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Interpreting the Results of Diagnostic Testing:

Some Statistics for Testing in Real Time

by

David McArthur and Chih-Ping Chou

Introduction

Diagnostic testing in education, as in a variety of other fields,

confronts several challenges at once, among which are issues of test

interpretation and immediate modification of the test itself in response to

the interpretation. This paper explores a set of methods for administering

and evaluating a test in real-time, towards optimizing the examiner's

chances of isolating a persistent pattern of erroneous performance by a

student. What is expected from these methods? What does each method take

into account in the testing process? How do they compare with each other?

For well over half a century.the diagnostic value of interpreting a

student's choice of a particular wrong answer to a test item has been

appreciated (Pressey, 1926). Contemporary test specialists point to the

measurement strength inherent in formulating tests for which the item

distractors carry specific meanings for the appraisal of student abilities

and disabilities (Roid & Haladyna, 1982). The rapid development of comput-

er technology in the last decade has almost eliminated the practical re-

strictions on such testing. However, the overwhelming predilection con-

tinues in favor of correct/incorrect response scoring. The probative value

of a wrong response -- that is, its signifir-lce for or against one or

another of a set of plausible diagnostic hypotheses -- is totally obviated
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by conventional 0/1 scoring algorithms. Yet it is exactly that probative

value which is central to forming diagnostic appraisals.

What is being sought in diagnostic testing is some cohesive pattern of

wrong answers, a pattern of individual student responses which reveals a

characteristic signature or diagnostic profile. Diagnostic profiles are an

integral aspect of many psychological tests: a trained examiner probes

with increasing selectivity and specificity until a meaningful

psychological pattern appears. In recent work in projective testing, the

initial response of the examinee to a stimulus card is codified, the

ensuing inquiry is guided by estimates about the psychological dimensions

of the problem as shown by that codifying, and the examinee's responses to

that inquiry are used to refine and solidify one or another diagnostic

inference (McArthur & Roberts, 1982). This honing procedure proceeds in an

adaptive sequence based in part on technical guidelines, in part on the

examinee's consistency (or lack thereof) in responding to the stimulus, and

in part on the examiner's inferences of the strength of the present

evidence and the benefit of continued testing.

Under highly idealized circumstances, the disability of a student who

is engaging consistently in a certain misunderstanding of the test content

would be identified early in a testing sequence by the astute observer

(human or computer); from this point the test then could be tailored to

estimates not only of ability (e) but also (or perhaps instead) the

relative likelihoods of a set of competing diagnostic hypotheses in, H2,

H3..1. Items whose distr'ctors would assist in discriminating amonry the

plausible competing H's for that student's behavior could be administered

to the student in increasingly well-bounded subsets until one or another
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stopping rule is met. Briefly, the optimal stopping rule would be one

which maximizes the likelihood of a single primary diagnostic hypothesis,

supported by sufficient estimation strategies and by exactly the right

amount of evidence. The evidence is not so much as to be unnecessarily

reduviant, and not so little as to be insufficiently discriminatory, not so

d fficult that the student simply flounders and not so easy that the

examiner misses the problem altogether. This task is by its nature a

compound probabilistic undertaking, although the flow chart which

schematically illustrates this task is relatively simple (see Figure 1).

(Start

.1=M1.111,

Figure 1
Schematic flow of a generalized response - contingent test

Administer next item or item set

`Evaluate response in light of hypotheses
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The flow of a response-contingent test is governed by two implicit

prerequisites. The first is that a finite set of suitable hypotheses is

represented by the test. The hypotheses are appropriate to age-level,

intellectual functioning and motor capabilities of the target student. The

hypotheses are orderly, in the sense that they are either at a uniform

level of abstraction and mutually independent, or they fit an explicit

hierarchy or cascade and are mutually dependent upon one another. The

second implicit prerequisite is that a given item or set of items be

closely linked to at least two competing hypotheses. A response must be

able to be evaluated in terms which tie the response to one hypothesis but

mismatch another; the response cannot be considered probative unless these

links can be made at the time the response is given.

As the test is administered four decisions must be made in real-time.

I" Is the response probative? If not probative, further decisions

regarding discrimination among competing hypotheses are obviously moot;

questions must be asked as to the appropriateness of the item given, item

selection criteria, and for the original hypotheses, then another item or

item set readministered. 2) Is any one of the stopping rules in use met?

If a stopping rule applies, it signifies that the examiner has reached an

applicable criterion, so further testing is not warranted.' 3) Are there

remaining items to administer, or remaining hypotheses for which one or

more stopping rules have not been met? If either answer is negative, there

is nothing to be gained by further testing in the context of the present

1 This assumption holds if the examiner considers stopping rules

disjunctive. If stominig rules are considered conjunctive, then the
question is answered in the negative until all associated stopping rules

are met -- with, of course, a larger volume of responses and presumably,
though not necessarily, an increased discriminative power.
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test. The presence or absence of one or more supported hypotheses, and the

costs of continued testing with additional instruments, govern the

examiner's decision at this juncture. 4) Should item selection criteria be

changed? If no hypothesis is supported, and if a bank of items and

hypotheses remain, a decision must be made as to whether the sequence of

administration continues to be appropriate. Explicit branching can occur

here ;interactive tests use this decision point to change topics,, item

complexity, and/or task requirementsto enhance the expected likelihood of

hypothesis discrimination. It is this decision point which allows the

examiner to maximize inferences in regar:d to diagnostic hypotheses.

With very rare and specialized exceptions, diagnostic testing in

education seldom enables the test interpreter to build op_inferential

strategies with respect to individual test performance. Moreover, a

variety of theoretical and practical problems appear to have plagued devel-

opments along this line. Among the problems that arise in the pursuit of

interpretable patterns is the difficulty in obtaining diagnostic

performance clusters from raw data without a prior set of likelihood

estimates for a small and workable number of competing hypotheses.1

The problem of assigning meaning to cohesive patterns of response

reduces in its simplest form to two elements: limiting the number of

observations we need to take, and limiting the number of possible

1 The number of possible clusters m which can be made out of n

observations is a Stirling number:

CS: (-i)""j ("1 n
ri jeo

Unfortunately, even for a handful of observations, this term can be
exceedingly large.
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meaningful clusters into which we will place observations. A test ought to

provide enough range to evaluate fairly a highly varied set of possible

examinees, without building such a long test that any of the protagonists

-- examinee, test administrator, test interpreter, or test designer -- is

exhausted by the process. The diagnostic process ought to involve checking

in real-time as to whether any payoff remains for administering more test

items. Is the performanre of the examinee at this moment in time

sufficient in quantity and "cohesion" for us to draw a suitable diagnostic

nference?

A simple stopping rule for diagnosis takes the fallowing form: go no

further because any one of several probabilistic boundaries is met. Among

the set of allowable hypotheses, one diagnostic hypothesis has emerged in

the "lead." One possibility for limiting observations and limiting

clusters simultaneously is to avoid that Stirling number by picking an easy

criterion, a low threshold of confidence, and a small number of allowable

hypotheses. Alternatively, we can limit the number of possible clusters

for diagnosis to exactly two, so students must select one option or the

other; the stopping rule becomes: go no further when one hypothesis

obtains a simple majority of examinee responses.

Foremost among the difficulties of using the stopping rule approach to

limit observations and clusters is the extreme paucity of situations in

educational or psychological testing for which a strict parsimony of

hypotheses can be formulated. Ahother is the reasonable assurance that

some students will guess some of the time on some items. Yet another is

the degree of confidence one places in a single response as a marker of a

general pattern of responses; a test item, after all, is seldom adequate as

()
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a mirror of a student's true understanding. Other difficulties arise in

regard to assessment of the several probabilities that contribute to the

flow of the test: they include problems with probabilistic comparison

baserates, fuzziness in the Bayesian priors, and inherent objections to

traditional Bayesian probabilistic analysis itself.

None of the problems stated here is insurmountable. Theoretically

useful probabilistic algorithms for diagnostic inference are found in

several professions. This paper sets out six algorithms which have bearing

on the interpretation of response patterns and diagnosis. Two are drawn

from probabilistic methods in educational testing -- Sixti's modified

binomial and Choppin's catenating Bayesian methods; two are drawn from

recent developments in medical diagnostic studies -- Fink and Galen's

decision path analysis and Shortliffe's inexact reasoning; one rests in

decision theoretic analysis -- Kmietowicz's ranked probabilities; and one

builds on a Baconian probabilistic appraisal -- Schum's "cascaded

inference," which has been studied primarily in the context of decision

making in jurisprudence. Each of the six methods will be placed into a

common notation, and a comparison made between the advantages and

disadvantages of each, with Special attention to the restrictive nature of

prerequisites and the relative strength of the stopping rules. Not all of

these approaches are equivalent in scope, nor do they have analogous

assumptions about the patterns which are being isolated froM the raw data.

It is also important to note at the onset that the stronger inferential

procedures inevitably impose more restrictive conditions on the user.

1 0



ESSENTIALS FOR PROBABILISTIC EVALUATION OF DIAGNOSES

In the present discussion, the following terms are use throughout:

the set of alternative hypotheses H2, H3...HmJ (includes

Hcorrect)

Hi the ith hypothesis of {H} , contained in one or more
alternatives for one or more items

P(Hi) the prior probability of Hi

the examinee's responselat a given step s in tne testing

sequence (generally a response to a single item which
represents a choice of Hi, from the set of (NJ),

those hypotheses shown to the examinee in an item but not
selected

xs

Hi

Hj, those hypotheses not shown t'.) the examinee in the item, so not
selectable at this step

k the number of hypotheses contained in an item's answer choices

m the number of hypotheses in all (m Z k)

n the number of attempts made by the examinee (n / x)

Diagnostic testing involves several key terms made up of the above

entries.. The general form of the stopping rule is the following:

At a given step s in the sequence of the test, does the accumulated

evidence fX4 which suggests Hi exceed the accumulated evidence f.x.:1

which relates instead to Hi and q7 The accumulation of evidence on

both sides is treated probabilistically, and the likelihood ratio that

results from dividing one into the other is assessed against an allowable

lower and upper limit. Wald's (1947) sequential probability ratio test

(SPRT) is the earliest treatment of this stopping question:

A lc f (IX11/0

P ({X1111j)

11

hwe wtre< A < uma



A number )f studies have applied Wald's (1947) sequential probability

ratio test to the task of test individualization (cf. Ferguson, 1969,

1973). The SPRT, predicated on Bayesian methodology, is well-understood

but clearly does not begin to account for the variety of factors which

contribute to examinee performance.

Gorry and Barnett (1968) showed that sequential diagnostic testing

involves a compounding of conditional probabilities as follows:

xr(x115 Ail()) P(11j1{%9

where (1 implies a logical "and" using the entire set behaviors

acquired to date 4) as evidence. To be successful, these approaches

require extensive knowledge of prior conditionals and interrelationships.

They are fairly impractical except in highly controlled environments. The

various techniques which follow are to be viewed as approximations of these

data-intensive methods.

TECHNIQUES FROM EDUCATIONAL RESEARCH

Modified Binomial Method

A decade agoaGerman educational researcher published a paper on

automated test administration which included an application of Bayesian

probabilistic analysis with correction for guessing. Sixtl (1974)

presented a formula for a stopping rule which acknowledges the roles of

item answer alternatives, and is readily identified as a classical Bayesian

approach to forming a likehood function for a particular hypothesis.
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Sixtl's likelihood ratio, when modified to cover each diagnostic hypotheses

of a set of hypotheses, reads asefollows:

k

Sixtl's approach involves selection of a Bayesian prior for each

diagnostic hypothesis, involing a simple correction for guessing, and

construction in real-time of the likelihood functiond& for the hypothesis

to fit the stopping rule

< A <
- at

- p

where 44 and pare conventional measures of significance and power,

respectively. Figure 2 presents a schematic illustration of this method.

3



Figure 2

Sequential testing - binomial model,

multiple hypotheses in N.
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Immediate objections can be made to Sixtl's approach. First, the

model of guessing is simplistic; it allows only a constant term for a

function that is unlikely to be stable across items and respondents.

Second, the fixed nature of the Bayesian priors must be chosen to reflect

fk) -without-regard to context or sequence effects. Third, Sixtl's

procedure fails to use all of the information gained at a given moment to

form an updated chain of hypothesis evaluation.

1 4
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Catenating Bayesian Method

A sequential system for response contingent diagnostic testing was

proposed by Choppin (McArthur & Choppin,1983) using both Bayesian priors

and conditionals to form a continuously updated probability assessments for

diagnostic hypotheses in real time. Choppin's approach, modified slightly

to reflect iterative cycles through {H}, is:

(h r )

{141 p P I tl)
j

(3)

The computation is predicated on a catenating sequencing of conditionals:

initially it requires priors for Xi and Xj assuming Hi is true. Each

is updated upon the examinee's next selection, such that Choppin's /7 in

Bayesian terms is a catenating conditional ratio appraisal. Use of the

Shannon entropy function (G,leser11177) , which in this context is

I. tsi 1'01,
(4)

simplifies the output of the catenating method by concluding at each step

with a single expression for the uncertainty remaining in the set of

proportions. The largest decline in S.E.F. denotes an optimal stopping

for the sequence; the largest p(H) at that step is taken as an optimal H

for that respondent. Figure 3 shows this procedure ac work.
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Figure 3

Sequential of testing -- catenated Basian model,
multiple hypotheses in

Administer next item or item set
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Evaluate response in light of hypotheses
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An inclusive conditional probability r(J') represents the

probability that selection i would be made when Hi is true, a seletion

which could be made for a wide variety of reasons. One immediate objection

to Choppin's ? is that the catenation is sensitive to the choice of the

separate initial priors. A subtle but potentially damaging argument is

also to be found in the catenation and recomputation of conditionals under

1410, when an alternative hypothesis 4 is not represented among the
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item distractors. Unfortunately, on both counts it is the Bayesian system

of probabilistic assessment itself which forces this to occur.

TECHNIQUES FOR DIAGNOSTIC RESEARCH FROM OTHER AREAS

Decision Path Method

At any point beyond the entry point in a sequential test, an

additional set of conditional probabilities which are potentially important

are required. Not only are there conditional interrelationships among the

biand Da , but also among the paths which ,led up to the particular step

in the test sequence and the action-, taken by the examiner at each step.

An applied extension of Bayesian analysis to decision paths is found in the

field of research in diagnostic medicine The decision tree analysis

illustrated by Fink and Galen (1981) invokes a Bayesian framework operating

with compound conditionals:

Lf:(/z4I x '[Ali r414) r {A}, PA.)

z p (1!ai I X LA j f Patti 14) p I {ale extilc )

where IN) s the hypotheses allowable within a given situation, {A'} a the

actions to be taken within the situation, Pathk s the path from preceding

selections which led to the current condition, and A the result of

selecting a particular action. This result leads to further data which

then allows refinement of the probability estimate for Hi . The multiple

conditioning terms lead to extensively annotated decision trees, for which

information is available about the relative values of selecting one option

1.7
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over another in terms which includes the sequence of those options, their

cost, their efficiency, and their measurement certainty. Figure 4

illustrates the calculation for the decision tree method schematically.

Figure 4
Sequence of testing - decision tree model,

multiple hypotheses

Change ite
No -----Cri

election
is

ive

ponse

lEvaluate reause in light of hypotheses

soe4*(0*.tly Ireactie&

An obvious implication of Bayesian path analysis is that, wher given

fully elaborated baserates, a researcher can construct a fully elaborated

decision tree which includes each possible diagnosis, all possible

interactions among diagnoses, and cost-efficiency assessments. An obvious



hitch in applying the system to educational testing is the profound lack of

reliable baserate data for all but the least complex diagnostic hypotheses

likely to be explored. Additionally, distinctions between various paths

may be far less profound in the context of educational testing than in

diagnostic medicine.

Inexact Reasoning Method

In a variety of settings, evidence about prior probabilities is

relatively limited. If the priors can be estimated, we can draw on a

system for hypothesis evaluation called the method of inexact reasoning,

which accounts for the lack of exactitude in the establishment of priors.

It was developed by Shortliffe and Buchanan (1975) in the context of the

well-known MYCIN automated medical diagnosis program. Its prime concern is

with the strength of evidence, rather than a perfect match between evidence

or behavior and hypotheses. Three separate terms are required: one a

measure of belief and another a measure of disbelief, expressed as

conditional statements, plus a term which reflects the difference between

belief and disbelief:

make

t"" rOtA, tlfhwilAft .

APIL Z
roto.0;

046% [ 0.4;( A) ,
thin Ci,o] pLik,)

F4- pi
0.

In many ways the notation appears to more closely reflect the psychological

mindsets and inductive decision processes used by practicing clinicans than

1:1
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the preceding methods, which are formally more em.ct (an important point

discussed later in this paper).

Originally this model was put forward as a system of approximating

conditional probabilities, suitable for circumstances characterized by data

which tends to be subjective rather than objective. Since very few of the

natural sciences have exact data in the strict sense required by Bayesian

conditionals, the reasonableness of pursuing approximations seems assured.

Moreover, many outcomes of a decision process are not even at the same

level of rough granularity as the data used in that process; that is, the

number of remedial options available to an examiner are fewer than the

number of diagnostic clusters for performance of an examinee. Thus an

approximation, if adequate, can provide completely sufficient guidance to

the examiner for the purposes at hand. At minimum the approximation should

provide a basis for corroborating human judgments of logical premises,

actions, and consequences. Indeed, the model was incorporated into a

highly regarded artificial intelligence approach to medical decision making

which itself has seen extensive development and generalization. Figure 5

illustrates this approach at work.
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Figure 5

Sequence of testing - inexact reasoning model,

multiple hypotheses infH)
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Problems with the approach are unavoidable. Adams (1976) elaborated a

series of theoretical objections which focus on the direct relations -- not

immediatel, y;obvious -- between MB/ MD, CF, and conventional Bayesian

solutions to rially adjusted probabilities. Again, because of Bayesian

logic, one can r idly arrive by 4omputation at untenably small conditional

probabilities even hen intuitive/logic suggests otherwise. The strongest

theoretical failing lies in the assumption of independence of N., any

interdependence goes unaccounted in MB, MD, CF. As CF constitutes a
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weighting factor its role in practical applications of MB and MD is

multiplicative, but, Adams claims, "not true in general."

The fact that in trying to create an alternative to
probability theory or reasoning Shortliffe and
Buchanan duplicated the use of standard theory
demonstrates the difficulty of creating a useful and
internally consistent system which is not isomorphic
to a portion of probability theory (p. 185).

Ranked Probability Method

At the lowest end of the spectrum in terms of conditional complexity

is a method which requires no more than weakly ordered priors of the form

p(Hi) > p(Hi + 1). In a variety of settings the researcher labors with

unknown (and potentially unknowable) data about which only a minimum degree

of information can be stated with confidence. In such conditions of

incomplete knowledge, Kmietowicz and Pearson (1981) have spelled out a

decision theory, and Horbar (1983) has illustrated an application to

medical diagnosis. Using Horbar's approach, we can state the following:

itANK041: p (x 1 141) p (IL 1112.) 1. p(x1143). 1411"`k "646'5 to
> thin malt

From a series of tables, generated by a procedure involving random sets of

priors and conditionals, the user determines the probability that a given

ordering of {H3 shown by the examinee's responses reflects an expected

ordering. For example, the order H3>H2>H1 has a substantially smaller

posterior probability in reference to the expected sequence H1>H2>H3 than

does the order H2>H1>H3 . Figure 6 illustrates this approach at work in a



111111MMINIIIIMMIMP .

Start

- 20 -

Figure 6
Sequence of testing - ranked probability model,

ranking of multiple hypotheses
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hypothetical testing situation.

At its heart the ranked probability method is a Bayesian procedure

with a loosening of terms. It assumes that the examiner can reasonably

generate an expected sequence forl:q; it also assumes that the elements of

iNlare mutually exclusive. Of concern here is that the tables themselves

way be contingent in important ways on the original procedure which

produced them (Horbar, personal communications). Additionally, no account

is made of reliability of the evidence or of guessing behaviors and other

23
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nonrandom choices by the examinee. A great deal of work has been produced

in the area of decision theory, but extensions of such methods to

situations involving incomplete knowledge are very scarce. An alternative

system which addresses incompleteness mathematically is found in a terse

monograph by Vesely and Vajda (1971). Further developments are essential.

Cascaded Inference Method

In situations with conflicting evidence such as are likely to be

generated by a diagnostic test, it would be exceedingly helpful to have a

system of analysis which takes account of the conflict and in particular

the degree to which a given item response x relates to discrimination

among the set of diagnostic hypotheses {H) .

For obvious reasons, the problem of developing cokzlusions from bits

of evidence -- some corroborating, others contradictory, some useful, other

useless, some fresh, others redundant -- has been of interest to research-

ers in jurisprudence. In the typical setting, a jury faces multiple and

deliberately conflicting sources of information -- testimony by witnesses

for the prosecution and the defense, documentation, photography, statements

by court and counsel, and must develop a collective judgment as to a binary

fH) consisting of "guilty, not guilty." The Bayesian system of mathematic-

al logic collapses under the demands of inferential reasoning required

here; for example:

...testimony requires [a jury member] to assess the
likelihood that the defendent was, in fact, at the

scene/time. This foundational stage involves evalua-

tion of the witness's credibility. Then, assuming the
defendant at the scene/time of the crime, one must

assess how strongly this event bears on the issue of

whether or not the defendent committed the crime.
Further difficulty is presented by intricate patterns
of reasoning which require the joint consideration of

current evidence with one or more previously given

piece of evidence (Schum & Martin, 1982, p.106).

24
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Schum draws on a Baconian approach to inductive reasoning explicated

by L. Jonathan Cohen (1977, 1982) which allows direct estimations of

probabilities for inference structures. Inference structures, which are

found in all forms of human reasoning, run as follows:

I have an assertion about x, which I read with some

degree of skepticism, and which I take as a reflection

on facts or events which in time I combine to assess

the "major or ultimate facts-at-issue."

In a jury setting, a witness gives testimony about the crime that

occurred. It may consist of an event which can be linked directly to guilt

or innocence of the defendent ("I saw him rob the lady"). Such first-order

relations of x to fill are remarkable because they are so rare. Witness

testimony is more often of a fact that may or may not be interpreted as

probative of events which may or may not be linked incompletely to guilt or

innocence ("I heard a scream and saw someone running"). These compound

cascades of inference to facts-at-issue are represented by extensions of

the likelihood ratio

p(x 114;.,) P6(1 fx+), 142) - p(x1fx.-},14,;)) 4 FC% II-X.41 Hi)

A
c(4,1 p(x I 19 { P (x1fx+1, kb) - r(4-1, 14,p) 4 pot 1{9, 14i)

where fX1 is the set of evidence accrued to date, .EC4 is the portion of

that evidence in corroboration with the testimony to date, (X1 is the

portion of that evidence in contradiction to the testimony to date.

The cascaded likelihood ratio has interesting properties, notably the

use of terms which speak to the contribution of x to the set of evidence

fil pointing to Hi . The first of these resides in the term which

contrasts the relation of x to (XiNi) minus the relation of x to
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()(.7 Hi), in comparison to the relation of x to ()(4., Hj) minus the relation

of x to ((..., Hj). These elements relate the degree of specificity of x

to Hi . The selectivity of x to fi,(Hi or HA is an expression

of how distinctly x discriminates itself from the portion of ,(X} which is

contradicted by x . In more familiar language, the combinations formed

here address true positives, false positives, true negatives, and false

negatives.

Figure 7 is a demonstration of cascaded inference at work. In the

Figure 7

Sequence of testing - cascaded inference model,

multiple hypotheses in [HJ

dminister next item or item set
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figure, the individual elements of evidence are annotated by a subscript

indicating when the evidence is acquired. The full complexity of the

calculations is not shown.

The analogy of cascaded influence in Jurisprudence to cascaded

inference in diagnostic testing can be seen in the following example. A

student behaves in a fashion scored by x , which while not to be taken as

a direct assertion of Hi , is seen as a symptom of Hi and thus an

element of confirmation to IX+, Hill and an element in disconfirmation to

IX, HI A student's erroneous response to a math test item is scored as

symptomatic of a logical misunderstanding of how to carry digits in two-

dgit subtraction: the examiner includes this -esponse in forming an over-

view of that student's pattern of responses across the test, but weights

this response by

- the degree to which the response is probative for Hi

- the degree to which the response in consistent in X+ and1X,

- the degree to which the response is contradictory to X+ andf,

Hi)
Because of Baconian probability techniques, a relatively low-frequency

response may contribute effectively to discriminating among {HI , and to

directing the examiner to choosing a suitable item which may also have low

(though nonzero) hypothesis likelihoods.

The underlying logic of the cascaded inference model and its

explication of inference structures appears to closely resemble the logic

and inference structures used by juries. By extrapolation, the same logic

and inference structures describe the task of an educational or

psychological diagnostician. At the present time, however the cascaded

inferences model has not been tried with educational test data.

27



- 25 -

Comparison of techniques

The six analytic schemes presented thus far are chosen to reflect a

series of constrast in assumptions, prerequisites, processes, and

outcomes. The sequence portrayed above is an attempt to let each new

method address the failings of the method'that preceded. To begin, Sixtl's

modification of the sequential probability ratio test shows an accounting

fot the probability of responding by chance. Choppin's catenating

technique incorporates conditional probabilities beyond the single p(Hi)

used by Sixtl; these allow one to chain together the evidence of p(HilHititp.

Fink and Galen's decision tree moves from unconditional priors to compound

conditional priors of the form p(XIA,B,...) where A,B... represent

elements of the context surrounding the (1' ,ation x -- that is, what

path was used to arrive at this observation, what action was taken, and so

forth. The ranking method of Kmietowicz, put into practical terms by

Horbar, is in theory a relaxation of requirements; where the decision tree

method requires a great deal of hard evidence, the ranking metho5,/can make

use of knowledge about unconditional prior probabilities that is much less

complete. The inexact reasoning method of Shortliffe and Buchanan attempts

to portray both unconditional prior and conditional estimates of probability

in a system that also loosens the need for exact or strictly ordered data.

The cascaded inference method, developed from the work of Cohen by Schum

and colleagues, attempts to correct the restrictions of Bayesian

probabilistic reasoning, to allow hierarchical and nested hypothesis

evaluation.

As noted at the outset, the various techniques differ markedly in

their requisite assumptions and scope. Figure 8 presents a listing of

28
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considerations as to further assumptions of these methods. Looking solely

at the probability prequisites for each method, we find that they differ

markedly in their treatment of priors and conditionals. The modified

binomial method relies on a single prior and not at all on conditionals.

The catenating method relies on three separate priors.and not all on con-

ditionals. The decision tree method relies on a compound conditional but

not at all on unconditional priors. The ranking method starts from a

weakly-ordered set of priors to estimate conditionals. The cascaded

inference method utilizes both priors and conditionals.

One important assumption concerns the independence of hypotheses --

are members of the setflil mutually exclusive or can they overlap? Along

the same lines, are observations x of the set of evidence {X} allowed to

be partially or completely redundant, or must each observation be treated

uniquely? The process by which each method proceeds is Bayesian with the

notable exception of cascaded inference. (Further research is required as

to how Baconian techniques may be brough to bear on the operation of the

first five methods otherwise unmodified). At present, none of the methods

handles the possibility of both unreliable data and unreliable beh:vior on

the part of the examiner.

What is most interesting from the point of view of diagnosis is how

each method enables one to evaluate the probative value of each piece of

evidence -- that is, what term or expression (or change in terms or

expressions) occurs at each step in the testing process such that the

examiner sees how the last observation acquired has affected the

29



u 6..0; 40 Figure 8
Comparison of probabilistictic techni ques:

prerequisites, processes, and outcomes

Technique:

Reference:

SPRT

Wald

MOdified

Binomial

Sixtl

Catenating

Choppin

Decision

Tree

Williams

Ranking

Kmietowicz

Inexact

Reasoning

Shortliffe

yes yes yes no

4PretrIlaggal

priors

p(Hi)

OM no no yes no ranked pproximated

p(Hj) no no. yes no

Conditionals

p(x1Hi) no no no no from pproximated

p(xH1) no no no no-1 table

p(HI4 no no no no no yes

p(xIA,B... no no no yes no no

Independence

{ll} yes yes yes no yes ?

V 1
yes yes yes yes no no

Process

Probability

system

accounts for

reliability

Bayesian

no

Bayesian

no

Bayesian

no

Bayesian

no

Bayesian

no

mixed

Bayesian

no

guessing no yes yes no no no

221Eat LA di: 4 r(N,:1\) ellAi) r(tAgl* AB AAP, c-F
Iw la il

Stoipir Rul e A) tyw Akivire fIce.stm4t p capliaa p 1 *lames CF i cast
Ciwtr

3 0

Cascaded

inference

Schurn

yes

yes

no

yes

yes

no

no

no

no

Baconian

yes

k tvr
6wor



-28-

relative standing of competing hypotheses. The output of the modified

binomial technique is a set of likelihood coefficients4, one for each

hypothesis. The output of the catenating Bayesian method is a set of

probability estimates p(H) , one for each hypothesis, and a single term

expressing the degree of uncertainty about their relative standings, SEF.

The decision tree method outputs a probability estimate for every branch of

the tree, allowing each hypothesis to be evaluated in context. The ranking

method outputs a simple probability estimate for the entire set of

hypotheses P(1..04), which shows the probability that the given ranking

reflects the initial estimate of ranking of competing hypotheses. The

inexact reasoning method outputs three separate terms per hypothesis at

each step of the testing process; the last of these terms, CFI,

expresses the certainty with which the examiner can accept each

hypothesis. The cascaded inference method outputs a likelihood coefficient

for the hypotheses taken simply and taken jointly.

Four of the six methods are'shown in Figure 9 as they step through a

simulated testing session with very restrictive assumptions. For compar-

isons the results of the SPRT method are also shown. The e' minee is

presented only three choices for each of ten items; choice xi is a re-

flection of hypothesis Hi , without guessing. A simulated testing

session is used for which the examinee begins and ends with errors of type

1, but touches on other error types as well during the middle of the test-

ing sequence; the examinee's response sequence is i1,2,3,3,2,1,2,1,1,11.i

Initial values were set at .6 for p(xi).......0Hi , and .2 for p(Xi)

41i set at .25 ,/fat .10 . For illustrative purposes, computations are
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Figure 9
Comparison of stopping using simulated data:

Step s

Response by examinee x

1

1

2

2

3

3

4

3

5

2

6

1

7 8

2 1

9 10

1 1

SPRT1 H1 3.00 1.50 .75 .37 .19

JI0 /..1.2

H3

.50

.50

1.50

.25

.75

.75

2.25

2.25

6.75 Mse

177

Modified

binomial2 H1 2.20 1.76 1.41 1.13 0.90 1.98 1.59

Ao HZ
H3

0.80

0.80

1.76

1.76

1.41

1.41

1.12

3.10

2.48

2.48

1.98

1.98

4.36 sill

-1":7

Catenating3 Hi 0.60 0.43 0.33 0.20 0.14 0.33 0.20 0.69 0.87 34,

P(4)
/112

n3

0.20

0.20

0.43
0.14

0.33

0.33

0.20

0.68

0.43

0.43

0.33
0.33

0.60 N 0.23

0.20 0.07

0.10

0.03

S.E.F.4 0.41 0.43 0.48 0.47 0.43 0.48 0.43 0.34 0.20

Inexact

reasonin? Hi .41 .01 -.23 -.37 -.48 -.22 -.27 -.23 -.05 0

OF
*

HZ
H3

-.40

-.40

-.40

-.64

.01

.23

-.23

-.01

-.37

-,13

-.13

-,27

-.22 -.08

-.27 -.31

-.17 -.18

-.33 -.34

Rankine Weak 1210 n/a7 n/a n/a 0.20 0.15 n/a 0.39 1.00 SIN,

0,40 Strong0u>3 n/a n/a n/a 0.18 0.18 n/a 0.15 TN 1.00 Ake

1 Wald (1947). See formula (1).

2 Sixtl (1974). See formula (2).

3 Choppin in McArthur and Choppin (1983). See formula (3).

Shanon entropy function (Gleser & Collen, 19771. See formula (4).

3 Shortliffe and Buchanan (1975). See formula (5).

6 Kmietowicz & Pearson (1981); Horbar (1983). See formula (6).

7 Not appropriate to calculate at this step.
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shown for the unmodified sequential probability ratio test, which concludes

step 5 with support for H2 . The modified binomial method concludes at

step 7 with support for H2 . The catenating Bayesian method concludes at

step 10 with support for H1 . The ranking method (shown using an

estimated order of 111>H2>H3 ) concludes at step 8 if the ranking is

assumed to be weak, step 10 if strong. The inexact reasoning method fail

to conclude by step 10. (Because the remaining two methods, decision path

and cascaded inference, require many further initial assumptions, they are

not included in this illustration).

Conclusion

That the separate techniques fail to agree on where to stop and which

competing hypothesis to support comes as no surprise. There are numerous

reasons why agreement between techniques is unlikely. The initial

statistical prerequisites are numerous, and unevenly taken into account.

Unconditional priors do not have the same effect as simple conditionals or

compound conditionals. The inclusion of each new term predictably affects

computations, such that in general, with all else held the same, the larger

number of priors and conditionals the longer it will take to reach the

stopping rule. Further complications are added if members of lion@ are

not independent, are not unambiguous or not properly targeted to the test,

and so forth.

Fischhoff and Beyth-Marom (1983) offer an extensive list of pitfalls

of hypothesis evaluation:

untestable hypotheses (absent, nonevaluatable, too complex,

nonexclusive)

- wrong component probabilities (misrlpresented. miscalibrated,

nonconforming)

'3 3
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- wrong prior probabilities (incomplete, fallacious, unrepresentative)

- wrong likelihood ratios (distorted, H neglected, non-causal)

- incorrect aggregation (rules misapplied, values computed

extraneously)

- inadequate search of evidence (questions non-diagnostic,

inefficient, incomplete)

- uncertain consequences (inadequate opportunity or resources to

pursue optimal cause of action)

In particular, a problem that confronts a diagnostician after assessing the

available evidence from a test is how to convert such knowledge into

concrete actions.

"...Knowledge of the possible actions is essential in
determining what information to lather. Two...judges

who contemplated different actions, or evaluated their

consequences differently, might justifiably formulate
different hypotheses and collect different data even
though they agreed on the interpretation of all

possible data (Fishhoff & Beyth-Marom, 1983, p.250).

None of the techniques portrayed here succeed in addressing all of their

concerns.

Sequence considerations, which contribute to the nonindependence of

()(), are taken into account only by the more complicated methods. None

explicitly treats the complex relationship between an examinee's ability,

likelihood of guessing, and performance. Ncne explicitly indicates to

which next item is optimal -- that is, optimality of branching continues to

depend on how close the members of {H} are to one another, how rapidly the

examiner will like to converge on a single 11, and how exhaustive a search

of (;)combinations is desired. A very fast sequence can be derived if one

steps through a selection offififor which all but one are known to be

exceedingly unlikely for the examinee. The same is true if one chooses

liberal values for A and fi , or shapes the stopping rule to favor an

otherwise inconclusive outcome.

3,1
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Bayesian analysis is only one of several systems which tr4',t

probabilistic data.. However, it 'has been the overwhelming system of choice

despite repeated objection if only because completely explicated

alternatives are rare. A system which allowed incompleteness,

nonmultiplicative joint probabilities, and conditional nonindependence of

H would be preferable in the context of diagnostic testingl. The Baconian

system of Cohen appears to meet these needs. For example, Cohen's system

does not include mathematical additivity, an. inherent property of Bayesian

techniques, so P(Hi) al 0 does not mean that P(Hi) * 1. Conjunction of

probabilities, which is'multiplicative in Bayesian analysis, is handled by

taking the minimum p(H) = P(Hilt H2 11 ...) min(P(Hk)).

Remaining for further study is how the rules of Baconian probability

manipulations might apply to the Bayesian techniques presented here. A

closely related issue is whether the Baconian system is as sensitive to

the choice of prior probabilities as the exact Bayesian systems which are

shown above.

A further set of issues about statistics for diagnostic testing con-

cerns a fket of test design mentioned only fleetingly in this paper: the

relations of items to ability i) . Indeed, only if the hypotheses are

well-bounded and the choices.for test items are demonstrably associated

1 Incompleteness: P(EIF+) n 0 and P(EIF0.) * 0 are allowed;

in Bayesian analysis if P(E1F4.) 1, P(E1F0.) must equal 0.

Nonmultiplicative joint probabilities: the Joint occur-

ence of two relatively rare events need not be less than

their separate occurence; in Bayesian analysis, soon enough

the multiplicative rule leaves any hypothesis p(H) supported

less than p = .5.

Conditional nonindependence of {H} : hypotheses may be evalua-

ted even if they overlap, or incompletely requested at each

stage in a hierarchy of hypotheses.



-33-

with those hypotheses will a diagnostic inference system succeed. That is,

if the hypotheses available for assessment are unproductive (ill-suited,

poorly framed, highly redundant, or otherwise off target), no amount of

statistical manipulation will rescue the examiner from a possibly erroneous

and certainly frustrating conclusion. Likewise, if the choices available

to an examinee are poor reflections of good hypotheses, the examiner will

also experience no closure at all, or potential diagnostic inaccuracies if

closure is reached.

f;
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