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Abstract

From a practitioner's perspective, current methods of obtaining
religbility goefficients for mastery tests are quite laborious. For example,
some methods dema:d two test administrations; while others require access to

| computer facilities and/or involve advanced measurement and statistical
/ procedures., Thus, the present paper pré?ides tables from which practitioners
can read such reliability coefficients directly. The method used to construct

the tables is reviewed; and comments on the accuracy of the tabled values are

included.




Tables of Reliability Confficients for Mastery Tests

Methods for obtaining reliability estimates for masté;v tests can be
aquite laborious from a practitioner's point of view. For example, the method
proposed by Swaminathan,.ﬂambleton, and Algina (1974) requires rwo‘
administrations of the same or parallel tests. Given examinees' scores on
both administrations and the cutoff score which distinguishes masters from
nonmasters, two different reliability indices can be computed: (1) the
agreement coefficient and (2) the kappa coefficient.

The agreement coefficient is simply the proportion of examinees
consistently classified as masters or as nonmasters on both administrations.
When the mastery—nonmasferly classifications on the two administrations are

summarized as in Tahle 1, the agreement coefficient, designated p,, is given

by
Po = Pyt Pop o | (1)

where p;; and pyy are the proportions of examinees classified,
respectively, as masters and nonmasters on both administrations. The upper
bound of the agreement coefficient is 1.00, which occurs if classifications on

both administrations are consistent for all examinees in the group. When the

Insert Table 1 abcut here

two administrations in Table 1 involve the same or parallel tests, the lower

bound of the agreement coefficient is given by

- (p11 + ”12)("11 + n21) + (921 + pn)(n12 + pz,,) R (2)

. —

pchance
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where- P.hance Trepresents the expected proportion of consistent
classifications when there is ng relationship between outcomes on the two test
administrations (Huynh, 1978).

The aforementioned kappa coefficient, designated x, is glven by

Y/ (1

Pchance’, - pchg.nce

k= (p, - ) - (3)
where p, and Pchance are obtained from (1) and (2). As such, kappa
reflects the proportion of consistent classifications bevond that expected bv
chance. The upper and lower- bounds of kappa are 1.00 and 0, which occur,
respeétively, when there is perfect agreement and no relationship between
cutcomes on the two test administrations.

Computer methods for estimating the agreement and kaopa coefficienfs from
a single test administration have been proposed, therehy eliminating the need
for a second test administration (Huynh, 1976; Marshall & Haertel,_lq76;
Subkoviak, 1976). However, these methods are also difficult for practitioners
to implement; since they require access to computer facilities and appropriate
software, and they assume a somewhat advanced backgrouﬁd in test theory.

Approximation methods involving hand calculations of the agreement and
kappa coefficients from a single test administration have also been proposed
(Huynh, 1976, b. 258; Peng & Subkoviak, 1980, p. 363)., While these methods
are the simplest thus far proposesd, they still involve the use of statistical
tables of the hivariate and univariate normal distributions, which may not be
entirely familiar to or readil& available to pnractitioners. Thus, the present

paper provides even greater simplicity: tables from which practitioners can




directly read approximate values of the agreement coefficient or the kappa

coefficient.
Tables of Agreement and Kappa Coefficients

Table 2 contains approximate values of the agreement coefficient, and

Table 3 contaiuas approximate values of the kappa cvefficient.

Insert Tables 2 and 3 about here

In order Lo use either table, two values are needed, which can be -
obtained from the data for a single test administration: (1) the norm-
referenced reliability of the test (r) and (2) the cutoff score of the test
expressed as a standard score (z).

The norm-referenced reliability coefficient r can be computed using
well-known and widely published formulae (Stanley, 1971); some of the more
common indices of this type are the Kuder-Richardson 20 and 21 coefficients,
Cronbach's alpha coefficient, and Hoyt's reliability coefficient. For
example, Kuder—Richardso# formula 21 provides practitioners with a very simple

means of estimating r:

ns? = M(n - M)

r =
KR-21 Y

’ , (4)

where n 1is the number of test items, M 1s the mean of the scores, and
52 {g the variance of the scores. Formula 4 is appropriate for test items
scored as right or wrong: and it generally provides underestimates of
reliability coefficient r, which lead to conservative estimates of the

agrecnent and kappa coefficients in Tables 2 and 3. 1f items are not binary




scored or, if less conservative estimates are desired, one of the other
formulae noted previously for estimating Tr can be emploved.

The standard score 2z, which appears iu Tables 2 and 3, is obtained as

follows:

(C - 15 - M) :I (5)

where ¢ ?s the raw cutoff score of the test, M 1is the mean of the scores,
and S 1is the standard deviation of the scores. The value .5 in Fquation 5
is a correction for continuity which arises from the fact that Tables 2 and 3
were obtained by approximating the discrete test score distribution with the
continuous normal distribution, as discussed later. The computed value of

z given by Fquation 5 may be either negative or bositive. However, due to
the symmetry of the approximating normal distribution, a negative =z value
like -.10 will lead to the same agreement or kappa coefficient as a positive
z value like +.10. Thus, the unsigned or absolute value |z| is sufficient

in order to make use of.Tables 2 and 3.
An FExample

The use of Tables 2 and 3 will be 1llustrated employing a set of real
data, which is described ir greater detail elsewheré (Subkoviak, 1980). A 1N
ftem multiple-choice test, with a cutoff scorc of R, was administered to
N = 30 students. The mean of the test was M = Tx/N = 5.63, and the
variance was S° = Ex2/(n - 1) - [(Ex)%/N(N - 1)] = 3.27. Using Fquation &,
the reliahility of the test was Typ oy = ns2 - M(n - M1/[(n - 1)S*1 =

[(10)(3.27) = (46310 = 4.63)1/1(10 = 1)(3.27)] = .27, or rygp.op = .30




approximately. Using Equation 5, the z value was 2z = (c - 5 ~-M/s=

(R - .5 - 4.63)/3.27 = 1.59, or z = 1.60 approximatelv. Fntering Tahle 2
with r = .30 and |z| = 1.0, 1t can be seen that the coefficient of
agreement is p, = 91, approximately, Similarly, the kappa coefficient
provided in Table 3 is xk = .10, approximately. The values of the agreement
and kappa coefficient are quite different (po = ,9] vs., K = .{Q) because
the two coefficients are Jistinct measures of consistency--a point discussed
in greater detail in the next section of the paper. Since r = .27 and

|z| = 1.59 1in the example, somewhat more precise estimates of p, and ?
could be obtained from Tables 2 and 3 by interpolation (Subkoviak, 1980,
pp. 141-142); but for practical purposes, the siight gaiﬁ in precision may not
be worth the additional effort.

Tables 2 and 3 can also be used to determine the agreement and kavopa

coefficient of a test that has been leﬁzthened or shortened by a factor of

2. Suppose one wished to determine in the previous example what the agreement
and kappa coefficient would be if 5 more items, equivalent to the original 10,
were added to the test. Since the lengthened test of 15 items is 1.5 times

the original length, % would equal 1.5. The mean of the lengthened test

il

would be Mo AM = (1.5)(4.63) = 6.95; the cutoff of the lengthened test

fc = (1.5)(8) = 12; and the variance of the lengthened test

would be cz
2

2s2{1 + (4 - 1r] = (1.5)(3.27)[1 + (1.5 = 1)(.27)] = 5.57

would be SQ
(Lord & Novick, 1968, p. 86). Substituting these values into Fauation 5
produces the result 2z, = (Cz - S5 = MR)/SQ = (12 = .5 - 6.95)/V5.57 = 1.93,
or z = 1.90 approximately. Finally, the reliability of thé lengthened test

would be r, = &r/[1 + (& = Drl = (1.5)¢.27)/11 + (1.5 = 1)(.27)) = .36, or

L
r, = .40 approximatelv. FEntering Tables 2 and 3 with r, = 40 and
|z£| = 1,90, the apreement and kappa coefficients of the lengthened test




are p, = .95 and ¥ = .12, approximately, which are slightly larger than
the original values (p, = .91 and Kk = .10): since lengthening a test

increases its reliability.

Discussion

It may be noted that corresponding entries in Tables 2 and 3 are
generally quite different, as in the example where p, = .91 and &k = 10,
Such differences are due to the fact that the agreement coefficient and the
kappa coefficient are distinct measures of consistency (see Subkoviak, 1980,
pp. 152-154). The agreement coéfficient is the total proportion of consistent
classifications on two test administrations; whereas the kappa coefficient
reflects the proportiog of consistent élassifications, bevond that expected by
chance. In concrete éerms, what this means is that the kappa coefficient is
more sensitive than the agrzement coefficient to changes in test reliability
r, as can be seen by comparing corresponding rows of Tables 2 and 3; and
kappa is less sensitive to changes in |z|, which reflect the location of the
cutoff within the distriburion of scores, as can be seen by comwparing
corresponding columns of Tables 2 and 3. An awareness of these differences is
important when interpreting and reportigg values of the two coefficients.

The question'of what is an acceptable value of an agreement or kappa
coefficient naturally arises when interpreting and reporting obtained values
of these 1nd{cés; Consider the coefficient of agreement (po), which can be
thought of as the probability that a randomly selected examinee will be
consistently ciassified on two test replicationtis. The question of how larce
this probability value should be depends upon the seriousness of the decisions

being made with the test results. If the test is being used to decide who




will graduate énd who will not, this probability should be quite large,
perhaps .95, as might occur in Table 2 with a published test having
reliability r = .90 and standardized cutoff =z = -1.50 (a standard that
implies about 7% of a normally distributed group score below the cutoff). On
the other hand, if the test results are being used to make routine classroom
decisions like who will move-on to the next unit of instrdetion and who will
remain on the present unit, the probability can be‘somewhat lower, perhaps
.85, as might occur in Table 2 with a teacher-made test having reliability

r = 70 »and standardized cutoff z = -1,00 (impiying about 16% of a normally
distributed class score below the cutoff).

The question of what constitutes an accentable value of a kappa
coefficient can best be answered by first reviewing what the coefficient
measures. The formula for kappa (3).involves the values P.pances Po» and
1.0 which represent, respeétively, the probhability of consistent

classification when no relationship exists, the observed relationship exists,

and a perfect relationship exists between the outcomes on two test

administrations. Therefore; the numerator of kappa (po - reflects

Pehance)
the gain in consistency between the no relationship condition (pchance) avd
the observed relationship (p,); and the denominator (1 - Pchance) reflects

the maximum gain in consistency possible between the no relationship

condition (n.pance) and the perfect relationship condition (1.0). Thus,

)/ (1 -

K = (po = Pchance pchance) is a ratio of the actual gain in

consistency due to the test to the maximum gain possible; or in other words,
kappa reports the actual contribution the test makes to consistency as a
proportion of the maximum possible contribution that could be made. Kapvpa,
therefore, is a measure of the extent to which a test is performing up to the

maximum possible limit; and one normallv expects more, in this sense, of

10




published tests than teacher-made tests., For example, published tests should
probably be expected to have kappa values of .50 or greater, as would occur in
Table 3 for a published test having reliahility r = .90 and standardize
cutoff |z|. between .00 and 2.00. On the other band, teacher-made tests
might be expected to have kappa values of .25 or greater, as would occur in
Table 3 for a classroom test having reliability r = .70 and standardized
cutoff |z| between .0N and 2.0N. However, notice that a test may not be
living up to expectation in terms of the kappa coefficient; and vet the
overall probability of consistent classification in terws of the agreement
coefficient may still be acceptable. For example, if a published test has
reliability r = .80 and standardized cutof: |z| = 2,00, the associated
kappa value in Ta%le 3 is k = ,42, which is below the .50 benchmark
previously suggested for a standardized test; yet the associated agreement
coefficient in Table 2 is py, = .97, which is above the .95 benchmark
previously suggested for tests used to make important decisions. This is one
more i1llur.ration of the fact that the agreement and kappa coefficients are
distinct measures of consistency, requiring individual interpretation.

o

Construction of the Tables

Tables 2 and 3 were constructed using a procedure proposed bv Peng and
Subkoviak (1980, p. 363) for estimatng the agreement or kappa coefficient.
This procedure zssumes that if two test administrations were actually
conducted, the joint distribution of scores on the two testings could be
approximated by a bivariate normal distribution. Under this assumption, the

agreement and kappa coefficient are, respectively, given bv

11




p, =1+ 2(pzz - pz) (h)
p - P
pz_pz

where z 1is the cutoff expressed ac a standard score (see Fquation 5): P,
is the probecility that a standard normal variable is less than value 2z
and p,, 18 the probabiliiy that two standard normal variaSles, having
correlation r (see Equation 6), are less than =z,

Tables 2 and 3 were obtained from Fquations 6 and 7 by first specifying
valyes for z and r and by then determining the corresponding values of
pz5 and p,, in (6) and (7), which can be obtained by computer routines or
from tables of the univariate and bivariate normal distribution. For examole,
the first entry in Tables 2 and 3 was obtained by specifying the values
z = 00, r = .10 and determing the corresponding probabilities o, = 5000,
Prz .2659 from the standard univariate and bivariate normal
distributions. Substituting these values into Equation 6 provides the
agreement coefficient p, =1+ 2(p,, - p,) =1 + 2(.2659 -~ .5000) = .5318
or Py = 33, approximately; and Equation 7 provides the kappa coefficlent
€= (p, - p2)(p, - p2) = (42659 - .50002)/(.5000 - .5000%) = 0626 or .06,
approximately. All other entries in Tables 2 and 3 were obtained in the same
waye.

Peng and Subkoviak (1980) found that Equations 6 and 7, on which Tables
2 and 3 are based, generally provide good approximations even when the test
data are not normally gistributed. They simulated nonnormal data for 125
different conditions, including H-shapgﬂ, uniform, platykurtic, leptokurtic,

s
and skewed test score distributiong;” and thev then compared the exact

12 '




agreement and kappa coefficients for the data to approximations of these two

‘coefficients given by Equations 6 énd 7. The average discrepancv between
exact and approximate values over all 125 cgnditiohs was .013 for the
agreement coefficient and .037 for the kapna coefficient., As would be
expected, the greatest discrepancies occurred for the most nonnormal
distributions of test scores, which were {l-shaped; the average discrepancy
over 25 such cases was .019 for the agreement coefficient and .N43 for the
kappa coefficient. As the simulated test score distributions hecome more
near-normal, discrepancies between exact and approximate values decreased; for
example, the average discrepancy over 25 leptokurtic cases was .008 for the
agreement coefficient and .N36 for the kappa coefficient. Thus, it apbears

/

that Tables 2 and 3 should generally provide practitioners with useful
approximations of the agreement and kappa coefficients over a variety of
realistic data conditions and with minimal effort.

For purposes of completeness it might be noted that tables of agreement
and kappa coefficients have also been produced by Huynh for short tests
containing between fiye and ten items; and these tables are reproduced in
Subkoviak (1980). Ho&ever, the Huynh tables are based on the assumptioa that

the test data follerw ‘a beta-binomial distribution rather than a normal

distribution. as assumed in Tables 2 and 3,

10
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Tabhle 1

Classification of Examinees on Two Test Administrations

Admin 2
Master Nonmaster
Mastet P11 P12 (p1y + 912)
Admin 1
Nonmaster P2 P22 (pyy + Pp2)
(pyy + P21) (pya + 923)
Mt




Table 2

Approximate Values of ‘he Agreement Coefficient pg
r
|z| 10 .20 30 40 .50 60 70 A0 90
00 .53 .56 60 .63 67 .70 75 B0 .86
W10 53 .57 60 W63 67 W71 75  .R0 86
W20 .54 .57 6l 64 67 71 .75 R0 86
30 .56 .59 .62 .65 J6R .72 .76 .80 .86
40 .58 60 .63 66 .69 73 TT 81 AT
50 60 .62 .65 68 Tl W4 T8 WR2 BT
60 .62 .65 .67 .70 JJ3 .76 .79 .83 BB
JO 65 67 L0 g2 .5 W77 .80 R4 A9
80 .68 0 .72 Jho W77 .79 82 R85 90
90 .71 73 W5 J7 0 79 .81 84 .87 90
1.00 .75 76 77 77 81 83 .85 .88 91
1.10 .78 .79 .80 .8l 83 .85 A7 A9 .92
1.20 R0 .81 A2 B4 B85 .86 8 90 93
1.30 .83 .84 .85 .86 .87 .88 .90 .91 .94
1.40 .86 86 87 .88 .89 90 ) 93 .95
1.50 .88 .88 .89 .90 .90 .91 .92 94 .95
1.0 .90 .90 .91 91 .92 93 .03 .95 96
1,70 .92 .92 .92 .93 .93 .84 .95 .45 .97
1.80 .93 .93 94 .94 94 .95 .95 .96 97
1.90 .95 .95 .95 Q5 095 .96 0 .97 98
2.00 .96 .96 96 .96 06 .97 A7 a7 .08
13
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Table 3

Approximate Values of the Kappa Coefficient Kk

r
2| .10 20 .30 40 50 60 70 B0 .90
00 .06 J3 0 L0 26 .33 W4) 49 .59 71
40 .06 W13 19 .26 33 .4l 49 50 L7
20 W06 3 .19 W26 330 W41 W49 50 LTI
.30 .06 a2 19 26 .33 40 49 .59 71
40 06 .12 Jd9 .25 .32 W40 W48 58 71
S50 .06 A2 W8 .25 32 W40 4B .58 .70
60 06 2 A8 24 .31 39 .47 .57 70
J0 W05 W1 W17 W24 W31 38 W47 T.57T .70
80 .05 11 A7 .23 30 .37 46 56 .69
90 .05 J0 W6 W22 W29 W36 W45 55 .68
1.00 05 J0 0 W15 .21 28 35 W44 54 68
1.10 .04 00 4 20 W27 W34 W43 53 .67
1.20 .04 08 W14 .19 .26 33 W42 52 W66
1.30 .04 08 W03 OB W25 320 W4) .51 .65
1.40 .03 07 .12 17 23 31 .39 h .50 64
1.50 .03 .07 .11 6 W22 .29 .38 W49 .63
1.60 W03 06 .10 45 .21 28 .37 47 62
170 .02 .05 .09 W04 .20 .27 .35 W46 6l
1.80 .02 05 .08 .13 .18 .25 .34 45 .60
1.0 .02 .04 08 .12 .17 24 W32 W43 .59
2.00 .02 04 .07 A1 .16 .22 1 42 .58




