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Interpreting the Results of Diagnostic Testing:
Some Statistics for Testing in Real Time

by
David McArthur and Chih-Ping Chou

Introduction

Diagnostic testing in education, as in a variety of other fields,
confronts several challenges at once, among which are issues of test
interpretation and immediate modification of the test itself in response to
the interpretation. This paper explores a set of methods for administering
and evaluating a test in real-time, towards optimizing the examiner's
chances of isolating a persistent pattern of errdneOus performance by a
student. What is expected from these methods? What does each method take
intg account in the testing process? How do they compare with each other?

For well over half a century ‘the diagnostic value of interpreting a
student's choice of a particular wrong answer to a test item has been
appreciated (Pressey, 1926). Contemporary test specialists point to the
measurement strength inherent in formulating tests for which the item
distractors carry specific meanings for the appraisal of student abilities
and disabilities (Roid & Haladyna, 1982). The rapid development of comput-
er technology in the last decade has almost eliminated the practical re-
strictions on such testing. However, the overwhelming predilection con-
tinues in favor of correct/incorrect response scoring. The probative value
of a wrong response -- that is, its signific~ace for or against one or

another of a set of plausible diagnostic hypotheses -- is totally obviated
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by conventionai 0/1 scoring algorithms. Yet it is ¢xactly that probative
value which is central to forming diagnostic appraisals.

What is being sought in diagnostic testing is some cohesive pattern of
wrong answers, a pattern of individual student reshonses which reveals a
characteristic signature or diagnostic profile. Diagnostic profiles are an
integral aspect of many psychological tests: a trained examiner probes
with increasing selectivity and specificity until a meaningful
psychological pattern appears. In recent work in projgctive testing, the
initial response of the ex;minee to a stimulus card is codified, the
ensuing inquiry is guided by estimates about the psychological dimensions
of the problem as shown by that codifying, and the examinee's responses to
that inquiry are used to refine and solidify one or another diagnostic
inference (McArthur & Roberts, 1982). This honing procedure proceeds in an
adaptive sequence based in part on technical guidelines, in paft on the
examinee's consistency (or lack thereof) in responding to the stimulus, and
in part on the examiner’s inferences of‘the strength of the present
evidence and the benefit of continued testing.

Under highly idealized circumstances, the disability of a student who
is engaging consistently in a certain misunderstanding of the test content
would be identified early in a testing sequence by the astute observer
(human or computer); from this point the test then could be tailored to
estimates not only of ability (© ) but also (or perhaps instead) the
relative 1ikelihoods of a set of competing diagnostic hypotheses {ﬁl, Ha,
H3..}. Items whose distractors would assist in discriminating amon] the
plausible competing H's for that student's behavior could be administered

to the student in increasingly well-bounded subsets until one or another




stopping rule is met. Briefly, the optimal stopping rulc would be one
which maximizes the likelihood of a single primary diagnostic hypothesis,
supported by sufficient estimation strategies and by exactly the right
amount of evidence. The evidence is not so much as to be unnecessarily
- redupdant, and not so 1itt1é as to be insufficiently discriminatory, not so

//97??1cu1t that the student simply flounders and not so easy that the

’ examiner misses the probiem altogether. This task is by its nature a
compound probabilistic undertaking, although the flow chart which

. gschematically i1lustrates this task is relatively simpie (see Figure 1).

Figure 1
Schematic flow of a generalized response - contingent test
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The flow of a response-contingent test is governed by two implicit
prerequisites. The first is that a finite set of suitable hypotheses is
represented by the test. The hypotheses are appropriate to age-~level,
intellectual functioning and motor capabilities of the target student. The
hypotheses are orderly, in the sense that they are either at a uniform
level of abstraction and mutually independent, or they fit an explicit
hierarchy or cascade and are mutually dependent upon one another. The
second implicit prerequisite is that a given item or set of items be
closely linked to at least two competing hypotheses. A response must be

able to be evaluated in terms which tie the response to one hypothesis but

mismatch another; the response cannot be considered probative unless these
1inks can be made at the time the response is given.

As the test is administered four decisions must be made in real-time.
1, Is the response probative? 1If not probative, further decisions
regarding discrimination among competing hypotheses are obviously moot;
questions must be asked as to the appropriateness of the item given, item
selection criteria, and for the original hypotheses, then ancther item or
item set readministered. 2) Is any one of the stopping rules in use met?
If a stopping rule applies, it signifies that the examiner has reached an
applicable criterion, so further testing is not warranted.! 3) Are there
remaining items to administer, or remaining hypotheses for which one or
more stopping rules have not been met? If either answer is negative, there

is nothing to be gained by further testing in the context of the present

1 This assumption holds if the examiner considers stopping rules
disjunctive. If stopping rules are considered conjunctive, then the
question is answered in the negative until all associated stopping rules
are met -- with, of course, a larger volume of responses and presumably,
though not necessarily, an increased discriminative power.

/




test. The presence or absence of one or more supported hypotheses, and the
costs of continued testing with additional instruments, govern the
examiner's decision at this juncture. 4) Should item selection criteria be
changed? If no hypothesis is supported, and if a bank of items and
hypotheses remain, a decision must be made as to whether the sequence of
administration continues to be appropriate. Explicit branching can occur
here;interactivé tests use this decision point to change topics, item
complexity, and/or task requirements to enhance the expected likelihood of
hypothesis discrimination. It is this decision point which allows the
examiner to maximize inferences in regard to diagnostic hypotheses.

With very rare and specialized exceptions, diagnostic testing in
education seldom enables the test interpreter to build on inferential
strategies with respect to individual test performance. Moreover, a ’
variety of theoretical and practicaT problems appear to have plagued devel-
opments along this 1ine. Among the problems that arise in the pursuit of
interpretable patterns is the difficulty in obtaining diagnostic
performance clusters from raw data without a prior set of 1ikelihood
estimates for a small and workable number of competing hypotheses.1

The problem of assigning meaning to cohesive patterns of response
reduces in its simplest form to two elements:  1imiting the number of

observations we need to take, and 1imiting the number of possible

1 The number of possible clusters m which can be made out of n
observations is a Stirling number:

Unfortunately, even for a handful of observations, this term can be
exceedingly iarge.
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meaningful clusters into which we will place observations. A test ought to
p%ovide enough range to evaluate fairily a highly varizd set of possible
examinees, without building such a long test that any of the protagonists
-- examinee, test administrator, test interpreter, or test designer -- is
exhausted by the process. The diagnostic process ought to involve checking
in real-time as to‘whether any payoff remains for administering more test
items. Is the perforﬁanre of the examinee at this moment in time
sufficient in quantity and "cohesion" for us to draw a suitable diagnostfc
.nference? |

A simple stopping rule for diagnosis takes the fullowing form: go no
further because any one of several probabilistic boundaries is met. Among
the sef of allowable hypotheses, one diagnostic hypothesis has emerged in
the "lead." One possibility for 1imiting observations and 1imiting
clusters simultaneously is to avoid that Stirling number by picking an easy
criterion, a low threshold of confidence, and a small number of allowable
hypotheses. Altérnative]y, we can 1imit the number of possible clusters
for diagnosis to exactly two, so students must select one option or the
other; the stopping rule becomes: go no further when one hypothesis
obtains a simple majority of examinee responses.

Foremost among the difficulities of using the stopping rule approach to
limit observations and clusters is the extreme paucity of situations in
educational or psychological testing for which a strict parsimony of
hypotheses can be formulated. Another is the reasonable assurance that
some students will guess some of the time on some items. Yet another is
the degree of confidence one places in a single response as a marker of a

general pattern of responses; a test item, after all, is seldom adequate as




a mirfar of a studert's true understanding. Other difficuities arise in
regard to assessment of the several probabilities that contribute to the
tlow of the test: they include problems with prebabilistic comparison
baserates, fuzziness in the Bayesian priors, and inherent objections to
traditional Bayesian probabilistic analysis itself.

Ndne of the problems stated here is insurmountable. The&retica]1y .
useful probabilistic algorithms for diagnostic inference are found 1in
several professions. This paper sets out six algorithms which have bearing
on the interpretation of response patterns and diagnosis. Two are drawn
from probabilistic methods in educationéi testing -- Sixt1's modified
hinomial and Choppin's catenating Bayesian methods; two are drawn from
recent developments in medical diagnostic ;{udies -- Fink and Galen's
decision path analysis and Shortliffe's inexact reasoning; one rests in
decision theoretic analysis -- Kmietowicz's ranked probabilities; and ore
builds on a Baconian probabilistic appraisal -- Schum's "cascaded
inference," which has been studied primarily in the context of decision
making in jurisprudence. Each of the six methods will be placed into a
common notation, and a comparison made between the advantages and
disadvantages of each, with 5pecial attention to the restrictive nature of
prerequisites and the relative strength of the stopping rules. Not all of
these approaches are equivalent in scope, nor do they have analogous
assumptions about the patterns which are being isolated from the raw data.
It is also important to note at the onset that the stronger inferential

procedures inevitably impose more restrictive conditions on the user.
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ESSENTIALS FOR PROBABILISTIC EVALUATION OF DIAGNOSES

present discussion, the following terms are usec througnout:

the set of alternative hypotheses {Hl, Ha, H3...Hm3 (includes
Heorrect!

the 1th hypothesis of {H} , contained in one or more

- alternatives for one or more items

the prior probability of Hj

\

the examinee's response at a given step s in the testing
sequence (generally a response to a single item which
represents a choice of Hy, from the set of {q}).

those hypotheses shown to the examinee in an item but not

selected

those hypotheses not shown to the examinee in the item, so not

selectable at this step
the number of hypotheses contained in an item's answer choices
the number of hypotheses in all (m 2 k)

the number of attempts made by the examinee (n 2 x)

Diagnostic testing involves several key terms made up of the above

entries, The general form of the stopping rule is the following:

At a given step s 1in the sequence of the test, does the accumulated

evidence {?i} which suggests H; exceed the accumulated evidence {X;}

which relates instead to Hj and Hé} The accumulation of evidence on

both sides is treated probabilistically, and the 1ikelihood ratio that

resuits from dividing one into the other is assessed against an allowable

Tower and upper limit. Wald's (1947) sequential probability ratio test

(SPRT) is the earliest treatment of this stopping question:

&t ()

“

1l
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A number »f studies have applied Wald's (1947) sequential probability
ratio test to the task of test individuaiization (cf. Ferguson, 1969,
1973). The SPRT, predicated on Bayesian methodology, is well-understood
but clearly does not begin to account for the variety of factors which
contribute to examinee performance.

Gorry and Barnett (1968) showed that sequential diagnostic testing

involves a compounding of conditional probabilities as follows:

pCxlty 0 {x3) p Ch|{XY) |
TpCxlwy 0 () p Ol L{XD

r(“.alx)=

where )  implies a logical "and" using the entire set gf behaviors
acquired to date {X} as evidence. To be successful, these approaches

require extensive knowledge of prior conditionals and interrelationships.

They are fairly impractical except in highly controlled environments. The
various techniques which follow are to be viewed as approximations of these
data-intensive methods. \

TECHNIQUES FROM EDUCATIONAL RESEARCH

Modified Binomial Method

A decade agoa German educational ;esearcher published a paper on
automated test administration which included an épp11cat10n of Bayesian
probabilistic analysis with correction for guessing. Sixtl (1974)
presented a formila for a stopping rule which acknowledges the roles of
item answer alternatives, and is readily identified as a classical Bayesian

approach to forming a 1ikehood function for a particular hypothesis.
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Sixt1's 1ikelihood ratio, when modified to cover each diagnostic hypotheses

of a set of hypotheses, reads as follows:

| , XL R-% .
AL Lt o et] [1- (&2 p(a)+2)) (
B . 2)

ie W " e

Tk k

Sixt1's approach involves selection of a Bayesian prior for each
diagnostic hypothesis, involing a simple correction for guessing, and
construction in real-time of the likelihood function A for the hypothesis
to fit the stopping rule u

£ < A <« 2f

1- .

where e and 8 are conventional measures of significance and power,

respectively. Figure 2 presents a schematic i1lustration of this method.

13
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~ Figure 2
Sequential testing - binomia], model,
multiple hypotheses in {H}
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? Evaluate response in 1ight of hypotheses
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Immediate objections can be made to Sixtl's approach. First, the
model of guessing is simplistic; it allows only a constant term for a
fuqction.that is unlikely to be stable across items and respondents.
Seéond, fhe fixed nature of the Bayesian priors must be chosen to reflect
{H}fw1thout/regard to context or sequence effects. Third, Sixtl's
procedure fails to use all of the 1nformat10n‘ga1ned at a given moment to

form an updated chain of hypothesis evaluation.
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Catenating Bayesian Method

A sequential system for response contingent diagnostic testing was
proposed by Choppin (McArthur & Choppin,1983) usihg both Bayesian priors
and conditionals to form a continuously updated probability assessments for
diagnostic hypotheses in real time. Choppin's approach, modified s1ightly

to reflect iterative cycles through {Hf, fs:

P |7 r(".:.l H )

Ao, - “(n-1) ()
N-R LY zZ P X ‘.'I H;
j*4 - B(..-,_) P( | Y )

The computation is predicated on a catenating sequencing of conditionals:
inftially it requires priors for X; and Xj assuming Hy is true. Each
s updated upon the examinee's next selection, such that Choppin's ]’ in
Bayesian terms is a catenating conditional ratio appraisal. Use of the

Shannon entropy function(Gleser19), which in this context is
. L L] - 4
S.EFf. = E PA,‘ (.5 r.;L (4)

simplifies the output of the catenating method by concluding at each step
'with a single expression for the uncertainty remaining in the set of
proportions. The largest decline 1h S.E.F. denotes an optimal stoppfng
for the sequence; the largest p(H) at that step is taken as an optimal H

for that respondent. Figure 3 shows this procedure a: work.
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Figure 3
Sequential of testing -- catenated Ba esian model,
multiple hypotheses in {ﬂi

Start | Y

Administer next item or item set

St aypliaitly Arcarel ¢ Crconetant

An inclusive conditional probability f(\&]“j) represents the
probability that selection i would be made when Hy 1s true, a se1eft10n
which could be maqe for a wide varjety of reasons. One immediate objéction
to Choppin's P 1is that the catenationlis sensitive to the choice of/the
separate initial priors; A subtle but potentially damaging argument'is

also to be found in the catenation and recomputation of condi tionals under

Hg , when an alternative hypothesis Hyg 1s not represented among the
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{tem distractors. Unfortunately, on both counts it is the Bayesian system
of probabilistic assessment ftself which forces this to occur.

TECHNIQUES FOR DIAGNOSTIC RESEARCH FROM OTHER AREAS

Decision Path Method

At any point beyond the entry point in a sequential test, an
additional set of conditional probabiiities which are potentially important
are required. Not only are there conditional interrelationships among the
{h} and {X} , but also among the paths which.led up to the particular step
in theltest sequence and the action~ taken by the examiner at each step.

An app11ed extension of Bayesian analysis to decision paths is found in the
field of research in diagnostic medicine The decision tree analysis
{11ustrated by Fink and.Galen (1981) invokes a Bayesian framework operating

with compound conditionals:

p(R] x A}, Path) - p(x | {a}, Pitt.c)
Zp (R | %,{A}, ) - e (x| {AY, pus)

P(d{”}a{"}. Paty , ) *

where {ﬂ} = the hypotheses allowable within a given s1tuat1on,'{A}'= the
actions to be taken within the situation, Pathy = the path from preceding
selections which led to the current condition, and R the result of
selecting a particular action. This result leads to further data which
then allows refinement of the probability estimate qu H{ . The multiple
conditioning terms lead to extensively annotated decision trees, for which

{nformation is available about the relative values of selecting one option
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over another in terms which includes the sequence of those options, their
cost, their efficiency, and their measurement certainty. Figure 4

i1lustrates the calculation for the decision tree method schematically.

Figure 4
Sequence of testing - decision tree model,
multiple hypotheses 1n{H}

Start —l ‘
\

Administer next item or item set

Pro {f:e

ponse -yes
,

v

Evaluate response in light of hypotheses

A ot agplieitiy trearcd

An obvious impiication of Bayesian path analysis is that, wher given
fully elaborated baserates, a researcher can construct a fully elaborated
decision tree which includes each possible diagnosis, all possible

interactions among diagnoses, and cost-efficiency assessments. An obvious

~ 14




hitch in applying the system to educational testing is the profound lack of
reliable baserate data for all but the least complex diagnostic hypotheses
Tikely tolbe explored. Additionally, distinctions between various paths
may be far less profound in the context of educational testing than in
diagnostic medicine.

Inexact Reasoning Method

In a variety of settings, evidence about prior probabilities is
relatively limited. If the priors can be estimated, we can draw on 4
system for hypothesis avaluation called the method of inexact reasoning,

which accounts for the lack of exactitude in the establishment of priors.

1t was developed by Shortliffe and Buchanan (1975) in the context of the
well-known MYCIN automated medical diagnosis program. Its prime concern is
with the strength of evidence, rather than a perfect match between evidence
or behavior and hypotheses. Three separate terms are required: one a
measure of belief and another a measure of disbelief, expressed as
conditional statements, plus a term which reflects the difference between

helief and disbelief:

- 4
)
- =4
"

1 | g pd=1 5
{ max u('ﬂ.l x), fLA'&}] - PU“‘“)
mae[1,0] - pliid sHhaunian .
MY, - {1 | g plHO=03
min [pO: (), pC#iI] - p (W)
min (1,0] - f(-“a‘-) sthavnar .

0

"
x

"

)3 MB, -MD, O

A

In many ways the notation appears to more closely reflect the psychological

mindsets and inductive decision processes used by practicing clinicans than

19
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the preceding methods, which are formally more exicct (an important point
discussed later in this paper).

Originally this model was put forward as a system of approximating
conditional probabilities, suitable for circumstances characterized by data
wp1ch tends to be subjective rather than objective. Since very few of the
natural sciences have exact data in the strict sense required by Bayesian
conditionals, the reasonableness of pursuing approximations seems assured.
Moreover, many outcomes of a decision process are not even at the same
1evel of rough granularity as the data used in that process;. that is, the
number of remedial options available to an examiner are fewer than the
number of diagnostic clusters for performance of an examinee. Thus an
approximation, if adequate, can provide completely sufficient guidance to
the examiner for the purposes at hand. At minimum the approximation shouid
provide a basis for corroborating human judgments of logical premises,
actions, and consequences. Indeed, the model was incorporated into a
highly regarded artificial intelligence approach to medical decision making
which itself has seen extensive development and generalizat1on. Figure 5

i1lustrates this approach at work.

20)
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Figure 5§
Sequence of testing - inexact reasoning model,
multiple hypotheses 1n{H}
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Problems with the approach are ynavoidab1e. Adams (1976) elaborated a

series of thecretical objections whfch focus on the direct relations -- not
' /
1mmed1ate1y=va10us -- between MB, MD, CF, and conventional Bayesian

N\

solutions to serially adjusted proPab111t1es. Again, because of Bayesian

logic, one can rapidly arrive by 4omputat1on at untenably small conditional
probabilities even yhen 1ntu1t1vg/1ogic suggests otherwise. The strongest
theoretical failing Ties in the assumption of independence of {H}; any

interdependence goes unaccounted in MB, MD, CF. As CF constitutes a

(-

|
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weighting factor its role in practical applications of MB and MD fs
multiplicative, but, Adams claims, "not true in general.”

The fact that in trying to create an alternative to
probability theory or reasoning Shortliffe and
Buchanan duplicated the use of standard theory
demonstrates the difficulty of creating a useful and
internally consistent system which is not isomorphic
to a portion of probability theory (p. 185).

Ranked Probability Method

At the lowest end of the spectrum in terms of conditional complexity
is a method which requires no more than weakly ordered priors of the form
p(Hy) > p(Hy + 7). In a variety of settings the researcher‘1abors with
unknown (and potentially unknowablej data about which only a minimum degree
of information can be stated with confidence. In such conditions of
incomplete knowledge, Kmietowicz and Pearson (1981) have spelled out a
decision theory, and Horbar (1983) has i1lustrated an application to |

medical diagnosis. Using Horbar's approach, we can state the following:

2 we.ak rabukiin
RANKING : pCx[HD 2 p(xIH) 2 p(xlH5).. «{; 2

From a series of tables, generated by a procedure involving random sets of
priors and conditionals, the user determines the probability that a given
ordering of.{ijshown by the examinee's responses reflects an expected
ordering. For efsﬁp1e, the order H3>Hp>Hy has a substantially smaller
posterior probability in reference to the expected sequence Hj>Hp>H3 than

does the order Hp>Hi>H3 . Figure 6 i1lustrates this approach at work in a

s)
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Figure 6
Sequence of testing - ranked probability model,
ranking of multiple hypotheses

Start J
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hypothetical testing s1tuat1§n.

At its heart the ranked probability method is a Bayesian procedure
with 3 loosening of terms. It assumes that the examiner can reasonably
generate an expected sequence for {H}; it also assumes that the elements of
{F}-are mutually exclusive. Of concern here is that the tables themselves
may be contingent in important ways on the original procedure which
produced them (Horbar, personal communications). Additionally, no account

is made of reliability of the evidence or of guessing behaviors and other

24
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nonrandom choices by the examinee. A great deal of work has been produced
| in the area of decision theory, but extensions of such methods to
situations involving incomplete knowledge are very scarce. An alternative
system which addresses incompleteness mathematically is found in a terse
monograph by Vesé]y and Vajda (1971). Further developments are essential.

Cascaded Inference Method

" In situations with conflicting evidence such as are likely to be
generated by a diagnostic test, it would be exceedingly helpful to have a
system of analysis which takes account of the conflict and in particular
the degree to which a given item response x relates to discrimination
among the set of diagnostic hypotheses {H} .

For obvious reasons, the problem of developing coiclusions from bits
of evidence -- some corroborating, others contradictory, some useful, other
useless. some fresh, others redundant -- has been of interest to research-
ers in jurisprudence. In the typical setting, a jury faces multiple and
deliberatily conflicting sources of information -- testimony by witnesses
for the prosecution and the defense, documentation, photography, statements
by court and counsel, and must develop a collective judgment as to a binary
{h} consisting of "gquilty, not guilty." The Bayesian system of mathematic-
al logic collapses under the demands of inferential reasoning required
here; for example:

...testimony requires [a jury member] to assess the
1ikelihood that the defendent was, in fact, at the
scene/time. This foundational stage involves evalua-
tion of the witness's credibility. Then, assuming the
defendant at the scene/time of the crime, one must
assess how strongly this event bears on the issue of
whether or not the defendent committed the crime.
Further difficulty is presented by intricate patterns
of reasoning which require the joint consideration of

current evidence with one or more previously given
piece of evidence (Schum & Martin, 1982, p.106).

24
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Schum draws on a Baconian approach to inductive reasoning explicated
by L. Jonathan Cohen (1977, 1982) which allows direct estimations of
probabilities for inference structures. Inference structures, which are
found in all forms of human reasoning, run as follows:

I have an assertion about x, which I read with some
degree of skepticism, and which 1 take as a refiection
on facts or events which in time I combine to assess
the "major or ultimate facts-at-issue.”

In a jury setting, a witness gives testimony about the crime that
occurred. It may consist of an’event which can be linked directly to guilt
or innocence of the defendent ("I saw him rob the lady"). Such first-order
relations of x to {h} are remarkable because they are so rare. Witness
testimony is more often of a fact thét may or may not be interpreted as
probative of events which may or may not be 1inked incompletely to guilt or
innocence ("I heard a scream and saw someone running”). These compound
cascades of inference to facts-at-issue are represented by extensions of

\

the 1ikelihood ratio \

p(x | Ho) [ P CX‘ {Xi»}, H) - P(x\{x-}’ HL)] + erl{X'}, H,)

<z oGl [psffeed, ) - roffd ) - RS

where {%} is the set of evidence accrued to date, {%+ is the portion of

that evidence in corroboration with the testimony to date, {X-} is the
portion of that evidence in contradiction to the testimony to date.

The cascaded 1ikelihood ratio has interesting properties, notably the
use of terms which speak to the contribution of x to the set of evidence

{i} pointing to Hy . The firct of these resides in the term which

contrasts the relation of x to (?tﬂi) minus the relation of x to

20
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(X-; H.;), in comparison to the relation of x to 6(4', Hj) minus the relation
of x to (%-; Hj). These elements relate the degree of specificity of x

to Hi . The selectivity of x to {3-,(H1 or Hji} , is an éxpression

—

of how distinctly x discriminates itself from the portion of {}} which is
contradicted by x . 1In more familiar language, the combinations formed
here address true positives, false positives, true negatives, and false
negatives. |

Figure 7 is a demonstration of cascaded inference at work. In the

Figure 7
Sequence of testing - cascaded inference model,
multiple hypotheses in {H}

Start
dminister next item or item set
x4 » I
. robat -
 Update No Response -£ Ye

Az Adlew ?

Chang€ item ectio

No Criteria Yes
? J" Evaluate response in 1ight of hypotheses
o 1,4
., . .
e i, X R, B, o
lowes Uit > A5 uppen Uinh Gppiny

Nody—& rule(s)

Seskp ; A inferemtial level
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figure, the individual elements of evidence are annotated by a subscript
indicating when the evidence is vauired. The full complexity of the
calculations is not shown.

The analogy of cascaded inf1uencé in jurisprudence to cascaded
inference in diagnostic testing can be seen in the following examp1e; A
student behaves in-a fashion scored by x , which while not to be taken as
a direct assertion of Hy , is seen as a symptom of Hy and thus an .
element of conf{rmation to {34-, H{}, and an element in disconfirmation to
{%—, Hi}. A student's erroneous response to a math test item 1s scored as
symptomatic of a logical misunderstanding of how to carry digits in two-
digit subtraction: the examiner includes this ~esponse in formiqg an over-
view of that student's pattern of responses across the test, but’weights
this response by

- the degree to whichhthe response is probative for Hy
- = the degree to which the response in consistent in X+ and{?, Har
- the degree to which the response {is contradictofy to X+ and{?,

H'l} |

Because of Baconian probability techniques, a relatively low-frequency
response may contribute effectively to discriminating among‘{H} , and to
directing the examiner to choosing a suitable item which may also have low
(though nonzero) hypothesis 1ikelihoods. |

The underlying logic of the cascaded 1nférence model and its
explication of inference structures appears to closely resemble the logic
and 1nfereﬁce stiructures used by Jjuries. By extrabo1ation, the same logic
and inference structures describe the task of an educational or
péycho1ogica1 diagnostician. At the present time, however the cascaded

inferences model has not been tried with educational test data.
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Comparison of techniques

The six analytic schemes presented thus far are chosen to reflect a
series of constrast in assumptions, prerequisites, processes, and
outcomes. The sequence portrayed above is an attempt to let each new
method address the faflings of the method”fhat preceded. To begin, Sixt]'s
modi fication of the sequential probability ratio test shows an accounting
for the probability of responding by chance. Choppin's catenating
technique incorporates conditicnal probabilities beyond the single p(Hy)

" used by Sixtl; these allow one to chain together the evidence of p(H1,ﬂj,l1;),

Fink and Galen's decision tree moves from unconditional priors to compound
conditional priors of the form p(X|A,B,...) where A,B... represent
elements of the context surrounding the ¢’ = :ation x ~-- that is, what
path was used to erive at fhis observation, what action was taken, and so
forth. The ranking method of Kmietowicz, put into practical tefms by
Horbar, is in theory a relaxation of requirements; where the decision tree
method requires a gfeat deal of hard evidence, the ranking methggvpan make
use of knowledge about unconditional prior probabilities that 1s\much less
completg. The inexact reasoning method of Shortliffe and Buchanan attempts
to portray both unconditbnal prior and conditional estimates of probability
in a system that also loosens the need for exact or strictly ordered data.
The cascaded inference method, developed from the work of Cohen by Schum
and colleagues, attempte to correct the restrictions of Bayesian
probabilistic reasoning, to allow hierarchical and nested hypothesis
evaluation. |

As noted at the outset, the variéﬁs techniques differ markedly in

their requisite assumptions and scope. Figure 8 presents a 1isting of
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considerations as to further assumptions of these methods. Looking solely
at the probability prequisites for each method, we find that they differ
markedly in their treatment of priors and conditionals. The’modified
binomial method relies on a single prior and not at all on conditionals.
The catenating method”re11es on three separate priors and not all on con-
ditionals. The decision tree method relies on a compound conditional but
not at all on unconditional priors. The ranking method starts from a
weakly-ordered set of priors to estimate conditionals. The cascaded
inference method utilizes both priors and conditionals.

| One important assumption concerns the independence of hypotheses --
are members of the set {H} mutually exclusive or can they overlap? Al ong'
the same lines, are observations x of the set of evidence-{x} allowed to
be partially or comptetely redundant, or must each observation be treated

uniquely? The process by which each method proceeds is Bayesian with the

notable exception of cascaded inference. (Further research is required as.

to how Baconian techniques may be brough to bear on the operation of the
first five methods othersze unmodified). At present, none of the methods
handles the possibility of both unreliable data and unreliable behavior oﬁ
the part of the examiner.

rwhat is most interesting from the point of view of diagnosis is how
each method enables one to evaluate the probative value of each piece of
evidence -- that 1s, what term or expression (or change in terms or
expressions) occurs at each step in the testing process such that the

examiner sees how the last observation acquired has affected the
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bl RN Figure 8
Comparison of probabilistic techniques:
prerequisites, processes, and outcomes
Technique: SPRT | Modified | Catenating | Decision | Ranking Inexact Cascaded
Binomial Tree . Reasoning inference
Reference: Wald | Sixtl Choppin Williams |[Kmietowicz | Shortliffe Schum
‘ Preregni sites
ncondi tional
priors
p(Hy) yes yes yes no yes | /
p(H;) no no yes no ranked gapproximated | yes ’
p(Hy) no no yes o no |
Conditionals ' ;
p(x|Hy) no no no no from kﬁppmximated 1 yes
p(le ) no no no no-, table yes
p(H x; no no no no no yes no :
p(x|A,B...) no no no yes no no no |
Independence \
{H} yes yes yes no . yes ? n
{X} yes yes yes yes no no no
Process.
“Probahility Bayesian| Bayesian Bayesian Bayesian Bayesian mixed Baconian
system Bayesian -
accounts for
reliability no no no no no no yes
guessing no yes yes no no no ?
Qutput A, Liy P(H:,3) ‘f’(“i.,)) plewng)| M3, M7, <6 | Ay
Stoppint Rule  [Adyyer | A2uper | p 2omstnt | p2umtnr | p2omsted | CF & artant | A 2 upper
{wer S lwer < lewer
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relative standing of competing hypotheses. The output of the modified
binomial technique is a set of 1ikelihood coefficients.du, one for each
hypothesis. The output of the catenating Bayesian method is a set of
probability estimates p(H) , one for each hypothesis, and a single term
expressing the degree of uncertainty about their relative standings, S&F .
The decision tree method outputs a probability estimate for every.branch of
the tree, allowing each hypothesis to be evaluated in context. The ranking
method outputs a simple probability estimate for the entire set of
hypotheses P(Rank), which shows the probability that the given ranking
reflects the initial estimate of ranking of competing hypotheses. The
inexact reasoning method outputs three separate terms per hypothesis at
each'step of the testing process; the last of these terms, Cﬁk R
expresses tha certainty with which the examiner can accebt each

hypothesis. The cascaded inference method outputs a 1ikelihood coefficient
for the hypotheses taken simply and taken jointly.

Four of the six methods are ‘shown 1in Figufe 9 as they step through a
simulated testing sessfon with very restrictive assumptions. For compar-
jsons the results of the SPRT method are also shown. The e minee is
presented only three choices for each of ten items; choice xy 1s a re-
flection of hypothesis H; , without guéssing. A simulated testing
session is used for which the examinee begins and ends with errors of type
1, but touches on other error types as well during the middle of the test-
ing sequence; the examinee's response sequence is {},2,3,3.2.1,2,1.1,13}
Initial values were set at .6 for p(xq)epHi , and .2 for p(Xj) —pHj
8¢ set at .25 ,fat .10 . For i1lustrative purposes, computations are
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Figure 9
Comparison of stopping using simulated data:
Step s 1 2 3 4 5 6 7 8 9 10
Response by examinee x| 1 2 3 3 2 1 2 1 1 1
SPRT1 Hy .00 1.50 .75 .37 .19
Ho 50 1.5 75 2.25 6.75 sty
Ae g 50 .25 .75 225 T3
Modified
binomial2 H1 2.20 1.76 1.41 1.13 0.9 1.98 1.59
Ho 0.80 1.76 1.41 1.12 2.48 1.98 4.36 s
A tof
" Hy 0.0 1.76 1.41 3.10 248 1.98 T
Catenating®  Hp 0.60 0.43 033 0.20 0.14 0.33 0.20 0.69 0.87 snp
P(H) Ho 0.20 0.43 0.33 0.20 0.4 0.33 0.60 0.23 T.I0
H3 0,20 0.14 0.33 0.68 0.43 0.33 0.20 0.07 0.03
S.E.F.b 0.4 0.43 0.48 0.47 0.43 0.48 0.43 0.34 0.20
Inexact
reasoning®  Hy 4 .01 =23 =37 -.48 -2 .27 23 -05 0
CF Hz ".40 "040 001 "023 ‘037 '013 "022 ‘008 ‘017 ‘018
L H3 -.40 -.64 .23 -.01 -,13 -27 =27 <31 -.33 -.34
Ranking® Weak 1222%| n/a’ n/a n/a 0,20 0.15 nfa  0.39 1.00 S
plrwi)  Strongide>3| n/a nfa n/a 0.18 0.18 n/a 0.15 U039 1.00 spep
1 wald (1947). See formula (1).
2 sixt] (1978). See forula (2).
3 Choppin in McArthur and Choppin (1983). See formula (3).
4 shanon entropy function (Gleser & Collen, 1977). See formula (4).
5 chortliffe and Buchanan (1975). See formula (5).
g Kmietowicz & Pearson (1981); Horbar (1983). See formula (6).

Not appropriate to calculate at this step.




-~ 30 -
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shown for the urmodified sequential probability ratio test, which concludes
step 5 with support for Hp . The modified binomial mechod concludes at
step 7 with support for Hz . The catenating Bayesian method concludes at
step 10 with support for Hy . The ranking method {shown using an
estimated order of Hy>Hp>H3 ) concludes at step 8 if the ranking is
assumed to be weak, step 10 1f'strong. The inexact reasoning method fail-
to conclude by step 10. (Because the remaining two methods, decision path
and cascaded inference, require many further initial assumptions, they are

not included in this 111ustrdtion).

Conclusion

That the separate technigues fail to agree on where to stop and which
competing hypothesis to support comes as ne surprise. There are numerous
reasons why agreement between techniques is uh]ikely. The initial
statistical prerequisites are numerous, and unevenly taken into account.
Unconditional priors do not have the same effect as simple conditionalis or
compound conditionals. The inclusion of each new term predictably affects
computations, such that in general, with all else held the same, the larger
number of priors and conditionals the longer it will take to reach the
stopping rule. Further complications are added if members of {H}or-{x} are
not independent, are not unambiguous or not properly targeted to the test,
and so forth.

Fischhoff and Beyth-Marom (1983) offer an extensive 1ist of pitfalls
of hypothesis evaluation:

- untestable hypotheses (absent, nonevaluatable, too complex,
nonexclusive)

- wrong component probabilities (misr2presented. miscalibrated,
nonconforming)
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- wrong prior probabilities (incomplete, fallacious, unrepresentative)
- wrong 1ikelihood ratias (distorted, Hy neglected, non-causal)

- incorrect aggregation (rules misapplied, values computed
extraneously)

- inadequate search of evidence (questions non-diagnostic,
inefficieént, incompiete)

- uncertain consequences (inadequate opportunity or resources to
pursue optimal cause of action)

In particular, a problem that confronts'a diagnostician after assessing the
available evidence from a test is how to convert such knowledge into
concrete actions.

"...Knowledge of the possible actions is essential in

determining what information to gather. Two...judges

who contemplated different actions, or evaluated their

consequences differently, might Justifiably formulate

different hypotheses and collect different data even

though they agreed on the interpretation of all

possible data (Fishhoff & Beyth-Marom, 1983, p.250).
None of the techniques portrayed here succeed in addressing all of their
concerns.

Sequence considerations, which contribute to the nonindependence of
{}(} , are taken into account only by the more complicated methods. None
explicitly treats the complex relationship between an examinee's ability,
1ikelihood of guessing, and performance. Ncne explicitly indicates to
which next item is optimal -- that is, optimality of branching continues to
depend on how close the members ofﬂfh} are to one another, how rapidly the
examiner will 1ike to converge on a single H, and how exhaustive a search
]

of (n)combinat1ons is desired. A very fast sequence can be derived if one
steps through a se1ect10n:{{ﬁ}f0r which all but one are known to be
exceedingly unlikely for the examinee. The same is true if one chooses

1iberal values for d andﬁ , or shapes the stopping rule to favor an

otherwise inconclusive outcome.
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Bayesfan analysis is only one of several systems which tre .t
probabilistic data. However, it has been the overwhelming system of choice
despite repeated objection if only because completely explicated
alternatives are rare, A system which allowed incompleteness,
nonmultiplicative Joint probabilities, and conditional nonindependence of
H would be preferable in the context of diagnostic testingl. The Baconian
system of Cohen'appears to meet these needs. For example, Cohen's system
does not include mathematical additivity, an inherent property of Bayesfian
techniques, so P(H{) = 0 does not mean that P(Hj) = 1. Conjunction of
~probabilities, which is multiplicative in Bayesian analysis, is handled by
taking the minimum p(H) = P(H A Hp A ...) = min(P(Hg)).

Rémaining for further study is how the rules of Baconian probability
manipulations might apply to the Bayesian techniques presented here. A
closely related 1ssue is whether the Bacorian system'is as sensitive to
the choice of prior probabilities as the exact Bayesian systems which are
shown above.

A further set of issues about statistics for diagnostic testing con-
cerns a facet of test design mentioned only fleetingly in this paper: the
relations of items to ability © . 1Indeed, only 1f the hypotheses are

“well-bounded and the choices.for test items are demonstrably associated

1 incompleteness: P(E|F4) = 0 and P(E|F=) = 0 are allowed;
in Bayesian analysis if P(E|F#) = 1, P(E|F=) must equal O.

Nonmultiplicative joint probabilities: the joint occur-
ence of two relatively rare events need not be less than
their separate occurence; in Bayesian analysis, soon enough
the multiplicative rule leaves any hypothesis p(H) supported
less than p = .5. /

Conditional nonindependence of~{H} : hypotheses may be evalua-
ted even if they overlap, or incompletely requested at each

stage in a hierarchy of hypotheses.
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with those hypotheses will a diagnostic inference system succeed. That is,
if the hypotheses available for assessment are unproductive (111-sui ted,
poorly framed, highly redundant, or otherwise off target), no amount of
statistical manipulation will rescue the examiner from a possibly erroneous
and certainly frustrating conclusion. Likewise, if the choices available
to an examinee are poor reflections of good hypotheses, the examinér will

also experience no closure at all, or potential diagnostic inaccuracies if

closure is reached. _ "
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