
ED 252 410

AUTHOR
TITLE

INSTITUTION

SPONS AGENCY
REPORT NO
PUB DATE
NOTE
PUB TYPE

EDRS PRICE
DESCRIPTORS

IDENTIFIERS

DOCUMENT RESUME

SE 045 332

Riley, Mary S.; And Others
Development of Children's Problem-Solving Ability in
Arithmetic.
Pittsburgh Univ., Pa. Learning Research and
Development Center.
National Inst. of Education (ED), Washington, DC.
LRDC-1984/37
84
47p.
Reports - Research/Technical (143)

MF01/PCO2 Plus Postage.
*Cognitive Processes; Educational Research;
Elementary Secondary Education; *Mathematics
Education; *Mathematics Instruction; *Problem
Solving; *Research Utilization
*Mathematics Education Research

ABSTRALT
This chapter from a longer work concerns the ability

of children to solve arithmetic word problems. The studies reviewed
suggest that, with age, children's improved ability to solve word
problems primarily involves an increase in the complexity of
conceptual knowledge required to understand the situations described
in those problems. Considered in the various sections are conceptual
and procedural knowledge in problem solving, approaches to analyzing
knowledge in problem solving, a review of research on children's word
problem solving, a theory of the knowledge required to solve wort
problems, the locus of improvement in problem-solving skill, stages
of conceptual knowledge, related analysis of conceptual understanding
in problem solving, and a summary discussion. (MNS)

******u****************************************************************
Reproductions supplied by EDRS are the best that can be made

from the original document.
***********************************************************************



o LEARNING RESEARCH AND DEVELOPMENT CENTER

1984/37

141
1

CIV

DEVELOPMENT OF CHILDREN'S
PROBLEMSOLVING ABILITY IN ARITHMETIC

MARY S. RILEY, JAMES G. OREENO, AND JOAN I. HELLER

U.S. DEPARTMENT OF EDUCATION
NATIONAL INSTITUTE OF EDUCATION

EDUCA I IAA( UT SUUHCI S Ina orimn non,
ict N f E if it MCI

This clot iiimirif has twom hiptocliit.fiff ds

III eivfif from flir prison cir 1)41am/dhoti

oritlinisling If
Mihoi I. hangps have 111.0f1 Made 1(1 imptove

rfproiliii hon iiii,iiiiv

Poi( its of VOW Ill 11 11111, tits fed mI I s<L><u

mt,Int (In tiol ntf .:sway iffpfes1011 olhc Ltl NIT

posihith Of polir.y

ti



DEVELOPMENT OF CHILDREN'S
PROBLEM-SOLVING ABILITY IN ARITHMETIC

Mary S. Riley
James G. Greeno

Joan I. Heller

Learning Research and Development Center
University of Pittsburgh

1984

The research reported herein was supported by the Learning Research
and Development Center, funded in part by the National Institute of
Education, U.S. Department of Education. The opinions expressed
do not necessarily reflect the position or policy of NIE, and no
official endorsement should be inferred.

Reprinted by permission from Ginsburg, H. (Ed.). The development
of mathematical thinking. Copyright 1983 by Academic Press, Inc.,
Orlando, FL.

3



CHAPTER

MARY S. RILEY
JAMES G. GREENO

JOAN I. HELLER

Development of
Children's Problem-Solving Ability

in Arithmetic'

This cnapter is concerned with the development of an important aspect of
children's problem-solvitig skill in arithmeticthe ability to solve arithmetic
word problems. There are several factors that might enable older children to
perform better in problem-solving tasks than younger children, including the
complexity of conceptual knowledge about the problem domain and the sophis-
tication of problem-solving procedures. The studies reviewed here suggest that,
with age, children's improved ability to solve wore problems primarily involves
an increase in the complexity of conceptual knowledge required to understand
the situations described in those problems. We will describe these findings in this
chapter and consider some general issues about the development of problem-
solving skill.

CONCEPTUAL AND PROCEDURAL KNOWLEDGE IN
PROBLEM SOLVING

One major issue we will address concerns the relationship between concep-
tual and procedural knowledge in performance and development. In the past few
years much has been learned about how improvements in either conceptual

'The authors' research reported herein was supported by the Learning Research and Develop-
ment Center and, in part, by funds from the National Institute of Education (NIE), the United States
Department of Health, Education and Welfare. The opinions expressed do not necessarily reflect the

position or policy of NIE, and no official endorsement should be inferred.
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knowledge (e.g., Chi, 1978; Gentner, 197.5; Stein & Trabasso, 1981) or prob..
lem-solving procedures and strategies (e.g., Baylor & Gascon, 1974; Brown,
1978; Groen & Resnick, 1977; Klahr & Robinson, 1981; Young & O'Shea,
1981) separately contribute to improvements in performance as children get
older. However, most tasks that children perform involve an interaction between
both knowledge and procedures, and the nature of this interaction is a significant
theoretical question for models of cognitive development. Some progress is
being made. Recent studies by Siegler (1976) and Siegler and Kish'. (1981) have
identified the importance of understanding the relevant features and relations of a
particular task in the acquisition of more advanced problem-solving procedures.
Chi (1982) discusses the interactive role of domain-specific knowledge and
various kinds of strategies in affecting children's memory performance. Also,
Resnick (1981; Chapter 3, this volume) has related increased knowledge of
relevant goals and constraints in subtraction to improvements in children's com-
putational procedures using blocks. This knowledge can then be used to learn
similar procedures in another context where these goals and constraints are less
salient, as in the formal syntax of arithmetic. The theoretical and empirical
studies of word problem solving that we will describe provide further analyses of
interactions between conceptual and procedural knowledge.

A second and related issue concerns the knowledge (either conceptual or
procedural) that we attribute to children on the basis of their problem-solving
performance. Frequently children are said to understand a concept if their perfor-
mance on some task is consistent with that concept. Children whose performance
is inconsistent are said to lack understanding. We will argue that such an all-or-
none view of children's understanding is too limiting. Our argument will be
based on two lines of evidence. First, children who appear to lack understanding
of a concept on one task often show performance that is consistent with that
concept on other tasks (e.g., Gelman & Gallistel, 1978; Trabasso, Isen, Dolecki,
McLanahan, Riley, & Tucker, 1978), thus implying some understanding of the
concept. Second, even when several children perform successfully on the same
problem-solving task, this does not necessarily imply that they share the same
underlying knowledge (e.g., Dean, Chabaud, & Bridges, 1981). For example,
children may differ in their representations of the problem, and this can affect the
kinds of procedures required for solution, as well as the ability to solve related
problems. We will disctiss some recent theoretical analyses of children's under-
standing that provide explicit descriptions of the knowledge underlying different
stages of problem-solving skill.

Our discussion of these issues will be based on the development of a
specific hypothesis about the nature of children's skill in solving arithmetic word
problems. According to this hypothesis, improvement in performance results
mainly from improved understanding of certain conceptual relationships. This is
not to say that knowledge of formal arithmetic lacks importance for children.

...............,11
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Indeed, an important possibility is that acquisition of certain conceptual struc-
tures depends upon the knowledge of formal arithmetic that children acquire
through school instruction. However, we are unable to conceptualize knowledge
of formal arithmetic in a way that makes it sufficient for solving word problems.
Furthermore, problems with the same arithmetic structure but different concep-
tual structures differ substantially in their difficulty for children. We take this as
evidence that conceptual understanding is required if the texts of word problems
are to be mapped onto arithmetic relationships and operations. Our goal is to
emphasize the importance of informal concepts in problem solving and to pro-
vide a detailed analysis of informal concepts that are needed for a class of
arithmetic word problems.

APPROACHES TO ANALYZING KNOWLEDGE IN
PROBLEM SOLVING

The analyses we will describe have been influenced to a large extent by
recent cognitive theories of problem solving and language understanding. These
theories have provided increasingly rigorous concepts and methods for under-
standing the knowledge underlying problem-solving performance. Early analy-
ses of problem solving around 1950 focused on fairly general connections be-
tween actions performed during problem say: lg. Behaviorists (e.g., Maltzman,
1955) and associationists (e.g., Underwood & Richardson, 1956) analyzed solu-
tions of problems using concepts such as strength of associaticns and competition
between responses. More recent information-processing analyses (e.g., Newell
& Simon, 1972) have provided more specific concepts and more rigorous meth-
ods for analyzing performance in problem-solving situations. We now can ana-
lyze the cognitive processes required for solving problems in considerable detail,
providing hypotheses about specific cognitive procedures as well as the general
strategies that are involved in successful performance.

Recent developments in cognitive theory have also made possible a more
detailed and rigorous analysis of the role of conceptual knowledge in problem
solving. The importance of conceptual knowledge for understanding and repre-
senting problems has long been recognized. Gestalt theorists such as Duncker
(1945), Kohler (1927), and Wertheimer (1945/1959) conceptualized solution of
a problem as achievement of understanding the problem as a whole and as the
relations of problem elements and solution procedures to the whole. A primary
contribution of recent cognitive theories has been the development of concepts
and methods that allow more specific hypotheses about the conceptual knowl-
edge required to solve complex problems in domains such as physics (McDer-
mott & Larkin, 1978; Novak, 1976) and high school geometry (Anderson,
Greeno, Kline, &. Neves, 1981; Greeno, 1977, 1978). An inn-or:ant theoretical
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resource in this development has come from cognitive theories of language
understanding (e.g., Anderson, 1976; Norman & Rumelhart, 1975; Schank &
Abelson, 1977). In these theories, understanding a sentence c: a story is viewed
as the construction of a coherent representation of the various elements in the
message, with individual elements interconnected in a network of relationships.
Understanding in problem solving is characterized similarly as a process of
representing problem information or solution components in coherent relational
networks constructed on the basis of general cr.nceptual knowledge.

We now sketch the contents of the remaining sections of this chapter. The
next section characterizes a class of addition and subtraction word problems. We
review the major factors that have been used to characterize aspects of word
problems, including their relative difficulty. The next three sections concern the
knowledge underlying children's performance on these problems. The section
entitled "A Theory of the Knowledge Required to Solve Word Problems"
presents a theoretical analysis of the knowledge and strategies that we hypothes-
ize to be involved in successful performance. The section on the locus of im-
provement in problem-solving skill presents evidence that even very young chil-
dren have available a range of strategies for solving word problems. but they
differ from older children in the conceptual knowledge required to apply those
strategies. The section on the stages of conceptual knowledge specifies some of
these differences in conceptual knowledge as they relate to differences in the
success, efficiency, and generality of problem-solving performance. In the sec-
tion entitled "Related Analyses of Conceptual Understanding in Problem-Solv-
ing we present a brief summary of analyses of word problem solving in domains
other than elementary arithmetic. Finally, the discussion section relates chil-
dren's performance on word problems to more general issues in developmental
theory and mf;thodology.

REVIEW OF RESEARCH ON CHILDREN'S WORD
PROBLEM SOLVING

Our review of research on addition and subtraction word problems and
factors that influence their difficulty has two main sections. First, we summarize
findings of studies concerned with global factors. These include studies of gener-
al structural features, such as the grammatical complexity of the problem state-
ment, and studies concerned with the effect of having materials such as blocks
available as aids for problem representation. Second, we review literature on
more detailed semantic factors. We present a survey of analyses that have cate-
gorized problems based on semantic relationships among quantities in the prob-
lem situation. Then we summarize empirical studies that have compared the
difficulty of problems differing in their semantic characteristics.
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Global Factors

STRUCTURA FEATURES OF PROBLEM STATEMENTS

157

Several studies have considered general surface characteristics of problem
statements as factors influencing problem difficulty. Variables such as problem
length, grammatical complexity, and order of problem statements have been
shown to have significant effects on ease of solution (Jerman, 1971, 1973-1974;
Jerman & Rees, 1972; Loftus, 1970). Regression analyses indicate that a large
proportion of variance in problem difficulty can be accounted for by these factors
(Loftus & Suppes, 1972).

The type of number sentence represented by the relations among quantities
in the problem has also been related to problem difficulty. (Grouws, 1972;
Lindvall & Ibarra, 1980a: Rosenthal & Resnick, 1974). Problems represented by
sentences where the unknown is either the first (? + a = b) or second (a + ? = b)
number are more difficult than problems represented by equations where the
result is the unknown (a + b = ?). Rosenthal and Resnick provided an explicit
model to account for these differences in difficulty. Their model focused on the
process of translating the problem text into an equation, and difficulty was
predicted as a function of. the number and kinds of transformations required to
translate the equation into its canonical form for solution ;e.g., either a + b =
or a b = ?).

CONCRETE AIDS

Another factor that has been examined is the availability of concrete mate-
rials such as blocks as aids in solving word problems. Several studies have found
that the availability of blocks (e.g., Bolduc, 1970; Hebbeler, 1977; LeBlanc,
1968; Steffe, 1968, 1970; Steffe & Johnson, 1971) and/or reference dolls or
pictures (e.g., Harvey, 1976; Ibarra & Lindvall, 1979; Marshall, 1976; Shores &
Underhill. 1976) facilitate solution of problems, particularly for young children.
As an illustration, Tables 4.1 and 4.2 show data from children's performance
with and without concrete objects. The exact nature of the "change" and "com-
bine" problem types in these tables will be discussed later in this section. The
data in Table 4.1 are from a study by Riley (Greeno & Riley, 1981; Riley, 1981)
in which kindergarten children solved problems that described a change in some
quantity. Table 4.2 shows data from a study in which Steffe and Johnson (19'71)
asked first-graders to solve problems like those in Table 4.1, as welt as problems
involving combinations of quantities. The point to be made here is that in both
studies there was a general improvement in children's performance when they
used objects to solve problems. The fact that concrete aids did not facilitate

81
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Table 4.1
Propordons of Kindergartners Who Performed Correctly on
Arithmetic Tasksa 1.

Problem type Without objects With objects

Change (I)
Change (2)
Change (3)
Change (4)
Change (5)
Change (6;

.70

.61

.22

.30

.09
1 7

.87

1.00

.61

.91

.09

.22

From Riley, 1981.

kindergartners' performance on change (5) and change (6) problems relates to
some interesting theoretical issues that we will discuss later.

Additional support for the facilitation effect of objects was obtained by
Carpenter, Hiebert, and Moser (1981) who showed that, given a choice between
solving word problems with or without blocks, first-graders preferred to use
blocks. Some data indicate that merely observing (not manipulating) concrete
representations of problem solutions improves word problem performance (e.g.,
Buckingham & MacLatchy, 1930; Gibb, 1956; lbarra & Lindvall, 1979).

OTHER GLOBAL FACTORS

In addition to the factors we have discussed here, the ability of individual
children to solve word problems has been studied in relation to their general
reading ability and various instructional methods. Extensive reviews of this
research have been provided by Aiken (1971, 1972) and Barnett, Vos, and
Sowder (1979).

Table 4.2
Proportions of FirstGraders Who Performed Correctly on Arithmetic
Tasks"

Problem type Without objects With objects

Change (1) .67 .85

Change (2) .43 .61

Change (3) .41 .67

Change (5) .41 .58

Combine (1) .67 .80

Combine (2) .35 .55

"From Steffe & Johnson, 1971.

9
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Specific Factors
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Although the analyses of global characteristics of word problems has pro-
vided a ba4i,. for reasonably accurate predictions of problem difficulty, signifi-
cant differences have been found between problems for which these factors are
held constant (e.g., Gibb, 1956: LeBlanc, 1968; Schell & Burns, 1962). Further-
more, the effect of certain words, such as altogether and less, has been shown to
depend upon whether the operation suggested by the word matches the operation
required for problem solution (e.g.. Dahmus, 1970; Jerman, 1971; Linville,
1976: Nesher & Teubal, 1974). For these reasons and others, many recent
analyses of word problems have focused on specific problem characteristics
involving the relationships among quantities described in the problem. The main
finding from these analyses is that the understanding of quantitative relationships
in problems involves factors other than. the arithmetic equations that express the
relationships; the conceptual structure of the problem must also be taken into
account. In the remainder of this section, we review the kinds of conceptual
relations that describe simple addition and subtraction problems: we also review
empirical studies of differences in problem difficulty that are associated with
these semantic variables.

PROBLEM TYPES

A word problem identifies some quantities and describes a relationship
among them. Table 4.3 shows examples of several kinds of word problems that
have been included in various research studies. Each of these problems describes
a simple situation involving either addition or subtraction. The categories in
Table 4.3 include the change, combine, and compare categories used in an
analysis by Heller and Greeno (1978). These categories are representative
categorical schemes that have been used by several investigators (e.g., Carpenta
& Moser. 1981; Fuson, 1979; Nesher, 1981; Vergnaud, 1981) in analyses of
simple addition and subtraction problems, although the names used to refer to the
categories have varied. The equalizing category in Table 4.3 is from the work of
Carpenter and Moser (1981).

'emantic Structure. One of the ways the problems in Table 4.3 differ is in
the s antic relations used to describe the problem situation. By semantic rela-
tions 'e refer to conceptual knowledge about increases, decreases, combina-
tions. and comparisons Involving sets of objects.

The first two problem categories shown in Table 4.3change and equaliz-
ing--describe addition and subtraction as actions that cause increases or de-
creases in some quantity. For example. in change (1) the initial quantity or start
set of Joe's three marbles is increased by the action of Tom giving Joe five more
marbles (the change set). The resulting quantity or result set is eight. Equalizing

0



160 MARY S. RILEY, JAMES G. GREENO. AND JOAN I. HELLER

Table 4.3
Types of Word Problems°

Action Static

CHANGE
Result unknown
I. Joe had 3 marbles.

Then Tom gave him 5 more marbles.
How many marbles does Joe have now?

2. Joe had 8 marbles.
Then he gave 5 marbles to Tom.
How many marbles does Joe have now?

Change unknown
3. Joe had 3 marbles.

Then Tom gave him some more marbles.
Now Joe has 8 marbles.
How many marbles did Tom give him?

4. Joe had 8 marbles.
Then he gave some marbles to Tom.
Now Joe has 3 marbles.

How many marbles did he give to Tom?
Start unknown
5. Joe had some marbles.

Then Tom gave him 5 more marbles.
Now Joe has 8 marbles.
How many marbles did Joe have in the

beginning?
6. Joe had some marbles.

Then he gave 5 marbles to Tom.
Now Joe has 3 marbles.
How many marbles did Joe havP in the

beginning?
EQUALIZING

I. Joe has 3 marbles.
Tom has 8 marbles.
What could Joe Jo to have as many

marbles as Tom?
(How many marbles does Joe need to

have as many as Toml)
2. Joe has 8 marbles.

Tom has 3 marbles.
What could Joe do to have as many

marbles as Tom?

COMBINE
Combine value unknown
I. Joe has 3 marbles.

Tom has 5 marbles.
How many marbles do they have

altogether?

Subset unknown
2. Joe and Tom have 8 marbles altogether.

Joe has 3 marbles.
How many marbles does Tom have?

COMPARE
Difference unknown
I. Joe has 8 marbles.

Tom has 5 marbles.
How many marbles does Joe have more

than Tom?
2. Joe has 8 marbles.

Tom has 5 marbles.
How many marbles does Tom have less

than Joe?

Compared quality unknown
3. Joe has 3 marbles.

Tom has 5 more marbles than J.
How many marbles does Tom have?

4. Joe has 8 marbles.
Tom has 5 marbles less than Joe.
How many marbles does Tom have?

Referent unknown
5. Joe has 8 marbles.

He has 5 more marbles than Tom.
How many marbles does Tom have?

6. Joe has 3 marbles.
He has 5 marbles less than Tom.
How many marbles does Tom have?

°From Riley, 1981.

1 1
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problems involve two separate quantities: one of which is changed to be the same
as the other quantity. in equalizing (1) the problem solver is asked to change the
amount of joe' Ftt to be the same as the amount of Tom's set.

The remaining categoriescombine and compareinvolve static relations
between quantities. In combine ( I ) there are two distinct quantities that do not
changeJoe's three marbles and Tom's five marblesand the problem solver is
asked to consider them in combination: How many marbles do Joe and Tom have
altogether? Compare (1) alio describes two quantities that do not change. but
this time the problem solver is asked to determine the difference between them:
How many marbles does .'oe have more than Tom? Since in this case Joe's
marbles are being compared to Tom's, Joe's marbles are called the compared set
and Tom's marbles are called the referent set. If the question had been How
many marbles does Tom have less than Joe? then Tom's marbles would have
been the compare set nd Joe's would nave been the referent set.

Identity of the Unknown Quantity. In addition to the various semantic
relations, there are other ways in which the problems in Table 4.3 differ. In each
kind of problem change, equalizing, combine, and comparethere are three
items of inforrnati.x. Different problems can be formed by varying the items of
information given and those to be found by the problem solver. In change
problems, the three items of information are the start, change, and result :.-ets.
Any of these can tie found if the other two are given, yielding three different
cases: The unknown may be the start, the change, or the result. Furthermore, the
direction of change can either be an increase or a decrease, so there are a total of
six kinds of change problems. Change problems involving increases are referred
to collectively as changejoin problems: change problems involving subtraction
are referred to as clangeseparate problems.

A similar set of variations exists for compare problems, where the direction
of difference may be more or less and the unknown quantity may be the amount
of difference between the referent set and the compared set, or either of the two
sets themselves. Equalizing problems usuahy restrict the unknown to the dif-
ference between thi: given quantity and the desired quantity, although a total of
six variations are possible. In combine problems there are fewer possible varia-
tions: The unknown is either the combined set or one of the subsets.

RELATIVE DIFFICULTY

There have been many empirical studies concernA with the relative diffi-
culty of problems similar to those in Table 4.3. The basic procedure usually
involves having children individually solve selected problems that are read to
them by the experimenter. Memorial and computational difficulties are kept at a
minimum by reading the problems slowly, repeating them if necessary, and by
restricting the size of the numbers in the problems such that sums are less than

12
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10. In addition, concrete objects are often provided for children to use in solving
the problems.

The main findings from these studies are summarized next. In general, older
children perform better than younger children, which is not surprising. Both
semantic structure and identity of the unknown consistently influence relative
problem difficulty.

Semantic Structure. Evidence for the influence of semantic structure in
problem solution comes from studies showing that problems described by differ-
ent semantic structures are not equally difficult, even when they require the same

operation for solution. This suggests that solving a word problem requires more
than just knowing the operations and having some general skill in applying them.

Tables 4.4, 4.5 and 4.6 show the results from three separate studies in
which children solved sets of word problems using blocks. All studies followed a
procedure like the one just described, with the exception that in the Carpenter et
al. (1981) study, sums of the given numbers were between 11 and 15. The
following is a summary of the main findings from these three studies.

Compare problems (3) and (6) are more difficult than either change (1) or
combine (1) problems, although all four problem solutions involve a simple
addition. Similarly, problems involving subtraction can also vary in difficulty
across semantic structures, Combine (2) problems and virtually all compare
problems involving subtraction are, 1n general, more difficult than change prob-
lems (2) and (4). These findings agree with those from other studies. Compare
( I) problems have been consistently shown to be more difficult than change (2)
problems for first-graders (e.g., Gibb, 1956; Schell & Burns, 1962; Shores &
Underhill, 1976). Combine (2) problems are, in general, more difficult than
change (2) for kindergartners and first-graders (e.g., Gibb, 1956; Ibarra &

Table 4.4
Proportions of First - Graders Who Performed
Correctly"

Problem type With objects

Change (1) .95

Change (2) .91

Change (3) .72

Equalizing (I) .91

Equalizing (2) .91

Combine (I) .88

Combine (2) .77

Compare (I) .81

Compare (3) .28
4111111110111111.11

From Carpenter, Hiebert, & Moser, 1981.

13
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Table 4.5
Proportions of Children Who Performed Correctly Using Objects"

Grade

Problem type K I 2 3

Change (1) .87 1.00 1.00 1.00

Change (2) 1.00 1.00 1.00 1.00

Change (3) .61 .56 1.00 1.00

Change (4 .91 .78 1.00 1.00

Change (5) .09 .28 .80 .95

Change (6) .22 .39 .70 .80

Combine (1) 1.00 1.00 1.00 1.00

Combine (2) .22 .39 .70 1.00

Compare (1) .17 .28 .85 1.00

Compare (2) .04 .22 .75 1.00

Compare (3) .13 .17 .80 1.00

Compare (4) .17 .28 .90 .95

Compare (5) .17 .11 .65 .75

Compare (6) .00 .06 .35 .75

"From Riley. 1981.

Lindvall. 1979: LeBlanc, 1968; Nesher & Katriel. 1978; Vergnaud, 1981), but
are slightly easier than compare (1) problems (Schell & Burns, 1962). In-
terestingly. children in the Carpenter et al. study performed relatively well on
combine (2) and compare (1) problems for reasons we will discuss later.

Another source of evidence for the influence of semantic structure on nrob-
lem difficulty comes from children's solution procedures with blocks. Carpenter
et al. (1981) report that the dominant factor in determining the children's solu-

Table 4.6
Proportions of Kindergartners Who Performed
Correctly"

Problem type With objects

Change (I) .89

Change (2) .91

Change (3) .08

Change (4) .64

Change (5) .32

Change (6) .12

Combine (I) .83

Combine (2) 18

°From Tamburino, 1980.

1.4
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tion strategy was the structure of the problem. For example. change (2), change
(3), and compare (1) all require the child to find the difference between the two
numbers given in the problem; however, the strategies children used to solve
each of these problems were quite different. Almost all children used a subtrac-
tion strategy (separating or counting down) to solve change (2). For change (3)
almost all children used an addition strategy (adding on of counting up). For
compare (1) a matching strategy was frequently used.

The final source of evidence we present for the influence of semantic
structure comes from studies showing children's lack of reliance on formal
arithmetic in solving word problems. There are data showing that very young
children can solve some word problems before they have received any formal
introduction to the syntax of arithmetic (e.g.. Buckingham & MacLatchy, 1930;
Carpenter et al., 1981; Carpenter & Moser, 1981; Ibarra & Lindvall, 109).
There also is evidence that translating simple word problems into equations is not
a necessary, or even usual, step in the solution processes of most children who
have studied the formal notation of arithmetic. Second-grade children sometimes
find it difficult or impossible to write equations for problems they have already
solved (Lindvall & Ibarra, 1980a; Riley. 1981). Carpenter (1980) found that
about one-fourth of first-graders solved the problem before they wrote a number
sentence, in spite of instructions to the contrary. Together these studies suggest
that children base solutions on an understanding of the semantic relations in the
problem situation and do not need to employ standard, written procedures.

We have presented three main kinds of evidence for the influence of a
problem's semantic structure on children's solutions to word problems. As men-
tioned earlier, we believe the various semantic structures correspond to specific
conceptsconcepts of quantitative change, equalization, combination, and com-
parison. On the basis of the aforementioned findings, it might be tempting to
speculate that these four concepts emerge at different times in cognitive develop-
ment. For example, at a certain age, a specific child might have the concepts of
change and combination, but not the concept cf comparison. The findings we
present next suggest that is too simplistic.

Identity of the Unknown Quantity. The main source of evidence that these
concepts are not acquired in a sequential, all-or-none fashion comes from studies
showing that problems having the same semantic structure also vary in difficulty.

Referring again to the change problems in Tables 4.4, 4.5, and 4.6, children
had no difficulty solving change problems when the start and change amounts
were given and they were asked for the result. Even preschool children can solve
these problems (e.g., Buckingham & MacLatchy, 1930; Hebbeler, 1977). How-
ever, many kindergartners and first-graders had difficulty if the start and the
result were given and they were asked to find the amount of change. Problems
like (5) and (6), where the result and change were given with the start set
unknown, were difficult at all grade levels (see also, Hiebert, 1981; Lindvall &
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Marra, 1980a; Vergnaud. 1981)even more difficult than the combine (2) and
compare (1) problems previously discussed.

As with change problems, the difficulty of combine and compare problems
also varies depending on which value in the problem is unknown. Combine (2)
problems in which one of the subsets is unknown are significantly more difficult
than combine (1) problems in which the two subsets are known and the problem
solver is asked to determine their combined value. Compare problems (5) and (6)
in which the referent is unknown are more difficult than any of the other compare
problems.

Clearly we must consider more than just a problem's semantic structure in
our effort to understand the problem-solving skills of children at different ages.
Specific features within each semantic structure, like the identity of the unknown
quantity, must also be taken into account.

In summary. word problems differ both in the semantic relations used to
describe a particular problem situation and in the identity of the quantity that is
left unknown. The resulting problem types have been related to fairly systematic
differences in children's performance at various grade levels. Some problems are
relatively easy for preschoolers. whereas other problems remain difficult for
many third-graders. even when concrete aids are made available. However,
simply identifying which problems are more difficult than others tells us little
about why they are difficult. In the following sections we present a theoretical
analysis that has attempted to relate differences in performance on word prob-
lems to the knowledge children have available at different ages.

A THEORY OF THE KNOWLEDGE REQUIRED TO
SOLVE WORD PROBLEMS

In this section we describe the current version of a theoretical analysis of
word problem solving. The analysis is in the form of computer simulation mod-
els that solve word problems like the ones in Table 4.3. The conceptual knowl-
edge and procedures represented in these models represent specific hypotheses
about the knowledge required to solve word problems. The categories of knowl-
edge we propose are similar to those found in other analyses (e.g., Fuson, 1979;
Nesher, 1981; Vergnaud, 1981) that distinguish between semantics of problems
and the semantics of addition and subtraction operations. In our analysis, we
distinguish three main kinds of knowledge during problem solving: (a) problem
schemata for understanding the various semantic relations discussed earlier, (b)
action schemata for representing the model's knowledge about actions involved
in problem solutions; and (c) strategic knowledge for planning solutions to prob-
lems. When a model is given a word problem to solve, it uses its knowledge of
problem schemata to represent the particular problem situation being described,
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[Problem [ Action
Schemata Schemata

Schematized
Problem

Representation

(1)

Problem
Text

Figure 4.1. Framework of a model of problem understanding and solution. Arrows represent pro-
cesses of (1) comprehension, (2) mapping from conceptual relations to quantitative procedures. and
(3) execution of procedures.

(2) Schematized
Action

Representation

(3)

Solution

The model's planning procedures then use action schemata to generate a solution
to the problem. The general framework for this solution process is shown in

Figure 4.1.

Problem Schemata

Our use of schemata is similar to the uses of that term in recent theories of
language understanding (e.g., Anderson, 1976; Norman & Rumell"art. 1975;
Schank & Abelson, 1977). In these theories, schemata have been used to orga-
nize the information in a sentence or story and to expand the repro tntation of the

message to include components that were not explicitly mentil, but are
nevertheless required to make the representation coherent and complete. Similar-
ly, we view the process of understanding a word problem as fitting the compo-
nents of the problem into a coherent structure.

The analysis that we have developed proposes three main types of problem
schemata for understanding simple change, combine, and compare word prob-

lems. The representations have the form of semantic network structures consist-
ing of elements and relations between those elements. For example, Figure 4.2

shows a representation of change (2). The representation has three main compo-
nents. First, there is an initial quantity that represents the start set (1) of Joe's
eight marbles. Second, there is some event that causes a change, in this case a

17
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Figure 4.2. Schematized representation of change (2).

decrease, in the start set; the amount of this change is called the change set (2).
The result of this change is represented as an unknown final quantity of marbles,
or the result set (3).

The model that correctly solves all the change problems builds the first
component (1) when it receives Joe had 8 marbles. When the sentence Then he

gave S marbles to Tom is received, the model infers that the problem is about a
change and constructs the rest of the structure in Figure 4.2, explicitly indicating
that it expects to hear about a result. Finally, when the question How many
marbles does Joe have now? is received, the model understands this as a request
to determine the amount of the result set. At this point the model refers to its
knowledge of action schemata and planning procedures.

Action Schemata

Once a model has represented a problem situation, it must have some way
of relating this representation to its problem-solving procedures. We believe this
requires a second type of schema that represents knowledge about actions used in
planning solutions to problems. These action schemata are associated with the

18
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problem representation during problem solving and mediate the choice of an
action or operation to solve the problem. Examples of these action schemata are
shown in Figure 4.3.

The organization of action schemata into prerequisites and consequences is
patterned after Sacerdoti's (1977) model of planning in problem solving called
NOAH. Prerequisites are conditions in the problem situation that must De present
for an action to be performed. Consequences are those conditions that will exist
in the problem situation once the action is carried out. We should point out that
the format we have used to illustrate these action schemata is simply a matter of
convenience; they just as easily could have been drawn as network structures
similar to the change schema in Figure 4.2.

Referring tofigure 4.3, make-set is the schema associated with the model's
action for building a set X with an amount N. The prerequisite of this action is
that the model begin with an empty set: The availability of objects and locations
on which to put them is assumed. The consequence is a set X containing N
objects. Thus, the action make-set (Joe, 8) would result in a set of eight objects
belonging to Joe. Other action schemata include put-in. take-out, and count-all.
Put-in adds N objects to an existing set X. Its prerequisite is that X exists with an
amount M, and its consequence is that X now contains N more objects. Take-out
removes N objects from set X. Count-all is an action that determines the number
of members of set X by counting all the members of X (as opposed to counting
on from a subset of X). In the diagram, all the action schemata have labels
"make-set," "take-out," etc.although a child could have schemata without
labels.

MAKESET: X. N

Prerequisite: X,

Consequence: X, N

PUTIN: X N
Prerequisite: X

Consequence: X, N More

TAKEOUT: X, N
Prerequisite: X

Consequence: X. N Less

COUNTLL: X, 7

Prerequisite: X

Consequence: X, N

Figure 4.3. Action schemata.
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COMPARE X, More, Y

(X has NI, Y has N21

1. MAKE.SET: X, N1

2. MAKESET: Y, N2

3. MATCH: Z in X match Y

e. Form subset of X equal to Y

b. Z matching subset

4. GET.REMAIN- W in X from Z

a. SEPARATE X: Z and remainder

b. W remainder

5. COUNT.ALL: W

Figure 4,4. "Compare" action schema.

Action schemata are organized into different levels to enable efficient plan-
ning. This is because some schemata are actually composites of several other
schemata and are therefore more global. For example, Figure 4.4 shows a global
schema called compare that determines the amount of difference between the
numbers of members of two sets. This particular procedure depends on counting,
rather than subtraction of numbers. However, an alternative assnrnption might be
that compare's subschemata involve subtracting numbers. This change would not
alter compare's role in the knowledge structure; it would merely modify the way
in which compare would be executed. More will be said about how compare is
executed in the next section: the focus here is on its general structure.

Compare is composed of four specific actionsmake-set, match, get-re-
main, and count-alland is therefore more ;:lobal than they are; get-remain is in
turn more global than its component action, separate. Although not shown ex-
plicitly, each of these action schemata also contains information about its corre-
sponding prerequisites and consequences. As will be described, the organization
of action schemata into these levels of generality allows the model to consider
global solution methods before taking into account all the details of implement-
ing any particular method.

Strategic Knowledge

In addition to problem schemata and action schemata, the models also have
strategic knowledge for planning solutions to problems. Strategic knowledge is
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represented by production rules organized in a way that permits topdown plan-
ning of the kind studied by Sacerdoti (1977) and implemented in many current
models of human problem solving (e.g., Chi, Feltovich, & Glaser, 1981;
Greeno, Mapne, & Chaiklin, 1979; Poison, Atwood, Jeffries, & Turner, 1981).
Knowledge for planning involves the action schemata just discussed as well as
simple associations between goals and procedures relevant to attaining those
goals. When a model is given a problem '.o solve, it sets a goal either to make the
external situation correspond to some gv.en information or to obtain some re-
quested information. The model then uses its knowledge about actions to plan
how to achieve that goal in the current problem situation.

Planning involves working out a solution from the top down, that is, choos-
ing a general approach (e.g., match) to a problem, then deciding about actions
that are somewhat more specific, and only than working out the details. After a
plan is selected, the model tries to carry out the actions associated with that plan
in an attempt to achieve the current goal. If the action prerequisites are satisfied
in the current problem situation, then the plan can be carried out immediately. If
not, some further work must be done, and this requires setting one or more
subgoals. The model's planning knowltdge includes knowledge of subgoals that
are useful in achieving a plan. Once generated, the new subgoal replaces the
earlier goal, but the previous goal is stored in memory to be retrieved when the
new subgoal is either achieved or is determined to be impossible. This process of
setting goals and subgoals and planning how to achieve them continues until the
problem is solved.

THE LOCUS OF IMPROVEMENT IN
PROBLEM-SOLVING SKILL

We have identified three main components of knowledge needed for suc-
cessful performance in the domain of word problems. Children's difficulties in
solving some problems may be caused by the absence of one or more 0: these
components of knowledge. In the next section we will present an analysis of
different levels of children's problem-solving skill in which the major factor is
assumed to be acquisition of an improved ability to represent problem informa-
tion. In this section, we present some evidence for this hypothesis, comparing it
with an alternative hypothesis that a main source of children's difficulty is their
lack of knowledge about the actions required to solve certain word problems.

We discuss evidence from studies of compare problems and combine prob-
lems. The gist of ,he findings is that problems that are difficult in their usual
wording are made mizch easier by changing the wording in appropriate ways.
These findings are. similar to those obtained in recent. studies of class inclusion
(Dean et al., 1981; Markman, 1973; Trabasso et 41., 1978) and, as in those
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studies, argue against the hypothesis that children lack the action schemata
required to solve the problem. In our analysis the main locus of children's
improvement in problem-solving skill is in the acquisition of schemata for under-
standing the problem in a way that relates it to already available action schemata.

Compare Problems

We present a brief summary of results obtained by Hudson (1980) in a study
of young children's performance on compare problems of the kind called com-
pare (1) in Table 4.3. Recall that problems involving comparit:on are difficult, at
least for young children. One possibility is that children lack the action schemata
required to plan a solution to the problem. Indeed, the compare procedure is
fairly complex, as was shown in Figure 4.4. It involves first using make-set to
create two sets to be compared. Then match finds a subset Z of the larger set X
whose elements are in one-to-one correspondence with the elements of the small-
er set Y. The procedure get-remain then uses separate to identify the difference
between the two sets. Separate removes all the elements in X that are not part of
Z, and identifies these elements as the remainder W. Finally, count-all deter
mines the number of members of W. It is tempting to conclude that younger
children have not yet acquired this relatively complex procedure and that this
lack of a problem-solving method is responsible for their poor performance on
problems involving comparisons.

This interpretation is contradicted by data collected by Hudson (1980), who
presented problems of the kind shown in Figure 4.5 to 12 nursery-school, 24
kiadergarten, and 28 first-grade children. Two different questions were asked.
One was the usual comparative question, in this case, How many more birds than
worms are there? The other question was an alternative that Hudson devised:
Suppose :he birds all race over and each one tries to get a worm! Will every bird
get a worm? . . . How many birch won't get a worm?

The results were striking, as shown in Table 4.7. Hudson gave eight ques-
tions of each type, and the proportions here are for children who gave six or more
correct responses. A correct response was the difference between the setsfor
example, One more bird than worms, or One bird won't get a worm. The most

Table 4.7
Proportions of Children with Consistent Correct Responses
=111==111=.111111.111111MIMI.

Grade How many more? How many won't get?

Nursery school .17 .83
Kindergarten .25 .96
First .64 1.00

22
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Figure 4.5, Example of problems used in Hudson's study.

frequent incorr response was the number in the larger setfor example, Five,
01' Five bird . Another frequent error was to give both set sizesfor example,
Five birds and four worms. Very few of the nursery-school or kindergarten
children answered the How many more? questions by giving the difference
between the sets. However, nearly all the children of all three ages answered the
flow many won't get? questions correctly.

Thus, Hudson's data do not support the hypothesis, that children lack a
procedure for finding a set difference; to answer the Won't get questions, chil-
dren used a match procedure to form a correspondence between the two sets and
to count the remaining subset of the larger set.

Combine Problems

Similar effects of rewordings have been obtained for combine (2) problems
like the one in Table 4.1:

Joe and Tom have 8 marbles altogether.
Joe has 5 marbles.
How many marbles does Tom have?

As noted earlier, these problems are quite difficult for young children even
though the solution procedure involves three relatively simple actions: make-set,
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take-out, and count-all. Here make-set counts out a set X of eight blocks to
represent the marbles that Joe and Tom have altogether; take-out removes five
blocks from X to represent Joe's marbles; and count-all counts the number of
blocks remaining in X to determine how many marbles Tom has. We can assume
that most children have this solution procedure readily available since they use it
to solve change (2) problems, which also require subtraction. Furthermore, as in
the Hudson study, it appears that slight rewordings of the combine (2) problem
enable many children to solve it correctly using this procedure. Carpenter et al.

(1981) report that 33/43 first-graders did in fact solve combine (2) problems
correctly when asked,

There are 6 children on the playground.
4 are boys and the rest are girls.
How many girls are on the playground?

Lindvall and Ibarra (1980b) found that combine (2) problems like,

Together. Tom and Joe have 8 apples.
Three of these apples belong to Tom.
How many of them belong to Joe?

are significantly easier for kindergarten children than the combine (2) problems
like the one in Table 4.1. We will return to the specific nature of the facilitation
effect of such rewordings later. The point to be made here is that once again we
cannot attribute children's problem-solving difficulties to a deficiency involving
problem-solving actions. Instead, we hypothesize that acquisition of skill is
primarily an improvement in children's ability to understand problemsthat is,
in their ability to represent the relationships among quantities described in prob-
lem situations in a way that relates to available solution procedures.

STAGES OF CONCEPTUAL KNOWLEDGE

In this section we present specific hypotheses about the nature of concep-
tual development that results in improved skill in solving arithmetic word prob-
lems. The hypotheses are based on data obtained by Riley (1981) in a
developmental study of performance on word problems like the change, com-
bine, and compare types in Table 4.3. Riley designed computational models of
word problem solving that include processes of representing the problem infor-
mation. The models were intended to simulate children's performance at differ-
ent levels of skill. Levels of skill corresponded to different patterns of perfor-
mance typical of children at different ages. Within each of the three semantic

24



174 MARY S. RILEY, JAMES O. OREENO- IND JOAN J. kELLER

Table 4.11

Patterns of Perform:me on Change Problems

Example of problems

Levels of performance

1 2 3

Result unknown
I. Joe had 3 marbles.

Then Tom gave him 5 more marbles.
How many marbles does Joe have now? + +

2. Joe had 8 marbles.
Then be g 'ye 5 marbles to Tom.
How many marbles does Joe have now? + +

Change unknown
3. Joe had 3 marbles.

Theo Tom gave him some more marbles,
Now Joe has 8 marbles,
How many marbles did Tom give him?

4. Joe had 8 marbles.

Then he gave some marbles to Tom.
Now Joe has 3 marbles.
How many marbles did he give to Tom? + +

Start unknown
5. Joe had some marbles.

Then Tom gave him 5 more marbles,
Now Joe has 8 marbles.
How many marbles did Joe have in the beginning?

6. Joe had some marbles.
Then he gave 5 marbles to Tom.
Now Joe has 3 marbles.
How many marbles did Joe have in the beginning? NA NA +

Table 4.9
Proportions of Patterns Consistent with Models

Grade

Level K 1 2 3

Change problems la .04 .22 0 0
lb .30 .17 0 0
2 .39 .17 .10 .05

3a .09 .17 .30 .15

3b 09 .22 .60 .80
Residual .09 .05 0 0
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categories included in the study, three levels of skill were identified, each
associated with a distinctive pattern of correct responses and errors on the six
problems of the type.

The patterns of performance for the change problems are shown in Table
4.8. A " +" means the child answered correctly, "NA" indicates no answer,
and numbers indicate the characteristic error for that problem; for example, on
change (3) the specific number that was given was the result set, whatever that
number was. (Different children solved these problems with different num-
bers involved.) Thus, reading vertically, a child at Level I would answer
change problems 1, 2, and 4 correctly, respond with the result set for change
(3) problems, give the change set for change (5), and no reply for change
(6).

Table 4.9 shows the proportions of children in each of four grades whose
performance was consistent with the identified patterns. These data are from
performance when blocks were available. Level la children responded correctly
on change problems 1 and 2 only. Level lb children 'responded correctly on
change problems 1, 2, and 4, as specified by the pattern for Level 1 in Table 4.8.
Children who responded correctly on all problems except change (5) or change
(6) were classified as being in Level 3a in Table 4.9. A child classified at Level
3b was correct on all problems. The proportions of children in the residual
columns of Table 4.9 are those whose performance was not consistent with any
of the patterns.

We should point out that some of the children identified in the residual
column actually did respond consistently, but in ways not accounted for by our
models. For example, there were a few children who consistently put out an
arbitrary number of blocks for problem statements involving the word some. This
can lead to predictable confusions when the arbitrary set does not correspond to
the actual answer, but at the same time occasionally allows for fortuitous correct
responses to difficult problems like change (5). A more detailed discussion of
this behavior is provided by Tamburino (1980) and Lindvall and Tamburino
(19811 in their account of why change (5) problems were easier than change (3,
problems for some children in Tamburino's study (see Table 4.6), although the
reverse is usually true in the literature.

Riley designed models to simulate each of the performance patterns in Table
4.8. The knowledge structures and procedures represented in these models repre-
sent hypotheses about the kinds of information-processing components needed to
explain the different patterns of performance on the various problems. The
models that simulate the three levels of change problem performance have been
implemented, and we will describe their characteristics in some detail. The
models for combine and compare performance have been designed, but not
implemented. We will summarize their main features.
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Development of Schemata for Change Problems

Riley's analysis of processes for change problems consists of three models
that simulate the different levels of children's performance on these problems.
That is, each model solves the six change problems in a way that leads to one of
the different patterns of performance that Riley identified, All of the models
employ the same general approach to problem solving, as was shown in Figure
4.1. That is. problem schemata are used to represent the current problem situa-
tion, and knowledge of action schemata and planning procedures are used to
determine a solution. The main differences between the models relate to the ways
in which information is represented and the ways in which quantitative informa-
tion is manipulated. Models with more detailed representational schemata and
more sophisticated action schemata represent the more advanced levels of prob-
lem-solving skill. Model (1) understands quantitative relations by means of a
simple schema that limits its representations of change problems to the external
displays of blocks. Model (2) has a ( *.e schema for maintaining an internal
representation of 'ncreases and decrease_ a 'he sets of blocks it manipulates.. the
process of building this representation is still .....atively "bottom-up" in the sense
it depends upon the external display of objects. Model (3) also has a change
schema for representing features internally, but can use its change schema in a
more "top-down" way than model (2) to direct understanding independent of
the external display of blocks. Models (2) and (3) also have a richer set of action
schemata for producing and manipulating quantitative information and a richer
understanding of certain relations between numbers; for example. model (3) has
an understanding of partwhole relations. We will discuss the relationship be-
tween these different kinds of tenowledge during performance and development

in tlic acxt section.

MODEL ( I)

The lowest level of performance on the change problems is represented by

model (1). The knowledge that model (I) has available for problem solving

irtcludes the action hemata in Figures 4.3 and 4.4. procedures for planning in

the way described cn pp. 169-170, and the simple schema for representing

quantitative information shown in Figure 4.6. This knowledge is sufficient to

solve change problems (1). (2). and (4), but leads to predictable errors on change

problems (3). (5), and (6). The first three problems share two main characteris-

tics: The actions required to solve the problem can be selected on the basis of

local problem features, and the solution set is available for direct inspection at

the time the question is asked. For example, solving change (4) involves reduc-

ing Joe's initial set of eight blocks to three blocks in response to Now Joe has 3

marbles, with the effect that the change and result sets are now physically
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Figure 4.6. Model (1)'s schema for representing quantitative information.

separate. Thus, the modal can easily identify the change set when asked How
many marbles did Joe give Tom? and responds correctly even though it did not
keep a memory record of the structural relationships in the problem.

Now consider how model (1) solves change (3) in which the solution set is
not available for direct inspection. The model has no difficulty carrying out the
correct procedures to solve the problem; failure is due to problem representation.
The model counts out three blocks in response to Joe has 3 marbles, and uses the
simple schema in Figure 4.6 to represent these blocks as a quantity whose
identity is Joe and amount is three.

Next the model attempts to put in more blocks in response to Then Tom gave
him some more marbles. But, since it does not yet know exactly how many to put
in, it does nothing and therefore does not change its representation of the prob.
lem situation. The next sentence, Now Joe has 8 marbles, results in a goal to
create a set of eight blocks. The model counts the three blocks, then continues to
add in additional blocks until there are eight blocks total. The resulting set is
represented as a quantity whose identity is Joe and mount is eight.

The difficulty arises when model (1) is asked to determine the number of
marbles that were added in to change the initial set. Since the start set and change
set are not distinguished in model (1)'s final representation, the question is
simply interpreted as a request to determine the total number of marbles hi the
set. It therefore counts all the marbles and incorrectly answers Eight. 7've
change (3) problems correctly, the child would have to represent, it
additional information about the sets in the problem. This probably accou:.:,.. :or
why change (3) problems are generally more difficult for young children than
change (4) problems, even though both problems involve an unkonwn change set
(see also Hiebert, 1981; Tamburino, 1980).

The idea that children's failure on change (3) is due to a failure to represent
the separate start and change sets is consistent with several findings. Many
studies have shown that even when children have little difficulty selecting and
carrying out the appropriate actions to solve change (3) problems using blocks,
many of them give the value of the result set as their answer (e.g., Riley, 1981;
Tamburino, 1980). Another kind of evidence comes from a study by Harvey
(1976). He successfully trained first- graders to solve similar problems using
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external partitions to distinguish the two sets. Children initially solved the prob-
lem using a single paper plate with a partition: The start set was placed on one
side of the partition and the change set was placed on the other side. The next
step involved using two paper plates. Finally, children solved the problem cor-
rectly using a single plate with no partition. The success of Harvey's training
procedure suggests that, prior to training, a main part of children's difficulty in
solving these problems was due to a failure to distinguish the start and change
sets.

MODEL (2)

The main difference between model (1) and model (2) is that model (2)
represents internally additional information about the problem situation. This
involves a schema for change problems (Figure 4.2) in which there is a mental
record kept of the structural role of each item of information. This additional
structural information enables model (2) to give the correct answer to change (3)
problems where model (1) failed.

Model (2)'s behavior in response to the first two sentences of change (3) is
identical to model (1)'s. It simply counts out three blocks in response to Joe has

three marbles. and represents this as a set belonging to Joe with an amount three.
The model attempts to put in additional blocks in response to Then Tom gave him

some more marbles. but since no amount is mentioned, it does nothing. At this
point model (1)'s and model(2)'s understanding of the problem are identical. The
difference between the two models becomes evident from the way model (2)
responds to the next input: Now Joe has 8 marbles, In addition to simply
increasing the existing set until there are a total of eight blocks, model (2) also
identifies the set of eight as the result set that was produced by increasing the
start set of three blocks by some unknown amount. The resulting problem repre-
sentation is shown in Figure 4.7. Thus when model (2) is asked, Now many

marbles did Tom give Joe, it can identify the separate change set in its problem
representation and determine the set's numerosity by counting all but three of the
blocks.

Although model (2) has a more complete _eternal representation than model
(1), it still lacks an important ability for top-down processing in its representation
of problem information. This is seen in model (2)'s performance on change (5)
problems. Recall that children at this level cannot solve this problem and give
Five (the value of the change set) as their most frequent incorrect response. The
model receives the first sentence, Joe had some marbles, and attempts to create a

set of blocks to represent these marbles, but realizes it does yet know exactly

how many Joe has. Therefore the model does nothing but simply remember the
fact that it heard about Joe. The second sentence results in the model putting out
five blocks for Joe. However, because the model failed to represent explicitly the

2J



4. DEVELOPMENT OF CHILDREN'S ABILITY IN ARITHMETIC 179

Figure 4.7. Model (2)'s representation of change (3) before determining the amount of the change
set.

unknown start set, the additional five blocks are not represented as a change in
the initial set, but simply as a set of five belonging to Joe. This means that when
the model receives Now Joe has 8 marbles, the problem situation is he same as
that in change (3). The model increases the set of five to eight, resulting in a
representation identical to the one that was shown in Figure 4.7. Notice that the
set of five blocks is identified as the start set, although it is actually the change
set in the original problem. This accounts for why model (2) answers Five when
asked How many marbles did Joe have in the beginning?

MODEL (3)

Model (3), like model (2), has a change schema for maintaining a structural
representation of the problem situation. However, unlike model (2), model (3)
can use its change schema in a top-down fashion to build a representation of the
entire problem before actually solving it. This permits model (3) to operate on a
quantity whose value is unknown, as required in change problems (5) and (6).

Model (3)'s ability to solve change problems (5) and (6) also involves the
schema for representing partwhole relations shown in Figure 4.8. The reason
for this will become clearer as we continue, but basically when the start set is
unknown, the action required to solve the problem is not immediately available
from the initial problem representation. We hypothesize that these problems are
best understood in terms of the partwhole relations between the quantities.
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Flpre 4.8. Model (3)'s schema for representing partwhole relations between quantities.

The implications of model (3)'s additional conceptual knowledge become

apparent from the way it solves change (5). The model's understanding of the

sentence, Joe had some marbles, is represented as a quantity whose identity is

Joe and amount is unknown. Then Tom gave him 5 more marbles is understood

as an increase in the quantity, causing the rest of the change schema to be

instantiated (Figure 4.9), and the model puts out five blocks for Joe. Thus, model

(3)'s representation of change (5) maintains a record of Joe's five marbles as the

amount of change in the as-yet-unknown start set. This is in contrast to model

(2), where no record was kept of the unknown start set, with the eventual
consequence that the change set of five blocks was represented incorrectly as the

start set.
Model (3) represents the third sentence of change (5), Now Joe has 8

marbles, as the amount of the result set and increases the existing set until it

contains eight blocks. When model (3) is asked, Now many marbles did Joe have

in the beginning? it sets the goal of determining the value of the start set, but has

not direct referent for this set in its blocks representation as was the case in the

change (3) example (see the section on model (2)). We therefore hypothesize that

identifying the appropriate action requires additional inferences about the

partwhole relations in the problem, as shown in Figure 4.10.
Since the direction of change is an increase, the model infers that both the

start and change sets are parts of the result set. On the basis of this inference, the

model determines that the start set must consist of the additional blocks that were

added to the change set to make a total of eight blocks. The model then counts

these additional blocks and anwers Three.
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Actually, the same basic solution to change (5) could just as easily have
been represented by an alternative blocks procedureone that children also
frequently use (Carpenter, 1980; Riley, 1981). That is, model (3) could have
delayed putting out any blocks until it inferred the partwhole relations between
the quantities in the problem. Then the model could have put out the eight blocks
first, used separate to remove five of the blocks, and finally identified the
remaining three blocks as the answer.

Considering either blocks procedure, model (3)'s solution to change (5)
suggests an alternative explanation for model (2)'s failure on change problems in
which the start set is unknown. It is possible that some children did in fact use
their change schema to represent correctly the problem situation with the start set
unknown, but lacked the partwhole schema required to infer the appropriate
operation.

The proposal that children require an understanding of the partwhole rela-
tion to solve change problems (5) and (6) is supported in Riley's study in which
few children in any age group correctly solved these two problem types without
first being able to solve combine problems with one of the subsets unknown. (We
assume subset unknown problems also require an understanding of partwhole
relations.) Furthermore, there is evidence suggesting that once children under-
stand partwhole relations, they can use this knowledge to understand all change
problems, even though our analyses have shown that knowledge of these rela-
tions is not required to solve change problems (1), (2), (3), and (4). Carpenter

Figure 4.9. Model (3)'s representation of change (5) before determining the amount of the start and
result sets,
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Figure 4.10. Model (3)'s inference about the panwhole relations in change (51.

(1980) reports a study of first-graders' strategies in solving word problems before
and after receiving instruction in analyzing the partwhole relations of these
problems. Prior to instruction, children's solution processes modeled the actions
or relationships described in the problem. That is, children used separate, count-
on, and match to solve change (2), change (3), and compare (1) problems,
respectively, even though all of these problems involve finding the difference
between two quantities, After instruction, children generally used separate for all
subtraction problems. Apparently, these children were basing their solutions on

33



4. DEVELOPMENT OF CHILDREN'S ABILITY IN ARITHMETIC 183

the partwhole relations in the problems. A similar trend is indicated by results
from a study reported by Zweng, Gerarghty, and Turner (1979) who found that
the majority of third-graders and almost all the fourth-graders used subtraction to
solve problems like change (3).

Models for Combine and Compare Problems

Riley's simulation models to explain children's performance on combine
and compare problems are similar in their general features to those we have just
described. Riley assumes that, at the lowest level, the child's representations of
problems are limited to the external displays of blocks; at an intermediate level
there are schemata for representing, internally, additional information about the
relationships between quantities; and at the most advanced level, schemata are
available that direct problem representations and solutions in a more top-down
manner. The results for these models were similar to those obtained for the
change problems, although the proportions of children not consistent with any of
the models was somewhat greater for the compare problem set, as shown in
Table 4.10. Overall, the models seem to provide a reasonable first approximation
to the nature of the increased skill that children showed in solving these prob-
lems. As we will briefly describe, the models also provide a theoretical frame-
work for integrating the various findings related to children's performance on
combine and compare problems.

Recall that compare (1) problems are usually quite difficult for kindergarten
and first-grade children. In Riley's compare models, failure is associated with
the lack of a schema for understanding the problem situation in a way that makes

Table 4.10
Proportions or Patterns Consistent with Models

Level

Grade

K I 2 3

Combine problems I .52 .28 .05 0

2 .22 .34 .10 0

3 .13 .23 .85 .95

Residual .13 .17 0 .05

Compare problems I .52 .61 .05 0

2 .04 .06 .40 .45

3 0 .06 .20 .50

Residual ..'4 .27 .35 .05
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contact with the model's available action schematain this case the match action
schema. However, with instruction, first-graders apparently have no difficulty
learning to apply match to solve compare (1) problems (Carpenter, 1980;
Marshall, 1976). Carpenter (1980) reports a study in which children who had
received such instruction were tested on a variety of problems once in February
and again in May. Compare (1) problems were relatively easy for these children
at both testing times; correct proportions were .67 and .74, respectively. At the
same time, compare (3) problems remained difficult at both interview (.28
and .46). In February, errors on compare (3) consisted of responding with one of
the givens. (Similar errors have been reported by Gibb, 1956; Hudson, 1980;
Marshall, 1976; Riley, 1981; and Shores and Underhill, 1976.) In May, errors
were almost equally divided between responding with one of the givens and
choosing the wrong operation. This suggests that the children had learned to
associate their match procedure with the how many more than question in the
same way that children associated giving and taking with the actions put-in and
take-out. But as with put-in and take-out, the children had not yet learned to
represent the important relationships between the sets involved in the procedure
and therefore failed to generalize the instruction to other compare problems
(e.g.. compare [3]). Furthermore, children did not acquire the entire compare
schema at once but, as Carpenter et al. suggested, first focused on the difference
relationships, as indicated by the increase in "wrong operation" errors for
compare (3).

Riley's models propose a similar sequence of understanding to account for
performance on combine problems. Even preschool children have little difficulty
solving combine (1) problems. This does not, however, mean that solving these
combine (1) problems involves any understanding of set inclusion or partwhole
relations. Our lowest level combine m(..iel solves this problem by a simple
association' between the how many altogether question and its count-all action
schema. In fact, it is this model's lack of understanding of partwhole relations
that accounts for its failure on combine (2) problems. The more advanced models
have a combine schema that allows them to infer the partwhole relation be-
tween, for example, the eight marbles that Joe and Tom have altogether in
combine (2) and the five marbles that Joe has. These relations are not mentioned
explicitly in the problem, and without this schema, children simply interpret each
line of thr problem separately as in change model (1) and have no way to infer
the relP.tion between the two sets. They therefore put out a set of eight blocks to
represent the marbles that Joe and Tom have altogether and a separate set of five
blocks to represent Tom's marbles. This leads to the incorrect response of Eight

when asked how many marbles Tom has. The facilitation effect of rewordings
ae of them and the rest can be attributed to circumventing the need for a
combine schema by making the source of Joe's marbles more explicit, allowing
the child to remove the five from the set of eight.
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Acquisition of Problem-Solving Procedures

Children's conceptual knowledge of the elements and relations in word
problems also seems to be related to the acquisition of more sophisticated count-
ing procedures. For example, model (2)'s change schema represents the model's
understanding that changing a given quantity into a desired quantity involves
either increasing or decreasing the given quantity by a specific amount. We
therefore attribute a more sophisticated counting procedure to model (2) called
count-on. Count-on allows the model to extend or count a set by beginning with
the value of an existing set if it is known. Thus, if model (2) iiimady has three
blocks, but needs eight blocks, it can begin the count with three and simply keep
adding in blocks until it gets to eight, instead of rerwnting the three as model (1)
did with its count-all procedure.

Evidence for a relationship between the availability of the change schema
and count-on comes from Steffe and Thompson (1981) who report a positive
correlation between the ability to count-on and the ability to solve change (3)
problems. Hiebert (1981) found that count-on (referred to in his study as add-on)
was the procedure most frequently observed in first-graders' correct solutions to
change (3) problems.using blocks. The developmental relationship between the
availability of count-on and the availability of the change schema will be consid-
ered in the discussion section,

Children's conceptual knowledge may also be related to the acquisition of
the more efficient Min counting procedure (Groen & Resnick, 1977) in which the
number counted-on changes from being the second addend given to being the
smaller addend given. The mathematical property that allows this more efficient
procedure is commutativity, which we believe corresponds to an implicit under-
standing of the partwhole relations between the addends a and b and their sum,
c. That is, a and b are both parts of c, and therefore a + b and b + a are
equavalent operations. It seems likely, therefore, that acquisition of the Min
counting procedure would be related to children's understanding of combine (2)
problems, as these problems require an understanding of partwhole relations.
Fuson (1979) proposes the same basic idea by pointing out that the corn-
mutativity relation between a and b may vary with the addition problem type:
Commutativity would seem to be less obvious when the roles played by the two
numbers differ (as in change problems) than when the roles coincide (as in
combine problems). Thus, although the sequential property of change addition
problems may facilitate the transition from count-all to count-on, it may make
commutativity less apparent. Fuson suggests that the transition to the more
efficient Min procedure might be facilitated in the context of combine, rather
than change, addition problems. It is clear that more empirical and theoretical
work is required to clarify the relationship between conceptual and procedural
knowledge in the development of problem-solving skill,

36



186 MARY S. RILEY, JAMES G. GREENO, AND JOAN I. HELLER

Conclusions

The models described in this section provide a detailed hypothesis about
changes that occur in children's ability to understand relationships among quan-
tities and to use their representations of these relationships to solve problems. We
cannot claim uniqueness for the models that we have described here. Indeed,
there are some redundant features in the models so that somewhat simpler ac-
counts could be given to explain the observed improvements in skill. For exam-
ple, model (2)'s ability to solve change (3) problems is related to the ability to
construct a representation of the separate start and change sets and to the use of
the count-on procedure. Even so, we are confident that the children's improve-
ment in skill in these problems involves something along the lines of these
models. The more skillful models are more accurate because they understand
problems better. That is, their representations of problems include the relevant
features of the problems more completely and in ways that lead to the choice of
appropriate problem-solving actions.

RELATED ANALYSES OF CONCEPTUAL
UNDERSTANDING IN PROBLEM SOLVING

We have argued that successful problem-solving performance by children
depends on their understanding of certain concepts, which we have characterized
as schemata used in representing information in problem situations. We want to
avoid the impression that this point applies only to young children; it is equally
true of adult problem solvers in domains much more complex than primary-grade
arithmetic. In this section we briefly review findings from studies in two domains
of intermediate complexityalgebra and physicsin which the central findings
serve to emphasize the importance of conceptual knowledge in problem solving.

Word Problems in Algebra

High-school instruction in algebra usually includes solution of word prob-
lems, where the solution method presented involves translating the text into
equations. The program, Student, developed by Bobrow (1968), solves algebra
word problems using a method of translation into equations like the one present-
ed in most instruction. Student uses little conceptual knowledge. focusing in-
stead primarily on syntactic information to translate the English problem state-
ment directly into a corresponding set of equations. It then solves the set of
equations for the requested unknown. Table 4.11 presents an example of the kind
of word problem Student was able to solve along with the simplified trace of
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Table 4.11
Student's Direct Translation Strategy"

Problem

If the number of customers Tom gets is twice the number of advertisements he runs. and the
number of advertisements is 45. what is the number of customers Tom gets?
Solution strategy

I. Partition the problem into phrases:
If the number of customers Tom gets / is twice /
the number of advertisements he runs F. and /
the number of advertisements he runs / is 45 /
. what is / the number of customers Tom gets / /

2. Translate phrases into algebraic terms:
The number of customers Tom gets:
is:

twice: 2
the number of advertisements he runs:
is

45: 45
what:

3. Organize algebraic terms into equations:
x = 2 y

= 45
? = x

4. Simplify equations into single equation:
x = 2 x 45

Note. Asterisks stand for times.
"Adapted from Roman & Laudato, 1974.

Student's direct translation strategy. Notice how Student's solution relies almost
entirely on syntactic information in the problem to guide the solution process
with little understanding of the problem structure.

Although Student successfully solves many problems, a comparison of
Student's performance with that of human students revealed limitations caused
by its lack of conceptual knowledge. Paige and Simon (1966) and Hinsley,
Hayes, and Simon (1977) found that whereas human performance was similar to
Student's in important ways, humans also used a number of processes that
Student did not have, but that corresponded to an understanding of the relations
in the problem.

Paige and Simon (1966) noted that some human subjects proceeded, not by
simply translating the verbal statements into algebraic equations (which was
what they were requested to do), but by constructing a physical representation of
the problem and then drawing information from the representation. Consider the
following problem:

38



188 MARY S. RILEY, JAMES G. GREENO, AND JOAN I. HELLER

A board was sawed into two pieces. One piece was two-thirds as long as the whole board

and was exceeded in length by the second piece by 4 feet. How long was the board
before it was cut?

If one solves the problem by the direct translation strategy outlined in Table
4.11, an equation is obtained that yields a negative number for the length of the
original board, a physically impossible result. Some students noticed this before
setting up any equations, indicating that they had not proceeded by direct transla-
tion, but had instead constructed a physical representation of the situation
described.

Word Problems in Physics

Important contributions regarding the influence of conceptual knowledge in
problem solving have been made by comparing experts' and novices' solution
procedures. Larkin, McDermott, Simon, and Simon (1979) and Simon and Si-
mon (1978) found that skilled physics problem solvers work from elaborated
representations of the problem, rather than directly from the problem description.
These representations often include diagrams that make certain relationships and
constraints highly salient. In effect, experts have more conceptual knowledge
about problem situations than novices, and it is this conceptual knowledge that
guides their more effective and efficient solutions. Although experts and novices

may be observed to break problems into subparts or set subgoals to deal with
difficulties, these procedures are apparently executed by experts with an empha-
sis on the problem "Gestalt," whereas novices tend to solve problems on the
basis of more local problem features. Support.for this idea comes from a study by

Chi, Feltovitch, and Glaser (981) in which expert and novice physics subjects

were asked to sort problems into categories. The groups formed by novices
contained problems with similar objectsfor example, rotating objects. In con-
trast, the groups that experts formed contained problems related to general prin-

ciples of physics, such as conservation of energy. Together these findings em-

phasize the importance of conceptual knowledge for constructing and
transforming problem representations throughout solution, as well as the role of
these representations in determining the nature and amount of procedural knowl-

edge required to achieve a solution. Similar findings have also been obtained for

the learning of early geometry proof exercises (Anderson, Greeno, Kline, &
Neves, 1981; Greeno, 1980).

DISCUSSION

We have presented a theoretical analysis of both the conceptual knowledge

and the cognitive procedures underlying children's performance at different
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stages of skill in solving word problems. In this section we summarize how these
two forms of knowledge interact during problem solving and consider the role of
this interaction as skill develops. Finally, we consider the general implications of
this interaction for interpreting children's performance on other tasks.

Relationship between Knowledge and Procedures in
Performance and Development

PERFORMANCE

We have identified three main ways conceptual knowledge and procedures
interact during problem solving. One way involves the role of schemata in the
selection of actions. In the models that we described on pp. 176-184, K./ill
problem schemata and action schemata are required to relate the probi...4i state-
ment to the actions required to solve the problem. Problem schemata are in-
volved in interpreting the problem text. They range from model (1)'s simple
schema for representing quantitative relations, to model (3)'s more complex
change schema, to the schemata required for representing the complex relation-
ships in combine (2) and complex forms of compare problems. For all the
models, these schemata are associated with goals either to change the current
problem situation or to obtain some information from the problem situation.
Planning procedures then identify an action whose consequence matches the
current goal. Sometimes there is a direct match between this goal and one of a
model's action schematafor example, the goal to increase the amount of a
given set and model (1)'s put-in schema. In other cases, additional schemata are
required to infer important relations in the problem situation before the appropri-
ate action can be selectedfor example, model (3)'s inferences about the
partwhole relations between the quantities in change (5). In either case, the
application of even simple actions in problem solving requires some mediating
conceptual knowledge in the form of schemata.

The second way that conceptual and procedural knowledge interact involves
the use of schemata to monitor the effects of selected actions on a problem
situation. For example, whenever model (2) performs the action count-on, it uses
its change schema to maintain a record of the effects of that action. This record
includes information about the values of the separate start and change sets and is
important for correctly answering problems like change (3). Failure to monitor
the effects of actions can result in predictable errors on some problems (e.g.,
model (1 ]'s incorrect answer to change (3)).

Finally, conceptual knowledge can influence which actions get selected.
For example, model (2) and model (3) solve change (3) problems correctly;
however, differences in their conceptual understanding of the relationships be-
tween quantities in a change situation lead to differences in the actions chosen for
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solution.Model (2) understands the problem as an increase of some unknown
amount in the start set and uses count-on to solve the problem. Model (3) also
represents the problem as a change problem with an unknown change set, but
then it infers the partwhole relations between the quantities in the problem,
identifies one of the parts as the unknown, and solves the problem with reference
to its understanding of partwhole relations between numbers.

We also suggested that a child's conceptual knowledge of the relations
between quantities in a word problem is related to the acquisition of more
efficient counting procedures. Thus, there are at least two motivations for acquir-
ing more advanced schematanecessity and efficiency. The question remains
how more advanced schemata and procedures develop and how they interact
during development.

DEVELOPMENT

Recent theories of learning and development suggest some interesting pos-
sibilities for how the acquisition of sophisticated problem-solving procedures
may be related to the acquisition of conceptual knowledge. For example, Klahr

and Wallace (1976) and Neches (1981) postulate some principles to constrain
development that emphasize the avoidance of redundant or unnecessary process-
ing in the developing cognitive system. They propose that once a procedure is
acquired, its operation is monitored by the child by means of what is called a
procedural tracethat is, a record of the procedure's functioning in some situa-
tion. This procedural trace all:ws "detection of consistent sequences" and
eventual "elimination of redundant processing." It is feasible that procedural
traces not only result in more efficient procedures, but are also the basis for the
development of more advanced problem schemata. For example, consider the
following mechanism to account for the transition from model (1) to model (2).
If a set of a known amountsay three blocksis already present and the child is
asked to increase it to make it eight. model (1) children typically do not begin
minting and adding in from the known set value, 'uut rather use the procedure
start-count-set to begin the count all over again, starting with the existing set.
According to both Neches'F. theory and Klahr and Wallace's theory. the transi-
tion from this procedure to model (2)'s count-on woulci involve (a) "tracing" the
operation of start-count set, (b) thereby noticing the redundancy of counting the
three over again, and (r) finally eliminating this redundancy by beginning with
three and counting on to the desired result set. Thus, it is not that model (1) does
not form any epresentation of its solution procedure: It has to have some pro-
cedural trace to advance to model (2). However, the units of model (1)'s pro-
cedural traces are different from those of models (2) and (3) and do not corre-
spond to the structural information required by some of the change problems.
Anyway, at some point in transitioning between model (1) and model (2), the
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model's procedural trace and what we want to claim is the model's developing
change schema are probably indistinguishable.

Children's available schemata may also influence what procedures get ac-
quired. That is, levels of conceptual understanding function as intermediate steps
in acquiring new procedures. Thus, it is unlikely that a child would acquire
count-on until that child at least had the simple schema for representing quantita-
tive information shown in Figure 4.6. As Kamii (1980) points out, it is impossi-
ble to put two numbers into a relationship unless the numbers themselves are
solidly present in the child's mind.

In summary, we have made some general suggestions that children's pro-
cedural knowledge leads to the acquisition of schemata, and these schemata in
turn are involved as intermediate steps in acquiring more advanced procedures.
More work is required to explicate further the nature of this interaction.

Knowledge Underlying Problem-Solving Performance

The analyses just discussed also have some important general implications
concerning the knowledge we attribute to children on the basis of their problem-
solving performance. Piaget (Piaget (7c Szeminska. 1952) pointed out that chil-
dren lack understanding of some very important concepts: conservation of num-
ber, class inclusion, seriation, and so on. Evidence for these failures of under-
standing came from performance that was inconsistent with the general concepts;
for example, when a child sees two sets with the same number of objects and
says one has more, that performance is inconsistent with the concept of number
conservation. Recently, numerous investigators have shown that in other circum-
stances children will show performance that is consistent with those concepts.
For example, Gelman and Gallistel (1978) provided considerable evidence for
preschool children's understanding of number concepts involving small sets, and
Trabasso et at. (1978) summarized a substantial body of evidence that under
appropriate circumstances, children show that they understand the concept of
class inclusion. Results of studies of word problem solving by Hudson (1980),
Lind vall and Ibarra (1980a), and Carpenter et al. (1981) also fall in this category;
they how that with appropriate rewordings, children are quite capable of show-
ing that they understand concepts of quantitative comparison and set inclusion.

Implications of this are clear. Children's failure to show understanding of a
concept on one kind of task should not be taken as firm evidence that they lack
understanding of the concept; there may be other tasks in which their perfor-
mance shows that they understand the concept quite well. At the same time, we
cannot attribute the same understanding to all children who pass a simplified
version of a task when these children may differ considerably in their perfor-
mance on more standard versions of the task. We need to account for the
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differences in knowledge between children who demonstrate understanding of a
concept on a single task only and children whose conceptual understanding
generalizes across a range of tasks that apparently involve the same concept. The
analyses discussed in this chapter have made some progress in identifying some
of these differences.

Children who are more skilled have acquired schemata that act as principles
for organizing the information in a problem The schema appears to be used in a
top-down fashion so that it overrides distracting features of the problem situa-
tion. Children who do not have these schemata cannot make these inferences and
are dependent on mtdified problem situations where the relations are made
explicit through rewordings or perceptual changes. Therefore we are inclined to
view as very important the development of a schema to the point where it can be
used to organize a problem situation and thereby override distracting, irrelevant
factors. Piaget may have been wrong to assert that children lacked understanding
of a schema if they failed his tests for that understanding, but it is equally
misguided to assert that a schema is understood if we can find evidence for that
understanding in some limited task domain. What we need is an analysis of the
process of understanding in various problems situations, as well as an account of
the features that are required for children at different states of development to
produce an appropriate understanding of the situation and the task.
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