docunent resuras

PUB TYPE
EDRS PRICE
DESCRIPTORS

Verhille, Charles, Ed. Proceadings of the 1984 Annual Neeting of the Canadian Kathomatics Education Study Group (8th, Waterloo, Ontario, June 2-6, 1984). Canadian Mathomatics Education Study Foup. Nov 84

- 91p.; Portions may be mafginally legible due to small print. For eariier proceedings. see ED 188872 , ED. 204 120, ED 234 988-989, and ED 243653. Collectad Works - Conference Proceedings (021)

MF01/PCO4 Plus Postage.
TAlgebra; Computers; Course Descriptions; Elquentary Secondary Education; *Mathematics Curriculum; *Mathematics Education; *Mathematics Instruction; *Microcomputers; Research Utilization
IDENTIFIERS *Canada

ABSTRACT
Papers from the eighth annual meeting of the cadadian Mathematics Education Study Group are presented, beginning with a lecture by Alan Bishop on "The Social Construction of Meaning-a Significant Development for Nathematics Education." Alsp inciudea are reports of four working groups: "LOGO and the Mathematics Curriculum" (Dale Burnett and William Higginson): The impact of Research and Technology on School Algebra Curricula" (Carolyn Kieran and Thomas Kieren). "Epistemology and Mathematics" (Maurice Belanger and David Wheeler); and "Visual Thinking in'Mathematics" (Tony Thompson and John Masón). A panel of speakers (David Alexander, Michael Silbert, Dale Drost, and Claude Gaulin) discussed the general trends of current curriculum reforms in school systems in three Canadian provinces. The discussion of a second panel (Peter Taylor, John Poland, and Reith Geddes) on the impact of computers on undergraduate mathematics is briefly sumarized. Subjects included conclusions of a report based on earlier Study Group discussions, ${ }^{\text {a }}$ collage's comitment to the use of computers in first-year courses, and the use of software for the exact manipulation of matrices and funtions. A digest of a paper by George Davis, "A Microcomputer for Every Student," is appended. Also included are accomnts of two coursas with a histor, ical fívor: "Famous Problems in Mathematics: An Outline of aCourse" by Israel Kleiner and "Intellectual Respectability-A - Historical Approach". by Abe Schenitzer. A list of participants concludes the document. (NaNS)

[^0]

BEST COPY AVAILADL:

1.

1

fHIVIM'S FORMARI

The triocedings of the 1984 knmust llecting follow the patfeit of perions procealings whek teflect the organization of the mectmis. llow lang must owe exist to clalm traditions?

- Mainiprosentstions by prominent mithomificians
b) Several workink proups where copics and issucs Sevcrat workink proups where topics and issucs
of intriest tophis particuinr smit comminty of scholars are considered
ct Touic gromps permit individinis or grouns to.
makepresentations on ftems of ivterestin the s.anil.
(d) limels.

These pocecelings, in some small why, ierlect the ahovg tradithons ns they unfolded in 1984.
\uparrow

Charles Vertilir.
Editor.

Canadian matilemitics mincation study gromp
 logi militing

Tie elquth nimull meoting of the" stunty rroup man held at tipe mivernity of

The min (nvited lectures were diven by ieondentin (Dexkeley) on "Iingui-

 the temaing of titegratiph. A awond tonel, conaisting of bavid Aleximsier

 (Loval), discamend the gervegfitresmin of cutrent curriculim reforms in the
 excolilent concriluation of that one would fint imwe monted to cirtinil, yet both rom out of dimamion tima. Tir was porticulatiy unfortungte intion ceive

The, 9 -hour (m3) morking Goupe playny theit wani intortant partis giving"

 DIVI:AHPH:NI fOR MATMEMATICS BDHICATION:
uy
AIAN J. EISINOP.

LECIURE 1

IIIK SOCIAL COWSTRUCTION. OF mendihg - a significaili develophent FOR MATIEMATICS EDUCAIIOW?

BY

AIAN J. BISIHep
depariment of education UHIVERSIIY OF CAMBRIDGE

BEST COPY AVAILABLE
"i tratiris' kimmleiker, Idenligy, allitimen, ete. wilth the mork

 many more ere wallion to be explored. for exemple, defling with puplls"
 ectivily but the deciaion-meting construct forced ma to at tend to the

 at mopyinere anay from the intersctive clasaroom. I therefore looked at perrs (learler percelved errore) and wai pertlcularly linterested in the teactiers' etraleqies for dealing with there (Bistion, 1916b). Whas research developed some very uneful activitins for temeliner eductionf for .
 analysion tie cinolice and criteria apen to the tencier. Into mich discuasion It is gosisitie to inject many constricte from paytiologital researctionith wowlif otlermise seem vary remote from the chasiroom.

It is olso selisfying to see that thie construct has beern taken up In, very serious wad large-ncele, mawer by the Inutitute for heserich on ieaching at Michigm stage iniveritity. The whole work of the fintilute fis posed on the 'teacher as thinker' madel aind the decisiow-making construct is well rmietirit in that model this cowceptlon recognies thg fact that dim la:iki, ronstinints mid problems of teaching develog certain riormiterintic ways of thinting in teachers, witch clearly has enormos imilicationa for both initial wid in-service teacier eduration (clark owd Yiruer, 1979).

 liy first attrnits vere witi different teaching méthade mad their inderactime with virious aspects of solital abllity, but I fownd both of these conalricte (I.H. whi S.A.) to be rather, remote from the reil clansrom. I inereforí reworked troth constructs, and changed 'tanching methods' to 'apullol actluitien'. while 'aphtial millity' berme 'visual procensing'.

寿

'iratiy the move anay from 'methods' to 'eclivitina' is midily elpolificmit. lie lifen of 'tanchimy methost' creater o dietinction betweet it mod mothemetical

 content and aeem, to rit more with lagiver: ldean of tearting altimexyt,
 1976). It cm be ambedded in the more perietil construct of imethemalical
 explofling. Ior ma, the notion of emalhemalical act trilly relotes to hoth topic wod proceos, and is e unit of troth method and curificulum. i porticuleriy value llis focus on wat lise pmpils are (summendiy) empmed

 etudent 'aftern' attontion on the Inltiation, orgmilsution wod coritrol of those activilitias. 'Sputial activitifá', es a ode-set of methemalical octivities, is it think' a dory rich end important construrt.
 diatinction between the abllity to interpret figural informelfon l.e. the

 not st all. Krutetahil's (1916) 'ineometern' certainly slowed extirme preference for it. Ne know atso thal there exint dillereixens belmarli Individial teacier praferences as well es between tlinge of indivitant maplla ad be car explore how thile dillty can he develoyed or low a pernixi emi bé
 and con elso relate to the use of miniogy ent mimport.
of perticular inimest to how intigery cme be diared between temiter mal

 fetilimy limet line quality of learniny man duclining.
wis I Aus out tive mily parnanito nutice this, of course, wid i could

 cevelasmust puit eure elfort into tise prodiction of the 'ideal' texthouk.

 Ste curficulim.

 Chose of tesctier, multhority, balper, to thuce of edministimtor, murker paper dietributor (Morijen, 1911):; Ihe denger here in that the more copolaticeted the individual metariele become, the mare thay interveone potway the tanctier and the puptl. Une teacher ance egnin loses lias " euthority to the anonymous plisces of pepar.

 at and the clasardom. It is only complox beceuse of our tiphormise mad if we could underatand it betier, if me could inierprat it more richly. llien perhapa we could lajern thow to herdie it betler. Ifils brings me to the U|ird rasearch affort wioh has accupiod by mithover recent yeurs.
 it from our'more traditional 'matheatice leazon' frme mith, es 1 huve
 - efeition. This' 'suciel construction' conception hus growifaut of the mider rwige of research perspactivea milch hava been browntit to tuear on the

 We ara now, for exuapla; mech more meare of anpacta like teacher strest. pupllat four of muthemulics, of the effects of interpersonal percepticors, of pepall-pepili minerwitions, of the powerfil pasition of the tenctior in
 powerlenemese.

 Lisu one is dealing willi people. It may encer trivial ta suy, this but the
 for exmale, or μ mill willity, or mativitiong or miy allier payciadiagical
 beimi part of minstitution, institutionalisen the participonts. But esch clessrom grow te elill gitque combliation of people - il has its own identity, ita own etmosphere, its own ifonificmit evanta, ils own plesourea mod itw own crisen. An a, reoult; it hee ite own history crinted by, diared betweeti, and ramentered by the people in the grow.

A curollary wich is of algificpace to the teacher ia that éch individusi person in tive claginoóm group creates her own initqe fongliuction of the" rest of the particiamten of their goels, of the intermetione betwem herself wid the olliess and of all the events, isskg, mathemalical cont onte mingh occur in the classroom. Such 'ohfacts' as collitren' atilities. mathematical meming, teactiar'm knowledge, rulea of bohoviour, do not exiat as objectlve ract: but are the indivictuel procicets of each person's construction.

- Recogrition of thia social conetruclion of phenomens lende me to propose - new orientation for malhamplics aducation. Ihia orientation viem methemolics classrom tesching an controlline the organisation and dynamics of ehe ctassroam, for che purposes of ahariag and developing mathematicalmeaning. This orientation has the following fenturea:
1 it mots the teacher in relotion to the wale ciassroom grown,
$?$ it emhasiges the dyngeic owt Interoctlue nature of teaching,
; it assimes the internersonsi nuture of teachimg, 1.d. that liw teacher is worktng with learnera not merely encoutaging learnirig,
G il recognisas the 'shared' idea of knowing and knowledope, reflacting the importance of bolth content and contaxt,
5 It totes into account the pupil'g exialing knawledge, bilitifa and feelings, emaiesisting a developmert al talier then a laming thenretical mpraach,
6 It entiasisen developing mathematical weming as the general im of mathemstís teaching; includion both cognitive and affoctive goals,

7. It recognises the existence of many methods end cisssrom orgeninntiona. i.c. It thesumot by defintlion axcluate my metiondolquical tectwiones already establisined,
 initial leacher tralning and beyond.

- Central to this vien of cjassiocom teochita is live lime nf matimenalical.

 new mathomalical isen. A new ides ite memingiful to the extont thot it makes convections with the indivitual'n, prasant knowledpe. It cin conwect with the individual's knowletige of other topics and idess in methomatics but it can also conmatt with kniowladpe of olfer subjecte outside mathemalices. It may mell relate to imagery, eralowy and met apitior, bul these comect boistilli be of different type. Ilwitidee cen be mexmyle
 mey well genegale ixamples of ile own. finelly, ad argually most importontly, it con comect with the individemi's kixwledpe of real worlit.. eituetionc. It is, obvious therafore that no imo people wili have the ame sets of comectione and mewinge, and in particuler teacher and learner wlll have very differmit menings associeted with mithemplica.". ithe .
 make with the rast of hifr methometicel knowladge. The learner however It the 'maming maker' (Postmen and Welngertner, 1971) in the educ口fional
 exisling knowisdge, if the ides is to be learnt mentingfully. As thom (1913) asye "the ranf problem milet confronta methematice teaching is not that of rigour, but the problem of the development of meming, of the
 with there then, is that of sharim, and developing, malliematical menitiv.

Thie conception her encilen me to'focue my malysis on three furwitimertal aspects:
mathematical metivities - chosen to omphasise live learrer's involvemal with mathematirs rillier thm the tember's. presentalion of content.
commeritcation
negotistion

- chosen to emphasise lise process mond protkct of wared mecuitings,
- chosen to emythatise the now-aymeitify of time teacher/puplt telationinily in the developmont of whered meavings.

 the didactical conversion fram anlimentical contont and koowladye tu

 mollmoticul activities for tive pepis can farove thut situmitur wn cma met the papil'w witivity at the cevira of the teacimers' concoris.
* mi waly tancimer". theractive decision-making. Jaching in, eq a reaulit, mure. comerime with tiw initiatimi, conerol, orgentation and exploifition of

 piefit penilt to mork wi llwir owi bul will say things such ws you curi mort.

 4hel fretient.
finomily

 16

 and convetions. We san only atare ldase by expoeing them, wod 'talk' is cleirly émat importmit vahicle for,exponing commetione. Also amportent ere sybolicm, waie of diagrams for conveying lagan, exumiles from different contexte. "owitioglan and mitapore, and wrillen accounte and deacriptione. Soms of these we kwowrelatively more ubout (aymale,
 fonsexta). Horeover if madd lota ine construxt of casmuifation lise

 of enablify these to be axpoesd and sharest. For exmyile, uctivities can
 each as inventigation wich linolve creating aymoulise, or projectis much drew on knowladye of tim pepilí anvironmant, or discussiurs of matimeatical idmay and thay dimgramand onalcalea (mubor linos atc.). Several research

 mentigy. I think thwt axploiting the ldays of two-way aind thicue way commaticalime could to a profilable was formard.
 devificing manifus. Without winhing to angest that tixe teacivi is tixe

 power indalace iaslicit in the léeching/learning ralstionship twi it deacriben It in zuch a woy that we cen cee elternatiyes to the more impusition of kinowleofye from tho powerful tescher.

What it thersfore forcen we to do is to conmider how to oncourage tenchern to use lineir ppoer not to impose their lanowledge on the puplia. It makes us thith more about how keacturn can ancourage the negotintion procese, how tescleare, con arcourage pupile to play graster pirt in the dovelopment of liwit own mathamalical meminga, how teachers can recognise more positively 4 恠 pupily' context and goial etructure, and how teachers maght evaluate better tle development of meanings.

In conclusion then, may i magest that this 'eocial construction' conceplion and the three conistructs, 'activitian', 'commenication' and 'inegotifilor', offer al many fich avermen to axplore in rasearch. like my good conetruct, they recast wint we know dout and direct ue to whit we need t know ebout. I mould, an remilt, particularly urge more attention to tin following:

- tie development of activitias, particularly thoae which explojt the pupile' context, and those sultebip for amell group work. the anglysis of the,
tonics,
studies of teachers' interactive decisions with pupils angaged in activilies of different lypes.
studies of teachers' techntques to encourage shering of methematical meanlings,
tive anelysis, from the 'ahering' perspective, of puptl-pupil discuseions,

 live sadysis of tescheri' etrgtegien wich permit negotiation,
the develoment of methode of evolueting the develqument of maning.
\geqslant

RCISAMCLS

 Studies in Anthamitice, 7, 11-7.
818hop, A.J.I 1976(b), 'tescivere' 'on-the-mpol' etrategies for deling with mpiles errors', Paychology of Hatiemotici doucstion Morkthog, Civelse Collage, Uivivaraty of london.
 (ed.) Proceeding of tive fourth Interinationsl conlereme for tiv Psychology of Meltomotics Cducation, University of Califoraio, Berkeley, Cellifornlis.
Olehog, A.J.: 1982, 'lowarde relevance in the teaching of geomet'ry' in C. Noel (ed.) Colloque Internotional our l'enselgrement de le geomeltie.". Universite do l'ftat a Mons, Belglace.
Bistrog, A.J.s 1983. 'Space and Gametry' in R.tesh mod H.lamiau feds; Acquisilion of Matheinalice Concept: and Processes, Acsdemic Press, Nen York.

Good, 1.1. end Groums, D.A.: 1979. 'The Hissouri Mothematics [fiectiveness Froject an experimental atudy in tourth graie clasisrooms' Joumsin of Educatlonal Paychology, 71,3,355-142.
Kell), L.A.t 1935, The Psycholong of Personiol Construct: (Vols 1 and 2), Norton, New York.

Kent, D. and ledger, K.: 1900, 'Crowing tall', tounctional Studies in Mativemalica, 11.137-179.

Krutetskit, Y.A.: 1976, Ilve Peychology of Mathematical Abilities in Schoolchitidien, Univeralty of Clicego Prese, Chicmgo.
 matici of on Individualined Learrimy frourame, DiM project, Stiriling, Scot Imad.

;
13

Shovelson, A.J.: 1976, 'Iactere' Decision Moking' in N.L.Cage (ed.)

habking group a
logo and the mathematics curriculum

Ite Paychology of teaching Methods, National Sociepy for. the Sludy of Cacalion, Uhiveraity of Chicago Press, Chicago. Stwy of cacation, Unversity of Chicago Press, Chicago.
$\cdot . \quad 1$.
\qquad
\leftrightarrow .

CAMADIAN MATHEMATICS EDUCATION STHDY GROUP

 June 1984 meeting (híterloo)REPORT ON WORKING GROUP (A)

1 OGO AND THE MATHEMATICS CURRICULUM
group leaders: dale burnett
WILLIAM HIGGINSON

CanadLan mathematics education

 STUDT GROUP.1984 MÉETING UNIVERSITY OF WATERLOO

EEPPRT OF WOREING GROUP

LOGO AND THE MATHEMATICS CUREICULUR:

The description of the working group read:
The computer language loge and its underlying educational philosophy. dedeloped at the Massachusetts Institute of Tecinnology over the past fiftenn years shows eigns of boing one of the most popular pleces of aducational software of the 1980's. The developmental history of Logo has been such that the time pertod between very limited accessibility (1968-1982) and widespfoad accessibility (1983-) has been quile short. A major impication of this is that mathematics educators have had little lime to consider a number of important questions.

It is the purpose of this working group to provide a for um for the discussion of these questions. Issues to be considered will include problem-solving in a Logo context, the influence on schoot curricula and Logo investigatons. It will be assumed that participants will have some rudimentiary knowtedge of Logo

Working Group Leaders: J. D. Durnett and W. C. Higginson

Some fourteen members of the study Group focussed their attention on these and related questions over three, three-hour, pertods during the 1984 meeting. The initial sesston was given over to an examination and discussion of a wide range of resource materifls and the sharing of diverse experiences which had arisen out of participants' research and teaching activitues with Logo Following this session one of the participants (J. Clark) summarized some of the questions which had arisen:

1) What do we mean when we say Logo? Is there thistinction between Turte Geometry and Logo philosophy?

- 3) Other than that which relates to mathematics, what can students leapo Irom Tuilu Geometry?
4). Whin and bow shoukd logo bo introduced into classrooms?

5) What are some prodels for classioam implementalion whichifeal whin lime, space student access, etc?
6) As a device for learning mathematics, wity is Logo superior to other leaching devices (suct as qeoboards and pallorn blocks)?
7) Is it important for children to learn programming 7 If so, when and now should it be laught?.
8) What are the advantages of Logo as a programming language?
9) What is the rote of the leacher in the child's Loge environment?
10) Is there some connection between debugging and bow students view errors in general?
11) What are other "objocts to think with" ike Turle Geometry? (See Mussterms page II and page 122)?

In the second and uird sessions the mafority of time was given over to the exploration and discussion of a number of logo investigations Two of these were Dale Burnell's Tuitle Billiards microworld and Gary Fremelling's Tiansformation investigation the latter was posed in the form

Using only the Logo primitues FD, BK, RT and LT, write a small procedure 10 - 10 instructions) that will draw a small 'doodle' on the screen
Investigate livereffects of carrying our various Lransformations on this procedure

The group found that activilles of this sort generaled significant mathematical questions extremely quickly it was felt, bowever, that Leachers without substantlal mathematical training would probably not recognize all of the potential of these situations Commenting on the problem stated above, lor example, Gary flewelling wrote

,

Here many teachers woutd have to be given a sample of possible avenues of inquiry, for example, reverse the FD's and BL'S, or regerse all the LT's and RT's, or reverse the order of the procedure or replace all FD's and BK's with the procedurt ilself, or.

Teachers might also have to be told the lask's target audience In this example. The task is appropriate for junior, Integmediate, Senior and Post-Secondery studepts.

Teachers wist also haye to be shown the links between the various lines of inquiry and the Mathematics curficulum they are trying to implement. In this example, various investigations link to such topics as transtormation geometry. algebra, group theory and combinatorics.
-Six conclusions arrived at by the working group near the end of its deliberations were:

1) Logo, not linked more strongly to exdsting school progiammes, runs the risk of becoming trivialized.
2) Logo deserves to be intogratod into school math programmes
3) Logo is a tool that can be used by teachers to heip them. implement their mathemalics curriculum
4) Teachers need proor of the two previous points
5) Prool is particularly needed in the form of student tasks . Which illustrate thest two contentiotrs
6) Samples of such tasks nead to to developod and delivergd to teachers.

Fur ther discussion about the nature of these Logo tasks led to the followng consensus

The tasks should satusfy many of the following cilteria

1) Can be used by students with a variety of iaterests and abilities
2) Allow for a number of lines of inquiry
3) Can be returned to again and again through the schoolyear
4) Can be utilized through the grades at varying levels of sophistucation
5) Has links to the mathematics curriculum
HORKING GROUP B
6) Contains an element of choice/freedom/modiliability for bots the teacher and the student.
7) Nay require the student to construct various procedures to carry out retated invëstigations.
8)

) May mave to be gregmpanied byipitwritten procedures.
9) Invitos the cooperative effort of more thin one participant.

Gary Fiewollige (Mathematics Consultent, Welling don County Board of
Ebucation, 500 Victoria Roed North, Guelph, Ontasion IE 6K2) votunteered to çoordinate a task force to gederate a coffection of such tasks.

Participants in the working group: J. Bergeron, D. Burnett, J. Clark, G Flewelling W. Higginson, J. Hillel, B. Hodgson, H. Hough, R. McGee. A Mclean, M. Rahim, P. Rogers, P. Taylor, E. Willams.

N

 reacition to the material consldesed. Finally the watk of the yioup can be locusied by exiansions imilich we did aot have time so cwisider wid by material and dirictions which we dellberately chose not to follow.
fackgromad .. .
As bacharownd to our work maters of the group brougli the fonturinge. Mads ef conceras:
人, l- What is lf we wat in school Algebra In 5-10 yaarst What distoritions will the use of micros cause in algibirdy.

- What will be the effecs of maw stictionologies ta algetraic syadiol manipulation and its manting?
- - What impticailons do compuier related thinking. Iedining. and kinowledge building pheories (eg. All have for algebra?
Mial eflecis will tia computer emperience backgrowids of sinderits have for icaitiong algebra to theimy
What kinds of sofimare and computer wses will help, ln alychiaic comemb developmanit How can this be assessed?
- Can comouters be wised to amellorale bludejt learning difliculties? How ats this the studied in alycoral

: How weses ana learn to use lit

fiker dues ons ILatich lis wsel

Lhist ouglit to be taught?
lline der's one tiach teachers aboul computers for leaching algebral What is the interacilom amone humen algehrate knewledpe bultaling iools. alyebraic qames on a computer and programingt Mow does one. study Ihis plenomenal keasure lis effect?

Malerials Conslidered
lise woking grow conslimien lour ilinds okmeterlals: Documenis, solt. ware gral reports and slie visits.

1. The aroup considered a mumer of documants.inno studied and discussed by all were:

Feri j. Y. (ed.) Compuiling and Hathematics. Meport of a 1982 conferencie. NCIN, 1984. (especialty the Algebrs chepter)

- Blume. C. W. A review of research on the effects of comater programing in mothemakical oroblem solving. A paner froy the Hew Orfeans AEMA meiling, 1984."

We also had avallable a smell llbrary of text materials uslng computery in school algebre from 1969-1984.
2. He aroup toone ther reviewad some pleces of retevant sofinare, In oarticular Aluebra Arcade and Mu Math.
3. Ligup menters provided oral reports, perticularly one by Alexander on hi. chamies in ilsebra curriculum in Omiario and lis relallonship "t computer apnlications and one by Kleren repiewing his and Hallield's , research of the late 1960's.
4. The qromp ifsited Project matil in the compuling scieme depariment of the Universtiy of Watertoo.

Included was a demonsitation of the algebralc capablililes of mapte.

Grow deltheralionis

 algebra. These global approaches seemed mediated by whole-gimilic approacies to phe study of famlties of algetralc oblects, by the ise of the languige of powerlul algebralc gramenting languages.

Alcebralc cames

As an opening dxercise the group looked ot the game Algebolids firm the software Algetra Arcade. In this gams a persom is presented with number closed Ilgures called "elgebroids" on a coordinate plave. The oblect of the game is to use algebralc expressions to generate graphs which "thit" the alge. brolds. Slnce higher polnt values are marded for hliting more tham ore algebroly with one graph (without hilclng a "monstiet" or destgreted negative ragionl. the player is encouraged to use other than linear graphs. A araph langth limitation keeps one from using curves milch would more or less cover \& the screm (eg. $f(x)=100 \sin 100 x$). Therewas sumiformposifive reaction to this geme by arow memere both in terms of playing and in lefms of polenlial for use In secondery school mithemetics. Ihis game and ils uses iended to dominate the groug's discussion thrountrout its sessions.
 father than algebra. Althought litas analvitc features, time aromp cimsensus was that 11 alded in the leaching of the noropertles of Iamilies of curves and perificularly on the effects of atmebratic transformilions on mialion fielated. co graphical iransformations on the screen).

 gatecs atid of totius and toifins on the piychollogy of playiag such games was discussed. Thus there seemed to me tro lmacts - an emphasis on fapllifes of alpuralf enpresstons as apposed to single mantpulastonn and the mollualiondil - ileci. of relatimg imays to atgoraic expressions foertiaps mahing their mantpulzilion and study more inicilive and ooject relabed).
$\{$ line musi, simillicant thests inaí agose from the gioup deflibeiation can besi be seen in.curficuluadresearch quesitons.
is it necessary to have we atomic miderbianding of lime functions to play live qumet should we moit take this mare global approach to'ieachilng about algebratic objects such as linear. quadratic of empuential expressionst pues one need to learn orderedpali ideas af all to study this miterialt is a diflerent sequance of lasiruction
 swigesteds
 Sume inaciesting polints weice as fallows

 pair firsi emplesis.

1

Alteriative curriculum sequences mete discussed. Due stath exicrimental sequence constrictiód was as follows.

1. In grades k - graphing experiances using points andinterpretinn wratis mould be jotrodiced and developet.".
2. "Algebrolds" or a lliag gime could be usef to lintioduce a family of funcilions and tive manipulation of related expiessions, and equations: is. for wiat values of the does an expression of the form 1x t hat an algebrold centici al $(2,7) 1$
(1. al Ai aliernate "algebrold' sequence'mould consider the fimily
 eflecis of all paramiar mantipulation and such graphs san hit more "algebrolds" at onca - hence are molivaling.
111., The ssudy of grapts as polins seis would follow the siudy of familles of expressions/graphs. In the game context this mould be done by reducing the "alpebrolds'to slngle polot locations necessliating the constderation of the draplis as sets ul woints. The group consldered the teacher educalipn necessary for such a chathed sequence and emphasts. It was noled that such an approach monld aim at many al the currens objectives of high school algebra, but the objectives and activities mould be dramaliality differeni from a cativer wid classinum organixation polint of view.

Alyelerale Compulers

Wie gioup sade demonistration of the very powerful mapll mminulation system which is aimëd al being wsale In the mexi generation ul micio compuleis. the grow also used live currectily avallable math iystem. This latier system

and ywevitus for sahosi alqubra arising from algebratc calculator use

1. Is a call formenewed equasis on aloebral manipulation in our curificulum ubsoletel Uhat is the role of such learning nown
2. With the use of algebraic calculators comes the need to introduce a new notation system for algebrale expressions; will this notalion Lecome simdardiaedf
3. Since the algebratc calculator can generate'correct sentences, there will be an increased need to study sets of sienfences and look for - palterns or oroperiles. Thus as wism graphic capabillities. the algebrale calculator sponsors the study'of the global
4. Might more new algebratic logles (eg. mitrlces) be linitroduced or iniroduced earitar linio the curificulumit

rollow upacivities

The group, hecase of its Interest in the effects of algebralc qames, sft some goals for sludw during the year: Whth rispect to game like Algebroids the following research was proposed:

1. Can we develo and test asequence of Instruction Incorporating "llgebrolds" ills quesilon will be siudied in a large curriculum sense (where such activity thi into the algebra curifoulump)
 to study particular famliy of expressions: say quadralicsil)
2. Hisw would one modily the "Algebrols" program to entance iearning? there is curtently epractice screen. Could lis use be lmproved by slliming giants to slay onf be in dilferent colourst could more infurmalion aloui avallatle expressions and matpulalions be huil licto lise qanel

28

3. C."" use "Alisebrodds" is a lasting lievice"

- Given a qrain yive expression.

Civen exuression give wiaphin
effort lea. chich al the Uiv. of alberia)?
4. In what ways is the use of a global aporoach to alyebiale enpresstoms through "Algebrodds'. Intullivg. How can such wse be relaled to. theory of muthemitical knowledge bullding?

Can ooe generate evidence of knowledge-tuliding from intulition in algebralc moulcei (eg. Gr. S students) and more expert students feg. Gr. 12 students studying conics) ax they use tools and games such
as 'Algebrods'1
Our proup hopes to be able ' have a conllinuetion sesstion at neat year's meting to share resulis of this moxt with one mother and with cmesc/ice at lerge.
more: 1. The group does not see much use for computer-alded pracife in algebralc manfoulsiton. Thus, there was limited sifudy of any such curriculum meterials.
2. The groip did not consider imge-related games which mighi be ralated to lataching algebratc structures such as groups. this is an obvious update of the work of gienes in the 1960's. Such computer graptical/armbollc use could also be used at a more advanced level to provide background fof the study of various types of groups or otherf algedrale structures. Such study mould be an extension of the work prophacd above:

June 1984 meetimg (Materloo)

REPORI OF WORKING GROUP (C)

leaders: mathematics and epjstemology

Warking Group C: Matimatica and Aplatamoloyy
In the first sesmion the group attompted various partial dencriptions of epintewology, and than wacked tor a while on the epistemologigal foundations of saberaction in order to onprase upeir analysis whth one by Cefrard wergnand in bis article, gognitive and dewolcomontal payctology and reasurch in methemetics education: siwe theormical and mathodological imane"). Wherase in his article Vergound mikes his analyisis on the besis of the probleme that atuxtents at achrool haw to solve, the growp begen with a model: "Given bows. object:, rewove mome, how meny ane left? the ilimitations of this konculedge modal mane moons apparent: it is clear that to "know subtraction" Invalvei knowing mare thar a alingle model of fers. After the coffee break the group looked at some resmarch reailts corronmed with stubents' arithmatical arrore - the cofnection belog that the researchar for the taxctiri) mise try to neconstruct what is in the child's haad, 1.e. the chlld's knowledge. A rathar loose excursion through the 1 wndecape of buyg, doliuggling and feodbact followad.

The discuasion in the sacond sossion mas lanctred by reading two articlas - Alen Sctioanfeld, "Metsongnitive and epistemological iscues in mathematical understanding", and Caled Gattegro, "Curriculum and epistemology". Schoonfuld " paper raisod sharply the question of "relative epistemologiess do we all have the same epistianology? do stukionts and teschery shane the eme epistemology? 'The Pisget story euggeste that epistemology if evolutionary in the Lixdividusi. Gattegro's papar, while not shexding mach ilghic on the nature of epistemology (it a holistic senco), gave sone hnetructiverinsights into the various sourpas of epiatemological information that can be tapped.

In the thind session the group attenpted to formulate sume researct questions.

1. What aro-teadners' and students' implicit epistemoloyical beliefs doow mathomatics? Ikw do they comparo with eact other axd with mathematicians' epistemological belifefs?
2. Hake a didatical-epletemological stunty of various elemantary mathamatical toplics, paining ase entry point the distinction betwean signifier and signified.
3. Compare the epistomological quastlons raised by the history of mathamatice with thoes raimed by the dovelopwent of nathematios in the iuxividunl.
4. Cenerate a taxuncay of epistamological ansumptione that comeld be appliad to the analyois of mathematical texthooks.
5. Stury the qipistemology of the individuai, e.g. Ikw dioes anyune sirive gonural kuxwledge from partloular instanoes, or particular knowledye from genaral principlas?
6. Wht is Un: eplstomoloyical significame of a cur rust ly fashionable Ayplc: the representation of knowlake?

The grow lxcama amare that their discussions were difficult and out muking obwiously stgnificant disovarias. The fociling was expressad Uat much more work in this field has been done by e.g. Fremod mathamatics exkcatory, influmosd by Bxchelard, and that one obvious
step would be to find out more of step would be to find out mors of whit thay have achiceved and are
working on. 4
The dryended statermita were volunteared by mumers of tha group. Raffaella Borasi

Mthough the title of thaj working group focussed on the word "epistemoloyy", we desperately tried in the coyree of all three session to "defins" such a term. Looklong back, I realize now that this epecific objective could havo madis us ovarloak mone very interesting outocmer of our discussion. Wo may not. have ranched an agreenent over a "rigoruxs" or even satisfictory dafinition of eplstionoloyy. (what disappiointrant for a group of mathematicians!); but 1 think wo oontributed to dameify sows inpartant alumanes and questions concerning mathematics education research.

I will try briefly to list some of tham:

- wat is the student'e/the chuld's/the mathematician's/the moth. ed researcher's/ conoeption of melromatics?
- What does it maxn "to know" acopthing?
- how do we "get to know", what is the "knowing process" in the childy the mathematiciay'the math ed resiaurchers?
- how can we evaluste our methodologies and results in mathenatica aducation?
- minat is the ctild's/the mathanatician's/the math ed researcher's. syston of beliefs about how we get to know in mathanstics, how we "do" mathomatics?
- for eadi of che previous pointe we might have to distinguish weymer wo are speaking about mathamatica in general or a specific math topic or concept
- in, what sense can we talk of "the mathematician's"/" the child's" epistamology (or more specifically, oanceptions, system of beliéfs, etc.), rather than a specific person's epistemology?

Dieter Larkenbein

Thuxe chmains of epistemology seam to be of Lnportanxe in the discustion of the thme: mathematical epistemology, ganetic epistamoloyy and epistamoloyy of mathamatics education. It is crucial to sequate thae three dmains in order to avold fundmental misurisretandings.

Mutixnatical epistamoloy stulies mathamatical sciance in order to deterndine or to elucidate its logical origins, its value and its importance.' It is a brifke betheen mulumatics and fhilosequy and of great relevance to the matikmatics ithicator, since it informs him
 matics teactíng and learning.

Gangtie apistemology, created by Jaan Plaget, who is also ite most infortant representative to to now, studies the amergence and the evolution of mathematical notions and conceptual contexts in the individual (in particular in the child) and it is intexts in the plain and to rationalize the individual's behaviour in situations. where such notions opergs or can be applied. Thus otnaln is of particular relevences to the mathenatics educator since if inform him about developmental processes and their most important variables, processes he mente to atimulate, accelerate or direct.
pistemology of mathematics acucation studies processes and
methods to obeain and to validate knowlealge in mathematice educakion. Its remults are of importarice to the mothematics educator since they inform him about the valldity of his methods and the relevance of his nemulte.

While the distinction between these threo domeins is crucial for a clear and systemstic discustion of the theme, only the synthesis of all three aspects Indicates the inportance and the scoppe of the epiptemological approach in mathemstica education.

Brock Rachar

As indivickals, we seam to have scome sense of the point at which wo know that somathing is the case. We may even be able to doentify how we know.

The how may be based on inductive experience or a kind of gestalt perooption, or it may be derived daductively from previoun knowns
by an acouired system of logic.

He are also aware that different indivichuals any oune to the state of knowing that scmething is the case without the how of the know ing coinciditng.

This latter obeervation has decided inplications for curriculum. As mathenstics educators we should have available differrent strategien for enubling the learning of the knowing of something. As teacher educator we should bi looking at those sporroactes thet are most likely to be mocestiful and mont likely to be free of setting perroneous oonclustons. The sottings we use for investigating mothemation are inportint to the kinde of learning or epistenelogical framework that children (hearmers) acyuire.

If wh belike that matiomalios is ture develomatit of skills in parfomming alyorifins in order to anower atandard wote of problows,
 to kymw "matit to do wion you don't kuow what to do" in colvirg a probice, then thit is a whole othar world vituw of matiomatics.
Ae Anan sinios poisead out in his lectura, what we do and the ouynections wo make'in mithmatic: laaning are largely determinod by the wiy we think abouc the purposes of mathrmitics and the ways it is laamed.
antid Wmaler
by fore' making any attumpt to "report" on the group's activities,
 pudiod in them ane epletamological - or momathing elies.

Ex. 1. (this is a quotakion ficm a novion of marticle about mithesmatical induction.)

We must not owrlook the concwptual/tectrical difficulty of handifing the vital etep $P(n) \rightarrow P(n+1)$. Most anoonitaris of atudonte with things like $P(n+1)$ how boen stralight mubatituciona - subetitutions of nti for some variable in a known expression (function). sut in the induction proof the student has to handle almust the reverre of this. Por exmeple, he takes $P(n)$ and adise wamething to it. then has to arranys - the now exprestion to show that it is in fact $P(n+1)$. This siequires gatting it into tha foom $P(x)$ wille simultarecusly "thinking" of n+1. and not x as the variable. This is really hard, in miny cases, because one is not using the alabra to siniplity tut to forou a correspondence to a cortain modal. Were else are stukinte rexuirad to do this?"

Ax. 2. Ae"classical" problem nus: show how to detect tha false coin, which is too fighte, in a set of 9 coins using 犁;
The correct solution reguires aplitting the 9 coins finto 1 cutes of 3 and waighlngy tho of them, then weighing two single coins from one set of 3. Misat solvors begin with sets of 4 or sets of 2, pariays bacalion of the stromy "binary" flawour of the setting - two arma to tie balance, two weighings,' two kinde of coln, Tinclawical" puzzle offein ham this quality of temporarilydeflect ing the approakts: to a solution - this may to what makes it a good puzzle.
"Ex. 3. It secons intuitively "clear" that Infinite sets can have differmit manerosities. It is "utorious" that there are more natiral maders than given nuders, more points in a unit
 corresporikoncu rula for amparing muerodities wa cal show that "in fact". those ane tixe sians nomber of natural
manders as even mupers, and the samon minder of points in a tait sxpure as points on a line seypant.
So INW it in jutuitively "cloar" that what were thouyht to be different infinities ane not. So, intuitively, all
Infinitios are equivalent.
But no: for Cantor's diagonal prooskene shours that ukere are differme arderis of infinity, nomequivalent to each other.

And so it goee.
Ex. 1. Wixu we sou an algatraic expression like

$$
\frac{x-1}{x^{2}-x-6}-\frac{2}{x-3}+\frac{1}{x+2}
$$

we seo 5 mincis signa, but do thoy all mann the same thing? whil, yos and no. No becsuse, if we sot about simplifying tha expression, we treat thee in 3 different wayz. Une minumes in $x-1,2$ and $x-3$ arw like latters in a word. The minxices in $x^{2}-x-6$ are mignialsor "controls" which guide us in factoring it as $(x-3)(x+2)$. Finally, the minue botween the firsit two frictions almost means suftraction - although, peovided w"gikoni"?rulas of signs" clight, we noodn't be mure of this whin we colloct all the minisistora togather.
And now; if we add one almat inaignificant atroke to our writing,

$$
\frac{x-1}{x^{2}-x-6}-\frac{2}{x-3}+\frac{1}{x+3}
$$

we "see" the whole system totaliy differently.

- If there if a oomion characteriatic of these examples, it is that although they each relate to gome faniliar mathematics, they focus noxe on "arareness" than on knowledge. The points thay make are over looked in the usual mathomstical scocents. Yet a studant involved with mathemutics nesed thase awanenescose as mich as he/she neede to kurw the appropilate mathematical content. jiare is potentially tan epistenology m eplatamology that studiss anaranase rathor then knowledye - which Is just as inportant for podagofy' se epistemology of the usual sort I ventiue to suggest that epistemology is the fight word because of.ng conflidance that suxth astudy cen be objective. That is, aluxumph focueed on azarenesg iwhich soundis parsonal, subjoctive), what can be didobikered has the quallty that can make us say, "Yes, these awarenesces are part of what evoryone fino is involved with this particular mathematics) nost know."

This "epintermolosy of mathomatical moremesy" in not the whole of "didactical epigtamology", which mant contain emirical and alservational ingrodients, as well ag "knowledge of muthemutical kucwlodye". but ite significance fop me at the moment is that it is a purt tixit is overlooked by must who have dilscumed the eqistemological formatations of mathematios coadtinng.

1et me rurind you that the oxfond miglian pictionary, a gonerally reliable arbitar where mottars of masning are ooncarned, defines eqistamology at follow: "The theory or acience of the mathod or gromis of knowledge." If we erbescop this defirition, than I feel we in mathematios edication arw bound to adidress cortain ismes. "Hethod" and "grounds," It seeme to me, both deal with caning to know more oftan than koowing, and with aithar of thewe mare often then tho content that is or is to be known. It may will be that tre nature of what wo soek fo-kiow uhapes to some extent the methods we use to saarch for it and the womdarde by whicit' we jüdre whether or not we have found it, much as the deaign of a tool is influsnced by tre nature of the matarials to which it is to bo applied. I think it would
' MORKIRG GROUP D be a mistake, howver, to focue on the goal or the finished product at the expense of the procerss.

Now reflect for a manent on the quastion of what methads and grounds of knowledge studante arw axpected to oparate with in the methrouticn claseroom. All too frwimentiy, I suspect, the method is absorption and the grounder lie in extemal muthority. Stuients 'sosk up' what the taachir, who of course cmin not be wrong, inundstes them with. That much a situation is isappropriata and unsocoptable I take as a truism. How cm intallectusil growth take place in sail of this aort? I beliave that abiouption'ohould give way to inquiry and extarmal authority to intarmal walidation. Parhesp it is not realistic to expect young chilldrm to bagin thair laaming carvers with incpuiry and intemal validation, though I would argue that it-often if ralistic
 experience at thatr educution progreases. In any case, I foel cortain of the direction in which I would like to see thinge go.

Tharoughly consistment with all of this is a strong rense of the sanctity of the individual in the guest for knowledgs. Not supprisingly; I find a preocupation with conmon epistemological assumptions more then a littie uneatting. while I will grant that comion ground is a nide plmoe to begin inguiry, I do nok think that it is the only place. Elen if it ware, is it not that the dififarmoses which set the working of one mind epart from the workfings of all others so of ten conmond our attention when we try to tesch mathematics? Do thece differences constitute obetscles to learning, or ane they invitations to explore the ricmness of the indivicinal? Are thoy samething to be worked around and minoothed out, or are they to be relishod and revelled in? 1, for one, have alway preferred revelry

CAMLDIAN MATIEMAIICS EDUCATIOL STMDY GROHG Jwe 1984 meetilig (Waterloo). REPORI OF WORXIMG GROUP (D) Horkime Group on Vimalizias Moshomerlica

Tony Thampano Nather Kason

Wur (Thuepeom aed Masua) intentions iware co make e catabone of atanderd topics in upper-secondary/tirat-year, which atudents fiad difficult, and to explore uay! in wich the explicit was of fangery might anaiat atudents.
 sakea place an peperi"that they hava no empportiva ingery or conacctions amd cosaequantly thay falt fo participata in an eateatial apact of mathemetics.

We scom found that the fastruction maka a record of wat comes to you Wiun 1 say the followias words", followed by ain(x); ($1+x)^{\text {p }}$; l,r.r'.r'. ... producas e uide vartaty of reaponses. It emerged thas tha word "inage", wich l used in prefaract to visualizimt in order to adeit atumatic and mascular reapooiet as well as pictorial imgea, mans may ching: to maty people. For example, on examiniay images conacted with ebsoluce value, the idea of a doe om a leash wat amesasted, to describe |x-a|ch. On the ather haad ane aight hape that athenta would have a nermentic picture of an interval of lengit $2 b$ ceatred on a, and an

 (Jug on a leash) and 'enthematical images' (like pointa on a linel. Even shough 1 could probably not give a definitive dintinction betwen, these 1 feel that t want asudents to comsact and be friendly with the purer eathengical images. It mey be that metaphor or aimite can help, but 1 an at too sure. Hust partivipanta eermed content to employ a ahot gum approach ia claes, trying ous a variaty of metaphori so that students cso respoud to oaes that appeal particulariy to then., I. on the uther band, atill believe in, and acek, core mathematical images wich lif at the heart of the hard methematical theas. Mien 1 spake of eppropriate asd powerful ienget, it was polated out that liete mat be ${ }^{\circ}$ relative teras - relative to ladividual propenaities and to intentions. I nevertheless feal that sume inges are more valuable that othera. Here are ino enamples:

1. Aultiplitation by -1 is nutorivaly difficult for many atudenca. All surta of metaphoric models have been proposed
 to justify (-1) $\times(-1)$ - 1. I believe that this is a Btrwetural fact efiaing froe the wiot so retain the 'lave of aritherif' whan extonding to negatives. It also bas, 2 very polegi gecmetric inferpyetetion an a rolation of the mumertina shout 0 , through 180°. I call iz poteat, becanse rotationt through ather angles (not juat 90°) can lead to useful lavestigetione as mell at eupporting de Koivre's theorem and argest diagrame in the 90° case. Hous it extends conalatently to more ganeral situatlone while providiog a geonotric inage to accopeany aritheotic calculation, an imge mbich will not have io te modifice later.
2. Continuows fuactiona are umaliy thought of ap functions wifch havi no breaka, and as infinitely wigely portiona (1 la sin(1/x)). For most studact oaly the former imge is avaliable, and the formil definitio of contimity eane like a tor of unnecesiary aymolian. Ona of che featurea of mothenotics fis she modification of ingea (intuition) at eresult of experifince. Parhapt time davotad to tha meceasary modifications of intuition vould assist atudenti, in conjuactiog vith making it clear so students hien the formilision of latuition is tating place (so elogufatly epoken of at tha conference by Profersor Herikin) and when intultion ia baing morked ao and modified.

We kapt raburaine to the diatimetion betmea particuler and general - 1 feagine a square; if itrau it, it iaperticular yei ise if as gencral; fomy imagination it is sort of particular, Fat sors of generel in its fuzainas. - Am always aure in a clasa that the students are"ering the generality that 1 an sefing when lookian at or working on particular examplet
 mashcmatical tapicis, bue in my viev not gneotipfogress was mede to report on. Participanta tantetively agreed to wion on imagery in theit classen, and to report asome examplea ment year, l tried to drav what is for me on important diatimetion betwan talking abour an langa, and talking directly from an inge, but formifet conalderable practice.
 and to describa it to somene wo fis nat preanof. To talk abour en imge is to salk ingenerilities at if you expect oimera already to 'hoye' your image. We all fomafic difficult to form ead thenfirom an imge, yer it if fasantial to talk fron if atudentáara to ba asifated in forming images. I recpemen thet reports of trying lasery in clasies consiat of
(i) explicit inatructioge to form an image and work with it, as llluatrated in the appendix,
(ii) macrowne of wast atudente ade of it and lescons learmed in workiag vith limgery.

We finished by watchine and workias on . Wicolet file on conica. 1 wa able to demonatrace whet 1 man by 'reconatruction'. which is enecesasty but overlooked eapect of atudylap chat deserves more attention. The last event uas a request to participants eo fot down one or wo alient mowents from the workshop, and some of these follow.

1. The earliest event that mode an impreation on was during phe first 'exercine', wen wide 'free association' of imgea for ain x, $(1+x)^{n}$: al some point, 1 beceme vividly evare of hop disparete are the possible vays of 'inigiag' auch objact*, and what a buge variety of things are soing on in my atudenta' minda tien loick - on one such image to ceach a siven concept,
2. The second items that aticks out in my memory diems from tha diecuations at the end of day 1 and most of day 2: namely, the realiretion of how difficulc if is co create apecific eet f_{f} instructions to convey a pirticular lagge (like $|x-a|$ and tita poasible imagea), even once you've , hioen a specific image. Also to whe tisrge extent itsik about chings rather than trying to get my students to think about cliem, and
3. I lesphed hou to be mure paraive wite invising my sthdenta to bccome more active. wien 1 am leceuring.
4. Imeget that fllustrate an example of phenomenon va. images that create an initial avereneas of a phenomenon. We frequently blurred the diatinction (eg. leagery for n).
5. A differance betwee meaphor and lmage wich I hed not thought about before atruik meforcibiy.
6. I andenty realized that the inability for me to demonatrate motion on the blachboard. In the gext book, on the overhead in situationn were 1 wad bean wavine my mende could be posibly be overcome by deliberately evoking motion in mental imagen. 1 feel i alvaya personaliy "asm" motion in my hind and hoped my atudentadid.
7. To shere imesery 'both' parcicipany must be allowed to expose their own varitoos of the Imge; Do mork than one occasion during the afeimers 1 became conecious that 1 whe trylng to impose my image on the other persoa - to know thei ina dolng that enterrayed oe. 1 was is the 'tascher-trap' feeling that'. 'my' inage wen betcer than 'youra' and mine wat the right one.

Resseuringly i wasn't the only person in the group makitg this mistakel
8. Johm was asking ua to vifualize a square moving through two fixed pointa and introduced athird polnt (which 1 visualized as beine nat the aquare already) and then mugested we move the aquere through the threa pointa and 1 was atwik, uneble to see thet aquare would go through three pointal
\downarrow

Inages: multiplication by -
 Mikfour maberifee to trom loft to right.

- hotste it about the 0 . through 110 dagries: Mhere does 2 end upl...

This lóome way of thinitag chout mitiplicotion by -1
Explorgtion

* Co bect co your orfelmel maner lice. matase it ahout 2 , chrough 1 ito degrees. How toce tie poofition rifiete to ita atartime poitiont. Where ore 2, 3, t. .. mov?

Comilier the civantage of chowim o bicf tymanc teage (filalenpa) of a lime rotetimg about eucceetlon of pointe, chen

 gueations.

 waling symola.

Co hack to your ortginal muber life. lotate ft sbout 2 chrough 180 degreme.
Now rotete If ebout the old poeltion of 1 through iso degrece

- Canerelise: roteta ebout two pointe in eucceefon; where wili the lime be thent
- Generalises rofeca chrough eevarel polate fa eucceention, all identifled by chatr orlgiafl memef where will the line be then!

Cenét a move conciste of Inetruction 'se rotate your numberifine brout come polnt fidenctifial atcher by ite naw wame, or its original name, ouc be conalecems in cecin gemil. Ailer. prefeternines aumber of moves, or perhepe on move entected by coec readom event cuch ea roliting l or with a die, the ment player must citurn 0 to ite orfginel poition. Playere myy then challenge whethor it her been duine

$$
\begin{aligned}
& \text { cucceaflulity. Avalit wetmag aybale to 'wort it rut . Try to } \\
& \text { oee It directy in your head }
\end{aligned}
$$

Generalizet rotate about the pelat 2, through $\$ 0$ degries; now rotate bhout the currate poliat 3 throun 50 degirece; where is the lime mov relet, ve to lfe aterflme meftion?

- Cemeraliza to eeveral mecesaive rotetiona; probably beet co agree that the llme chould ilmays came hack to the horizantich cefore cryine to deacelth ite pioficion.
- Cumeraliza to differame anglas.

Posefble motatom for describing effecte of rotefiones

- If Eotation chrough 50 degrees correspond to oultiplytag by symbol, ouy (which can te used for ocher agraed apglea of velif) er, way 1 , Wich In trodicional fer 50 degreec.
hotation through ito drifeec is e potentialy potent imate for mifiplicacion by - becouge ic oxfande in puch tich manner.
ϑ
-

 GIDOUI OF PAMEL ON
 cungiculom guidelines - a move in painil

statement for chese panci, Nedisesday, June ©, IIf
Curilculum Guidaines - A Hope In Print

- D. W. Almainicr

In anking me to purticipate in this nemalon, David Wheeler suggested that the focum sliould be, "What nir the problemg of making curriculum change effective in the nchooly".

The Bige project mes given we ciarifien mondel for the procenp of curriculum implementation in emplinaizing the dintinictions mmong
the Intended curriculum
the Implemanted curticulon
and the atfained curriculum.
The $\{$ mplamentintion of curticulum involves 'negotiations' betmeen developer and teaciver, teactrer and etudent for more compliately; betmean developer and author, withor and teacher, and author and afudantl. Wach inegotistion' Involves the exploration of mad relnterpretation of Imening".

This model re-emphaifen the fact, which we all reconHise, thot curriculum change supponediy monditert in documentm such as Ministry guidelimen, is mothing mora than "A Nope in Print". Beforg it becomen implemented, It mant be undaratood and bellieved in by tenchern. A comaltment muet be made upon the pert of teacher: to Implement the change end finailiy Implemmentetion must fo engimered in such way at to change the loarning of etedents.

Fullan and Fark in the renource bookiet Curxicuinn
 IdenETIY Efe overili problems
"most efforts at curgiculum and policy change have concentristed on curficulum development amd on paper" changen. . . . the Implementation process man frequentiy overlooked people ibmoviour, bellefn, mifisi in finvorf of thinge fe.g. reguintions, materfeimi ... White peopic are mach more difficuit to deal with than thingn, they are mino mich more necessery for succeme".

They also etate that crucial to implementation in that teachers:
see the need for the change,
are clear abmut the change, and do mot mercolve lime chomge an tim rompliex:
have avaliajle or ara able fo ganerate materiale that incorporate the chabige and are praclical.

While "on papar" changea are clearly only a start, they can contribute to implementation by making the change fintanded clear.. It is this clarity l have been concentrating on over the last two years.
$\$$
The easiast example to refer to is the issue of calcu-. lator usage. For a number of years curriculum leaders in Ontario, as alrawhere, have been advocating increamed usd of the calculator in mathamatica claserooms. In 1980, the Intermediate Guidelina Comittea auggentad that teachers explore methodn of wing caliculatora in a variety of waya, but they did not mapdate the use of calculators, and thay did pot clarify the relationship betwean traditional arithmatic computation and computation ualag calculators.

A murvey of etudente in Graden 7 to 10 inciusivie, made In 1981, showed that los of the atudiants owned or could casily borrow a calculator but leas than got were permitted to use them in clase and only. 208 of thoge in Basic Levil classea were permitted to use them on testa. iClageroom Proceseas in Teaching Mathomatics, Ministry of Education, ontario, 1513).
We decided to clarify the changa advocated and inciude the following etatement (which some of you may recognize as being an offepring of Hathomatice Counts.l

Uue of Calculators
The calculator has become an integral part of our way of life. In recognition of this tact, setiools should ensure that atudento become proficient and discerning in the use of calculators.
studante should possenn somereliable methods of carrying out calculatione without the use of a calculator when a wall in umber of digits are involved, and with a cafculator when a large number of digite are involved.
Calculators shall be used when the primary purpose of a given activity is the development of problem solving of other skilis in which eomputation is of evecondary importance.

It whoulat be noted that the "shall" in the latit sentence mokes this a politey atatement in ontario. Thus we aro
clarifying the change - the chotce is no longer theit for the teacher (on paper) - the calculator shall he used.

In support of this change we have also identified for Grades 7, 9, 9, 10 and for Gradas 11 and 12 General Level Mathematics for which the intarface with the Colleges of Applied Arta and Technology lmposes some terminal objectiven clarification of what "small number of digite" mane interme of calculatione without a calculator. Thim clarity has an additional purpose, to encourage the change, on the part of Grade 7 and 8 teachers in particular, from spending so much time on compútation that thay have little timo left for guometry and masturement.

Another area we have addressed is that of problem solving: The 1980 Guidaline Committed had emphasized problem soiving, but in very general terms. Curriculum comeltteen trying to incorporate problem solving in the course outilnes and resource document of thair raspective boards hind wrestled with the iesues of what should be done and at what grides. Recommendations were made to us to clarify the intent.

I andorse the view that in thim area we must take what Fullan refers to as the Adaplive approach las opposed to the fidelity appraach tocutriculum change. That is, I belifeve thet the nature of the change we want in this ares'must be cisififed through the process of implementing it. On the other hand, I also believe that the work such as that of Charlaf and Lester (JFME, finanuary '198il gives us a basiofor being cifuer in our expectations.

Thus, while we do not include specific content objec tiver for problem solving we do make statements which provide a framework for development of problem solving and further, we have tried to ldentify a sequentee for the teaching of heuristics throughout the grades.

In the introduction we states

Problem solving

Developing the ability to solve problems is a mador goal of mathematics education. Problems are solved by drawing on past experiences - sometimes in a syotematic manher, whut often in flashes gf creatiVity and intuition. Problem solving is not exclusively the domaln of mathemsticsi it is dalintegial part of all subjects and of everyday ilfe.

1. A strategy is avident imiediately. Difficulties in solution are reliated to ability to carry out the strategy correctiy.
2. fotrategy is not immediately evident. dififculties in solution are initialiy related to choosing an appropriate strategy.

A given problen may be of the firity type for one individual, but of the econd for niother.

Word problems assigned after mathematical concept or skill has been taught are unulily of the first type, for most students, requiring ony the application of a known algorithm to procest a solution. It is essential that atudents also hav, experimences throughout each grade with problems of the second type. Generally, these probleme should be solvable by a variety of strategse or by models and techniques that have not been racently taught or practised.

The following shoyld be stressed in connection with the stages of systematic problem, solving:

I Identify reiewant and irrelevant informations
Resd
Underistemt
Paraphrase
Summarize
hist
II Identify possible strategies:
Claseify information (insufficient, conflif-
ting, extraneous, redundant
Scarch for a pattern
biaw a diagram or flow chare construct a table

Estimate lguess and checki inprove the guess) Choose operations and sequence them
Assume a solution and work backwards
Use mathematical operation, a formula, or write an equation
Solve a simpler problem (part of the problen)
Account for all possibilities
Check for hidden assumptions
Hake an assumption and dras a conclusion
III Consider reasons for the cholce of strategy:
Familistity
Ease of implamentation
Efficiancy falegancel
IV Carry out the etrategy:
Fork with care
Check mork
present ldeas clearly
Pernint itry, rest, try again, try/another etrategyl
v
Determine how good the solution lis:
Verify in the problem intuation (reasoaplenesm of result;

* Generalire the solution to similar probleme search for better solution

Throughout the Intermediate and Senior Divisions, courses must include planned experkences based on Type 2 problems, which will strengthen the
students: problem-solving skills summarized above'.

While for Grade 7 and 8 we identify the following atrategtes for particular attention:

Problam Solving
Emphasis should be placed on the following aspects of problem solving:

I Identify relevant and irrelevant informations Read
Understand
Paraphrase

11 Identify posaible strategies:
Clasify information (ipsufficient, 'confliceting, extrancous, redundant) search for a pattern
Draw diagram or flow chart
Construct a tabla
Estimato (guess and check, improve tho 'guess) Choose oprerations and sequence them Assume a solution and work backwarda Solve a simpler problem Make an assumption and draw conclusion

III Considar reasons for chol'ce of etrategy:

Familiarity Esfe of implomentation cfry out the atrategy Work with pare Chack work Prasent ldean clearly persist

v Determine how good the solution is:
Verify'in the problem situation freaspnableness of results)

- Hopefully this will provide sufficient clarity to give a basis for growth on the part of teachers. The danger here is that materialis wand textbooks) will produce "falge clarity" and translate this materiai into work witt types of problem to illustrate each strategy, rather them emphasizing the critical aspect of conscious selectiofromaset of possible strategies.

The hope inherent in my last illustration may be the
least athainable, since its implementation will be influenced mare by economic and social concerns than by actions of teachers.

Some background is necessary:
Since 1972 there have keen, two major programe in grades 11 and 12 in mathematics in Ontario. One, foundations of Matiematica, was developed essentially as a piecalculus program. The other, Applications of Mathematics, was developed to provide a general prograntor students not intending to take mathematics for mathematics related subjectit at university.

One of the major destinations of students emrolled in° the Applications of Mathematics courses should be Technology or business programs of the colleges of Applided Arts and Technology, however, the perception of teachers and students, etrongthend by the level of difficulty of many CAAT courses, ia that the-program is inadequate preparation for rechnology programs, in terms of the algebraic akilla daveloped. The result has been an increasing pressure on the Foundations courses to accommodate students who in understanding and wotivation are better suited for the Generil level program.

Taking as a basis, a statement of desirable prerequiaites which was endorsed by the Deans of rechnology, we have constructed a program which should provide students with those prerequisites. The problem ia that as long as there is a pool of Advancad Level graduates to draw on, it aeems unilkely that the gxpluates of dur Hathematice for Technology prograin will get proferential treatment for entry into Tachnology programs. For implementation of the change we denire, we must see a dramstic drop in atudents taking Advanced courses. This seema to be asking too much of a change in parental and student expectations in terma of "keeping the door to university open".

Hy dream is that the Deans of Technology will find the graduates of our new program so superior in the prerequisites they require that they will create admission policies that will enhance the appeal of the program. Hy fear is that we are in a chicken/egg situation and many students will conanne with the new Advanced programs to the detriment of both themselves and the program.

I have tried to examine the problem of effective change in curriculum from the perspective of the development of ministry guidelines. Mike Sllbert will look at the same issue from a perspective a little closer to the classroom, that of a mathematics coordinator for a large school board.

In wy view, intended change can only be achieved through the modified teacher belief and behaviour which comes from appreciation for the need for change apd commifnent to it. In a rational world, this would precede the development of the "on paper" change, but our systems of education do not seem.to be adapted to such a process and it is quite clear our world is far from rationall

53

RFACTION TO CURRICULUM GUIDELINAS

- A HOPE IN PRINT

Dale R. Drost -

Hefore reacting to the preseritetions of David Alexander and Mike Silbert, I would like to dencribo briefly the context. in which which I work in Mew Erunswick. Hew Brunswick is o bilingual province with lese than 150000 students enralled in grades 1 through 12, approximately two thirds of whom ere anglophone. The provinciai depertment of education has two pxogrambdevelopment and implementation branches, one for curriculum work in each of the two official languages.

I am the mathematict and ecience consuitant for the anglophone section of the department. Along with other tasks to which 1 am aseignad, 1 am responsible for
overseeing the mothematics and science curricula from grades

- 1, to 12. 1 attempt to monitor the situation and to keep teachers content. silbert's notion of a consultent as a navigator providing information and charting a course baned on the best information and technology available dascribes my position; fowever, due to the wide range of curriculum offerlings in mathematics and sciance, more time fs spent providing information than charting courses. ontario is criticized for not having permanent staff imenter responible for looking after the interests of Mathematics on full time basls. Although Now Brunswick has such a person in theory, the wide renge of responsibilities makes it difficult, if not impossible to do all that needs bo bef done in mathematics education.
-

In New Brumbwick, we have three mathematics curifolum development adulsory committen to work with the consultant to formulate and mike fecommendations regarding mathematics curricula. There is comittee responsible for esch of the elementary mathomatics curriculum, the funior high mathematics curitculum, and the sentor high mathemstics curriculum. Each comittee contains mombers frow the university community, as well as from the pubile school teaching community. Teachers form a mojurity on each committee

Whenever necessary, a comittee conducts all assessment of the current program and review the aims and objectives. Infut is received from claseroom tenchers as much as possible. The statement of aims and objechiven is transformed by the comittee into aet of criteria for evaluating lextbooks and other instructional naterial. Following a review of avatiable materials, acmection is

Made from those which rate highert upon evalwation. pilut classes are coniablisiked in several nelicols to nsfess further the matorials and to identify inservice needs and otlier tasks attached to implementing the progrìm.

Based on the results of the pllot projecta, the comittee makes a tecommendation to a provincial curriculum advisory comittes (PCAC). The PCAC is composed of representatives of such groups as the school superintendents, the teachers, association, trustecs, and univeraities, If the recomended material is approved, stepis axe then taken towarda implementation thtoughout the schools of the Province. if not approved, the recommendations axe rieturned to the committef for further etudy.

In theory the procens described above provides input into the curpiculum deyelopment proceis from all concerned bodies. It also illows for curriculum materials of any nature, elther those produced by commercial publishers or those developed locally. In reality, the varlous programa usually are defined eventualiy by the textbooks which are
adopted.
To alarge degree in canada, the content of textbooks is defined by guldelimes developed in the more populous provinces, particularly ontario. Provinces nuch as New Brunswick, because of theit smilier enroliments and therefore smaller market, hque ilmited impact on textbook therefore smaller market,
content and avaliablility.

Recently, after evaluating our general misthemptics programs at the graden it and 11 level, a decision was made to search for new textual terials. Two canadian publishers had neries availiable filich appeared to meet our needs for the grade 10 course and had plans to develop an additional book which possibly codid meet our grade 11 needa. However, because of delays in the production of guideiines in ontario, each company has postponed publication of its additional book until it is more certain of ontario's direction. In the meantime, we in New Brunswlok have plloted and selected one of the programe for grade 10 and wait anxiously for the production of the sdditional book.

To be fair to publishers, they do allow us some innut into their productis. Sometimes they are prepared to add chapter for us, or provide us with a booklet containing material not in the main textbook. Recently with respect to chemistry programa, publiahers agreed to make changes to their Programs to make them more Canadian. Although such changes: are often minimal, they are of importance to the success of the program.
isilleat comments lhat curificulum guidestwith a content likting as a central foature cieate difficulties since they often do not provide a primary fooks onthe rationale for the cugiciculum. Most curriculum guidus already provide at least atort statement of rationale - but do teachare read It, and if they do, do choy abide by it? Most of us here would agree that atatements on rationale for the curxiculum, statements on issues such as calculators and problem solving, and statemants as to specific elaments of content that are to be included in the curriculum need to be included in piovincial curriculum documents. Insurance that such intents are actually implemented and attained must come from extensive inservice programs, rather than from the documents themselves.

Alexandar refers to the problem of preparing atudente for - port secondary programs in technology in Ontario. We hava experienced similar problems in New Erunswick. Studente who have traditionally enralled in som techisology programe have studiad geaeral mathematics courses in hiyb school. Community collugus complain tbyt thase students have an inadecuate fackground in algebra and trigonometry. As a result many more students are now opting for the high school academic program to satiafy entrance requirements for technology programs. To some extent this lowers the average ability of students in the academic claspes and co minimize failure rates, standards are sometimes lowered. Then univgrsities complain bocause studente are not preparad. A catch twant -twor situation resulte. In mathematics in most provinces we have saveral levels within our high school programs--lev s which allow most students to study mathematics at a level commensurate with. their background and abijity. if our piograme are to retain credibility, standards within each level mast be set and maintained.

Many problems associated with implementing change in mathematics are mentioned by silbert. These include (olitical constraints, human constiaints, school administrators who lack curifoulum training, and teachers other than those tained in mathematics teaching mathematics. In New Brunswick. the provincial government curiently is investigating the possibility of extensive reform in the educational system. Concern has been expressed that at the secondary level, a singis core program for all students in teing considured. Such a decision would we it the political leyel and not at the educational level. The other concerns aentioned by Silbert are also real and unlikely to change in the near future. Yet; he is opeimistic ahout curricular change

It could be argued that if pulilishers are wiahite to povide us with material congsuent to our needs, thin we shoudd take more initiatives in developing our own material. For several reasons, this is a difficule alternative ib. New日runswick. Our population is not only small, it is also largely rural and spread over a large area. To bring teachere together is costly mod heace not feasible on a regular basis in the province. Finally, New Brunswick has triad to mantain the ame program for all of its students with the same basic material used in all schools: In New Brunswick, development of materials at the localischool or board level to supplement a core provincial currigulum is a fessible taik, developmant of materisis for that core is Femsible taskj developmant of materisis for that cor
meh more difficult, if not imposeible given curgent circumstances.

Silbert asserts that curriculum guidas are oversated documente in terms of impact'. Alexander adds that 'while on-paper changes are clearly only atart, they can contribute to implementation by making the change intended clear'. In New Brunswick our curricuium documents are modest ones which provide abief rationale of the frogram and in most cases outline the sections of a textbook which constitute the content in the curifculum.

Hy informal ofoservation of what is done in the classrooms of New Brunswick is that most of the mathemstics taught is, in fact, recomended in the curriculum outline. However. everything in the outline is meldom done. Notable examples of this are gequatry topice in the elementary and junior high grades, statistice and probability in our academic elaventh grade program, and an emphasia on 'real' problear solving throughout the curriculum. In other words, in Hew Brunswick the intended curriculum is not congruent to the implemented curriculum. I suspect the sane is true in other provinces as well. The document may coniribute to implementation but the impact is limited by the ceacher's perception of what is important.

Alexander elaborates on statements on calculator and problem solving that are to be recomanded for ificiusion in Ontario's curiloulum documents. Will such statemente make any difference in the classroom? Will they have an infacit? any difference in thect that, although the atatements provide general direction, most teschers will be unable or unwiliing to translate them into specific activities, the number of teachers who read the statements and implement the carresponding intended curficulum may be inverbely proportional to the length of the statement.
:illmeit ativocates an ongoing rather thon a siot -qim aimire b ic change. twone of us would disagree with this josition, yot in New Hrurriwick, and 1 sumpect in other provincen oi
 welf the amporach tonds to he shot-gun. We tend to react
to situathman rather than keop linem under constant review.
 all mathemitics and wifence programs for grades ithrough 12.

Both Alexander and Silbert emphasixe the importance of the involvement of teachers in all aspecte of the change process. The oystem, must be open, and must also be perceived to the ofen, to all bi those invoived - teacherit, pupils, parents, frustees, administrators. In New Brungwick wé parents, trustees, adinistrators. in New Brungwick we
 comnittees and by ciose cooperation with tycheris subject councile and dietrict, professional developyent comitteen.
yet, ironicaliy, those whose views do not prevail see the system an iot involuing them. It is difificuit, if not impossllie, to keep ali people happy with respect to the curriculum.
How can the intended, the implemented, and the attalned curricula be made more congruent: In Naw Bruasyick beginning in June 1985, there will be compulacy provincial examinotions in mathematics for all students ot the end of grade il. Will this place teachere in a position where they must at least cover the intended curriculum? Alresidy some teachers complain becauso of too much meterlal in the curriculum and too little time. At the same time, Institutions of higher learning complain because students do bot know enough. it is possibic to make the intended curticulum congruent to the attained curifolum. 1 suggest yes, but it will not be eney.

The teacher is the key and teachers for the most part need direction - specific direction this csin be dona through curriculim guides, making teafiers aware of the intended curficulinm and the rationale for it. Tnachers also need inservice - specific inservice directed at particular problem aress. The inservice needs to be more extensive tharepe prosently of en the case to ensure that the intended curriculhum becomes implemented. And finally teachers need feedtrack. specific feedrack on how they and their students are doing. Given proper use of this feedback the Implemented curatculum can become the attained curriculum. And, of course, to do all of this requifes funding specific funding directed at particular problem areas. That funding must come from provincial govermmentis.
silheit chalms 'the real challenge in to prefare furificulum for ceachers learning, not student learning*. thenage "xtent i agion, howerer wo mast not lose alght ifnt the tancher lraining must result in atudiont loariling. At that

In owder to pul my comments in mersperitive. I feel that 1 should shame with you my mandate. As Smpervisor of Halfrenatics for a reasomably large urban school board, I a officially respons inle for all aspects of the gality of program and instivelion in Mathematics from kindergarten tiwongh er.de 13 thoughoul our Juifsdicifow. Ifis inciudes stafiling our Mathemalics prograns as well. While my commerts will focus primarily on the consultative aspects of my mandate. - those aspects wich relate to effecting curricular: and instrucllonal change -- I will be touching. albeit briefly, on issues related to staff selection.

What is consultmit Nell, I use to have a tom cat. lie'd sleep all day and be out all night cargusing and causing lot of troubie in the neighbourhood. So I took him to the vet and gol him fixed. Now he's only a consultant!

The following cartoon puts it another way:

"I dsn't tnow. Hy bark iin'l worlk a dame and we blir lin'l ruerth "Raine."

I I owe tremendous debt of gratitude to my colleague. Gail Rappolt, for the discussions we had prior to the preparation of these lewats and for petmission to paraphrase and excerpt from her recent article. "fffecting Educational Change". In contact 61 published by the ranaliaff sludies
Foundations.

 eflecilively in imis cycte and mio minule change.

 in spite of a most of imeoretical end enfirical avidence indicatimg that fequing will tion glace using are tiversy and oncitime lechaiquas. The soluticu to inis difomas is pat of the piovilem -- our an eductition. As Bertranthussell nut ed in his skeptical fosays. "we are faced with a predunical fact then educ, tion has tacom one of the chief obstacles to
 of ow ow thinkimy pationas. we gust try to focws on changing our curiculum and ieatiay stralegits based on the findimy in imo weas: curriculum am
 cmcuasilei resisi ance and dismelief.

Unfortunatyly, falmer than faciny this problom - and it is certalaly one of cuasider bla algallude - il is halm eastur (aod safer) to lash out at an
 lewhar inat we do have and will awntinua to have it ow classrowes. Due Ithime that has gyahually belcume evident to ow is that you canaot depend on yum eyes men you inagination is out of focus. and ay own focus, given ay

 imsirmaliwial change.
IImiled. Uul comstimelive charge, I believe, is lonked passible.
 shatper focws.

 may have yow sumacilitiy like this:

$$
\begin{aligned}
& \text { flist baliur. "Ally fual a an stee the wald is } \| \text { dall" }
\end{aligned}
$$

like mois must lie rumia."

Over the past t'en years 1 have come to accopit that wy altuapls to conviace teachers to change their prectice, ot bet thas supcificially. ire doul as likely to succeed as attimpts to get coasuasus at that idile in Palos. Wote that even sailor dimee, wo was canviaced, was not on bodrd one of those ships

How daes the afalogy fill like Columbus, I Degin with da assumption: inat ideal education is process orieated, addresses several ditferient leaining degree that lamaers bulieve bratr dominate and is. individualized to the fegree that ladraers belleve their anm meads we beimg met. The following figure preseats, ay image of the IDEAA -- analogous to Columbus ROUND WORLDI That it is both desirate and posfible that at leasimim on boardone of the strips 1

Howeret. as consultant, I an dware that adny teachers die silll in Palos. and I might ads. leel the sme way aboul my educalional ideal as sablu
 metely palats a luag the coat worta and see the for salors a

Considea how foulish it muld have ween fow sallin wie tu have been on
 had to othat expertence. Iikewise. teachers views taflect thien expertente - Le it fiom llien uwi educalion. their own redaing, of frow in stivice of unyrdilny.

The key, as a consultant, is to see the teachei as melely faving ceitain beliefs at a given point in time (not forever) and to see the consultant as a navigalon providing information and charting a course hased on the best Informat ion and technology, at his/her disposal. However, the cgnsultant is aot the captain, and thus is critically dependent on informalion, credibility and markeling to make her/his case.

Dut enough of this talk of saltors from bygone eral Ihis panel is about curriculum -. "Curriculu Guidelines: A Hope In Print".

What is meant by curriculump is it, as the Ontario Ninistry of Education suggests. "all those experiences of the chlld for which the school is responsible" 2^{2} this definition couses me some personal difficuity as it suggests that curriculum is consequence of authority rather than a result of planned action that apises from a carefully thought out, well-researched plam While this after the fact' definttion certainly suggests that account ability coexists with authortiy, it focuses primarily on the tmplemented and attaimed curriculun and not on wat was intended but perfaps not experienced.

Curriculum guidelines, in the Province of Ontario at least, are vastly overrated documents in teriws of their direct impact on classroom instruction These general documents, vague in intent and distant from the reality of the teacher and the classroom, have little direct impact men compared to learning materials such as lexts and workbooks. Admittediy, the content listing in the guideline makes igself felt in the classroom indirectly through these learning materials but ipterws of tmpacting on the process component of learning, the present guideliges are abysmally unsuccessful.

One of the profound difficulties with a curriculum which has a content listing as a central feasure, be this intentional or alherwise, is a lack of a primary focus on the rationale for the curriculum as a framework for interperetation. this lack of focus can lead to sionificant wisinterpretations of the intent of the statements in the content Tisting and to a course develonment that is dimetrically opposed to that intended by the guideline developers. this point was forcefully brought home to me in recent weeks by two malhemalics leaders who have played an active role in the current process an who are preceived as 'inmovators'. It was their belief that the 'caps" (restrictions) on some of the more traditional arithmetic and algebraic operatians meant that more time was to be spent on these topics - - not lessi operations meant that more time was to be spent on these topics . not les
iney hat equated increased specificity in the core content ilisting with. They had equated increased specificity in the core content listing withe,
increased proficiency. or greater wastery, if you like, and greater timen lask.

Oocuments do not effect change; peaple effect change. As Cooper and Pelrosky reported on a study made almost a decade ago. "Siudents" alliludes aint leanings are directly influenced by the personal qualities of teachers and the classroon climate they create." ${ }^{3}$
Ministry of Education, Ontario, Education in the. Primary und yuaior
Divisions. (lor ont 0.1975$),$ b.
${ }^{1}$ (harles R. Cooxier dad Anthony Petrosky. "Seconalay Srhool Students'
Ferceptions of Math Jeachers and Math Classes". in Malhemalics leacher.
(Malch. 1976). D. 271.

The minimal impact of ow cuiticulim documents on evin the implamenter

 Ont ario Element ary School Mathematics Progicans". Clearly something in the Arocess is not working; wat was intended is not being implemented.

Unfortunately, In Ontario, politics has heen the significant driving force behind the current set of curricular revisions altignough I art driving
first to agree that be the conclusion is only too easily formed. of change we long overdue. this were developed in the ealy 60 's toot, ouer is gelines for Gr ades 1 to 10 which revisions on their successor comenced less then 2 y to be super seded and yet disseminated to the schools comenced less than 2 yeds after they had been Wiling team had to face, was how we could possititicisms that we, as a had not yet been fully implemented. Such possibly be changing courses that with of her mon-curilculior atwented. Such mation. while being consistent personel the local actional twasts, left some curriculam support Hinistry's apparent lact of shaking their hesds in disbelief of the ministry's aparent lack of respect for the integrity of the teplement at ion
process.

The curriculum model that, for all intents and purposes, is operational In Ontario today is the "add water and stir" or "snupstrot" (some miont argue "slapshot") approach fo curriculve decion develonastrot" (some might argue review. This discrete model treats the phases of the curn lementation and "events" rather than as aeries of complex es of the curriculum cycle as
processes.
numer of environmental constraints, not eatily:

Political constraints

Human constraints (time arailable, rate of learning)
There is a serious under-resourcing of the process at both the local and in the Curriculum frach of exple, Ministry no one-presenlly on permanent staf look after the interests of the Ministry whose primary responsibility is to
s on an ongoing basis.
Another matter of constderable personal concern is the partitioning of assessment, curriculus and Instruction. At a time men thete is a strong cr for "accountmility" we should be attempling to develop a symbiot ic relationship betmeen curriculum, tostruction and assessment. It is my personal belief that assessment should reflect instruction, and instruction should reflect curriculum, both the intent and content. to the greatest extent integrated approach to these three aspects of the not developed a coherent. given the model that we have prouldedi wis of the tedching/learning process curriculum, witch is general, and assessment push comes to pulin between latter wich rules the day with curriculum t, which is specific, it is the across "exemplary strategies" instructional and issessment repertotres? them equally the both our
significant imact on effecting cuiricular chanal proticms that have

At the administiative level. many aiministialos lack the curiculum If alatay and expertience and heace to art have olther the lools of the ciedibility to convince teachers that anything but a teacher-centred, ruleor lented moke of operation will provide them with the necessary secarily and stallity in the classroum.

Ablue classroom'level, masy educational jurisoiciloas in Ont ario have responded to decilaniny envolment palteras by establighing a subject. indepeadeat seaiority system. As a result, mincreaing mumer of teachers tie teaching mathembrics wilmout adequate backgromad in the discipline and with mo foreal matmematics education preparalion. Ia our jurisdiçion, 10-15x of our iasiructional lines weibetmg tmath by timese "cross-over" teachers wile at the same time, of the 22 probalionary leachers har our secondwy schaols too receally had their contracts terininated due to decliaing schools to receat, 7 (31.gi) mere teachiag mathematics on. full on part-time basis.

Given the pritent constraints we face, is change possimle? Hy answer is an optimistic, entinudastic YES

Cleaily mat is aceded is a dyamic, respoasive curriculin prociess with an appropriate allocalion of resources to support all phases, noteaty the indementallan and assessment phases.

How might the "add water and stir" proxess we now angage in be molified to optinize the possibility of effective curcicular change? Certainls, a wore rational procedure for effecting change would p ovide for an ongoing rather han a spot gun process of curriculum development and mplementation with appopriate mechanisims bulit into the process for manitoring, mintainiok and updating the curriculim.
Iwo notes of aution aply here:

1. As with other "sequential systems". the process is bound.by its least effective phase. If indequate resources dre aplied in the implementation phase, for ex mple, alditional resources in other phases mill reither speed up nor impore the quality of the overall proress:
2. As with virtually all human endeavaurs. there is a -1 an of conservation" with governs the cuirliculim process.

Change must be manageable in amomit and pace and stould be instituted as ar accepted part of the teaching/learnling process. When we de assessing teacher performance we must go beyoun lowing al what the tedher knows and should be asking. "What have you dome iecently? What have you learnedi"

Exper tence has demonstialed that most individuals are reluctant, in general. to thange theli present practices unless they are forced to do so ar betieve that they have sumething to gain as a result of thein change in. behaviour. Two of the stionyest on coercive molivators for change die d ieduction ith moik loat to dihtere the satie level of oulpul or an increase in
perceived productive output for the same level of energy expenditure. Willi these factors in mind the licentives and rewards for the users of new carriculim inmovations are very dependent on the design and extent of the support provided on implementation. We must increasingly shift our focus to developing and auturing intrinsic motivation to change on the pat of teachet as evidence suggests that "appeal to wathority" alone on the part of teachers

In order for students to derive full beneffis from a new curriculum, teachers need to be prepared through the ident ification of needs, an awareness of the potential of the curriculum to meet those meeds and a familiarity and confort with.both the conception and actualization of the curviculim. The devalopment of these environmental factors is as important as the development part and sigalficant benefits resultim from parcuve of needs on their cost of the projees will not de juitified by its benefits. the curriculum, the

In order to eacourage fill paiticipation in mew curricular developments, Individuals and graups must, in addition, perceive that their participation process has directed against their om interests. The openness of the curren tion on the part of meebers of the an active, rather than reactive participa ion on the part of memers of the educational commonity across Ontario.

Molivation to change, alone, is a aecessary but not a sufficient condition. Even with a high level of intrinsic motivation there is stilla need for training.

If curriculum is to be more itan just "a hope in print" time aind money aust now be invested in quality teacher education progragar in order to implement the curriculum that has been developed.

For those who wish to design better curriculum, the real challenge is to prepare curriculum for teacher learning, not student learning.

That this will be done effectively is my hope

CANADIAN MATHEMATICS EDUCATION STUDY GROUP

> June 1934 meeting (Waiterloo) repont to panel on
the impaci of computers of undergraduate maihematics

Chelrman: Peter D. Taylor (quent e). .

At the June 1982 metting of the CMESC one of the working grounc, led by Tany Thomeon' and bernerd Hodgeon, explored the lapact of cpmputere on underisreduete pethemetica aducation. The gromp falt ite deliberations to
 and John Poland aet down and präpared e mper wich they publighed in the November 1983 edicion of the Noten of the Canadian Hath Socfafy.

At the June iget meting of the Cusse, the tople minegela puraued with penel chalied by Feter Taylor. The theet penelinte were Joho Foland (Cerleton). Caorge Devis (Clarkeon) and Kalih Ceddyé (Waterjoots Johm apent 15 afnucea bighlightine the papar referred to bover in particuler. eddreming the fuertion of bow the cartant uptergresuate curricuitim clathe be modifiad to take advantage of (or be ancichad by) wew. devilopmente in computer harduare and sofiewera.

George' Devia in emathontice tascher end Profensor of Educefional Devilopment et Clarkeod Defvereity. Me ty imetigitor, frehitect and iedafinfetrerior of the much talked mbout clarkion echeme which pute d
 anee of the philonophy behiod and datalite ontime cheme ped then gave nuber of pedagogical exmplat frombie lab courte fa mithemefical modelling. He hes kindiy prepered edigent of his piresentationg wich ia eppended.

Ketth Geddea ie Amocsete Frofeneor in tha Computer gicience Depertment et Naterloo ind worke with algabraic algoritime for efobolic computation. He ie currentiy invoived in the implementinion of MAPLE. ifnguege suited to exact myipulation of atrices and functions. In hia perentaction he described che ceneral fentures of this languege: it almé to provide eoftware wich cain be eselly used by undergraduate itudenta an elcrocomputerf, and which will anipulate and factor polynowiale, differentiate end ingegrate functions, mad manipulate atrices, ill with

Appendix
A Merocomputer for Every student
A. Caorge Davia - Clarken Univerelty

Clerkeon Ualvarafty has an undereraduate envoliment of mpproximntely 3100 etudents and a graduite entollment of meeriy 100 . OH che uder-
 - re in amagement atudiea.

In the apring of 1982 the Preaideat asked the feculty to anmit proposing for "peake of excellance" in undergraduate programe. In the brosd comuter ereat threa propoenla were anbitteds
(I) herdvere for computar late for majore
(2) A, retrainimp lmetitute for molving che ehortage of college level computer ecience inetructars.
(3) a microcomputér for overy underixedunte.
civen the natute of our inetitution theae vere dill matural propoala and by Octobertit 982 the Board of tryuteas wee permuaded that the fundian of cheae proposile would create. "pask of encellencan fin education.
 The heart of tha propdeal wae to raguire each_etsdant to hava atcrocomputer (one opecifie model to be choase). The atudent would monentry
 ance. At the conclualion of the four yeara che fitudent would be alven the computir but ugiti that tifen the Umiverifty would mintaln oviardifp. The proprim vea co tie pheect in over f years oy providins computife for each

 completed one yeari of experianca. The faculty who were to ceach frestimen course: in the fali of 1981 vere provided with a computer in Decmaber of 1982 so that they could have lead time to develop anterial for theit comreen thet relied on the computer. Shace every etment at clarkan fo
 The bigeat uef outaide of theriftcoureae wee in the humatiliee couree whère vord procesielne was widaly weed. Iroad ane of computercheed tutoriale wee made in the basic phyelce courae shere the profeneor produced mond 30 tutoriala and atudenta produced epptoxientely 200 tutorial leacenc. These tutoriale were difiributed through the curriculime apport efen of fine Educetionel Resource center. The mejor question facine wow er we prepare for eophomara coureen end beyond ia "Mow do we make oertifn
 should not only finfluence bot wo tíach but almo wiat we tesch. Real thought neede to be given to what hould course content be now.

To that end let me deacribe my experimeat ufth aethentice laboratory. This courte wen mterted fens gso with one afcro and 10 programable calculetors. Ite bmifc theala to thet interemting probians are inveatigated now - net the tepdilional mppronch that you can only look et thes ofter you have taken coursef A, B. C, etc.

Programink is not the emphenis - but thevelopment of methematical modela is the focue. Simple progrmen thint are mesy to alter ere ueed to
fuventigate the implicationa of the modely and the predicied outcomey ere checked with the real world pliemoterna.

Thia paet yenr amase the projacta faveatiguted wera:
(1) A prectical mow-euclidain genemiy with tmplicetiong for city traffic, roboticin and informetion etorage. Hera ot firat a ractangular patiarn of
 cormera" an in "taxi cab geoeetry". questione addranead che mature of Natraifint 1 liman, perpeadicular biaectore, otc. Sume of the batter

(2) Huponential decey or growfi. Hare one of the goole wae co get etudencs to guace at a closed form of the eolution.
(3) Fasdulum. Thia mec invastigated ofter the onswer for the period of a

 asut or te in ordar to juat datiect a $5 x$ cheage in gravity - difforant -atmer for difiereat initial eagiol, intaraction of preciaion of timy meancing device vith the abova quection. Hy question is, givent plable auw ovaliebla wy do wito the "emell oinctilatioñ work nt allt
(6) Mectianice. (a) The flighe of e beacball. Queatioat frelude bow ohould che batter bahove difforeatiy in Renwy Park. aif dothaevy 1mpact1. the complax job of gettrig under fiy bali, bow to theow balla co buea on the fly or quincel (b) advantage of being tall in beskitball ealde frue reboundiag.
(5) Length of fic. (o) Lemeth of firat arc of the eine curve. Iatarasting hera atmdencr dun't boliave the epowar becoues wien we draw ine curve we raraly, tinverfinite matmanifical theory when outcome conflicte with intuition. (1)

phich of an allipae

(6) Hoate Cerlo Methude.
(a) mufoa Meatic problea
(b) arc leagis of on allipee
(c) logeritiom
(d) wiy did wating everage radiwe of ellipae work well for elc length but lall for area? (a model quemton)
(1) Keradom numbera (ceatesil linit theorea)
(a) whifllige deck of carde
(b) energy wiatee in etumbe chemiatry and phyaicu

rate theae eame concepta so l-won' be tapted to bhort cut inveetigatione but ba truly an involved ea the etudenta in the model work. In aome way I will, get ey queatione arywiere - Sclastific Amaican, todaye hewepaper. the gamllag talle, etc.

TOPIC GROUP

FAMOUS PROBLEMS IN HATHEMMIICS

 AN OUTLIHE OF A COURSEBY: isreal kleiner
departhent of mathematics YORK UHIVERSITY

(analilan mathrmatics education study grour
 lune 1984 meeting (Hatertioo)

REPORT OF TOPIC GROUP (L)
fimotis Problems In thetrmatics: Am Outline of a Cousse Isral klefine, York University

Thin is a ane-sementer course af the lrdy yar lavel offernd in the
 (lim coursi are glvenat the end.) it la not course in the filatiry of metiometice, but it han aignificant hiatorical component. In fact, one of
 a hintory, and that it may be intereating, wafful. sind important to brime \boldsymbol{f} hítory to bear wit the scudy of menthementica. .

The rourse tries to legitimize in che eyes of mitudents the polint thet ft mikes sense ko taik abous methametica in addition to dolne mathemetica; that it makes sense ta den with ldeas in athemetics in addition to denling with "mathematical technology". In brief, the course attempta to make stidence more "methemetimily civilized". (The phrane in quoted ta the tite of " "tecter to the editor" witten by Profensor n. Shisha; it appentid in the A.M.S. Nittces, w. 30 (1981), p.603).
 Hess or thamas which itry to purmue in the course, with brinf indications of intent:
(a) The origin of concepter rgaulte, and theoriag In mathematco.

A relevant enfor theme of the couree is that "conerete" probleme oftenglve rhe to abotact concipe end cheorlas.
(b) The roles of inquition and logic in the ckeation of mathemetice Stinfent of the se only the logical ide of the mathematical
enterpitaf. But, In the view of Hadamard. "logle merely annctione the
ronnueats of rhe fintitton". Historg often bears him ont. On the other
hand. thata jeter eimes fil the evolution of mithemetict when ingical

 betwern lutultion and logle.
(c) Chunglin gtandards of rigor in the evolution of maticminte.

The roucepta of "proof" wind "rignr" in methrmetice nen mot mbotute hite chinge with time. Hormover, the chnitg is mot necensarily from the lese co the more fleoroum - there are flictintions in phominadn of rigor. In fect, Ithink that what we nre witnensing muaday (both pedagogicaliy and profenstomily ts a renction agalnet the atict rigne and abseraction which have domineted anthemetica for mich of chis centmry.
(d) The tole of the individual in the crestion of methemoticis.

The soclological theary concrining the development of mathemetica can be ammarimed accimetiy and poetically by time followini wetement of J. Solyaf: 'Mathematical diacovertes, like springtime wioleta in the woode, have thelt acenon whick no himan can banten or retard." at the anme the, ife tiscoverfes are made by hmmana - hemann with permonalitien, pansions atid prajudicen which mometimes huve benting on the mithemstica they erente. (Cantor in ecase (in polnt.)

Kore senerally, the intent is to piy ationtion to the rientors an wall mathe crentione of mothemstics Yi.e., the liumnt dinme in the crestion of mathematica).
(e) Katirmetice and elie plyatcol_world.

The relationshif betwern methemetien, and the phiyairal wirld in a

 thonght uif ancicte tact."
(1) Vhe "!ulntlvily of monentice".

- By this I mean chat mathematical truchárore wot etrolute hut depern in ifuccumlext. for examile,
then $b-c^{\prime \prime}$ le irua in the dumin of, way, rual or complax medera, f

 It the dinevin of queturnions.
(8) Mathemitice discovely or invertiont
fhis yhution artaed more or lase naturally fa connectlon with

 and etamallet on weckenda (thus viewlog mathematica at ond time ee a dincoveit elld at abother an an invention).

Remerk

 $\therefore x$

 the fect imet the abluct eufter of che probleme lo witally not dealt
 of the problewa ta the thomed which it en trytig to expount. (You witl note that "probleme" ale tmerpreted quite broadiy.)

1. Dloplantime esuastione

 quáations about intagetis in e theoratical (algebrafi) fiamenusk of wityise

 the eolution of the concrata probleme ane aterted with. (The atory of Fermet' : equatlon is more complex.)

 Iactorgantlon domig. fing. field. tden.

 urlier problrma conelderde ert prime prodicilue formatas fe.g.e

 theotrm, and the Ricmanm Nypotheafs.

Remerk on Problems 1 and 2
In eddition to providime lllugtentions of sompter the theme mentluned nowe (e.b., (n). (3), (e)), the itiody of Mumer Theory, ns exmylitied In the firat, two probleme, nheds fight on the folloulne polner:

(i) "Simplicity" in methemetica ia compler (there is me abudance

 of "almple" questioner to which there are, as yet, mo enanere).(il) Tin atudy pgoblag in efven nyatem (in thif care, the integera) it is often very melpful to eninge the mintem (n recurrent lliene in metbemeficel.
(111) The role and limitations of the compinter in mathemetica.

1. Polynumal rquetions

The rubtr, the quarelc, and hisher degree equations.
studente think that tit was the quadrette rquathon (e.t.. $x^{2}+1=0$) whetiled to the introdiction of complen mimber. This in not the cene. If finct. It wav the rubir which geve riap eo romplex nombere. The "uby"

 evolut fon. nite ncceptince of "mithomitinit nytrm".

Some firdication is ghtén of two the atudy of petmitetions of tife
 equation .. on important naurce of the tiar of the groun concept.

Thic problem fllmetraten themen (a), (d), (e), and (b).
4. Are there mumere bexom ztwe complen monderst

The ansuer depende on whet wean by "mmbera". We rapiore Che historfcal evolutiom of the vatiow minber aytems (finficating fins and lonef ne each (fge of the evolutionary procene), and then lintrodice the guaterniong and the ortoniona (Cnyley numbicti). Indicating how theme, in twrm, led to the atudy of mon-commototive alnebrn.

5. Why Is (-1)(-1)=11

This le en inatince of the enerni problem of the (logical)
Justification of the lava of aperntion with megntive numpin. it
became aprening problem (for both pedagoticill and piofenifonal tennond)
 the inek of resolvine thit problem by codifyting the 1 oun of operation

(it) Some fredom to chnose the Inwe oheyed by tir nymionin.
fire probliew liluntrate thrmen (a), (b), mint (r).

15

 - ч, (che usidy of axicmatic ayetera).

 the themes (a) in (g) mentilaned abova.
 The endy of fourler gerge had great dapect on subsequent davelopmenta in mathematica. The problen of matque tepienetication was addexaed by cantor and thte ied hia to the crearton of get theory and

 (f): and (x).

 If $N \in N$; the ketmelu-fracukel theory fofitys the furmatur of N; the vow-Memanan-idNel-lerpaye theory claseltifa set.)

Amons oflecr causea, these axiomacimatione led co vartona

The problem helps lllustrate theme (a). (b), (c), (d), aint (f).
9. Condiatancy, congiuganase, Indepundance.

Whe we atwiy the concimun bypothentin and, cspecially, coldel't bhoorgne and theis lapmec.

There mattery illustrate themen (b). (c). (f), and (g).

Remank on Problene 6. 1. A. and g.

Ia addicion co illustratime the varioun thomen as findicatedot chese probleme retate to questiona to the phitosophy of macherantice, and eipectally to the fundamencal queation about the nature of mathematice.

Notes

 of che above aline probleme.
(11) Mu sextbouk tis used. Howevex. many refereflees ate glven und studenta ara expected to so to the fibrary and gesd wome of them:
 Studuse with only thin minimum prerequisite areathed to take concuitenty at laast ohe or two mie methemsica courgan. (bue in lookling for the eluaiva qualtiy of "mathenafical maturlty".)
(iv) The techulical aspecta of the cuurge (whith ronstiture abotic $1 / 3$ cu $1 / 2$ of fine course) are not very fanding. Hany itwienta, however, find the Incellectual apocte dmanding. To deal uifh lifeng in mathemetica, to be agked to rasd independently in tho methematical 1
 ere int - but ghowld become.- accuetomed ca. ?

Other Probleme

Liert wre few more problem (techoicelly wowhet more demanding)

- which my by comaldaryin in ath course.
a) The xDialgsbers bridge problem: the Euler-Demeartes theorom for polyfindse; the four-colowr theorem: (motivated the development of graph theory, topology).

8) Hessurtment - laceth, erae, volume: (motivited the development of the integral).
c) 'Exotic" functions: space-filifing curves; (mativated the rigorieation' and aritheetization of tmalyets).
d) Isoperimetric problimsif other maxime and minime pagbleme; (motivated

* ' the creation of the culculye of variations).
ie) Aepecte of Fourier saries; (led to re-eviluation of number of fumamental concepte of analysie such as function, integral, conver(ence):

intellectual resfousibility - Allistorical approncil

BY: ABE SHENITZER department of hathematics YORK UNIVERSITY

canadian mallmparics ehbcallon simuy grour
 Lant 1084 me EtIIN (MAIENIOO)
 GEPONT UF TOHIC GNONP (H)

iniellectual méspectabifify - * ilistoricaj approach AdE SIHENIIZER, YONK UNIVERSIIY
 Yoik imiversity. Centh of thoso cowsos has cpasildarabie ajw historical
 leschurs duyliso "lareflectimily ruspuctable" acursas.

[^1]
"iowse 2 Duryoly courso on the history of tive cialculus tresising the
 IIIsfor fial lhevelgment of the calculust Springer Verlag, 1979:)
 of lim'ilidem, similarity, affine and piojective permetities Isste (2). Itypegtolic gerometiy and the iminet of lis discovery ant malluamatis:

81

1 introbeced this course into proyrmoffored by the deynitionit of mithematics at York iniversity and intimisd primarily for da-sotvice iedchers

1. Nhe awolution af the mmer systam. (lise discussion inclinded at comparison of the contributions of kimboxus and Dedukind, and considetation of mofor shifis of viemotat.)

2: , 1he Hethod of Aschimodes.
5. Some Greek, coustruction problons and their modern algedraic solitions. "
4. Kepler's 1uw uni Merigon's law of لhaiversal Gravitatives
5. Ikyyheus' cycluldal clocif mis was finterned as a simple demonstiation of the powar of ywicalculus and of the imortance of the julea of curivaturo.)
6. Hinima and mixima. 'Ham the isoperimetric problem to tipe calculus

He. Siscovery of hypealulic gometiry and tis intellectal implicationis.

cumuk

Wen I Nath this texirse in 1984-85 1 shall call the atfentiow of
 Keplod and Nowfon cowld profic from the inclusion of relevant miterial on lignsteln aloms the lines of miendid two-page essoy in a first lwok on jhysirs by A. U. Fresch (see mext page). Toyic it on the evolution of the inmier systom could profit from the inciasion of miterial on fintemions and octorians. As for jew topics, I modid like stindents to discoss
(a) Infinitesimals from Leilmiz to kobinson.
(b) Conic scctions in Gireek geometry, in astronomy and in 19th century grometry.
(c) Some uspexts of the ewolution of projective geometry in the 19th century. (Alure explicity, low projective geometry became an independent discinlife.)
(d) Likllit'sclacsification of irtátional ritios in Book X of the Elements and the modern classification if irrational mumers.

- Last year I timght a conrse in tive histary of maticmitics that centerition the history of the celculirs but incluley discission of sume aspects of the evolution of geometry. The mpronch was theafic ankl genetic. I reliad to alage extent on C. If. fhard's गhe historical develoyment of the calculuce and on the relevimt pirts of mecent Russlan series of laoks ing the history
- of mathemetics. Ile main topics discussed in the collse wete
a. Ilse mots of the, calculus in the works of Archimedos and limboxus.

Itilosondical contimistion in the lith c. (Oresmes, etc.). a
c. Technical contimiation in the 17th c. (Cavalieri, fescartes; leimat etc.)
d. Creation of the appuratus of the cajculus by Newton and lafiniz. A critical comparison of the mproncties of Newton and Leibniz to the calculis.
c. Newton's roie in the emergence of differcitial extutions sis the core of the calculus and in the growth of mithematical jiysics. Ieterminism.
t. Infinitesimals from Leibmiz to Roblíson. -
g. Euler's fintroduction of the study of fuctions as an impitamt concern of the calculus
h. Fourier's serfes and its linpect on mathemafics: (1) imanit on the finction concepit: (2) imact on the concent of the integral, (3) imact on mathemitical physics, and so on.
i. The contributions of Conichy, Rlemnow, Weierstrass and lede'sgic to the development of the central concepts of the calculus
j. Tankoxus and Dedekiox. The arifimetization of analysis.
k. The axiomatic metitol: ficiclidean geometry and geometiy in the 19the.

* Hose mifaniliar with limard's book might like to kJow that if is a mirpk' combintion of hard-to come by compitational melferial aml excellent cificial almatyses.
f:IN:THIN'S Thb:omy of linavitation

(A.b. Fruach, Newtonian Muchanics)

 senciliced "prooscion of the pariballow" of Macriny. Ilve ph

 domineme $1 / s^{4}$ forme of. Nowton't cheary. The way in whict 1
 cuscod is Chapere it Ofher cenplicici madifictivas of ith

 propertionel to the oumere of the saguler. nobucity of Hoi planci and howo was mexch mons imparkey for Mcrawy, wifh ins

 Onniver 14

Bist year itmalit a peometry comirse intith cuald be descrilow as an introdetion to thie geometric idens of tlein and a discursion of the discovery of hypenthalic sometry aud its revoliniovary effect on mithomaticul thought. fregard this matlerial as vary well suited for prodicing the mysterious side effect huow as 'matheratical ile mysterious side come to 11 fe and so to iguariauts its bistory of ideas wo invariants. Histary becomes
 a swisificiant evouts). The miterials 1 used imelinded a swiss hidu sechool text on trunsfonmation semetry (out of priut:); * a shotch of the history of the purallel postulate und of the discovery of hyperifotio geometry, dian essay on the significancer of the disicovery of hypertiolic goometrytand a proof of the consisturey

cons! 3

A Course in Cesumity

 Hewill Lid., 1066
 lak licheas hypertholif plime, Spr inger verligs.

+ miflen, Bridges s 6 14. 105:115.
: …
 Ahtisorn wesley, 1963. (h. es.

contents

13

416

Encor amona

4. Simileorisen

9. Allee Trienormaice
 110

112

131

A fow pooks of uso in developing similan coursers - v
 could be used to develon a course in maner tluyty. 715 books I have in mind are:

$$
\begin{aligned}
& \text { II.h. Latwiords, Ficrmat's Last therrem. } \\
& \text { Nei), Number Theory. An Myramil tirough History. } \\
& \text { Schtriau and Qpoika, von lienmat bis Minkowski }
\end{aligned}
$$

The brand new German sertes of books called Grinnwissen Mitheatit (ondilshed by Springer; volumes 1 and 2 are ant and forir more volimes are promised for 1984!' miy lelp ore develoysimilar conses in other areas.
\square
for anngtited bibltography of sipnificant nud accessible materials $i \cdot$ a wrlaome featare of the legret book,

livisilicithm 1484

Huvid N. Alacinuakt
16,f Howr, Hinut Miock
Quman'e Park
foronto. Uniarto h/A 1K:2

Ed Batbinau

Dept. of Metimantics
Intiversity of Toronito
Torgato, Oneario RSS lal
Mrurice milager
CIRADE, U.Q.A.N.
C.P. 8As, Succuresie A

Montrual, quebec ux prs
Jacquas C. Aargergn
Faculth des acfapcem de liducation
laiversite de Hontreal
C.7. 6203, Succ. 1

Howrrial, quibec uxc 3T3
Tanoula Eergerañ
435 paanld streat
Cuquitian; B.C. v3x 329
Sand E. Hercy
Dapt. af Mathematice
Hifverility of Manituba
Winnipag, Heaitioba R3T 2N2
r
Alan J. Binbop
Dept. of Educection
University of cambridse
Cambridge; Lutted Kingdum
Maffachla morasi
Depit. of Learging f lumizuction ,
553 Hildy Hall
Suny ar Buffalu
Euffulo, NY 14260
U.S.A.
alburea muansil
Mithematica Dept.
Concordia lmiversisy
7141 Sheturooke Ouest
Sherbrooke, Yumbuc 1448 186

3. Multe Murbect

Beuity of Educiation
Guepa's Chotvereity

Professor of Educastonal Development
Clarkson College
Fotiden, WY 13676
U.S.A.

Dela Dromit
Comp. 17, site 1. SS I3
fredaricton, M.B. E38 SNY
Gery Flawelliug
The Willington Comity Board of Eduqution
500 Victaria mond Horth
Guelph; Ooterio NIE 6K2
Claude Gaulín
Départemank de diducriyue
Faculte tea sciences de l'edurathon
Laivaraité Laval
quibec, qudtec GIK 7p4
Kaftb O. Ceddes
Dept. of Compinter Sclenas:
Univeraity of Haterlios
Watarioo, Onbario Nzi. Jit
-.I.
O.I.S.E.

Toronto, Onturto Nis IVG
A.e.o." the onk the
inept. "it Natlicmation thaturnity of calltorila Berkelpy: CA. 96720 U.S.A.

NIcolan hesncoules
, Nopartment of Minthearatice Cancordia luatvoreity 1141 Sherbruaks St. W. Holiteal. Quebec lifis ing

- Willlam Higsinmon

A 106 HeArtiur Hall
Ween' thetverafty
Kingnton, onterto kil 3w6
foel Hillel
nept. of Hethemmerce:
comeordia Uniun ralty
7141 Slieibrooke St. W.
Mendreal. gueber Hat ind

Eernmrd R. lkidgson

Departement de milhémetiques hiniversité laval inliversite laval
Québec, québec cik 7P4

Kartín Hoffesm Department of Nathematica Quen' College
Fluslinge, NY
U.S.A.
la're Jimsson
Faculty of Education iniveraity of Manitolia Winntper, Kanitoba RJV iet

Carolynkferan
Wepartement de mathématiques U.U.A.H.
C.E. 8888, Succ. A Montral. gueher ilse 3 FB

Hhamis F. Kleriol

inpt. of secomindity edication
hapt. of Secormary ed
limivirsley uf Alberta

livuld Xitminer
8 - 2975 Ouk Street
Koncouver, B.c. Vat $2 K$ I
Inrael kiciner
Dept. of Methematics
York Uiliversity
Domaview, onfarlo MIJ If

Erika Koendiger

Faculty of Education
thiveraity of uladeor
Hindeor; Olitarth N9E IAS
 Ottama, Ontario
Dleter Lumkerbet
Dépertemat d'Ejp
Feculcíl d'educi/ion
Univerifit de therbrooke
sherbrooke, Qfect JIk 2kI

Amgne Macless

Board of Edscation for the Cisy of Yook
2 Trethevey Drive
Toromto, Oritario Moh 4A8
Peter W. Manuel
Dept. of Applicd Kechrmatic
Unituralty of Wenterim Oitario Unimentity of Wenteri Oita
London, Onesitio NGA SEg

Bey Marrhanin

Dept. of Applied Hathemetics
Univeraity of Waterifion
Naterioo, Ontarlo n2L jgit
Jodin Hison
Methematica faculty
Open Uifiveraity.
MIIton keynem, HK GAA
united Kiagdom

Nuhert Mherer
Cabrinl College
Kadoor. PA 19087
U.S.A.

Thirtay Hepliernow -
740 Lanatk Sireet
Winniper. Halloba
fric Muller
Mithemetice Dept.
Brock thiversity
St. Catharimes, outario lis 141

Alexander fririne

feel Board of Eyucntion
73 King Street ${ }^{2}$.
HImeleacuga, Ontario LSE INS
T.L. Pearmon

Bepr. of Mothematic:

- Acodia Univertity

Moliville, N.S. Hop ixo
John Poland
Dept. of Moth. E Stafiettca.
Cerleton University
Ottawa, Ontacio Kis 586
Hal Proppe
Dept. of Mathemattio
Concordia biversfty
Montreal, Quebec H3G 1 MS

Mrock Rechar

c/oc.c. Carrothere Pubifc Schaol 360 Ctippiendale Crescent
London. Matiario nsz $\mathbf{3 G 2}$
Mediat H. Ralitm
frept. of stats. \& Applifd Probability Untueraity of Alhoria
Edmonton, Albertn 16r: 2c:
Erwhe S. Reopolios
$\because 20$ Brewser 5 :.. liwer
Muffalt, Ny 14214
U.S.A.

Hify Nbeoden
Blatuys thatwistiy
fenmevilly, liwher IIM 121
Pat Rogere
Mathematicn Iepmiment
York Uni versity
4700 Keele Street

* Domasulew, Matario mil Ifl

Abe Shenitier
Dept. of Hithematice
Yotk Univeraity
4700 kerle Street
Downaview, Onterio H 3.1 1f 3
Ralph Stal
Dept. of Pure Mithematici
Univeraity of Naterloo

- Waterloo. Ontario N2L 3GI

Feter D. Taylor
Dept. of Hath. G Statintica
Queen'a liniverafty
kineston, ontario kTL. 3ng
Tony Thompsan
Dept. of Moth., Stata. Computer Science
Delhoule Universily
Malifix. N.S. N1 4118
David Miceler
Dept. of Rathemetice
Concordia Univeraity
7141 Sheibrooke West
Hontreal, quebec H4S 146
F.dgar R. Williame

Depit. Gf Hith. E Stattettes
Hemerlal limiveratiy
St. Johin's. Newformidiand Alt: 557

[^0]:
 Reproductions suppliedrby EDRS are the best that can be"made., * Erom the original document.

[^1]: donise r

