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SUMMARY

The technology for test equating has arisen from the need to make new tests

comparable to old ones. Equating of military tests has two objectives (1) to
make scores on different test forms and composites of test forms comparable,

and at the same time (2) to solve the norming problem by relating all scores on

new tests and composites back to a large sample of talent indicative of an
anticipated mobilization population. In this study, simulated and actual Air
Force test data were used to compare the different procedures for equating

mental tests and delineate those testing conditions under which each equating

procedure performed best. Specific testing-condition manipulations included
variations in test length, item difficulty, sample size, and examinee ability
distributions. Equating procedures studied included conventional (equipercen-

tile and linear), Item Response Theory (IRT), and strong true-score theory

(STST); data collection designs used were single-group, equivalent-groups, and

anchor-test. Equating transformations were evaluated by comparing equated

scores with true/observed scores along with bias and root-mean-squared-error

indices.

The study found that parallel subtests were best equated using the simple

conventional methods; nonparallel subtests, on the other hand, were best

equated with the more complex IRT and STST methods. There were few differences

among the data collection designs when they were applied to samples equiva-

lent ability levels; the anchor-test design was essential for equating subtests

using n nequivalent examinee groups. There was little advantage to be gained
by inc easing the sample size from 1,000 to 2,400 examinees. Equating accuracy

was no markedly affected when subtest length was doubled, nor did it matter

whether'easy or difficult subtests were equated.
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METHODS FOR EQUATING MENTAL TESTS

The concept of a standard is basic to all forms of measurement.
Precise standards for many physical quantities such as the meter, for
example, have been developed and universally accepted. Psychological

measurement is somewhat less advanced. Although several psychological
variables (e.g., IQ) have been quantified, these psychological
characteristics are usually indexed by scores on a particular test
rather than by a universally accepted standard.

One essential characteristic of a standard of measurement is its
invariance. A standard that deteriorates and changes through use or
storage is.not a satisfactory standard. In the physical sciences, for
example, a meter was originally defined as the length of a metal bar
stored under ideal conditions at the International Bureau of Weights
and Measures in France. Blcause this ultimately proved to be an
unacceptable standard (both because of inaccuracy and impermanence),
it was replaced by a specific number of wavelengths of the light
emitted by an isotope of the element krypton. The meter has since

been redefined more precisely as the distance light travels through
space in a specified fraction of a second.

A psychological test, as a standard, is even less satisfactory

than a meter bar. Since it is a reflection of a culture, its value
changes as the culture changes. Further, as its content becomes known

to a population of examinees, it produces a defective assessment of
the trait it indexes and, in essence, deteriorates.

Any physical device deteriorates with use. Fortunately, a meter

stick is only a copy of a standard and when the units wear off, it can
readily be replaced by another copy from the master. There are no

copies of a psychological test; each test booklet is a master. When a

test wears out because of cultural change or test compromise, a new
version rather than .a new copy must be produced. When this happens,
either new interpretations must be made for the new version or the new
version must be equated or calibrated to the old version. If

comparisons need to be made between old and new test scores, the

Litter approach must be taken.

The technology of test equating or calibrating has developed
because of some urgent needs to make new tests comparable to old
tests. To develop a comprehensive solution to the equating problem or
even to develop a comprehensive understanding of the problem, it is

helpful to explore first these needs for equating. Equating needs are

most apparent and equating methods are most extensively applied in the

areas of educational and military testing. This review will consider

each, in turn.
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Equating Needs in Educational Testing

The need for equating in educational settings arises primarily
because of the existence of numerous forms of any single test.
College admissions tests such as the Scholastic Aptitude Test (SAT),
for example, are revised continually to preclude test compromise from
one administration to the next. Standardized classroom achievement
tests must be revised not only to maintain test security but also to
ensure that the content and concepts tapped by such tests are current

and relevant to school-district objectives.

Educational Decisions

Decisions concerning individual applications to a university or

college e typically made after studying the test scores for all

applicants. These scores, obtained from various test adFinistrations,
are derived from different forms of an admissions test. 'Similarly,
evaluatilon of student achievement within one school district requires
the accumulation of data across schools and classrooms. Further,

questions `concerning academic growth and development can be answered
only through the administration from grade to grade of- test forms
whose scores can be interpreted as being from equivalent scales. All

these decisions, then, require that meaningful comparisons of scores
across test forms be feasible.

Scale Meaningfulness

The raw-score scale of a psychological test rarely has
significant implicit meaning. if the raw scores on all forms of a

test are expressed in terms of one derived scale (and, therefore, are

equated to each other), then the reported scores become independent of

the particular test form used to obtain them. There is no requirement

that this derived scale have any meaning beyond that of convenience.
What is required, however, isthat the scale itself remain relatively
constant across time.

Consider the history of the SAT as presented by Angoff (1962).
The SAT derived scale was originally defined to have a mean of 500 and
standard deviation of 100 for the group of applicants taking the SAT
in April of 1941. All subsequent SAT forms have been equated back to
this 1941 scale.

The number and type of applicants taking the SAT today have
changed dramatically since 1941; the scale has long since lost any
normative meaning it may have once had. Nevertheless, the constancy

of the scale permits comparisons to be made across all SAT forms, old

as well as current. In this way, then, colleges can make admissions



decisions without special consideration of which test forms were

administered.

In a similar fashion, evaluative comparisons based on
standardized achievement tests can easily be made across students in a
classroom and across schools in a school district. The repeated
administration of equated forms also permits inferences to be drawn
regarding longitudinal development.

Equating\Needs in Military Testing

Equating of military tests has two basic objectives: (a) to make

scores on different test forms and composites of test forms
comparable and (b) to simultaneously solve the norming problem by
relating all scores on new tests and composites back to a wide sample
of talent indicative of an anticipated mobilization population.
Methodologically, the second problem is subsumed under the first
because, if tests can be adequately equated, they can be equated back
to the test used on the norming population.

A brief historical overview of military testing may be helpful in
explaining the military equating needs. Although military entrance.
testing extends back to the Army Alpha of World War I, modern testing
and equating extends beak to the Army General Classification Test

(AGCT-1C) and the 1944 mobilization population. Because the United
States was then at war, there existed a readily accessible examinee
sample representative of the population of draftable personnel that
could be tested. The AGCT-1C was administered to a large (approximately
800,000), representative group of military personnel and norms were
established on that group.

At that time, each branch of the military had its own entrance

examination. While it might be illuminating to follow the development
of tests for all of the services, the best documentation exists for
those used by the Air Force, and the history of these tests can be
reviewed most completely. Weeks, Mullins, and Vitola (1975) reviewed
the history of the Air Force entrance examinations from 1948 to 1975,
and their review provides an outline for the current discussion.

History of Air Force Testing

Airman Classification Battery
\

AC-1A. The first operational Air Force recruit classification
battery was the Airman Classification Battery (AC-1A), which was
implemented in 1948. It consisted of 12 aptitude tests and a
biographical inventory. The aptitude tests assessed a variety of

-15-
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characteristics including general aptitudes such as vocabulary and

;arithmetic skills, general information such as knowledge of current
affairs, and vocational skills including knowledge of electronics and

mechanics.

Norms for the AC-1A were established by selecting a sample of
1,000 examinees (stratified on the basis of their AGCT composite
scores to match the mobilization population) and computing the mean
and standard deviation of their scores on each AC-1A subtest.
Standard-score stanines were then defined and were used to equate

scores on the AC-1A to scores on the AGCT. Additionally, the tests

were differentially weighted to form eight composite scores that were
used to predict success in military job clusters. These composites

were similarly standardized. Thus, the stanine scores were referenced

to the 1944 mobilization population.

After the initial standardization, 7 of the 12 aptitude tests

were shortened. These, along with the affected composite indices,
were restandardized using an equipercentile equating to the original

full-length subtests on a sample of 1,018 basic trainees. Thus, the

AC-IA, in its final form, had one indirect link in its equating to

the mobilization population norms. (The number of indirect links,

as used in this report, refers to the number of tests between the

equated test and the reference test. A test equated directly to the

reference test has no indirect links.)

AC -lB. The AC-1B was a slight modification of the AC-1A. The

major changes were the addition of one new test, Pattern

Comprehension, and the addition of another composite index,

Electronics Technician.

The AC-1A norms were used for all unchanged tests and composites.

Norms for the new test and the new composite were obtained by equating

the new scores to the AC-IA using the equipercentile method. A

composite of two tests was used for the reference in equating the

Pattern Comprehension test and another composite was used in equating

the new Electronics Technician composite. Thus, the new scores on the

AC-1B had two indirect links to the mobilization population norms.

AC-2A. In 1956, the AC-2A was implemented. It consisted of

14 new tests, similar to the previous ones but tapping slightly

different aptitudes, and a biographical inventory.

Norms on the AC-2A were obtained by administering the AC-2A along

with the AGCT -IC to 2,454 basic trainees (randomly sampled from three

Air Force training centers) and equating scores using the equipercentile

method. The scoring procedures were also changed fdr the composites.

Composite scores were reported in 20 percentile-based categories

rather than nine categories, as before. To accomplish this equating,
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the AGCT stanines were interpolated and the AGCT scores were considered

continuous (Brokaw & Burgess, 1957, p. 11). The test scores themselves

continued to be reported in stanines, however. The AC-2A was thus
directly linked to the mobilization population.

Airman Qualifying Examinations

The previous Airman Classification Batteries were used primarily

for classification rather than selection. When, in 1958, the Air
Force implemented a policy of selective recruitment, a new test foimat

was needed. Prior to that time, selection had been done on the basis

of the Air Force Qualification Test (AFQT), which was administered
at recruiting stations. The basic problem with the classification
batteries was that they were too long to administer at the recruiting
stations. Thus, a new series of tests was developed, the Airman
Qualifying Examinations (AQE). Several versions of the AQE were

developed prior'to the operational form. (This history is described

by Weeks et al., 1975, p. 23.) The form that ultimately replaced the
AC-2A was the AQE-D.

AQE-D. The AQE-D consisted of 11 aptitude tests and required
just over two hours of testing time, less than half of that required
by the AC-2A (Thompson, 1958). These scores were differentially
combined into four composite Indices. The composites were computed
directly from the raw scores'on the AQE-D and norms were established
only on the four composites. Composite scores were reported in
percentiles and were tied to the mobilization population through the

AC-2A. The equipercentile method of equating was used, tying each AQE-D

composite to the corresponding AC-2A composite. The AQE-D scores thus

had one indirect link to the mobilization population.

AQE-F. The AQE-F replaced the AQE-D in 1960. The battery
content remained the same except for the substitution of a Hidden
Figures test for the Figure Recognition test. Like the AQE-D, the

composite indices were equated to the AC-2A using the equipercentile
method. The AQE-F composite scores thus had one indirect link to the
mobilization norms.

AQE-62. The AQE-62 replaced the AQE-F in 1962. The major

content change involved replacing the Clerical Matching and Numerical

Operations subtesets with an arithmetic test. Thus, the AQE-62

contained ten subtests. It was normed through equipercentile equating
using the AQE-F, on a group of 2,428 basic trainees, as the reference
test. Again, the composite rather than the subtest scores were
equated (Edwards & Hahn, 1962). The AQE-62 thus had two indirect

links to the mobilization population norms.

AQE-64. In 1960 Project TALENT, which was sponsored by several
Government agencies, provided a new reference population to use for
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norming tests. In the spring of that year, a comprehensive battery
of aptitude, achievement, background, interest, and personality
tests was administered to a sample of more than 400,000 high-school
students. The test battery contained 74 tests and had 82 scores.
Since there was reason to believe that the'1944 group was no
longer appropriate as a reference population, the subgroup of the
TALENT sample consisting of high-school seniors was chosen as a new
reference group comparable to the mobilization population in
intellectual abilities and educational attainment.

For AQE equating, TALENT test composites were developed to
predict each of the four Air Force composites (Dailey, Shaycoft,.&
Orr, 1962). This was done using stepwise multiple regression in a
sample of 2,489 basic airmen. The sample was divided into two
subsamples of nearly equal size and separate regressions were run.
Three to four TALENT tests were chosen to predict each of the AQE
composites. With a few exceptions, the first tests stepped in were
chosen for the most predictive composites. Some non-statistical
considerations also weighed into the selection.

The AQE-64, which replaced the AQE-62 in 1964, was similar to the
AQE-62. It differed in that its unspeeded Arithmetic test was
replaced with a speeded. Arithmetic Computation test and the composites
were revised to include educational variables (Madden & Lecznar,

1965). It was normed relative to the TALENT sample using each of the
four AQE composite indices in four groups of approximately 1,000 basic
trainees each. An equipercentile equating was then done between each
AQE composite index and the corresponding TALENT index. The AQE-64

thus had a direct link to the new norm group and no link to the 1944
mobilization population.

AQE-66. The AQE-66, which replaced the AQE-64 in 1966, was
essentially identical to the AQE-64. It contained new items and the
Arithmetic Computation test's content and its order in the
administration sequence were changed. No substantial changes occurred.

It was equated to the TALENT tests using four groups of approximately
1,000 basic trainees each and the same equipercentile procedures that
were used on the AQE-64.

AQE-J. The AQE-66 was replaced in 1971 by the AQE-J. No

changes, other than the items, were made in this revision. It was

again normed by equating it to the TALENT battery on four samples of
aproximately 1,000 basic trainees each.

Armed Services Vocational Aptitude Battery

All Armed Services entrance batteries were replaced in 1973 with
the Armed Services Vocational Aptitude Battery (ASVAB). The ASVAB was

similar in coverage to the AQE. The ASVAB-3, the version initially
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implemented for operational testing, consisted of nine tests covering

basic aptitudes with tests like Coding Speed and Word Knowledge, and
measuring vocational achievement with tests like Shop Information and
Electronics Information.

From the ASVAB, the Air Force computed the same four composites
that it computed from the AQEs. These composites, were equated to the
TALENT composites and thus to the TALENT norm group. This was
accomplished by administering, in four groups of approximately 1,000
basic airmen, the ASVAB and the TALENT tests required to calculate one
composite score (Vitola & Alley, 1968). Each ASVAB-3 composite was
equated in its respective group of examinees to the appropriate TALENT
composite using the equipercentile method.

In more recent years, the Air Force shifted back to calibration
against the AFQT. Ree, Mathews, Mullins, and Massey (1982) described
an equating study in which Forms 8, 9, and 10 of the ASVAB, versions A
and B, were equated back to the AFQT-7A. The AFQT composite of the
ASVAB was the score equated. The single-group procedure was used
along with the equipercentpe transformation. Because of a lack of

.appropriate literature, it was not possible to determine the norm
group and linkage techniques used for the AFQT-7A.

Military vs. Educational Testing

The history of Air Force testing suggests several differences
between equating in a military setting and in an educational setting.
First, it is primarily composites that are equated in the military,
rather than individual test scores. Although batteries usually
include eight to ten subtests, the history of the Airman
Classification Batteries shows that it has always been thefour
composite indices that have been equated. This differs from the
educational environment, where subtests rather than composites are
usually equated.

Second, the military relies exclusively, it appears, on the
single-group data collection design in which a single group of
individuals takes both of the tests to be equated. This differs
strikingly from the educational environment, which relies heavily on
anchor-test methods, and is probably due to the military's captive
group of examinees. The ability to assemble a large group of
examinees for single-group equating may be a great advantage in
developing a superior equating method.



OVERVIEW OF EQUATING MODELS

Calibration vs. Equating: A Clarification of Terminology

The literature contains some dispute and confusion regarding what
can properly be called equating. Probably the most comprehensive
discussion of classical equating procedures was provided by Angoff
.(1971), who considered both the conceptual problems and some practical
designs for equating. Angoff discussed the general problem of making
scores comparable and divided this into the two processes:
calibration and equating. Angoff. took the position that for tests to
be equated they must be equivalent. That is, they must measure the
same characteristic with the same reliability and be of equal
difficulty. Essentially, they must be parallel. For all other cases,
he preferred to use the term calibration, which referred to putting
scores on a common scale without calling them equivalent. This is
consistent with Lord's (1977, 1980) definition that two tests can be
equated only if it can be considered a matter of indifference to an
examinee which test he or she takes.

Calibration

Calibration, in Angoff's discussion, referred to a procedure for

putting different measurements on a common scale. He used, as an

example, the physical dimension of temperature with several different
thermometers corresponding to tests. If a fever thermometer, a
refrigerator thermometer, and an oven thermometer are considered, they
obviously are not interchangeable. Values from one cannot be equated
to values of another. Using standard equipercentile procedures, all
scores on the refrigerator thermometer would map into the lower bound
of the fever thermometer. All these thermometers can be calibrated to
a standard temperature scale, however.

Implicit in this example is the fact that equating is not
necessarily a more desirable procedure than calibration. Most

psychometricians would be very happy with a set of tests that scaled
like thermometers, even if they could not be equated to each other.

Equating

Lord (1980) and Angoff (1971) agreed that there are three
requirements for equating tests that measure the same ability: (a)

symmetry, (b) invariance, and (c) equity (cf. Cook & Eignor, 1983).
The requirement of symmetry implies that the equating transformation
should be the same regardless of which test is labeled x and which
test is labeled z. Hence, all regression methods are inappropriate
for test equating since, in general, the regression of x on z
differs from the regression of z on x.
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The property of invariance requires the equating transformation
to be unique regardless of which population subgroup was used to
derive it. Angoff (1971) has shown that this is, in general, true for
(fallible) observed scores only if the two tests are strictly
parallel.

Lord's (1977, 1980) definition of equity requires that it be a
matter of indifference to an examinee which test he or she,takes.
This implies that the tests must be equally reliable. Modern test
theory (Lord, 1980; Lord & Novick, 1968) suggests that tests are not
equally reliable across the ability range but tend to be more reliable
at the ability levels appropriate for their difficulty. Thus, two
tests of unequal difficulty cannot be equally reliable at all abili!.v
levels and thus cannot be equated.

Test equating, then, under the strict definitions of Lord and
Angoff, appears to be of little practical value. For tests to be
equated they must be perfectly reliable or strictly parallel. If

tests are strictly parallel, however, they will not need to be
equated.

It may be that the concept of equating, and thus the term, is too
limiting for practical problems and that calibration would be a more
appropriate term. On the other hand, the term equating has been
applied to a wide range of comparability efforts and even though
calibration may be a more appropriate term, it is unlikely that the
psychometric community will readily accept the change. It thus
appears more profitable to revise the definition of equating to one
that is more in line with the practical goals of the procedures.

0 etational Definition of E uatin

Theories of psychological traits imply an underlying dimension of
a characteristic that tests attempt to assess. The concept that an

individual has a level of the trait is implicit in the "true score" of
classical test theory. The true score is not a procedure-free measure
of the trait level, however, because it relates to a specific test.
Modern test theories allow a procedure-free raft value to exist, at

least conceptually. Since in concept it is he assessment of this

trait level that is the objective of testing it seems reasonable to

say that two tests are equivalent if two equated scores result from

the same trait level on both tests. That is, two tests are equated if

each trait level leads to equivalent scores on the two tests. This

definition would be considered a form of calibration by Angoff. It is

more in line with the goal of what is commonly called equating,

however, and will be used as a definition of equating throughout this

report.



The term trait, as used above, should not be considered limited

to unidimensional trait or even to a single trait. The concept is

general and, in the case of several traits leading to a composite, can

be considered to mean that, for any fixed set of trait levels, two

composites are equated if the expected values of their scores are

equal.

Data Collection Designs

Methods for equating scores,can be classified on the basis of two

f actors: the design by which data are collected and the methods by

which-the_equating transformation is determined.

Angoff (19/1) listed six major equating designs. In terms of

data collection, these six designs can be grouped into two categories:

designs assuming equivalent samples.of examinees to achieve equation

(Designs I and II) and designs employing an anchor test to achieve

equation (Designs III, IV, V, and VI). Design I assumes that each

test was given to one of two random samples from a pOpulation. In

Design II, both tests are administered to a single random sample, thus

resulting in itcsingle-group design. Test-forms are counterbalanced

during admininstVation to prevent order effects. Design III is really

a combination of an equivalent-groups and an anchor-test design. Two

random groups are selected from a population and one test and the

anchor test are administered to each group, as in Design I. The

anchor test is used to estimate test-score statistics for the combined

group of examinees. Design IV is similar to Design III; the

difference is that the groups are not random samples from a

population. In Design V, each test is equated to a common anchor

test; scores that are equated to the same anchor test score are

considered to be equated to each other. Design VI is similar to

Design IV in terms of data collection; here different scaling methods

are applied to common (anchor) items.

Marco (1977) and Marco, Petersen, and Stewart (1980) listed three

data collection designs: (a) all items are given to a single group of

examinees; (b) the same set of items is administered to different

groups of examinees; and (c) an anchor set of items, either internal

or external to the tests to be equated, is administered along with all

tests given to different groups of examinees.

A recent study of item response theory (IRT) parameter linking

(Vale, Maurelli, Gialluca, Weiss, b Ree, 1981) suggested four basic

data collection designs of potential utility for equating: (a) the

equivalent-groups method, (b) the equivalent-tests method, (c) the

anchor-group method, and (d) the anchor-test method. In the

equivalent-groups method, a population of examinees is randomly split

into two or more groups and each group is given a different test.
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Equating is achjeved y assuming that the groups are equivalent and

adjusting the test scores such that the score distributions ofthe two
teats are identical. In the equivalent-tests method, a domain of
items is randomly split into two or more tests, and these tests are
given to different groups of examinees. The tests are assumed to be
randomly equivalent, and no explicit equating is done (i.e., it is
assumed that the scores are already equated). The anchor-group method

employs a common group of individuals to take all tests to be equated.
Equating is done using this group in the same manner as with the
equivalent-groups procedure. A common set of items is used by the

anchor-test method. Equating is accomplished by equating the
non-anchor tests to the anchor test in what amounts to several
single-group procedures. Angoff's first two designs are examples of
the equivalent-groups method, and his latter four are examples of the
anchor-test method. Marco's first design is a special case of the
equivalent-groups method, his second is a special case of the
equivalent-tests procedure, and his third design is an application of

the anchor-test method.

Vale et al. (1981) suggested that the equivalent-groups and
anchor-test methods -ere most useful in linking applications.
Linking, the mappii- of item parameters onto a common scale, differs

from equating in several ways. Most importantly, linking is properly

implemented only using IRT procedures and is typically applied to sets
of items of similar difficulty and examinee groups of similar ability.

For reasons different than those cited by Vale et al., the same two

methods are probably most useful for equating. The equivalent-tests
procedure is inappropriate for equating because it amounts to assuming

the conclusion (i.e., that the scores on the tests are equivalent).,

The anchor-group method, while applicable to IRT linking procedures

where linking is separate from item calibration, would be
indistinguishable from a single-group procedure in an equating design;

this has already been included as a special case of the
equivalent-groups design.

Equating Transformations

The transformation in equating is the function that maps scores

from one test onto the other test. Several different transformations

have been proposed.

Conventional Equating

Both linear and equipercentile methods are used to equate

conventionally administered and scored tests.
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Equipercentile Equating

Raw transformation. A procedural definition of equating (as
distinguished from the conceptual ones discussed earlier), provided by
Lord (1950) and Flanagan (1951) and reproduced by Angoff (1971),
states that "Two scores, one on Form X and the other on,Form Y (where
X and Y,measure the same function with the same degree of
reliability), may be considered equivalent if their corresponding
percentile ranks in any given group are equal" (Angoff, 1971, p. 563).
This procedural definition gave rise to the equipercentile
transformation which is accomplished by assigning an equal value to
scores on two tests when the same percentage of individuals falls below
these scores (i.e., such that equated scores have equal percentile
ranks). Procedurally, this transformation is typically performed on
observed scores.

Angoff's (1971) Design I for equipercentile equating can be used
to equate conventionally scored parallel tests using both the
single-group and equivalent-groups data collection designs. Angoff's
Design V can be used for the anchor-test design; it equates the old
and new tests separately to the common anchor test using the
single-group equipercentile method, and then defines as equated those
scores on the old and new tests equivalent to the same anchor-test
score.

Smoothing. Observed cumulative percentiles may exhibit
irregularities because of sampling and measurement error; smoothing
the data may yield better equating results. There is no systematic
evidence to indicate which smoothing method is optimal or when in the
equating process smoothing is best applied. That is, the individual
frequency or percentile tables may first be smoothed, with these
smoothed tables then used to equate the two tests. Alternatively,
the unsmoothed tables can be used to equate the tests; the resulting
equating transformation itself can then be smoothed.

The analytic methods of smoothing include cubic polynomial
regression and cubic spline functions. In regression smoothing,
either the raw percentiles or equated scores are regressed (using
cubic polynomials) on observed test scores; inserting these test-score
values back into the resulting regression equation yields either a
smoothed frequency curve or a smoothed equating transformation,
respectively.

Cubic splines are part of a family of functions used to fit
curves to observed data. In cubic-spline smoothing (Reinsch, 1967), a
separate cubic spline function is fit to each interval between
adjacent score points. For score points xi, where i ranges from 0

to the maximum test score, k, the general form of the spline
function over the interval xi < x < x

1+1
can be expressed as
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f (x) = a
Oi

+ a x + a
21
x2 + a

3i
x3 [11

where the constants au, ali, a2i, and a3i can vary from interval to

interval and the spline functions meet at their common endpoints. The

spline functions are constrained such that the second derivatives
(ffii(x)) of the (two) spline functions at each score point are

identical. The spline function over all x values is denoted f(x);
spline functions minimize

f
kif"(x)12dx.

x
0

[21

The degree of smoothing can be explicitly controlled by the user
and is dictated by the value of a smoothing parameter, S; S
controls the degree to which the spline function values are permitted
to deviate from the observed values (yi). The smoothing parameter is

directly proportional to the differences between the observed and
smoothed values and is inversely proportional to the relative weights
assigned to the score points (6 (y1)). The differences between the

observed and smoothed values at each score point can be unit weighted
or, alternatively, weighted by the standard errors of the scores. All

spline functions, then, minimize Equation 2 subject to the restriction

k

("xi ) Yi)6(yd
< S.

1=0

[31

The choice of values for S and the score-point weights
determines the specific nature of the final smoothing solution. The

larger the value chosen for S, the greater the degree of smoothing;
If S is set equal to zero, the smoothed values equal the observed
values and this process becomes a cubic-spline interpolation method.
Reinsch suggested using standard-error weights (if they are available)

for the score points and a value for S within the range K + (2K)1/2

where K = k + 1 is the number or score values. Kolen (1983) argued
that the observed percentiles/equated score points are not independent
in the context of test equating and, therefore, that Reinsch's suggested
S values may be inappropriate. He suggested, instead, a "moderate"
smoothing parameter that is equal to one-half the number of score
points.



There are problems inherent in applying either type of smoothing

method to examinee test data. The cubic-spline method depends heavily

on the choice of a value for the smoothing parameter; at this point,

there are no' standards for selecting this value. Applying either type

of smoothing method to the equating transformation itself yields a

nonsymmetric equating: The resulting smoothed transformation equating

Test X to Test Y is tot the same as the smoothed transformation

equating Y to X. However, the goal of smoothing is to eliminate

error-induced irregularities and discontinuities in the observed data;

because lack of symmetry is not a concern at that point, it may make

the most sense, theoretically and practically, to smooth the raw.

frequency or percentile tables rather than the equating transformation

itself (as has been the usual practice).

Linear Equating

The linear equating method has typically been used as an

approximation to the equipercentile method for equating observed test

scores. In the linear method, scores on two tests are considered

equivalent if they correspond to the same standard (i.e., z) score

(Angoff, 1971). This is equivalent to the equipercentile procedure

only if the distributions of test scores on the two tests are

identical. Practically, it often makes a good approximation to the

equipercentile result if the distributions are similar in shape.

Furthermore, the linear method is less sensitive to sampling

fluctuations with extreme scores that occur in the tails of

distributions.

Problems with Conventional Equating Methods

There are two aspects of Angoff's (1971) conventional definition

of equating that make these transformations only approximately

correct. The first is "any given group," which requires (a) that

further assumptions concerning the teat scores be made before

equating, or (b) that an exhaustive sampling of all, possible groups be

made. The second aspect is the requirement of equal reliability,

which implies that tests which differ in reliability cannot be equated

so simply.

The any-given-group restriction is satisfied if the relative

shapes of the score distributions remain constant across groups at all

levels of the trait. According to Lord (1977), it is a necessary (but

not sufficient) condition for accurate test equating that the

percentile ranks of equated scores remain equivalent across all groups

tested.

The problem of equating unequally reliable tests has been

addressed in several ways. Since the problem of unequal reliability

disappears when true scores are equated, methods of transforming true
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scores have typically been applied. Angoff (1971) provided linear

procedures for equating unequally reliable tests. In general, the
procedures he suggested replaced the standard deviation in the
standard-score formula with the standard deviation multiplied by the
square root of the reliability coefficient (cf. Angoff, 1971, p. 571).

Classical test theory does not provide a mechanism for adjusting
for reliability in equipercentile equating. The true-score regression
suggested by Angoff could be applied prior to equipercentile equating
but would result in-exactly the same equating transformation as if it'
were not applied at all. For example, a z 'score of 1.0 might
correspond to a percentile rank of 84. If the reliability were 0.81,
the true score would be regressed to 0.90. Its percentile rank would
still be 84, however, and since the equipercentile correspondence is
between percentile ranks, it would still correspond to the same score
on the second test.

Item Response Theory

Item response theory (Birnbaum, 1968; Lord & Novick, 1968) offers

another method of equating tests that differ in difficulty and
reliability. IRT expresses the probability of a keyed response as a
function of an examinee's trait level and one or more characteristics
of the item. An IRT model often used with dichotomous items is the
three-parameter logistic model. This model describes the probability
of a correct response to an item as a function of the trait level (0),
the item's discriminating power (a), its difficulty (b), and its
proneness to being answered correctly through guessing (c):

1-c
P(0) = c +

1 + exp(-1.7a(e-b))
[41

The one-parameter (or Rasch) IRT model describes the probability
of a correct response solely as a function of theta and item
difficulty. The two-parameter IRT model includes theta and the a
and b parameters only. No provision is made in these models for
answering an item correctly through guessing. When all of the
parameters of an IRT model are estimated, either true-score or
observed-score IRT equating can be performed.

True-Score Equating

Once the item parameters and theta for two or more tests are
expressed on a common metric, the relationship between ability (0) and
number-correct true score (0 on Test X can be expressed as:

n
x

= I Pi(0)
1=1
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Similarly, the relationship between ability and number-correct true

score on Test Y (n) can be expressed as:

Ti

n

= Y P (e)

j=1

[6]

For any given value of 0, the corresponding true scores and n are

equated in an exact (mathematical, not statistical) way (Lord, 1977).

The equating transformation relating E and n is typically obtained

by estimating all relevant item parameters (e.g., by obtaining Pi(0)

for all i).

Because this equating transformation is derived from true

number-correct scores, it should, strictly speaking, be applied only

to examinee true scores. However, only observed scores are available

to test researchers and administrators. The typical procedure is to

estimate the true number-correct score for each examinee and applyrthe

IRT true-score equating transformation to these score estimates.

While this is theoretically inappropriate, its utility remains an

empirical question.

Observed-Score Equating

Alternatively, one may estimate the frequency distribution of

number-correct scores for each test for the combined examinee group by

using (a) the estimated distribution of ability (theta) in the

combined group, (b) estimated IRT item parameters for each test, and

(c) the generalized-binomial generating function for obtaining the

frequency distribution of scores conditional on theta (cf. Lord, 1977,

p. 131). Once-the frequency distribution of scores on each test has

been estimated for the combined examinee group, the observed test

scores can then be equated using ordinary equipercentile procedures.

Item Parameter Estimates

The parameters of IRT must, of course, be estimated.

Practically, calibration programs typically assume theta to be

distributed with a mean of zero and a standard deviation of one. In

order to equate two tests by the methods described above, the

parameters of two tests calibrated separately must be linked together

onto a common metric. The problem of making the score metrics

equivalent has thus simply been shifted from the true scores to the

thetas. The parameter-estimation problem still exists, although it is

somewhat less severe than in the strong true-score methods. The main

advantage of IRT, in this respect, is that the theoretically proper

linking transformations for the theta metric are linear and can be

made more accurately. A major disadvantage of IRT equating is that it

assumes the trait to be unidimensional. Methods of linking item
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parameters have been discussed in detail elsewhere (Vale et al.,
1981).

Strong True-Score, Theory

Lord (1965, 1969, 1980) developed a strong true-score theory
(STST) to produce an estimated distribution of true scores (g(c)) from a
distribution of obderved scores (4(x)). Tests are equated by applying
conventional equipercentile procedures to the true-score distributions.
The general model is expressed in terms of the equation.

b

(1)(x) = I g(4)h(xl0c1C
a

where h(x1c) is the conditional distribution of observed scores on
true scores. The limits of integration, a and b, are set at the
practical true-score limits, 0 and 1, for a proportion-correct true
score.

17)

Strong true-score theory attempts to describe the distribution of
true scores, g(O, by solving the integral equation with specified
functions for 4)(x) and h(xIc,). For dichotomous test items, Lord has
typically used a compound binomial, or an approximation to it, for.
h(x10. Solving the integral equation is a numerically tedious
procedure and Lord has taken two approaches to it. In the first (Lord,
1965), instead of trying to define an entire nonparametric distribution
of true scores, he assumed an incomplete Beta distribution for g(c) and
estimated its parameters. This was numerically simpler than a
nonparametric approach. It appeared to work well in cases where the
a and b estimates from the observed-score data fell within the
appropriate limits of 0 and 1, but did not function well otherwise.

Lord (1969) attempted a more empirical approach and tried to
develop for f!,(x) a polynomial of degree as high as was warranted by
the data. He found that this procedure worked well when the test was
administered to at least 10,000 examinees. Such large samples are,
unfortunately, often unavailable.

In principle, if the true-score distribution functions of two
tests could be estimated by these methods, the problems of test
unreliability would disappear and test equation could be achieved by
setting the true-score distribution functions equal to each other:

= i g*(r)d'
() ()

The values x and y that solved the equation would thus be
equivalent scores.
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The strong true-score theory approach to equating is,

theoretically, a general solution to the problem of equating

nonparallel tests., Problems resulting from reliability and difficulty

differences disappear when true scores are used. The assumption of a

compound binomial conditional distribution of observed scores given

true scores does not seem to be overly restrictive. The numerical

problems encountered in solving the equations are formidable, however,

and the statistical estimation procedures available are

unsatisfactory. First, Lord used a numerical approximation to the

compound binomial distribution because exact evaluation required too

much computation. Then, numerical procedures were required to solve

the integral equation. Finally, numerical procedures were required to

equate the integrals. The statistical procedures require such a large

number of examinees for Lord's (1969) empirical procedure that it is,

typically, impractical. These problems may not be insurmountable but

suggest, at a minimum, that the strong true-score theory procedures

are considerably more difficult to apply than are the conventional

procedures.



EVALUATION OF EQUATING METHODS: A REVIEW

The published literature describing applications of equating
methods provides some information regarding the relative utility of
the various equating methods and helps to identify the most frequently
reported equating problems. Furthermore, these past studies help to
identify the methodological issues and problems crucial to the design,
execution, and evaluation of the current research. These issues
include, but are not limited to, (a) characteristics of the ability
and score distributions in the population studied, (b) the-
psychometric characteristics of the tests, (c) procedures for
combining tests into composites, and (d) definitions of evaluative
criteria.

This review of equating applications is divided into several
sections. In the first, conventional applications (linear and
equipercentile methods) are described and critiqued. IRT equating
efforts are discussed in the second section. The third section
considers studies that compared conventional and IRT methods. The

remaining sections summarize the findings from previous research and
discuss their relevance to practical equating situations. The

criterion problem is discussed. No studies investigating STST methods
were found; STST is thus noi included in this review.

Previous Research

Conventional Equating Methods

Regression

If two tests are strictly parallel, their true-score
Aistributions_will beidentical..and_the.regression_of Form X true
scores on Form Y observed scores will be identical to the regression

of. Form Y true scores on Form X observed scores. Hence, the observed

scores from a single test form can be used to equate the true -score

distributions of all parallel forms. However, the true scores of
nominally (i.e., imperfectly or nearly) parallel tests (Lord & Novick,
1968, p. 174)'may be highly correlated but are not identically
distributed, and the above relationships do not hold.

Marks and Lindsay (1972) conducted a Monte Carlo simulation to
investigate the effects of violating the strict-parallelism assumption
on.equating adequacy. They varied test and sample characteristics and
examined the accuracy orestimating the true-score distributions of

one test form from the observed scores of a second form. They

manipulated sample size (100, 250, 500), test length (30, 60, 120),
test-form reliability (.75, .85, .95), and the correlation between
true scores (.80, .90, 1.0); these four parameters were completely
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crossed in their study. Observed scores on each test form were

computed for each simulated examinee using (a) bivariate normal

true-score distributions with the specified correlation, (b)

appropriate error -score distributions, and (c) the classical test

model X m T + E, where X, T, and E represent observed,

true, and error scores, respectively. True scores were then estimated

on Form X as might be done in a practical setting, using the equation

T(X) = p
I
x + (1 - PXX IC

XX

where pxx, is the reliability, and X is the sample mean. The true

scores of Form Y were also estimated according to Equation 9.

Equating was accomplished by regressing the estimated trAe scores of

Form X onto the estimated true scores of Form Y.

(91

Marks and Lindsay performed a four-way analysis of variance

(pooling the 3- and 4-way interaction terms) on the data, using as a

dependent variable the mean squared difference between the estimated

true score on the equated test (i.e., after the regression) and the

actual true score generated in the simulation. They concluded that

sample size was the most important factor affecting equating error; as

sample size increased, it "washed out" the effects of the other

test-form characteristics. They discouraged the use of sample sizes

smaller than 250 when equating nominally parallel tests. The effect

of test-form reliability was not statistically significant.

Because Monte Carlo methods were used in this study, true scores

on each test form were known for each examinee. Thus, the equating

procedure could be readily evaluated by comparing the estimated (i.e.,

equated) true score to the specified true score for each examinee.

Such a criterion does not exist when test scores from real examinees

are equated.

This study is seriously flawed in other ways, however.

Regression methods, as used by Marks and Lindsay, are not appropriate

for equating two tests because they violate a basic equating

requirement. That is, equated tests must be symmetrically related,

and the results of an equating procedure should be the same regardless

of which test form is labeled X and which test form is labeled Y.

However, the regression equation that predicts the score on Form X

from the score on Form Y is not the same as the regression equation

that predicts Y from X (cf. Lord, 1980, pp. 198-199). Therefore, the

equating results obtained by Marks and Lindsay would be different had

they regressed Y onto X. This is an unsatisfactory consequence of the

regression procedure.



S

Linear

Garcia-Quintana and Johnson (1979) compared three methods of

linear equating designed for use with parallel tests administered to

nonequivalent examinee groups along with a common anchor test. One of

two forms of the SRA Mastery Mathematics Tests was administered to more

than 2,000 sixth-grade students; all students received the Mathematics

Test of the Comprehensive Test of Basic Skills (CTBS).

Their first linear equating method involved procedures from

Angoff's Design IV (using equations attributed to L. R. Tucker; cf.

Angoff, 1971, p. 580), where the CTBS anchor-test scores were used to

adjust for ability differences between the groups before equating the

standard scores on the two SRA test forms. Design IV requires that

summary statistics for each test form for both groups combined be first

estimated from the combined distribution of anchor-test scores before

the linear transformation is applied. The other two methods used

procedures fromAngoff's Design V to equate both test forms to the

anchor test and to define as equivalent (a) the scores on the two tests

that were equated to the same anchor-test score and (b) the scores on

the two tests that were predicted by the same anchor-test score.

The equating tables derived from these three methods were

compared with each other for consistency because there was no external

criterion of equating adequacy. The authors found that these methods

yielded similar results throughout the middle score range, with

differences among the three methods becoming more pronounced at the

extremes of the score distributions.

Equipercentile

Yen. Yen (1982) applied the equipercentile equating method to

data generated according to the three-parameter logistic IRT model.

Test length (n), sample size (N), and differences in item

difficulties and discriminations were varied across simulated tests.

These factors were completely crossed. Each sample of size N was

generated so that true theta was distributed standard normal. For

each pair of tau-equivalent tests (having equal expected means) in a

given condition, N pairs of theta estimates were generated; one set

for each test. Each theta estimate was chosen by using a normal random

deviate generator, assuming theta estimates for a given test and theta

value to be normally distributed with mean equal to true theta and

variance defined by the inverse of the information value (calculated

using the appropriate item parameters and true theta). Equipercentile

equating was then performed for each test pair.

Yen used a bias measure as a criterion, defining

-

v. (x sv 10) =
2i

1
sh
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where XI is the raw score on the first test, X2 is the equated score

on the second test, and Sx is the standard deviation of Xi computed
i

over all examinees. Simulated examinees were divided into five cells
by rank order on theta, and two summary indices were considered:
maximum, absolute bias and mean absolute bias. Equipercentile-equating
bias was computed from the difference between the theta estimate from
the first test and the corresponding equipercentile-equated theta
estimate from the second test; bias between the two sets of paired
(tau-equivalent) theta estimates was computed as a basis for
comparison.

Errorless equating of the theta estimates, according to the IRT
model, would have resulted in a linear transformation function.
Curvilinearity of the equipercentile plots was quantified by
subtracting the Pearson correlation coefficient from the average of

the two correlation ratios (eta). Curvilinearity increased (and

therefore goodness of equating decreased) as the length of the test
decreased and as the mean difference between test difficulties
increased. For tests of equal difficulty, the equipercentile bias was
less than the IRT "bias," but bias was substantial otherwise and
increased as test length decreased and the disparity between the test
difficulties increased. Differences in item discriminations across
tests did not adversely affect equipercentile equating, at least for

the high levels and small differences simulated here. Test-length

differences (20 vs. 40) were important while sample-size differences
(1,000 vs. 2,000) were not. No comparisons were made with any other
equating method.

Slinde-Linn. The Anchor Test Study (Bianchini & Loret, 1974)

was a large-scale study designed, in part, to equate seven
standardized reading tests to each other within three grade levels (4,

5, 6); an eighth test was added later. It did not, however, equate
the tests across grade levels. Slinde and Linn (1977) used data from
the Anchor Test Study and test publishers' nerms to investigate the
adequacy of equipercentile equating methods and the anchor -test data
collection design for vertical equating situations (i.e., where tests
differ widely in difficulty and examinees differ widely in ability).
Because the standardized tests from different publishers changed forms
at different grade levels, a variety of equating comparisons were
possible.

In each case, different levels of the same *est were equated

using various other published tests as anchors. In all cases,
differences between scores on a single level of a test were not the
sane as differences between scores on vertically equated levels of the

same test. The direction of this difference was not consistent across

(
tests and levels. Slinde and Linn acknowledged that some of their
results may have been confounded because publishers' norms rather than
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Anchor Test Study norms had to be used at times to define the scaled

scores. Nevertheless, they suggested that other equating methods
(e.g., IRT) might be better suited to the task of vertical equating.

Comparisons Among Conventional Methods

Bianchini-Loret. The original Anchor Test Study (Bianchini &

Loret, 1974; see also Linn, 1975) was a monumental endeavor designed

to equate scores across eight widely used standardized tests and to

provide new national norms for each of those tests. It also allowed

for a comparison of different equating procedures. To this end, pairs

of tests were administered to different groups of examinees, and
equipercentile equating methods were compared to linear methods. The

full sample and eight balanced half-samples were used to equate each
test to one of the other reading tests; the root mean squared
deviation of the equivalent scores for each half-sample replication
from the equivalent scores was computed for the full sample.
According to this error-of-equating criterion, the equipercentile
methods were found to be superior, with an estimated equating error
generally less than one raw-score point (except in the
chance-test-score range).

Stock-Kagan-Van Wagenen. Stock, Kagan, and Van Wagenen (1980)
equated verbal, quantitative, and composite scores on the Graduate
Record Examination (GRE-V, -Q, and -C, respectively) to scores on the

Miller Analogies Test (MAT) from the responses of 273 graduate-school

applicants who took both tests. Four different equating procedures

were employed and compared: (a) MAT scores were regressed on GRE-V,
GRE-Q, and GRE-b separately, and vice versa; (b) conditional mean
scores on the three GRE subtests were obtained for each MAT score, as
was the mean MAT score for each GRE subtest score (i.e., a form of

curvilinear regression was performed); (c) linear equating was
performed between the MAT and each GRE score; and (d) equipercentile
equating was performed between the MAT and each GRE score. The

equating tables derived from these four procedures were examined and

compared with each other.

Stock et al. observed several deviations from monotonicity in

equated scores using conditional means. Although this was probably due

to sampling fluctuation and should therefore disappear with larger

samples, they dismissed the method from further consideration. As

expected, scores equated with the regression procedure were closer to
the mean than were scores equated with any of the other procedures.

Linear and equipercentile methods yielded virtually identical results,

with the simpler linear method therefore preferred by the authors.
Stock et al. concluded that the ultimate choice was between the linear

and regression procedures, with regression preferred if the
correlation between the two sets of scores was available (i.e., for
the single-group data collection design). This recommendation was
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made in the absence of any external criterion on which to compare the

methods.

As discussed previously, regression methods (linear or otherwise)

are inappropriate for equating two tests since they do not yield a

symmetric equating transformation. Hence, the only valid comparison

in this study ,is the one between the linear and equipercentile
procedures. Strictly speaking, neither of these methods was
appropriate for\equating in this situation. These procedures assume

that the two teat forms are parallel. This obviously was not the case

for the GRE and MAT. The content of the MAT differs greatly from that

of the GRE. The Correlations of the MAT with the GRE scores ranged

from a low of .42 (with GRE-Q) to a high.of only .70 (with GRE-V). In

any case, because o the lack of any criteria for evaluation,
conclusions regarding the relative merits of these two equating
procedures cannot be drawn.

Lord. Lord developed formulas for the standard errors of

equating for tests linearly equated using an anchor teat (1975) and

tests equated by the equipercentile method (no smoothing) using a

single-group or equivalent-groups design (1981a, 1982c). He considered

these indices to be on the same scale and used them to compare
equipercentile to linear equating (Lord, 1981a, 1982c). Scores on two

forms of the SAT-V were equated by both methods using an external

40-item anchor test; each test form was administered to nearly 2,700

examinees.

Lord used Angoff's (1971) Design IV to linearly equate the.SAT-V

forms. Each form was also equated to the anchor test using
equipercentile procedures; scores equated to the same anchor -tent

score were assumed to be equated to each other. This method of

equipercentile equating is, essentially, two applications of

single-group equating. Consequently, the (independent) sampling
variances as defined in Lord (1981a, 1982c) were summed together.

The standard errors computed for the different equating methods

were then studied. For both the linear and equipercentile methods,

standard errors were smaller for scores in the middle of the range.

'Standard errors of the equipercentile equating were approximately

twice as large as those of the linear equating for middle-range

scores; this difference became even larger in the tails of the score

distribution.

Lord also compared the equating tables resulting from application

of the two equating methods. The two sets of equated scores were
similar in the middle of the score range but were quite disparate

(more than one standard error of measurement apart) in the tails.

This difference corresponded to ten standard errors for the linear
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equating and nearly five standard errors for the equipercentile
equating at that score level.

Summary

The results of these studies suggest that there are few, if any,
practical difterences.among the conventional equating lopcedures.
Regression procedures are clearly inapppropriate for test equating
(cf. Marks & Lindsay, 1972; Stock et al., 1980), but this result
should be obvious without empirical study. Equipercentile and various
modifications of linear methods generally yield similar results
,(Garcia-Quintana & Johnson, 1979; Stock et al., 1980), although
Bianchini and Loret (1974) found the equipercentile methods to be
superior in terms of cross-sample replication. Lord (1981a, 1982c)
observed larger standard errors for equipercentile equating in his
study, although it is not known whether the same results would have
been obtained,with equating lines that had been smoothed in some way.'

It is questionable whether equipercentile procedures can be
successfully used for vertical equating -- that is, for equating tests
that differ in difficulty (Slinde & Linn, 1977; Yen, 1982). Linear
procedures were not used to vertically equate tests in the studies
reviewed here. L

IRT Equating Methods

One-Parameter Model

Slinde-Linn-Gustafsson. Slinde and Linn (1978, 1979a)
presented a set of studies designed to evaluate the adequacy of the
one-parameter IRT model for vertical equating. In their 1978 study
Slinde and Linn used response data from 1,365 examinees on a 36-item
mathematics achievement test. Two tests of differing difficulty were
obtained by dividing the 36-item test into two 18-item tests on the
basis of the item difficulties obtained in the group of 1,365 examinees.
The average proportions correct for the tests were .665 for the easy
test and .362 for the difficult test. The examinees were then divided
into low-, middle-, and high-ability groups on the basis of their
scores on the easy test.

Item difficulty parameters were calculated for the total set of
36 items in the low-ability group, the high-ability group, and the
total group (the middle-ability group was reserved for later use).
Ability estimates were then calculated for each of these groups (low,
high, and total) using parameters obtained from each group in a
crcssed design. Mean differences between ability estimates derived

the easy test and the difficult test were then computed and
Jrnpared.
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When the total-group ability estimates were calculated using item

parameters obtained from the total group, the difference between means

obtained from the easy and difficult tests was trivial. Similarly,

when the high-group mean ability estimates were calculated using item

parameters obtained from the high group and when the low-group means

were calculated using the item parameters obtained from the low group,

the differences were trivial. When items calibrated in the high group

were used to estimate abilities in the low group or the middle group

and when items calibrated in the low group were used to estimate

abilities in the high group or the middle group, substantial

differences in ability estimate means were found. Slinde and Linn

interpreted this to mean that Risch parameters were not really

invariant and that Rasch equating procedures were not particularly

useful for the problem of vertical equating.

Gustafsson (1979) criticized this interpretation. He suspected

othat the difference between means was due to regression artifacts

which resulted from the fact that Slinde and Linn had estimated

abilities and subgrouped people on the basis of only 18 of their 36

items. Individuals would not be expected to perform, in a relative

sense, as extremely in either direction on the entire 36 items as they

did on the easy 18; therefore, a difference between means would be .

expected. To support his hypothesis, Gustafsson performed a computer

simulation modeled closely after the Slinde and Linn study, with the

notable exception that the assumed invariance properties of the Rasch

model were built in. His simulation showed that the parameter

estimates obtained in the different groups were different but that

this was due to a regression artifact and not to a lack of invariance.

He suggested that Slinde and Linn reanalyze their data, subgrouping

individuals on the basis of their total test scores.

Slinde and Linn (1979a) improved upon this idea by obtaining data

from 1,638 examinees on two different tests including a 60-item

reading comprehension test. The first test was used to independently

subgroup examinees. The 60-item test was then split on the basis of

item difficulty into two 30-item tests and their original study was

essentially replicated. They found that the mean differences

disappeared in comparisons of the middle with the high group (i.e., a

calibration from one group applied to the other group). Whenever the

low group was compared with another group, the differences persisted.

This finding was attributed to the effects of guessing: No allowance

is made by the one-parameter model for the possibility that correct

responses can be obtained through Wessing. When multiple-choice

items are used, as was the case.0!fe, guessing undoubtedly occurs and

probably tends to bias the resultgt Most likely this was a more

pronounced effect for the low-ability group where examinees knew the

correct answer less. often and were more likely to guess.
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A reanalysis of the Anchor Test Study data by the same authors

(Slinde & Linn, 1979b), however, suggested a slightly different
interpretation. In this study, the one-parameter model was used to
vertically equate adjacent-grade pairs of published vocabulary and
reading tests using an anchor-test procedure. Despite the

considerable lack of model-data fit exhibited by all the tests
(possibly due to multidimensionality, speededness, non-uniform item
discrimination, and/or guessing), Slinde and Linn concluded that the
Reach model provided encouraging results for the problem of vertical
equating. That is, differences between equated log ability estimates
(computed for examinees who were administered both tests) were,
typically, a fraction of the size of the standard error of measurement
for either test and usually amounted to less than one raw score point
throughout the ability range.

One essential difference bctweet. the two earlier studies arld the

later one was that the separation of high- and low-ability groups was
more extreme in the earlier studies than would probably be encountered

in actual grade-to-grade equating. The difference between the groups
for the difficult and easy tests was five to six times greater (in
terms of standard deviations on the log-ability scale) in the earlier
studies than it was in the later study. Slinde and Linn (1979b)
pointed out that the procedure used in the earlier studies constituted
a much more severe test of the utility of the Reach model for vertical
equating. Additionally, the more recent study employed an anchor test
for equating, and this procedure may significantly affect equating
results.

Divgi. Divgi (1980, 1981a, 1981b) presented a series of
studies investigating model fit and the applicability of the
one-parameter model for vertical equating. In 1980, he devised a
nonparametric goodness-of-fit test to compare IRT item calibrations.
This test is relevant to IRT equating because the adequacy of the IRT
equating transformation relies so heavily on the adequacy of the
original item parameterizations. The test is applied by first
performing two calibrations on equivalent samples of the same size,
thus yielding two sets of item parameter estimates. An independent
validation sample is then tested and scored twice (once with each set
of parameters), resulting in two sets of ability estimates. The
likelihood of the set of item responses given each theta estimate is
computed. Thf proportion of cases (P) for which the likelihood is
higher in the first calibration is used in a (binomial) test of the
null hypothesis that the two calibrations provide equally good fit.
This test, then, provides an indication of how well the item parameter
estimates predict responses in situations where they will be applied
(i.e., the validation sample).

Divgi applied his index to a study of a reading test calibrated
according to the one-parameter .RT model both in a high-ability sample
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and in a low-ability sample (N500 for each group). For a

high-ability validation group (N2=100), the high-ability calibration

(with Pm..86) had a better fit whereas for a low-ability validation
group TN-100), the low-ability calibration (P...06) fit better; /in

both cases, the probability of these results occurring by chance was

less than .0001. This suggested that the two calibrations ate not
group-independent and, therefore, that the one-parameter model may not

be appropriate for vertical equating.

Divgi (1981a) presented further data in support of his contention

that the one-parameter model is notiappropriate for vertical equating.

First, he modified the Rasch-model 2 it statistic (Wright &

Panchapakesan, 1969), making it more powerful. He then applied it to

a national reading test, and found that while the old test rejected

16% of the items, 69% of the items were rejected by the new index.

Divgi concluded that'ability estimates are not item-free as the model

claims. He went on to form easy and difficult subtests and to compute

a theta estimate for each of/uore than 5,000 examinees from each

subtest. The mean of the standardized difference scores was close to

zero; this is typically found in Rasch-model studies and is usually

presented as evidence favoring tLe use of the one-parameter model for

vertical equating. -However, regression of this difference score on an

independent reading ability score (predicted by the other tests in the

battery) yielded a significant quadratic relationship. The difficult

subtest resulted in higher theta estimates than did the easy subtest

for both low-ability and high-ability examinees. Divgi speculated

that this was due to guessing on the difficult test and ceiling

effects on the easy test.

Divgi (1981b) presented an alternate method for studying bias in

vertically equated scales in which all examinees are tested and scored

on equated tests X and Y. Bias (i.e., the difference between scores

on the equated rests) is computed for each examinee. The sample is

grouped on an independent measure of the ability, and mean bias is

computed for each group and plotted against ability. The need for a

large sample can be avoided by an approach in which bias is regressed

on ability. A drawback of the method is that all persons must take

both tests (a single-group design), as well as the independent

measure. An advantage to using this method is that there is an

absolute criterion for evaluation (bias should be zero across

ability), although this is strictly true only for a perfectly reliable

measure of ability. Divgi applied the method to the reading test

previously calibrated by the Rasch model (N=2,000) by dividing it

into difficult and easy subtests and administering it to a new sample

(N=5,500). This was probably the same data reported earlier for

standardized difference scores. Divgi obtained the same results:

Bias was high and positive for both ability groups.
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Loyd-Hoover. The adequacy of Rasch-model vertical equating was

also investigated in a study by Loyd and Hoover (1980). They

administered three overlapping levels of the mathematics computation

test of the Iowa Tests of Basic Skills to approximately 2,000 students

in grades 6, 7, and 8; each student received only one test. Level 12

was targeted to be of appropriate difficulty and content for students

in grade 6, Level 13 was targeted for grade 7, and Level 14 was

targeted for grade 8. Each level contained 45 test items; adjacent

levels had 30 items in common and nonadjacent levels had 15 items in

common. Levels 12 and 13 were administered to students in grade 6,

and all three levels were administered to students in grades 7 and 8.

Item difficulty parameters were estimated separately by level and by

grade. The corresponding IRT ability estimates were computed and

placed on a common metric. The raw scores corresponding to these

ability estimates were determined; raw scores were equated by defining

as equivalent those raw scores corresponding to the same ability

estimate.

Three applications of vertical equating were studied: (a)

adjacent test levels (12 and 13, 13 and 14) were equated when parameter,

estimates were obtainej from two groups of comparable ability; (b)

nonadjacent test levels (12 and 14) were equated when parameter estimates

were obtained from two groups of comparable ability; and (c)

nonadjacent test levels (12 and 14) were equated by pairwise chaining

through an intermediate test level (13). Equating results were

evaluated by comparing them to results obtained when two seventh-grade

groups were each rtndomly split aikd Levels 12 and 13 were equated from

these random samples.

The results from these applications of vertical equating were

disappointing. When.Levels 13 and 14 were equated twice using seventh-

and eighth-grade students, respectively, Level-14 equated scores were

consistently higher by one to two raw-score points for the eighth-grade

students than for the severtfc-grade students. Discrepancies of the same

magnitude were observed when Levels 12 and 13 were equated using sixth-,

seventh-, and eighth-grade students. Equated scores on Level 13 were

consistently highest for e4hth-grade students and consistently lowest for

sixth-grade students. When Levels 12 and 14 were directly equated through

15 common items using seventh- and eighth-grade students, higher Level-14

scores were consistently obtained by the older students (the mean

difference was greater than two raw-score points). Similarly,

equating Levels 12 and 14 via chaining through Level 13 resulted in

higher equated scores for eighth graders than for the seventh graders.

Comparison of these results with the results from random splits of

seventh graders indicated that these discrepancies were larger than

would be expected from sample differences in item parameter estimates.

Post-hoc analyses suggested that the unidimensidnality assumption of

item response theory had been violated.
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Guskey. Guskey (1981) used the one-parameter model to
vertically equate Levels 9 through 14 of the reading comprehension
subtest of the Iowa Tests of Basic Skills (ITBS). This subtest
contained 178 items arranged sequentially by age level from lowest to
highest. Each level contained overlapping sets of items (i.e.,
anchors) with the levels immediately preceding and following it. Item
difficulty estimates were obtained for each item separately within
each level.

The mean difference between anchor-item difficulty estimates was
computed for each adjacent-test-level pair. These differences were
used to transform the raw scores at each test level to the metric of
Level 11. The transformed ability estimates were compared to the
norm-referenced grade-equivalent estimates published with the ITBS
manuals. At the extreme ability leVels, IRT ability estimates
increased much more rapidly than the ITBS grade equivalents; the
correspondence between the two sets of ability estimates was closer
for the middle ability range. At the lower range of ability, however,
larger differences were observed between the two scales regarding
estimates on Levels 9, 10, and 11 and Levels 12, 13, and 14. That is,
students taking the lower-level test forms and those taking the
higher-level test forms may be assigned the same IRT ability but may
differ by as much as an entire year on the ITBS grade - equivalent
scale.

To investigate this score gap, Guskey collected new data from

other students in this lower ability range and compared their IRT and
grade-equivalent ability estimates on the reading comprehension
subtest with their patterns of scores on three vocabulary and
mathematics subtests of the ITBS. These supplementary analyses
suggested that grade-equivalent scores underestimated ability in this
range. Moreover, there were no differences between the scores on the
new subtests for those two groups of students who would have been
assigned the same IRT abilities but different ITBS grade-equivalents.
These results could not be attributed to regression artifacts. Guskey
concluded that the IRT scale was more precise and stable across the
ability range.

Guskey's endorsement for the one-parameter IRT model may be
ified for this data set alone. It is important to note that his

amples (1,000 examinees at each of six grade levels) were randomly
selected from examinees with scores between 50% and 80% correct. This
strict curtailment ensures that only those examinees for whom the test
level was appropriate were included. That is, no examinees were
included if the test level was too easy or too difficult for them. in

other words, Guskey has done no more than to test the feasibility of
the one-parameter model under conditions that satisfy model
assumptions. Nevertheless, practical equating situations demand that
the equating transformation be applied to the entire score range,
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including the lower region where guessing is likely to occur. It is

not unreasonable to expect the one-parameter model to perform poorly

at the lower score range, since it includes no provision for guessing.

An equating procedure should be selected only after its superiority

across the entire score range has been demonstrated.

Holmes. Holmes (1981, 1982b) employed the one-parameter model
to vertically equate sets of items selected from five reading and

mathematics subtests of the Comprehensive Tests of Basic Skills. Item

response data were available from approximately 6,700 third and

fourth graders who took Level I of the CTBS. A principal-components
analysis was performed on the tetrachoric interitem correlation
matrix, and 32 items that loaded highly on only the first factor of

the two-factor solution were selected. Item difficulty parameters

were obtained for these items. The 20 easiest items formed one test
and the 20 most difficult items formed another test. This resulted in

two 20-item tests that shared eight anchor items. Grade-3 responses to

the easy test. and Grade-4 responses to the difficult test were used
for the equating. The average difference between the anchor-item
difficulty estimates from the two groups of data was computed and used
to transform Grade-4 ability and difficulty estimates to the Grade-3

scale. Since all the students had actually.responded to all the items
in both the easy and the difficult tests, two ability estimates could,

be obtained for each student. The average standardized difference
hetween these pairs of estimates was computed and used to evaluate the
accuracy of the equating procedure.

Holmes found that the items fit the one-parameter model well

using several different definitions of fit. Nevertheless,
standardized differences between the two ability estimates computed
for each student revealed that the difficult-test ability estimates
were consistently higher than the easy-test ability estimates for

students in the low-ability range. The results from this equating
procedure were applied to 2,000 third and fourth graders in a
cross-validation group. Holmes observed that students in Grade 3
received consistently higher ability estimates from the easy test
whereas students in Grade 4 received consistently higher ability
estimates from the difficult test.

She discussed the implications of these results in terms of

out-of-level testing for selected students. The most likely
candidates for out-of-level-testing were high-ability third graders

and low-ability fourth graders. Yet the cross-validation results
implied that both these groups of students would have received lower
ability estimates from the out-of-level tests than they would from the

tests constructed for their specific grade level. Holmes concluded

that the one-parameter model was inappropriate for vertical equating

across the ability range.
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Summary. Together, these studies suggest that vertical
equating using the one-parameter IRT model works when (a) model
assumptions are satisfied, (b) the tests are of nearly equal
difficulty, and (c) the group ability levels are nearly the same
(Guskey, 1981; Slinde & Linn, 1979b). 'Problems may result, however,
if the two groups are widely different in ability or if they are of
sufficiently low ability that guessing occurs with any frequency
(Divgi, 1980, 1981a, 1981b; Holmes, 1981, 1982b; Loyd and Hoover,
1980; Slinde & Linn, 1979a). Unfortunately, most items used in
objective tests can be answered correctly by guessing and may often be
used in environments where guessing is likely to occur. The
three-parameter logistic model extends the Rasch model to account for
guessing and thus may be more generally useful.

Three-Parameter Model
AP-

Cook-Eignor-Petersen. Cook, Eignor, and Petersen (1982)
investigated item-parameter invariance, defined as the stability
across time and samples, of item parameter estimates calibrated using
the three-parameter logistic model. This was primarily a linking
study, but is considered here because each test was equated to itself
after the items were linked. Each of several tests of various content
(SAT verbal, mathematics, and achievement tests) was administered
twice, at different times and to different samples of approximately
2,000 examinees each. A linear transformation was then performed to
put the two sets of item parameter estimates on the same scale.
Various indices were used to evaluate the adequacy of the linking
procedure. The indices included: (a) scatterplots of difficulty

parameter estimates and scatterplots of discrimination parameter
estimates for each set of Paired testings; (b) correlations between
the pairs of parameter estimates; (c) means and standard deviations of
each of the three parameter estimates obtained at each testing; (d)
the mean of the mean absolute differences between item response
functions computed using the two sets of item parameter estimates and
the theta estimates from the first group tested; (e)
relative-efficiency curves, using the first administration of a test
as the "baseline;" and (f) true-formula-score equating of the test to
itself. True formula scores were defined as

4(kkl)P (k1-1)]

with summing over items where k is the number of alternatives for
the item and P is the three-parameter logistic response curve
specified using the transformed parameters for the item. (The formula

presented by Cook et al. reduces to this standard form.) Equating was
performed by computing and pairing the true formula scores,
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corresponding to the same theta value, for the two administrations of

the same test. Tfi4s was done for a series of theta values, and the

equating curve was bbtained by plotting the paired true scores. This

curve was compared to the ideal line for equating a test to itself,

having unit slope and ari intercept of zero. Residuals (the

differences between the true scores) were also computed and plotted

against the true score from the equated test.

All the plots of conversion lines from the true-formula-score

equatings were extremely close to the ideal line. Maximum absolute

residuals were less than 0.5 for all SAT-V and'SAT-M tests between.25

and 60 items in length, becoming slightly larger than 1.0 for an

85-item verbal test. The achievement tests were longer .(100 items)

and had large: maximum absolute residual values, ranging between

nearly 1.0 for Biology to nearly 2.0 for American History and Social

Studies. The largest residuals were typically observed for extreme

scores.

Cook et al. concluded that, although there was some instability

in item parameter estimation (caused more by group ability differences

and possible multidimensionality of test content than by time between

testings), the effect on test scores was minimal, "not trivial, [but]

well within the range of the measurement error for the test" (p. 22).

Of course, when pairs of tests are equated, it would be expected that

larger errors would be found than when a test is equated to itself.

As Cook et al. noted, even small discrepancies in equating may

accumulate over time, causing scale drift.

Holmes. Holmes (1982a) conducted a study to examine the

accuracy of equated ability estimates when the *equated test measures

something diffe-ent than the reference test. She defined the "primary

trait" as tha,- %reit measured by the reference test, and the "indirect

trait" as that trait measured by the second test. Data included the

responses of approximately 1,000 students in each of Grades 2 and 6 to

appropriate levels of the reading subtest of the California

Achievement Tests (CAT), the primary measures, and the Prescriptive

Reading Inventory (PRI), the indirect measures. Equating was done

through anchor tests. Each item on the CAT was calibrated according

to the three-parameter logistic model. Then 20 anchor items were

selected from the primary measures such that they closely reflected both

the content and difficulty of the tests from which they were obtained.

Four content-match categories were defined on the basis of the

similarity between the objectives of the CAT and the selected PRI

items. The "match" item sets included the PRI items that measured

objectives identical to the CAT objectives. "Similar" item sets

included PRI items that measured objectives similar to CAT.

"Dissimilar" item sets measured objectives not measured in CAT.

"Partial" item sets measured half of the objectives measured in CAT.
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Evaluation of this classification of iteMNsets was made by a reading

specialist and found to be adequate; diffe ences in similarity ratings
among the categories, however, were not gre t.

Item sets containing 10, 20, or 30 items rom each of the four

content-match categories were selected froi the PRI. This yielded 12
indirect item sets. Item parameters for the 12 ndirect item sets and
the 20 CAT anchor items were jointly estimated. nce IRT parameters
were also available for the 20 anchor items from a rior analysis of
only the CAT items, the linear relationship between he pairs of
estimated difficulty parameters was used to transfo the PRI item
parameters to the CAT metric. The rescaled item param ters were
applied to the item response data of each examinee to y eld one
primary and 12 indirect trait estimates for each examine . Equating
adequacy was evaluated using product-moment correlations and the root
mean squared difference (divided by the pooled trait - estimate
variances) between the pairs of trait estimates obtainedb ,individual
examinees.

Holmes observed that the accuracy of the indirect trait estimates
increased slightly as a function of the similarity between indirect
item sets and the primary measures, at least in the sixth-grade
sample. Accuracy was more strongly related to the number of items in
the indirect item sets. There was a bias in the equating procedure,
however. The average indirect trait estimates were consistently lower
than the average primary trait estimates across item-set categories
for grade 2; the opposite was true for grade 6. She hypothesized that
this bias arose because students with zero or perfect PRI scores were
deleted from the data set before equating. Results from a randomly
selected cross-validation sample were very similar.

Lord-Wingersky. Lord and Wingersky (1983) used the
three-parameter logistic IRT model to compare observed-score and
true-score equating of an SAT verbal test to itself through a chain of
five other SAT test forms. Anchor-test equating was used throughout;
at each step, two test forms and the associated anchor test were
calibrated simultaneously in order. to place all item parameters' on a
common metric. Scores below the chance level were equated according
to the procedure described in Lord (1980, pp. 210-211). In this
procedure, all scores below the chance level are equated using
conventional linear procedures, with mean defined as the sum of the
c parameters and variance defined as the sum (over items) of c
times (1-c); these are the observed-score statistics that would be
obtained for a hypothetical group of examinees with abilities at
negative infinity. Lord.and Wingersky observed few differences
between the two methods.

Summa a. The two studies of the three-parameter model
considered peripheral test-equating issues: the equating of a test to
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itself and the effect of varying the similarity of traits measured by

equated tests. Cook et al. (1982) observed slight instability of

parameter estimates which may contribute to scale drift over time;
larger errors would be expected when two different tests were equated

(rather than a single test equated to itself). Holmes (1982a).

observed, not surprisingly, a positive relationship between the

accuracy of trait estimation and the similarity between the two tests

being equated. No study of vertical equating, so exhaustively

examined using the one-parameter model, was reported.

Comparisons Among IRT Methods

One- vs. three-parameter models. Divgi (1980) applied his

nonparametric test of fit described earlier to a comparison of the

one-parameter and three-parameter IRT models. The full sample of

2,000 examinees was used to calibrate items according to each of the

models. As above, high-ability and low- ability validation samples

were used (N=100 each). He observed significantly better fit for
the three-parameter model whether the validation group was
high-ability (P=.78) or low-ability (P=.82); P < .0001 in each

case.

One- vs. two- vs. three-parameter models. Douglass (1980, 1981)

conducted a large-scale study to compare the one-, two-, and

three-parameter logistic IRT models for item calibration and test

equating in a college classroom situation. Data were available from

the midterm and final examinations in a communications course from

fall 1978 and winter, spring, and fall, 1979; N= 947, 820, 594, and

1082, respectively. Three sets of examinees were selected from the

fall 1979 data on the basis of their midterm examination scores. The

first set was a random split of the examinees for whom both midterm

and final examination scores were available. The second set

corresponded to very-high- and very-low-ability examinees who scored

above and below the midterm median, respectively. The third set of

low- and high-ability examinees was selected such that the mean'

difference between the ability groups was approximately half as large

as in the second set. Separate item parameter estimates were obtained'

for each sample for each IRT model. Item and person parameter

estimates were transformed to the scale determined by the spring 1979

final examinatiofi by means of common anchor items. IRT equating was

performed on the final examination scores.

Douglass observed that the c parameters of the three-parameter

model were very poorly estimated by LOOST (Wood, Wingersky, & Lord,

1976) for these data (i.e., nearly all.the c parameters were set to

default values because valid .estimates could not be made); he

eliminated the model from further consideration. He found the

one-parameter-model equatings to be very stIble (i.e., to similar

results) across sample sizes of 200, 600, a000 and the two-
parameter-model equatings to be less so.
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Lick of an adequate criterion of equating adequacy prompted him

to equatethe fall 1979 final examination to itself using the three
sets of examinee subgroups discussed above. This permitted a
comparison of the observed equatirigs with the "true" known equating
line that has unit slope. While neither of the methods was uniformly
best, Douglass concluded that the one-parameter model provided the
more acceptable method of equating.

The stability of the Rasch equating constants based on class
sections was also investigated using anchor tests containing between 7
and 37 items (on a 43 -item test). Douglass computed the bias in these
constants to be equal to 0.25 standard deviations of ability in the
most extreme case, even with the 37-item anchor test. The Rasch
calibrations were consistent from sample to sample, therefore, but
incorrect.

Summary. Results from these two studies are equivocal. Divgi

(1980), for example, found the three-parameter model to be superior to
the one-parameter model using his nonparametric fit test. Douglass

(1980, 1981), however, eliminated the three-parameter model altogether
because of poorly estimated c parameters and concluded that the
one-parameter model was biased but consistent.

Comparisons Between Conventional and IRT Methods

Conventional vs. One-Parameter IRT

Rentz-Bashaw. Rentz and Bashaw (1975, 1977) reanalyzed the
data from the Anchor Test Study and constructed a Rasch-model-based
National Reference Scale for Reading. Raw scores on 14 forms of seven
standardized tests of reading vocabulary and comprehension (Grades 4,
5, 6) were then placed on this scale. They first analyzed model-data
fit in several different ways and concluded there was adequate fit for
equating purposes.

Pairs of tests had been administered to large samples of fourth-,

fifth-, and sixth-grade students. Each pair of tests was treated as

one long test for the purpose of test equating; item difficulty
parameters were estimated for each item separately within a test pair.
The difference in average log easiness for the two tests was used as
the equating constant to adjust log ability estimates and to put the
two tests on the same scale. A matrix of equating constants made it
possible to place all tests/abilities on the metric defined by the
vocabulary test of the Sequential Tests of Educational Progress. The

log ability estimates were transformed back to equated raw scores by
the following procedure. For a given raw score on the base or
reference test, the corresponding ability estimate on the Rasch scale
was obtained. Then the raw score on the new test corresponding to
that Rasch ability was computed. In practice, there were errors
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involved in having to assign a raw score on the equated test that is

most nearly equivalent to a raw score on the reference test. Rentz

and Bashaw called them assignment errors and observed that they were
larger than the errors in the equating constant and were nearly 10% of

the size of the standard error of measurement in their study.

The Rasch-model equating results were compared to those obtained
from equipercentile equating in the Anchor Test Study. The two sets
of equated scores usually differed by only one or two raw score
points;, rarely was this difference as high as four points. The

discrepancies observed were much smaller than the standard error of

measurement for the equated tests. No absolute criterion of equating
adequacy was used in this study.

Beard-Pettie. Beard and Pettie (1979) compared linear and
Rasch-model equating methods using an anchor-test design for equating
two forms each of two levels of two different tests. For two

consecutive years, different forms of communications and mathematics
basic skills tests were administered to students in Grades 3 and 5.

The 1976 forms contained items that were also present in the 1977

forms, and these common items formed the anchor tests for equating.
Sample sizes were larger than 5,000 for each grade and content area.

Each level of each test form was separately calibrated according

to the one-parameter IRT model. Beard and Pettie checked model-data

fit and the stability of the anchor-test item parameters over time,
and concluded that all the tests in their study showed-adequate fit to
the one-parameter model. Angoff's (1971) Design IV was used to

linearly equate the 1976 test forms to the 1977 forms. For the

one-parameter IRT model, raw 1976 scores were converted to the Rasch
ability scale; the 1977 ability level that was closest to each 1976

scale value was located and - converted back to a raw score on the 1977

scale. These equated raw scores were then converted to 1977 T
scores.

The results were similar across test level and content. There

were only small differences between the equated scores obtained by the

two procedures; the largest discrepancies occvrred at the lower end of

the ability scale where there were few data. For all the test pairs,

the scores equated by the IRT procedure were slightly, though
consistently, lower than the scores equated linearly.

Goluh-Smith. Golub-Smith (1980) compared the linear and
Rasch-model methods of equating scores on tests of minimum basic
skills administered each year to high-school students in New Jersey
public schools. Twenty-five anchor items were embedded in the reading
and mathematics tests that were administered to students in each of
four different grades. Golub-Smith first checked the adequacy of the
fit of the data to the model and concluded that there was moderate to
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good fit; this was done separately for each test. The author examined

the equating results of the raw scores at and around the
state-mandated cut-off score. The equivalent raw scores derived from
the two equating methods were very similar. Eliminating the common
items whose parameters were unstable from one testing to the next
resulted in different raw scores being labeled "equivalent." However,
there was no evidence that this editing process provided a
consistently closer or worse match with the scores defined by the
linear method.

The lack of an absolute criterion of equating adequacy makes the
interpretation of these results dtficult. That is, eliminating the
unstable item parameters changed the IRT equating transformation; one
can only assume that the result was an improvement in accuracy.
Comparison of the two IRT transformations, however, yielded no
evidence supporting or refuting that assumption.

Conventional vs. Three-Parameter IRT

Lord. Lord (1977, 1980) demonStrated IRT-based true-score
equating on two calculus tests that shared 17 anchor items and were
administered to two distinct groups of examinees that differed in
ability. The tests were from the College Board Advanced Placement
Program and the College Level Examination Program; one test was
administered to each group. Item parameters and examinee abilities were
simultaneously estimated on the combined data sets according to the
,three-parameter logistic IRT model. The administration of cbmmon anchor
items ensured a common metric for all items and abilities.

IRT-based true scores were computed for each test (by summing
ICCs across items in the test), and the resulting line of relationship
was compared visually to the equating lines obtained by another
IRT-based method (equipercentile equating applied to the estimated
observed-score distribution of the combined group) and conventional
equipercentile equating of observed scores. There was close agreement
between the IRT-based equating methods; the results from the
conventional equating were slightly different from the IRT equatings.
Lack of an absolute evaluation criterion precluded more definitive,
conclusions regarding the relative merits of the various equating
procedures.

Lord (1977, 1980) also evaluated IRT-based true-score equating by
equating an 85-item verbal section of the SAT to itself by means of an
external 39-item anchor test. When a test is equated to itself, the
true line of relationship between test scores is known (i.e., the
scores are related by a line with unit slope and An intercept of
zero). This is exactly what Lord observed when he equated the SAT
test to itself after its administration to two large groups
(approximately 2,800 examinees each) that differed in mean ability.
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Lord (i981b, 1982b) also compared the standard errors from IRT

equating with those from both linear (Lord, 1975) and equipercentile
(Lord, 1981a, 1982c) equating, using two forms of the SAT-V and an
external 40-item anchor test. Item parameters were estimated
separately for the two groups. He observed that the IRT standard
errors increased in the tails, especially at the low end of the
distribution. Standard errors for the linear equating were smaller
than those for the IRT equating.- Standard errors for the
equipercentile equating were the largest of all three methods at every
score level except the lowest (where IRT was the largest). All of the
standard errors were less than half the size of the standard error of
measurement for the tests; most were considerably smaller.

Marco. Marco (1977) conducted a study of equating methods in
which he compared three-parameter logistic IRT equating
(simultaneously estimating all item parameters and setting true scores
on the two tests equal) with (a) pre-equating (placing all item
parameter estimates on the same metric prior to a test administration
by using response data from previous administrations of the items),
(b) equipercentile equating, (c) linear observed-score equating
(setting observed-score means and standard deviations equal), and (d)
linear true-score equating (setting true-score means and standard
deviations equal). The data were two SAT-V forms (containing 40 and
85 items, respectively), both given to 5,565 examinees.

IRT equating was the standard against which the other methods
were compared. The evaluative criteria included a mean squared error
(MSE) index of discrepancies from the IRT equating, and also the
maximum absolute discrepancy from the IRT equating across the total
score range and in the mid-range only. By the MSE criterion, linear
true-score equating was best (i.e., closest to IRT); the other methods
were similar to each other. By the maximum-discrepancy criterion in
the total range, linear true-score equating was again distinguished
from the other three methods. When only the mid-range (most important
to college admission decisions) was considered, both the linear
true-score and pre-equating methods surpassed the remaining methods
and performed equally well. Assuming that the criterion was valid,
linear true-score equating was shown to be the best-substitute for IRT
equating, with pre-equating equally good under certain conditions.
Defining the IRT-based equating transformation as the criterion for
evaluating equating accuracy, however, begs the question of how well
IRT methods compare to conventional methods in practical eq:.ating
situations.

Bejar-Wingersky. Bejar and Wingersky (1981, 1982) investigated
the adequacy of the three-parameter logistic IRT model for
pre-equating the Test of Standard Written English (TSWE).
Specifically, they studied the fit of the response model to two forms
of the TSWE and its effect on section pre-equating. They observed

41%
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some lack of model fit at the item level (by comparing observed and

theoretical item-on-ability regressions) and at the subscore level

where multidimensionality was evident.

Bejar and Wingersky evaluated pre-equating and IRT-based

true-score equating by visually comparing the resultant equating

tables to those obtained from three methods of conventional equatings

used here as criterion equatings: (a) linear equating using SAT-V and

SAT-M as anchors, (b) linear equating using only the SAT-V as anchor,

and (c) equipercentile equating using SAT-V as anchor. The first

criterion and IRT-based equatings were more discrepant for the test

form which showed marked multidimensionality; the amount of

discrepancy between the conventional and IRT -based equating methods

was a function of the old form chosen for the equating. The IRT-based

conversions resulted in higher mean scaled scores with smaller

standard deviations than did the conventional equatings. Given the

lack of an adequate equating criterion, Bejar and Wingersky offered

cautious optimism regarding the feasibility of pre-equating as an

operational equating procedure.

Modu. Modu (1982) .compared three-parameter logistic IRT

equating with linear and equipercentile equating when the

unidimensionality assumption of IRT probably did not hold. Two forms

each of 11 College Board Advanced Placement Achievement tests were

administered to between 1,000 and 6,500 examinees; each form contained

between 35 and 120 items. The 11 tests were then separately equated.

Estimated item parameters were linked through an internal anchor test

(containing 14-30 items), and true scores were estimated and equated

for pairs of tests. Conventional equating methods (equipercentile and

linear) were also applied in conjunction with the anchor-test design.

The conventional and IRT equatings were based on separate examinee

samples. Tables of equivalent raw scores obtained by the three

methods for pairs of achievement-test forms showed close agreement,

with discrepancies of less than oae point except at the extremes where

data were scarce.

Petersen-Cook-Stocking. Petersen, Cook, and Stocking (1983)

investigated scale-drift_by.cQmparinE equipercentile, three linear,

and three IRT equating procedures; each procedure was applied to SAT

verbal and mathematical test data and was used to equate a test to

itself through a chain of five other tests. An anchor-test design was

used throughout; the three-parameter logistic IRT model and true

formula-score equating were used for all three IRT methods.

In the first IRT method (concurrent calibration), the first test

pair and the associated anchor test were calibrated simultaneously;

the resulting item parameters were then automatically placed on a

common metric. The first test was transformed to the College Board

scale using previously available transformation parameters. The
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second test, equated to the first, was then transformed to the College

Board scale as well. This calibration-and-transformation process was
repeated until scores on all test forms were placed on the College
Board scale.

In the fixed bs method, a single test was always calibrated
along with the associated anchor test; the b parameters for the
anchor-test items were then held fixed in the subsequent calibration
of the second test with that anchor. This process continued
sequentially, with the anchor-test b parameters from the previous
calibration held Cited at any stage.

In the characteristic curve transformation method, a single test
was calibrated along with the anchor test. This time, a linear
transformation was applied to the a and b parameters of the second
test to place them on the same scale as the first test. This linear

transformation was obtained from minimizing the difference between the
anchor-test true scores obtained by using the item parameters from tte
two calibrations of a single anchor test. This process continued
equentially until all item parameters within a chain were placed on a

common metric. True formula scores, then, were automatically placed
on a common metric.

The three linear methods used here included the Tucker Equally
Reliable, Levine Equally Reliable, and Levine Unequally Reliable
models (see Angoff, 1971, for details). For all three models, scores
corresponding to the same standard score were considered to be equated
to each other. The models differ in their definition of the estimated
means and standard deviations; in all cases, the anchor-test scores

were used to estimate the scores on the two tests for the combined

group of examinees. Equipercentile equating was performed by first

equating each test to the associated anchor test; test scores
corresponding to the same anchor-test score were considered to be
equated to each other. No smoothing was performed in either the

percentile tables or the equating transformation.

Petersen et al. computed a weighted (by observed score
frequencies) mean squared difference between the original (scaled)
score and the equated score obtained from a specific equatingmethod;
this was done separately for each method and separately for the verbal

and mathematical tests. In all cases, the equating method
overestimated the criterion (original) mean. For the verbal data, the

three IRT methods resulted in substantially smaller total error than

did any of the conventional methods; the fixed bs method was best
overall. The equipercentile method was worst overall, and the Levine
Equally Reliable model was the best of the linear methods. For the

mathematical data, total error was smallest for the Levine Equally
Reliable model and largest for the Tucker model, and the concurrent
calibration method yielded errors almost as small as the best method;
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equipercentile and the other two IRT methods yielded much larger

errors.

The authors noted that the content differences across test forms

was greater for the verbal tests than for the mathematical tests.

Also, the base verbal form was longer than the other verbal test

forms; none of the mathematical tasks differed in length. Hence, it

appears that linear equating methods perform adequately for reasonably

parallel tests, but that IRT methods (especially concurrent

calibration) performed better for nonparallel tests.

Hicks. In another study of scale drift conducted at

Educational Testing Service, Hicks (1983) compared conventional and

IRT methods for equating the Test of English as a Foreign Language

(TOEFL) after chaining. Three conventional and three IRT equating

methods were examined in this study; two sections of TOEFL were each

(separately) equated.

The IRT methods included the following: (a) fixed bs procedure

(described above), where all b parameters were held fixed at

pretested values (a was limited by 0.0 and 1.5); (b) modified three-

parameter, where a and a were held fixed at predetermined

("representative") values, and bs were re-estimated using the

characteristic curve transformation described above; and (c) three

parameters re-estimated, where all three parameters were re-estimated

and scaled using the characteristic curve transformation (no limits on

a). Conventional equating methods included (a) equipercentile, (b)

Tucker linear, and (c) Levine linear (the authors gave no further

description of which Levine method was used). All of the conventional

methods estimated test-score distributions from the combined examinee

group.

A separate base form was established for each of the six equating

methods. Instead of equating the base-form TOEFL to itself, the last

(eighth) form in the link was equated (a) to the previous form in the

link and consequently back to the base form and (b) directly to the

base form through common items. The "direct" equatings served as a

criterion against which the "chain" equatings were compared. As in

the study described above, a weighted mean difference score was

computed for each method. Comparisons involving equipercentile

equatings were made only over the range of observed scores.

Fixed bs scaling provided the least equating error for both

sections of the TOEFL, followed by the modified three-parameter and

the Tucker models, respectively. The Tucker and Levine linear models

yielded similar results.



Conventional vs. One- vs. Three-Parameter IRT

Marco-Petersen-Stewart. Marco, Petersen, and Stewart (1980)
used SAT -V data to compare the best of 40 linear methods (that varied
in terms of underlying assumptions) with two equipercentile and two
IRT equating methods; all methods used an anchor -test design.
Conventional equating was performed two different ways: (a) directly,
where scores on each test form are first equated to the anchor test;
scores that are equated to the same anchor-test scores are said to be

equated to each other; and (b) using frequency estimation (Angoff's
Design IV), where score distributions for the two test forms for the
combined group of examinees are estimated from the anchor-test-score
distribution for the combined examinee group. The one- and
three-parameter IRT models were both used in this study to estimate
true formula scores prior to equating.

Marco et al. reported the results from two basic study designs:
(a) equating a test to itself, varying the difficulty and type of the
anchor test (i.e., external vs. internal) and the similarity of
ability levels in the two samples; and (b) equating tests of differing
difficulty using an internal anchor test, varying the sample ability
levels and the spread of to difficulties. Tests equated to each

other had similar content (including an equal distribution of item

types) and were of equal length. For the first design, the criterion
score (or the score to be estimated), was defined as the test score on

the first form to which the second, identical form was equated. For

the second design, the results from an "ideal criterion equating"
(using data from all cases in a single-group equating) provided the
criterion, or "correct," score. Two ideal criterion equatings were
used: (a) an equipercentile equating of observed scores, which was
biased toward equipercentile methods; and (b) an equipercentile
equating of true scores estimated from the three-parameter model,
which was biased toward IRT methods. The evaluative indices were
based on the difference between the criterion score and the
corresponding estimated criterion score for a raw-score value. Total

error was the mean squared difference, weighted by the number of
examinees obtaining the given raw score and standardized by dividing

by the product of the criterion variance and sample size; in this
manner, results could be compared across equating situations as well

as models. Squared bias was the mean difference score squared and

divided by the criterion-score variance. Both evaluative criteria

were computed over the range of raw scores above the chance level

(i.e., in the area in which IRT methods can equate) for each model.

For the first design, when the anchor test paralleled the total
test, linear equating was found to be best. IRT methods rated second,

regardless of differences between samples. When the anchor test was
easier or more difficult than the total test, however, only the IRT
models were robust for between-sample differences; linear equating
performed well when the samples were similar.
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For the second design, in which the equated tests were of

different difficulty, the three-parameter model was best according to

the IRT-lpised criterion; both equipercentile methods were good, the

one-parameter model was poor, and the linear model was extremely

error-prone. This was regardless of how similar the samples were.

According to the equipercentile criteria, the equipercentile methods

were best for similar samples, followed by the IRT methods, with

linear equating far behind. When the samples were dissimilar, the
three-parameter model was best, followed by the equipercentile

methods, then the one-parameter model, and finally the linear model.

Since linear equating (or at least the best of the 40 methods

tried) seemed best for equating a test to itself, linear equating

probably also would work well for equating parallel tests. The best

linear method was not explicitly identified, and was undoubtedly

different for different parts of the study; hence, there may have

been a large degree of capitalization on chance. Had only one or

two linear methods been included, linear equating might not have been

a clear favorite for even this limited situation. The curvilinear

methods gained an advantage when the tests to be equated were

nonparallel, with the three-parameter IRT equating method best for the

most extreme conditions.

Kolen-Whitney. Kolen and Whitney (1982) equated 12 forms of

each of five subtests of the Tests of General Educational Development

(GED) using linear, equipercentile, and one- and three-parameter

logistic IRT methods. One of the test forms was designated an anchor;

each of the other 11 forms was equated directly to the anchor form.

Each examinee was administered two anchor-form subtests and the two

corresponding subtests from another form; approximately 200 examinees

responded to each form of each subtest. Examinees with zero or

perfect scores were deleted from the sample. A 10% hold-out sample,

stratified on the basis of socioeconomic status and geographical

region, was used for cross-validation (i.e., consistency) purposes.

Kolen and Whitney used Angoff's (1971) Design I (for equally

reliable tests) for conventional equatings. For IRT equatings, the

following procedure was used. First, all anchor-form item parameters

and abilities were estimated using LOGIST (Wood, Wingersky, & Lord,

1976). The examinee ability estimates were then held fixed for the

other test forms while the item parameters were estimated using

LOGIST; this was done separately for each of the 11 test forms.

Estimated true-score equating was used to equate scores on each test

form to the anchor form; both the one- and the three-parameter

logistic IRT models were used throughout. The c parameters for

Forms 1 to 11 (for the three-parameter model) were fixed at the modal

value of the corresponding anchor form. Scores of zero on any pair of

forms were equated to each other; scores below the pseudo-chance level
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were equated via linear interpolation. Kolen and Whitney computed the

mean squared difference (adjusted for test length) between anchor-form

(integer) scores and the transformed scores on the other form with
identical percentile ranks in t4e cross-validation distributions.

In general, linear and one-parameter IRT equating yielded the
most stable results; equipercentile equating and the three-parameter

model were typically much worse. The authors attributed much of-these

results to small sample sizes and some difficulties encountered in
estimating th parameters of the more complex IRT model. Slight

differences in the dimensionalities of the five subtests were not
reflected in differences in equating results across subtests.

Conventional vs. One- vs. Two- vs. Three-Parameter IRT

Kolen. Kolen (1981) used the equivalent-groups design to
compare linear, equipercentile, and several IRT methods for equating

nonparallel tests. Subtests of an old form of an achievement test,
the Iowa Tests of Educational Development,-were equated to the

same-named subtests of two levels of a new form: an easier level and

a level of the same difficulty as the old form. Between 1,500 and

1,900 students took each test, one third being held for
cross-validation and the remainder being used for equating. The IRT

models used included one- (traditional and modified to permit

different tests to have different a values), two-, and three-
parameter logistic models with both estimated-true-score equating and

estimated-observed-score equating (using equipercentile equating on
estimated observed-score distributions). The criterion was the
stability of cross-validation as indexed by the mean squared
difference between raw scores on the old form and equated scores on
the new form hav:lg identical percentile rank for the cross-validation

sample; the smaller the index, the more stable the results.

For equating the new form's easier level to the old form, the

estimated-observed-score equating for the three-parameter logistic

model was definitely best. The linear equating was by far the worst.
For equating the new form of a more difficult level to the old form of

the same difficulty, the estimated-true-score equating for the

three-parameter model was the most stable.

Although the three-parameter model was best in both situations,

different procedures using the model were best for the two different

situations. Kolen speculated that it may have been because he used

linearly extrapolated equated scores below the chance level of c

(others have ignored this part of the scale when computing equating

criterion indices) or it may have been related to LOGIST's weakness in

estimating c's. He also noted that the criterion was not a measure

of accuracy.
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Phillip:!. Phillips (1963) used several different methods to

vertically equate different levels of an achievement-test battery.

Two tests (Reading and Math) and two grade levels (4 and 8) were

studied. A "scaling" test was used throughout to place all scores on

the same metric; this scaling test was essentially a single external

anchor test that contained items from the full range of test-form

difficulties. Equipercentile equating was used as the criterion

against which the other (IRT) methods were compared; cumulative

frequency curves were smoothed (unidentified method) before equating.

True-score equating was used for all IRT methods; comparisons were

limited to those true scores above the chance level (i.e., greater

than the sum of the cs). Items were calibrated separately for each
test for all IRT equating methods.

The IRT models included the following: (a) one-parameter

logistic; (b) "double-modified" one-parameter, where as were
pemitted to vary across tests but were constant--within-a test, and a

constant lower-asymptotic parameter was used for each item; and (c)

modified two-parameter, with a constant lower-asymptote parameter

assigned to each item.' The more traditional three-parameter model was

omitted from consideration because of the estimation problems inherent

with small (300 to 500) sample sizes. Nevertheless, Phillips' modified

two-parameter model is classified here as an IRT model with three

parameters; similarly, the double-modified one-parameter model is

considered as a two-parameter IRT model.

Mean absolute differences between equated (scaled) scores were

computed for all possible pairs of methods. As a basis for

evaluation, each method was applied separately to two random samples

(N=500) of students at each grade level to equate a test to itself;

the difference between equating transformations from a single method

was used as a baseline measure of equating error.

In general, differences between methods were of approximately the

same magnitude for all grades and methods. The single exception was

the relatively large discrepancy between the one-parameter and

equipercentile equatings for the Grade 4 Reading test. The modified

one- and two-parameter models were fairly consistent with the

equipercentile method throughout (r,wo-parameter slig:,,lymore so) and

were more consistent with each other than they wer' with the Rascli- ---------

model.

Summary

Although a number of comparisons among co .iLional and IRT

methods were made, the methodology used (i.e., test content, types of

examinees, data collection design, implementa' ion of equating methods,

and, especially, evaluative criteria) were so diverse that no simple

conclusion is possible regarding a best method of equating under all
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circumstances. Some studies (Beard & Pettie, 1979; Golub-Smith, 1980;

Modu, 1982; Rentz & Bashaw, 1975, 1977) found no differences among
methods, while others (Bejar & Wingersky, 1981, 1982; Hicks, 1983;
Kolen, 1981; Kolen & Whitney, 1982; Lord, 1977, 1980; Marco, 1977;
Marco et al., 1980; Petersen et al., 1983; Phillips, 1983) found that
the methods ordered themselves differently depending upon the
conditions under which equating was performed and the results were
evaluated. Some conclusions can be drawn by considering these results
in light of the dimensions of equating needs.

Relevance of Previous Research to Practical Equating Situations

In the studies cited above, individual power tests were equated
to each other; no study attempted to equate speeded tests. Most of
the tests were assumed to be unidimensional, and checks for
multidimensionality were performed only occasionally. The discussion
of the literature as it applies to the practical equating needs is
perhaps best done within the parallel/non-parallel test distinction.

Equating Parallel Tests

Theoretically Appropriate Methods

Conventional and strong-true-score methods of equating are
appropriate whenever individual tests to be equated are parallel; IRT
methods are appropriate under the added constraint that the tests are
unidimensional and not speeded. Empirical comparisons of these
equating methods yielded results that were consistent with
expectations. That is, when the assumptions underlying the equating
procedures were met, few differences among the various procedures were
observed.

Previous Research

Garcia-Quintana and Johnson (1979) found few differences among
the conventional linear methods they investigated; Lord and Wingersky
(1983) drew the same conclusion regarding true-score and
observed-score .IRT equating:- .Using-an anchor-test design, Marco et
al. (1980) observed that linear methods worked better than IRT or
equipercentile methods when a test was equated to itself and the two
samples were similar in ability. Similarly, Petersen et al. (1983)
found that linear methods worked better than equipercentile or IRT
methods for equating a test to itself through a chain of other tests.
Presumably, linear methods would also work best for equating parallel
tests as long as the abilities of the two groups were similarly
distributed. Lord (1981a, 1981b, 1982b, 1982c), for example, found
that the standard error of equating was smaller for linear equating
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than it was for equipercentile equating; the standard error of IRT

equating was between these two values,

When test data fit the one-parameter model, few if any

differences were observed between linear and Rasch equating procedures

(Beard & Pettie, 1979; Golub-Smith, 1980; Kolen & Whitney, 1982). In

a study comparing the three-IRT models, Douglass (1980, 1981) found

the one-parameter model to yield results that were more stable but

also more biased than those of the two-parameter model; problems

estimating the c parameter caused him to ignore the three-parameter

model altogether. Kolen and Whitney (1982) found the linear and

Rasch methods to be more stable than equipercentile or three-parameter

IRT methods.

One of the IRT methods studied by Hicks (1983) outperformed

conventional methods in terms of scale stability; the linear methods

were very similar. The three-parameter IRT model performed well when

a test was equated to itself (Cook et al., 1982; Lord, 1977) and, by

inference, to strictly parallel tests. Modu (1982) observed few

differences among linear, equipercentile, and three-parameter IRT

equating methods for teats that were probably multidimensional.

In one of the few studies that reported explicit evidence of

model-data misfit, Bejar and Wingersky (1981, 1982) noted that the

discrepancy between conventional equatihg methods and IRT-based

true-score equating and pre-equating was greatest for the test form

which exhibited marked multidimensionality. The IRT methods produced

very similar results, as did the three conventional methods.

Conclusions

Previously reported data seem to indicate that conventional and

IRT procedures yield essentially the same results when they are used

to equate parallel tests. The IRT procedures, however, may be more

appropriate when samples differ greatly in ability (Marco et al.

1980); their superiority has not been established for multidimensional

tests (cf. Beier & Wingersky, 1981, 1982).

Equating Nonparallel Tests of Equal Difficulty

Theoretically Appropriate Methods

Theoretically, only STST methods are appropriate for equating

nonparallel tests in every situation; nonparallel tests may also be

equated using IRT techniques as long as the tests are not

multidimensional in nature or administered with a strict time limit

(i.e., speeded). Nevertheless, investigators have examined the

applicability of conventional as well as IRT techniques to situations

involving nonparallel tests. None have compared these procedures to

STST.
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Previous Research

Bianchini and Loret (1974) concluded that equipercentile methods
yielded more consistent results for equating nonparallel tests than
did linear equating methods, with consistency defined as the
similarity of results between half- and whole-sample equatings.
Linear and equipercentile methods of equating yielded virtually
identical results in the study reported by Stock et al. (1980).

Lord (1977, 1980) observed that equipercentile equating of
observed formula scores yielded results somewhat different from those
based on IRT equating procedures; the two IRT methods, however,
yielded very similar results. Kolen (1981) observed that equating
methods based on the three-parameter model were more stable (in terms
of cross-validation) than were other IRT and conventional methods.
Similarly, three-parameter IRT methods worked better than conventional
methods for equating nonparallel tests in the study by Petersen et al.

(1983).

Holmes (1982a) systematically varied the degree of nonparallelism

across equatings and studied its effects on the accuracy of IRT
equating. Although the experimental manipulation was not strong and
differences across types of tests were not great, her results
suggested that equating accuracy may be affected by the similarity of
item content in the tests to be equated.

Conclusions

No definitive conclusions can be drawn from the literature
regarding which equating method is best applied to nonparallel tests
of equal difficulty. This is in large part due to the lack of an
adequate criterion for evaluating the results. Some researchers
compared results across methods and merely looked for differences in
the equating transformations (Lord, 1977, 1980; Stock et al., 1980);
at best, equating methods were compared for consistency (Bianchini
Loret, 1974) or cross-validation stability (Kolen, 1981). When
differences among methods were observed, it was not clear which, if
any, of the methods was more accurate. Data concerning the stability

of equating results are only marginally relevant; Douglass (1980,
1981), for example, found the Rasch model to be very stable but also
inaccurate for equating parallel tasks.

Whereas some researchers observed differences between the
conventional and IRT equating methods (Bianchini & Loret, 1974;
Lord, 1977, 1980; Kolen, 1981; Petersen et al., 1983), others (Stock et
al., 1980) did not. In view of Holmes' (1982a) results, it is possible
that observed differences across methods may be a function of the degree
to which the tests being equated were nonparallel or multidimensional.
It is not known, for example, tc what extent the calculus tests used by
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Lord (1977, 1980) were parallel or uuidimensional. They were, no doubt,

closer to being parallel than were the GRE subtests and the Miller

Analogies Test reported by Stock et al. (1980). Little can be concluded

without further research.

Equating Tests of Different Difficulty

Theoretically Appropriate Methods

As with nonparallel tests of equal difficulty, tests of unequal

difficulty are appropriately equated only using STST methods;

unidimensional power tests of unequal difficulty may also be equated

using IRT. Researchers have typically employed equipercentile and IRT

methods in their investigations of vertical equating.

Previous Research

It appears that the vertical equating of tests is a much more

difficult task than is the equating of tests that are similar in

difficulty. Slinde and Linn (1977), for example, rejected

equipercentile equating as a viable method for vertical test equating;

the one-parameter IRT model was similarly rejected by the same authors_,

in later studies (1978, 1979a; cf. Gustafsson, 1979). However, Slinde

and Linn (1979b) later changed their opinion and suggested that the

one-parameter model may be suitable for vertical equating with an

anchor test when the groups are not widely different in ability.

Rentz and Bashaw (1975, 1977) and Guskey (1981) reported

successful applications of the one-parameter mddel for the problem of

vertical equating. Holmes (1981, 1982b) and Loyd and Hoover (1980),

however, found serious evidence of bias in their data sets and

cautioned against the use of that IRT model for vertical equating.

Divgi (1981a, 1981b) reached the same conclusion. Similarly, Phillips

(1983) found the traditional one-parameter model to yield equating

results discrepant from other IRT and conventional methods; the one-

and two-parameter models, when modified to permit non-zero lower

asymptotes, yielded results consistent with equipercentile equating

methods.

Conclusions

The results concerning the vertical equating of nonparallel tests

appear to be equivocal. Conventional methods do not appear to be

adequate. Although some researchers suggest that the (unmodified)

one-parameter IRT model may be appropriate for-reTtical equating under

certain circumstances, the pussibility of scale bias precludes

enthusiastic endorsement of that method. It appears that some

provision for a pseudo-guessing parameter needs to be included in an

IRT model before it is appropriate for vertical test equating.
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The Criterion Problem

Previous Approaches

The relative merits of the various equating procedures may be
obscured by the lack of a criterion for evaluating equating accuracy.
In general, researchers have evaluated their equating procedures in
one of the following ways: (a) looking at discrepancies across
methods, (b) computing indices of consistency and/or stability, (c)
equating a test to itself, and (d) comparing equated scores to
observed scores when all examinees respond to all test forms.

Discrepancies Across Methods

Many.of the studies (Beard & Pettie, 1979; Bejar & Wingersky,
1981, 1982; Garcia-Quintana & Johnson, 1979; Golub-Smith, 1980;
Guskey,1981; Lord, 1977, 1980; Loyd & Hoover, 1980; Modu, 1982;
Slinde & Linn, 1977; Stock et al., 1980) compared the results of
different equating methods simply by examining tables of equivalent
scores (and sometimes their plots) to see whether the different
equating methods resulted in the same equated scores. Typically, this.
led'to a qualitative statement such as noting that there were small .

discrepancies (e.g., one raw score point or less) throughout most of
the raw-score range but larger discrepancies in the chance-score range.
These discrepancies were sometimes compared with the standard error of
measurement of the equated tests(Rentz & Bashaw, 1975; Slinde & Linn,
1979b) to evaluate the seriousness of these differences.

In every case, even if there were no discrepancies between
equating tables from two methods, the most that could be said was that
neither method was better than the other. In some cases, this was the
desired conclusion. Jaeger (1981), for example, developed several
indices to identify the conditions under which linear equating could
be substituted for equipercentile equating with no change in results.
In most cases, however, it would be desirable to be able to specify
which of two equating methods is better when the results are
discrepant and to determine the amount of error in equating. This is
the familiar criterion problem, and no completely satisfactory index
has been proposed. Lord's (1975, 1981a, 1981b, 1982b, 1982c)
standard-error-of-equating indices allow comparisons of equating
quality at different score levels, but do not solve the practical
problem of knowing the correct or best equated score. This was
illustrated in the study described above (Lord, 1981a, 1982c) in which
the equated scores from two methods were more than a standard error of
measurement apart.

Alternatively, when various equating methods are being compared,
one method can be designated a "criterion" or standard equating

-61-



against which to compare the other equatings. Hicks (1983)

investigated scale drift after a chain of equatings by comparing the

final equating transformation with that obtained in an anchor-test

equating. In a similar approach, Marco (1977) computed the mean

squared difference between the scores fromc_each equating method and a

criterion IRT equating across test-score values in the equating table.

In & later study (Marco et al., 1980), he evaluated the equatings

based on various population subsamples by comparing them to two

criterion equatings (equipercentile and IRT) derived from the total

sample. The indices he used (total error and bias) were both based on

the difference between the criterion equated score and the equated

score obtained by a method studied in a subsample.

The problem with this approach is that it assumes what it wants

to show, namely which equating method is in some sense "best."

Unfortunately, that is the problem facing any attempt to compare

equating results obtained by the anchor-test or equivalent-groups

methods. A criterion of equating accuracy is needed that involves

more than a mere comparison of the similarity of equating results.

COnsistency and Stability Indices

Kolen (1981) and Kolen acid Whitney (1982) avoided defining an

absclute criterion and examined instead the stability of equating

results when applied to a cross-validation sample. In both studies,

stability was defined as the mean squared difference between the raw

score obtained on the old form and the equated score on the new form.

computed for a cross-validation sample. Similarly, Bianchini and

Loret (1974) compared equating methods by computing a

root-mean-squared-error index that was based on the discrepancies

between equivalent scores from half- and whole-sample equatings.

These approaches provide information concerning which of the

equating methods yields the equating transformation that is most

stable across samples of examinees. These indices do not, however,

identify the most accurate transformation in an absolute sense.

Equating a Test to Itself

An absolute index of error exists for the trivial case in which a

test is equated to itself. A given score from the first

administration of a test should correspond to the same (equated) score

from the second administration. Therefore, a plot of the equating

transformation should be a straight line with zero origin and unit

slope. The discrepancy between the observed transformation and the

"ideal" line is an index of equating accuracy.

Several studies reviewed here equated a test to itself in order

to demonstrate goodness of equating (Cook et al., 1982; Douglass,
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1980, 1981; Lord, 1977; Marco et al., 1980). This situation may be

considered as a case of equating two strictly parallel tests. As

such, it provides little information concerning how well an equating
method works when nonparallel tests need to be equated.

A test was equated to itself non-trivially by Petersen et al.
(1983) and Lord and Wingersky (1983). Those studies focused on

equating errors that occur when several test forms are equated and

chained together. Thus, the errors that were observed between the
original test scores and the equated scores (after chaining) provided

a bona fide index of scale drift.

Discrepancies Between Observed Scores and Equated Scores

When tIte single-group design is used (i.e., when test scores for
all examinees are obtained on all tests), there exists some "absolute"

criterion of equating accuracy. For each examinee, the equated score
from the second test should be identical to thescore he or she
received on the first test. The discrepancy between observed and
equated scores can be readily computed as a measure of equating

accuracy. Several indices based on these discrepancies have been

proposed. All these indices are based on the difference between two

scores that are considered to be equated, and all yield a value of

zero for errorless observed-score equating.

The most prominent index is the standardized difference (between

two ability estimates computed for each examinee from two sets of item

parameter estimates) frequently used in Rasch-model studies of,

vertical equating (Divgi, 1981a; Gustafsson, 1979; Holmes, 1981,

1982b; Slinde & Linn, 1978, 1979a). Similarly, the bias indices

developed by Divgi (1981b) and Yen (1982) and the
root-mean-squared-difference index of Holmes (1982a) are also
applicable in studies using the single-group design. In almost every

case, however, the amount of measurement error overwhelms the amount

of equating error that is present in any equating transformation.

It is important to note that these indices are based on observed

scores. That is, the equating transformation is applied to an

examinee's observed score on the new test in order to arrive at an

fivated oldtest score. The difference between an examinee's oLberved

(.()I-e on the old test and the examinee's equated score is then comi.ited.

Th process repeats for each examinee. This process is appropriate it

t he purpose of t he transformation is to equate observed test scores.

i plc the examinees' true scores can never be known, Lord (1982a) states

"l ii it is appropriate; Braun and Holland (1982) and Rubin (1982) concur.

Observed-Score vs. True-Score Equating

iii .:-.rved-score equaling may be inappropriite Tor several reasons.

a!!,! 1,)lemost, strict equating requires that the observed scores
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and the corresponding transformed scores have identical frequency

distributions in all groups tested (Lord, 1977, 1980, 1982a). In

general, this requirement will not be met if the equating
transformation is based on (fallible) observed scores (Lord, 1977,
1980, 1982a). Moreover, following Lord's requirement of equity, where
it makes no difference to the examinees which test they are given, it
becomes clear that tests that differ in reliability and/or difficulty
cannot be equated. One is faced with the following paradox:
"...scores x and z on two tests cannot be equated unless either
(1) both scores are perfectly reliable or (2) the two tests are
strictly parallel" (Lord, 1980, p. 198). In other words, it is
appropriate to equate observed test scores only when it is impossible
or unnecessary to do so.

On the other hand, one can attempt to equate true scores instead
of observed scores, following Morris' (1982) definition of weakly
equated tests, where "each individual in the test population has the
same expected score on both tests" (p. 171).

True-score equating satisfies the requirements of group

invariance and equity. Moreover, true scores can, theoretically, be
equated even for tests that are not strictly parallel (i.e., for all
practical equating situations). IRT and STST provide ways of
estimating the equating transformation between two sets of true
scores.

The major criticism of true-score equating is that examinees'
true scores are, of course, never known to the examiner. They can, at

best, only be estimated from item response vectors. These estimates

are then just another sort of fallible observed scores and, strictly

speaking, cannot be equated. Even though the transformat,ion itself

can be estimated (using IRT or STST), one cannot substitute estimates

for true scores and expect strict equating to hold. The problem, as
described by Lord (1977, 1980), is that there is thus no truly
appropriate way to make use of the true-score equating transformation.
As he states, "Either the exact true-score equating can be used with
observed scores, or else an inexact observed-score equating can be
used. The real problem is that we have no criterion for choosing"
(1977, p. 133). It may be interesting to note, however, that in the
only study explicitly designed to compare observed- and true-score
equating, Lord and Wingersky (1983) observed few differences between
the methods when a test was equated to itself through a chain of other
tests.

A More Satisfactory Approach

It is clear from the definition of weakly equated tests that the
goal of equating is to provide a transformations for making true scores
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on two tests in some sense equivalent. The criterion for choosing

between observed-score equating methods and true-score methods applied

to observed scores also becomes clear: The evaluation of an equating
transformation should be based on true scores. That is, the equating
transformation, however obtained, should be applied to an examinee's
true score on the new test; the equated true score should then be

compared with that examinee's true score on the old test.

This evaluation process can be performed, of course, only in the
situation where true scores are known for each examinee, that is, in a
Monte Carlo simulation study. The conclusions thus derived regarding

the relative merits of the various equating procedures should then be

directly applicable to practical equating situations provided that the
simulation procedures accurately model real-world conditions.

Design Issues for a Study of Equating

This review of the equating literature provides a basis for the
design of an equating study using Monte Carlo simulation techniques.
Previous studies were examined to determine those characteristics of

real data that should be modeled in a simulation. Few of the studies

dealt with such issues as the examinee sample size necessary for a

stable equating, however. Nearly all of the studies used real data

from standardized tests and available samples, with some information

not explicity given and therefore not amenable to simulation. Only

one of the studies formed composite scores before equating. The few

simulation studies were not directly relevant to the kind of study

considered here.

Examinee Ability Distributions

The assumption is often made that ability is normally distributed

in the population, and therefore normally or at least unimodally
distributed in a random sample from that population. The score

distributions for tests measuring that ability are also assumed to be

normally distributed. No data were given in these papers that
contradicted the assumption of normality, although this issue was
seldom directly addressed. A simulation study based on normally
distributed abilities and test scores may be reasonable. It is

probably much more appropriate, however, to explicitly examine
distribution shapes in samples similar to those found in military

situations.

Test Structures

The real tests used in the studies reviewed here were mainly
standardized tests with national norms: primarily reading or
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mathematics tests at the elementary or high school level or admissions

or achievement tests at the college or graduate school level.

Three simulation studies were reviewed. Marks and Lindsay (1972)
assumed that true test scores were normally distributed, and modeled
each observed score as the simple sum of a true score and a random
error component. Gustafsson's (1979) simulated tests were composed of

nine items at each of four evenly spaced difficulty levels. Yen

(1982) designed her tests so that the difficulty parameters were
approximately normally distributed; mean test difficulty was varied by
adding or subtracting a constant from every item difficulty parameter
in the set.

A realistic simulation should start with item parameter estimates
similar to those from tests to be equated in practice. This would
ensure that the results and conclusions would be as applicable as

possible to a real situation. Both power and speeded tests should be

simulated.

Sample Sizes

Marks and Lindsay (1972) found that 250 examinees were necessary
for adequate equating, but their study used an inappropriate equating

method (regression). Douglass (1°80, 1981) found sample size (200,
600, and 800) to be an unimportantjfactor for Rasch-model equatings,
but an important variable influencing the consistency of
two-parameter-model equatings. Similarly, Kolen and Whitney (1982)
suggested that 200 examinees may be too few for three-parameter IRT

equating. Yen's (1982) sample-size variable (1,000 vs. 2,000) had no
effect on equipercentile equating. The remainder of the studies

involved dat from national testing programs with such large numbers

of examinees that sample size was no longer an issue. Typically at

least 1,000 and often several thousand examinees Were used for

each equating. Such large numbers are probably adequate, but these

studies leave unanswered the question of how many examinees are needed
for equating and how this minimum sample size varies across equating
methods.

Composites

Stock et al. (1980) used a GRE composite as one total test score

to be equated. In all other studies, the equating methods were
applied solely to individual tests. Even when a test battery was

available, individual tests were separately equated. Completely
unresolved are the problems of how to combine correlated subtests into
a composite and how to equate composites composed of same or different

tests.
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METHOD

Project Overview

Equating procedures are best compared when (a) either all the
relevant test-model assumptions are met or the extent of their
violation is known, (b) characteristics of the testing situation are
systematically manipulated, and (c) there exists a criterion indexing
the accuracy of the equating transformation. In the present study,

different testing situations were simulated. First, examinee responses
to unidimensional parallel tests were generated; equating methods were
applied to individual subtests and to composites of these subtests for
different samples. Since the test-model assumptions were satisfied,
the equating methods were compared and evaluated under Ideal
conditions.

Next, the test-model assumptions were violated in ways that

modeled actual testing conditions. The parallel-test assumption of
the conventional equating procedures was violated by equating subtests
and composites of different lengths (i.e., different4reliabilities)
and different difficulties. Specifically, current Air Force equating

needs and conditions were simulated. Item responses were modeled on
the four AFQT subtests and examinee groups that resembled the current
military applicant population. Subtest length and difficulty were
systematically varied.

Two different raw score composites were computed: (a) an AFQT

composite analogous to the current AFQT, formed by weighting and
summing across the four subtests, and (b) a power-test composite
formed from the three power AFQT subtests. These scores were equated

using different data collection designs, testing models, and
transformation forms. In addition, power and AFQT composites were
formed by weighting and summing across already-equated subtest scores.
Composite scores were also equated indirectly (as described below)
using score statistics and intercorrelations from individual subtests.

The use of a Monte Carlo simulation in this study permitted a
clear evaluation of the equating procedures. In a Monte Carlo
simulation study, examinee ability levels and, hence, true scores on
all tests can be specified a priori. Thus, the relationship between
the two sets of true scores is known. The equating transformation
computed from the fallible observed scores can then be compared with
the known relationship between the true scores. Discrepancies 4etween
the equated and true scores on a test can be used to evaluate equating
accuracy. This type of comparison is not possible when real data are
used.
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The equating procedures employed in the simulations were also

applied to real Air Force data. That is, the same data collection
designs and equating transformations that were used in the simulations

were applied to item response and test score data from real examinees.

Table 1 presents an overview of the project. Equating was

performed for the combinations of equating method, data collection

design, and tests and composites marked. Within each cell, both
parallel and nonparallel tests and composites were equated using

various combinations of test length and difficulty.

Table I
Application of Equating Methods and Data Collection Designs to Subtests
and Composites

Equating method Subtests*
and design PC AR WK NO

Linear
Single group
Equivalent groups
Anchor test

Equipercentile
Single group
Equivalent groups
Anchor test

I RT

Single group
Equivalent groups
Anchor test

STST
Single group
Equivalent groups
Anchor test

X X X X

X X X X

X X'XX

X X X X

X X X X

X X X X

X X X

X X X
X X X

X X X X

X X X X

x x x x

Composites
Direct Equated

AFQT to Subtests Indirect
Power AFQT power Power 'AFQT Power AFQT

x

y

x

*Subtests included: (a) Paragraph Comprehension (PC); (b) Arithmetic
Reasoning (AR); (c) Word Knowledge (WK); and (d) Numerical Operations (NO).

Sample Characteristics

Three data collection designs (single group, equivalent groups,
and anchor test) were investigated in this study. To implement these

designs, three distinct examinee groups were generated. First, a

parent distribution of examinee abilities was defined. This

distribution of abilities was defined to he comparable to the
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distribution of abilities of current-military applicants. Sample X

consisted of simulated examinees whose abilities were randomly samplej

from this distribution. This sample was used for all three data
collection designs. Sample Y consisted of simulated examinees whose

abilities were randomly sampled from the same parent distribution of

ability. Sample Y was used for the equivalent-groups and anchor-test

designs.

The equivalent-groups data collection design.assumes that the

groups administered the two tests are, in fact, random samples from

the same parent population. The anchor-test design makes no such
assumption and, therefore, may be more appropriate for use with

nonequivalent groups of examinees. Consequently, a third examinee

group (Sample Z) was generated. The mean of the parent ability

distribution was increased, and examinee abilities were randomly
sampled from this new distribution. Sample Z was used for both the

equivalent-groups and anchor-test designs.

All test forms were equated using two different sample sizes

(1,000; 2,400). In addition, a third sample size was used for Samples

X and Y. Plsponses to a separate selection composite were generated

for Samples X and Y, and the examinees with the highest scores on this

composite constituted the selected sample. Selected samples (N 1,600)

were used to evaluate the equating procedures when applied to tests

administered to samples of selected recruits.

Test Characteristics

To perform this evaluation, two different difficulty levels and two

different test lengths were simulated for each subtest. Thus, eight

different forms of each subtest were required; Table 2 presents a

summary of these test-form characteristics. Even-numbered forms were

the "new" tests or composites that were equated to the odd-numbered

"old" forms.

Table 2
Test-Form Characteristics

Form number Difficulty level Length

easy short

2 easy short

3 easy long
4 easy long

5 difficult short

6 difficult short

7 difficult long

8 difficult long
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These test forma were paired in nine distinct ways. Table 3

presents a summary of these test-form pairings. It also specifies the

difficulty level of the anchor test that was used for applying the
anchor-test design to each pairing.

Table 3
Test-Form Pairings

"Old" test "New" test

Form Characteristics Form

Parallel pairings
1 easy, short

3 easy, long
5 difficult, short
7 difficult, long

Nonparallel pairings
1 easy, short

3 easy, long
3 easy, long
7 d.fficult, long
3 easy, long

Anchor-test

Characteristics difficulty

2 easy, short
4 easy, long
6 difficult, short
8 difficult, long

6 difficult, short
8 difficult, long
2 easy, short

6 difficult, short
6 difficult, short

easy
easy

difficult
difficult

medium
medium
easy

difficult
medium

In the first four of these pairings, parallel tests were equated

to each other. For example, an easy short test was equated to another

easy short test. Nonparallel tests were equated in five different

ways. For example, a difficult short test was equated to an easy

short test, and a difficult long test was equated to an easy long

test.

Data Collection Designs

Three separate data collection designs were evaluated in this

study: the single-group, equivalent-groups, and anchor-test designs.

For the single-group design, responses to both sets of test items were

generated for a.single group of examinees. Data from Sample X were

used for the single-group design. The equivalent-groups design
differed from the single-group procedure in that a different set of

abilities was drawn in order to generate item responses on the new

trst(s). Old-test responses were always generated for Sample X

examinees. New-test responses were generated for Sample Y examinees

for all subtests (and for Sample Z examinees for the Paragraph

Comprehension subtest) . in the anchor -test design, item reSponscs to



the old test/composfte were generated for Sample X. Item responses to

the new test/composite were generated for Sample Y (and for Sample Z

for the Paragraph Comprehension subtest). Responses to the common set

of anchor items were generated for all examinee groups. Sample

pairings for the anchor-test design were identical to those in the

equivalent-groups design.

Individual subtest scores were equated using this project design.

Because anchor-test equating can be used to directly equate composites

of power and speeded tests (e.g., AFQT composites) only if separate

power and speeded anchor tests are administered and later combined

into an anchor-test composite, and because this procedure is cumbersome

and unlikely to be used in practice, only power composites (i.e., not

AFQT composites) were directly equated using the anchor-test data

collection design.

Each data collection design was used with all testing models and

transformations and with all combinations of test length, test

difficulty, and sample size. The combinations of data collection

designs and sample ability distributions are presented in Table 4.

The X-X and X-Y sample pairings were used for all tests and

composites; the X-Z pairing (varying ability level across samples) was

used for all equatings of the Paragraph Comprehension subtest.

Table 4
Combinations of Data Collection Designs and Sample Ability Distributions

Data collection "Old" test "New" test

design Sample Size Ability level Sample Size Ability level

Single group X 1000 current X 1000 current

X 1600 selected X 1600 selected

X 2400 current X 2400 current

Fquivalent groups X 1000 current Y 1000 current

X 1600 selected Y 1600 selected

X 2400 .
Y 2400 current

X 1000

.current
current Z 1000 increased

X 2400 current Z 2400 increased

Anchor test X 1000 current Y 1000 current

X 1600 selected Y 1600 selected

X 2400 current Y 2400 current

X 1000 current Z 1000 increased

X 2400 current Z 2400 increased

Note. Adjectives describe the sample in relation to the parent sample

(e.it., -increased" indicates that an additive constant has been applied

to the mean of the parent -- "current" -- population before sampling).
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Data-Generation Procedures

True subtest abilities for'each examinee were sampled from a
multivariate nonnormal distribution that was defined to be similar to
the multivariate distribution of subtest abilities of current military
applicants. This multivariate distribution was defined by the first
four (marginal) moments of each subtest and by the intercorrelation
matrix of the subtest scores. The true IRT item parameters for the
three power subtests were sampled from a multivariate nonnormal
distribution of parameters defined to be similar to the distribution
of item parameters in the current ASVAB subtests. Similarly,
characteristics of the speeded tests were modeled after the speeded
subtest in the current AFQT.

The true abilities and item characteristics were combined with a
random process to yield item responses and, subsequently, fallible
observed scores for each suhtest and composite. All equating
transformations were derived from these observed scores and responses.
Details concerning the ability distributions, parameter distributions,
and specific data-generation procedures are given below.

Examinee Characteristics

Specification of the Moments of the True-Ability Distributions

Table 5 presents the summary statistics used to specify the
multivariate nonnormal distribution of true abilities.

Table 5
Summary Statistics Used to Specify Multivariate Distribution of True Abilities

Relia- Corrected correlations

Subtest Mean Variance Skewness Kurtosis bility PC AR WK NO

PC 0.090 0.795 0.170 -0.672 .80 -

AR 0.094 0.805 0.164 -0.607 .91 .83

WK 0.086 0.854 0.177 -0.860 .92 .94 .80 -

NO 0.696 0.041 -0.455 -0.323 .91 .64 .70 .61

Note. Table entries adapted from Vale et al. (1981) and Ree et al. (1982).
Summary statistics for the NO subtest are expressed on a proportion-correct
metric. All other subtest statistics are expressed on an IRT theta metric.
A constant of 0.25 was added to the mean for each power subtest before

abilities were sampled for Sample Z. Similarly, 0.04 was added to the mean of

the speeded (NO) subtest for Sample Z. Correlations have been corrected for

the unreliability of the tests.

Power-test abilities. Table 8 in Vale et al. (1981, p. 56)
presents summary statistics for modal Bayesian ability estimates
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derived from the responses of 500 military applicants to an

experimental form of the ASVAB-8 subtests during 1978. The first four

moments for the Arithmetic Reasoning (AR) and Word Knowledge (WK)
subtests were used to define the first four moments of the true abilities

for these subtests. Because the data from the Paragraph Comprehension

(PC) subtest were not presented in Table 8, the median moments across all

subtests were used as estimates for the moments of the PC abilities.'

Speeded-test abilities. An examinee's number-correct score on

a test administered wItb a strict time limit is a joint function of

the speed and the precision with which the items are answered. These

characteristics can be respectively defined for a test with a time

limit by (a) the number of items attempted (i.e., speed), and (b) the

proportion of correct responses computed from the number of items

attempted (i.e., precision). For a pure power test, the number of

items attempted is equal to the number of items on tle test; for a

pure speeded test, the proportion of correct responses computed from

the number of items attempted is 1.00. A time-limit test (i.e., a

partially speeded power test) can be considered to be a combination of

a pure power and a pure speeded test. For a partially speeded test

such as Numerical Operations (NO), the values for these two

characteristics lie somewhere between the limits of the pure power and

pure speeded tests. The values used in this study were determined as

follows.

First, the item responses to the Numerical Operations (NO) subtest

from 15,115 Military Enlistment Processing Stations (MEPS) examinees

who took ASVAB Forms 8, 9, and 10 were obtained from D. J. Weiss

(personal communication, September 10, 1982). Because the NO subtest

was administered with a time limit, not all examinees responded to

every item. For each examinee, the number of items attempted was

defined to be equal to the sequence number of the last item for which

there was a response. All succeeding responses were coded "not

reached." Missing responses prior to this point were coded "omitted."

Thus, speeded-test responses were coded as correct, incorrect,

omitted, or not reached. Data were analyzed only for those 14,460

examinees who omitted fewer than two items before the time limit was

reached. Omitted responses were recoded as incorrect. A

proportion-correct score was computed for each examinee. The summary

statistics in Table 5 were based on these proportion-correct scores.

The distribution of the number of items as a function of the

proportion-correct score was also obtained from these data. This

distribution was used later to generate speeded-test item responses.

1 The standard deviations presented in Vale et al. (1981) were

actually treated as variances when the multivariate ability distribu-

tion was specified. This caused the simulated abilities to have a

larger variance than should have been the case otherwise.

-75-

PI.



f
Varying ability. The parent ability distribution was modified

before examinees were drawn for Sample Z. This modification served to
simulate the difference in mean ability that might occur between
military applicants in successive years, or between the group of
current applicants and the mobilization population. A constant was
added to the mean of the ability distribution for the three power
tests and to the mean of the distribution of proportion-correct scores
for the speeded test. These constants were determined as follows.

First, data were obtained concerning the distribution of
applicants across AFQT categories for two successive years (R. S.
Massar, personal communication, January 25, 1983). These data were
collected between October and December, 1981, and between October and
December, 1982. A continuous frequency distribution for each year was
formed by interpolating between the midpoints of each score interval.
Table 6 presents these data.

Table 6
Distribution of Applicants Across AFQT Categories

AFQT
category

Score interval
(percentile)

Oct-Dec 1981
Proportion

Oct-Dec 1982
Proportion

Raw Cum. Raw Cum.

1 93-99 .026 .999 .034 1.000

II 65-92 .260 .973 .311 .966

IIIa 50-64 .154 .713 .172 .655

IiIb 31-49 .202 .559 .213 .483

IVa 21-30 .139 .357 .128 .270

IVb 16-20 .081 .218 .064 .142

IVc 10-15 .082 .137 .052 .078

V 01-09 .055 .055 .026 .02b

N of cases 127,188 92,817

Note. These data are for non-prior-service male applicants
(first ASVAB administration) only. Data were provided by
R. S. Massar (personal communication, January 25, 1983).

The 1982 applicants scored higher, on the average, than did the
1981 applicants. In fact, the 50th percentile for the 1982 applicants
corresponded to approximately the 57th perceatile of the 1981
applicants. According to Table 8 in the report by Ree, Mathews,
Mullins, and Massey (1982), these percentiles correspond to
(interpolated) AFQT raw scores of approximately 75.5 and 80.2,
respectively. This raw-score difference was fairly constant throughout
the ability range. Comparison of these scores with the standard
deviations (for all six ASVAB forms) reported in Table 7 of that same
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report revealed ,a standard-score difference between 0.23 and 0.25.

Consequently, a. constant of 0.25 was added to the mean ability of the

parent distribution for Sample Z. Accordingly, a constant of 0.04
(approximately 0.25 standard deviation on the proportion-correct

metric) was added t' the mean of the distribution of
proportion-correct scores for Subtest NO.

Specification of the Correlations Among True Abilities

As just discussed, the moments of the distributions of true

abilities were taken from Vale et al. (1981). That report, however,

did not report correlations among the subtest ability (i.e., theta)

levels, nor were any such data available elsewhere. Intercorrelations

among number-correct scores, however, were available from Rea,

Mullins, Mathews, and Massey (1982) for each of ASVABs 8a thriough 10b.

The median correlation coefficient across the ASVAB forts was

determined for each pair of subtests. Coefficients from A,'VAB Form 8b

were most frequently the median. Therefore, the correlat)eon matrix

among the AFQT subtests for ASVAB Form 8b was chosen as niost represen-

tative. The reported reliability coefficients for Form ,tb from Ree et

al. (1982) were used to correct these correlations foriOnreliability.

The corrected correlation matrix was used as the true-score carrelation

matrix. The NO subtest was speeded and no reliability coefficient was

reported. Therefore, the median correlation across all subtests was

used as an estimate of the reliability for NO.

Sample Sizes and Combinations

As just described, 2,400 examinees were simulated for each of

Samples X, Y, and Z. A subset of 1,000 examinees was randomly

selected from each of the larger groups and constituted the smaller

samples. Sixteen hundred examinees were selected from each of Samples

X and Y on the basis of a separate selection composite and constituted

two selected high-ability samples. These sample combinations were

detailed in Table 4 above.

Generation of the True-Ability Distributions

Each examinee's true abilities for the subtests were sampled from

the appropriate multivariate nonnormal distribution according to the

procedure described in Vale and Maurelli (1983). This procedure is

the multivariate extension of Fleishman's (1978) method for simulating

nonnormal distributions. In this procedure, the target correlation

matrix and marginal mean, variance, skewness, and kurtosis for each

variable are specified in advance. The correlation matrix is then

modified (see Vale & Maurelli, 1983, for details) and subjected to

principal-components factorization. For each examinee, a (normally

distributed) random number (i.e., component score) is generated for
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each component. The sum of the products of a variable's component

loadings and the corresponding component scores defines an examinee's
score on a variable. Fleishman's procedure is then applied separately
to each variable score to yiell-a vector of variable scoreslor each
examinee. Vale and Maurelli have shown that these score vectors have,
asymptotically, the appropriate intercorrelations and marginal
moments.

Throughout this project, normally distributed random numbers were
generated by applying the Box-Muller transformation (Box & Muller,
1958) to random numbers uniformly distributed on the unit interval.
All uniformly distributed random numbers were generated using a triple
multiplicative congruential algorithm (Wichmann & Hill, 1982).

Table 7 presents the summary statistics of the distributions for
Samples X, Y, and Z (and a separate evaluation sample, W) obtained
after application of the Vale-Maurelli procedure. Sample W (described

Table 7
Summary Statistics of Multivariate Distributions of True Abilities:
Samples X, Y, Z, and W

Subtest Mean Variance Skewness Kurtosis

*Correlation coefficients
PC AR WK NO

Sample X
PC 0.050 0.761 0.128 -0.719

AR 0.044 0.753 0.075 -0.666 .819

WK 0.053 0.818 0.166 -0.875 .934 .791

NO 0.681 0.038 -0.522 -0.294 .623 .687 .590

Sample Y
PC 0.036 0.756 0.145 -0.710 -

AR 0.022 0.750 0.141 -0.594 .820 -

WK 0.040 0.824 0.169 -0.868 .936 .790

NO 0.683 0.039 -0.550 -0.265 .625 .686 .597

Sample Z
PC 0.208 0.678 0.201 -0.574

AR 0.208 0.679 0.188 -0.459 .807

WK 0.208 0.756 0.245 -0.757 .931 .765

NO 0.702 0.034 -0.562 -0.167 .559 .624 . .527

Sample W
PC 0.038 0.746 0.134 -0.666

AR 0.036 0.736 0.119 -U.584 , .818

WK 0.030 0.800 0.183 -0.811 .936 .787

NO 0.681 0.038 -0.547 -0.214 .618 .671 .583
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in more detail below) is composed of 10,000-'examinees drawn from the

parent (current) ability population and was used to evaluate 91 the

equating transformaeions..

Comparing Tables 5 and 7 reveals thit nearly all of the observed

moments are slightly lower than those specified. However, the
differences betlieen the observed and specified moments are small and
the two correlation matrices are similar enough.to justify use of the
procedure in this simulation.

Test Characteristics

Power Subtesti

Test lengths. The current test Nngths for subtests PC, AR,

and WK are 15, 30, and 35 items, respectively. For this project, two
different test lengths were simulated for each power subtest: 15

items and 30 items. These test lengths were chosen to model the test
lengths of current subtests and to provide an effective test-length
manipulation.

Specification of the true-Item- arameter distributions.
Distributions of the true item parameters were modeled after those
obtained from items calibrated at the Navy Personnel Research and

Development Center in San Diego. These data were provided by J. B.

Sympson (rersonal communication, September 20, 1982) and were

debcribed by Sympson (1982). That paper described how items from

ASVAB Forms 8, 9, and 10 were calibrated together with new prototype

CAT items using LOGIST (Wood et al., 1976). Sympson provided item

parameters for 90 PC items, 180 AR items, and 210 WK items. Table 8

presents the summary statistics for these three sets of item

parameters. These statistics were used to specify the multivariate
distributions of true item parameters for the three power subtests.

The correlations among the estimated item parameters obtained

from Sympson were used to specify the correlations among true item

parameters needed for the Vale-Maurelli procedure. These correlations

were also rerorted in Table 8.

Generation of the true-item-parameter distributions. An entire

pool ')f items was first generated for each subtest. Items were then

assigned to individual subtest forms in a manner that ensured

parallelism across forms. This item-assignment strategy was used so

as tf% model the manner in which test forms are actually constructed.
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Table 8
Summary Statistics Used to Specify Multivariate Distributions of True

Item Parameters: Subtests PC, AR. and WK

Parameter Mean Variance Skewness Kurtosis
Correlation coe ?ficients

a b. c

PC
a 0.966 0.158 0.633 -0.053 -

-0.446 0.969 0.218 0.954 .325

0.233 0.002 0.305 0.674 .150 -.007 MID

AR
a 1.595 0.438 0.516 -0.234 -

b 0.060 1.045 -2.533 9.447 .649 -

c 0.228 0.004 0.118 -0.589 .136 .132

WK

A 1.548 0.442 0.633 -0.278 - ,-

b ' -0.385 0.972 -0.934 0.560 .603 -

c 0.260 0.003 -0.186 -0.424 .059 -.025 -

Note. Data from which these statistics were obtained were provided by

J. B. Sympeon (personal communication, September 20, 1982).

The true item parameters were generated for each power subtest using
the Vale-Maurelli procedure and the following restrictions:

(a)

(b)

(c)

0.4
-3.0
0.0

<

<

<

a

b

c

<

<

'<

2.5;
3.0; and
0 5

Items that fell outside these bounds were discarded and replaced.

Each short test contained 15 items and each long test contained

30 items. There were four short forms and four long forms for each

subtest (see Table X1). Thus, each subtest required 180 items. In

addition, the anchor tests required 90 items (two 15-item forms for
each of three difficulty levels). Also, 30 selection-test items were

generated. Thus, a total of 300 items were required for each subtest.

Once item parameters were generated, they were modified to

simulate tests of different difficulties. One hundred twenty items

were made more difficult by addingla constant of 1.0 to the b
parameters; a and c remained unchanged. Thirty items were used to

construct anchor tests of medium difficulty; these items were modified

by adding a constant of 0.50 to b. The remaining items were called
"easy" items and were not modified at alt. In all cases, if the
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resulting b parameter was greater than 3.0, all the parameters for
that item were discarded, and a new diet of item parameters was
selected and modified accordingly. This process was repeated until
there were enough items and the restrictions on all the parameters
were met.

Tables 9 through 11 present thp summary statistics for Subtests
PC, AR, and WK, respectively, by difficulty 'level and overall.
Discrepancies between the observed and targeted item parameters were .

small. The mean discrimination parameters for the three subtests were
targeted to be. 0.966, 1.595, and 1.548, respectively. Observed mean
discrim:pations were 1.001, 1.459, and 1.430, respectively. The c
paremetL4s varied little about their targeted values: The b
parameters were explicitly varied; the unmodified parameters, however,
were close to their targeted values.

Differences in the mean discrimination parateter across
difficulty levels can be observed, however. This is readily apparent
for PC where the medium-difficulty items had a mean a parameter of

TAble 9
Su wary Statistics of Multivariate Distributions of True Item Parameters:

Subtest PC

row.41.101110

Paranetei Mean Variance Skewness Kurtosis

Correlation coefficients
a

Easy (n =135)

a 1.0r9 0.178 0.859 0.154

-0.433 0.976 0.145 -.096 .219

0.240 0.003 0.670 0.793 .226 .059

ma.

Medium (r30)
a 0.881 0.097 0.307 -1.042

i; 0.273 1.052 0.767 0.229 .215

0.003 0.976 1.415 .098 -.060

Difficult (n..120)
a 1.011 0.166 0.621 -0.398

0.413 1.013 -0.072 -0.300 .352

c 0.235 0.002 0.795 3.199 .035 .003

Overall (n=285)
a 1.001 0.166 0.767 0.005

-0.002 1.168 0.113 -0.201 .240

0.2311 0.002 0.795 1.674 .141 .006

Nntv. n Is the number of Items.
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Table 10
Summary Statistics of Multivariate Distributions Of True Item Parameters:

Subtest AR

Parameter Mean Variance Skewness Kurtosis

Correlation coefficients
a b c

Easy (n=150)
a 1.427 0.262 0.156 -0.973 -

ii 0.019 0.818 -1.373 1.235 .835 -

c 0.222 0.004 0.236 0.094 .180 .240 -

Medlum (n=30)
a 1.600 0.344 -0.128 -1.379 -

b 0.687 0.586 -1.145 -0.074 .881 -

c 0.225 0.003 1.016 0.727
/

.052 -.032 ."

Difficult (n=120)
a 17.465 0.276 -0.026 -1.064 -

b 1.096 0.820 -1.369 .0.831 .843

c 0.222 0.005 0.303 -0.409 .120 .139

Overall (n=300)
a 1.459 0.278 0.069 -1.065 -

b 0.517 1.056 -0.884 0.525 .747 -

c 0.222 0.004 0.313 -0.071 .141 .151

Note. n is the numbet of items.

0.881 and the other items had a mean a parameter greater than or
equal to 1.011.

Differences in the mean a parameters across difficulty levels
for the AR items were also apparent. Tita'easy items, for example, had

a mean discrimination parameter of 1.427, compared to 1.465 and 1.600

for the difficult and medium items, respectively. Mean
discriminations for the WK items ranged from 1.375 to 1.533 for the
easy and medium items, respectively.

Assignment of items to individual test forms. Items for each

subtest were assigned to the individual test forms, anchor tests, and

selection tests In a manner that ensured parallelism across test
forms. First, the items for each ,ubtest were separated into the
three different difficulty levels (easy, medium, or difficult,
depending on the constant added to the bs); the Item-assignment
procedure was performed separately for each level.

All items at a specific difficulty level for a subtest were first

sorted into a test-form-by-stratum matrix (see Table 12). That is,

items were sorted according to the h parameter and assigned to 15

-82--
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Table 11
Summary Statistics of Multivariate Distributions of True Item Parameters:

Subtest WK

Parameter Mean Variance Skewness Kurtosis

.Correlation coefFTENWEi
a

Easy (n150)
a 1.375

b 0.516
256

Medium (nes30)
a 1.533

b 0.063

c 0.262

Difficult (n*120)
a . L474
b 0.678

c 0.268

Overall (nm300)
a 1.430-
b 0.020
c 0.261

0.315
0.796
0.004

0.226
0.371
0.003.

0.209
0.673
0.003
/

..'

0.267
1.021.

0.004

0.360
-0.545
-0.151

-0.139
-0.254
41.304

-..

0.140
-0.834
-0.366

0.199
70.435
-0.257

-1.193
-0.545
-0.519

-1.126
-0.631
-0.431

'-0.574
0.525.
-0.243

-1.034
-0.240
-0.424

.619

.104

.220

.180

.545
-.074

#010

.517

.057

-
-.095

-.014

-

-.010

.003

Note. n is the number of items.

strata so that Stratum 1 contained the items with the highest b

values and Stratum 15 contained the items with the lowest be. The

number of test forms varied for the easy, medium, and difficult tests.

Easy items, for example, were sorted into a 9- (for PC which had a

shorter selection test) or 10- (for AR, WK) by-15 matrix. Each

30-item test form was constructed from two parallel 15-item_tests.

Two different 15-4.tem anchor tests were constructed. (Only one of

these forms was ever used for actual test equating; the second anchor

test was constructed so that parallel-forms reliability could be

computed). In addition, easy items were assigned to a 15-item (for

PC) or 30-item (for AR, WK) selection test. Thus, the easy items were

assigned to 9 or 10 different test forms.

Medium -diffi lty items were required only for the anchor tests

and, therefore, were assigned only to two different test forms.

Similarly, difficult items were assigned to 8 test forms and 15

ctrata.

For each difficulty level, the items in the first stratum were

permuted; i.e., each item was assigned to a test form at random. The

items in the subsequent strata were assigned to test forms such that the
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-Table
Strategy for Assigning Items to Individual Subtest Forms

Test forms

Stratum
Difficult Easy
1 2 ... 14 15

Easy
anchor 1
anchor 2
form 1
form 2.
form 3
form 3
form 4
form 4
selection
selection (AR, WK only)

Medium
anchor 1
anchor 2

Difficult
anchor I
anchor 2
form 5
form 6
form 7
form 7
form 8
form 8

X X

X X

.X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X x
X X
X X
X X

X X
Y x

X

mean discrimination across all test forms was equalized as much as

possible. This was accomplished, stratum by stratum, by (a) computing
the mean discrimination for the items assigned to a test form so far,

(b) computing the deviation of a test's current mean discrimination
from the (grand) mean over all the items, and (c) assigning items to

test forms within the current stream such that the

lowest-discriminating item was assigned to the test form with the

largest positive deviation from the grand mean. The last step was

repeated until each item within the stratum was assigned a test form;

this entire process continued sequentially for each stratum until

items from all 15 strata were assigned. Tables 13, 14, any' 15 present

the results of this item-assignment strategy.

The item-assignment strategy created subtest forms with

.approximately equal mean item discrimination. Mean discriminations
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Table 13,

True Item Parameter Means for Each Test Form: Subtest PC

Test form n a b c

Subtest forms
.

1 15 1.050 -0.438 0.275

2 15 , 1.018 -0.435 04239
3 30 '1.017 -0.410 0.227

4 .30 1.011 -0.455 0.236

5 15 1.018 0.431 0.228

6 15 0.999 0.370 0.260

7 30 1.002 0.393 0.235
8 30 1.022 0.424 0.231

Anchor tests
easy 1 15 1.010 -0.409 0.239
easy 2 15 1.019 -0.421 0.222
medium 1 15 0.889 0.283 0.227
medium 2 15 0.873 0.263 0.255
difficult 1 15 1.020 '0.428 0.233

difficult 2 15 1.000 0.443 0.225

Selection test 15 1.016 -0.461 0.257

Overall 285 1.001 -0.002 0.238

varied little across test forms within difficulty level. Differences

among mean b and c parameters (within difficulty level) were
small.

Speeded Subtests

The time limit for the 50-item NO subtest in ASVAB Forms 8, 9,
and 10 was simulated in this study by modeling the distribution of the
number of items attempted by current examinees. In addition, a shorter
test (with the administration time cut in half) was also simulated by
assuming that the number of items attempted by each examinee was cut
in half. Item difficulty was not explicitly varied.

Composits

Two different kinds of composite scores were defined. An AFQT

composite was formed by unit weighting the number-correct score on
each of the three power subtests and weighting the number-correct
,irure from the speeded subtest by one-half. The sum of these weighted
,i-ors formed a composite )re analogous to the AFQT. In addition, a



Table 14

True, Item Parameter Means for Each Test Form: Subtest AR

Test form

Subtest forms

n a b c

1.

%2
13

1.4

.5

6

7

8

15

15

30
30
15

15

30
30_

1.429
1.421
1.427
1.424
1.463
1.464
1.463
1.464

0.000
0.001
0.052
0.001
1.094
1.098
1.098
1.081

0.222
0.226
0.232
0.227
0.213
0.229
0.229
0.202

Anchor tests
easy 1 15 1.432 0.029 0.198
easy 2 15 1.420 -0.017 0.219
medium 1 15 I.591 0.691 0.231
medium 2 15 A.609 0.682 0.219
difficult 1 15 1.463 1.064 0.231
difficult 2 ' 15 1.473 1.149 0.239

Selection test 30 1.431 0.036 0.220

Overall 300 1.459 0.517 0.222

power composite was formed by unit weighting and summing the
number-correct scores from the three power subtests.

The characteristics of each composite were defined by the
characteristics of its component subtests. That is, composite Form 1
(see Table 2) was constructed by appropriately weighting and summing
the scores from Form 1 (i.e., easy, short) subtests. Similarly, Form
8 was constructed by appropriately weighting difficult, long subtests.
Test length and difficulty remained constant across subtests within a
composite, although they did vary across the composites being equated.
Hence, the test-form characteristics and pairings presented in Tables
2 and 3 are applicable to composite scores as well as to the.
individual subtests.

Selection Composite

All items for the three power selection subtests were drawn from

the pool of easy items. The assignment of items to these selection
tests was described earlier; mean a, b, and c parameters for
these tests were presented in Tables 13 through 15. The speeded
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Table 15'

True Item Parameter Means for Each Test Form: Subtest WK

Test Iona b .

Subtest forms
1 15 1.389 -0.538 0.256

2 15 1.377 -0.529 0.269

3 30 1.374 -0.504 0.264

4 30 1.375 -0.518 0.253

5 15, 1.476 0.714 0.301

6 15 1.484 0.667 0.270

7 30 1.468 0.668 0.277

8 30 1.468 0.666 0.262

4 i
'Y

' Anchor tests
easy 1 . 15 1.366 -0.545 0.240

easy 2 15 1.370 -0.491 0.252

medium 1 15 1.503 0.080 0.264

medium 2 15 1.562 0.047 0.260

difficult 1 15 1.478 0.673 0.242

difficult 2 15 1.480 0.701 0.253

Selection test 30 1.374 -0.504 0.255

Overall 300 1.430 0.020 0.261

selection subtext used the same matrix for response generation that

was constructed earlier. The selection test for Subtest PC was 15

items long; Subtests AR and WK each contained 30 items. The speeded

subtest.contained 50 items.

A selection composite score was computed by weighting the
number-correct scores on the three power tests by one and weighting
the number-correct score on the speeded test by one-half. The

weighted scores were then summed to form an AFQT-like composite score.
The 1,600 highest-scoring examinees (i.e., the top two-thirds) were

selected from each of Samples X and Y and constituted the "selected"

samples.

Anchor Tests

For equating power tests, anchor-test difficulty was matched to

the difficulty of the two tests being equated. That is, when an easy

test was equated to an easy test, an easy anchor test was used.

Similarly, a difficult test was equated to another difficult test

through a difficult anchor test. When an easy test was equated to a
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difficult test, however, an anchor test of medium difficulty was used.
These anchor-test specifications were presented in Table 3.

All power anchor tests were 15'iteme lo9g. Composites of power

subtests were directly equated to each other using 15-item anchor
tests that were constructed from the first five items from each of the

three subtest anahors.

The anchor test used for equating two speeded tests was an
external, "separately timed" test. This anchor test was simulated by

assuming that the number of items attempted by each examinee was equal

to the number of items that examinee attempted on the abort test.'
That is,the anchor:test was "administered" with the time limit equal

to the time limit of the short speeded-test. This manipulation is
analogous to the requirement that all anchor tests used for equating
power tests were 15 items long, the length of the short power tests.

Generation of Item Responses

Prior to generating item responses to each subtest, a vector of

true abilities was drawn for each examinee from the specified

multivariate distribution. For the power subtests, these abilities

were true tlieta values. The speeded..subtest abilities were true

proportionjcorrect scores.

Power Subtests

For the power subtests, the true ability and item parameters were

used to compute the probability of a correct item response using the

three-parameter logistic IRT model. This probability value was

compared to a random number uniformly distributed on the unit

interval. If the random number was less than the probability of a

correct response, the simulated examinee was said to have correctly

answered that item. Otherwise, the examinee was said to have responded

incorrectly (see, e.g., Ree, 1981). Successive applications of this

algorithm yielded a vector of observed scored responses for each examinee.

Sets of response vectors were generated for each combination of subtest,

anchor test, selection test, and sample as required by the project

design. Item scores were summed to form raw number-correct scores.

Raw numb:Ir-correct scores were used to equate tests using

conventional and strong true-score methods. The item responses were

used in IRT and STST equating.

Speeded Subtests

For the speeded subtests, observed number-correct scores were

generated for each examinee according to the binomial error model

proposed by Pieters and van der Ven (1982). In this model, the
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probability of each number-correct score, conditional on the number of

items attempted, is given by
o

p(R1 -)A a) is a( Wr (1 n )a-r
gsi r i

where Ri is the number-correct score for examinee i;

Al is the number of items attempted by examinee i;

i
is the correct-response probability for examinee 1; and

lower-case letters denote specific values of the random

-variables.

1121

The probability of a correct response to an item is assumed to

vary across examinees but to remain constant across all items in the

test for a given examinee. This assumption is called the constancy
hypothesis and implies that more difficult items require longer

response times. That is, it is assumed that 'an examinees response
time varies with each item so that the probability of a correct

response remains constant for that examinee over all items. It is

clear that an examinee's true number-correct score is the product of

his or her precision (true proportion correct) ind speed (number of

items attempted). That is, each pair of precision and speed values

yields a single true number-correct score. Different combinations of

precision and speed, however, may yield the same true score on a

speeded test. Thus, for any true number- or proportion - correct score

sampled from the multivariate ability distribution, there may be

several corresponding pairs of precision and speed values.

To generate item responses, an examinee's true proportion-correct

score was first sampled from the appropriate multivariate

distribution. This proportion-correct score was converted to a true

number-correct score by multiplying by the number of items. This

number-correct score was then compared to the distribution of the

number of items attempted conditional on number correct. The number

of items attempted by that examinee was randomly chosen from the

number-of-items-attempted values corresponding to the specified number

correct (weighting each cell by its proportion of cases). The true

numbk;r-correct score was divided by the number of items attempted in

order to calculate precision.

'Individual item responses were then generated for the exam! nee by

mparinv the precision level to a random number uniformly distributed

w the unit interval as described above for power subtests. The

number 0( item responses generated for an examinee wils equal to the

numher of items attempted. If the number of items attempted was less

f!luu Hit. length of the subtost, the "not reached" items were scored as

rs9onses. The observed number-correct score for an

w.); th,. simple sum of the scored iLtqll responses. Raw scores

;1.9
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were tilted to equate tests using conventional and strong true-score

methods; item responses were also used for.STST. IRT was not applied

, to speeded tests..

Adequacy of the Simulation ProceduFes

A faithful simulation procedure should produce simulatel observed

test scores similar to test scores actually obtained by ASVAB

examinees. Accordingly, the summary statistics for ASVAB 8b (reported
in Ree et al., 1982, Tables 3 and 18) were used as a basis for
comparison.with the simulated test scores. Examinee responses to the
Form 3 (easy, long) AR, WK, and NO sybteste and to the Form 1: (easy,

short) PC subtest were used to maximize-test-form comparability
between the real and simulated data sets..

The summary statistics used for this comparison are presented in
Table 16. The mean subtest scores for the two data sets were very
similar, in general less than two raw-score points; the lone exception
was for the Word Knowledge subtest.. However, the simulated WK subtest
contained 30 items, whereas the real WK subtest contained 35 items.
When the mean score for the simulated test is converted to a
proportion correct and then multiplied by 35, the resulting figure is
24.91, less than half a score point different from the real data. The
real-data variances were uniformly larger than those from the
simulated data; the higher-order moments for the two data sets were
less dramatically -- and less consistently -- different. In general,

the real-data correlations were larger than those computed from the

simulated data. The rank order of the correlations, however, was

Table 16
Summary Statistics for Real and Simulated ASVAB Subtest Scores

Subtest n Mean Variance Skewness Kurtosis

Correlation coefficients
PC AR WK NO

Real data (N2,510)
PC 15 10.33 11.49 -0.65 -0.41 -

AR 30 18.52 54.91 -0.11 -1.10 .71 -

WK 35 24.60 59.9'. -0.69 -0.41 .81 .73

NO 50 35.77 102.82 -0.63 -0.01 .55 .64 .56

Simulated data (No=2,400)

PC 15 10.70 6.23 -0.41 -0.43 -

AR 30 17.52 41.47 0.33 -0.93 .61 -

WK 30 21.35 34.84 -0.18 -1.15 .69 .69

NO 50 34.05 98.21 -0.52 -0.27 .52 .61 .55 404

Note. Real-data statistics were taken from Tables 3 and 18 (for ASVAB-8b)

in Rce et al. (1982). N is the number of examinees.
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virtually the same for the two sets; it is likely, therefore, that the
differences in the levels of the correlations reflected the
differences in the variances of the two data sets.

Applications of Equating Transformations

Linear Equating

The data needed to linearly equate two testa are score means and

standard deviations. In this study, the equateescore (X'old) was

directly obtained for the single-group and equivalent-group designs by

the equation

old ° "new -Tnew)(adoldiadnew)
+ ToldX'

i

For anchor-test equating, each test was separatelylequated (in each
group) to the anchor test by Equation 13. Scores on the two tests that

were equated to the same score on the anchor test were considered

equated to one another.
\

k.

Linear interpolation was applied as needed to equate each
new-test score to the old-test score having the sameequated
anchor-test score (between zero and the maximum scor). Linear
extrapolation was used to complete the equating table for unequated
high and low score values on the new test, as necessa y. Unequated
low scores were defined as those that had an equated anchor-test score
that was less than zero or below the lowest anchor-tedt score that was
equated to any score on the old test. The extrapolatibn line for

these scores was the extension of the line connecting the lowest
equated old-test score an,' a point one third of the wa toward the

highest equated score. An analogous procedure was followed for

unequated scores at the high end of the new test.

131

Equated scores that fell outside the range delimited by zero and

the maximum score on the old test were set equal to the nearer
endpoint. No corrections were made for unequal reliabillties.

Equipercentile Equating

Equipercentile equating is done in a series of steps. First, raw

percentile tables are computed, and corresponding raw scores are set
equal. In addition, percentile tables and/or the equating table can
be smoothed; the two smoothing steps are optional. In this study,

five variations of equipercentile equating were examined: (a) no

smoothing was performed at all; (b) the equating table was smoothed
using cubic, polynomial regression, and percentile tables were not
smoothed; (c) the equating table was smoothed using cubic splines, and

-91-
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the percentile tables were not smoothed; (d) percentile tables were

smoothed using cubic polynomial regression, and the equating table was

not smoothed; and (e) percentile tables were smoothed using cubic

.splines, and the equating table was not smoothed. Equating and

smoothing were always performed using real-valued raw scores; equated

scores were rounded to integers only at the very last step (i.e., at

the evaluation.phase).

Components of equipercentile equating are described In detail

because different implementations'are possible. A subset of the

smoothing procedures was selected and applied throughout the study;

the data used to choose among these smoothings for the main study are

presented below.

Components of Equating Procedure

Percentile tables. The raw frequency distributioti of total

scores on a test was obtained and transformed to a pircentile

distribution. The percentile rank for a score was computed on the

score midpoint (i.e., all the cases below a scone plus half the cases

at the .score).

Regression smoothing of percentile tables. Percentiles for a

single test (old, new, or anchor) were regressed on corresponding test

scores using cubic polynomial regression; only those test scores with

reliable data (i.e., those having obserVed percentiles within the

0.1=99.9 range) were included in this regression. The resulting
regression weights were applied to the sate scores to obtain smoothed

percentiles. If the smoothed percentile was less than 0, greater than

100, or nonmonotonic (rising for lower scores, declining for higher

scores), the corresponding score was removed from the smoothed table

and later replaced by an extrapolated value (see below). Only the

smoothed portion of the percentile table was used in the initial

equating phase; the tails of the equating table were extrapolated

later in the equating procedure.

Spline smoothing of percentile tables. Reinsch's (1967)

cubic-splines algorithm was used to smooth the percentile table for an

individual test. A moderate smoothing parameter value (one-half the

numimr of scores values), as suggested by Kolen (1983), was used to

cont.ol the degree of smoothing. Each score point was weighted by its

standard error (Guilford, 1965, p. 161):

se
i 1(1-pi)

IN [141

where se
i
is the standard-error weight applied to score i and

pi is the percentile rank of score i. Again, only the smoothed

portion of the percentile table, as defined in the previous section,

was used in the initial equating phase.
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Equating. procedure. For single-group and equivalent-groups
equating, a score on the new test was equated to the score on the old
test having the same percentile. If the percentile on the new test
fell between percentiles for two scores on the old test, one of the

following procedures was used. For unsmoothed percentile tables,.
linear interpolation was used to obtain the equated score for scores

on the new test having percentiles within the (0.1 to 99.9) range and
between the percentile values for the old test's lowest and highest

scores. For regression-smoothed percentile tables; the regression
curve for the old test was used to interpolate between old-test points
using a Newton-Raphson iterative solution of the thicd-degree
polynomial. For spline-smoothed percentile tables, the appropriate
spline equatiod was used to interpolate between each pair of old-test
points, again using Newton-Raphson methods.

For unsmoothed equatifig tables (whether or not.the percent'l
tables were smoothed), linear extrapolation was applied to obtain
equated scores in the tails of the table, as needed. Otherwise, the

equating table was smoothed (as described below); if necessary,
extrapolation to the tails of the table was performed after smoothing.

For anchor-test equating, each of the tests to be equated was
first separately equated (within each group) to the common anchor test

by the single-group equipercentile equating method. The linear inter-

polation and extrapolation methods described above for linear anchor-

test equating were used to equate a score on the new test to the score

on the old test having the same equated anchor-test score.

Regression smoothing of equating tables. Using pairs of scores,

equated old-test scores were regressed on corresponding new-test scores
using cubic polynomial regression. Linear extrapolation was performed as

described previously to obtain equated scores for new-test scores not
previously equated to the old test (i.e., outside the range of

reliable data) or that occurred beyond a point of inflection in the

upper or lower tail. The resulting smoothed equating transformation
for the new test was bounded by zero and the maximum score on 'the old

test- (i.e., equated scores outside this range were set equal to the

specified bound).

Spline smoothing of equating tables. Reinsch's (1967)
cubic-splines algorithm with a moderate value (cf. Kolen, 1983) for

the smoothing parameter was used to smooth the obtained equating

tables. The standard errors of equipercentile equating (adapted from

Kolen, 1983, p. 7) were used to weight the individual score points:

se [(Pi-Poltuless)

Pold/morc-pi)/(Nold)(gT
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where se
i

= standard-error weight applied to score i;

k = the number of items on the old test;
100 * pi = percentile rank for score i on the new test;

gold /less
= largest percentile on the old test < p ;

poll /more
= smallest percentile on the old test > p ;

g gold /more Pold/less'
and

M
1 1+

N
old

N
new

Note that Kolen presented the standard errors for equated integer
scores that range from 0 to k. His equation was modified here
(i.e., multiplied by 1/k) to account for the fact that all equating
tables in this study were presented in a proportion-correct metric.
The equating transformation was completed by linear extrapolation, as
necessary, and bounded as described in the previous section.

Comparison of the Smoothing Procedures

All five smoothing methods were applied to the equipercentile
equating of the AR subtest. True-score-based RMSE and bias were
calculated for each application of equipercentile smoothing. (These

error indices are described in more detail below.) A tally was taken
of the "best" smoothing method (i.e., that having the lowest error)
across equatings for each error index; this tally is p;esented in

Table 17. This tally indicated that the regression methods performed
somewhat better than did the spline methods. Summary error indices

for the smoothing methods are also presented in Table 17. According to

this criterion, there was little difference among the methods, except
that the RMSE was slightly higher for the regression smoothing of
percentile tables. None of the smoothing methods outperformed "no
smoothing."

Three smoothing procedures were performed on all remaining tests
and composites: no smoothing anywhere, regression smoothing of

equating tables, and regression smoothing of percentile tables. These

smoothing procedures were selected to provide a good comparison of
methods that are widely used in practice (equating-table smoothing),
seem more appropriate theoretically (percentile - table smoothing), and

are supported by preliminary data-analysis results (no smoothing).

Item Response Theory Equating

The data required for IRT equating are the linked item parameter
estimates for the two tests to be equated. For both the single-group
and anchor-test designs, item calibration was applied to a single

matrix containing item responses from both tests; because all items

were simultaneously calibrated, no additional linking was necessary.
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Table 17

Equipercentile Equating Smoothing Methods: True-Score Error Indices
and Tally of "Best" Method for Subtest AR

Smoothing method
Parallel Nonparallel "Best" tally

RMSE Bias RMSE Bias RMSE Bias

Unsmoothed 0.008 0.002 0.045 0.008 23 22

Regression-smoothed
Percentile tables 0.011 0.001 0.053 0.009 20 30
Equating table 0.008 0.002 0.046 0.011 16 8

Spline-smoothed
Percentile tables 0.008 0.002 0.047 0.010 9 5
Equating table 0.007 0.002 0.047 0.011 13 16

N of Equatings 36 45 81

For the single-group design, all examinees responded to all items.
For the anchor-test design, the examinee-by-item response matrix
included data that was coded as "not reached" for the test not
administered to an examinee sample. For the equivalent-groups design,
each test was calibrated separately. The assumption of equivalent
groups implies that the two sets of item parameter estimates were
automatically 'linked; no additional linking procedure was implemented.

Item Calibration Program

IRT parameters were computed using the program ASCAL (Assessment
Systems Corporation, 1982). ASCAL is a conditional
maximum-likelihood/modal-Bayesian item calibration program for the
thr4e-parameter logistic item response model. The maximum likelihood
algorithms are similar to those presented by Wood et al. (1976) and
used in the program LOGIST. However, ASCAL differs from LOGIST in the
following ways.

In ASCAL, Bayesian priors have been added to the ability estimates
and to the a and c parameters. A standard normal distribution is
used for ability. For the a parameter, a Beta distribution is used
with both shape parameters equal to 3.0 and endpoints equal to 0.3 and
2.6. For the c parameter, a Beta distribution is used with shape
parameters equal to 5.0 and endpoints equal to -0.05 and (2/n)+0.05,
where n is the number of alternatives.

The ability estimates are unbounded; the Bayesian prior
distribution imposed on ability prevents the ability estimates from
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becoming infinitely large or small. The a parameter is bounded

between 0.4 and 2.5, the b parameter is bounded between -3.0 and

3.0, and the c parameter is bounded between 0.0 and (2/n).

The estimation process begins with the computation of

standardized number-correct scores for the examinees and conventional

proportions correct and'item-total biserial correlations for the

items. These statistics are then transformed into IRT a and b

parameters using Jensema's (1976) transformations; c parameters

equal to (1/n) are assigned to the items in this initial stage.

These initial parameter estimates are then used to estimate

abilities, and examinees are grouped into 20 fractiles, each fractile

containing approximately five percent of the examinees. The fractile

means are computed and standardized (i.e., the mean of the means is

set to zero and the standard deviation of the means is set to one).

Item parameters are then estimated using the fractile means and

frequencies as input data.

The ability and item parameter estimation process is repeated

until the parameter estimates converge or until ten iterations have

been performed. If an estimate has not converged in ten iterations,

the current value is used.

Equating Procedure

Equated number-correct scores correspond to the same theta. The

theta that would result in a true score equal to a given new-test

score was found, bounded by + 4.5, and inserted into the true-score

formula for the old test in order to obtain the equated score:

I
N

oLU
old

i=1

(16)

This was done for each new-test score between the chance true

score and a perfect score, exclusive, on the new test. Linear

extrapolation, as described above, was used to extend equating to the

lower and upper ends of the equating table.

Strong True-Score Theory Equating

Strong true-score theory produces an estimated distribution of

true scores from a sample distribution of observed scores. The

true-score distributions are then equated such that a score on the new

test is equated to the score on the old test having the same estimated

true percentile.
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Estimating a Test's True-Score Distribution
Or

The general STST model (Lord, 1980, Equation 16-2) defines the
relationship in the population between observed scores (x) and true
scores (C ) as

1

gx) = f g(0 h (x10 d
0

[17]

where (1)(x) is the population frequency distribution of observed scores;
g(C ) isthe true -score density at C;
h(xk ) is the conditional distribution of observed scores given

ttue score;
x 0, 1,- ...n; and

n is the number of items in the test.

The sample frequencies, f(x), are only a rough approximation to the
population observed-score distribution, (1)(x). Thus, the scores are
grouped into U intervals (see Appendix A) to reduce irregularities.
The objective is to find a g( ) that will produce an exact fit to the

population 4(x). Any one of several smooth solutions; all smooth
solutions being very close to one another, will suffice. Smoothness

is measured (Lord, 1980, Equation 16-4) by

{6° °(r) r,) }2
d

0 Y(0
[18]

where y( ) is some smooth density function, either y (c ) - 1 or

Y ( r, ) cc ( r - 1) being satisfactory.

Lord (1980, Equation 16-9) has shown that the "smoothest" solution
(1.e., that hay 1g the smallest smoothness measure) is:

U
= Y. A h (X10

u= x : u

where A is a parameter of the observed-score distribution (;. (x).

The general model thus reduces (Lord, 1980, Equation 16-11) to

f(x) = F. X a for x = 0, ... n
xu

u-1

[19]

[20]

wherc a r ,(:) h(xl() hod') dr,
X:u "

The a 's are constants to he computed from the data; computational
xu

formulas are derived in Appendix A. The ' 's are parameters of to
11
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be estimated and then substituted back into Equation 20 to obtain
estimates of the true-score distribution. as part of the equating
procedure.

Initial A estimates. Substituting sample values into Equation
20 yields (Lord, 1969, Equation 39, corrected for a notational error).

U
f
u

f(x) = Av E a
xv

x:u v=1 x:u

Since the f
u
's and axe's are known, letting

A EE a
uu XU

x:u

initial A's can be obtained by solving the matrix equation

[21]

[22]

= fA1 [23]

The must then be resealed (see Appendix A) to keep all A
u

> 0.

his restriction guarantees all g( C ) > 0 for 0 < C < 1
Lord, 1980, p. 241) which is necessary for an acceptable solution.

Refining the A estimates. Maximum likelihood estimation
.

prataii-res that simultaneously use all the sample frequencies are most
efficient in refining the A's. The set of Av's that maximizes the

likelihood function (Lord, 1980, Equation 16-10)

L =
n

x=0
(gx)) f(x)

for the set of observed f(x)'s is found by the steps described in
Appendix A.

Equating the Tests

[24]

Given sample values and final parameter estimates computed above
for each test separately, the estimated true percentile (i.e., the
estimated proportion of examinees in the population who would score
below a given true score) can be computed for any score on the new or
old test from the integral

f
t
g(0 dt

0
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where t go true proportion correct on the test (see Appendix A for the

procedure). Equated scores on the old and new tests have the same
estimated true percentiles on the two tests.

The endpoints were fixed: scores of zero and nnew on the new

test were equated to scores of zero and nnid on the old test. For

each score from 1 to (nnew - 1) on the new test, first the estimated

true percentile on the new test was obtained, and then the equated
score (the score on the old test having the same estimated true
percentile) was obtained by STST methods if possible.

Strong true-score theory does a poor job estimating the tails of
the distribution when few or no observed data fall there. Hence, the

area of the old test for which STST equating was possible was defined

as that in which the estimated true percentiles were between 0 and 100

and were monotonically increasing and for which the observed
percentiles fell between 0.1 and 99.9. If the estimated true
percentile on the new test fell outside the range of good values of
estimated true percentiles on the old test, no equated score was
returned. Otherwise, an initial value for the equated score was found
and then Newton-Raphson iterative procedures were used to refine the

equated score, i.e., to make it a value whose estimated true
percentile was actually equal to that of the new-test score within a
certain tolerance. (Appendix A describes both these steps.)

Linear extrapolation was performed on the line joining zero and
the lowest equated old-test score for unequated new-test scores in the
lower tail; the line joining nold to the highest equated old-test

score was used for unequated scores in the upper tail.

Procedures for Equating Test Composites

The power and AFQT composites were equated in three different
ways. First, the composite scores themselves were directly equated by

applying the conventional equating transformations to the composite
scores in exactly the same manner as was done for the scores on the

individual subtests. This was done to equate power to power
composites, AFQT to AFQT composites, and power to AFQT composites.

Power composites were also directly equated using strong true-score
theory. In addition, both power and AFQT composites of equated
subtests were formed; no further equating transformation was applied

to these composite scores. Finally, both power and AFQT composite

scores were indirectly equated using score statistics and correlations

from individual subtests. The specific procedures and the
data-collection requirements are detailed below.
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Equating Composite Scores Directly

When examinees take all the subtests in a battery, composite

scores can be computed as the weighted sum of individual unequated

subtest sCores. The composite scores themselves eau then be directly

equated. Because the goal of composite-score equating is to define

equivalent scores on two composites of subtests, this direc, pro6edure

is the preferred method of equating composite scores*.

When composite scores are directly equated, only one
transformation table needs to be constructed and used. Subtest scores

can be weighted as usual and combined into composites; a single
equating transformation is then applied-to these sets of composite

scores.

In this study, composite scores were directly equated using the

conventional and STST transformations. Because IRT assumes that each

test is unidimensional, it is not applicable for equating

multidimensional composite scores directly. The power composites were

equated directly using all of the data collection designs, with the

exception that the anchor-test design was not used with strong true-

score theory. This exception was made because of the practical

difficulties involved in applying strong true-score theory to the

anchor-test composite (which was composed of five items from each of

the individual subtest anchors). AFQT composites were not directly

equated using the anchor-test design because of its impracticality,

as discussed above.

Forming Composites of Equated Subtests

When each group of examinees is administered only a single

subtest, composite scores cannot be equated by the direct methods.

The only way in which any type of equivalence can be made between the/

two sets of composite scores is by first equating the individual

subtests. Composite scores can then be formed for future examinees

who are administered all the subtests in the new battery by applying

the appropriate composite weights to their equated subtest scores.

With this procedure, a separate transformation table needs to be

constructed and applied for each subtest in he composite. However,

each equating transformation can be computed after the administration

of individual subtests; it is not nece3sary to administer any more

than one subtest (either one or two forms) to an intact group of

examinees in order to equate the composites. The primary disadvantage

of forming composites from equated subtests is that the resulting
equating transformation contains errors from three or four separate

and independent equating transformations and, therefore, probably

contains a greater amount of error than does the equating

transformation obtained when composite scores are directly equated.
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This procedure can be used with every data collection design 'and every
testing model and transformation form, with the exception that IRT can
be used to equate power composites but not AFQT composites. The data
obtained previously from equating individual subtests were used to
equate composite scores by this method.

Equating Composite Scores Indirectly Through the Subtests

Composite scores can also be equated indirectly using
conventional linear procedures that take into account the original
composite weights, subtest means and standard deviations, and the
intercorrelations among the subtest scores. This procedure is a
reformulation of the linear equating model in which two composite
scores are considered to be equated if their corresponding standard
scores are equal.

The formulae for performing this type of composite equating were
derived as follows:

YO = '1
[x0]

+ C
o

Y
N

=
N
'j [XN) + C

N

[261

[271

where Yo and YN are, respectively, the old and lew composite scores for

an examinee;
[X0] and [X

N
I are vectors of old and new subtest scores;

[41
0

] and [14
N

] are vectors of old and new weights applied to the

individual subtests to yield composite scores; and
C
0

and C
N
are the old and new constants applied to yield composite

scores.

where

The equation for linearly equating composite scores Y0 and YN is

a =
/ 'HX7

0 0 0
j

)/ EwN' [VON&

[281



'4°

[V01 and fi/
N ] are the variance-covariance matrices of the old and

new subtest scores; and

1X0
and EX

N
1 are the mean vectors of the old and new subtests.

This procedure is equivalent to the linedr procedure for equating

composite scores directly when each group of examinees takes all the

subtests in a battery.

An advantage of this indirect procedure IS that it can be used to

equate test batteries with partial Baca under certain circumstances.

It can be applied when examinees do not take all the subtests in a

battery. There are two requirements: (a) a subset of the examinees

must have taken each possible'pair of subtests so that the

intersubtest correlations can be estimated for each battery, and (b)

the distinct examinee subgroups must be randomly sampled from the same

population. When examinees take only a subset of the subtests in any

battery, the subtest statistics are computed from the responses of

several distinct subgroups of examinees. These values can be used as

estimates of those that would have been obtained if the entire battery

had been administered to a single group of examinees. Under these

conditions, this procedure is an approximation to the procedure for

equating composite scores directly. Examination,time can be reduced

if the entire battery does not have to be administered to an intact

group of examinees.

The responses from examinees who ook only selected pairs of

subtests were used to equate composit scores using the linear

procedure. Both the single-group and equivalent-groups data

collection designs were investigated..

Linear equating procedures were applied to partial data sets

where examinees did not receive all the subtests in the battery. Two

of the subtests were administered to each examinee subgroup in a

manner that ensured that all possible test pairs were administered.

The manner in which these subtest pairs were administered to the

different examinee subgroups is presented in Table 18.

Power-test composites were composed of three different subtests.

Thus, three distinct examinee subgroups were required to administer

the three possible subtest pairs (Subtests 1 and 2, Subtests 1 and 3,

and Subtests 2 and 3). Since subtest scores were available from 2,40U

examinees in each sample, each subtest pair was administered to a

distinct subgroup of '800 examinees. When equating transformations

were based on subtest scores of selected examinees, sample sizes were

correspondingly smaller. Fin- each of the three power subtests, then,

score data were available from 1,600 unselected and approximately

1,067 selected examinees.
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Table 18
Administration of Subtests to Examinee Subgroups: Creating-

Partial Data Sets

Subtests
administered

Sequence number of examinees
in each subtroup

Unselected Selected

Power-test composites
1 and 2 1- 800 1- 533

1 and 3 801-1600 534-1067
2 and 3 1601-2400 1068-1600

AFQT composites
1 and 2
1 and 3
2 and 3
1 and 4
2 and 4
3 and 4

1- 400 1- 267
401- 800 268- 533
801-1200 534- 800
1201-1600 801-1067
1601-2000 1068-1333
2001-2400 1334-1600

AFQT composites were composed of four distinct subtests. Thus,

examinees were divided into six distinct subgroups and were
administered one of the six possible subtest pairs. Each unselected
subgroup contained 400 examinees; subgroups of selected examinees were
two-thirds that size. For each of the four AFQT subtests, score data
were available from 1,200 unselected and 800 selected examinees.

Evaluative Criteria

Error in an equating transformation was isolated and evaluated in
this study by applying the transformatiOn to true-score data from a
separate "evaluation" sample of examinees. Sample W abilities for the
four subtest areas were generated for 10,000 new examinees sampled
from the parent population distribution (i.e., the multivariate
distribution of abilities that defined Samples Xand Y). These
abilities were thetas for the three power subtests and proportions
correct for the speeded subtest. This sampling approach to the
generation of ability distributions was used instead of numerical
integration over a density function because the density function does
not exist for the nonnormal distributions sampled.

The thetas, in combination with the true item parameters and the
three-parameter logistic IRT model, were used to generate true
proportion-correct scores for this sample on every power test. The

true number-correct scores sampled for the speeded tests were
converted to true proportion-correct scores. Additionally, observed
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proportion-correct scores were generated for every examinee in the

evaluation sample using a random-number process in conjunction with

the IRT model for power tests and the binomial error model for speeded

tests. True composite scores were obtdined for each examinee by

weighting the true scores 9n each subtest and summing across subtests.

The evaluative indices described below were computed on the evaluation

sample so that the sample size and composition remained constant for

all equatings evaluated.

True proportion-correct scores on the new test were equated to.

proportion-correct scores on the old test by applying the equating

transformations computed from observed response data. The difference

between the equated old-test score, and the true old-test score was

then computed for each examinee in the evaluation sample; functions of

these difference scores were calculated as global indices of equating

accuracy. The #pecific indices that were computed included root mean

squared error (RMSE) !Ind bias. RMSE is the square root of the mean

squared difference between the true and equated old-test scores. Bias

is the difference between the mean true score and the mean equated

score on the old test.

Real-Data Application

Raw Data

Item response data for the real-data application phase of this

project were.obtained from Task II of the Omnibus Item Pool and Test

Construction Project (Prestwood, Vale, Massey, & Welsh, 141 press).

The items were part of the initial operational item pool for the

adaptive ASVAB and were admilistered to MEPS examinees during the

calibration phase of the Omnibus project from May to July 1983. Both

male and female examinees were included. During this phase of the

Omnibus project, items were randomly assigned to specific test

booklets. Within each booklet the items were randomly ordered.

All item response data were edited. A redundantly coded form

number allowed improperly recorded booklet numbers to be detected and,

in some cases, correct booklet numbers to be recovered. A patterning

coefficient was developed to detect response patterns ("ABC/Vie") and

response strings ("AAAA"). Examinees who exhibited response patterns

and strings and who responded to fewer than six items were deleted

from the data set. Less than 0.25% of the examinees were deleted

during this process. For details concerning this data-editing

process, see Prestwood, Vale, Massey, and Welsh (in press). Real data

analyses for this project were based on item responses to a test

booklet containing 86 Word Knowledge items.
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In order to parallel the computer simulations as closely as
uossible, the following procedures were performed. First, three

examinee groups were defined. The first 1,000 examinees from the
Omnibus data file formed Group 1, the rext 1,000 examinees formed

Group 2, and the next lonoo 'examinees formed Group,3. Groups 1 and 2

were used for equating; Croup 3 was used as a hold-out evaluation

sample.

Items were assigned in a counterbalanced order to two 30-item
tests and a 15-item anchor test (only 75 of the 86 items were used).

Items were assigned to each test in an "ABCBA" format, where "A"

\, denotes assignment to the "old" test, "B" denotes assignment to the
"new" test, and "C" denotes assignment to the anchor test. Examinee

responses were scored and total test scores were computed for each

examinee.

Data Collection Designs

The single-group, equivalent-groups, and anchor-test data
collection 'designs were used to equate tests using real examinee data.

Group 1 responses to the old and new tests were used to equate the

test using the single-group design. The responses of Group 1 to the

old test and the responses of Group 2 to the new test were used to

equate the two test using equivalent groups. Similarly, responses of

Group 1 to the old test and the responses of Group 2 to the new test

were also used to equate tests using the anchor-test design; in
addition, anchor-test responses for the two groups were used.

Equating Transformations

Linear, equipercentile, IRT, and STST procedures were used to

equate the two sets of test scores. The applications of these
equating transformations were identical to those described above in

the simulation procedures.

Evaluative Criteria

The criterion for evaluating equating accuracy, using real data,

differed somewhat from the criterion used in Monte Carlo simulations.

When real data are used, an examinee's true scores are not known; only

the observed scores on the two tests are available. The differences

between the observed old-test scores and the equated old-test scores
arc a measure of how well the equating procedure can recover the

scores actually oUtained by the examinees. The standard error of the

ditference between the observed and equated scores was computed and

served as the base for evaluating the observedscore RMSE and bias

indices of equating accuracy.



For all three designs, the equated test scores can be compared
to the scores actually obtained by the examinees in the evaluation
sample, Group 3.

-106-



RESULTS AND DISCUSSION

Choosing an Equipercentile Smoothing Method

Results

Table 19 presents the results from the three smoothing methods

applied to each case of equipercentile equating. The true-score error

indices are presented for (a) all power subtests, (b) speeded
subtests, and (c) all composites (except the indirect composites).

Table 19
True-Score Error Indices for Equipercentile Smoothing Methods

Smoothing method

Tests/Composites
Parallel Nonparallel

RMSE Bias RMSE Bias

Power subtests
Unsmoothed
Smoothed percentile tables
Smoothed equating tables
N of equatings

0.008
0.009
0.008

0.000
-0.001
0.000

108

0.036
0.041

0.037

0.008
0.009
0.010

135

Speeded subtests
Unsmoothed 0.010 0.001 0.012 0.002

Smoothed percentile tables 0.036 -0.010 0.039 -0.010

Smoothed equating tables 0.015 0.004 0.017 0.004

N of equatings 36 45

Composites
Unsmoothed 0.018 0.002 0.032 0.009

Smoothed percentile tables 0.018 0.002 0.036 0.009

Smoothed equating tables 0.018 0.003 0.033 0.009

N of equatings 168 210

Note. All smoothing procedures were based on cubic polynomial
regression.

In general, the differences among the smoothing methods were

small for the parallel subtests. For the parallel power subtests, the
results across smoothing methods were virtually identical; the
regression smoothing of the percentile tables was markedly poorer
(according to both error indices) for speeded subtests. The RMSE for

this case was 0.036; the corresponding RMSE values were 0.010 and
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0.015 for the unsmoothed and regression-smoothed equating tables,

respectively. Bias indices followed the same pattern as the RMSEo.

Error indices from the nonparallel-test equatings were larger

than those from the parallel-test equatings, with RMSEs ranging from

0.012 for unsmoothed speeded tests to 0.041 for smoothed percentile

tables. As before, regression-smoothed percentile tables resulted in

larger errors than did any other smoothing method.

The error indices obtained when composites were equated were

larger, in general, than these observed for individual subtests. As

before, errors were larger for the nonparallel-composite pairings

(RMSEs of 0.032-0.036) than for the parallel pairings (RMSEs of

0.018). All three smoothing conditions performed equally well for the

parallel composites. For the nonparallel composites, regression

smoothing of the percentile tables was slightly worse (in terms of

RMSE) than the other two smoothing methods.

Discussion

When parallel i.zwer subtests and composites were equated, all

three smoothing methods yielded comparable amounts of error; in all

other cases, regression smoothing of percentile tables typically

result 1 in larger errors than did the other smoothing methods.

Neither type of regression smoothing improved upon "no smoothing" for

any condition; when differences were observed among the smoothing

methods, they tended to favor "no smoothing." Hence, the remainder of

the comparisons presented in this report are based only on the

unsmoothed equipercentile equating tables.

Equating Individual Subtests

Equating Methods

Results

Table 20 reports the true-score error indices computed when

parallel subtests were equated. As this table shows, there were only

NW small differences among the equating methods when they were applied to

parallel poker subtests. The true-score RMSEs for IRT and STST

methods were slightly larger (by 0.002-0.004 points) than those from

the conventional methods; all methods were essentially unbiased.

Linear equating outperformed equipercentile and STST methods when

parallel speeded subtests were equated (RMSE of 0.004 vs. 0.010-0.015),

Table 20 also presents the true-score error indices computed when

nonparallel subtests were equated. IRT and STST equatings were
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Table 20
True-Score Error Indices for Equating Subtests

Equating method.

:type of suEtest
Power Speeded

RMSE Bias RMSE Bias

Parallel subtests
Linear

Equipercentile
IRT
STST

N of equatings

Nonparallel subtests
Linear
Equipercentile
IRT
STST

N of equatings

0.007 0.000

0.008 0.000

0.010 0.000
0.011 0.001

108

0.048 0.006

0.036 0.008
0.024 0.005
0.021 -o.opi

0.004 -0.001

0.010 0.001

0.015 -0.002

36

0.006 -0.001
0.012 0.002

0.015 -0.002

135 45

clearly superior (in terms of RMSE) to the conventional methods for
equating power subtests. The RMSEs for IRT and STST were 0.024 and
0.021, respectively; for conventional equipercentile and linear
methods, these values were 0.036 and 0.048, respectively. STST had

smaller bias than any of the other three methods. Nonparallel

power subtests were equated with greater error than were parallel

power subtests.

Linear equating methods worked best for equating nonparallel
speeded subtests (RMSE equal to 0.006), with STST methods performing

the most poorly (RMSE equal to 0.015). There were small differences

across the methods in bias. Parallel and nonparallel speeded tests

were equated equally well. Because nonparallel speeded tests differed

in length but not in difficulty, this may suggest that varying
difficulty has more of an effect on equating than does varying test
length. This issue will be discussed in more detail later.

Discussion

Conventional equating methods outperformed the more complex IRT

and STST methods when parallel subtesta were equated. In fact, the

simplest (linear) method worked much better than any of the other

methods when speeded subtests were equated. Exactly the opposite was

true when nonparallel power subtests were equated, however. That is,
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IRT and STST clearly worked better than the conventional methods; STST

yielded a smaller bias than all other methods. In general, parallel

subtests were equated with less error than were nonparallel subtests.

As one exception, however, nonparallel speeded tests were equated with

the same amount of error as the parallel speeded subtests, suggesting

that variation in test length alone was not a significant violation of

test parallelism.

It appears, then, that the conventional equating methods function

well when parallel tests are equated but work less well than IRT and

STST methods for equating nonparallel tests.

Data Collection Designs

Results
\

,

Table 21 presents the true-score error indices (for each data

collection design) for equating parallel subtests. Differences across

data collection designs were small. In general, the single-group

design resulted in smaller RMSEs than did the equivalent-groups and

anchor-test esigns; this was especially true when speeded subtests:#1,t

were equated he pooled RMSEs were 0.008, 0.010, and 0.009,
respectively, fQr the power subtests and 0.006, 0.011, and 0.013,

respectively, for the speeded subtests). There were essentially no

differences in the errors yielded by the equivalent-Igroups and

anchor-test designs. In general, bias was small throughout; the
single exception to this occurred for equipercentile anchor-test
equating, which resulted in a positive bias for the speeded subtests.

Table 21
True-Score Error Indices
Collection Designs

for Equating Parallel Subtests Using Different Data

Equating method

Data collection designs

N of
e uatin s

Single
group

Equivalent
groups

Anchor
test

RMSE Bias RMSE Bias RMSE Bias

Power subtests
Linear 0.006 0.001 0.007 0.001 0.007 -0.001 36

Equipercentile 0.007 0.001 0.008 0.001 0.009 -0.001 36

IRT 0.008 0.001 0.012 0.001 0.009 -0.002 36

STST 0.010 0.001 0.011 0.002 0.012 -0.001 36

Pooled 0.008 0.001 0.010 0.001 0.009 -0.001 144

Speeded subtests
Linear 0.002 0.000 0.007 -0.003 0.003 -0.001 12

Equipercentile 0.006 0.000 0.009 -0.003 0.013 0.006 12

STST 0.008 -0.001 0.016 -0.002 0.019 -0.003 12

Pooled 0.006 -0.001 0.011 -0.003 0.013 0.001 36
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Table 22 presents the true-score error indices computed when
nonparallel subtests were equated. Error indices for the nonparallel
subtests were generally larger than those observed when parallel
subtests were equated. When nonparallel power subtests were equated,
only small mean differences among the data collection designs were
evident, except for IRT equating; here the single-group design was
best and the equivalent-groups design was the worst (RMSEs of 0.012
and 0.032, respectively). Bias was large (0.013) for IRT using the
anchor-test design. Overall, there was a slight advantage for the
single-group design (mean pooled RMSE of 0.032 vs. 0.034-0.036).

Table 22
True-Score Error Indices for Equating Nonparallel Subtests Using Different

Data Collection Designs

Equating method

Data collection design

N of
equatings

Single Equivalent Anchor

group groups test

RMSE Bias RMSE Bias RMSE Bias

Power subtests
Linear 0.047 0.007 0.049 0.007 0.048 0.005 45

Equipercentile 0.035 0.010 0.03b 0.009 0.036 0.007 45

IRT 0.012 0.003 0.032 -0.002 0.024 0.013 45

STST 0.020 0.000 0.020 0.000 0.022 -0.003 45

Pooled 0.032 0.005 0.036 0.003 0.034 0.006 180

Speeded subtests
Linear 0.004 0.001 0.008 -0.002 0.005 0.000 15

Equipercentile 0.006 0.001 0.011 -0.003 0.018 0.009 15

STST 0.010 -0.001 0.017 -0.002 0.016 -0.002 15

Pooled 0.007 0.000 0.013 -0.002 0.014 0.002 45

For the speeded subtests, however, differences among designs were
more marked: The single-group design was consistently the best design
and linear equating was the best method. Bias was largest (0.009) for
equipercentile equating using anchor tests. No consistent differences
were observed between the equivalent-groups and anchor-test designs.
As was discussed previously, nonparallel speeded subtests were equated
with approximately the same degree of error as were\the parallel
speeded subtests, again suggesting that test length was not a major
factor contributing to the error in nonparallel-speeded-test pairings.

Discussion

In general, the single-group data collection design was clearly
best for equating nonparallel power subtests using IRT and for
equating speeded subtests by any of the three equating methods. These
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were the only cases in which a data collection design was clearly

superior for subtest equating.

The clear superiority of IRT single-group equatirig over any other

type of IRT equating is most probably due to the particular

implementation of that data collection design with item response

theory. For all other equating methods, the single-group and

equivalent-groups designs differ only in that the latter design

uses two separate samples of examinees (instead of just one) to

obtain the equating transformation. Differences between these two

designs, then, arise from the additional sampling error that is

involved in the equivalent-groups design.

For IRT single-group equating, however, all items on both

subtests are simultaneously calibrated; item calibration for IRT

equivalent-groups equating is performed separately for each subtest

and each examinee sample. It has been demonstrated (e.g., Vale et al.,

1981) that increased item set size yields better parameter estimates

for all the items. Better parameter estimates, in turn, yield a more

accurate IRT equating transformation. Hence, the single-group design

as implemented with IRT has two advantages over the equivalent-groups

design: (a) smaller sampling error, and (b) better item parameter

estimates.'

Item response theory had a lower RMSE but larger bias with an

anchor test than it did when equivalent groups were used. When

speeded subtests were equated using equipercentile procedures, both

error indices were higher for the anchor-test design than for the

equivalent-groups design. Linear anchor-test equating was clearly

superior to linear equivalent-groups equating only for speeded

subtests. Anchor-test equating using. STST was typically slightly worse

than equivalent-groups STST equating.

These results can perhaps be best explained by recalling the
definition of anchor-test equating used in this study. For the

conventional and STST methods, scores on each of the two tests were
first equated to a separate anchor test. Scores that were equated to

the same anchor-test score were considered to be equated to each

other. In order to equate two sets of scores, then, two. separate and

independent equatings were performed. It is likely that equating

error was compounded; this could account for the fact that anchor-test
equating was usually worse than equivalent-groups equating for
equipercentile and STST methods; results for the linear procedure were

equivocal. Because the examinee groups were defined to be equivalent

in ability, the anchor-test design provided no tangible benefit for

these methods.

For item response theory, however, the anchor-test design was

implemented in a slightly different way. Items on both tests and the
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anchor test were simultaneously calibrated, putting all item parameter

and ability estimates on the same scale. This probably yielded better

item parameter estimates and therefore better equating (at least in

terms of RMSE) than did the equivalent-groups design and its

assumption of exactly equivalent true-ability distributions.

Sample Sizes

Results

Table 23 presents the true-score error indices for equating

parallel subtests using various sample sizes. This table reveals that

there was a drop in the pooled RMSE as sample size increased from 1,000

to 2,400 (from 0.011 to 0.007 for both power and speeded subtests).

For the power subtests, RMSEs computed from the selected sample

generally fell between the values for the unselected samples: for the

speeded subtests, RMSEs were highest for the selected samples. Bias

was small throughout. These patterns were consistent across all

equating methods.

Table 23
True-Score Error Indices for Equating Parallel Subtests Using Various

Sample Sizes

Equating

Sample size
1600

(selected)

2400

(unselected)
1000

(unselected)

method RMSE Bias N* RMSE Bias N* RMSE Bias N*

Power subtests
Linear 0.009 -0.001 36 0.006 0.001 36 0.006 0.000 36

Equipercentile 0.010 -0.001 36 0.007 0.001 36 0.006 0.000 36

I RT 0.011 -0.001 36 0.010 0.000 36 0.008 0.000 36

STST 0.013 -0.001 36 0.011 0.001 36 0.009 0.001 36

Pooled 0.011 -0.001 144 0.009 0.001 144 .0.007 0.001 144

Speeded subtests
Linear 0.006 -0.001 12 0.003 -0.001 12 0.003 -0.001 12

Equipercentile 0.009 -0.001 12 0.013 0.003 12 0.007 0.001 12

STST 0.016 -0.003 12 0.018 -0.002 12 0.009 -0.002 12

Pooled 0.011 -0.002 36 0.013 0.000 36 0.007 -0.001 36

*Number of equating tables included in the pooled error indices.

Table 24 presents similar indices for the nonparallel-test

equatings. When nonparallel power subtests were equated, there was

little decrease in pooled RMSE (from 0.031 to 0.029) as sample size

increased from 1,000 to 2,400, but a large increase (to 0.041) when a

selected sample was used; bias increased from 0.001 to 0.013 for the

selected sample. Most of this increase can be attributed to the
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conventional equating methods. IRT equating was only slightly
affected by this manipulation; STST was robust against the use of
selected examinee samples.

Table 24
True-Score Error
Sample Sizes

Indices:for Equating Nonparallel Subtests Using Various

Sample size
1000 1600 2400

Equating (unselected) (selected) (unselected)

method RMSE Bias N* RMSE Bias RMSE Bias N*

Power subtests
Linear 0.043 -0.001 45 0.058 0.022 45 0.042 -0.001 45

Equipercentile 0.029 0.001 45 0.047 0.022 45 0.028 0.002 45

IRT 0.025 0.004 45 0.026 0.006 45 0.022 0.004 45

STST 0.021 -0.002 45 0.020 0.000 45 0.020 -0.002 45

Pooled 0.031 0.001 180 0.041 0.013 180 0.029 _0.001 180

Speeded subtests
Linear 0.007 -0.002 15 0.007 0.001 15 0.004 -0.001 15

Equipercentile 0.012 0.001 15 0.015 0.004 15 0.009 0.002 15

STST 0.017 -0.003 15 0.018 -0.001 15 0.008 -0.001 15

Pooled 0.013 -0.001 45 0.014 0.001 45 0.008 0.000 45

*Number of equating tables included in the pooled error indices.

For the nonparallel speeded subtests there was a decrease in the
pooled RMSE (from 0.013 to 0.008) as sample size increased, and only a
slight increase (to 0.014) when a selected sample was used. These
patterns were consistent across equating methods. In general, the
discr*pancy in the error indices between the selected. and unselected
samples was much larger for the power subtests than it was for the
speeded subtests.

Discussion

Increasing the sample size trom 1,000 to 2,400 examinees had only
a small effect on equating accuracy; for nonparallel power subtests,
the effect was negligible. The use of selected examinee samples did
not greatly affect equating accuracy for pairs of parallel subtests
and for nonparallel speeded subtests (which, for all practical
purposes, have been behaving like parallel subtests). These patterns
were consistent across all equating methods.

When nonparallel power subtests were conventionally equated using
selected examinee samples, however, both the RMSE and bias increased
substantially. IRT equating was only slightly affected by the use'of
selected samples; STST equating was not affected at all.
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Test Lengths and Difficulties

Results

'Table 25 presents the true-score error indices for parallel-test

equatings when test difficulty and length were varied. In general,

both subtest length and difficulty had a minor effect on the accuracy
of test equating.. For the easy power subtests, pooled RMSE decreased
from 0.011 to 0.008 as test length increased from 15 to 30 items;
similarly, mean bias decreased from 0.004 to 0.001. For the difficult

power. subtests, the decrease in error was even smaller. Bias was

consistently small and positive when easy power subtests were equated
and was small and negative when difficult power tests were equated.
For the speeded subtests, the effect of test length on equating
accuracy was negligible.

Table 25
True-Score Error Indices for Equating Parallel Subtests Using Various
Levels of Test Difficulty and Length

Test length

Subtest difficulty
Easy Difficult

RMSE Bias RMSE Bias

Power subtests
Short

Long

Speeded subtests
Short.

Long

0.011

0.008

0.011
0.010

0.004

0.001

-0.002
0.000

108

108

54

54

0.009

0.008

.11=1

-0.003

-0.001

1U8

108

IMO

IMO

Note. Difficulty was not explicitly varied for the speeded subtests.
Hence, the error indices for all speeded-test forms were pooled for this
table.
*Number of equating tables included in pooled error estimates.

The error indices for both power and speeded subtests were pooled
and are presented, separately by equating method, in Table 26. In

general, the error patterns were consistent for all equating methods.
That is, RMSE and bias decreased slightly when subtest length was
increased. IRT showed the largest decrease in RMaE, from 0.013 to
0.007 for the easy subtests. RMSE indices were not dramatically
affected by subtest difficulty. The effect on biasUas consistent
though small; there was a slight positive bias when easy subtests were
used and a slight negative bias when difficult subtests were used. All

methods were essentially unbiased at the longer test lengths.

-115- 119



Table 26
True-Score Error Indices for Equating Parallel Subtests Using Different
Equating Methods and Various Levels of Test Length and Difficulty

Equating method

Short subtests

Subtest difficulty
Easy Difficul

RMSE Bit's N* RMSE Bias N*

Linear 0.008 0.003 36 0.007 -0.003 36

Equipercentile 0.010 0.003 36 0.008 -0.002 36

IRT 0.013 0.004 27 0.010 -0.003 27

STST 0.012 0.003 36 0.013 -0.003 36

Pooled 0.011 0.003 135 0.010 -0.003 135

Long subtests
Linear 0.005 0.001 36 0.004 -0.001 36

Equipercentile 0.008 0.001 36 0.008 -0.001 36

IRT 0.007 -0.001 27 0.008 -0.001 27

STST 0.011 0.001 36 0.012 -0.001 36

Pooled 0.008 0.000 135 0.009 -0.001 135

Table 27 presents the true-score error indices resulting when
nonparallel subtests were equated using differing levels of test

length and/or difficulty. The pooled error indices are presented for
subtest pairings where the tests that were equated were of (a)

different difficulty but equal length, (b) different length but equal

difficulty, and (c) both different length and difficulty. These

columns correspond to test pairings five through nine, respectively.

The test-length effect that was evident (though slight) for the

parallel subtests was more marked for nonparallel power subtests. That

is, the RMSE (pooled over all equating methods) decreased from 0.043 to

0.036 as test length increased; similarly, pooled bias decreased from

0.007 to 0.005. This same pattern was evident for all the equating
methods and was largest for the equipercentile equating procedure and

smallest for linear. There was essentially no test-length effect for

the speeded subtests.

Varying difficulty level across the subtests being equated (as

was done for the first four columns of Table 27) resulted in rather

large true-score error indices for the conventional methods (RMSEs

between 0.033 and 0.060) and somewhat smaller indices for IRT and STST

(RMSEs between 0.018 and 0.032). In general, errors for this case of

vertical equating were much smaller for IRT and STST than they were
for the conventional methods.



Tt.ble 27
True-Score ErrorIndices for Equating Nonparallel Subtests Using Different Equating

Methods and Various Levels of Test Length and Difficulty

Equating method

Different difficulty Different length

Different
length and
difficultyShort Long Easy Difficult

RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias

Power subtests
O.

Linear 0.060 0.010 0.056 0.007 0.016 0.004 0.016 0.001 0.066 0.011

Equipercentile 0.045 0.016 0.033 0.010 0.017 0.003 0.017 -0.001 0.05? 0.013

I RT 0.032 0.005 0.025 0.005 0.017 0.007 0.013 -0.001 0.030 0.008

STST 0.027 -0.003 0.018 -0.001 0.014 0.003 0.015 0.000 0.025 -0.005

Pooled 0.043 0.007 0.036 0.005 0.016 0.004 0.015 0.000 0.046 0.007

Speeded subtests
Linear 0.005 -0.002 0.003 0.000 0.008 0.000 - 0.007 -0.001

Equipercentile 0.011 0.000 0.011 -0.001 0.014 0.004 - - 0.012 0.004

STST 0.017 -0.004 0.014 -0.001 0.015 -0.001 - 0.014 -0.002

Pooled 0.012 -0.002 0.011 -0.001 0.012 0.001 - 0.011 0.000

N of
equatings
per cell

27

27

27

27

108

9

9

9

27

Note. Difficulty was not explicitly varied for the speeded subtests. Hence, the error indices

for all speeded-subtest forms were pooled for the easy-difficult contrast (columns 5-8). The

uumber of equatings for that group of cells is therefore twice as large as the number indicated

in the last column of the table.
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Equating accuracy was not differentially affected by the level of

difficulty of the individual subtests. That is, pooled error
estimates were essentially identical for the two different difficulty
levels investigated in this study. This was true for the individual
equating methods and for all methods overall; only IRT equating
yielded a smaller RMSE for the difficult subtests (0.013 vs. 0.017)..

Varying both the length and difficulty across subtests resulted
in the highest error indices observed for the conventional equating
methods (RMSEs of 0.066 for linear and 0.052 for equipercentile). It

resulted in indices for IRT and STST methods of about the same
magnitude as were observed when tests that differed only in difficulty
were equated.

Discusiltn-

When parallel subtests were equated, there were only minor
effects on equating accuracy that could be attributed to subtest
length and difficulty. That is, there was a slight decrease in the

RMSE and bias when test length was doubled. There were essentially no

differences between equating easy-to-easy and difficult-to-difficult
subtests. Equated scores derived from easy subtests yielded a small
positive bias at the shorter subtest lengths; equating transformations

derived from short difficult subtests yielded a small negative bias.

This effect was consistent for all the equating methods.

Similar test-length effects were evident when nonparallel

subtests were equated. Subtests that varied in difficulty level were

equated with a much greater degree of error than were subtests that

differed only in length. This was true for all the equating methods

but particularly so for the conventional methods. This finding

suggests caution when tests of different difficulty are to be

(vertically) equated, and that conventional equating methods should
not be used in this situation.

Ability Levels

Results

Equating using different ability levels (one higher-ability

sample and one lower-ability sample), as well as equivalent ability

levels, was performed for Subtest PC using the equivalent-groups and

anchor-test designs. Table 28 presents the results for the different
equating methods and data collection designs when (a) f.xaminee ability

distributions were equivalent and (b) examinees differed in mean

ability.

As was observed earlier, there were essentially no differences

between the equivalent-groups and anchor-test designs when the groups
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Table 28

True-Score Error Indices for Equating Across Ability Levels on Subtest PC

Equating method

Equivalent ability levels Different ability levels
Equlvalent
groups

Anchor
test

Equivalent
_groups

Anchor
test

RMSE Bias N* RMSE Bias N* RMSE Bias N* RMSE Bias N*

Parallel subtests
Linear 0.006 0.001 12 0.007 -0.003 12 0.027 -0.024 8 0.010 -0.002 8
Equipercentile 0.008 0.001 12 0.008 -0.002 12 0.027 -0.024 8 0.011 -0.002 8
IRT 0.012 0.002 12 0.008 -0.002 12 0.026 -0.021 8 0.013 -0.002 8
STST 0.009 0.001 12 0.011 -0.004 12 0.029 -0.024 8 0.012 -0.002 8
Pooled 0.009 0.001 48 0.009 -0.003 48 0.027 -0.023 32 0.011 -0.002 32

Nonparallel subtests
Linear 0.031 0.00 15 0.030 0.003 15 0.034 -0.023 10 0.026 -0.003 10
Equipercentile 0.024 0.007 15 0.023 0.005 15 0.028 -0.021 10 0.015 -0.001 10
IRT 0.014 0.001 15 0.024 0.012 15 0.030 -0.023 10 0.017 0.008 10
STST 0.011 0.000 15 0.014 -0.003 15 0.031 -0.026 10 0.018 -0.006 10
Pooled 0.022 0.003 60 0.024 0.004 60 0.031 -0.023 40 0.019 0.000 40

-Number of equatings included in the pooled error estimates.
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were of equivalent ability. There was a small but consistent negative

bias when an anchor test was used to equate parallel subtests.

However, when the groups differed in ability level, the anchor-test

design produced much better equating in terms of smaller RMSEs and

smaller bias indices. Anchor-test equating using samples of different

ability had only slightly higher RMSE than when it was applied to

samples of equivalent ability. Equivalent-groups equating had higher

RMSE and bias when the ability levels of the groups differed; this

should be expected since a major assumption of the deqgn was

violated. There were essentially no differences in RMSE across the

equating methods when parallel tests were equated using different

ability levels.

Similar findings were evident when'nonparallel tests were

equated. Few differences were observed between the two data

collection designs when the ability levels were equivalent. As before,

the anchor-test design produced much better equating when the groups

differed in ability levels. Anchor-test equating actually yielded

slightly lower pooled RMSEs when ability levels were different than

when they were the same (0.019 vs. 0.024). Equivalent-groups equating

again had higher errors when the ability levels of the groups

differed.

Discussion

When nonequivalent examinee samples were used to equate two

subtests, the anchor-test data collection design consistently yielded

lower indices of equating error. This was true for all equating

methods and for both parallel and nonparallel subtests. In fact,

anchor -test equating was typically as accurate using nonequivalent

examinee samples as it was using equivalent samples.

Equating Test Composites

Power and AFQT composites were equated (a) directly, (b)

indirectly through the subtests, and (c) by forming composites of

equated subtests. Equating transformations derived using these

various methods were evaluated separately; results are presented

below.

Equating Methods

Results

Strong true-score theory. The STST procedures used in this

simulation project were developed from Lord's published descriptions

of his methods (Lord, 1965, 1969). However, severe computer



representation and overflow problems were ennounteied when STST was

applied to composites that contained as many as 90 items; these

problems could not be solved within the time frame allowed for this

project. Lord's original computer programs (Stocking, Wingersky,

Lees, Lennon, & Lord, 1973; Wingersky, Lees, Lennon, & Lord, 1969) were

not used for this project because they were not readily adaptable to

these simulations; it is possible that these implementations of strong

true-score theory contain refinements to the procedures that are able

to overcome some of these numerical difficulties. However, it should

be noted that Stocking et al. (1973) limit the number of test items to

50 in their program.

Because of these numerical difficulties, STST was applied only to

composites that contained 45 items; this included pairings 1, 3, and

5.

Equating composite scores directly. Table 29 presents the

true-score error indices for equating composite scores directly. As

was observed when individual subtests were equated, parallel

composites.were equated with substantially less error than were the

nonparallel composites. For the parallel and nonparallel power

composites, the pooled RMSEs were 0.008 and 0.031, respectively; for

the AFQT composites, these figures were 0.007 and 0.025. The same

nnctern was observed for the pooled bias indices.

Table 29
True-Score Error Indices for Equating Composite Scores Directly

Equating method

Tyr of composite

Power APT Power to AFQT

RMSE Bias N* RMSE Bias N* RMSE Bias N*

Parallel composites
Linear 0.005 0.001 36 0.004 0.001 24 0.035 0.007 36

Equipercentile 0.009 0.001 36 0.008 0.001 24 0.037 0.009 36

STST 0.010 0.001 12 -

Pooled 0.008 0.001 84 0.007 0.001 48 0.036 0.008 72

Nonparallel composites
Linear 0.037 0.007 45 0.029 0.004 30 0.052 0.012 45

Equipercentile 0.026 0.008 45 0.021 0.004 30 0.046 0.014 45

STST 0.020 0.003 6

Pooled 0.031 0.007 96 0.025 0.004 60 0.049 0.013 90

Note. STST was applied only to short (45-item) composites.

*Number of equating tables included in the pooled error estimates.
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For both the parallel- and nonparallel-composite pairings, there

were consistent differences between linear and equipercentile methods.
For the parallel power and AFQT composites, smaller RMSEs were
observed for the linear equating method (0.005 vs. 0.009 for the power
composites and 0.004 vs. 0.008 for the AFQT composites), whereas
equipercentile equating was better for the nonparallel composites
(0.026 vs. 0.037 for the power composites and 0.021 vs. 0.029 for the
AFQT composites). RMSElor STST was equal .to 0.010 for the parallel
composites (larger than either of the conventional methods) and was

. -

equal to 0.020 for the nonparallel composites. This latter value for
STST equating of nonparallel composites was based only on pairing 5,
involving the shorter test lengths. For this single pairing, RMSE was

equal to 0.046 and 0.033 for the linear and equipercentile methods,
respectively.

Bias was negligible (0.001) for the parallel power and AFQT
composites aud somewhat larger (0.003-0.008) for the nonparallel
composites. Again, STST resulted in a smaller error than did the
conventional methods for equating nonparallel composites. For pairing

5 only, bias was equal to 0.011 and 0.014 for the linear and
equipercentile methods, respectively; these values compare with 0.003

for STST.

The pooled error indices for the power composite were larger than
those for the AFQT composite for the nonparallel composite forms; no
such effect was observed for the parallel composite forms.

Equating unlike composites (power to AFQT) resulted in
considerable RMSE (up to 0.052 for the nonparallel, linear case) and a

positive bias. Again, linear methods worked slightly better than
equipercentile methods for parallel forms (RMSE of 0.035 vs. 0.037)

and were somewhat worse for nonparallel forms (RMSE of 0.052 vs.
0.046). The errors observed when unlolke composites were equated were
much larger than those observed for 4*ther of the other two composite

types.

Forming composites of equated subtests. Table 30'presents the

true-score error indices computed from composites of equated subtests.

There were few differences observed across the four equating methods
when parallel composites were equated. That is, the levels of RMSE
for all the equating methods were essentially the same (0.004-0.006),
and all methods were unbiased.

When nonparallel power composites were equated, however, there

was a moderate degree of bias for the conventional (0.006-0.008) and

IRT methods (0.004); STST was essentially unbiased. Conventional
equating methods yielded larger RMSEs (0.031-0.041) than did IRT
(0.019) or STST (0.014) methods. The same pattern of errors was
observed for the nonparallel AFQT composites. Again, AFQT composites

were equated with less error than were the power composites.
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Table 30

True-Score Error Indices for Forming Composites of Equated Subtests

Type of composite
Power ANT

Equating method RMSE Bias N* RMSE Bias N*

Parallel composites
Linear 0.004 0.000 36 0.004 0.000 36
Equipercentile 0.005 0.000 36 0.004 0.000 36

IRT 0.005 0.000 36

STST 0.006 0.001 36 0.006 0.000 36
Pooled 0.005 0.000 144 0.005 0.000 108

Nonparallel composites
Linear 0.041 0.006 45 0.032 0.005 45
Equipercentile 0.031 0.008 45 0.025 0.007 45
IRT 0.019 0.004 45 41111111.

STST 0.014 -0.001 45 0.012 -0.001 45
Pooled 0.028 0.005 180 0.024 0.004 135

*Number of equating tables included in the pooled error estimates.

For the parallel case, forming composites from previously equated
subtests resulted in slightly smaller amounts of equating error than
did equating composite scores directly. For the nonparallel case,
however, equating composite scores directly using conventional methods
resulted in slightly lower RMSEs than did forming composites from
conventionally equated subtests (RMSEs of 0.026-0.037 vs .0.031-0.041).
When STST was used, directly equated subtests had larger errors than
did the composites formed from previously equated subtests.

Equating composite scores indirectly through the subtests.
Indirect methods of equating composite scores were developed for the
case in which only partial data are available. Table 31 shows that
this method using-partial-data-perfotmed as well as the-z-ther-dethod6--
of equating composites (see Tables 29 and 30). However, it should be
noted that only the larger sample sizes were used when composites were
indirectly equated; Tables 29 and 30 include the results from all
sample sizes. There were no effects on equating accuracy that could be
attributed to data collection design. The use of selected examinee
samples resulted in.larger RMSE and bias for the nonparallel
composites; there was no such effect evident for the parallel
composites. Again, AFQT composites were equated with less error than
were the power composites.



Table 31
True-Score Error Indices for Equating Composites Indirectly Through the

Subtests

Data collection desi n

Type of composite
Power AFQT

RMSE Bias RMSE Bias

Parallel composites
Single group (N..2,400) 0.004 0.000 4 0.004 0.000 4

Equivalent groups (N=1,600) 0.003 0.000 4 0.004 -0.002 4

Equivalent groups (N=2,400) 0.003 0.000 4 0.003 -0.001 4

Nonparallel composites
Single group (N- 2,400) 0.030 -0.002 5 0.024 0.000 5

Equivalent groups (N=1,600) 0.045 0.017 5 0.038 0.015 5

Equivalent groups (N=2,400) 0.030 -0.001 5 0.023 0.000 5

*Number of equating tables included in the pooled error estimates.

Discussion

In general, only small differences were observed among the

equating methods used for test composites. When composite scores were

directly equated, linear methods worked better for the parallel

composites, and STST and equipercentile methods worked better for the

nonparallel composites. When composites were formed from equated

subtexts, differences among equating methods were observed only for

the nonparallel composites: Conventional methods resulted in higher

RMSEs and greater bias than did IRT and STST methods; STST was

unbiased. Comparison of Tables 29 and 30 reveals that there was

slightly less error involved when composites were formed from equated

subtexts than when they were directly equated. The use of an indirect

equating procedure, with only a subset of the examinee response data,

did not. adversely_affect equating accuracy.

Data Collection Designs

Results

Table 32 shows that there were only minor differences among the

data collection designs when parallel composites were equated. The

pooled RMSEs for each of the data collection designs were essentially

identical within each type of composite. The single exception to this

ocurred for the direct power composites, where anchor-test equating

was slightly worse than was equating using any of the other designs.

This difference can be attributed to the fact that the RMSE was higher

for equipercentile anchor-test equating than it was for any other
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method using the anchor-test design. In all other cases, equating

methods performed consistently across data collection designs.

Table 32
True-Score Error Indices for Equating Parallel Composites Using
Different Data Collection Designs

Equating method

Data collection designs

Single
group

Equivalent Anchor

groups test

RMSE Bias N* RMSE Bias N* RMSE Bias N*

Direct power
Linear 0.004 0.001 12 0.005 0.001 12 0.006 0.000 12

Equipercentile 0.007 0.002 12 0.008 0.001 12 0.011 0.J01 12

STST 0.009 0.002 6 0.011 0.001 OMB ONO

Pooled 0.007 0.001 30 0.008 0.001 30 0.009 0.001 24

Direct AFQT
Linear 0.004 0.001 12 0.004 0.000 12

Equipercentile 0.008 0.001 12 0.008 0.001 12

Pooled 0.006 0.001 24 0.007 0.000 24 ONO

Direct power to AFQT
Linear 0.035 n.008 12 0.035 0.007 12 0.035 0.007 12

Equipercentile 0.036 0.009 12 0.036 0.009 12 0.037 0.009 12

Pooled 0.036 0.008 24 0.036 0.008 24 0.036 0.008 24

Equated power subtests
Linear 0.004 0.001 12 0.004 0.001 12 0.005 -0.001 12

Equipercentile 0.004 0.001 12 0.005 0.00i 12 0.005 -0.001 12

IRT 0.005 0.001 12 0.006 0.000 12 0.006 -0.002 12

STST' 0.006 0.001 12 0.006 0.002 12 0.007 -0.001 12

Pooled 0.005 0.001 48 0.005 0.001 48 0.006 -0.001 48

Equated AFQT subtests
Linear 0.003 0.001 12 0.004 0.000 12 0.004 -).001 12

Equipercentile 0.004 0.000 12 0.004 0.000 12 0.005 0.001 12

STST 0.005 0.001 12 0.006 0.001 12 0.007 -0.002 12

Pooled 0.004 0.001 36 0.005 0.000 36 0.005 -0.001 36

*Number of equating tables included in the pooled error estimates.

As was observed earlier, there was no difference in equating
accuracy between the direct power and AFQT composites for the parallel
forms. There was a much greater amount of error involved when a power
composite was equated directly to a composite of AFQT subtests; this
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was the only instance in which a consistent positive bias was

observed. Forming composites from equated subtests yielded slightly

less error than did equating composite scores directly; this was

equally true for all the data collection-designs.

Table 33 presents the error,indices.computed when nonparallel

composites were'equated using different data collection designs. None

of the data collection designs was tonsistently best for equating

nonparallel composites. AFQT composites were equated with less error

Table 33
True-ScOre Error Indices for Equating Nonparallel Composites Using

Different Data Collection Designs

Equating method

Data collectUTliiTins
--Mile Equivalent Anchor

group groups test

RMSE Bias N* RMSE Bias N* RMSE Bias N*

Direct power
Linear
Equipercentile
STST
Pooled

Direct AFQT
Linear
Equipercentile
Pooled

0.036

0.025
0.021
0.030

0.028
0.020
0.025

Direct power to AFQT
Linear 0.052

Equipercentile 0.046

Pooled 0.049

Equated power subtests
Linear 0.040

Equipercentile 0.030

IRT 0.009

STST 0.014

Pooled 0.026

Equated AFQT subtests
Linear 0.032

Equipercentile 0.024

STST 0.011

Pooled 0.024

0.007 15 0.038 0.006 15 0.037 0.006 15

0.008 15 0.026 0.008 15 0.027 0.008 15

0.002 3 0.020 0.003 3 - %NO MID

0.007 33 0.032 0.007 33 0.032 0.007 30

0.004 15 0.029 0.003 15 NOY

0.Q05 15 0.023 0.004 15 0.6

0.005 30 0.026 0.004 30 WAD 1.11t

0.012 15 0.053 0.011 15 0.052 0.011 15

0.014 15 0.047 0.014 15 0.047 0.014 15

0.013 30 0.050 0.012 30 0.050 0.013 30

0.007 15 0.041 0.007 15 0.041 0.005 15

0.010 15 0.032 0.009 15 0.031 0.00/ 15

0.003 15 0.023 -0.003 15 0.022 0.003 15

0.000 15 0.015 0.000 15 0.014 -0.003 15

0.005 60 0.029 0.003 60 0.029 0.006 60

0.006 15 0.033 0.005 15 0.032 0.004 15

0.008 15 0.025 0.006 15 0.024 0.007 15

0.000 15 0.012 -0.001 15 0.012 -0.003 15

0.004 45 0.025 0.003 45 0.024 0.003 45

*Number of equating tables included in the pooled error indices.
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than were power composites. Again, the direct equating of a power to

an AFQT composite resulted in a consistent positive bias. Moderate
levels of bias were observed throughout for the conventional and IRT
equating methods; STST equating was essentially unbiased. All

equating methods performed consistently across data collection designs
with the single exception that forming composites of IRT-equated
subtests using the single-group design yielded a lower RMSE (0.009)
than did any other design in conjuntion with IRT (0.022-0.023).

Discussion

None of the data collection designs proved to be consistently
best or, for that matter, consistently worst for equating composites
of any type. With few exceptions, the equating methods performed
consistently across the different data collection designs; there wes
no distinct method-by-design interaction. STST was essentially
unbiased for those conditions where it was applied.

Sample Sizes

Results

Table 34 presents the true-score error indices computed when
parallel composites were equated using various sample sizes. When

power and AFQT composites were directly equated, there was a minor
effect on equating accuracy that could be attributed to increasing the
examinee sample size from 1,000 to 2,400. For the power composites,
pooled RMSE decreased from 0.009 to 0.005; for the AFQT composites,
these figures were 0.006 and 0.003, respectively. When a power
composite was directly equated to an AFQT composite, there was no
advantage to using the larger sample size; pooled RMSE and bias were
equal to 0.033 and 0.004, respectively, for both examinee groups.

Direct linear equating of composites resulted in slightly smaller

error indices than did equipercentile and STST composite equating,
particularly when the smaller sample size was used. For the power
composites, the RMSEs were 0.006,0.010, and 0.011, 'respectively, for
the smaller sample size. For the AFQT composite, these figures were
0.005 and 0.007 for the linear and equipercentile methods,
respectively.

The use of a selected examinee sample did not affect the accuracy

of equating power composites directly. When AFQT composites were
directly equated, however, error increased for equipercentile
equating: RMSE for the selected sample was 0.012, compared to 0.007
and 0.004 for the smaller and larger samples, respectively; bias also
increased slightly. There was no corresponding effect when the AFQT
composites were linearly equated.



Ir

Table 34
True-Score Error Indices for Equating Parallel Composites Using Various Sample

Sizes

Equating
method

Sample size

1600 . 2400

(unselected)
1000

(unselected)
RMSE Bias N* RMSE Bias N* RMSE Bias N*

Direct power
Linear 0.006 0.000 12 0.005 0.002 12 0.004 0.000 12

Equipercentile 0.010 0.001 12 0.010 0.003 12 0.005 0.001 12

STST 0.013 0.001 4 0.009 0.002 4 0.007 0.001 4

Pooled 0.009 0.001 28 0.008 0.002 28 0.005 0.001 28

Direct AFQT
Linear 0.005 -0.001 8 0.004 0.002 8 0.003 0.001 8

Equipercentile 0.007 -0.001 8 0.012 0.003 8 '0.004 0.001 8

Pooled 0.006 -0.001 16 0.009 0.002 16 0.003 0.001 16

Direct power to AFQT 5

Linear 0.033 0.003 12 0.038 0.016 12 . 0.033 0.003 12

Equipercentile 0.033 0.004 12 0.043 0.019 12 0.032 0.004 12

Pooled 0.033 0.004 24 0.041 0.017 24 0.033 0.004 24

Equated power subtests
Linear 0.006 -0.001 12 0.003 0.001 12 0.003 0.000 12

Equipercentile 0.006 -0.001 12 0.004 0.001 12 0.004 0.000 12

TRT 0.007 -0.001 12 0.005 0.000 12 0.004 0.000 12

STST 0.008 -0.001 12 0.006 0.001 12 0.005' 0.001 12

Pooled 0.007 -0.001 48 0.005 0.001: 12 0.004 0.000 48

Equated AFQT subtests
Linear 0.005 -0.001 12 0.002 0.000 12 0.003 0.000 12

Equipercentile 0.005 -0.001 12 0.004 0.001 li. 0.003 0.001 12

STST 0.007 -0.001 12 0.006 0.001 12 0.004 0.000 12

Pooled 0.006 -0.001 36 0.005 0.001 36 0.003 0.000 36

*Number of equating tables included in the pooled error estimates.

Using a selected examinee sample to equate a power composite to

an AFQT composite caused a substantial increase in equating error.

This was the only situation in which bias was large and positive; in

all other cases, bias was essentially zero. Equating error increased

for both equating methods, but especially so for equipercentile, where

RMSE increased from 0.032-0.033 to 0.043.

When parallel composites were formed from equated subtests, there

was a slight sample-size effect; this was true for all of the .equating

methods. Pooled RMSE decreased from 0.007 to 0.004 for the power

composites and from 0.006 to 0.003 for the AFQT composites. The use

of a selected examinee sample did not affect equating accuracy.
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Table 35 presents the error indices computed when nonparallel
composites were equated using various sample sizes. Increasing sample

size from 1,000 to 2,400 had little effect on equating accuracy; this was

true for all equating methods and for all types of composite equating.

Table 35
True - Score Error Indices for Equating Nonparallel Composites Using Various Sample

Sizes.

11140

Equating
method

Sample size

1000

(unselected)

1600
(selected)

2400

(unselected)

RMSE Bias N* RMSE Bias N* RMSE Bias N*

Direct power
Linear 0.031 0.000 15 0.047 0.020 15 0.030 0.000 15

Equipercentile 0.019 0.003 15 0.037 0.018 15 0.018 0.002 15

STST 0.021 0.003 2 0.020 0.004 2 0.020 0.002 2

Pooled 0.025 0.002 32 0.041 0.018 32 0.024 0.001 32

Direct AFQT
Linear 0.024 -0.002 10 0.037 0.015 10 0.023 -0.001 10

Equipercentile 0.016 -0.001 10 0.030 0.013 10 0.015 0.001 10

Pooled 0.021 -0.002 20 0.034 0.014 20 0.020 0.000 20

Direct power to AFQT
Linear 0.045 0.002 15 0.064 0.031 15 0.045 0.002 15

Equipercentile 0.038 0.006 15 0.060 0.030 15 0.037 0.005 15

Pooled 0.042 0.004 30 0.062 0.030 30 0.041 0.004 30

Equated power subtests
Linear 0.035 -0.001 15 0.051 0.022 15 0.034 -0.001 15

Equipercentile 0.024 0.001 15 0.042 0.022 15 0.023 0.002 15

IRT 0.020 0.004 15 0.019 0.006 15 0.018 0.003 15

STST 0.014 -0.002 15 0.014 0.000 15 0.015 -0.002 15

Pooled 0.024 0.001 60 0.035 0.013 60 0.023 0.001 60

Equated AFQT subtests
Linear -0.027 -0.001 15 0.041 -0.017 15 0.027 -0.001 15

Equipercentile 0.019 0.001 15 0.034 0.018 15 0.018 0.002 15

STST 0.011 -0.002 15 0.012 -0.001 15 0.012 -0.001 15

Pooled 0.020 -0.001 45 0.031 0.012 45 0.020 0.000 45

*Number of equating tables included in the pooled error estimates

It was seen earlier that linear methods were superior to

equipercentile and STST methods for equnting parallel composites

directly. When nonparallel composites were equated, however, this was

not true. That is, equipercentile equating outperformed linear

equating (fn terms of RMSE) for all instances of direct-composite
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equating; STST was only slightly worse than equipercentile equating

for the direct power composites. For example, when power composites

were equated using the smaller sample size, the pooled RMSE for the

linear method was 0.031; the corresponding figures for the
equipercentile and STST methods were 0.019 and 0.021, respectively.

When AFQT composites were equated, these figures were 0.024 (linear)

and 0.016 (equipercentile). Equating AT:QT to power composites yielded

linear and equipercentile RMSEs of 0.045 and 0.038, respectively.

Bias was small throughout.

Using a selected examinee sample to directly equate composites

resulted in large increases in both RMSE and bias for the conventional

methods; STST was robust against this manipulation. -Pooled RMSEs for

the power and AFQT composites were 0.041 and 0.034, respectively; mean

bias indices were 0.018 and 0.014. The pooled RMSE and bias for

equating a power composite to an AFQT composite were 0.062 and 0.030,

respectively. These pooled values reflect the effect of using a

selected examinee sample when conventional equating methods were used;

for STST, RMSE and bias were essentially unchanged.

When nonparallel composites were formed from equated subtests, no
sample-size effect was evident for any of the equating methods or

either of the two types of composites. When a selected sample was

used for equating, however, bias increased from approximately zero t,

0.022 for the conventional methods; STST was unbiased even when

selected samples were used.

Discussion

Increasing the examinee sample size from 1,000 to 2,400 examinees

had only a minor effect on the accuracy of composite equating. The

use of a selected examinee sample caused an increase in equating error

when nonparallel composites were directly equated, when unlike

composites were directly equated, and when parallel AFQT composites

were equated using equipercentile procedures. Strong true-score

theory was unaffected by the use of selected examinee samples.

Test Lengths and Difficulties

Results ,

The error indices computed when parallel composites were equated

using various levels of composite length and difficulty are presented

in Table 36. When short composites were directly equated, it made

little difference in equating accuracy (measured by RMSE) whether the

items were easy or difficult. Biases were slightly positive for

equating easy composites, slightly negative for difficult ones. The

single exception to this bias pattern occurred when power composites

were equated to AFQT composites. In this case, bias decreased from
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0.012 to 0.007; there was little change in RMSE. For the long

composites, the only nontrivial effect due to composite difficulty

occurred when AFQT composites were directly equated. In that case,

pooled RMSE decreased from 0.008 to 0.004. In general, the longer

composites were equated with the same amount of error as were the

shorter composites.

Table 36
True-Score Error Indices for Equating Parallel Composites Using Various

Levels of Composite Length and Difficulty

Composite length

Composite difficulty
Easy Difficult

RMSE Bias N* RMSE Las

Short composites
Direct power 0.009 0.005 24 0.008 -0.002 24

Direct AFQT 0.008 0.004 12 0.006 -0.003 12

Direct' power to AFQT 0.037 0.012 18 0.036 0.007 18

Equated power subtests 0.006 0.004 36 0.006 -0.003 36

Equated AFQT subtests 0.005 0.003 27 0.005 -0.003 27

Pooled 0.016 0.005 117 0.015 -0.001 117

Long composites
Direct power 0.007 0.003 18 0.005 -0.001 18

Direct AFQT 0.008 0.002 12 0.004 -0.001 12

Direct power to AFQT 0.036 0.008 18 0.035 0.006 18

Equated power subtests 0.004 0.001 36 0.005 -0.001 36

Equated AFQT subtests 0.004 0.001 27 0.005 -0.001 27

Pooled 0.015 0.002 111 0.015 0.000 111

aer of equating tables included in the pooled error estimates.

Table 37 presents the error indices computed when nonparallel

composites were equated. As was observed when individual subtests

were equated, the varying of item difficulty across composites being

equated resulted in much larger equating errors than did the varying

of composite length only; this was true for all types of composites

investigated in this study. For example, when difficulty was varied

across power composites that were to be directly equated, the

resulting pooled RMSEs were equal to 0.036 and 0.037 for the short and

long composites, respectively. Varying composite length across these

same composites yielded pooled RMSEs of 0.013 and 0.011 for the easy

and difficult composites, respectively. This same pattern of errors

was evident for all types of composites.



Table 37
True-Score Error Indices for Equating Nonparallel Composites Using Various Levels of Composite

Length and Difficulty

Equating Method

Different difficulty Different length

Different
length and
difficultyShort' Long Easy Difficult

RMSE Bias RMSE Bias RMSE Bias RNSE Bias RMSE Bias

Direct power
Linear 0.046 0.011 \0.045 0.008 0.009 0.003 0.009 0.001 0.050 0.010

Equipercentile 0.033 0.014 'p.026 0.008 0.016 0.005 0.012 0.001 0.035 0.012

STST 0.020 0.003 -

Pooled 0.036 0.010 0.037 0.008 0.013 0.004 0.011 0.001 0.043 0.011

Direct AFOT
Linear 0.036 0.009 0.035 0.006 0.006 0.000 0.007 -0:002 0.039 0.005

Equipercentile 0.023 0.008 0.024 0.006 0.017 0.004 0.009 -0.001 0.028 0.006

Pooled 0.031 0.008 0.030 0.006 0.013 0.002 0.008 -0.001 0.034 0.005

Direct power to AFQT
Linear 0.061 0.017 0.059 0.012 0.035 0.008 0.037 0.007 0.062 0.014

Fquipercentile 0.052 0.020 0.047 0.014 0.040 0.011 0.038 0.008 0.053 0.017

Pooled 0.056 0.019 0.053 0.013 0.038 0.009 0.038 0.007 0.058 0.015,

Equated power subtests
Linear 0.048 0.010 0.047 0.007 0.014 0.004 0.015 0.001 0.058 0.011

Equipercentile 0.037 0.016 0.028 0.010 0.016 0.003 0.016 -0.001 0.046 0.013

IRT 0.025 0.005 0.018 0.005 0.012 0.006 0.010 0.000 0.025 0.007

STST 0.019 -0.003 0.012 -0.001 0.008 0.003 0.010 0.000 0.019 -0.005

Pooled 0.034 0.007 0.029 0.005 0.013 0.004 0.013 0.000 0.04, 0.007

Equated AFOT subtests
Linear 0.038 0.007 0.037 0.005 0.012 0.003 0.012 0.001 0.046 0.008

Equipercentile 0.029 0.012 0.022 0.008 0.013 0.004 0.013 0.000 0.037 0.011

STST 0.016 -0.003 0.010 -0.001 0.007 0.002 0.008 0.000 0.015 -0.004

Pooled 0.029 0.005 0.026 0.004 0.011 0.003 0.011 0.000 0.035 0.005

Nof
equating0
per cell

9

9

6

18*

6

6

12

9

9

18

9

9

9.
9

36

9

9

9

27

*Except: N = 24 for first cell.



In general, equipercentile methods worked best when composite

scores were directly vertically equated. For directly equating power

composites, however, STST outperformed even the equipercentile
methods. Equipercentile equating bias, however, was almost always
greater than or equal to linear bias for the direct composites; STST
was essentially unbiased. Conversely, linear methods performed best
when composites of constant difficulty (but varying lengths) were
directly equated.

When composites were formed from equated subtests, STST
consistently outperformed all other equating methods; the conventional
methods consistently yielded the largest errors.

Equating errors were largest when both length and difficulty were
varied across the composites being equated. In this case,
equipercentile methods worked best for the direct composites; STST
worked best when composites were formed from equated subtests.

Discussion

Whenever parallel composites were equated, difficulty had only a

minor effect on equating accuracy. In general, longer composites were
equated with less error than were the shorter composites. This would

be expected as longer tests are usually better estimates of ability
than are shorter tests.

For nonparallel composites, varying difficulty across composites
being equated resulted in much larger errors than did varying
composite length. STST was shown to be best for the limited
conditions under which it was applied. Equipercentile procedures were

better than linear procedures for vertical equating.

Real-Data Application

Results

Table 38 presents observed-score error indices computed when the

equating transformations were applied to the item response data from
an independent sample of 1,000 examinees. Table 38 indicates that
nearly all the combinations of equating methods and data collection
designs yielded equating transformations that contained identical
amounts of error; there were only a few exceptions.

The data set contained responses to two randomly parallel Word

Knowledge subtests. Given the results from the simulated parallel
Lubtests that were reported earlier, one would expect the linear
equating method to perform at least as well as any of the more complex

-133-



Table 38

Observed-Score Error Indices for Equating Methods and Data Collection
Designs: Real-Data Verification

---ETNilentgroups Anchor test
Equating method RMSE Bias RMSE Bias RMSE Bias

Linear 0.067 0.001 0.066 -0.002 0.067 0.002
Equipercentile 0.068 -0.002 0.065 -0.005 0.069 -0.802
IRT 0.065 -0.003 0.067 -0.011 0.065 0.601
STST 0.068 0.004 0.069 -0.005 0.080 -0.093

equating methods. This was, in fact, what was observed. In general,
the conventional equating methods performed about as well as did any
of the other, more complex methods for this case of parallel-test
equating. The linear equating method typically resulted in less bias
than did any of the other methods; linear bias never exceeded 0.002 in
absolute value, whereas the other methods resulted in bias that ranged
from 0.001 to 0.011 in 'absolute value. Linear RMSEs (0.066-0.067)
were about the same level as those from the equipercentile
(0.065-0.069) and IRT (0.065-0.067) methods, and were slightly smaller
than those from STST (0.068 - 0.080).

IRT equating using the equivalent-groups design yielded an
unexpectedly large value of bias (when compared to the other methods
and designs); the bias index for this design was -0.011. The IRT RMSE
was higher for the equivalent-groups design than for the other two
designs.

Strong true-score theory yielded moderate (comparatively
speaking) levels of bias for all three designs (0.003 to 0.005 in
absolute value). The RMSE for the anchor-test design (0.080) was
larger for STST than it was for any other value in the table.

The standard error of the difference between the equated scores
and the observed scores was computed for this data set. This standard
error is an estimate of the measurement error in these difference
measures that would be expected in the absence of any explicit
equating error. It was computed using an estimate of the test's
reliability (coefficient alpha) that .s a lower-bound estimate of the
actual reliability. As such, the estimate of this standard error is
an upper-bound estimate of the actual standard error. The standard,
error for this data set was equal to 0.068.

The observed-score RMSEs reported in Table 38 were typically no
larger than the estimated standard error of the difference between the
equated and observed scores. This suggests that the error involved in
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estimating the standard error was at least as large as the equating

error itself. Partialing measurement error out of the observed-score

RMSEs is thus, not a feasible means of estimating equating error
involved in real data.

Discussion

It is evident from these analyses that equating error and
corresponding differences among the equating methods are obscured by
the comparatively large standard errors present in real data.
Equating error, especially for parallel tests, would be expected to be

fairly small in magnitude: A difference as large as half a score
point would translate to a value less than 0.02 on the
proportion-correct metric for a 30-item test; most of the RMSEs
computed when parallel subtests were simulated and equated were less
than half that size.

On the other hand, the standard error of the difference between
equated and observed scores was computed to be 0.068. Even when one

considers that this is an upper-bound estimate of the actual standard
error, it is obvious that equating error is easily overwhelmed by the

amount of measurement error in the data. The net effect of this
phenomenon was to make the criteria of equating accuracy (functions of
the difference between 'equated and observed scores) insensitive to all
but very large amounts of equating error. This, in turn, suggests

that the criteria are insensitive to relatively small differences
across equating methods. This problem cannot be readily solved by
partialing measurement error out of the observed-score RMSEs, given
that the error involved in estimating the standard error is probably
as large as the equating error itself.

Only when a test is equated to itself (directly or through a

chain of other tests) can meaningful interpretations concerning
equating accuracy be made from real data. In this case, there is a

criterion for evaluating equating accuracy that involves only the
equating transformation and is thus independent of examinee responses:
Each test score should be eluated to itself, and any deviation of the
observed transformation from this "identity" transformation
constitutes an equating error. In all other instances, researchers
should exercise caution when interpreting results from equating
studies that rely on observed-score criteria.
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CONCLUSIONS AND RECOMMENDATIONS

Individual Subtests

Smoothing Methods

For the situations simulated here, none of the smoothing

methods yielded an equating transformation that was more accurate
than that yielded by "no smoothing." It is not clear whether other

testing situations or other implementations of smoothing procedures

would have yielded different resultsr

Equating Methods

Theoretically, the conventional (linear and equipercentile) and

STST equating methods are appropriate whenever parallel subtests are

to be equated; IRT methods are a:so appropriate if the subtests to

be equated are unidimensional and not speeded. Previous research has

indicated that the conventional and IRT procedures yield essentially

the same results in these condition.::. No studies have investigated

the utility of STST equating procedures.

Only STST procedures are theoretically appropriate for equating

nonparallel subtests in every situation; IRT procedures are appropriate

for unidimensional power subtests. Studies comparing conventional and

IRT methods for equating subtests of equal difficulty have yielded

equivocal results. Conventional equating methods have not been found

adequate for vertical equating situations (i.e., for equating subtests

of different difficulties). Studies indicate that a pseudo-guessing
parameter needs to be incorporated in any IRT model that is to be used

for vertical equating.

The present study found that complex equating methods (such as IRT

or STST) need not be used when parallel subtests are equated. The

simpler conventional equating methods performed just as well as, and

usually better than, the more complex methods for equating parallel

tests. Either linear or equipercentile methods are recommended for

parallel power tests. However, when nonparallel power subtests are

equated, the conventional methods fail to perform adequately; IRT and

STST methods are clearly better for this case. Linear equating

performed best for parallel and nonparallel speeded tests. In general,

nonparallel subtests were equated with greater error than were parallel

subtests.

Data Collection Designs

All data collection designs performed adequately for equating

parallel power tests. For equating nonparallel tests by IRT methods or

-13b-
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for equating speeded tests, however, the single-group design is clearly

preferable and should be used where practically feasible. The

equivalent-groups design should be used to equate tests only when the

two examinee samples are, in fact, equivalent in ability. Whenever

power tests are equated using samples that differ in ability level, the
anchor-test design is essential; combining it with the equipercentile

equating method is advisable.

Sample Sizes

In most of the published studies of test equating procedures, data
were obtained from national testing programs with very large numbers of
examinees (typically several thousand); hence, sample size was not an

issue in these studies. Yen's (1982) sample-size manipulation of 1,000
vs. 2,000 had no effect on the accuracy of equipercentile equating.
Douglass (1980, 1981) varied sample size from 200 to 800 examinees and

found that this manipulation influenced the consisten2y of two-
parameter-IRT equatings but was not a salient factor for the one-
parameter model. Similarly, Kolen and Whitney (1982).suggested that

a sample of 200 examinees was not large enough for adequate equating

using the three-parameter IRT model.

The present study confirmed Yen's finding: that is, there was
little advantage to be gained by increasing the sample size from 1,000

to 2,400 examinees; how small the sample size can get before equating

accuracy is markedly affected cannot be determined from these data.

Parallel subtesti can be adequately equated with a selected examinee
sample. When nonparallel subtests tire equated, a selected examinee

sample should not be used in conjunction with the conventional equating

methods. IRT equating was only slightly affected by using a selected

examinee sample, and strong true-scare theory appears robust against

this manipulation.

Test Lengths and Difficulties

No studies to date have provided information concerning the

minimum number of items a test must contain before equating procedures

can be appropriately implemented. The only information concerning
item difficulties arises from the literature on vertical equating,

where tests of unequal difficulty are equated for later administration

to examinees of unequal ability.

Theoretically, only the STST method is appropriate for equating

all nonparallel tests (i.e., tests of unequal difficulty and/or

reliability); IRT methods are also appropriate for unidimensional

power subtests. Previous studies suggest that vertical equating can be

successful if IRT methods (where the IRT model incorporates some
provision for guessing) are used and the groups do not vary widely

in ability.
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In this study, equating accuracy (defined by RMSE) was not

markedly affected when subtest length was doubled (at least for the
test lengths of 15 and 25 investigated here), nor did it matter whether
easy or difficult subtests were equated. However, scores on easy
subtests may be overestimated while scores on difficult subtests may be
underestimated, at least if short parallel tests are equated. Accuracy
was not affected when subtests of different lengths were equated.

When the difficulty level varies across the subtests being
equated, conventional equating methods should not be used. IRT or STST
methods should be used for these vertical equating situations.

Composites

Equated composite scores can be defined and constructed in any of
several different ways. For example, composite scores can first be
computed as the weighted sum of individual (unequated) subtest scores.
These composite scores can then be directly equated using conventional
or STST methods; because item response theory assumes that each test
score is unidimensional., IRT equating methods are not applicable in
this case. This direct-equating method is usually considered to be
the preferred method of equating composite scores because it arises
so naturally from the goal of composite-score equating: to define
equivalent scores on two composites of subtests.

Alternatively, the individual subtests can first be separately
equated by the conventional, STST, or (where appropriate) IRT methods.
Equated composite scores can then be formed for future examinees by
applying the composite weights to their equated subtest scores. It is
necessary to use this procedure when each group of examinees is
administered only a single subtest and composite scores cannot be
directly equated. In this case, a separate transformation table must
be constructed and applied for each subtest in the composite.

Composite scores can also be equated indirectly using conventional
1'.9ar procedures that take into account the original composite

hts, subtest means and standard deviations, and the inter-
lations among the subtest scores. This procedure is actually

reformulation of the (direct) linear equating model in which two
composite scores are considered to be equated if their corresponding
standard scores are equal. The advantage of using this indirect
procedure is that composite scores can be equated even if all examinees
do not take all the subtests in a battery. With partial data, then,
this procedure becomes an approximation to the procedure described
above for equating composite scores directly.



No previous study systematically investigated the merits of the

various procedures for equating composites of test scores. This study

found few practical differences among the procedures investigated for

equating test composites.

In ge4eral, the equating of parallel composites is most successful

when individual subtests are first equated and composites are formed

from the equated subtests; there are essentially no differences among

the equating methods for this case. If parallel subtests are to be

directly equated, then linear methods should be used because they yield

smaller errors.

Nonparallel composites are best equated by forming composites
from subtests that have been previously equated using IRT or STST
methods. In general, STST is the preferred method for equating
nonparallel composites in all those conditions where it is practicable
(e.g., shorter test lengths, large sample sizes, etc.). If

conventional equating methods need to be used, the nonparallel

composites should be directly equated and equipercentile procedures

, should be employed. If the goal of the equating procedure is to yield

unbiased equated scores at the expense of all other types of error,

then the STST method should be used in all cases.

Parallel composites were equated with less error than were

nonparallel composites (as was the case for individual subtests).

Composites composed of different subtests (e.g., power and AFQT

composites or, worse, composites with no subtests in common) should not

be equated; this type of composite equating is inappropriate both

theoretically and practically.

"Indirect" composite-equating procedures, where composite scores

are (linearly) equated by using setest statistics and
intercorrelations, can be a good substitute for the direct linear

equating of composite scores when examinee response data are not

available for all subtests in a battery.

No clear recommendations can be made regarding the choice of a

data collection design or sample size for equating test composites,

since no consistent differences among designs and sizes were noted.

Selected examinee samples should not be used to equate anything other

than direct parallel power and AFQT composites. Vertical equating of

composites is not recommended.
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APPENDIX A. STRONG TRUE-SCORE THEORY

Grouping Scores into Intervals

The purpose of grouping is to make the sample frequency distribution
smoother. This procedure attempted to group scores such that no cell
frequency was small and each had about 1/(number of groups) of the cases.

The following loop was repeated until one of the following reasonable
arbitrary limits was reached: (a) the number of groups reached the
maximum of 25; (b) the size of the smallest group was less than 25; or (c) the
variable "portion" (originally set to 1.0 and reduced by 0.1 on each loop) was
less than .199.

(1) Alternate
(a) forming the next lowest group (group 1 being the first) by

combining the next available low scores (having started with
0, 1, 2,...) until their combined sample size exceeds (portion
*N/25), and

(b) forming the next highest group (group 25 being the first) by
combining the next available high scores (having started with
n, (n-1), (n-2), ...) until their combined sample size exceeds
(portion *N/25)

until there are no ungrouped scores (in which case any blank groups
in the middle are eliminated, decreasing the total number of groups)
or there are no groups left to put the remaining scores into (in
which case the remaining scores are divided between the two middle
groups).

(2) Compute group frequencies.
(3) Find the size of the smallest group.
(4) Decrease portion by 0.1.



Computational Formulas for the Constants axu

The constants a
xu.

in the strong true-score theory general model are by

definition

a = a
xu y:u xy

where axy = fl Y(C) h(xIC) h(yIC) aC .

Computational formulas for each element of the integral must be
found, and then the integral must be evaluated.

First, 1Pt y(C) = 12 a smooth density function.

[2 0]

Then, from Lord (1965, Equations 5-7 with r = 2),

h(x1c)
(...(nT2) cx (i_on-x-2+2(xn:21)

n-x-I (n-21 rx-2x-1
(1-0 x-21

n2 (n-1) s
where k

2fn2T7 - s2 -
1nsP2

'

p = conventional item difficulty, and

q = 1 p.

[Lord, 1965,
Equation 46]

This can he simplified to

h(xk)
(n-2) e+1 + 2k

(n-2) cx

x \x-1

(1-0n-x (n-2) x-1 (1-0n-x+1
\x-2
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To simplify the notation,

let w
xl

= {(
n
) + 2k (

n-2
))

x-1

-
w
x2

= -k (
nx 2

)

w
x3

= -k (
22)

.

Then, the product of the two h functions becomes

h(xk)
h(YIC) wxl wyl Cx" (1-C)

+
x+y+1

(1-0
2n-x-y-1

wx2 wyl

2n-x -y

+ wx3 wyl
x+y-1 (1_02n-x-y+1

x+yfl (1_02n-x-y-1
+ w

xl
w
y2

+ w wx+y+2 (1-0 2n-x-y-2

x2 y2

+ w
x3

w
y2

x+y
(1-0

2n-x-y

+ w
xl

w
y3

r,

x+y-1 (1-0
2n-x-y+1

x2 y3

cx+y (1_02n-x-y

rx+y-2 (1_c)2n-x-y+2
x3 y3

cx+y (1_02n-x-y
(wxl wyl+ wx2 wy3+wx3 y2

x+y+1 (1-0
2n-x-y-1

(wxl wy2 wx2 wy1) C

(wxl wy3 wx3 wyl) C
x+y-1 (1_c)2n-x-y+1

x+y+2
(1-0

2n-x-y-2

+ wx2 wy2

x+y-2 (1-0
2n-x-y+2

+ wx3 wy3
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A Beta function (Lindgren, 1976, pp. 328-9) is defined as

(x+1, y+1) = X (1-0Y a

The Beta function Is also equal to a product of Gamma functions
r(s)r(t)

(s,t) =
ro
r(s+k)

and there is an algorithm available (Pike & Hill, 1966, algorithm 291)

to solve for r. Thus, the Beta function can be used to evaluate the

integral.

Substituting quantities derived above into Equation 20

a
0xy

= fl Y(C) h(xIC) h(ylc) ac

= /1 h(x1c) h(yI.) ac

( wxl wyl wx2 wy3 + wx3 wy2) 8 (x+y+1,2n-x-y+1)

( wxl wy2 wx2
wy/)8 (x+y+2,2n-x-y)

+ (wx, wy3 + wx3 B (x+y, 2n-x-y+2)

+ (w
x2

w
y2

) 8 (x+y+3,2n-x-y-1)

+ (w
x3

w
y3

)6 (x+y-1,2n-x-y+3)

for x = 1, 2, ..., n, and

y = 1, 2, n.
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Rescaling au 's

1.1's must be resealed so that they are all nonnegative to guarantee $(C )
nonnegative for 0 < C < 1. This was accomplished by setting all negative
'tti's to a tenth the size of the smallest positive nu and then dividing all
A 's by their sum because (Lord, 1969, Equation 31)

U n

E A A =E0(x) = 1
u u

u=1 x=0
n

where A= E a .

u xu
x= 0



Maximum Likelihood Procedures to Refine the fu's

(1)
A

(1) Compute (1)(x) (from Equation 20 with 'As's inserted) and $1;(x) for

x = 0, 1, n and u = 1, 2, ...U. The $u' (x) are functions of
the a 's.

xu

U

gx) = E a A
xu u

u=1

aA+aA
xu u xU U

U Aa U-1

E
Au

=EA uAu + AUXU = 1. ['Lord, 1969, Equation 31]
u=1 u1

U-1

Thus A
u

= ( 1 - E A
u
A )/A

U
, and

u
u=1

U-1 U-1

gx) =Eaxu Au +a (1-EAAu )/A
u=1 u1

IL1
= axu /AU +

u1 Au (axu a A /A 1
x u II

Wx)
n a - a Au /AU

u xu xU

[20]

51nL
(2) Find the first derivative of the log of the likelihood with

respect to A for u = 1, 2, ..., U, derived as follows:

n

In L = X fx in 0(x)) , and
x=0

n n
',) ln L 1 3.1(q = (1)'(x)___ = f ____ _ _ X f

nu x (-(x) nu x (1) (x)

x=0 x=0



3ax
32

ln
A

L
(3) Find - , the negative of the second derivative of the log

u z

likelihood for pairs of nonzero 's only for u, z = 1, 2, ..., (U-I).

(There are only (U-I) independent 's due to Lord (1969, Equation 31).

The formula is derived as follows:

a2 In L n 1(x) 0" (xl - 0'(x) 0'(x)
E f e(x)

_u x=0

a0x)
0"(x) =

a1(x)

32 In L -W(x))2 - 2 f rI2111)2
Thus, ---T577 E f

x=0 x 412(x) x=0 x ("x)

32f(x) 3,f(x) 343)A (x)

32 In L n
0(x)

DA ax a
z

ax
u
n = E f

x
u z u

z x=0 02(x)

n r a gx) a gx)

= E f
x

Pt 3A

x=0
4)'2(x)

n 4):1 (x) (I); (x)

= E f
x 4)2(x)

x=0
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(4) Find the change values to he added to the old
u
's by the Newton-Raphson

iterative procedure, namely the

6
u

= (In L)7(-1n L)" for u = 1, 2, ..., (U-1).

(5) Compute the new 5:

u
's.

new A
u

= old u +
u

for u = 1, 2, ..., (U-1).

(6) Find d
u

and new au from Lord (1969, Equation 31) above.

(7) Set negative Au's to zero and rescale the remaining "Au's so that the above
equation obtains; recompute the 6u's.

(8) Check whether convergence has occurred (largest 6u < criterion value, 0.1
here) or the maximum number of loop has been reached (200, here); if
neither condition is true, go back to step (1).

(9) Lambdas which had been set to zero were reinserted one at a time and the
above refinement looping (steps 1-8) was repeated until,,none of the lambdas
in the set were changed from zero during a cycle from A0 through A.
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Obtaining Estimated True Percentile for a Given True Score

The estimated true percentile for true score t is

I
o

g( ;) dt

A computational formula must be substituted for the g(C) and then the
integral must be evaluated. Lord has shown that

U

" "u Hu (°
u=1

and

[2 5]

[Lord, 1969, Equation 0].

H
u
(c) = y;c) E h (x1 c) = E y(C) h (xlc).[Lord, 1969, Equation 221

x:u x:u

A Beta distribution was used for the frequency distribution so that
combinations and factorials would be defined:

Let Y(C) = Ca(1-06, with a = 6 = 2.

From the derivation for a
xu

above, we know that

1 `

rxii_on-x
2

rx+1
+ w

3

x-1 (1-0
n-x+1

where

=
wl

w
2

w =
3

rn)
tx)

-k

-k

+ 2

rn-2

1

(n-2)

k rn-21
t x-1)

, and

.

Thus,

+ft(0 = iw r (1-0
n-x-1-.6

1

x:u

x+1+t
(1-0

n-x-1+
4 w

6

1.4

1

( I - )n -x+I +'
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Substituting back into the integral and using the Beta function to evaluate

the integral, as explained above in deriving computational formulas for axu,

flo g( ;);; E Au 4 Hu (0Dc
u=1 u

U
= E Au E {w

1
a (x+a+1,n-x+6+1)

u=1 x:u

+ w2 a (x+ct+-2,n-x+d)

+ w
3

(x+a,n-x+6+2)} = 1. (because true scores are
bounded by 0 and 1)

To change the upper bound on the interval from 1 to t, the incomplete

Beta function was substituted for the Beta function, yielding the

proportion below true score t = ft g(0 aC .



Initial Estimate of an Equated Score

A table of estimated true percentiles for scores on the old test was
generated. If the estimated true percentile for the new-test score to be
equated fell in the part of the table for which STST equating was possible,
the initial value for the equated old-test score was the old-test score
which defined the lower bound of the score-interval containing that true
percentile.
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Newton-Raphson Refinement of Equated Scores

Repeat the following procedure until 1/11 < 0.0001 or ten iterations

have been completed:

f = ftOld g(c)ac
Anew

where pnew = estimated true percentile on new test to be matched as -'

closely.as possible by the estimated true percentile on
the equated score, and

told
= the current value for the equated true score.

f
g(told) g(0) g (told).

A = f/f' ,

with A limited by 1-0.04, + 0.05J.

Updated old
= t

ld
- A

o


