fundamental rule of the arithmetic
system: the necessity of uaintaining the value of the top quantity whatever
particular transformations or exchanges of gquantities may be made .between
the columns in the written number. :

Such buggngalgorithms point to a -pervasive feature of learning and
cognitive performance: pecple geem to try to make sense out of the world,
and to create rules for acting in it, even given limited data; they do not
wait until all the information is in before they start to construct a
"theory" to account for what they hava before .them. In the case of buggy
subtraction algorithms, children seem to coumstruct a “"theory of allowable
operations” that respects all the information they do have while ignoring a
mathematicaliy dimportant constraint that ig apparently not adequately
stressed in primary school arithmetic teaching. '
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Figure 3. Samples of buggy subtraction algorithms invented by children.
(Adapted from Brown and Burten, 1978.)

A further consideration of the origins of buggy arithmetic algorithms
highlights this point. Brown and VanLehn (1982) have developed a computar
simulation program that invents the same subtraction bugs and therefore
makes subgtan:ially the same errors children do. This program serves as a
formal theory of what children might be doing when they invent buggy
algorithns. According to this theory, buggy algorithms arise when the
procedures the child has previously learned are incomplete. The c¢hild,
trying to respond, eventually reaches an impasse, a situation for which no
action is available. At this point, the child tries to fix her procedure,
calling on a list of  "repairs"—actions to try when the standard action
cannot be ugsed. The repair list includes strategies such as performing the
action in a different colummn, or substituting an operation (such as
incrementing fur decrementing). The outcome generated through this repair
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process is then checked by a set of "criti:s” that inspect the resulting
solution for conformity to some basic criteria, such as no empty columns,
only one digit per colummn, only one decrement per columm, and the like.

Together the repair and critic 1lists constitute the key elements in a
"generate and test” problem-solving routine. This is the same kind of
"intelligent™ problemsolving that characterizes wmany success’ul
performances in other domains (see Simon, 1976). With buggy algorithms, the
trouble seems to lie not in the reasoning processes but in the inadequate
data base applied. In particular, the critic lists do not contain criteria
that would reject repalrs that violate the principle of maintaining
quarntity equivalence. The invented algorithm is a cengible construction,
but on a data base that 1is incqyplete. It therefore turms out to be a
"buggy" rather than a successful invention.

Repair theory is, in fact, a detailed theory of acquisiton for a small
domain of arithmetic. Its broader implication is that cognitive theories
of acquisition must recognize people’'s tendency to organize and structure
wha ever information they have—even though the information may be grossly
incomplete or downright inaccurate. People do not simply acquire
information passively until there is enough of it for correct rules and
explanations to emerge. Instead they construct explanations and rules of
procedure continuousl,. This tendency to construct ordered explanations
and routines can accoun: at least partly for the phenomenon, discussed
above in the context of physics learning, of spontaneous theories that are
resistant to change even when instruction (and thus better information)
does come along. The naive theories have been constructed to help the
{ndividual make sense of the natuvval world. Like buggy algoritims, they
are partly correct. To give them up in order to accommodate the principles
of Newtonian mechanics is to give up & long-held system of knowledge, with
many i:terrelated schemata and domains of application, for a new theory
that 1s “incoherent” (because unconnected either to other schemata or to
practical experience). It is not surprising—-although it is
disturbing—that many students find it easier to simply reserve their
classroom-acquired theories for classroom gituations and do not try to
apply them outside.

Measurement by Very Young Children

Preschool children have a very limited understanding of measurement, but
as Miller (1982) shows, this does not stop them from negotiating
measurement tasks. What they do provides support for the idea that they,
too, use an available theory, in this case cne about counting, and do their

best. That 1s, they spontaneeusly misapply their implicit theories about *

numbers when confronted with the task of measuring continuous quantity. An
example comes from Miller's observations of what three-year—old children
often do when they are asked to give two friends the same amount of water
to drink. They seem to think that this 1s accomplished by equating the
number of times they pour (independent of how long or how much they pour)
into each friend's glass. They fail to realize that the measurement of
continuous quantity requires that the wunits to be counted be equal (see
Gelman and Baillargeon, 1983, for a discussion of similar :tendencies in

14
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somewhat older children). No such problem arises when discrete objects are
s mply counted: indeed, as Gelman and Gallistel (1978) point out, any
¢.llection of disparate objects can be counted. In the counting of
discrete objects, it does not matter whether the iteins are the same size,
color, shape, type, and so on. In contrast, it does matter what units are
counted in the act of measuring——they must be equal.

It 1is for this reason that one can say that the young children in
Miller's experiments misapplied their theory of counting to the task of
measurement. Still, although vyoung children mwnay have a limited
understanding of measurement and the requisite need for equal units, it is
nevertheless clear that they, too, invent solutiogs to the problem at
hand——solutions that depend on an already available theory in a related
domain.

Infinity

For our final example demonstrating that children work up theories in the
domain of wmathematics, we consider work on the development of a beginning
understanding of infinity (Evans, 1983; Gelman and Evane, 1981). Children
between the agas of five and nine participated 1in interview studies
designed tofassess their level of understanding that one may always add
"one” to a positive integer and get another number and thus that there is
no largest number. The children were first asked what was the biggest
gumber they could think of (or what they could count to). Then they were
asked what would happen if one were added to their designated number, ocne
more to that number, one more again, and so on. Intergpersed with the
questions about tlie effects of repeated addition were questions about
whether anyone could find a larger number than the child had, 1if anyone
could count past the place at which the child insisted on stopping (if he
did), whether there is a largest number, and the like.

Children's understanding of infinity was related to their ideas of what
consftituted a "big" number and how well they could count. To illustrate,
many of the youngest children could count only to 20 or 30. The numbers
they mentioned as "the biggest™ were usually less than 100 or else made-up
numbers like "twenty—eight-thirty—-two.” These children claimed they could
not add one to the number they said was the biggest they could think of.
Children classified at the second 1level of understanding of 1infinity
typically mentioned very large numbers, such as a million, in response to
the question about the largest number they could think of. They generated
large numbers in an organized fashion, even when their answer was
incorrect, such as that one million plus one is two million. Still, they
often said that there 13 a largest number to which nothing may be
added—whether or not they said they did not know what 1t was and/or that
no one ever could know. Some children at this level even said one could
keep adding and always get yet larger numbers, but paradoxically, insisted
that there must be a largest number. Thus, even though these children
recognized the effect of continued iteration on the size of a number, they
failed to recognize its consequences. Finally, the most advanced children
were not only able to give verv large numbers like a million at the start.
They said that one can keep adding and thereby generating yet larger

15

277



Mathematical and Scientific Knowledge

numbers, and that the count numbers are unbounded, that is, that there 1is
no largest number.

How do such findings support the notion that children construct theories
about numbers? First, they i1llustrate that their concepts and abilities
are interrelated. Children who have limited counting abilities take rather
smallish numbers to be the largest they or anyone could know (although they
must hear talk of much larger numbers), use their limited knowledge as
evidence for there being a largest number, and hence deny that continued
iteration will necessarily yield larger numbers. Siegler and Robinson's
(1982) work with childrén of comparable ages suggests that these same
children we 1d also lack an understanding of the base~10 rule that
underlies the English (and most other European) count-word sequence.

Second, they illustrate that children use what they know to make further
conceptual progress. As Gelman and Evans (1981) note, asome of the more
advauced children came to the interview without having realized that there
1s no largest uumber. Although the interviewer did interact with the
children, she never answered questions for them; she never said "there 1s
no largest numher.” It appears that the interview established conditions
under which t¢he children were able to explore for themselves the
implications of the questions asked. Children who initially said that
there was & largest number came to realize that their belief in their
ability always to add to any number they could think of implied that there
was no largest number. The idea that some of the advanced children treated
the experiment as an occasion to explore the implications and limits of
their theories of number derives support from the fact that other children
who knew the answers at the outset of the interview said they had domne just
this at an earlier time. They said they discovered that the numbers never
end on their own, or in conversations they initiated at home when they
‘found no matter how long they counted they never reached the end, or in
conversations about numbers with their peers. This i{s evidence for the
view that theories—or, more properly, pleces of theories=—serve to
motivate further theory development (Rarmiloff-Smith and Inhelder,

1974/75).

Although children in the early years of element.ry school did rather well
in the infinity study, they lacked complete undersianding of the concept(s)
of infinity. Evans (1983) suggeqts that the children in these studies
revealed knowledge most closely approximating the 'ntuitive understanding
of the early Greeks. It 1s not unreasonable to propose that more modern
and formal ccncepts of infinity could prove as difficult to master as are
the more modern theories of physics. Cantor's proofs regarding transfinite
numbers bewilder many an undergraduate introduced to them by R.G. (Jjust as
they outraged many of Cantor’s contemporaries). Clearly then some theories
develop with relative ease and others with only congiderable effort (for a
discussion, see the paper by Susan Carey in this collection). This does
not change the fact that theories, be they corrvect or not,.are congtructed
by adults and children alike to make gense of matters scientific and

mathematical.
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THEORIES ARE OFTEN IMPLICIT IN PROCEDURES

Much of what people——especially young children——know is implicit in their
procedures, tather than being something they are able to make explicit.
The distinction between 1implicit and explicit knowledge is well known in
psycholinguistics. Young children are granted implicit knowledge of
linguistic structures well before they are granted explicit, or stateable
knowledge of any of these (Gleitman, Gleitman, and Shipley, 1972). They are
granted implicit knowledge because the sentences they speak can be shown ¢
be rule governed. The strongest evidence for the latter inference comes
from thnse sentences that young children utter that they could never have
heard but that nevertheless can be traced to an implicit rule or
structure. A similar distinction is necessary in the domain of mathematics
knowladge.

When Gelman and Gallistel (1978) concluded that even young preschoolers
know how to count, they characterized this knowledge with reference to five
principles: (1) the one~one principle: each item in an array must be tagged
with one and only one unique tag; (2) the atable-order principle: the tags
used must be drawn from a stably ordered list; (3) the cardinal principle:
the last tag used for a particular count represents the cardinal number of
the array; (4) the abstraction principles: any set of items may be
collected together for a count; and (5) the order-irrelevance principle:
the order in which items 1in a set are tagged is irrelevant. Gelman (1982)
notes that although the evidence points to the conclusion that preschoolers
have 1implicit knowledge, it does not follow that they have explicit
knowledge of the counting principles. Thus, there 1s no reason to presume
that preschoolers can articulate the cardinal oprinciple. Yet their
behavior supports the conclusion that implicit knowledge of 1t is
available. For example, when young children count large sets they often
err and fail to indicate the cardinal value represented. However, when
they watch a puppet count sets just as large and hear it answer an “how
many is that” question erroneously, they nevertheless often can say that
the puppet gave the wrong answer and then correct the puppet (Gelman and
Meck, 1983).

Greeno, Riley and Gelman (1984) show that one can describe the counting
principles with reference to a small set of action schemata. Referring to
this account as the conceptual competence the child brings to a counting
task, they develop a formal account of how the conceptual competence can be
linked to the performance competence that children exhibit on a rafige of
counting tasks. Performance competencies are granted when a child can
assemble a set of procedures that will produce the required performance
that adheres to the principles contained in the statement of concaptual
competence. Such efforts make it possible to articulate the notion of
implicit knowledge and hence circumvent the need to have people state their
knowledge before granting them an wunderstanding of principles. What
follows provides support for the view that it is important to find ways of
usinrg children's procedural performances as indicators of the nature of
their implicit understanding.
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Understanding Implicit in Children's Invented Addition Procedures

The role of conceptual understanding implicit in inventzd procedures 1Is
revealed in work done Yy Robert Neches (1981; Resnick and Neches, 1983);
this work attempts to provide a formai account of how children invent the
addition procedure (described above) of counting on from the larger of the
two addends. Neches has constructed two versions of a computer simulation
program that begins with the procedure taught in school and modifies itgelf
go that after a number of problems it performs the procedure of counting on
from a larger number. These programs are of interest because they show how
a few simple heuristics for examining and modifying procedures ran
cumulatively produce large changes in performance, without need for
external intervention. They are also of interest because comparison of the
two versions shows how mastery of a key (implicit) conceptual principle can
parmit learning of a new principle. In the first version the program
(called HPM), can invent the count—up-from—larger procedure only if it
already “krows” that pairs of problems with the same addinds are
particularly interesting. Such knowledge is needed because the system
proceeds by noticing that these “commutative pairs” yield the same answer,
and then applies a heuristic that selects the most efficient of two
procedures when the two yleld the same answer. Counting~on-from—larger 1s
the procedure with the fewest counts needed, so it is selected.

Although this theory is plausible up to a point, it cannot account for
the finding (Groen and Reanick, 1977) that children invent the
count-on-from—larger procedure even when practice in addition has been
deliberately arranged so that commutative pairs never appear in
guccessisn. HPM cannot invent under these conditions because the demands
on working memory become excessive. However, a second version of HPM can
solve thig problem. In the second version, HPM is given at the outset a
strong version of Gelman and Gallistel's fifth principle of counting: the
principle of indifference to order—the concept that while number naunes
must be assigned in a fixed order when counting, 1t does not matter which
obiect receives which number name. In HPM's strong version of this
principle, the system is totally indifferent to which objects are counted,
and it treats as "the same quancity” any count of objects that arrives at
the same endinz num er regardless of which objects have been counted. With
this higher—level (but plausible for young children) understanding in 1its
repertoire, HPM 1s able to apply its procedure—chtanging heuristics without
an excessive demand on working memory. Although the new version of HPM
cannot be said to "know about® commutativity in the sense of explaining i,
{t behaves "as if" 1t knew commutativity. It 1is a task for the next stase
of work on this problem to show that regular performances of this kind can
become the basis on which a learning system can construct new schamatic (or

conceptual) knowledge.

Even when children are taught procedures directly, they often must
implicitly understand many underlying principles in order to successfully
incorporate those procedures into their own conceptual competence. This is
nicely demonstrated in a detailed case study of a child who took several
months to learn a procedure for equalizing ctwo sets, even though thnat
procedure was directly demonstrated to him and required no arithemetic that
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2

wss beyond his capabilities at the beginning of the learning period. The
problems given to Dav’‘d were of the form, "You have four cookies and I huve
six. What can we do so we each have the same number?” At the beginning of
the study David was able to solve these problems in two ways. He could
find the Aifference between the tio sets and have the person with the

larger number give away that many ("You could sell two"), o« have the

person with the smaller number acquire that many more ("I could buy two").
He could also (in his head) comb.lne the two sets and then give half the
total to each person ("We could put them in the middle and each take
five"). David could use these - prucedures interchangeably and with great
flexibility; he could also apply them to quite large set " sizes,
demonstrating very good facilitv with mental arithmetic. Howé%er, he c¢could
not, even after it was demoustrated successfuvlly, use a third procedure,
one of direct transfer from one set to another ("You could give me one”).

An analysis of the fnrmal demands of the buy/sell and transfer proceduree
and ¢f David's performances raveals what it was about transfer that gave
David difficulty. In buy/sell, only one of the two sets is changed, and it
is changed by exactly the difference between the two sets. The effect of
any mental operation is local-——that is, what is done to one set does not
affact the other. In transfer, however, a change in one of the sets is
linked ta. a zhange in the other. David had to coordinate these changes in
order to use the transfer procedure. In addition, the number of objects to
transfer is not directly derivable from the difference between .the two
sets; it 1s half of that difference.

To master transfer David had to understand these two aspects of the
equalizing situation. His protocols, taken over a five-month period, show
that his first step was to understand the double effect of a transfer.
That is, for any two starting sets, if the experimeter suggested a number

'to transfer, he was able to state whether it would or would not equalize

the sets and why (that iz, he could say how many each person would have
after the transfer). For several months, however, he could not decide
himself how many to transfer; he did not even have a systematic
trial-and—error procedure. David's first step toward solving the problem
of how many to transfer was to construct a set of specific rules. About
three months after the beginning of the study, he was able to state that
any time the difference between the sets was two, a transfer of one would
equalize them. He generated many examples of this, including a case where
the initial sets were 158 and 160; and a case where the initial sets were
40 and 60 (which he sald was a difference of 2 times 10, 8o one should
transfer 1 times 10!). He had thus used his understanding of the dual
effects of transfer to construct an empirical rule. However, he had not
yet mastered the principle of "splitting the difference.” Further study of
David over the next two months showed that he eventually mastered this
principle as well. However, he showed this understanding first as a
procedure (he systematically found the diffarence between the two initial
sets and then transferred half of that difference), but he could not

2. This case study is being conducted by Terry R. Greene.
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explain or describe what he was doing. Subsequently, he was able to
describe his procedure, although at the end of our observation period.he
could not yet explain why it worked.

SUMMING U?

The research we have described above establishes the outlines of a set of
questions on the nature of learning that have only begun to be addressed.
Pirst, we know that the kinds of schemata that people have make a
difference in their methods and levels of success in problem solving. We
know that experts in any domain have different sachemata from those of
novices in the same domain. Sometimes experts' schenata are elaborations
and refinements of those of novices. Sometimes, however, experts' schemata
are in conflict with novices'. 1In these cases, becoming an expert would
require giving up or substantially restructuring ome's original. schema.
These novice-expert contrasts pose a problem 1in the psychology of
learning. Because all experts were once novices, we need to know what the
processes are by which people construct new schemata, or modify existing '
ones. g

Second, evidence that peoplé tend to construct Sspontaneous theories
further underlines the importance of this fundamental question.
Spontaneous theories, because they are often “wrong™ and it is thus certain
that no one would have taught them, have to be constructed by learmers
themselves. What are the processes of such construction? Finally, the
research on the relations between understanding and procedural knowledge
helpa to highlight our current lack of adequate theories «¢. how people
build and modify schemata. We are able to show quite clearly that
conceptual (schematic) knowledge underlies procedural inventions. We also
have a number of detailed models of how procedures are coustructed by
people (see Andersomn, 1981, as well as the work by Neches, 1981, and by
Greeno, Gelman, and Riley, 1984). But we do not yet have very specific
models or theories of how the schematic knowledge itself is constructed.
this {s not likely to be a problem much 1longer, however. For many,
ourselves included, have turned our attention to this very matter (see, for
example, Stermberg, in press).
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