
DOCUMENT RESUME

ED 258 556 IR 011 711

AUTHOR Putnam, Ralph; And Others
TITLE A Summary of Misconceptions of High School BASIC

Programmers. Technology Panel Study of Stanford and
the Schools. Occasional Report #010.

PUB DATE Aug 84
NOTE 24p.; For related document, see IR 011 707.
PUB TYPE Reports - Research/Technical (143)

EDRS PRICE MF01/PC01 Plus Postage.
DESCRIPTORS Computers; *Error Patterns; High Schools; High School

Students; Interviews; *Programing; Programing
Languages; Psychological Studies; Screening Tests;.
*Testing; *Test Interpretation; Test Use

IDENTIFIERS *BASIC Programing Language; Misconceptions

ABSTRACT
Misconceptions high school students have about

constructs in the BASIC programming language were examined in this
study. A total of 96 high school students received a screening test
after a semester course in BASIC programming, and 56 of these
students were subsequently interviewed by means of questions and
short programs prepared in advance. The purpose of the screening test
was to detect possible problems with constructs such as reading data,
branching, and looping. Tape recordings, written notes, and responses
generated during the interviews were used to determine patterns of
errors and misconceptions. Notations of frequently, fairly
frequently, and occasional were given to the students' error rate.
The most common errors were: (1) reversal of assignment statement;
(2) misinterpretation of quotation marks; (3) d;fficulties with READ
statements; (4) loop construction; and (5) IF statement utilization.
Examples of the most common errors are included to illustrate each
misconception together with student remarks as to why the error
occurred. A summary assessment of students interviewed concludes the
report. (JB)

Reproductions supplied by EDRS are the best that can be made

from the original document.

;

cs, SOL/CATION

NATIONAL INSTITUT(OS SOLICATICIN

LC\ SOUC A I bONAL At SCainc g s as, 0A/AA M.
CPMA

LICN 111 h. 024.a..t NA bee. .0.4.C.1

CE)
/go...4 bp.. MO WM.. to aq/444.144.

.4/....1.4g 4
Li M. 0.44wr. A.44 :44;4044C(44.

Peants as v..; OP lato *Wed : thm, dioCta
CDawt sk. 4.t IoC 8

tLi D.0.0',

OCCASIONAL REPORT # 010

Technology Panel.

Study of Stanford and the Schools

A Summary of Misconceptions of High School BASIC Progrmmers

Ralph Putnam
Derek Sleeman
Juliet Baxter
Laiani Kuspa

August 1984

These occasional reports present preliminary findings of research

underway or discuss issues of concern to the panel. They are intended to

stimulate comment and to maintain communication with interested parties
both within and outside the Study of Stanford and the Schools. They are

draft documents and are not to be quoted or cited. They do not

necessarily represent the views of Stanford, the Study as whole, or even
the panel as a vhole. Members of the panel and addresses where they may
be reached are included at the rear of the report. Comments of readers

will be greatly appreciated.

2

PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

Derek Sleeman

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)...

A Summary of Misconceptions of High School BASIC Programmers

Ralph T. Pytnam

D. Sleeman
Juliet A. Baxter

Laiani K. Kuspa

School of Education
Stanford University
Stanford, CA 94305

Abstract

This study examined the misconceptions students in high-school

programming classes had about constructs in the BASIC programming

language. A screening test was administered to 96 students, 56 of whom

were interviewed. Students were asked to trace simple programs and

predict their output. Errors in virtually all BASIC constructs we

examined were observed.

Introduction

This paper reports the misconceptions students in high-school programming

classes had about constructs in the BASIC programming language. The

background and justification for such a study have been laid out in an

earlier paper (Sleeman et al., in press). In this paper we describe the

procedures we used and present a summary of the misconceptions and

difficulties we encountered with students who had studied BASIC.

3

2 -

Method

Subjects

Students from five high-school classes participated in the study.

The first class (9 students) was designed to teach mathematical concepts

by using BASIC programming; little emphasis was placed on developing

programming style and competence. Three classes (64 students) were

second semester courses in BASIC programming. Students in these classes

were interviewed near the beginning of the school term; all had completed

an introductory BASIC programming course. The fourth class (23 students)

was a first course in BASIC programming. Students in this class were

interviewed near the end of the school term. Of the total of 96

students who took the screening test (described below), 56 were

interviewed.

Screening Test

A test of BASIC programming concepts was developed for the study.

The test was devised after examining programs written by students in one

class and probing a few students about programs they had written. The

purpose of the test is to detect possible problems in basic constructs

such as reading data, branching, and looping. Items 1 to 4 require

writing the output produced by very short (four to ten line) programs,

each designed to highlight a single concept. The remaining items consist

of slightly more complex programs. The task for two of these items (6

and 9) is to debug a program for which a written description of the

intent of the program is provided. The student must determine the output

to ali3ht variants of programs in two pairs of items (5,7 and 8,10).

- 3-

The order of items 5 through 10 was varied in two different forms of the

test to insure coverage of the topics if students were not able to

complete the test in the tine available. Students were asked to rate the

difficulty of each it to help determine the appropriateness of the

items.

Experimental Procedure

The screening test was given to volunteer students in the first

class and to all students in the other four classes. Each student's

performance was evaluated by one of the researchers who decided whether

the student should be interviewed, was a marginal candidate for an

interview, or did not need an interview (because the student had minor or

no difficulties, or manifested a well understood set of

misunderstandings). The interviews were clinical in nature, with

interviewers using questions and short programs prepared in advance, but

also following up with various probes and programs composed on the spot.

The goal was to clarify as far as possible the nature and extent of the

students' misconceptions about programming concepts. Students were asked

to say what output would be produced by various programs, to trace

programs and explain how they work, and to debug short programs. In

several cases, students were asked to trace identical programs with

different sets of input data. The questions generally continued until

the researcher was able to decide: i) the nature of the student's error,

ii) that the student had a variety of possible ways of interpreting a

construct or iii) that the student had little knowledge of a particular

concept. For further details of this overall methodology, see Sleeman

(in preparation). Many of the programs and program fragments used in the

- 4 -

interviews are presented in the text. A complete set of the materials

used will be furnished upon request by the authors.

Tape recordings, written notes and responses generated during the

interviews were perused for patterns of errors and misconceptions. As

the study was exploratory and qualitative in nature, no quantitative

analysis techniques were used. Findings are discussed in the following

section.

Summary of Misconceptions Encountered

A Comment on the Frequency of Errors

As noted above the screening test was given to 96 students of which

56 were subsequently interviewed. We shall refer to a misconception as

being frequent with this population if it occurred with 25Z or more of

the interview population (i.e. 14 or more students), fairly frequent

if it occurred with 6-13 students, and occasional if it occurred less

frequently (i.e. with 1-5 students). These figures do not reflect the

frequency or the consistency with which each misconception was used by

individual students; specific comments about these aspects will be

interspersed throughout this section.

Assignment Statements

Reverse assignments. The most common assignment error was the

"reversal" of an assignment statement. For example, the statement LET A

B was thought to assign the value of A to B rather than the value of B

to A. Students making this error generally interpreted statements such

as A B C correctly. This was an occasional error.

Counter. One student declared that the statement LET C C 1

was impossible. He had previously assigned the value of 0 to C and

6

5

interpreted the statement as "Let 0 equal 0 + 1." He said thir did not

make sense and seemed to think that the statement was an error. Even

when the interviewer had the student work through a program containing

the statement LET W A * 0, which the student interpreted correctly, the

student could not make sense of LET C C + 1.

PRINT Statements

Quotation marks. Three students misinterpreted quotation marks in

PRINT statements such as PRINT "Q:"; Q. One student simply ignored the

text within the quotation marks, printing the value of Q one

Another student thought the quotation marks caused the value of the

variable to be printed, saying that the statement would print 4:4. A

third student thought that the quotation marks would cause the first

value assigned to the enclosed variable during program execution to be

printed, resulting in the output 0:4 for the statement PRINT "Q":Q (LET

Q*0 was the first statement in the program). This last error was the

only one of the three that suggested a deeper misconception that a

variable could "remember" its original value.

Repeated print. One student, who had major programming

difficulties, thought that the statement PRINT X would cause the value of

X to be printed several times -- enough times to fill up about half a

line on the screen. The student gave similar outputs for seven different

programs. Although he was not entirely consistent, he generally said the

value would be printed only once if there were more data items to be read

by the program, several times if there were not more values to be read.

Multiple-value print. Some students thought that when a variable

was printed, all the valu*s that had been contained in that variable

6

were printed. This occasional misconception is related to

multiple-valued variables and will be discussed below.

READ Statements

More of the students we interviewed had difficulties with READ

statements than with any other aspect of the BASIC language. These

difficulties were evidenced both by the large numbers of students for

which they occurred and the large number of different errors made. All

of the students interviewed had seen and used READ statements, although

many of them made heavier use of other constructs for inputting data

(i.e., INPUT statements). Nevertheless, reading data seemed to be a

difficult concept for these students.

Feature-dependent reads. Several of the errors with READ

statements involved the belief that the program can select values from

the DATA statement on the basis of features of those values (the values

are actually read sequentially).

1. We call the most common of these feature-dependent reads

semantic read. Students with this frequent misconception believed that

a READ statement used with a meaningful variable name caused the program

to select a value based on the name's meaning from the list of values in

the DATA statement instead of reading the next value in sequence. For

example, given the following program fragment:

40 READ SMALLEST
50 READ FIRST
60 READ SECOND
70 READ THIRD
80 READ FIRST
200 DATA 99,2,-3,-100,6,29

8

7

these students said that -100 would be read into SMALLEST, 99 into FIRST,

2 into SECOND, -3 into THIRD, and then 99 into FIRST. Semantic

constraints created by the meaningful variable names determined which

values were read from the line of data. Most of the students with this

misconception were consistent, incorrectly assigning semantically

constrained values to all meaningful variable names encountered.

In a variant of the semantic read misconception, three students at

first appeared to be using variable names as constraints but probing

revealed that they believed the meaningful variable names functioned as

subroutine calls or branches to other parts of the programs. One of these

students realized later in the interview that he was indeed dealing with

variables and avbsequently interpreted the READ statements correctly.

2. Some of the students with the semantic read misconception also

tried to impose meaning on single-letter variable names in READ

statements. In an occasional misconception, some students thought the

position of the letter in alphabetical order determined the position of

the value in the data line to be read. In the program below:

8

40 READ A
50 READ B
60 READ N
200 DATA 9,38,-100,5,12

these students said 9 would be assigned to A (because 9 is the first

value in the DATA statement), 38 (the second number) would be assigned to

B, and 12 would be assigned to N (because N is near the end of the

alphabet and 12 is the last number in the list of data). In another

program in which N was the only variable used, one student again said N

would be assigned the last value in the DATA statement. She said this

value was assigned to N in each of the three READ N statements.

3. Some students thought that values assigned to single-letter

variable names were constrained by other statements in the program. For

example, when confronted with the following program:

40 READ A
50 READ B
60 READ N
200 DATA 9,38,-100,5,12

one student stated that he could not say what values would be read into

variables A, B, and N because he did not know what values the variables

were supposed to have. The interviewer then added lines to make the

program read as follows:

10 LET A 5

20 LET B 38

30 LET N 9

40 READ A
50 READ B
60 READ N
200 DATA 9,38,-100,5,12

The student then said that at line 40 the 5 from the DATA statement would

be read into A, at line 50 the 38 would be read into 3, and at line 60

the 9 would be read into N.

Another student believed that IF statements exerted similar control

over READ statements elsewhere in the program. He said that at line 10

of the following program, N would "pick" 0 from the data line because of

the condition in line 30:

10 READ N

20 PRINT N
30 IF N <- 0 THEN COTO 20
40 DATA 34,3,16,10,0
50 END

Multiple-value read. In a frequently occurring misconception,

students thought that a READ statement could cause more than one value to

be assigned to a variable. This bug often occurred in conjunction with

semantic read as in this program:

40 READ EVEN
50 READ ODD
60 READ POSITIVE
70 READ NEGATIVE

200 DATA 9,38,-100,5,12

Students said that the values 38, -100 and 12 would be read into EVEN,

9 and 5 into ODD, and so forth.

Other students thought that all the values in the DATA statement

were read into a variable. For example, in the following program:

- 10 -

10 READ X

20 READ Y
30 IF X - 0 THEN GOTO 80
40 IF X - 1 THEN GOTO 60
50 PRINT X
60 PRINT Y
70 GOTO 10
80 END
90 DATA 2,3,1,2,-5,-9,0

students said that all the values would be read into X and into Y. One

student subsequently had difficulty interpreting the IF statement in line

30. As this statement required evaluating only one value and X contained

several, the student was unable to predict what the program would do.

In a final variant of multiple-value read, some students thought

that the number of characters in the variable name determined thcf number

of values read, with one value being read into each character.

Read control. Several misconceptions of the READ construct

involved the way in which the assignment of values to variables was

controlled or ordered. The first of these misconceptions was fairly

frequent; the rest were occasional.

1. Multiple READ statements containing the same variable repeatedly

accessed the same value in the line of data. Given the following

program:

40 READ N
50 READ N
60 READ N
200 DATA 3,6,9,12

students with this misconception said that 3 would be assigned to N by

each of the READ statements.

12

2. READ statements appearing after all the values in the DATA

statement have been read continue to access the last value in the DATA

statement.

3. When the list of data values is exhausted, further READ. cause

the value 0 to be assigned to variables.

4. When the list of data values is exhausted, further READ

statements go back to the beginning of the list of values. In some

students, this misconception occurred with multiple value reads as in the

following program:

40 READ N

50 READ N
60 READ N
200 DATA 3, -6, 9, 12

At least one student said that all the values (3,-6,9, and 12) would be

read into N at line 40, again at line 50, and again at line 60.

5. Each variable in a program reads the line of data independently.

In the following program:

10 READ X

20 READ Y
30 IF X 0 THEN 00TO 80
40 IF X 1 THEN 0010 60
50 PRINT X
60 PRINT Y
70 00TO 10
80 END
90 DATA 2,3,1,2,-5,-9,0

students with this misconception said that X would be assigned 2 and Y

would be assigned 2. On the second time through, X would be assigned 3

and Y would be assigned 3, e.d so on forth.

13

- 12 -

6. A separate DATA statement is required for each READ statement.

The program shown above would not work unless a second DATA statement

were added.

7. A READ statement causes the value to be read to be tdded to the

original value in the variable. Because the student with this

misconception also thought that READ statements must be constrained by

other statements in the program, a program was modified as follows:

10 LET N-9

40 READ N
50 READ N
60 READ N
200 DATA 3,-6,9,12

The student said that at line 40 N would read the 9 (because of the

constraint in line 10). At line 50, the 3 would be added to 9 to make

the value of N 12, and at line 60, the -6 would be added to 9 to make the

value of N 3.

8. The user selects the value to be read by the READ statement.

The student with this misconception was not sure how the user would

select a value. He was apparently confusing READ statements with INPUT

statements.

Variables

Multiple-valued variables. The most significant misconception

involving variables vas that a variable can contain more than one value.

These multiple values occurred in a variety of ways. As discussed

earlier, some students believed that several values could be assigned to

a single variable by a READ statement (multiple-value read). Other

students knew that values were read one at a time but thought that the

- 13-

values were collected in the variable as they were read or assigned (like

a stack). A PRINT statement would then cause all of the values in the

variable to be printed.

The following additional difficulties involving variables were seen

occasionally:

1. Two variables are confused. For example the following lines of

a program:

20 READ P

50 LET Q Q+ 1

students interpreted line 50 as if it were LET Q P + 1.

2. The values of variables are not updated; the initial value is

used repeatedly. This error occurred in the following program:

10 READ SMALLEST
20 READ N
30 IF N 0 THEN OOTO 60
40 YF SMALLEST > N THEN LET SMALLEST N
50 0070 20
60 PRINT SMALLEST
70 DATA 2,1,3,4,0

At line 40 the students continued to compare the most recent number read

into N to the value 2 in SMALLEST, even after correctly changing the

value of SMALLEST to 1. This error seemed to be an instance of a general

difficulty in keeping up with the values of variables when tracing

programs.

Loop construction

15

4

- 14-

Several errors involved loop constructions. The errors that are not

limited to a particular kind of loop will be discussed first, followed by

those specific to FOR/NEXT loops. Unless otherwise noted, those errors

appeared occasionally.

1. A PRINT statement following a 1,Jp is repeated as though it were

inside the loop. For example, in this program:

10 LET Q 0

20 READ P
30 IF P 0 THEN 00TO 70
40 IF P < 0 THEN 00TO 60
50 LET Q Q 1

60 00TO 20
70 PRINT "Q:"; Q
80 DATA 1,-1,2,5,-4,-6,10,-3,0
90 END

students said the value of Q would be printed each time the loop was

executed. This error occurred fairly frequently.

2. Data-driven looping. The loop iterations continue as long as

there are data to be read. For example, for the folowing program:

10 FOR I 1 TO 5

20 READ X
30 PRINT X
40 NEXT I
50 DATA 5,8,6,3,10,11,1,25,2

the following predicted output was observed:

5 8 6 3 10 11 1 25 2

3. A unique error involving a loop appeared with the following

program:

16

- 15-

10 READ A

20 READ 8
30 IF b 0 THEN OOTO 60
40 IF A > B THEN LET A
50 00TO 20
60 PRINT A
70 DATA 55,6,3,-2,0
80 END

The student returned to line 10 instead of line 20 for each iteration of

the loop, thus reading a new pair of values into A and 8 instead of a

single value into B. He also accessed the values in the data statement

incorrectly so that the pairs of values he read were 55,6; 6,3; 3,-2; and

-2,0.

4. Misconceptions specific to FOR/NEXT loops.

a. The FOR statement acts as a constraint on READ statements

within the loop rather than determining the number of times the loop body

is repeated. This fairly frequent bug is illustrated in the following

program:

10 FOR I 1 TO 5

20 READ X
30 PRINT X
40 NEXT I
50 DATA 5,8,6,3,10,11,1,25,2

Some students said only the values between 1 and 5 would be read,

resulting in the following output:

5 3 1 2.

Other students said the values would be selected in order of the

constraints, resulting in the following output:

1 2 3 5.

17

- 16-

Finally, in a program which was the same as the one above except for the

DATA statement:

50 DATA 5,4,3,2,1,0,1,2

these two predicted outputs were observed:

1. 5 4 3 2 1

2. 5 4 3 2 1 1 2

b. The FOR statement specifies the number of times a variable's

value should be printed when it should determine how many values are read

and printed. The following program from the screening test was involved

with this occasional error:

10 FOR I 1 TO 5

20 READ X
30 PRINT X
40 NEXT I
50 DATA 5,8,6,3,10,11,1

The student predicted the following output:

5 5 5 5 5

8 8 8 8 8

6 6 6 6 6

3 3 3 3 3

10 10 10 10 10

11 11 11 11 11

1 1 1 1 1

c. Some students did not realize that the counter variable in a FOR

statement is a variable that is incremented with each iteration of the

loop. These students thought that it was acceptable to change the value

of the counter variable within the loop body.

IF statements

Four occasional misconceptions involving IF statements wre observed.

18

- 17 -

1. Execution of the program terminates when the condition of an IF

statement is not true.

2. Control is passed to the beginning of the program when the

condition of an IF statement is not true.

3. A program must state all possible conditions when using IF

statements. One student "corrected" the following lines of a program:

40 IF X >se 70 THEN GOTO 60

50 LET I + I + 1

She changed line 50 to read:

50 IF X < 70 THEN LET C C 1.

She argued that the IF statement in line 50 was necessary so the computer

would know that X could be less than 0.

4. When an IF statement sends you to a PRINT statement, print both

the variable to be printed and the value in the conditional expression.

The following lines of a program were involved in one instance of this

misconception:

30 IF N 0 THEN GDTO 60

60 PRINT SMALLEST

The student said the output would be:

1 0

When the conditional in line 30 was changed to N -99, the student said

the output would be:

1 -99

19

- 18-

The student predicted similar output for other programs.

Other Flow of Control Difficulties

In addition to the difficulties involving loops and IF statements,

we observed at leant two occasional difficulties with the flow of control

in programs.

1. All PRINT statements are executed (even if they should be

skipped because of a branching statement).

2. All statements in a program must be executed at least once,

even statements that might be skipped because of branches in the program.

When one student was asked to trace the following program:

10 LET X 1

20 LET Y 2

30 IF X 1 THEN GOTO 50
40 PRINT X
50 PRINT Y
70 END

the student gave a correct interpretation through line 30 and said

correctly that 2 would be printed at line 50. At that point, however,

the actual end of execution, she said that because line 40 was missed,

the computer would go back to line 40 and print X, then continue to line

50 and print Y a second time. She said that execution now en..1...d "because

all the statements had been visited."

Tracing and Debugging

In addition to the particular misconceptions or bugs we have

described, any students had more general difficulties tracing and

debugging programs. Most students were asked to trace programs during

19

the interviews and some were given a program to debug. We saw the

following sorts of difficulties:

1. Students inferred the function of a program from a few

statements. They would trace or predict output ignoring or

misinterpreting statements that did not fit with the way they thought the

program should work.

2. Students concentrated on small segments of the program when

debugging, making assumptions about what other parts of the program did.

3. Students had difficulty keeping track of the values of variables

(reflected in an error described earlier in the section on variables).

Summary Assessments

The interviewers classified each student as having essentially no

difficulties, minor difficulties, oil major difficulties. The ratings are

tabulated in Figure 1. Several students had no difficulties in the

interview, although they made errors on the screening test. In most

cases these students made careless errors or rushed through the test. Of

the students with difficulties, equal numbers are classified as having

major and minor difficulties.

20
Figure 1

Summary Assessments of Students Interviewed

Male Female Total

No difficulties 11 (32%) 1 (6%) 12 (24%)

Minor difficulties 11 (32%) 8 (50%) 19 (38%)

Major difficulties 12 (35%) 7 (44%) 19 (38%)

Total 34 16 50

Note. Summary assessments were missing for 6 students.

To present a better picture of the summary classifications, we will

describe all the difficulties noted for two students. One was classified

as having minor difficulties, the other had major difficulties.

Student with Minor Difficulties

This students made two kinds of errors:

1. The student gave semantic read interpretations in four

programs. Although the student was consistent in selecting values from

the DATA statements based on the meaning of the variable names, she was

not entirely confident with her responses as she had not used meaningful

words for variable names before.

2. In one program the student said multiple READ statements

containing the same variable repeatedly accessed the same value of the

data statement. After she was given a variant of the program containing

a loop, she corrected her interpretation of the program.

Student with Major Difficulties

-21 -

This student melt several errors revealing considerable

misunderstanding of BASIC constructs.

1. The student gave semantic read interpretation to READ

statements.

2. The student refused to interpret READ statements containing

single-letter variable names until the variables were given some meaning

or value. In the following modified program:

10 LET N " 9
40 READ N
50 READ N
60 READ N
200 DATA 3,-6,9,12

the student said that each of the READ statements would read the 9 from

the line of data. This error occurred in two programs.

3. The student said that a READ statement would read an entire line

of data when i; appeared within a FOR/NEXT loop. For this program:

10 FOR I a 1 TO 5
20 READ X

30 READ X
40 NEXT I
50 DATA 5,8,6,3,10,11,1,25,2

he gave the following output:

5,8,6,3,10,11,1,25,2
5,8,6,3,10,11,1,25,2
5,8,6,3,10,11,1,25,2
5,8,6,3,10,11,1,25,2
5,8,6,3,10,11,1,25,2

The student vas quite confident in this interpretation.

4. In interpreting one program the student thought the program

would continue as long as there were more data values to be read. When

23

-22-

probed about this, he thought the looping was controlled by the READ

statement.

Summary

We have reported numerous misconceptions held by high-school

students in beginning BASIC programming courses. Errors were found with

virtually every construct included in all tests and interviews. As in

our work with Pascal (Sleeman et al., in press), students with a semester

or more of experience with BASIC had very fuzzy knowledge about how

various constructs operate; their knowledge of the conceptual machine

underlying BASIC was weak.

ACKNOWLEDGEMENTS

We wish to thank the teacher and students who participated in this

study. Haym Hirsch and Alan Char helped with the interviewing. Marcia

Linn helped by providing access to an earlier test of BASIC programming.

We also thank the Study of Stanford and the Schools, directed by Dean M.

Atkin and President Kennedy, and D. Walker and M. Lepper (Chairs of the

Panel on Education and Technology) for providing funding for the study.

Finally, Mrs. Dorothy Brink provided invaluable secretarial support.

REFERENCES

Sleeman, D., Putnam, R. T., Baxter, J. A., i Kuspa, L. K. (in press).

Pascal and high-school students: A study of misconceptions.

Sleeman, D. Protocol Analysis b Interviewing: some methodological

issues.

Footnotes

1. Also Computer Science Department.

24

