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Abstract

From a practitioner's nerspective, current methods of obtaining

reliability coefficients for mastery tests are quite laborious. For example,

some methods demand two test administrations; while others require access to

computer facilities and/or involve advanced measurement and statistical

procedures. Thus, the present paper provides tables from which practitioners

can read such reliability coefficients directly. The method used to construct

the tables is reviewed; and comments on the accuracy of the tabled values are

included.
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Tables of Reliability GO(!fficients for Mastery Tests

Methods for obtaining reliability estimates for mastery tests can he

quite laborious from a practitioner's point of view. For example, the method

proposed by Swaminathan, Hambleton, and Algina (1974) requires two

administrations of the same or parallel tests. Given examinees' scores on

both administrations and the cutoff score which distinguishes masters from

nonmasters, two different reliability indices can be computed: (1) the

agreement coefficient and (2) the kappa coefficient.

The agreement coefficient is simply the proportion of examinees

consistently classified as masters or as nonmasters on both administrations.

When the mastery-nonmasterly classifications on the two administrations are

summarized as in Table 1, the agreement coefficient, designated po, is given

by

Po Pll P22 '

(1)

where p11 and p22 are the proportions of examinees classified,

respectively, as masters and nonmasters on both administrations. The upper

bound of the agreement coefficient is 1.00, which occurs if classifications on

both administrations are consistent for all examinees in the group. When the

Insert Table 1 ahcut here

two administrations in Table 1 involve the same or tests, the lower

hound of the agreement coefficient is given by

chance (1)
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where o-chance
represents the expected proportion of consistent

classifications when there is no relationship between outcomes on the two test

administrations (Huynh, 1978).

The aforementioned kappa coefficient, designated K, is given by

K (pcs Pchance)/(1 Pchf!nce)
(3)

where pc. and Pchance
are obtained from (1) and (2). As such, kappa

reflects the proportion of consistent classifications beyond that expected by

chance. The upper and lower - bounds of kappa are 1.00 and 0, which occur,

respectively, when there is perfect agreement and no relationship between

outcomes on the two test administrations.

Computer methods for estimating the agreement and kappa coefficients from

a single test administration have been proposed, thereby eliminating the need

for a second test administration (Huynh, 1976; Marshall & Haertel, 1476;

Subkoviak, 1976). However, these methods are also difficult for practitioners

to implement; since they require access to computer facilities and appropriate

software, and they assume a somewhat advanced background in test theory.

Approximation methods involving hand calculations of the agreement and

kappa coefficients from a single test administration have also been proposed

(Huynh, 1976, p. 258; Peng & Subkoviak, 1980, p. 363). While these methods

are the simplest thus far proposesd, they still involve the use of statistical

tables of the hivariate and univariate normal distributions, which may not he

entirely familiar to or readily available to practitioners. Thus, the present

paper provides even greater simplicity: tables from which practitioners can
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directly read approximate values of the agreement coefficient or the kappa

coefficient.

Tables of Agreement and Kappa Coefficients

Table 2 contains approximate values of the agreement coefficient, and

Table 3 contains approximate values of the kappa coefficient.

Insert Tables 2 and 3 about here

In order to use either table, two values are needed, which can be

obtained from the data for a single test administration: (1) the norm-

referenced reliability of the test (r) and (2) the cutoff score of the test

expressed as a standard score (z).

The norm-referenced reliability coefficient r can be computed using

well-known and widely published formulae (Stanley, 1471); some of the more

common indices of this type are the Kuder-Richardson 20 and 21 coefficients,

Cronbach's alpha coefficient, and Hoyt's reliability coefficient. For

example, Kuder-Richardson formula 21 provides practitioners with a very simple

means of estimating r:

nS
2
- M(n M)

KR-21
(n - 1)S

2 '

(4)

where n is the number of test items, M is the mean of the scores, and

S2 is the variance of the scores. Formula 4 is appropriate for test items

scored as right or wrong; and it generally provides underestimates of

reliability coefficient r which lead to conservative estimates of the

agreement and kappa coefficients in Tables 2 and 3. If items are not binary
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scored or if less conservative estimates are desired, one of the other

formulae noted previously for estimating r can be employed.

The standard score z, which appears in Tables 2 and 3, is obtained as

followS1

z
(c - .5 - M)

=
S

(5)

where c is the raw cutoff score of the test, M is the mean of the scores,

and S is the standard deviation of the scores. The value .5 in Equation 5

is a correction for continuity which arises from the fact that Tables 2 and I

were obtained by approximating the discrete test score distribution with the

continuous normal distribution, as discussed later. The computed value of

z given by Equation 5 may be either negative or positive. However, due to

the symmetry of the approximating normal distribution, a negative z value

like -.10 will lead to the same agreement or kappa coefficient as a positive

z value like +.10. Thus, the unsigned or absolute value Izi is sufficient

in order, to make use of.Tables 2 and 3.

An Example

The use of Tables 2 and 3 will be illustrated employing a set of real

data, which is described in greater detail elsewhere (Subkoviak, 080). A In

item multiple-choice test, with a cutoff score of R, was administered to

N = 30 students. The mean of the test was M r rx/m = 4.63, and the

variance was S2 = rEx2/(N - 1)) f(Ex)2/N(N 1)1 = 3.27. tsing Equation 4,

the reliability of the test was rKR-21 InS2
M(n m)1/1 (n - 1)521. .

f(m)(3.27) - (4.61)(in - 4.61)) /f (1n - 1)0.27)1 - .27, or rKR_21 ."



approximately. Using Equation 5, the z value was z = (c - .5 - M)/S

(R .5 - 4.63)13.27 = 1.59, or z = I.60 approximately. Entering Table 2

with r = .30 and
1z1

1.60, it can be seen that the coefficient of

agreement is pc, = .91, approximately. Similarly, the kappa coefficient

provided in Table 3 is K = .10, approximately. The values of the agreement

and kappa coefficient are quite different (pc) = .91 vs. K mit .10) because

the two coefficients are iistinct measures of consistency--a point discussed

in greater detail in the next section of the paper. Since r = .27 and

IzI = 1.59 in the example, somewhat more precise estimates of po and K

could be obtained from Tables 2 and 3 by interpolation (Subkoviak, 1980,

pp. 141-142); but for practical purposes, the slight gain in precision may not

be worth the additional effort.

Tables 2 and 3 can also be used to determine the agreement and kappa

coefficient of a test that has been lengthened or shortened by a factor of

Z. Suppose one wished to determine in the previous example what the agreement

and kappa coefficient would be if 5 more items, eauivalent to the original 10,

were added to the test. Since the lengthened test of 15 items is 1.5 times

the original length, 9 would equal 1.5. The mean of the lengthened test

would he Mx = 9M = (1.5)(4.63) = 6.95; the cutoff of the lengthened test

would be c9 = 9c = (1.5)(8) = 12; and the varlance of the lengthened test

would be S
2
= 9S

2 (1 + (Q, - 1)r] = (1.5)(3.27)(1 + (1.5 - 1)(.27)] = 5.57

(Lord & Novick, 1968, p. 86). Substituting these values into Eauation 5

produces the result z9 = (c9 - .5 - MR) /SR = (12 - .5 - 6.95)/5,57 = 1.93,

Or z = I.90 approximately. Finally, the reliability of the lengthened test

would be r9 = + (Z = (1.5)(.27)/[1 + (1.5 - 1)(.27)1 = .36, or

r9 = .40 approximately. Entering Tables 2 and 3 with r9 . .40 and

17.
I = 1.90, the agreement and kappa coefficients of the lengthened test
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are pc, = .95 and K = .12, approximately, which are slightly larger than

the original values (p0 = .91 and K = .10); since lengthening a test

increases its reliability.

Discussion

It may be noted that corresponding entries in Tables 2 and 3 are

generally quite different, as in the example where pc. = .91 and K = .10.

Such differences are due to the fact that the agreement coefficient and the

kappa coefficient are distinct measures of consistency (see Subkoviak, 1980,

pp. 152-154). The agreement coefficient is the total proportion of consistent

classifications on two test administrations; whereas the kappa coefficient

reflects the proportion of consistent classifications, beyond that expected by
//

chance. In concrete terms, what this means is that the kappa coefficient is

more sensitive than 'the agreement coefficient to changes in test reliability

as can be seen by comparing corresponding rows of Tables 2 and 3; and

kappa is less sensitive to changes in lzl, which reflect the location of the

cutoff within the distribution of scores, as can be seen by comparing

corresponding columns of Tables 2 and 3. An awareness of these differences is

important when interpreting and reporting values of the two coefficients.

The question'of what is an acceptable value of an agreement or kappa

coefficient naturally arises when interpreting and reporting obtained values

of these indices. Consider the coefficient of agreement (p0), which can be

thought of as the probability that a randomly selected examinee will be

consistently classified on two test replications. The question of how large

this probability value should be depends upon the seriousness of the decisions

being made with the test results. If the test is being used to decide who
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will graduate and who will not, this probability should he quite large,

perhaps .95, as might occur in Table 2 with a published test having

reliability r = .90 and standardized cutoff z = -1.50 (a standard that

implies about 7% of a normally distributed group score below the cutoff). On

the other hand, if the test results are being used to make routine classroom

decisions like who will move-on to the next unit of instruction and who will

remain on the present unit, the probability can be somewhat lower, perhaps

.85, as might occur in Table 2 with a teacher-made test having reliability

r = .70 and standardized cutoff z = -1.00 (implying about 167 of a normally

distributed class score below the cutoff).

The question of what constitutes an acceptable value of a kappa

coefficient can best be answered by first reviewing what the coefficient

measures. The formula for kappa (3) involves the values andPchances Po,

1.0 which represent, respectively, the probability of consistent

classification when no relationship exists, the observed relationship exists,

and a perfect relationship exists between the outcomes on two test

administrations. Therefore, the numerator of kappa (Po chance reflects

the gain in consistency between the no relationship condition (p chance) atld

the observed relationship (p0); and the denominator (1 Pchance) reflects

the maximum gain in consistency possible between the no relationship

condition (othance) and the perfect relationship condition (1.0). Thus,

K (Po Pchance)/(1 chance ) is a ratio of the actual gain in

consistency due to the test to the maximum gain possible; or in other words,

kappa reports the actual contribution the test makes to consistency as a

proportion of the maximum possible contribution that could be made. Kappa,

therefore, is a measure of the extent to which a test is performing up to the

maximum pos!Able limit; and one normally expects more, in this sense, of



published tests than teacher-made tests. For example, published tests should

probably be expected to have kappa values of .50 or greater, as would occur in

Table 3 for a published test having reliability r = .90 and standardize

cutoff Id between .00 and 2.00. On the other hand, teacher-made tests

might be expected to have kappa values of .25 or greater, as would occur in

Table 3 for a classroom test having reliability r = .70 and standardized

cutoff between .00 and 2.00. However, notice that a test may not he

living up to expectation in terms of the kappa coefficient; and yet the

overall probability of consistent classification in terlr.s of the agreement

coefficient may still be acceptable. For example, if a published test has

reliability r = .80 and standardized cutofi = 2.00, the associated

kappa value in Take 3 is 0: .42, which is below the .50 benchmark

previously suggested for a standardized test; yet the associated agreement

coefficient in Table 2 is pc, = .97, which is above the .95 benchmark

previously suggested for tests used to make important decisions. This is one

more illuration of the fact that the agreement and kappa coefficients are

distinct measures of consistency, requiring individual interpretation.

4

Construction of the Tables

Tables 2 and 3 were constructed using a procedure proposed by Peng and

Subkoviak (1980, p. 363) for estimatng the agreement or kappa coefficient.

This procedure nssumes that if two test administrations were actually

conducted, the joint distribution of scores on the two testings could he

approximated by a bivariate normal distribution. Tinder this assumption, the

agreement and kappa coefficient are, respectively, given by
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(6)

(7)

where z is the cutoff expressed as a standard score (see Equation 5); Pz

is the probecility that a standard normal variable is less than value z;

and Pzz is the probability that two standard normal variables, having

correlation r (see Equation 6), are less than z.

Tables 2 and 3 were obtained from Equations 6 and 7 by first specifying

values for z and r and by then determining the corresponding values of

p
4'

and pzz
in (6) and (7), which can be obtained by computer routines or

from tables of the univariate and bivariate normal distribution. For examole,

the first entry in Tables 2 and 3 was obtained by specifying the values

z = .00, r .10 and determing the corresponding probabilities pz .50n0,

Pzz .2659 from the standard univariate and bivariate normal

distributions. Substituting these values into Equation 6 provides the

agreement coefficient Po s 1 2(Pzz Pz) 1 2(.2659 -- .5000) . .5318

or pc, = .53, approximately; and Equation 7 provides the kappa coefficient

K (p
zz z

p2)/(P
z

p2) = (.2659 - .50002)/(.5000 - .50002) = .0636 or .06,

approximately. All other entries in Tables 2 and 3 were obtained in the same

way.

Peng and Subkoviak (1980) found that Equations 6 and 7, on which Tables

2 and 3 are based, generally provide good approximations even when the test

data are not normally distributed. They simulated nonnormal data for 125

different conditions, including ll-shaped, uniform, platykurtle, leptokurtic,

and skewed test score distributions' and they then compared the exact



agreement and kappa coefficients for the data to approximations of these two

coefficients given by Equations 6 and 7. The average discrepancy between

exact and approximate values over all 125 conditions was .013 for the

agreement coefficient and .037 for the kappa coefficient. As would be

expected, the greatest discrepancies occurred for the most nonnormal

distributions of test scores, which were U-shaped: the average discrepancy

over 25 such cases was .019 for the agreement coefficient and .043 for the

kappa coefficient. As the simulated test score distributions become more

near-normal, discrepancies between exact and approximate values decreased; for

example, the average discrepancy over 25 leptokurtic cases was .008 for the

agreement coefficient and .036 for the kappa coefficient. Thus, it appears

that Tables 2 and 3 should generally provide practitioners with useful

approximations of the agreement and kappa coefficients over a variety of

realistic data conditions and with minimal effort.

For purposes of completeness it might be noted that tables of agreement

and kappa coefficients have also been produced by Huynh for short tests

containing between fir and ten items; and these tables are reproduced in

Subkoviak (1980). HoWever, the Huvnh tables are based on the assumption that

the test data follow 'a beta-binomial distribution rather than a normal

distribution, as assumed in Tables 2 and 3.
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Admin 1

Table 1

Classification of. Examinees on Two Test Administrations

Admin 2

Master Nonmaster

Mastei

Nonmaster

P11

1)21

P12

P22

(P11 P21) (P12 P22)

12

15

(P11 P12)

(P21 P22)



Table 2

Approximate Values of 1.he Agreement Coefficient Po

Izi

.00

,.10

.20

.30

.40

.50

.60

.70

.80

.90

1.00

1 .10

1 .20

1 .30

1 .41)

1 .50

.60

1 .70

1 .80

1 .90

2 .00

.10 .20 .30 .40 .50 .60 .70 .80 .90

.53 .56 .60 .63 .67 .70 .75 .80 .86

.53 .57 .60 .63 .67 .71 .75 .80 .86

.54 .57 $61 .64 .67 .71 .75 .80 .86

.56 .59 .62 .65 .68 .72 .76 .80 .86

.58 .60 .63 .66 .69 .73 .77 .81 .87

.60 ,62 .65 .68 .71 .74 .78 .82 .87

.62 .65 .67 .70 .73 .76 .79 .83 .88

.65 .67 .70 .72 .75 .77 .80 .84 .89

.68 .70 .72 .74 .77 .79 .82 .85 .90

.71 .73 .75 .77 .79 .81 .84 .87 .90

.75 .76 .77 .77 .81 .83 .85 .88 .91

.78 .79 .80 .81 .83 .85 .87 .89 .92

.80 .81 .82 .84 .85 .86 .88 .90 .93

.83 .84 .85 .86 .87 .88 .90 .91 .94

.86 .86 .87 .88 .89 .90 .91 .93 .95

.88 .88 .89 .90 .90 .91 .Q2 .94 .95

.90 .90 .91 .91 .92 .93 .93 .95 .Q6

.9s2 .92 .92 .93 .93 .94 .95 .95 .07

.93 .93 .94 .94 .94 .95 .95 .Q6 .97

.95 .95 .95 .95 .95 .06 .96 .97 .98

.96 .96 .96 .96 .96 .97 .q7 .97 .98

13
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Table 3

Approximate Values of the Kappa Coefficient K

Izi

.00

.10

.20

.30

.40

.50

.60

.70

.80

.90

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

1.80

1.90

2.00

r

.10 .20 .30 .40 .50 .60 .7n .80 .90

.06 .13 .19 .26 ..33 .41 .49 .59 .71

.06 .13 .19 .26 .33 .41 .49 .59 .71

.06 .13 .19 .26 .33 .41 .49 .59 .71

.06 .12 .19 .26 .33 .40 .49 .59 .71

.06 .12 .19 .25 .32 .40 .48 .58 .71

.06 .12 .18 .25 .32 .40 .48 .58 .70

.06 .12 .18 .24 .31 .39 .47 .57 .70

.05 .11 .17 .24 .31 .38 .47 .57 .70

.05 .11 .17 .23 .30 .37 .46 .56 .69

.05 .10 .16 .22 .29 .36 .45 .55 .68

.05 .10 .15 .21 .28 .35 .44 .54 .68

.04 .09 .14 .20 .27 .34 .43 .53 .67

.04 .08 .14 .19 .26 .33 .42 .52 .66

.04 .08 .13 .18 .25 .32 .41 .51 .65

.03 .07 .12 .17 .23 .31 .39 .50 .64

.03 .07 .11 .16 .22 .29 .38 .49 .63

.03 .06 .10 .15 .21 .28 .37 .47 .62

.02 .05 .09 .14 .20 .27 .35 .46 .61

.02 .05 .08 .13 .18 .25 .34 .45 .60

.02 .04 .08 .12 .17 .24 .32 ,43 .59

.02 .04 .07 .11 .16 .22 .31 .42 .58


