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SUMMARY

The technology for test equating has arisen from the need to make new tests
comparable to old ones. Equating of military tests has two objectives (1) to
make scores on different test forms and composites of test forms comparable,
and at the same time (2) to solve the norming problem by relating all scores on
new tests and composites back to a large sample of talent indicative of an
anticipated mobilization population. In this study, simulated and actual Air
Force test data were used to compare the different procedures for equating
mental tests and delineate those testing conditions under which each equating
procedure performed best. Specific testing-condition manipulations included
variations in test length, item difficulty, sample size, and examinee ability
distributions. Equating procedures studied included conventional (equipercen-
tile and linear), Item Response Theory (IRT), and strong true-score theory
(STST); data collection designs used were single-group, equivalent-groups, and
anchor-test. Equating transformations were evaluated by comparing equated
scores with true/observed scores along with bias and root-mean-squared-error
indices.

The study found that parallel subtests were best equated using the simple
conventional methods; nonparallel subtests, on the other hand, were best
equated with the more complex IRT and STST methods. There were few differences
among the data collection designs when they were applied to samples . f equiva-
lent abﬂlity levels; the anchor-test design was essential for equating subtests
using npnequivalent examinee groups. There was little advantage to be gained
by increasing the sample size from 1,000 to 2,400 examinees. Equating accuracy
was noiﬁmarkedly affected when subtest length was doubled, nor did it matter
whether easy or difficult subtests were equated.



PREFACE

The studies presented in this report were accomplished as part of
Project 7719, Force Acquisition and Distribution Systems. It is one in
a series on the equating of tests and test items. The effort. represents
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METHODS FOR EQUATING MENTAL TESTS

The concept of a standard is basic to all forms of measurement.
Precise standards for many physical quantities such as the meter, for
example, have been developed and universally accepted. Psychological
measurement is somewhat less advanced. Although several psychological
variables (e.g., 1Q) have been quantified, these psychological
characteristics are usually indexed by scores on a particular test
rather than by a universally accepted standard.

4

One essential characteristic of a standard of measurement is its
invariance. A standard that deteriorates and changes through use or
storage is not a satisfactory‘standatd. In the physical sciences, for
example, a meter was originally defined as the length of a metal bar
stored under ideal conditions at the International Bureau of Weights
and Measures in France. B:cause this ultimately proved to be an
unacceptable standard (both because of inaccuracy and impermanence),
it was replaced by a specific number of wavelengths of the light
emitted by an isotope of the element krypton. The meter has siace
been redefined more precisely as the distance light travels through
space in a specified fraction of a second.

A psychological test, as a standard, i8 even less satisfactory
than a meter bar. Since it is a reflection of a culture, its value
changes as the culture changes. Further, as its content becomes known
to a population of examinees, it produces a defective assessment of
the trait it indexes and, in essence, deteriorates.

Any physical device deteriorates with use. Fortunately, a meter
stick is only a copy of a standard and when the units wear off, it can
readily be replaced by another copy from the master. There are no
copies of a psychological test; each test booklet is a master. When a
test wears out because of cultural change or test compromise, & new
version rather than a new copy must be produced. When this happens,
either new interpretations must be made for the new version or the new
version must be equated or calibrated to the old version. If
comparisons need to be made between old and new test scores, the
latter approach must be taken.

The technology of test equating or calibrating has developed
because of some urgent needs to make new tests comparable to old
tests. To develop a comprehensive solution to the equating problem or
even to develop a comprehensive understanding of the problem, it is
helpful to explore first these needs for equating. Equating needs are
most apparent and equating methods are most extensively applied in the
areas of educational and military testing. This review will consider
each, in turn.

_13_
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Equating Needs in Educational Testing

The need for equating in educational settings arises primarily
because of the existence of numerous forms of any single test.
College admissions tests such as the Scholastic Aptitude Test (SAT),
for example, are revised continually to preclude test compromise from
one administration to the next. Standardized classroom achievement
tests must be revised not only to maintain test security but also to
ensure that the content and concepts tapped by such tests are current
and relevant to school-district objectives. '

‘Educational Decisions

Dec{:ions concerning individual applications to a university or
college are typically made after studying the test scores for all
applicants. Thése scores, obtained from various test administrations,
are derived from different forms of an admissions test. 'Similarly,
evaluatfon of student achievement within one school district requires
the accumulation of data across schools and classrooms. Further,
questions ‘concerning academic growth and development can be answered
only through the administration from grade to grade of test forms
whose scores.-can be interpreted as being from equivalent scales. All
these decisions, then, require that meaningful comparisons of scores
across test forms be feasible.

Scale Meaningfulness

The raw-score scale of a psychological test rarely has
significant implicit meaning. If the raw scores on all forms of a
test are expressed in terms of one derived scale (and, therefore, are
equated to each other), then the reported scores become independent of
the particular test form used to obtain them. There is no requirement
that this derived scale have any meaning beyond that of convenience.
What is required, however, is that the scale itself remain relatively
constant across time. )

Consider the history of the SAT as presented by Angoff (1962).
The SAT derived scale was originally defined to have a mean of 500 and
standard deviation of 100 for the group of applicants taking the SAT
in April of 1941, All subsequent SAT forms have been equated back to
this 1941 scale.

The number and type of applicants taking the SAT today have
changed dramatically since 1941; the scale has long since lost any
normative meaning it may have once had. Nevertheless, the constancy
of the scale permits comparisons to be made across all SAT forms, old
as well as current. In this way, then, colleges can make admissions
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decisions without special consideration of which test forms were
administered.

In a similar fashion, evaluative comparisons based on
standardized achievement tests can easily be made across students in a
classroom and across schools in a school district. The repeated
administration of equated forms also permits inferences to be drawn
regarding longitudinal development. :

\

Equating; Needs in Military Testing

Equating of military tests has two basic objectives: (&) to make
scores on different test forms and composites of test forms
comparable and (b) to simultaneously solve the norming problem by
relating all scores on new tests and composites back to a wide sample
of talent indicative of an anticipated mobilization population.
Methodologically, the second problem is subsumed under the first
because, if tests can be adequately equated, they can be equated back
to the test used on the norming population, ' '

A brief historical overview of military testing may be helpful in
explaining the military equating needs. Although military entrance.
testing extends back to the Army Alpha of World War I, modern testing
and equating extends back to the Army General Classification Test
(AGCT-1C) and the 1944 mobilization population. Because the United
States was then at war, there existed a readily accessible examinee
sample representative of the population of draftable personnel that
could be tested. The AGCT-1C was administered to a large (approximately
800,000), representative gvoup of military personnel and norms were
established on that group.

At that time, each branch of the military had its own entrance
examination. While it might be iflluminating to follow the development
of tests for all of the services, the best documentation exists for
those used by the Air Force, and the history of these tests can be
reviewed most completely. Weeks, Mullins, and Vitola (1975) reviewed
the history of the Air Force entrance examinations from 1948 to 1975,
and their review provides an outline for the curreat discussion.

History of Air Force Testing

|

Airman Classification Battery \

AC-1A. The first operational Air Force recruit classification
battery was the Airman Classification Battery (AC-1A), which was

implemented in 1948, It consisted of 12 aptitude tests and a
biographical inventory. The aptitude tests assessed a variety of
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characteristics including general aptitudes such as vocabulary and
.arithmetic skills, general information such as knowledge of current
affairs, and vocational skills including knowledge of electronics and
mechanics. " '

Norms for the AC-lA were established by selecting a sample of
1,000 examinees (stratified on the basis of their AGCT composite
scoreés to match the mobilization population) and computing the mean
and standard deviation of their scores on each AC-1A subtest.
Standard-score stanines were then defined and were used to equate
scores on the AC~lA to scores on the AGCT. Additionally, the tests
were differentially weighted to form eight composite scores that were
used to predict success in military job clusters. These composites
were similarly standardized. Thus, the stanine scores were referenced
to the 1944 mobilization population.

’

Aftecr the initial standardization, 7 of the 12 aptitude tests
were shortened. These, along with the affected composite indices,
were restandardized using an equipercentile equating to the original
full-length subtests on a sample of 1,018 basic trainees. Thus, the
AC-lA, in its final form, had one indirect link in its equating to
the mobilization popula%tion norms. (The number of indirect links,
as used in this report, refers to the number of tests between the
equated test and the reference test. A test equated directly to the
reference test has no indirect links.) :

AC-1B. The AC~1B was a slight modification of the AC~-l1A. The
major changes were the addition of one new test, Pattern
Comprehension, and the addition of another composite index,
Electronics Technician.

The AC-lA norms were used for all unchanged tests and composites.
Norms for the new test and the new composite were obtained by equating
the new scores to the AC-1A using the equipercentile method. A
composite of two tests was used for the reference in equating the
Pattern Comprehension test and another composite was used in equating
the new Electronics Technician composite. Thus, the new scores on the
AC-1B had two indirect links to the mobilization population norms.

AC-2A. 1In 1956, the AC-2A was implemented. It comsisted of
14 new tests, similar to the previous ones but tapping slightly
different aptitudes, and a biographical inventory.

Norms on the AC-2A were obtained by administering the AC-2A along
with the AGCT-IC to 2,454 basic trainees (randomly sampled from three y
Air Force training centers) and equating scores using the equipercentile
method. The scoring procedures were also changed fdr the composites.
Composite scores were reported in 20 percentile-based categories
rather than nine categories, as before. To accomplish this equating,
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the AGCT stanines were interpolated and the AGCT scores were considered

continuous (Brokaw & Burgess, 1957, p. 11). The test scores themselves
continued to be reported in stanines, however. The AC-2A was thus
directly linked to the mobilization population.

Airman Qualifying Examinations

The previous Airman Classification Batteries were used primarily
for classification rather than selection. When, in 1958, the Air
Force implemented a policy of selective recruitment, a new test format
was needed. Prior to that time, selection had been done on the basis
of the Air Force Qualification Test (AFQT), which was administered
at recruiting stations. The basic problem with the classification
batteries was that they were too long to administer at the recruiting
stations. Thus, a new series of tests was developed, the Airman
Qualifying Examinations (AQE). Several versions of the AQE were
developed prior' to the operational form. (This history is described
by Weeks et al.,, 1975, p. 23.) The form that ultimately replaced the

AC-2A was the AQE-D.

AQE-D. The AQE-D consisted of 1l aptitude tests and required
just over two hours of testing time, less than half of that required
by the AC-2A (Thompson, 1958). These scores were differentially
combined into four composite indices. The composites were computed
directly from the raw scores on the AQE-D and norms were established
only on the four composites.  Composite scores were reported in
percentiles and were tied to the mobilization population through the
AC-2A. The equipercentile method of equating was used, tying each AQE-D
composite to the corresponding AC-2A composite. The AQE-D scores thus
had one indirect link to the mobilization population.

AQE-F. The AQE-F replaced the AQE-D in 1960. The battery
content remained the same except for the substitution of a Hidden
Figures test for the Figure Recognition test. Like the AQE-D, the
composite indices were equated to the AC-2A using the equipercentile
method. The AQE-F composite scores thus had one indirect link to the
mobilization norms. "R

AQE-62. .The AQE-62 replaced the AQE~F in 1962. The major
content change involved replacing the Clerical Matching and Numerical
Operations subtests with an arithmetic test. Thus, the AQE-62
contained ten subtests. It was normed through equipercentile equating
using the AQE-F, on a group of 2,428 basic trainees, as the reference
test. Again, the composite rather than the subtest scores were
equated (Edwards & Hahn, 1962). The AQE-62 thus had two indirect
links to the mobilization population norms.

AQE-64. In 1960 Project TALENT, which was sponsored by several
Government agencies, provided a new reference population to use for
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norming tests. In the spring of that year, a comprehensive battery
of aptitude, achievement, background, interest, and personality
tests was administered to a sample of more than 400,000 high-school
students. The test battery contained 74 tests and had 82 scores.
Since there was reason to believe that the 1944 group was no

longer appropriate as a reference population, the subgroup of the
TALENT sample consisting of high-school seniors was chosen as a new
reference group comparable to the mobilization population in
intellectual abilities and educational attainment.

For AQE equating, TALENT test composites were developed to
predict each of the four Air Force composites (Dailey, Shaycoft, &
Orr, 1962). This was done using stepwise multiple regression in a
sample of 2,489 basic airmen, The sample was divided fnto two
subsamples of nearly equal size and separate regressions were run.
Three to four TALENT tests were chosen to predict each of the AQE
composites. With a few exceptions, the first tests stepped in were
chosen for the most predictive composites. Some non-statistical
considerations also weighed into the selection.

The AQE-64, which replaced the AQE-62 in 1964, was similar to the
AQE~-62, It differed in that its unspeeded Arithmetic test was

replaced with a speeded Arithmetic Computation test and the composites

were revised to include educational variables (Madden & Lecznar,
1965)., It was normed relative to the TALENT sample using each of the
four AQE composite indices in four groups of approximately 1,000 basic
trainees each. An equipercentile equating was then done between each
AQE composite index and the corresponding TALENT index. The AQE-64
thus had a direct link to the new norm group and no link to the 1944
mobilization population.

AQE-66. The AQE-66, which replaced the AQE-64 in 1966, was
essentially identical to the AQE-64. It contained new items and the
Arithmetic Computation test's content and its order in the
administration sequence were changed. No substantial changes occurred.
It was equated to the TALENT tests using four groups of approximately
1,000 basic trainees each and the same equipercentile procedures that
were used on the AQE-64.

AQE-J. The AQE-66 was replaced in 1971 by the AQE-J. No
changes, other than the items, were made in this revision. It was
again normed by equating it to the TALENT battery on four samples of
aproximately 1,000 basic trainees each.

Armed Services Vocational Aptitude Battery

All Armed Services entrance batteries were replaced in 1973 with
the Armed Services Vocational Aptitude Battery (ASVAB). The ASVAB was
similar in coverage to the AQE. The ASVAB-3, the version initially
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implemented for operational testing, consisted of nine tests covering

basic aptitudes with tests like Coding Speed and Word Knowledge, and
measuring vocational achievement with tests like Shop Information and
Electronics Information.

From the ASVAB, the Air Force computed the same four composites
that it computed from the AQEs. These composites were equated to the
TALENT composites and thus to the TALENT norm group. This was
accomplished by administering, in four groups of approximately 1,000
basic airmen, the ASVAB and the TALENT tests required to calculate one
composite score (Vitola & Alley, 1968). Each ASVAB-3 composite was
equated in its respective group of examinees to the appropriate TALENT
composite using the equipércentile method.

In more recent years, the Air Force shifted back to calibration
against the AFQT. Ree, Mathews, Mullins, and Massey (1982) described
an equating study in which Forms 8, 9, and 10 of the ASVAB, versions A
and B, were equated back to the AFQT-7A. The AFQT composite of the
ASVAB was the score equated. The single~group procedure was used
along with the equipetcentg;e transformation. Because of a lack of -
_appropriate literature, it was not possible to determine the norm
group and linkage techniques used for the AFQT-7A.

Military vs. Educational Testing

The history of Air Force testing suggests several differences
between equating in a military setting and in an educational setting.
First, it is primarily composites that are equated in the military,
rather than individual test scores. Although batteries usually
include eight to ten subtests, the history of the Airman
Classification Batteries shows that it has always been thefour
composite indices that have been equated. This differs from the
educational environment, where subtests rather than composites are
usually equated.

Second, the military relies exclusively, it appears, on the
single~-group data collection design in which a single group of
individuals takes both of the tests to be equated. This diifers
strikingly from the educational environment, which relies heavily on
anchor-test methods, and is probably due to the military's captive
group of examinees. The ability to assemble a large group of
examinees for single-group equating may be a great advantage in
developing a superior equating method.
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OVERVIEW OF EQUATING MODELS
Calibration vs. Equating: A Clarification of Terminology

The literature contains some dispute and confusion regarding what
can properly be called equating. Probably the most comprehensive
discussion of classical equating procedures was provided by Angoff
.(1971), who considered both the conceptual problems and some practical
designs for equating. Angoff discussed the general problem of making
scores comparable and divided this into the two processes:
calibration and equating. Angoff. took the position that for tests to
be equated they must be equivalent. That is, they must measure the
same characteristic with the same reliability and be of equal
difficulty. Essentially, they must be parallel, For all other cases,
he preferred to use the term calibration, which referred to putting
scores on a common scale without calling them equivalent. This is
consistent with Lord's (1977, 1980) definition that two tests can be
equated only if it can be considered a matter of indifference to an
examinee which test he or she takes. ) '

Calibration

k4

Calibration, in Angoff's discussion, referred to a procedure for
putting different measurements on a common scale., He used, as an
example, the physical dimension of temperature with several different
thermometers corresponding to tests. If a fever thermometer, a
refrigerator thermometer, and an oven thermometer are considered, they
obviously are not interchangeable. Values from one cannot be equated
to values of another. Using standard equipercentile procedures, all
scores on the refrigerator thermometer would map into the lower bound
of the fever thermometer., All these thermometers can be calibrated to
a standard temperature scale, however.

Implicit in this example is the fact that equating is not
necessarily a more desirable procedure than calibration. Most
psychometricians would be very happy with a set of tests that scaled
like thermometers, =ven if they could not be equated to each other.

Eguating

Lord (1980) and Angoff (1971) agreed that there are three
requirements for equating tests that measure the same ability: (a)
symmetry, (b) invariance, and (c) equity (cf. Cook & Eignor, 1983).
The requirement of symmetry implies that the equating transformation
should be the same regardless of which test is labeled x and which
test is labeled y. Hence, all regression methods are inappropriate
for test equating since, in general, the regression of x on y
differs from the regression of y on x.
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The property of invariance requires the equating transformation
to be unique regardless of which population subgroup was used to

derive it. Angoff (1971) has shown that this is, in general, true for
(fallible) observed scores only if the two'tests are strictly
parallel.-

Lord's (1977, 1980) definition of equity requires that it be a
matter of indifference to an examinee which test he or she.takes.
This implies that the tests must be equally reliable. Modern test
theory (Lord, 1980; Lord & Novick, 1968) suggests that tests are not
equally reliable across the ability range but tend to be more reliable
at the ability levels appropriate for their difficulty. Thus, two
tests of unequal difficulty cannot be equally reliable at all abilirv
levels and thus cannot be equated. o

Test equating, then, under the strict definitions of Lord and
Angoff, appears to be of little practical value, For tests to be
equated they must be perfectly reliable or strictly parallel. I1f
tests are strictly parallel, however, they will not need to be
equated.

It may be that the concept of equating, and thus the term, is too
limiting for practical problems and that calibration would be a more
appropriate term. On the other hand, the term equating has been
applied to a wide range of comparability efforts and even though
calibration may be a more appropriate term, it is unlikely that the
psychometric community will readily accept the change. It thus
appears more profitable to revise the definition of equating to one
that is more in line with the practical goals of the procedures.

OpeYational Definition of Equating

Theories of psychological traits imply an underlying dimension of
a characteristic that tests attempt to assess. The concept that an
individual has a level of the traif is implicit in the “true score” of
classical test theory. The true score is not a procedure-free measure
of the trait level, however, because it relates to a specific test.
Modern test theories allow a procedure-frée\rait value to exist, at
least conceptually. Since in concept it is tlhe assessment of this
trait level that is the objective of testing, it seems reasonable to
say that two tests are equivalent if two equated scores result from
the same trait level on both tests. That is, two tests are equated if
each trait level leads to equivalent scores on the two tests. This
definition would be considered a form of calibration by Angoff. It is
more in line with the goal of what is commonly called equating,
however, and will be used as a definition of equating throughout this
report,
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The term trait, as used 'above, should not be considered limited

to a unidimensional trait or even to a single trait. The concept is
general and, in the case of several traits leading to a composite, can
be considered to mean that, for any fixed set of trait levels, two
composites are equated if the expected values of their scores are
equal. '

Data Collection Designs

Methods for equating scores can be classified on the basis of two
factors: the design by which data are collected and the methods by
which—the_equating transformation is determined.

Angoff (1971) listed six major equating designs. In terms of
data collection, these six designs can be grouped into two categories:
designs assuming equivalent samples, of examinees to achieve equation
(Designs 1 and II) and designs employing an anchor test to achieve ]
equation (Designs III, IV, V, and VI). Design 1 assumes that each
test was given to one of two random samples from a population. 1In
Design II, both tests are administered to a single random sample, thus
‘resulting in & single-group design. Test- forms are counterbalanced
during adminins®satisn to prevent order effects. Design III is really
a combination of an equivalent-groups and an anchor-test design. Two
random groups are selected from a population and one test and the
anchor test are administered to each group, as in Design I. The
anchor test is used to estimate test-score statistics for the combined
group of examinees. Design IV is similar to Design III; the
difference is that the groups are not random samples from a
population. 1In Design V, each test is equated to a common anchor
test; scores that are equated to the same anchor test score are
considered to be equated to each other. Design VI is similar to
Design IV in terms of data collection; here different scaling methods
are applied to common (anchor) items.

Marco (1977) and Marco, Petersen, and Stewart (1980) listed three
data collection designs: (a) all items are given to a single group of
examinees; (b) the same set of items is administered to different
groups of examinees; and (c) an anchor set of items, either internal
or external to the tests to be equated, is administered along with all
tests given to different groups of examinees.

A recent study of item response theory (IRT) parameter linking
(Vale, Maurelli, Gialluca, Weiss, & Ree, 1981) suggested four basic
data collection designs of potential utility for equating: (a) the
equivalent-groups method, (b) the equivalent-tests method, (c¢) the
anchor-group method, and (d) the anchor-test method. 1In the
equivalent-groups method, a population of examinees is randonmly split
into two or more groups and each group is given a difterent test.
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Equating 1s achi®ved Wy assuming that the groups are equivalent and
adjusting the test scores such that the score distributions of the two
tests are identical. In the equivalent-tests method, a domain of
items is randomly split into two or more tests, and these tests are
given to different groups of examinees. The tests are assumed to be
randomly equivalent, and- no explicit equating is done (i.e., it is
assumed that the scores are already equated). The anchor-group method
employs a common group of individuals to take all tests to be equated.
Equating is done using this group in the same manner as with the
equivalent-groups procedure. A common set of items is used by the
anchor-test method. Equating is accomplished by equating the
non-anchor tests to the anchor test in what amounts to several
single-group procedures. Angoff's first two designs are examples of
the equivalent-groups method, and his latter four are examples of the
anchor~test method. Marco's first design is a special case of the
equivalent-groups method, his second is a special case of the
equivalent-tests procedure, and his third design is an application of
the anchor-test method.

Vale et al, (1981) suggested that the equivalent-groups and
anchor-test methods .ere most useful in linking applications.
Linking, the mappi» of item parameters onto a common scale, differs
from equating in several ways. Most importantly, linking is properly
implemented only using IRT procedures and is typically applied to sets
of items of similar difficulty and examinee groups of similar ability.
For reasons different than those cited by Vale et al., the same two
methods are probably most useful for equating. The equivalent-tests
procedure is inappropriate for equating because it amounts to assuming
the conclusion (i.e., that the scores on the tests are equivalent).-
The anchor-group method, while applicable to IRT linking procedures
where linking is separate from item calibration, would be
indistinguishable from a single-group procedure in an equating design;
this has already been included as a special case of the
equivalent-groups design.

Equating Transformations

The transformation in equating is the function that maps scores
from one test onto the other test. Several different transformations
have been proposed.

Conventional Equating

Both linear and equipercentile methods are used to equate
conventionally administered and scored tests.
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Equipercentile Equating

Raw transformation. A procedural definition of equating (as
distinguished from the conceptual ones discussed earlier), provided by
Lord (1950) and Flanagan (1951) and reproduced by Angoff (1971),
states that "Two scores, one ot Form X and the other on Form Y (where
X and Y measure the same function with the same degree of
reliability), may be considered equivalent if their corresponding
percentile ranks in any given group are equal" (Angoff, 1971, p. 563).
This procedural definition gave rise to the equipercentile
transformation which is accomplished by assigning an equal value to
scores on two tests when the same percentage of individuals falls below
these scores (i.e., such that equated scores have equal percentile
ranks). Procedurally, this transformation is typically performed on
observed scores. . '

Angoff's (1971) Design I for equipercentile equating can be used
to equate conventionally scored paraliel tests using both the
single-group and equivalent-groups data collection designs. Angoff's
Design V can be used for the anchor-test design; it equates the old
and new tests separately to the common anchor test using the
single-group equipercentile method, and then defines as equated those
scores on the old and new tests equivalent to the same anchor-test
score,

Smoothing. Observed cumulative percentiles may exhibit
lrregularities because of sampling and measurement error; smoothing
the data may yield better equating results. There is no systematic
evidence to indicate which smoothing method is optimal or when in the
equating process smoothing is best applied. That is, the individual
frequency or percentile tables may first be smoothed, with these
smoothed tables then used to equate the two tests., Alternatively,
the unsmoothed tables can be used to equate the tests; the resulting
equating transformation itself can then be smoothed.

The analytic methods of smoothing include cubic polynomial
regression and cubic spline functions. In regression smoothing,
either the raw percentiles or equated scores are regressed (using
cubic polynomials) on observed test scores; inserting these test-score
values back into the resulting regression equation ylelds either a
smoothed frequency curve or a smoothed equating transformation,
respectively.,

Cubic splines are part of a family of functions used to fit
curves to observed data. In cubic-spline smoothing (Reinsch, 1967), a
separate cubic spline function is fit to each interval hetween
adjacent score points. For score points X;» where 1 ranges from 0

to the maximum test score, k, the general form of the spline

function over the interval Xy < x < X{4] can be expressed as
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fi(x) 8y + 8y X + a8y, %X+ ayx 1]

where the constants 8p1s 8149 824 and ayq can vary from interval to

interval and the spline functions meet at their common endpoints. The
spline functions are constrained such that the second derivatives
(f“i(x)) of the (two) spline functions at each score point are

identical. The spline function over all x values is denoted £(x);
spline functions minimize

xk N
;S (x) | 2dx. (2]
Xg _

The degree of smoothing can be explicitly controlled by the user
and is dictated by the value of a smoothing parameter, S; S
controls the degree to which the spline function values are permitted
to deviate from the observed values (yi). The smoothing parameter is

directly proportional to the differences between the observed and
smoothed values and is inversely proportional to the relative weights
assigned to the score points (¢ (yi)). The differences between the

observed and smoothed values at each score point can be unit weighted
or, alternatively, weighted by the standard errors of the scores. All
spline functions, then, minimize Equation 2 subject to the restriction

k

f(x ) -y 2
z i i
(—*‘3—(—}"—;)—-—) < s. (3]

1=0

The choice of values for S and the score-point weights
determines the specific nature of the final smoothing solution. The
larger the value chosen for §, the greater the degree of smoothing;
if S is set equal to zero, the smoothed values equal the observed
values and this process becomes a cubic-spline interpolation method.

Reinsch suggested using standard-error weights (if they are available)

for the score points and a value for S within the range K + (2!()1/2
where K = k + 1 is the number ot score values. Kolen (1983) argued

that the observed percentiles/equated score points are not independent
in the context of test equating and, therefore, that Reinsch's suggested
S values may be inappropriate. He suggested, instead, a "moderate”
smoothing parameter that is equal to one-half the number of score
points.
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There are problems inherent in applying either type of smoothing
method to examinee test data. The cubic-spline method depends heavily
on the choice of a value for the smoothing parameter; at this point,
there are né standards for selecting this value. Applying either type
of smoothing method to the equating transformation itself yields a
nonsymmetric equating: The resulting smoothed transformation equating
Test X to Test Y is fiot the same as the smoothed transformation
equating Y to X. However, the goal of smoothing is.to eliminate
error-induced irregularities and discontinuities in the observed data;
because lack of symmetry is not a concern at that point, it may make
the most sense, theoretically and practically, to smooth the raw
frequency or percentile tables rather than the equating transformation
itself (as has been the usual practice).

Linear Equating

The linear equating method has typically been used as an
approximation to the equipercentile method for equating observed test
scores. In the linear method, scores on two Lests are considered
equivalent if they correspond to the same standard (i.e., 2) score
(Angoff, 1971). This is equivalent to the equipercentile procedure
only if the distributions of test scores on the two tests are
identical. Practically, it often makes a good approximation to the
equipercentile result if the distributions are similar in shape.
Furthermore, the linear method is less sensitive to sampling
fluctuations with extreme scores that occur in the tails of
distributions.

Problems with Conventional Equating Methods

There are two aspects of Angoff's (1971) conventional definition
of equating that make these transformations only approximately
correct. The first is “any given group,” which requires (a) that
further assumptions concerning the test scores be made before
equating, or (b) that an exhaustive sampling of all possible groups be
made. The second aspect is the requirement of equal reliability,
which implies that tests which differ in reliability cannot be equated
so simply.

The any-given-group restriction is satisfied if the relative
shapes of the score distributions remain constant across groups at all
levels of the trait. According to Lord (1977), it i3 a necessary (but
not sufficient) condition for accurate test equating that the
percentile ranks of equated scores remain equivalent across all groups
tested.,

The problem of equating unequally reliable tests has been
addressed in several ways. Since the problem of unequal reliability
disappears when true scores are equated, methods of transforming true
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scores have typically been applied. Angoff (1971) provided linear
procedures for equating unequally reliable tests. In general, the
procedures he suggested replaced the standard deviation in the
standard-score formula with the standard deviation multiplied by the
square root of the reliability coefficient (cf. Angoff, 1971, p. 571).

Classical test theory does not provide a mechanism for adjusting
for reliability in equipercentile equating. The true-score regression
suggested by Angoff could be applied prior to equipercentile equating
but would result in-exactly the same equating transformation as if it’
were not applied at all. For example, a z score of 1.0 might
correspond to a percentile rank of 84. If the reliability were 0.81,
the true score would be regressed to 0.90. Its percentile rank wnuld
still be 84, however, and since the equipercentile correspondence is
between percentile ranks, it would still correspond to the same score
on the second test,

Item Response Theory

Item response theory (Birnbaum, 1968; Lord & Novick, 1968) offers
another method of equating tests that differ in difficulty and
reliability. 1IRT expresses the probability of a keyed response as a
function of an examinee's trait level and one or more characteristics
of the item. An IRT model often used with dichotomous items is the
three~parameter logistic model. This model describes the probability
of a correct response to an item as a function of the trait level (9),
the item's discriminating power (a), its difficulty (b), and its
proneness to being answered correctly through guessing (c)

] _ L . . \ ' (4]
P(0) = ¢ + ¢ exp(-1.7a(6-b))

The one-parameter (or Rasch) IRT model describes the probability
of a correct response solely as a function of theta and item
difficulty. The two-parameter IRT model includes theta and the a
and b parameters only. No provision is made in these models for
answering an item correctly through guessing. When all of the
parameters of an IRT model are estimated, either true-score or
observed-score IRT equating can be performed.

True-Score Equating

Once the item parameters and theta for two or more tests are
expressed on a common metric, the relationship between ability (9) and
number-correct true score (f) on Test X can be expressed as:

n

fo= P;(0) [5]
i=1
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Similarly, the relationship between ability and number~-correct true
score on Test Y (n) can be expressed as:

n .
n= 3£ P(8) (6]
=1 |

For any given value of 6, the corresponding true scores £ and N are

equated in an exact (mathematical, not statistical) way (Lord, 1977).
The equating transformation relating £ and n is typically obtained
by estimating all relevant item parameters (e.g., by obtaining Pi(e)

for all 1).

Because this equating transformation is derived from true
number-correct scores, it should, strictly speaking, be applied only
to examinee true scores. However, only observed scores are available
to test researchers and administrators. The typical procedure is to
estimate the true number-correct score for each examinee and apply,the
IRT true-score equating transformation to these score estimates.

While this is theoretically inappropriate, its utility remains an
empirical question. y

Observed-Score Equating

Alternatively, one may estimate the frequency distribution of
number-correct scores for each test for the combined examinee group by
using (a) the estimated distribution of ability (theta) in the
combined group, (b) estimated IRT item parameters for each test, and
(c) the generalized~binomial generating function for obtaining the
frequency distribution of scores conditional on theta (cf. Lord, 1977,
p. 131). Once the frequency distrihution of scores on each test has
been estimated for the combined examinee group, the observed test
scores can then be equated using ordinary equipercentile procedures.

Item Parameter Estimates

The parameters of IRT must, of course, be estimated.
Practically, calibration programs typically assume theta to be
distributed with a mean of zero and a standard deviation of one. In
order to equate two tests by the methods described above, the
parameters of two tests calibrated separately must be linked together
onto a common metric. The problem of making the score metrics '
equivalent has thus simply been shifted from the true scores to the
thetas. The parameter-estimation problem still exists, although it is
somewhat less severe than in the strong true-scoré methods. The main
advantage of IRT, in this respect, is that the theoretically proper
linking transformations for the theta metric are linear and can be
made more accurately. A major disadvantage of IRT equating is that it
assumes the trait to be unidimensional. Methods of linking item
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parameters have been discussed in detail elsewhere (Vale et al.,
1981).

= Strong True~Score Theory

Lord (1965, 1969, 1980) developed a strong true-score theory
(STST) to produce an estimated distribution of true scores (g(t)) from a
distribution of obderved scores (6 (x)). Tests are equated by applying
conventional equipercentile procedures to the true-score distributions.
The general model is expressed in terms of the equation

b
$(x) =S gle)h(x|z)de . (7]

a

2

where h(x|z) 1s the conditional distribution of observed scores on
true scores. The limits of integration, a and b, are set at the
practical true-score limits, O and 1, for a proportion~correct true
score,

Strong true-score theory attempts to describe the distribution of
true scores, g(z), by solving the integral equation with specified
functions for ¢ (x) and h(x]c)._ For dichotomous test items, Lord has
typically used a compound binomial, or an approximation to it, for.
h(x|z ). Solving the integral equation is a numerically tedious
procedure and Lord has taken two approaches to it., 1In the first (Lord,
1965), instead of trying to define an entire nonparametric distribution
of true scores, he assumed an incomplete Beta distribution for g{(r ) and
estimated its parameters. This was numerically simpler than a
nonparametric approach., It appeared to work well in cases where the
a and b estinates from the observed-score data fell within the
appropriate limits of 0 and 1, but did not function well otherwise.

/

Lord (1969) attempted a more empirical approach and tried to
develop for 4 (%) a polynomial of degree as high as was warranted by
the data. He found that this procedure worked well when the test was
administered to at least 10,000 examinees. Such large samples are,
unfortunately, often unavailable.

In principle, if the true-score distribution functions of two
tests could be estimated by these methods, the problems of test
unreliability would disappear and test equation could be achieved by
setting the true-score distribution functions equal to each other:

B3 y

B (YA = L () (8]
() ()

The values ¥ and y that solved the equation would thus be
equivalent scores,
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R _The strong true-score theory approach to equating is,
theoretically, a general solution to the problem of equating

nonparallel tests. Problems resulting from reliability and difficulty

differences disappear when true scores are used. The assumption of a
compound binomial conditional distribution of observed scores given
true scores does not seem to be overly restrictive. The numerical
problems encountered in solving the equations are formidable, however,
and the statistical estimation procedures available are
unsatisfactory. First, Lord used & numerical approximation to the
compound binomial distribution because exact evaluation required too
much computation. Then, numerical procedures were required to solve
the integral equation. Finally, numerical procedures were required to
equate the integrals. The statistical procedures require such a large
nunber of examinees for Lord's (1969) empirical procedure that it is,
typically, impractical. These problems may not be insurmountable but
suggest, at a minimum, that the strong true-score theory procedures
are considerably more difficult to apply than are the conventional
procedures.
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EVALUATION OF EQUATING METHODS: A REVIEW

The published literature describing applications of equating
methods provides some information regarding the relative utility of
the various equating methods and helps to identify the most frequently
reported equating problems. Furthermore, these past studies help to
identify the methodological issues and problems crucial to the design,
execution, and evaluation of the current research. These issues
include, but are not limited to, (a) characteristics of the ability

~ and score distributions in the population studied, (b) the

psychometric characteristics of the tests, (c) procedures for
combining tests into composites, and (d) definitions of evaluative
criteria. '

This review of equating applications is divided into several
sections. In the first, conventional applications (linear and
equipercentile methods) are described and critiqued. IRT equating
efforts are discussed in the second section. The third section
considers studies that compared conventional and IRT methods. The
remaining sections summarize the findings from previous research and
discuss their relevance to practical equating situations. The
criterion problem is discussed. No studies investigating STST methods
were found; STST is thus nct included in this review.

Previous Research

Conventional Equating Methods

Regression

If two tests are strictly parallel, their true-score

distributions will be identical, and the regression of Form X true

scores on Form Y observed scores will be identical to the regression
of Form Y true scores on Form X observed scores. Hence, the observed
scores from a single test form can be used to equate the truerscore
distributions of all parallel forms. However, the true scores of
nominally (i.e., imperfectly or nearly) parallel tests (Lord & Novick,
1968, p. 174) may be highly correlated but are not identically
distributed, and the above relationships do not hold.

Marks and Lindsay (1972) conducted a Monte Carlo simulation to
investigate the effects of violating the strict-parallielism assumption
on equating adequacy. They varied test and sample characteristics and
examined the accuracy of estimating the true-score distributions of
one test form from the observed scores of a second form. They
manipulated sample size (100, 250, 500), test length (30, 60, 120),
test-form reliability (.75, .85, .95), and the correlation between
true scores (.80, .90, 1.0); these four parameters were completely
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crossed in their study. Observed scores on each test form were
computed for each simulated examinee using (a) bivariate normal
true-score distributions with the specified correlation, (b)
appropriate error-score distributions, and (c) the classical test
model X = T + E, where X, T, and E represent observed,

true, and error scores, respectively. True scores were then estimated
on Form X as might be done in a practical setting, using the equation

'T(X) = pXX'X + (1 - pXX') 3-{. [91]

where pyy: 18 the reliability, and X is the sample mean. The true

scores of Form Y were also estimated according to Equation 9.
Equating was accomplished by regressing the estimated trlie scores of
Form X onto the estimdted true scores of Form Y.

Marks and Lindsay performed a four-way analysis of variance
(pooling the 3~ and 4-way interaction terms) on the data, using as a
dependent variable the mean squared difference between the estimated
true score on the equated test (i.e., after the regression) and the
actual true score generated in the simulation. They concluded that
sample size was the most important factor affecting equating error; as

_sample size increased, it "washed out” the effects of the other
test-form characteristics. They discouraged the use of sample sizes

smaller than 250 when equating nominally parallel tests. The effect
of test-form reliability was not statistically significant.

Because Monte Carlo methods were used in this study, true scores
on each test form were known for each examinee. Thus, the equating
procedure could be readily evaluated by comparing the estimated (i.e.,
equated) true score to the specified true score for each examinee.
Such a criterion does not exist when test scores from real examinees
are equated.

This study is seriously flawed in other ways, however.
Regression methods, as used by Marks and Lindsay, are not appropriate
for equating two tests because they violate a basic equating
requirement. That is, equated tests must be symmetrically related,
and the results of an equating procedure should be the same regardless
of which test form is labeled X and which test form is labeled Y.
However, the regression equation that predicts the score on Form X
from the score on Form Y is not the same as the regression equation
that predicts Y from X (cf. Lord, 1980, pp. 198-199). Therefore, the
equating results obtained by Marks and Lindsay would be different had
they regressed Y onto X. This is an unsatisfactory consequence of the
regression procedure.
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Linear

Garcia-Quintana and Johnson (1979) compared three methods of
linear equating designed for use with parallel tests administered to
nonequivalent examinee groups along with a common anchor test. One of .
two forms of the SRA Mastery Mathematics Tests was administered to more
than 2,000 sixth-grade students; all students received the Mathematics
Test of the Comprehensive Testz of Basic Skills (CTBS).

Their first linear equating method involved-procedures from
Angoff's Design IV (using equations attributed to L. R. Tucker; cf.
Angoff, 1971, p. 580), where the CIBS anchor~-test scores were used to
adjust for ability differences between the groups before equating the
standard scores on the two SRA test forms. Design IV requires that
sunmary statistics for each test form for both groups combined be first
estimated from the combined distribution of anchor-test scores before
the linear transformation is applied. The other two methods used
procedures from Angoff's Design V to equate both test forms to the
anchor test and to define as equivalent (a) the scores on the two tests
that were equated to the same anchor-test score and (b) the scores on
the two tests that were predicted by the same anchor-test score.

The equating tables derived from these three methods were i
compared with each other for consistency because there was no external : "
criterion of equating adequacy. The authors found that these methods
yielded similar results throughout the middle score range, with
differences among the three methods becoming more pronounced at the
extremes of the score distributions.

Equipercentile

Yen. Yen (1982) applied the equipercentile equating method to
data generated according to the three-parameter logistic IRT model.
Test length (n), sample size (N), and differences in item
difficulties and discriminations were varied across simulated tests.
These factors were completely crossed. Each sample of size N was
generated so that true theta was distributed standard normal. For
® each pair of tau-equivalent tests (having equal expected means) in a
given condition, N pairs of theta estimates were generated; one set
for each test. Each theta estimate was chosen by using a normal random
deviate generator, assuming theta estimates for a given test and theta
value to be normally distributed with mean equal to true theta and
variance defined by the inverse of the information value (calculated
) using the appropriate item parameters and true theta). Equipercentile
O equating was then performed for each test pair.

Yen used a bias measure as a criterion, defining

. X, . - X,
©o(X LX) ot 2i {10]
1 1 R SX

i
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where Xl is the raw score on the first test, X, is the equated score

on the second test, and Sx is the standard deviation of Xy computed

i
over all examinees. Simulated examinees were divided into five cells
by rank order on theta, and two summary indices were considered:
maximum absolute bias and mean absolute bias. Equipercentile-equating
bias was computed from the difference between the theta estimate from
the first test and the corresponding equipercentile~equated theta
estimate from the second test; bias between the two sets of paired
(tau-equivalent) theta estimates was computed as a basis for
comparison. '

Errorless equating of the theta estimates, according to the IRT
model, would have resulted in a linear transformation function.
Curvilinearity of the equipercentile plots was quantified by
subtracting the Pearson correlation coefficient from the average of
‘the two correlation ratios (eta). Curvilinearity increased (and
therefore goodness of equating decreased) as the length of the test
decreased and as the mean difference between test difficulties
increased. For tests of equal difficulty, the equipercentile bias was
less than the IRT "bias,"” but bias was substantial otherwiese and
increased as test length decreased and the disparity between the test
difficulties increased. Differences in item discriminations acrouss
tests did not adversely affect equipercentile equating, at least for
the high levels and small differences simulated here. Test-length
differences (20 vs. 40) were important while sample-size differences
(1,000 vs, 2,000) were not. No comparisons were made with any other
equating method.

1

Slinde-Linn, The Anchor Test Study (Bianchini & Loret, 1974)
was a large-scale study designed, in part, to equate seven
standardized reading tests to each other within three grade levels (4,
S, 6); an eighth test was added later. 1t did not, however, equate
the tests across grade levels. Slinde and Linn (1977) used data from
the Anchor Test Study and test publishers' nrrms to investigate the
adequacy of equipercentile equating methods and the anchor-test data
collection design for vertical equating situatinns (i.e., where tests
differ widely in difficulty and examinees differ widely in ability).
Because the standardized tests from different publishers changed forms
at different grade levels, a variety of equating comparisons were
possible.

In each case, different levels of the same *est were equated
using various other published tests as anchors. In all cases,
differences between scores on a single level of a test were not the
same as differences between scores on vertically equated levels ot the
same test. The direction of this difference was not consistent across
tests and levels. Slinde and Linn acknowledged that some of their
results may have been confounded because publishers' norms rather than

-3~

@



Anchor Test Study norms had to be used at times to define the scaled
scores. Nevertheless, they suggested that other equating methods
(e.g+, IRT) might be better suited to the task of vertical equating.

Comparisons Among Conventional Methods

Bianchini-Loret, The original Anchor Test Study (Bianchini &
Loret, 1974; see also Linn, 1975) was a monumental endeavor designed
to equate scores across elght widely used standardized tests and to
provide new national norms for each of those tests. It also allowed
for a comparison of different equating procedures. To this end, pairs
of tests were administered to different groups of examinees, and
equipercentile equating methods were compared to linear methods. The
full sample and eight balanced half-samples were used to equate each
test to one of the other reading tests; the root mean squared
deviation of the equivalent scores for each half-sample replication
from the equivalent scores was computed for the full sample.
According to this érror-of-equating criterion, the equipercentile
methods were found to be superior, with an estimated equating error
generally less than one raw-score point (except in the
chance-test-score range).

Stock~Kagan-Van Wagenen. Stock, Kagan, and Van Wagenen (1980)
equated verbal, quantitative, and composite scores on the Graduate
Record Examination (GRE-V, -Q, and -C, respectively) to scores on the
Miller Analogies Test (MAT) from the responses of 273 graduite-school
applicants who took both tests. Four different equating procedures
were employed and compared: (a) MAT scores were regressed on GRE-V,
GRE-Q, and GRE~C separately, and vice versa; (b) conditional mean
scores on the three GRE subtests were obtained for each MAT score, as
was the mean MAT score for each GRE subtest score (i.e., a form of
curvilinear cegression was performed); (c) linear equating was
performed between the MAT and each GRE score; and (d) equipercentile
equating was performed between the MAT and each GRE score. The
equating tables derived from these four procedures were examined and
compared with each other.

Stock et al. observed several deviations from monotonicity in
equated scores using conditional means. Although this was probably due
to sampling fluctuation and should therefore disappear with larger
samples, they dismissed the method from further consideration, As
expected, scores equated with the regression procedure were closer to
the mean than were scores equated with any of the other procedures.
Linear and equipercentile pethods yielded virtually identical results,
with the simpler linear method therefore preferred by the authors.
Stock et al. concluded that the ultimate choice was between the linear
and regression procedures, with regression preferred if the
correlation between the two sets of scores was available (i.e., for
the single-group data collection design). This recommendation was
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made in the absence of any external criterion on which to compare the
methods. » ‘

As discussed previously, regression methods (linear or otherwise)

_are inappropriate for equating two tests since they do not yield a
symmetric equating transformation. Hence, the only valid comparison o
in this study is the one between the linear and equipercentile .
procedures. Strictly speaking, neither of these methods was 4
appropriate for\ equating in this situation. These procedures assume o
that the two test forms are parallel. This obviously was not the case “%
for the GRE and MAT. The content of the MAT differs greatly from that !
of the GRE. The correlations of the MAT with the GRE scores ranged
from a low of .42 (with GRE-Q) to a high®of only .70 (with GRE-V). In o
any case, because of‘the lack of any criteria for evaluation, : i
conclusions regarding the relative merits of these two equating ‘ '
procedures cannot be drawn.

5y : " O to
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Lord. Lord developed formulas for the standard errors of
equating for tests linearly equated using an anchor test (1975) and
tests equated by the equipercentile method (no smoothing) using a :
single-group or equivalent-groups design (198la, 1982c). He considered
these indices to be on the same scale and used them to compare :
equipercentile to linear equating (Lord, 198la, 1982¢). Scores on two i
forms of the SAT-V were equated by both methods using an external
40-item anchor test; each test form was administered to nearly 2,700
examinees.

Lord used Angoff's (1971) Design IV to linearly equate the SAT-V
forms. Each form was also equated to the anchor test using
equipercenti?~ procedures; scores equated to the same anchor-tert
score were assumed to be equated to each other. This method of
equipercentile equating is, essentially, two applications of
single-group equating. Consequently, the (independent) sampling
variances as defined in Lord (198la, 1982c) were summed together.

The standard errors computed for the different equating methods
were then studied. For both the linear and equipercentile methods,
standard errors were smaller for scores in the middle of the range.
‘Standard errors of the equipercentile equating were approximately
twice as large as those of the linear equating for middle-range
scores; this difference became even larger in the tails of tne score
distribution.

Lord also compared the equating tables resulting from application
of the two equating methods. The two sets of equated scores were
similar in the middle of the score range but were quite disparate
(more than one standard error of measurement apart) in the tails.

This difference corresponded to ten standard errors for the linear




equating and nearly five standard errors for the equipercentile
equating at that score level.

Summary

The results of these studies suggest that there are few, if any,
practical difterences among the conventional equating pxpcedures.
Regression procedures are clearly inapppropriate for test equating
(cf. Marks & Lindsay, 1972; Stock et al., 1980), but this result
should be obvious without empirical study. Equipercentile and various
modifications of linear methods generally yield similar results
(Garcia-Quintana & Johnson, 1979; Stock et al., 1980), although
Bianchini and Loret (1974) found the equipercentile methods to be
superior in terms of cross-sample replication. Lord (198la, 1982c)
observed larger standard errors for equipercentile equating in his
study, although it is not known whether the same results would have
been obtained.with equating lines that had been smoothed in some way.’

It is questionable whether equipercentile procedures can be
successfully used for vertical equating -- that is, for equating tests
that differ in difficulty (Slinde & Linn, 1977; Yen, 1982). Linear
procedures were not used to vertically equate tests in the studies
reviewed here. o

IRT Equating Methods

One~Parameter Model

.

Slinde-Linn-Gustafsson. Slinde and Linn (1978, 1979a)
presented a set of studies designed to evaluate the adequacy of the
one-parameter IRT model for vertical equating. In their 1978 study
Slinde and Linn used response data from 1,365 examinees on a 36-item
mathematics achievement test. Two tests of differing difficulty were
obtained by dividing the 36-item test into two 18-item tests on the
basis of the item difficulties obtained in the group of 1,365 examinees.
The average proportions correct for the tests were .665 for the easy
test and .362 for the difficult test. The examinees were then divided
into low-, middle-, and high-ability groups on the basis of their
scores on the easy test.

Item difficulty parameters were calculated for the total set of
36 items in the low-ability group, the high-ability group, and the
total group (the middle-ability group was reserved for later use).
Ability estimates were then calculated for each of these groups (low,
high, and total) using parameters obtained from each group in a
crcssed design. Mean differences between ability estimates derived

“<a the easy test and the difficult test were then computed and
¢ mpared.
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When the total-group ability estimates were calculated using item
parameters obtained from the total group, the difference between means
obtainei from the easy and difficult tests was trivial. Similarly,
when the high-group mean ability estimates were calculated using item
parameters obtained from the high group and when the low-group means
were calculated using the item parameters obtained from the low group,
the differences were trivial, When items calibrated in the high group
were used to estimate abilities in the low group or the middle group
and when items calibrated in the low group were used to estimate
abilities in the high group or the middle group, substantial
differences in ability estimate means were found. Slinde and Linn
interpreted this to mean that Rdsch parameters were not really \
invariant and that Rasch equating procedures were not particularly :
useful for the problem of vertical equating.

Gustafsson (1979) criticized this interpretation. He suspected
Lhat the difference between means was due to regression artifacts
which resulted from the fact that Slinde and Linn had estimated
abilities and subgrouped people on the basis of only 18 of their 36
{tems. Individuals would not be expected to perform, in a relative
sense, as extremely in either direction on the entire 36 items as they
did on the easy 18; therefore, a difference between means would be
expected. To support his hypothesis, Gustafsson performed a computer
simulation modeled closely after the Slinde and Linn study, with the
notable exception that the dssumed invariance properties of the Rasch
model were built in. His simulation showed that the parameter
estimates obtained in the different groups were different but that
this was due to a regression artifact and not to a lack of invariance.
He suggested that Slinde and Linn reanalyze their data, subgrouping
individuals on the basis of their total test scores.

Slinde and Linn (1979a) improved upon this idea by obtaining data
from 1,638 examinees on two different tests including a 60-~item
reading comprehension test. The first test was used to independently
subgroup examinees. The 60-item test was then split on the basis of
{tem difficulty into two 30-item tests and their original study was
essentially replicated. They found that the mean dif ferences
disappeared in comparisons of the middle with the high group (i.e., &
calibration from one group applied to the other group) . Whenever the
low group was compared with another group, the differences persisted,
This finding was attributed to the effects of guessing: No allowance
18 made by the one-parameter model for the possibility that correct
responses can be obtained through essing. When multiple-choice
items are used, as was the case pefe, guessing undoubtedly occurs and
probably tends to bias the results: Most likely this was a more
pronounced effect for the low-ability group where examinees knew the
correct answer less often and were more likely to guess.

~
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A reanalysis of the Anchor Test Study data by the same authors
(Slinde & Linn, 1979b), however, suggested a slightly different
interpretation. 1In this study, the one-parameter model was used to
vertically equate adjacent-grade pairs of published vocabulary and
reading tests using an anchor-test procedure. Despite the
considerable lack of model-data fit exhibited by all the tests
(possibly due to multidimensionality, speededness, non-uniform item
discrimination, and/or guessing), Slinde and Linn concluded that the
Rasch model provided encouraging results for the problem of vertical
equating. That is, differences between equated log ability estimates
(computed for examinees who were administered both tests) were,
typically, a fraction of the size of the standard error of measurement
for either test and usually amounted to less than one raw score point
throughout the ability range.

One essential difference betweei. the two earlier studies ard the
later one was that the separation of high- and low-ability groups was
more extreme in the earlier studies than would probably be encountered
in actual grade~to-grade equating. The difference between the groups
for the difficult and easy tests was five to six times greater (in
terms of standard deviations on the log-ability scale) in the earlier
studies than it was in the later study. Slinde and Linn (1979b)
pointed out that the procedure used in the earlier studies constituted
a much more severe test of the utility of the Rasch model for vertical
equating. Additioually, the more recent study employed an anchor test
for equating, and this procedure may significantly affect equating
results.

Divgi. Divgi (1980, 198la, 1981h) presented a series of
studies investigating model fit and the applicability of the
one-parameter model for vertical equating. In 1980, he devised a
nonparametric goodness~-of-fit test to compare IRT item calibrations.
This test is relevant to IRT equating because the adequacy of the IRT
equating transformation relies so heavily on the adequacy of the
original item parameterizations. The test is applied by first
performing two calibrations on equivalent samples of the same size,
thus yielding two sets of item parameter estimates. An independent
validation sample is then tested and scored twice (once with each set
of parameters), resulting in two sets of ability estimates. The
likelihood of the set of item responses given each theta estimate is
computed. The proportion of cases (P) for which the likelihood is
higher in the first calibration is used in a (binomial) test of the
null hypotaesis that the two calibrations provide equally good fit.
This test, then, provides an indication of how well the item parameter
estimates predict responses in situations where they will be applied
(i.e., the validation sample).

Divgi applied his index to a study of a reading test calibrated
according to the one-parameter IRT model both in a high-ability sample
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and in a low-ability sample (N=500 for each group). For a
high-ability validation group (N=100), the high-ability calibration
(with P=,86) had a better fit whereas for a low-ability validation
group (N=100), the low-ability calibration (P=.06) fit better; An
both cases, the probability of these results occurring by charnce was
less than .0001. This suggested that the two calibrations gfe not
group-independent and, therefore, that the one-parameter model may not
be appropriate for vertical equating. . : 7

Divgi (198la) presented further data in support of his contention
that the one-parameter model is not appropriate for vertical equating.
First, he modified the Rasch-model fit statistic (Wright &
Panchapakesan, 1969), making it mofe powerful. He then applied it to
a national reading test, and found that while the old test rejected
16% of the items, 69% of the items were rejected by the new index.
Divgi concluded that ‘ability estimates are not item-free as the model
claims. He went on to form edsy and difficult subtests and to compute
a theta estimate for each of‘wuore than 5,000 examinees from each
subtest. The mean of the standardized difference scores was close to
zero; this is typically found in Rasch-model studies and is usually
presented as evidence favoring ti.e use of the one-parameter model for
vertical equating. However, regression of this difference score on an
independent reading ability score (predicted by the other tests in the
battery) yielded a significant quadratic relationship. The difficult
subtest resulted in higher theta estimates than did the easy subtest
for both low-ability and high-ability examinees. Divgi speculated
that this was due to guessing on the difficult test and ceiling
effects on the easy test.

Divgi (1981b) presented an alternate method for studying bias in
vertically equated scales in which all examinees are tested and scored
on equated tests X and Y. Bias (i.e., the difference between scores
on the equated tests) is computed for each examinee. The sample is
. grouped on an independent measure of the ability, and mean bias is
computed for each group and plotted against ability. The need for a
large sample can be avoided by an approach in which bias is regressed
on ability. A drawback of the method is that all persons must take
both tests (a single-group design), as well as the independent
measure. An advantage to using this method is that there is an
absolute criterion for evaluation (bias should be zero across
ability), although this is strictly true only for a perfectly reliable
measure of ability. Divgi applied the method to the reading test
previously calibrated by the Rasch model (N=2,000) by dividing it
into difficult and easy subtests and administering it to a new sample
(N=5,500). This was probably the same data reported earlier for
standardized difference scores. Divgi obtained the same results:

Bias was high and positive for both ability groups.
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| Loyd-Hoover. The adequacy of Rasch-model vertical equating was

also Investigated in a study by Loyd and Hoover (1980). They
administered three overlapping levels of the mathematics computation
test of the lowa Tests of Basic Skills to approximately 2,000 students
in grades 6, 7, and 8; each student received only one test., Level 12
was targeted to be of appropriate difficulty and content for students
in grade 6, Level 13 was targeted for grade 7, and Level 14 was
targeted for grade 8. Each level contained 45 test items; adjacent
levels had 30 items in common and nonadjacent levels had 15 items in
common. Levels 12 and 13 were administered to students in grade 6,
and all three levels were administered to students in grades 7 and 8.
Item difficulty parameters were estimated separately by level and by
grade. The corresponding IRT ability estimates were computed and
placed on a common metric. The raw scores corresponding to these

. ability estimates were determined; raw scores were equated by defining
as equivalent those raw scores corresponding to the same ability
estimate, '

Three applications of vertical equating were studied: (a) ' %
adjacent test levels (12 and 13, 13 and 14) were equated when parameter .
estimates were obtained from two groups of comparable ability; (b)
nonadjacent test levels (12 and 14) were equated when parameter estimates
were obtained from two groups of comparable ability; and (c)

., nonadjacent test levels (12 and 14) were equated by pairwise chaining
through an intermediate test level (13). Equating results were
evaluated by comparing them to results obtained when two seventh-grade ;
groups were each r indomly split amd Levels 12 and 13 were equated from B
these random samples. - - ‘

The results from these applications of vertical equating were
disappointing. When Levels 13 and 14 were equated twice using seventh-
and eighth-grade students, respectively, Level~14 equated scores were
consistently higher by one to two raw-score points for the eighth-grade
students than for the sevgafﬁ;grade students, Discrepancies of the same
magnitude were observed when Levels 12 and 13 were equated using sixth-,
seventh-, and eighth-grade students. Equated scores on Level 13 were
consistently highest for e.ghth-grade students and consistently lowest for
sixth-grade students. When Levels 12 and 14 were directly equated through
15 common items using seventh- and eighth-grade students, higher Level-l4
scores were consistently obtained by the older students (the mean
difference was greater than two raw-score points). Similarly,
equating Levels 12 and 14 via chaining through Level 13 resulted in
higher equated scores for eighth graders than for the seventh graders.
Comparison of these results with the results from random splits of
seventh graders indicated that these discrepancies were larger than
would be expected from sample differences in item parameter estimates,
Post-hoc analyses suggested that the unidimensidnality assumption of
item response theory had been violated.
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Guskey. Guskey (1981) used the one-parameter model to
vertically equate Levels 9 through 14 of the reading comprehension
subtest of the Iowa Tests of Basic Skills (ITBS). This subtest
contained 178 items arranged sequentially by age level from lowest to
highest. Each level contained overlapping sets of items (i.e.,
anchors) with the levels immediately preceding and following it. Item
difficulty estimates were obtained for each item separately withi
each level. :

The mean difference between anchor-item difficulty estimates was
computed for each adjacent~test~level pair. These differences were
used to transform the raw scores at each test level to the metric of
Level 11. The transformed ability estimates were compared to the
norm-referenced grade-equivalent estimates published with the ITBS
manuals. At the extreme ability levels, IRT ability estimates
increased much more rapidly than the ITBS grade equivalents; the
correspondence between the two sets of ability estimates was closer
for the middle ability range. At the lower range of ability, howevei,
larger differences were observed between the two scales regarding
estimates on Levels 9, 10, and 11 and Levels 12, 13, and 14. That is,
students taking the lower~level test forms and those taking the
higher-level test forms may be assigned the same IRT ability but may
differ by as much as an entire year on the ITBS grade-equiyvalent
scale.

To investigate this score gap, Guskey collected new data from
other students in this lower ability range and compared their IRT and
grade-equivalent ability estimates on the reading comprehension
subtest with their patterns of scores on three vocabulary and
mathematics subtests of the ITBS. These supplementary analyses
suggested that grade-equivalent scores underestimated ability in this
range. Moreover, there were no differences between the scores on the
new subtests for those two groups of students who would have been
agsigned the same IRT abilities but different ITBS grade-equivalents.
These results could not be attributed to regression artifacts. Guskey
concluded that the IRT scale was more precise and stable across the
ability range.

Guskey's endorsement for the one-parameter IRT model may be

ified for this data set alone. It is important to note that his
~amples (1,000 examinees at each of six grade levels) were randomly
selected from examinees with scores between 50% and 80% correct. This
strict curtailment ensures that only those examinees for whom the test
level was appropriate were included. That is, no examinees were
included if the test level was too easy or too difficult for them. 1in
other words, Guskey has done no more than to test the feasibility of
the one-parameter model under conditions that satisfy model
assumptions. Nevertheless, practical equating situations demand that
the equating transformation be applied to the entire score range,
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including the lower region where guessing is likely to occur. It is
not unreasonable to expect the one-parameter model to perform poorly
at the lower score range, since it includes no provision for guessing.
An equating procedure should be selected only after its superiority
across tHe entire score range has been demonstrated.

Holmes. Holmes (1981, 1982b) employed the one-parameter model
to vertically equate sets of items selectéd from five reading and
mathematics subtests of the Comprehensive Tests of Basic Skills. Item
response data were available from approximately 6,700 third and
fourth graders who took Level I of the CTBS. A principal-components
analysis was performed on the tetrachoric interitem correlation _
matrix, and 32 items that loaded highly on only the first factor of ’
the two-factor solution were selected. Item difficulty parameters '
were obtained for these items. The 20 easiest items formed one test
and the 20 most difficult items formed another test. This resulted in
two 20-item tests that shared eight anchor items. Grade-3 responses to
the easy test and Grade-4 responses to the difficult test were used
for the equating. The average difference between the anchor-item
difficulty estimates from the two groups of data was computed and used
to transform Grade-4 ability and difficulty estimates to the Grade-3
scale. Since all the students had actually responded to all the items -
in both the easy and the difficult tests, two ability estimates could.
be obtained for each student. The average standardized difference
between these pairs of estimates was computed and used to evaluate the
accuracy of the equating procedure. )

Holmes found that the items fit the one-parameter model well
using several different definitions of fit. Nevertheless,
standardized differences between the two ability estimates computed
for each student revealed that the difficult-test ability estimates
were consistently higher than the easy-test ability estimates for
students in the low-ability range. The results from this equating
procedure were applied to 2,000 third and fourth graders in a
cross-validation group. Holmes observed that students in Grade 3
received consistently higher ability estimates from the easy test
whereas students in Grade 4 received consistently higher ability
estimates from the difficult test. ;

She discussed the implications of these results in terms of
out-of-level testing for selected students. The most likely
candidates for out-of-level -testing were high-ability third graders
and low-ability fourth graders. Yet the cross-validation results
implied that both these groups of students would have received lower
ability estimates from the out-of-level tests than they would from the
tests constructed for their specific grade level. Holmes concluded
that the one-parameter model was inappropriate for vertical equating
across the ability range.
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Summary., Together, these studies suggest that vertical
equating using the one-parameter IRT model works when (a) model
assumptions are satisfied, (b) the tests are of nearly equal
difficulty, and (c) the group ability levels are nearly the same
(Guskey, 1981; Slinde & Linn, 1979b). Problems may result, however,
if the two groups are widely different in ability or if they are of
sufficiently low ability that guessing occurs with any frequency
(pivgi, 1980, 198la, 1981b; Holmes, 1981, 1982b; Loyd and Hoover,
1980; Slinde & Linn, 1979a). Unfortunately, most items used in
objective tests can be answered correctly by guessing and may often be
used in environments where guessing is likely to occur. The
three-parameter logistic model extends the Rasch model to account for
guessing and thus may be more generally useful.

i

Three-Parameter Model

o

Cook-Eignor-Petersen. Cook, Eignor, and Petersen (1982)
investigated item-parameter invariance, defined as the stability
across time and samples, of item parameter estimates calibrated using
the three-parameter logistic model. This was primarily a linking
study, but is considered here because each test was equated to itself
after the items were linked. Each of several tests of various content
(SAT verbal, mathematic¢s, and achievement tests) was administered
twice, at different times and to different samples of approximately
2,000 examinees each. A linear transformation was then performed to
put the two sets of item param:ter estimates on the same scale.
Various indices were ‘used to evaluate the adequacy of the linking
procedure. The indices included: (a) scatterplots of difficulty
parameter estimates and scatterplots of discrimination parameter
nstimates for each set of paired testings; (b) correlations between
the pairs of parameter estimates; (c) means and standard deviations of
each of the three parameter estimates obtained at each testing; (d)
the mean of the mean absolute diffefences between item response
functions computed using the two sets of item parameter estimates and
the theta estimates from the first group tested; (e)
relative-efficiency curves, using the first administration of a test
as the "baseline;” and (f) true-formula-score equating of the test to
itself. True formula scores were defined as

) - 6]

with summing over items where k is the number of alternatives for

the item and P is the three-parameter logistic response curve
specified using the transformed parameters for the item. (The formula
presented by Cook et al., reduces to this standard form.) Equating was
performed by computing and pairing the true formula scores,
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corresponding to-the same theta value, for the two administrations of
the same test. This was done for a series of theta values, and the
equating curve was obtained by plotting the paired crue scores. This
curve was compared to the ideal line for a2quating a test to itself,
having unit slope and an intercept of zero. Residuals (the
differences between the true scores) were also computed and plotted
against the true score from the equated test.

All the plots of conversion lines from the true-formula~-score
equatings were extremely close to the ideal line. Maximum absolute
residuals were less than 0.5 for all SAT-V and SAT-M tests between 25
and 60 items in length, becoming slightly larger than 1.0 for an
85-item verbal test. The achievement tests were longer (100 items)
and had large:r maximum absolute residual values, ranging between
nearly 1.0 for Biology to nearly 2.0 for American History and Social
Studies. The largest residuals were typically observed for extreme
scores.

Cook et al. concluded that, although there was some instability
in item parameter estimation (caused more by group ability differences
and possible multidimensionality of test content than by time between
testings), the effect on test scores was minimal, “not trivial, [but]
well within the range of the measurement error for the test” (p. 22).
0f course, when pairs of tests are equated, it would be expected that
larger errors would be found than when a test is equated to itself.

As Cook et al. noted, even small discrepancies in equating may
accumulate over time, causing scale drift.

Holmes. Holmes (1982a) conducted a study to examine the
accuracy of equated ability estimates when the equated test measures
something diff~ ent than the reference test. She defined the "primary
trait” as tha: wrait measured by the reference test, and the "indirect
trait” as that trait measured by the second test. Data included the
responses of approximately 1,000 students in each of Grades 2 and 6 to
appropriate levels of the reading subtest of the California
Achievement Tests (CAT), the primary measures, and the Prescriptive
Reading Inventory (PR1), the indirect measures. Equating was done
through anchor tests. Each item on the CAT was calibrated according
to the three-parameter logistic model. Then 20 anchor items were
selected from the primary measures such that they closely reflected both
the content and difficulty of the tests from which they were obtained.

Four content-match categories were defined on the basis of the
similarity between the objectives of the CAT and the selected PRI
items. The "match” item sets included the PRI items that measured
objectives identical to the CAT objectives. "Similar” item sets
included PRI items that measured objectives similar to CAT.
“Dissimilar” item sets measured objectives not measured in CAT.
“partial” item sets measured half of the objectives measured in CAT.
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'Evaluation of this classification of iteﬁ\sets was made by a reading
specialist and found to be adequate; diffexences in similarity ratings
among the categories, however, were not great.

Item sets containing 10, 20, or 30 items from each of the four
content-match categories were selected from the\PRI. This yielded 12
indirect item sets. Item parameters for the 12 indirect item sets and
the 20 CAT anchor items were jointly estimated. 8Since IRT parameters
were also available for the 20 anchor items from a\prior analysis of
only the CAT items, the linear relationghip between \the pairs of
estimated difficulty parameters was used to transform\ the PRI item
parameters to the CAT metric. The rescaled item parameters were
applied to the item response data of each examinee to yield one
primary and 12 indirect trait estimates for each examinee. Equating
adequacy was evaluated using product-moment correlations gnd the root
mean squared difference (divided by the pooled trait-estimate
variances) between the pairs of trait estimates obtained' by 1nd1v1dua1
examinees.,

Holmes observed that the accuracy of the indirect trait estimates
increased slightly as a function of the similarity between indirect
item sets and the primary measures, at least in the sixth-grade '
sample. Accuracy was more strongly related to the number of items in
the indirect item sets. There was a bias in the equating procedure,
however. The average indirect trait estimates were consistently lower
than the average primary trait estimates across item-set categories
for grade 2; the opposite was true for grade 6. She hypothesized that
this bias arose because students with zero or perfect PRI scores were
deleted from the data set before equating. Results from a randomly
selected cross-validation sample were very similar.

Lord-Wingersky. Lord and Wingersky (1983) used the
three-parameter logistic IRT model to compare observed-score and
true-score equating of an SAT verbal test to itself through a chain of
five other SAT test forms. Anchor-test equating was used throughout;
at each step, two test forms and the associated anchor test were
calibrated simultaneously in order to place all item parameters on a
common metric. Scores below the chance level were equated according
to the procedure described in Lord (1980, pp. 210-211). 1In this
procedure, all scores below the chance level are equated using
conventional linear procedures, with mean defined as the sum of the
c parameters and variance defined as the sum (over items) of ¢
times (1-c); these are the observed-score statistics that would be
obtained for a hypothetical group of examinees with abilities at
negative infinity. Lord and Wingersky observed few differences
between the two methods.

Summia:y. The two studies of the three-parameter model
considered peripheral test-equating issues: the equating of a test to
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itself and the effect of varying the similarity of traits measured by

"equated tests. Cook et al. (1982) observed slight instability of

parameter estimates which may contribute to scale drift over time;
larger errors would be expected when two different tests were equated

(rather than a single test equated to itself). Holmes (1982a).
observed, not surprisingly, a positive relationship between the
accuracy of trait estimation and the similarity between the two tests
being equated. No study of vertical equating, so exhaustively
examined using the one-parameter model, was reported.

Comparisons Among IR1T Methods

One- vs, three-parameter models, Divgi (1980) applied his
nonparametric test of fit described earlier to a comparison of the
one-parameter and three-parameter IRT models. The full sample of
2,000 examinees was used to calibrate items according to each of the
models. As above, high-ability and low-ability validation samples
were used (N=100 each). He observed significantly better fit for
the three-parameter model whether the validation group was
high-ability (P=.78) or low-ability (P=.82); p < .0001 in each
case,

One-~ vs. two- vs. three-parameter models. Douglass (1980, 1981)
conducted a large-~scale study to compare the one-, two-, and
three-parameter logistic IRT models for item calibration and test
equating in a ccllege classroom situation., Data were available from
the midterm and final examinations in a communications course from
fall 1978 and winter, spring, and fall, 1979; N= 947, 820, 594, and
1082, respectively. Three sets of examinees were selected from the
£all 1979 data on the basis of their midterm examination scores. The
first set was a random split of the examinees for whom both midterm
and final examination scores were available. The second set
corresponded to very-high- and very-low-ability examinees who scored
above and below the midterm median, respectively. The third set of
low- and high-ability examinees was selected such that the mean’
difference between the ability groups was approximately half as large

as in the second set. Separate item parameter estimates were obtained -

for each sample for each IRT model. Item and person parameter
estimates were transformed to the scale determined by the spring 1979
final examination by means of common anchor items. IRT equating was
performed on the final examination scores.

Douglass observed that the c parameters of the three-parameter
model were very poorly estimated by LdFIST (Wood, Wingersky, & Lord,
1976) for these data (i.e., nearly all-the c parameters were set to
default values because valid estimates could not be made); he
eliminated the model from further consideration., He found the
one-parameter-model equatings to be very st ble (i.e., to similar
results) across sample sizes of 200, 600, an{ 800 and the two-
parameter-model equatings to be less so. :
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Lack of an adequate criterion of equating adequacy prompted him
to equaté®the fall 1979 final examination to itself using the three
sets of examinee subgroups discussed above, This permitted a
comparison of the observed equatings with the "true” known equating
line that has unit slope. While neither of the methods was uniformly
best, Douglass concluded that the one-parameter model provided the
more acceptable method of equating.

The stability of the Rasch equating constants based on class
sections was also investigated using anchor tests containing between 7

and 37 items (on a 43~item test). Douglass computed the bias in these -

constants to be equal to 0,25 standard deviations of ability in the
most extreme case, even with the 37-item anchor test. The Rasch
calibrations were consistent from sample to sample, therefore, but
incorrect. -

Summary. Results from these two studies are equivocal. Divgi
(1980), for example, found the three-parameter model to be superior to
the one-parameter model using his nonparametric fit test. Douglass
(1980, 1981), however, eliminated the three-parameter model altogether
because of poorly estimated c parameters and concluded that the
one-parameter model was biased but consistent.

Comparisons Bétween Conventional and IRT Methods

Conventional vs. One-Patggetet IRT

Rentz-Bashaw. Rentz and Bashaw (1975, 1977) reanalyzed the
data from the Anchor Test Study and constructed a Rasch-model-based
National Reference Scale for Reading. Raw scores on 14 forms of seven
standardized tests of reading vocabulary and comprehension (Grades 4,
5, 6) were then placed on this scale. They first analyzed model-data
fit in several different ways and concluded there was adequate fit for
equating purposes.

Pairs of tests had been administered to large samples of fourth-,
fifth-, and sixth-grade students. Each pair of tests was treated as
one long test for the purpose of fest equating; item difficulty
parameters were estimated for each item separately within a test pair.
The difference in average log easiness for the two tests was used as
the equating constant to adjust log ability estimates and to put the
two tests on the same scale. A matrix of equating constants made it
possible to place all tests/abilities on the metric defined by the
vocabulary test of the Sequential Tests of Educational Progress. The
log ability estimates were transformed back to equated raw scores by
the following procedure. For a given raw score on the base or
reference test, the corresponding ability estimate on the Rasch scale
was obtained. Then the raw score on the new test corresponding to
that Rasch ability was computed. In practice, there were errors
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involved in having to assign a raw score on the equated test that is
most nearly equivalent to a raw score on the reference test. Rentz

and Bashaw called them assgﬁnment errors and observed that they were
larger than the errors In the equating constant and were nearly 10% of

the size of the standard error of measurement in their study.

The Rasch-model equating results were compared to those obtained
from equipercentile equating in the Anchor Test Study. The two sets
of equated scores usually differed by only one or two raw score
points; rarely was this difference as high as four points. The
discrepancies observed were much smaller than the standard error of
measurement for the equated tests. No absolute criterion of equating
adequacy was used in this study.

Beard-Pettie. Beard and Pettie (1979) compared linear and
Rasch-model equating methods using an anchor-test design for equating
two forms each of two levels of two different tests. For two
consecutive years, different forms of communications and mathematics
basic skills tests were administered to students in Grades 3 and 5.
The 1976 forms contained items that were also present in the 1977
forms, and these common items formed the anchor tests for equating.
Sample sizes were larger than 5,000 for each grade and coutent area.

Each level of each test form was separately calibrated according
to the one-parameter IRT model. Beard and Pettie checked model-data
fit and the stability of the anchor-test item parameters over time,
and concluded that all the tests in their study showed adequate fit to
the one~-parameter model. Angoff's (1971) Design IV was used to
linearly equate the 1976 test forms to the 1977 forms. For the
one~parameter IRT model, rdaw 1976 scores were converted to the Rasch
ability scale; the 1977 ability level that was closest to each 1976
scale value was located and converted back to a raw score on the 1977
scale. These equated raw scores were then converted to 1977 T
scores. ' \

The results were similar across test level and content. There
were only small differences between the equated scores obtained by the
two procedures; the largest discrepancies occvrred at the lower end of
the ability scale where there were few data. For all the test pairs,
the scores equated by the IRT procedure were slightly, though
consistently, lower than the scores equated linearly.

Goluh-Smith. Golub-Smith (1980) compared the linear and
Rasch-model methods of equating scores on tests of minimum-basic
skills administered each year to high-school students in New Jersey
public schools. Twenty-five anchor items were embedded in the reading
and mathematics tests that were administered to students in each of
four different grades. Golub-Smith first checked the adequacy of the
fit of the data to the model and concluded that there was moderate to
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good fit; this was done separately for each test. The author examined
the equating results of the raw scores at and around the
state-mandated cut-off score. The equivalent raw scores derived from
the two equating methods were very similar. Eliminating the common
items whose parameters were unstable from one testing to the next
resulted in different raw scores being labeled "equivalent.” However,

‘ there was no evidence that this editing process provided a
consistently closer or worse match with the scores defined by the
linear method.

The lack of an absolute criterion of equating adequacy makes the
interpretation of these results di#fficult. That is, eliminating the
unstable item parameters changed the IRT equating transformation; one
can only assume that the result was an improvement in accuracy.
Comparison of the two IRT transformations, however, yielded no
evidence supporting or refuting that assumption.

\\\\ Conventional vs. Three-Parameter IRT

N Lord. Lord (1977, 1980) demonstrated IRT-~based true-score
) equating on two calculus tests that shared 17 anchor items and were
administered to two distinct groups nf examinees that differed in
ability. The tests were from the College Board Advanced Placement
Program and the College Level Examination Program; one test was
administered to each group. Itém parameters and examinee abilities were
. simultaneously estimated on the combined data sets according to the
\\three~parameter logistic IRT model. The adninistration of common anchor

items ensured a common metric for all items and abilities.

IRT-based true scores were computed for each test (by summing
ICCs across items in the test), and the resulting line of relationship
was compared visually to the equating lines obtained by another
IRT-based method (equipercentile equating applied to the estimated
observed-score distribution of the combined group) and conventional
equipercentile equating of observed scores. There was close agreement
between the IRT-based equating methods; the results from the
conventional equating were slightly different from the IRT equatings.
Lack of an absolute evaluation criterion precluded more definitive ,
conclusions regarding the relative merits of the various equating
procedures.

)

- Lord (1977, 1980) also evaluated IRT-based true-score equating by ‘
equating an 85~item verbal section of the SAT to itself by means of an
external 39-item anchor test. When a test is equated to itself, the
true line of relationship between test scores is known (i.e., the
scores are related by a line with unit slope and an intercept of
zero). This i{s exactly what Lord observed when he equated the SAT
test to itself after its administration to two large groups
(approximately 2,800 examinees each) that differed in mean ability.
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Lord (1981b, 1982b) also compared the standard errors from IRT
equating with those from both linear (Lord, 1975) and equipercentile
(Lord, 198la, 1982c) equating, using two forms of the SAT-V and an
external 40-item anchor test. Item parameters were estimated
separately for the two groups. He observed that the IRT standard
errors increased in the tails, especially at the low end of the
distribution. Standard errors for the linear equating were smaller
than those for the IRT equating. Standard errors for the

equipercentile equating were the largest of all three methods at every -

score level except the lowest (where IRT was the largest). All of the
standard errors were less than half the size of the standard error of
mecasurement for the tests; most were considerably smaller.

Marco. Marco (1977) conducted a study of equating methods in
which he ¢ compared three-parameter logistic IRT equating
(simultaneously estimating all item parameters and setting true scores
on the two tests equal) with (a) pre-equating (placing all item
parameter estimates on the same metric prior to a test administration
by using response data from previous administrations of the items),
(b) equipercentile equating, (c) linear observed-score equating
(setting observed-score means and standard deviations equal), and (d)
linear true-score equating (setting true-score means and standard
deviations equal). The data were two SAT-V forms (containing 40 and
85 items, respectively), both given to 5,565 examinees.

IRT equating was the standard against which the other methods
were compared. The evaluative criteria included a mean squared error
(MSE) index of discrepancies from the IRT equating, and also the
maximum absolute discrepancy from the IRT equating across the total
score range and in the mid-range only. By the MSE criterion, linear
true-score equating was best (i.e., closest to IRT); the other methods
were similar to each other. By the maximum-discrepancy criterion in
the total range, linear true-score equating was again distinguished
from the other three methods. When only the mid-range (most important
to college admission decisions) was considered, both the linear
true-score and pre-equating methods surpassed the remaining methods
and performed equally well., Assuming that the criterion was valid,
1inear true-score equating was shown to be the best substitute for IRT
equating, with pre-equating equally good under certain conditions.
Defining the 1RT-based equating transformation as the criterion for
evaluating equating accuracy, however, begs the question of how well
IRT methods compare to conventional methods in practical eqg:rating
situations.

Bejar-Wingersky. Bejar and Wingersky (1981, 1982) investigated
the adequacy of the three-parameter logistic IRT model for
pre-equating the Test of Standard Written English (TSWE).
Specifically, they studied the fit of the response model to two forms
of the TSWE and its effect on section pre-equating. They observed
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some lack of model fit at the item level (by comparing observed and
theoretical item-on-ability regressions) and at the subscore level
where multidimensionality was evident,

Bejar and Wingersky evaluated pre-equating and IRT-based
true-score equating by visually comparing the resultant equating
tables to those obtained from three methods of conventional equatings
used here as criterion equatings: (a) linear equating using SAT~V and
SAT-M as anchors, (b) linear equating using only the SAT-V as anchor,
and (¢) equipercentile equating using SAT-V as anchor. The first
criterion and IRT-based equatings were more discrepant for the test
form which showed marked multidimensionality; the amount of
discrepancy between the conventional and IRT-based equating methods
was a function of the old form chosen for the equating. The IRT-based
conversions resulted in higher mean scaled scores with smaller
standard deviations than did the conventional equatings. Given the
lack of an adequate equating criterion, Bejar and Wingersky offered
cautious optimism regarding the feasibility of pre-equating as an
operational equating procedure,

Modu. Modu (1982) compared three-parameter logistic IRT
equating with linear and equipercentile equating when the
unidimensionality assumption of IRT probably did not hold. Two forums
each of 11 College Board Advanced Placement Achievement tests were
administered to between 1,000 and 6,500 examinees; each form contained
between 35 and 120 items. The 11 tests were then separately equated.
Estimated item parameters were linked through an internal anchor test
(containing 14-30 items), and true scores were estimated and equated
for pairs of tests. Cunventional equating methods (equipercentile and
linear) were also applied in conjunction with the anchor-test design.
The conventional and IRT equatings were based on separate examinee
samples. Tables of equivalent raw scores obtained by the three
methods for pairs of achievement-test forms showed close agreement,
with discrepancies of less than one point except at the extremes where
data were scarce.

-

Petersen-Cook-~Stocking. Petersen, Cook, and Stocking (1983)
investigated scale.drift by.comparing equipercentile, three linear,
and three IRT equating procedures; each procedure was applied to SAT
verbal and mathematical test data and was used to equate a test to

"itself through a chain of five other tests. An anchor-test design was

used throughout; the three-parameter logistic IRT model and true
formula-score equating were used for all three IRT methods.

In the first IRT method {(concurrent calibration), the first test
pair and the associated anchor test were calibrated simultaneously;
the resulting item parameters were then automatically placed on a
common metric. The first test was transformed to the College Board
scale using previously available transformation parameters. The
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. second test, equated to the first, was then transformed to the College
Board scale as well. This calibration-and~transformation process was
repeated until scores on all test forms were placed on the College
Board scale.

In the fixed bs method, a single test was always calibrated
along with the associated anchor test; the b parameters for the
anchor-test items were then held fixed in the subsequent calibration
of the second test with that anchor. This process continued
sequentially, with the anchor~test b parameters from the previous
calibration held {‘xed at any stage.

In the characteristic curve transformation method, a single test
was calibrated along with the anchor test. This time, a linear
transformation was applied to the a and b parameters of the second
test to place them on the same scale as the first test. This linear
transformation was obtained from minimizing the difference between the
anchor-test true scores obtained by using the item parameters from the
two calibrations of a single anchor test. This process continued

equentially until all item parameters within a chain were placed on a
common metric. True formula scores, then, were automatically placed
on a common metric.

The three linear methods used here included the Tucker Equally
Reliable, Levine Equally Reliable, and Levine Unequally Reliable
models (see Angoff, 1971, for details). For all three models, scores
corresponding to the same standard score were considered to be equated
to each other. The models differ in their definition of the estimated
means and standard deviations; in all cases, the anchor-test scores
were used to estimate the scores on the two tests for the combined
group of examinees. Equipercentile equating was performed by first
equating each test to the associated anchor test; test scores
corresponding to the same anchor-test score were considered to be
equated to each other. No smoothing was performed in either the
percentile tables or the equating transformation.

Petersen et al. computed a weighted (by observed score
frequencies) mean squared difference between the original (scaled)
score and the equated score obtained from a specific equating method;
this was done separately for each method and separately for the verbal
and mathematical tests. In all cases, the equating method
overestimated the criterion (original) mean. For the verbal data, the
three IRT methods resulted in substantially smaller total error than
did any of the conventional methods; the fixed bs method was best
overa'’l. The equipercentile method was worst 0verall and the Levine
Equally Reliable model was the best of the linear methods. For the
mathematical data, total error was smallest for the Levine Equally
Reliable model and largest for the Tucker model, and the concurrent
calibration method yielded errors almost as small as the best method;
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equipercentile and the other two IRT methods yielded much larger
errors.

The authors noted that the content differences across test forms .
was greater for the verbal tests than for the mathematical tests.
Also, the base verbal form was longer than the other verbal test ;
forms; none of the mathematical tasks differed in length. Hence, it $
appears that linear equating methods perform adequately for reasonably
parallel tests, but that IRT methods (especially concurrent P
calibration) performed better for nonparallel tests. -

Hicks. In another study of scale drift conducted at
Educational Testing Service, Hicks (1983) compared conventional and
IRT methods for equating the Test of English as a Foreign Language
(TOEFL) after chaining. Three conventional and three IRT equating
methods were examined in this study; two sections of TOEFL were each
(separately) equated.

The IRT methods included the following: (a) fixed bs procedure
(described above), where all b parameters were held fixed at e
pretested values (a was limited by 0.0 and 1.5); (b) modified three-~ ;
parameter, where a and ¢ were held fixed at predetermined
("representative"”) values, and bs were re-estimated using the
characteristic curve transformation described above; and (c) three
parameters re-estimated, where all three parameters were re-estimated
and scaled using the characteristic curve transformation (no limits on
a). Conventional equating methods included (a) equipercentile, (b)
Tucker linear, and (c) Levine linear (the authors gave no further
description of which Levine method was used). All of the conventional
methods estimated test-score distributions from the combined examinee
group.

A separate base form was established for each of the six equating
methods. Instead of equating the base-form TOEFL to itself, the last
(eighth) form in the link was equated (a) to the previous form in the
link and consequently back to the base form and (b) directly to the
base form through common items. The "direct” equatings served as a
criterion against which the "chain"” equatings were compared. As in
the study described above, a weighted mean difference score was
computed for each method. Comparisons involving equipercentile
equatings were made only over the range of observed scores.

Fixed bs scaling provided the least equating error for both
sections of the TOEFL, followed by the modified three-parameter and
the Tucker models, respectively. The Tucker and Levine linear models
yielded similar results.
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Conventional vs, One~ vs. Three-~Parameter IRT

Marco-Petersen-Stewart. Marco, Petersen, and Stewart (1980)
used SAT-V data to compare the best of 40 linear methods (that varied
in terms of underlying assumptions) with two equipercentile and two
IRT equating methods; all methods used an anchor-test design.
Conventional equating was performed two different ways: (a) directly,
where scores on each test form are first equated to the anchor test;
scores that are equated to the same anchor-test scores are said to be
equated to each other; and (b) using frequency estimation (Angoff's
Design IV), where score distributions for the two test forms for the
combined group of examinees are estimated from the anchor-test-score
distribution for the combined examinee group. The one- and
three~parameter IRT models were both used in this study to estimate
true formula scores prior to equating.

Marco et al. reported the results from two basic study designs:
(a) equating a test to itself, varying the difficulty and type of the
anchor test (i.e., external vs. internal) and the similarity of
ability levels in the two samples; and (b) equating tests of differing
difficulty using an internal anchor test, varying the sample ability
levels and the spread of tegt difficulties. Tests equated to each
other had similar content (including an equal distribution of item
types) and were of equal length. For the first design, the criterion
score (or the score to be estimated), was defined as the test score on
the first form to which the second, identical form was equated. For
the second design, the results from an “ideal criterion equating”
(using data from all cases in a single-group equating) provided the
criterion, or “"correct,"” score. Two ideal criterion equatings were
used: (a) an equipercentile equating of observed scores, which was
biased toward equipercentile methods; and (b) an equipercentile
equating of true scores estimated from the three-parameter model,
which was biased toward IRT methods. The evaluative indices were
based on the difference between the criterion score and the
corresponding estimated criterion score for a raw-score value. Total
error was the mean squared difference, weighted by the number of
examinees obtaining the given raw score and standardized by dividing
by the product of the criterion variance and sample size; in this
manner, results could be compared across equating situations as well
as models. Squared bias was the mean difference score squared and
divided by the criterion-score variance. Both evaluative criteria
were computed over the range of raw scores above the chance level
(i.e., in the area in which .IRT methods can equate) for each model.

For the first design, when the anchor test paralleled the total
test, linear equating was found to be best. IRT methods rated second,
regardless of differences between samples, When the anchor test was
easler or more difficult than the total test, however, only the IRT
models were robust for between-sample dif ferences; linear equating
performed well when the samples were similar.
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For the second design, in which the ‘equated tests were of
different difficulty, the three-parameter model was best according to
the IRT-based criterion; both equipercentile methods were good, the
one-parameter model was poor, and the linear model was extremely
error-prone. This was regardless of how similar the samples were.
According to the equipercentile criteria, the equipercentile methods
were best for similar samples, followed by the IRT methods, with
linear equating far behind. When the samples were dissimilar, the
three-parameter model was best, followed by the equipercentile
methods, then the one~parameter model, and finally the linear model,

Since linear equating (or at least the best of the 40 methods
tried) seemed best for equating a test to itself, linear equating
probably also would work well for equating parallel tests. The best
linear method was not explicitly identified, and was undoubtedly
different for different parts of the study; hence, there may have
been a large degree of capitalization on chance. Had only one or
two linear methods been included, linear equating might not have been
a clear favorite for even this limited situation. The curvilinear
methods gained an advantage when the tests to be equated were
nonparallel, with the three—-parameter IRT equating method best for the
most extreme conditions.

Kolen-Whitney. Kolen and Whitney (1982) equated 12 forms of
each of five subtests of the Tests of General Educational Development
(GED) using linear, equipercentile, and one~ and three-parameter
logistic IRT methods. One of the test forms was designated an anchor;
each of the other 11 forms was equated directly to the anchor form.
Each examinee was administered two anchor-form subtests and the two
corresponding subtests from another form; approximately 200 examinees
responded to each form of each subtest. Examinees with zero or
perfect scores were deleted from the sample. A 10% hold-out sample,
stratified on the basis of socioeconomic status and geographical
region, was used for cross-validation (i.e., consistency) purposes.

Kolen and Whitney used Angoff's (1971) Design I (for equally
reliable tests) for conventional equatings. For IRT equatings, the
following procedure was used. First, all anchor-form item parameters
and abilities were estimated using LOGIST (Wood, Wingersky, & Lord,
1976). The examinee ability estimates were then held fixed for the
other test forms while the item parameters were ~stimated using
LOGIST; this was done separately for each of the 11 test forms.
Estimated true-score equating was used to equate scores on each test
form to the anchor form; both the one- and the three-parameter
logistic IRT models were used throughout. The c parameters for
Forms 1 to 11 (for the three-parameter model) were fixed at the modal
value of the corresponding anchor form. Scores of zero on any pair of
forms were equated to each other; scores below the pseudo-chance level
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were equéted via linear interpolation. Kolen and Whitney computed the
mean squared difference (adjusted for test length) between anchor-form

(integer) scores and the transformed scores on the other form with
identical percentile ranks in the cross-validation distributions.

In general, linear and one~parameter IRT equating yielded the )
most stable results; equipercentile equating and the three-parameter
model were typically much worse. The authors attributed much of -these
results to small sample sizes and some difficulties encountered in
estimating th parameters of the more complex IRT model. Slight
differences in the dimensionalities of the five subtests were not
reflected in differences in equating results across subtests.

Conventional vs. One~ vs. Two- vs. Three-Parameter IRT

Kolen. Kolen (1981) used the equivalent-groups design to
compare linear, equipercentile, and several IRT methods for equating
nonparallel tests. Subtests of an old form of an achievement test,
the lowa Tests of Educational Development, were equated to the
same-named subtests of two levels of a new form: an easier level and
a level of the same difficulty as the old form. Between 1,500 and
1,900 students took each test, one third being held for
cross-validation and the remainder being used for equating. The IRT
models used included one- (traditional and modified to permit
different tests to have different g.values), two—-, and three-
parameter logistic models with both estimated-true-score equating and
estimated-observed-score equating (using equipercentile equating on
estimated observed-score distributiuns). The criterion was the
stability of cross-validation as indexed by the mean squared
difference between raw scores on the old form and equated scores on
the new form hav. g identical percentile rank for the cross-validation
sample; the smaller the index, the more stable the results.

For equating the new form's easier level to the old torm, the
estimated-observed-score equating for the three-parameter logistic
model was definitely best. The linear equating was by far the worst.
For equating the new form of a more difficult level to the old form of
the same difficulty, the estimated-true-score equating for the
three-parameter model was the most stable.

Although the three-parameter model was best in both situations,
different procedures using the model were best for the two different
situations. Kolen speculated that it may have been because he used %
linearly extrapolated equated scores below the chance level of ¢
(others have ignored this part of the scale when computing equating
criterion indices) or it may have been related to LOGIST's weakness in
estimating c's. He also noted that the criterion was not a measure
of accuracy.
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Phillips. Phillips (1963) used several different methods to
vertically equate different levels of an achievement-test battery.
Two tests (Reading and Math) and two grade levels (4 and 8) were
studied. A "scaling" test was used throughout to place all scores on
the same metric; this scaling test was essentially a single external
anchor test that contained items from the full range of test-form
difficulties. Equipercentile equating was used as the criterion
against which the other (IRT) methods were compared; cumulative
f requency curves were smoothed (unidentified method) before equating.
True-score equating was used for all IRT methods; comparisons were
limited to those true scores above the chance level (i.e., greater
than the sum of the cs). ltems were calibrated separately for each
test for all IRT equating methods.

The IRT models included the following: (a) one-parameter
logistic; (b) "double-modified” one-parameter, where as were
perr.itted to vary across tests but were constant within-a test, and a
constant lower-asymptotic parameter was used for each item; and (c)
modirfied two-parameter, with a constant lower-asymptote parameter
assigned to each item. The more traditional three-parameter model was
omitted from consideration because of the estimation problems inherent
with small (300 to 500) sample sizes. Nevertheless, Phillips' modified
two-parameter rmodel is classified here as an IRT model with three
parameters; similarly, the double-modified one-parameter model is
considered as a two-parameter IRT model.

Mean absolute differences between equated (scaled) scores were
computed for all possible pairs of wethods. As a basis for
evaluation, each method was applied separately to two random samples
(N=500) of students at each grade level to equate a test to itself;
the difference between equating transformations from a single method
was used as a baseline measure of equating error.

In general, differences between methods were of approximately the
sane magnitude for all grades and methods. The single exception was
the relatively large discrepancy between the one-parameter and
equipercentile equatings for the Grade 4 Reading test. The modified
one- and two-parameter models were fairly coasistent with the
equipercentile method throughout (two-parameter slig..'y more so) and

were more consistent with each other than they wers with the Rasch ™~ =7 7

model.
Summar

Although a number of comparisons among cc weional and IRT
methods were made, the methodology used (i.e., test content, types of
examinees, data collection design, implements’ fon of equating methods,
and, especially, evaluative criteria) were so diverse that no simple
conclusion is possible regarding a best method of equating under all

-58~



circumstances. Some studies (Beard & Pettie, 1979; Golub-Smith, 1980;
Modu, 1982; Rentz & Bashaw, 1975, 1977) found no differences among

methods, while others (Bejar & Wingersky, 1981, 1982; Hicks, 1983;
Kolen, 1981; Kolen & Whitney, 1982; Lord, 1977, 1980; Marco, 1977;
Marco et al., 1980; Petersen et al., 1983; Phillips, 1983) found that
the methods ordered themselves differently depending upon the

~conditions under which equating was performed and the results were

evaluated. Some conclusions can be drawn by considering these results
in light of the dimensions of equating needs.

Relevance of Previous Research to Practical Equating Situations

In the studies cited above, individual power tests were equated
to each other; no study attempted to equate speeded tests. Most of
the tests were assumed to be unidimensional, and checks for
mul tidimensionality were performed only occasionally. The discussion
of the literature as it applies to the practical equating needs is
perhaps best done within the parallel/non-parallel test distinction,

Equating Parallel Tests

Theoretically Appropriate Methods

Conventional and strong-true-score methods of equating are
appropriate whenever individual tests to be equated are parallel; IRT
methods are appropriate under the added constraint that the tests are
unidimensional and not speeded. Empirical comparisons of these
equating methods yielded results that were consistent with
expectations. That is, when the assumptions underlying the equating
procedures were met, few differences among the various procedures were
observed.

Previous Research

Garcia-Quintana and Johnson (1979) found few differences among
the corventional linear methods they investigated; Lord and Wingersky
(1983) drew the same conclusion regarding true-score and

"observed=score IRT equating. -Using an anchor-test design, Marco et

ale (1980) observed that linear methods worked better than IRT or
equipercentile methods when a test was equated to itself and the two
samples were similar in ability. Similarly, Petersen et al, (1983)
found that linear methods worked better than equipercentile or IRT
methods for equating a test to itself through a chain of other tests.
Presumably, linear methods would also work best for equating parallel

tests as long as the abilities of the two groups were similarly
distributed. Lord (198la, 1981b, 1982b, 1982c), for example, found
that the standard error of equating was smaller for linear equating
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than it was for equipercentile equating; the standard error of IRT
equating was between these two values.

When test data fit the one-parameter model, few if any
differences were observed between linear and Rasch equating procedures
(Beard & Pettie, 1979; Golub-Smith, 1380; Kolen & Whitney, 1982). In
a study comparing the three IRT models, Douglass (1980, 1981) found
the one-parameter model to yield results that were more stable but
also more biased than those of the two-parameter model; problems
estimating the c parameter caused him to ignore the three-parameter
model altogether. Kolen and Whitney (1982) found the linear and
Rasch methods to be more stable than equipercentile or three-parameter
IRT methods.

One of the IRT methods studied by Hicks (1983) outperformed
conveniional methods in terms of scale stability; the linear methods
were very similar. The three-parameter IRT model performed well when
a test was equeted to itself (Cook et al., 1982; Lord, 1977) and, by
inference, to strictly parallel tests. Modu (1982) observed few
differences among linear, equipercentile, and three-parameter IRT
equating methods for tests that were probably multidimensional.

In one of the few studies that reported explicit evidence of
model-data misfit, Bejar and Wingersky (1981, 1982) noted that the
discrepancy between conventional equating methods and IRT-based
t rue~-score equating and pre-equating was greatest for the test form
which exhibited marked multidimensionality. The IRT methods produced
very similar results, as did the three conventional methods.

Conclusions

Previously reported data seem to indicate that conventional and
IRT procedures yield essentially the same results when they are used
to equate parallel tests. The IRT procedures, however, may be more
appropriate when samples differ greatly in ability (Marco et al.
1980); their superiority has not been established for multidimensional
tests (cf. Bejar & Wingersky, 1981, 1982).

Equating Nonparallel Tests of Equal Difficulty

Theoretically Appropriate Methods

Theoretically, only STST methods are appropriate for equating
nonparallel tests in every situation; nonparallel tests may also be
equated using IRT techniques as long as the tests are not
multidimensional in nature or administered with a strict time limit
(i.e., speeded). Nevertheless, investigators have examined the
applicability of conventional as well as IRT techniques to situations
involving nonparallel tests. None have compared these procedures to
STST.
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Previous Research

Bianchini and Loret (1974) concluded that equipercentile methods
yielded more consistent results for equating nonparallel tests than
did linear equating methods, with consistency defined as the
similarity of results between half- and whole-sample equatings.
Linear and equipercentile methods of equating yielded virtually
identical results in the study reported by Stock et al. (1980).

Lord (1977, 1980) observed that equipercentile equating of
observed formula scores yielded results somewhat different from those
based on IRT equating procedures; the two IRT methods, however,
ylelded very similar, results. Kolen (1981) observed that equating
methods based on the three-parameter model were more stable (in terms
of cross-validation) than were other IKRT and conventional methods.
Similarly, three-parameter IRT methods worked better than conve. tional
methods for equating nonparallel tests in the study by Petersen et al.
(1983).

Holmes (1982a) systematically varied the degree of nonparallelism
across equatings and studied its effects on the accuracy of IRT
equating. Although the experimental manipulation was not strong and
differences across types of tests were not great, her results
suggested that equating accuracy may be affected by the similarity of
item content in the tests to be equated.

Conclusions

No definitive conclusions can be drawn from the literature

‘regarding which equating method is best applied to nonparallel tests

of equal difficulty. This is in large part due to the lack of an
adequate criterion for evaluating the results. Some researchers
compared results across methods and merely looked for differences in
the equating transformations (Lord, 1977, 1980; Stock et al., 1980);
at best, equating methods were compared for consistency (Bianchini 4
Loret, 1974) or cross-validation stability (Kolen, 1981). When
differences among methods were observed, it was not clear which, if
any, of the methods was more accurate. Data concerning the s~ability
of equating results are only marginally relevant; Douglass (1980,
1981), for example, found the Rasch model to be very stable but also
inaccurate for equating parallel tasks.

Whereas some researchers observed differences between the
conventional and IRT equating methods (Bianchini & Loret, 1974;
Lord, 1977, 1980; Kolen, 1981; Petersen et al., 1983), others (Stock et
al., 1980) did not. In view of Holmes' (1982a) results, it is possible
that observed differences across methods may be a function of the degree
to which the tests being equated were nonparallel or multidimensional.
It is not known, for example, tc what e<tent the calculus tests uscd by
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Lord (1977, 1980) were parallel or unidimensional. They were, no doubt,
closer to being parallel than were the GRE subtests and the Miller
Analogies Test reported by Stock et al. (1980). Little can be concluded
without further research.

Equating Tests of Different Difficulty

Theoretically Appropriate Methods

As with nonparallel tests of equal difficulty, tests of unequal
difficulty are appropriately equated only using STST methods;
unidimensional power tests of unequal difficulty may also be equated
using IRT. Researchers have typically employed equipercentile and IRT
methods in their investigations of vertical equating.

Previous Research

It appears that the vertical equating of tests is a much more
difficult task than is the equating of tests that are similar in
difficulty. Slinde and Linn (1977), for example, rejected -
equipercentile equating as a viable method for vertical test equating;
the one-parameter IRT model was similarly rejected by the same authors.__
in later studies (1978, 1979a; cf. Gustafsson, 1979). However, Slinde
and Linn (1979b) later changed their opinion and suggested that the
one-parameter model may be suitable for vertical equating with an
anchor test when the groups are not widely different in ability.

Rentz and Bashaw (1975, 1977) and Guskey (1981) reported
successful applications of the one-parameter m del for the problem of
vertical equating. Holmes (1981, 1982b) and Loyd and Hoover (1980),
however, found serious evidence of bias in their data sets and
cautioned against the use of that IRT model for vertical equating.
Divgi (198la, 1981b) reached the same conclusion. Similarly, Phillips
(1983) found the traditional one-parameter model to yield equating
results discrepant from other IRT and conventional methods; the one-
and two-parameter models, when modified to permit non-zero lower
asymptotes, yielded results consistent with equipercentile equating
methods.

Conclusions

The results concerning the vertical equating of nonparallel tests
appear to be equivocal. Conventional methods do not appear to be
adequate. Although some researchers suggest that the (unmodified)
one-parameter IRT model may be appropriate for~ve{:ica1 equating under
certain circumstances, the pcssibility of scale bias precludes
enthusiastic endorsement of that method. It appears that some
provision for a pseudo-guessing parameter needs to be included in an
IRT model before it is appropriate for vertical test equatingz.
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" The Criterion Problem

Previous Approaches

The relative merits of the various equating procedures may be
obscured by the lack of a criterion for evaluating equating accuracy.
In general, researchers have evaluated their equating procedures in
one of the following ways: (a) looking at discrepancies across
. methods, (b) computing indices of consistency and/or stability, (c)
R’ equating a test to itself, and (d) comparing equated scores to
observed scores when all examinees respond to all test forms.

Discrepancies Across Methods

Many of the studies (Beard & Pettie, 1979; Bejar & Wingersky,
1981, 1982; Garcia~Quintana & Johnson, 1979; Golub-Smith, 1980;
Guskey, 1981; Lord, 1977, 1980; Loyd & Hoover, 1980; Modu, 1982;

Slinde & Linn, 1977; Stock et al., 1980) compared the results of
different equating methods simply by examining tables of equivalent
scores (and sometimes their plots) to see whether the different
equating methods resulted in the same equated scores. Typically, this.
led 'to a qualitative statement such as noting that there were small .
discrepancies (e.g., one raw scotre point or less) throughout most of
the raw-score range but larger discrepancies in the chance-score range.
These discrepancies were sometimes compared with the standard error of
measurement of the equated tests:-(Rentz & Bashaw, 1975; Slinde & Linn,
1979b) to evaluate the seriousness of these differences.

In every case, even if there were no discrepancies between
equating tables from two methods, the most that could be said was that
neither method was better than the other, In some cases, this was the
desired conclusion. Jaeger (1981), for example, developed several
indices to identify the conditions under which linear equating could
be substituted for equipercentile equating with no change in results.
In most cases, however, it would be desirable to be able to specify
which of two equating methods is better when the results are
discrepant and to determine the amount of error in equating. This is
the familiar criterion problem, and no completely satisfactory index
has been proposed. Lord's (1975, 198la, 1981b, 1982b, 1982c)
standard-error-of-equating indices allow comparisons of equating
quality at-different score levels, but do not solve the practical
problem of knowing the correct or best equated score. This was
illustrated in the study described above (Lord, 198la, 1982¢) in which
the equated scores from two methods were more than a standard error ot
medasurement apart,

Alternatively, when various equating methods are being compared,

one method can be designated a “criterion” or standard equating
/
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against which to compare the other equatings. Hicks (1983)
investigated scale drift after a chain of equatings by comparing the
final equating transformation with that obtained in an anchor-test
equating. In a similar approach, Marco (1977) computed the mean
squared difference between the scores fromseach equating method and a
criterion IRT equating across test-score values in the equating table.
In a later study (Marco et al., 1980), he evaluated the equatings
based on various population subsamples by comparing them to two
criterion equatings (equipercentile and IRT) derived from the total
sample. The indices he used (total error and bias) were both based on
the difference between the criterion equated score and the equated
score obtained by a method studied in a subsample.

The problem with this approach is that it assumes what it wants
to show, namely which equating method is in some sense "best.”
Unfortunately, that is the problem facing any attempt to compare
equating results obtained by the anchor-test or equivalent-groups
methods. A criterion of equating accuracy is needed that involves
more than a mere comparison of the similarity of equating results,

Consistency and Stability Indices //

Kolen (1981) and Kolen and Whitney (1982) avoided defining an
absclute criterion and examined instead the stability of equating
results when applied to a cross-validation sample. In both studies,
stability was defined as the mean squared difference between the raw
score obtained on the old form and the equated score on the new form -
computed for a cross-validation sample. Similarly, Bianchini and
Loret (!974) compared equating methods by computing a
root-mean-squared-error index that was based on the discrepancies
between equivalent scores from half- and whole-sample equatings.

These approaches provide information concerning which of the
equating methods ylelds the equating transformation that is most
stable across samples of examinees. These indices do not, however,
identify the most accurate transformation in an absolute sense.

Equating a Test to Itself

An absolute index of error exists for the trivial case in which a
test is equated to itself. A given score from the first
administration of a test should correspond to the same (equated) score
from the second administration. Therefore, a plot of the equating
transformation should be a straight line with zero origin and unit
slope. The discrepancy between the observed transformation and the

“{deal" line is an index of equating accuracy. -

Several studies reviewed here equated a test to itself in order
to demonstrate goodness of equating (Cook et al,, 1982; Douglass,
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1980, 1981; Lord, 1977; Marco et al., 1980).' This situation may be
considered as a case of equating two strictly parallel tests. As

such, it provides little information concerning how well an equating
method works when nonparallel tests need to be equated.

A test was equated to itself non-trivially by Petersen et al.
(1983) and Lord and Wingersky (1983). Those studies focused on
equating errors that occur when several test forms are equated and
chained together. Thus, the errors that were observed between the
. original test scores and the equated scores (after chaining) provided
a bona fide index of scale drift.

P Discrepancies Between Observed Scores and Equated Scores

When the siugle-group design is used (i.e., when test scores for
all examineeg are obtained on all tests), there exists some "absolute”
criterion of equating accuracy. For each examinee, the equated score
from the second test should be identical to the -score he or she
received on the first test. The discrepancy between observed and
equated scores can be readily computed as a measure of equating
accuracy. Several indices based on these discrepancies have been
proposed. All these indices are based on the difference between two
scores that are considered to be equated, and all yield a value of
zero for errorless observed-score equating.

The most prominent index is the standardized difference (between
two ability estimates computed for each examinee from two sets of item
parameter estimates) frequently used in Rasch-model studies of,
vertical equating (Divgi, 198la; Gustafsson, 1°79; Holmes, 1981,
1982b; Slinde & Linn, 1978, 1979a). Similarly, the bias indices
developed by Divgi (1981b) and Yen (1982) and the
root-mean-squared-difference index of Holmes (1982a) are also
applicable in studies using the single-group design. In almost every
case, however, the amount of measurement error overwhelms the amount
of equating error that is present in any equating transformation.

It is important to note that these indices are based on observed
scores. That is, the equating transformation is applied to an
oxaminee's observed score on the new test in order to arrive at an
equated old-test score. The difference between an examinee's okwutved
ceore on the old test and the examinee's equated score is then cowv; ated.
The process repeats for each examinee, This process is appropriate it
the purpose of the transtformation is to equate observed test scores.,
Since the examinees' true scores can never be known, Lord (1982a) states
fhat it is appropriate; Braun and Holland (1982) and Rubin (1982) concur.

Obierved-score equat ing may be inappropriiate tor several reasons,
it aned poremost, strict equating requires that the observed scores
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and the corresponding transformed scores have identical frequency
distributions in all groups tested (Lord, 1977, 1980, 1982a). 1In
general, this requirement will not be met if the equating
transformation is based on (fallible) observed scores (Lord, 1977,
1980, 1982a). Moreover, following Lord's requirement of equity, where
it makes no difference to the examinees which test they are given, it
becomes cledr that tests that differ in reliability and/or difficulty
cannot be equated. One is faced with the following paradox:
".se8cores x and y on two tests cannot be equated unless either
(1) both scores are perfectly reliable or (2) the two tests are
strictly parallel” (Lord, 1980, p. 198). In other words, it is
appropriate to equate observed test scores only when it is impossible
or unnecessary to do so. -

On the other hand, one can attempt to equate true scores instead
of observed scores, following Morris' (1982) definition of weakly
equated tests, where "each individual in the test population has the
same expected score on both tests” (p. 171).

True-score equating satisfies the reguirements of group
invariance and equity. Moreover, true scores can, theoretically, be
equated even for tests ‘that are not strictly parallel (i.e., for ail
practical equating situations). IRT and STST provide ways of
estimating the equating transformation between two sets of true
scores,

The major criticism of true-score equating is that examinees'
tiue scores are, of course, never known to the examiner. They can, at
best, only be estimated from item response vectors. These estimates
are then just another sort of fallible observed scores and, strictly
speaking, cannot be equated. Even though the transformation itself
can be estimated (using IRT or STST), one cannot substitute estimates
for true scores and expect strict equating to hold. The problem, as
described by Lord (1977, 1980), is that there is thus no truly
appropriate way to make use of the true-score equating transformation.
As he states, "Either the exact true-score equating can be used with
observed scores, or else an inexact observed-score equating can be
used, The real problem is that we have no criterion for choosing”
(1977, p. 133). It may be interesting to note, however, that in the
only study explicitly designed to compare observed- and true-score
equating, Lord and Wingersky (1983) observed few differences between
the methods when a test was equated to itself through a chain of other
tests,

A More Satisfactory Approach

It is clear from the definition of weakly equated tests that the
goal of equating is to provide a transformatioua for making true scores
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on two tests in some sense equivalent. The criterion for choosing
between observed-score equating methods and true-score methods applied

to observed scores also becomes clear: The evaluation of an equating
transformation should be based on true scores. That is, the equating

transformation, however obtained, should be applied to an examinee's
true score on the new test; the equated true score should then be
compared with that examinee's true score on the old test. -

This evaluation process can be performed, of course, only in the
situation where true scores are known for each examinee, that is, in a
Monte Carlo simulation study. The conclusions thus derived regarding
the relative merits of the various equating procedures should then be
directly applicable to practical equating situations provided that the
simulation procedures accurately model real-world conditions.

Design Issues for a Study of Equating

This review of the equating literature provides a basis for the
design of an equating study using Monte Carlo simulation techniques.
Previous studies were examined to determine those characteristics of
real data that should be modeled in a simulation. Few of the studies
dealt with such issues as the examinee sample size necessary for a
stable equating, however. Nearly all of the studies used real data
from standardized tests and available samples, with some information
not explicity given and therefore not amenable to simulation, Only
one of the studies formed composite scores before equating. The few
simulation studies were not directly relevant to the kind of study
considered here. \%

Examinee Ability Distributions

The assumption is often made that ability is normally distributed
in the population, and therefore normally or at least unimodally
distributed in a random sample from that population. The score
distributions for tests measuring that ability are also assumed to be
normally distributed. No data were given in these papers that
contradicted the assumption of normality, although this issue was
seldom directly addressed. A simulation study based on normally
distributed abilities and test scores may be reasonable. It 1is
probably much more appropriate, however, to explicitly examine
distribution shapes in samples similar to those found in military
situations.

Test Structures

The real tests used in the studies reviewed here were mainly
standardized tests with national norms: primarily reading or
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mathematics tests at the elementary or high school level or admissions
or achievement tests at the college or graduate school level.

Three simulation studies were reviewed. Marks and Lindsay (1972)
assumed that true test scores were normally distributed, and modeled
cach observed score as the simple sum of a true score and a random
error component. Gustafsson's (1979) simulated tests were composed of
nine items at each of four evenly spaced difficulty levels. Yen
(1982) designed her tests sc that the difficulty parameters were
approximately normally distributed; mean test difficulty was varied by
adding or subtracting a constdnt from every item difficulty parameter
in the set.

A realistic simulation should start with item parameter estimates
similar to those from tests to be equated in practice. This would
ensure that the results and conclusions would be as applicable as
possible to a real situation. Both power and speeded tests should be Py
simulated. I

I
. T

Sample Sizes

Marks and Lindsay (1972) found that 250 examinees were necessary
for adequate equating, but their study used an inappropriate equating
method (regression). Douglass (1980, 1981) found sample size (200,
600, and 800) to be an unimportants/factor for Rasch-model equatings,
but an important variable influencing the consistency of
two-parameter-model equatings. Similarly, Kolen and Whitney (1982)
suggested that 200 examinees may be too few for three-parameter IRT
equating. Yen's (1982) sample-size variable (1,000 vs. 2,000) had no
effect on equipercentile equating. The remainder of the studies
involved dat from national testing programs with such large numbers
of examinees that sample size was no longer an issue. Typically at
least 1,000 and often several thousand examinees were used for
each equating. Suchk large numbers are probably adequate, but these
studies leave unanswered the question of how many examinees are needed
for equating and how this minimum sample 8size varies across equating
methods.,

Composites

Stock et al., (1980) used a GRE composite as one total test score
to be equated. In all other studies, the equating methods were
applied solely to individual tests. Even when a test battery was
available, individual tests were separately equated. Completely
unresolved are the problems of huw to combine correlated subtests into
a composite and how to equate composites composed of same or diftereat
tests,
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METHOD
Project Overview

Equating procedures are best compared when (a) either all the
relevant test-model assumptions are met or the extent of their
violation is known, (b) characteristics of the testing gituation are
systematically manipulated, and (c) there exists a criterion indexing
the accuracy of the equating transformation. In the present study,
different testing situations were simulated. First, examinee responses
to unidimensional parallel tests were generated; equating methods were
applied to individual subtests and to composites of these subtests for
different samples. Since the test-model assumptions were satisfied,
the equating methods were compared and evaluated under ideal
conditions.

Next, the test-model assumptions were violated in ways that
modeled actual testing conditions. The parallel-test assumption of
the conventional equating procedures was violated by equating subtests
and composites of different lengths (i.e., differentareliabilities)
and different difficulties. Specifically, current Air Force equating
needs and conditions were simulated. Item responses were modeled on
the four AFQT subtests and examinee groups that resembled the current
military applicant population. Subtest length and difficulty were
systematically varied.

Two different raw score composites were computed: (a) an AFQT
composite analcgous to the current AFQT, formed by weighting and
summing across the four subtests, and (b) a power-test composite
formed from the three power AFQT subtests. These scores were equated
using different data collection designs, testing models, and
transformation forms. In addition, power and AFQT composites were
formed by weighting and summing across already-equated subtest scores.
Composite scores were also equated indirectly (as described below)
using score statistics and intercorrelations from individual subtests.

The use of a Monte Carlo simulation in this study permitted a
clear evaluation of the equating procedures. In a Monte Carlo
simulation study, examinee ability levels and, hence, true scores on
all tests can be specified a priori. Thus, the relationship between
the two sets of true scores is known, The equating transformation
computed from the fallible observed scores can then be compared with
the known relationship between the true scores. Discrepancies hetween
the equated and true scores on a test can be used to evaluate equating
accuracy. This type of comparison is not possible when real data are
used,
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The equating procedures employed in the simulations were also
applied to real Air Force data. That is, the same data collection
designs and equating transformations that were used in the simulations
were applied to item response and test score data from real examinees.

Table 1 presents an overview of the project. Equating was
performed for the combinations of equating method, data collection
design, and tests and composites marked. Within each cell, both
parallel and nonparallel tests and composites were equated using
various combinations of test length and difficulty.

Table !
Application of Equating Methods and Data Collection Designs to Subtests
and Composites

Composites
Direct Equated

Equating method Subtests* AFQT to  Subtests Indirect
and design PC AR WK NO Power AFQT power Power AFQT Power AFQT
Linear

Single group X X X X X X X X X X X
Equivalent groups X X X X X X X X X X X
Anchor test X X X X X X X X
Equipercentile

Single group X X X X X X X X X

Equivalent groups X X X X X X X X X

Anchor test X X X X X X X X

IRT )
Single group X X X X

Equivalent groups X X X X

Anchor test X X X ¥

STST

Single group X X X X X X X

Equivalent groups X X X X X X X

Anchor test X X X X X X

*Subtests included: (a) Paragraph Comprehension (PC); (b) Arithmetic
Reasoning (AR); (c) Word Knowledge (WK): and (d) Numerical Operations (NO).

Sample Characteristics

[N

Three data collection designs (single group, equivalent groups,
and anchor test) were investigated in this study. To implement these
designs, three distinct examinee groups were generated. First, a
parent distribution of examinee abilities was defined. This
distribution of abilities was defined to be comparable to the
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distribution of abilities of current.military applicants. Sample X
consisted of simulated examinees whose abilities were randomly samplei

from this distribution. This sample was used for all three data
collection designs. Sample Y consisted of simulated examinees whose
abilities were randomly sampled from the same parent distribution of
ability. Sample Y was used for the equivalent-groups and anchor-test
designs.

The equivalent~groups data collection design assumes that the
groups administered the two tests are, in fact, random gsamples from
the same parent population. The anchor-test design makes no such
assumption and, therefore, may be more appropriate for use with
nonequivalent groups of examinees., Consequently, a third examinee
group (Sample Z) was generated. The mean of the parent ability
distribution was increased, and examinee abilities were randomly
sampled from this new distribution. Sample Z was used for both the
equivalent-groups and anchor-test designs.

All test forms were equated using two different sample sizes
(1,000; 2,400). 1In addition, a third sample size was used for Samples
X and Y. Pnasponses to a separate selection composite were generated
for Samples X and Y, and the examinees with the highest scores on this
composite constituted the selected sample. Selected samples (N = 1,600)
were used to evaluate the equating procedures when applied to tests
administered to samples of selected recruits.

Test Characteristics

To perform this evaluation, two different difficulty levels and two
different test lengths were simulated for each subtest. Thus, eight
different forms of each subtest were required; Table 2 presents a
summary of these test-form characteristics. Even-numbered forms were
the "new" tests or composites that were equated to the odd-numbered
"old"” forms.

Table 2
Test-Form Characteristics

Form number Difficulty level Length
1 easy short
2 easy short
3 easy long
4 easy long
9 difficult short
b difficult short
7 difficult long
8 difficult long
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These test.forms were paired in nine distinct ways. Table 3
presents a summary of these test-form pairings. It also specifies the

difficulty level of the anchor test that was used for applying the
anchor-test design to each pairing.

Table 3
Test-Form Pairings
"01d" test "New" test Anchor-test

Form Characteristics Form Characfperistics difficulty
Parallel pairings

1 easy, short 2 easy, short easy

3 easy, long 4 easy, long easy

5 difficult, short 6 difficult, short difficult

7 difficult, long 8 difficult, long difficult
Nonparallel pairings

1 easy, short 6 difficult, short medium

3 easy, long 8 difficult, long medium

3 easy, long 2 easy, short easy

7 difficult, long 6 difficult, short difficult

3 easy, long 6 difficult, short medium

In the first four of these pairings, parallel tests were equated
to each other. For example, an easy short test was equated to another
easy short test. Nonparallel tests were equated in five different
ways. For example, a difficult short test was equated to an easy
short test, and a difficult long test was equated to an easy long
test.

Data Collection Designs

Three scparate data collection designs were evaluated in this
study: the single-group, equivalent-groups, and anchor-test designs.
For the single-group design, responses to both sets of test items were
generated for a.single group of examinees. Data from Sample X were
used for the single-group design. The vquivalunt-groups design
differed from the single-group procedure in that a different set ot
abilities was drawn in order to generate item responses on the new
test(s). Old-test responses were always pencrated for Sample X
examinees. New-test responses were ypenerated tor Sample Y examinees
for all subtests (and for Sample 7 examinces for the Paragraph
GComprehension subtest).  In the anchor-test design, item responses to
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the old test/composite were generated for Sample X. Item responses to
the new test/composite were generated for Sample Y (and for Sample Z
for the Paragraph Comprehension subtest). Responses to the common set
of anchor items were generated for all examinee groups. Sample
pairings for the anchor-test design were identical to those in the
equivalent-groups design.

Individual subtest scores were equated using this project design.
Because anchor-test equating can be used to directly equate composites
of power and speeded tests (e.g., AFQT composites) only if separate
power and speeded anchor tests are administered and later combined
into an anchor-test composite, and because this procedure is cumbersone
and unlikely to be used in practice, only powex composites (i.e., not
AFQT composites) were directly equated using the anchor-test data
collection design.

Fach data collection design was used with all testing models and
transformations and with all combinations of test length, test
difficulty, and sample size. The combinations of data collection
designs and sample ability cistributions are presented in Table 4.

The X-X and X-Y sample pairings were used for all tests and
composites; the X~Z pairing (varying ability level across samples) was
used for all equatings of the Paragraph Comprehension subtest.

Table 4
Combinations of Data Collection Designs and Sample Ability Distributions
NData collection "0ld" test "New" test
design = Sample Size Ability level Sample Size Ability level
Single group X 1000 current X 1000 current
X 1600 selected X 1600 selected
X 2400 current X 2400 current
Fquivalent groups X 1000 current Y 1000 current
X 1600 selected Y 1600 selected
X 2400 current Y 2400 current
X 1000 current Z 1000 increased
X 2400 current A 2400 increased
Anchor test X 1000 current Y 1000 current
X 1600 selected Y 1600 selected
X 2400 current Y 2400 current
X 1000 current Z 1000 increased
X 2400 current Z 2400 increased
Note. Adjectives describe the sample in relation to the parent sample
{e.¢., "increased” indicates that an additive constant has been applied
to the mean of the parent -- “current” -—- population before sampling).
-7~
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Data-Generation Procedures

True subtest abilities for each examinee were sampled from a
multivariate nonnormal distribution that was defined to be similar to
the multivaridte distribution of subtest abilities of current military
applicants. This multivariate distribution was defined by the first
four (marginal) moments of each subtest and by the intercorrelation
matrix of the subtest scores. The true IRT item parameters for the
three power subtests were sampled from a multivariate nonnormal
distribution of parameters defined to be similar to the distribution
of item parameters in the current ASVAB subtests. Similarly,
characteristics of the speeded tests were modeled after the speeded
subtest in the current AFQT.

The true abilities and item characteristics were combined with a
random process to yield item responses and, subsequently, fallible
observed scores for each subtest and composite, All equating
transformations were derived from these observed scores and responses.
Details concerning the ability distributions, parameter distributions,
and specific data-generation procedures are given below.

Examinee Characteristics

Specification of the Moments of the True-Ability Distributions

- Table 5 presents the summary statistics used to specify the
multivariate nonnormal distribution of true abilities.

Table 5
Summary Statistics Used to Specify Multivariate Distribution of True Abilities

Relia- Corrected correlations
Subtest Mean Variance Skewness Kurtosis bility PC AR WK NO

PC 0.090 0.795 - 0.170 -0.672 .80 -

AR 0.094 0.805 0.164 -0.607 .91 .83 -

WK 0.086 0.854 0.177 -0.860 .92 .94 .80 -

NO 0.696 0.041 -0.455 -0.323 91 64 .70 .61 -

Note. Table entries adapted from Vale et al. (1981) and Ree et al. (1982).
Summary statistics for the NO subtest are expressed on a proportion-correct
metric. All other subtest statistics are expressed on an IRT theta metric.

A constant of 0.25 was added to the mean for each power subtest before
abilities were sampled for Sample Z. Similarly, 0.04 was added to the mean of
the speeded (NO) subtest for Sample Z. Correlations have been corrected for
the unreliability of the tests.

Power-test abilities. Table 8 in Vale et al., (198!, p. 560)
presents summary statistics for modal Bayesian ability estimates
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derived from the responses of 500 military applicants to an
experimental form of the ASVAB~8 subtests during 1978. The first four

moments for the Arithmetic Reasoning (AR) and Word Knowledge (WK)
subtests were used to define the first four moments of the true abilities

for these subtests. Because the data from the Paragraph Comprehension
(PC) subtest were not preseated in Table 8, the median moments across all

subtests were used as estimates for the moments of the PC abilities.l

Speeded-test abilities. An examinee's number-correct score on
a test administered w.th a strict time limit is a joint function of
the speed and the precision with which the items are answered. These
characteristics can be respectively defined for a test with a time
limit by (a) the number of items attempted (i.e., speed), and (b) the
proportion of correct responses computed from the number of items
attempted (i.e., precision). For a pure power test, the number of
items attempted is equal to the number of items on tl.e test; for a
pure speoded test, the proportion of correct responses computed from
the number of items attempted is 1.00. A time-limit test (i.e., a
partially speeded power test) can be considered to be a combination of
a pure power and a pure speeded test. For a partially speeded test

such as Numerical Operations (NO), the values for these two
characteristics lie somewhere between the limits of the pure power and

pure speeded tests. The values used in this study were determined as
follows,

First, the item responses to the Numerical Operations (NO) subtest
from 15,115 Military Enlistment Processing Stations (MEPS) examinees
who took ASVAB Forms 8, 9, and 10 were obtained from D. J. Welss
(personal communication, September 10, 1982). Because the NO subtest
was administered with a time limit, not all examinees responded to
every item. For each examinee, the number of items attempted was
defined to be equal to the sequence number of the last item for which
there was a response. All succeeding responses were coded "not
reached.” Missing responses prior to this point were coded "omitted."
Thus, speeded-test responses were coded as correct, incorrect,
omitted, or not reached. Data were analyzed only for those 14,460
examinees who omitted fewer than two items before the time limit was
reached. Omitted responses were recoded as incorrect. A
proportion-correct score was computed for each examinee. The summary
statistics in Table 5 were based on these proportion-correct scores.

The distribution of the number of items as a function of the
proportion-correct score was also obtained from these data. This
distribution was used later to generate speeded-test item responses.

1The standard deviations presented in Vale et al, (1981) were
actually treated as variances when the multivariate ability distribu-
tion was specified., This caused thne simulated abilities to have a
larger variance than should have been the case otherwise.
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4
Varying ability. The parent ability distribution was modified

before examinees were drawn for Sample Z. This modification served to
simulate the difference in mean ability that might occur between
military applicants in successive years, or between the group of
current applicants and the mobilization population. A constant was
added to the mean of the ability distribution for the three power
tests and to the mean of the distribution of proportion-correct scores
for the speeded test. These constants were determined as follows.

First, data were obtained concerning the distribution of
applicants across AFQT categories for two successive years (R. S.
Massar, personal communication, January 25, 1983). These data were
collected between October and December, 1981, and between October and
December, 1982. A continuous frequency distribution for each year was
formed by interpolating between the midpoints of each score interval.
Table 6 presents these data.

Table 6
Distribution of Applicants Acruss AFQT Categorius

Oct~Dec 1981 Oct-Dec 1982

AFQT Score interval Proportion Proportion
category (percentile) Raw Cum. Raw  Cum.
1 93-99 026  .999 .034 1.000
II 65-92 .260  .973 311 .966
Illa 50-64 154 713 172 .655
ILIb 31-49 .202 +559 .213 .483
IVa 21-30 139 357 .128  .270
Ivb 16-20 .081 .218 064 142
1Ve 10-15 082  .137 052  .078
v 01-09 055  .055 026 .0206

N of cases 127,188 92,817

Note. These data are for non-prior-service male applicants
(first ASVAB administration) only. Data were provided by
R. S. Massar (personal communication, Jaunuary 25, 1983).

The 1982 applicants scored higher, on the average, than did the
1981 applicants. 1In fact, the 50th percentile tor the 1982 applicants
corresponded to approximately the 57th perceantile of the 1981
applicants. According to Table 8 in the report by Ree, Mathews,
Mullins, and Massey (1982), these percentiles correspond to
(interpolated) AFQT raw scores of approximately 75.5 and 80.2,
respectively. This raw-score difference was fairly constant throughout
the ability range. Comparisou of these scores with the standard
deviations (for all six ASVAB forms) reported in Table 7 of that same
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report revealed a standard-score difference between 0.23 and 0,25,
Consequently, a constant of 0.25 was added to the mean ability of the
parent distribution for Sample Z. Accordingly, a constant of 0.04 '
(approximately 0.25 standard deviation on the proportion-correct
metric) was added t2 the mean of the distribution of
proportion-correct scores for Subtest NO.

Specification of the Correlations Among True Abilities

As just discussed, the moments of the distributions of true
abilities were taken from Vale et al. (1981). That report, however,
did not report correlations among the subtest ability (i.e., theta)
levels, nor were any such data available elsewhere. Intercorrelations
among number-correct scores, however, were available from Ree,
Mullins, Mathews, and Massey (1982) for each of ASVABs 8a through 1lUb.

i

The median correlation coefficient across the ASVAB foyﬁs was
determined for each pair of subtests. Coefficients from ASVAB Form 8b
were most frequently the median. Therefore, the correlatjon matrix
among the AFQT subtests for ASVAB Form 8b was chosen as most represen-
tative. The reported reliability coefficients for Form,Sb from Ree et
al. (1982) were used to correct these correlations for anreliability.
The corrected correlation matrix was used as the true-gcore caerrelation
matrix. The NO subtest was speeded and no reliability coefficient was
reported. Therefore, the median correlation across all subtests was
used as an estimate of the reliability for NO. '

Sample Sizes and Combinations

As just described, 2,400 examinees were simulated for each of
Samples X, Y, and 2. A subset of 1,000 examinees was randomly
selected from each of the larger groups and constituted the smaller
samples. Sixteen hundred examinees were selected from each of Samples
X and Y on the basis of a separate selection composite and constituted
two selected high-ability samples. These sample combinations were
detailed in Table 4 above.

Generation of the True~Ability Distributions

Each examinee's true abilities for the subtests were sampled from
the appropriate multivariate nonnormal distribution according to the
procedure described in Vale and Maurelli (1983)., This procedure is
the multivariate extension of Fleishman's (1978) method for simulating
nonnornal distributions. 1In this procedure, the target correlation
matrix and marginal mean, variance, skewness, and kurtosis for each
variable are specified in advance. . The correlation matrix is then
modified (see Vale & Maurelli, 1983, for details) and subjected to
principal-components factorization., For each examinee, a (normally
distributed) random number (i.e., component score) is generated for
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each component. The sum of the products of a variable's component
loadings and the corresponding component scores defines an examinee's
score on a variable. Fleishman's procedure is then applied separately
to each variable score to yie¥d a vector of variable scores for each
examinee. Vale and Maurelli have shown that these score vectors have,
asymptotically, the appropriate intercorrelations and marginal
moments.

Throughout this project, normally distributed random numbers were
generated by applying the Box—Muller transformation (Box & Muller,
1958) to random numbers uniformly distributed on the unit interval.
All uniformly distributed random numbers were generated using a triple
multiplicative congruential algorithm (Wichmann & Hill, 1982).

Table 7 presents the summary statistics of the distributions for
Samples X, Y, and Z (and a separate evaluation sample, W) obtained y
after application of the Vale-Maurelli procedure. Sample W (described

Table 7 .
Summary Statistics of Multivariate Distributions of True Abilities:
Samples X, Y, Z, and W

sCorrelation coefficients

Subtest Mean Variance Skewness Kurtosis PC AR WK NO
Sample X

PC 0.050 00761 00128 "0.719 -

NO 00681 00038 -00522 -00294 0623 0687 0590 -
Sample Y

PC 0.036 0.756 0.145 -0.710 -

AR 0.022 0.750 0.141 -0.594 .820 -

WK 0.040 0.824 0.169 -0.868 .936 790 -

NO 00683 00039 _ "0-550 —00265 0625 0686 0597 -
Sample 2

PC 0.208 00678 . 00201 "00574 -

AR 0.208 0.679 0.188 -0.459 .807 -

NO 00702 00034 "00562 "00167 0559 0624 ! 0527 -
Sample W

PC 0.038 0.746 0.134 -0.666 -

AR 00036 00736 0-119 ‘()0584 . 0818 -

NO 0.681 00038 -00547 "00214 0618 0671 0583 -
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in more detail below) is composed of 10,000/é£§m1nees dravm from the
parent (current) ability population and was used to evaluate g}l the
equating transformationms. ., ' .

Comparing Tables S5 and 7 reveals that nearly all of the observed
moments are slightly lower than those specified. However, the
differences between the observed and specified moments are small and
the two correlation matrices are similar enough to justify use of the
procedure in this simulation.

Test Characteristics

Power Subtests

Test lengths. The current test f!ngths for subtests PC, AR,
and WK are 15, 30, and 35 items, respectively. For this project, two
different test lengths were simulated for each power subtest: 15
i{tems and 30 items. These test lengths were chosen to model the test
lengths of current subtests and to provide an effective test-length
manipulation. :

Specification of the true-item-parameter distributions.
Distributions of the true item parameters were modeled after those
obtained from items calibrated at the Navy Personnel Research and
Development Center in San Diego. These data were provided by J. B.
Sympscn (personal communication, September 20, 1982) and were
described by Sympson (1982), That paper described how items from
ASVAB Forms 8, 9, and 10 were calibrated together with new prototype
CAT items using LOGIST (Wood et al., 1976). Sympson provided item
parameters for 90 PC items, 180 AR items, and 210 WK items. Table 8
presents the summary statistics for these three sets of item
parameters. These statistics were used to specify the nultivariate
distributions of true item parameters for the three power subtests.

The correlations among the estimated item parameters obtained
from Sympson were used to specify the correlations among true item
parameters needed for the Vale-Maurelli procedure. These correlations
were also rerorted in Table 8.

Generation of the true-item-parameter distributions. An entire
pool nf items was first generated for each subtest. Items were then
assigned to individual subtest forms in a manner that ensured
parallelism across forms. This item-assignment strategy was used so
as to medel the manner in which test forms are actually constructed.
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Table 8 ' ' ' \
Summary Statistics Used to Specify Multavariate Dutributions of True
Item Parameters: Subtests PC, AR, and WK

—Correlation coeffliclents

Parameter Mean Variance Skewness Kurtosis . a . b © ¢

a 0.966 0.158 0.633 -0.053 -

b -0.446 0.969 0.218 0.954 <325 -

[ 0.233 0.002 0.305 0.674 «150 -,007 -
AR /

a 1.595 0.438 0.516 ~ =0.234 -

P. 00060 10045 "20533 90447 0649 -

c 0.228 0.004 0.118 ~0.589 136 132 -
WK "

3 10548 00442 00633 -0O278 - 4

b -0.385 0.972 ~-0.934 0.560 .603 -

c 0.260 0.003 -0.186 ~0.,424 059 -,025 -

Note. Data from which these statistics were obtained were provided by
J. B. Sympson (personal communication, September 20, 1982). '

The true item parameters were generated for each power subtest usiag
the Vale-Maurelli procedure and the following restrictions:

(a) 0.4< a £ 2.5
(b) -3.0< b < 3.0; and
(¢) 0.0< ¢ € 0.5.

Items that fell outside these bounds were discarded and replaced.

Fach short test contained 15 items and each long test contained \

30 items. There were four short forms and four long forms for each \

subtest (see Table Xl1). Thus, each subtest required 180 items. 1In
addition, the anchor tests required 90 items (two 15-item forms for
each of three difficulty levels). Also, 30 selection-test items were
generated, Thus, a total of 309 items were required for each subtest.

Once {tem parameters were generated, they were modified to
simulate tests of different difficulties. One hundred twerty items
were made more difficult by addingga constant of 1.0 to the b
parameters; a and ¢ remained unchanged. Thirty items werce used to
construct anchor tests of medium difficulty; these items were modified
by dddlng a constant of 0.50 to b, The remaining items were called
"ewasy"” items and were not modified at all. In all cases, {f the
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resulting b parameter was greater than 3.0, all the parameters for
that item were discarded, and a new gset of item parameters was
selected and modified accordingly. This process was repeated until
there were enough items and the reatrictiona on all the parameters
were met,

Tables 9 through 11 present the summary statistics for Subtests

PC, AR, and WK, respectively, by difficulty ‘evel and overall. T

Discrepancies between the observed and targeced item parameters were
small. The mear discrimination parameters for the three subtests were
targeted to be 0,966, 1.595, and 1,548, respectively. OLserved mean
discrir pations were 1.001, 1.459, and 1.430, respectively. The ¢
parametuts varied little about their targeted values. The b
parameters were explicitly varied; the unmodified parameters, however,
were close to their targeted valuee.

Differences in the mean discrimination parateter across
difficulty levels can be observed, however. This is readily apparent
for PC where the medium-difficulty items had a mean a parameter of

Table 9
Ss mary Statistics of Multivariate Distributions of True Item Parameters:
Suﬁhest PC

: Correlation coefficients
Paranmete:  Mean Variance Skewness Kurtosis a b c

Easy (n=135)

a 1.019 0.178 0.859 0.154 -

b ~-0.433 0.976 0.145 -.096 .219 -

c 0.240 0.003 0.670 0.793 .226 .059 -
Medium (r=30)

a 0.881 0.097 0.307 -1.042 -

b 0.273 1.052 0.767 0.229 215 -

c 0,241 0.003 0.976 1.415 .098 -, 060 -
Difficult (n=120)

a " T.011 0.166 0.621 -0.398 -

b N.413 1.013 -0.072 -0,300 .352 -

< 0.235 0.002 0.795 3.199 .035 .003 -
Overall (n=285)

a ~ 1,001 0.166 0.767 0.005 -

b -n.0N2 1.168 0.113 -0.201 .240 -

P 0,238 0.0n2 0.795 1.674 41 006 -

“ote. n is the number of items,
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Table 10 '
Summary Statistics of Mul:ivariate Disttibutions of True Item Parameters:

Subtest AR

Correlation coefficients

\

Parameter Mean Variance Skewness Kurtosis . a b c

Easy (n=150)

a 1.427 0,262  0.156  =0.973 -
[ 0.222 0.004 0.236 0.094 _.180 «240 -

Medium (n=30)

a 1.600 0.344 -0,128 -1.379 -

b 0.687 0.586 -1.145 -0.074 .881 -

[ 0.225 0.003 1.016 0.727 ) 052 -.,032 -

4

Di fficult (n=120) D ’
- a . 1.465 0.276 -0.026 -1.064 -

- E 10096 00820 "10369 ,00831 0863 -

S_ 00222 00005 00303 "0.1’09 0120 . 139 -
Overall (n=300)

a 1.459 0.278 0.069 -1.065 -

b 0.517 1.056 -0.884 0.525 o747 -

< 0.222  0.004 0.313  =0.071 .141 .151 -

Note. n is the number of items.

0.88] and the other items had a mean a parameter greater than or
equal to 1.011l,

/

Differences in the mean a parametets,across difficulty levels
for the AR items were also apparent. The easy items, for example, had
a mean discrimination parameter of 1.427, compared to 1.465 and 1.600
for the difficult and medium items, respectively. Mean
discriminations for the WK items ranged from 1.375 to 1,533 for the
rasy and medium items, respectively.

Assignment of items to individual test forms. Items for each
subtest were assigned to the individual test forms, anchor tests, and
selection tests in a manner that ensured parallelism across test
forms. First, the items for each _ubtest were separated into the
three different difficulty levels (easy, medium, or difficult,
depending on the constant added to the bs); the item~assignment
procedure was performed separately for each level,

All items at a specific difficulty level for a subtest were first
sorted into a test-form-by-stratum matrix (see Table 12). That is,
ftems were sorted according to the h parameter and assigned to 15
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Table 11 .
Summary Statistice of Multivariate Distributions of True Item Parameters:
Subtest WK
Correlation coefficients
Parameter Mean Variance Skewness Kurtosis a b [
- . =
5 Easy (n=150) : .
e, a _ 1.375 0.315 0.360 -1,193 -
_b_ 0.516 00796 “0.545 "0.5(’5 0619 -
[ : 256 0.004 ~-0,151 -0.519 .104 -,095 -
i Medium (n=30) ,-
b 0.063 0.371 -0.254 ~-0.631 «220 -
< © 0.262 0.003 - -0.304 -0,431 .180 -,014 -
Difficult (n=120) - a
_E_ ' 10474 00209 0. 140 ’ -005710 =
b ) 0.678 0.673 -0.834 0.525. 545 -
s_ 0.268 00003 "00366 "0.243 "0074 "0010 -
/
Overall (n=300) e
a 1.430 0.267 0.199 -1,034 -
b 0.020 - 1.021 _ -0,435 «0.240 517 -
c 0.261 0.004 -0.257 -0.424 .057 .003 -

Note. n is the number of items.

atrata so that Stratum 1 contained the itews with the highest b
values and Stratum 15 contained the items with the lowest E@.‘—The
number of test forms varied for the easy, medium, and difficult tests.
Easy items, for example, were sorted into a 9- (for PC which had a
shorter selection test) or 10- (for AR, WK) by-15 matrix. Each
30-item test form was constructed from two parallel 15-item tests.

Two different 15-item anchor tests were constructed. ~(Only one of
thegse forms was ever used for actual test equating; the second anchor
test was constructed so that parallel-forms reliability could be
computed), In addition, easy items were assigned to a 15-item (for
PC) or 30~item {for AR, WK) selection test. Thus, the easy items were
assigned to 9 or 10 different test forms,

Medium-diffi alty items were required only for the anchor tests
and, therefore, were assigned only to two different test forms.
Similarly, difficult items were assigned to 8 test forms and 15
atrata,

For each difficulty level, the items in the first stratum were

permuted; i.e., each item was assigned to a test form at random. The
{tems in the subsequent strata were assigned to test forms such that the
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Table 12 |
Strategy for Assigning Items to Individual Subtest Forms
. }
Stratum
A ' : Pifficult ~—==-=---) Easy
Test forms 1 2 oo 14 15
< Easy .
anchor 1 X X X X
anchor 2 X X X X
form 1 X X X X
form 2 X X X X
form 3 X X P X X
form 3 X X X X
form 4 X X X X
form 4 X X X X
selection X X X X
selection (AR, WK only) X X X X
Medium
anchor 1 X X cee X X
anchor 2 X X X X
Difficult
anchor 1 X X X X
anchor 2 X X X X
form 5 X X X X
form 6 X X PRPEY X X
form 7 X X X X
form 7 X X X X
form 8 ¥ X X X
form 8 X X X

mean discrimination across all test forms was equalized as much as
possible. This was accomplished, stratum by stratum, by (a) computing
the mean discrimination for the items assigned to a test form so far,
(b) computing the deviation of a test's current mean discrimination
from the (grand) mean over all the 1tems, and (c) assigning items to
test forms within the current stre - um such that the
lowest-discriminating item was asesigned to the test form with the
largest positive deviation from the grand mean. The last step was
repeated until each item within the stratum was assigned a test form;
this entire process continued sequentially for each stratum until
{tems from all 15 strata were assigned. Tables 13, 14, and 15 present
the results of this item—assignment strategye.

The {tem-assignment strategy created subtest forms with
approximately equal mean item discrimination, Mean discriminations
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Table 13, :
True Item Parameter Means for Each Test Form: Subtest PC : “a
Test form n 7 a b - < : | N
il Subtest forms
3 2 15 . 1.018: -0.435 . 0,239
5 4 .30 1.011 ~0.455 0.236 E
£y, 6 ‘15 0.999 0.370 0.260
4 7 30 1.002 0.393 0.235 o
i 8 30 1.022 0.424 0,231 :
; Anchor tests 4 é
%ﬂ easy 1 15 1.010 - <-0.409 0,239 . 3
7 easy 2 15 1.019 ~-0.421 0.222 .
b medium 1 15 0.889 0.283 0.227 ’ )
¢ medium 2 15 0.873  0.263 0.255
: - difficult 1 15 1.020 0.428 0.233
difficult 2 - 15 1.000 0.443 0.225
i " ;
Selection test 15 1.016 ~0.461 0.257
f' overall 285 1.001  =0.002 0.238
"
varied little across test forms within difficulty level. Differences /
among mean b and ¢ parameters (within difficulty level) were

small,

Spuveded Subtests

The time limit for the 50-item NO subtest in ASVAB Forms 8, 9,
and 10 was simulated in this study by modeling the distribution of the
number of items attempted by current examinees. In addition, a shorter
test (with the administration time cut in half) was also simulated by
assuming that the number of items attempted by each examinee was cut
in half. Item difficulty was not explicitly varied.

Composit:s

Two different kinds of composite scores were defined. An AFQT
composite was formed by unit weighting the number-correct score on
eiach ot the three power subtests and weighting the number-correct
score from the speeded subtest by one-half. The sum of these weighted
sweares formed a4 composite s are analogous to the AFQT. In addition, a

S e B

Lol
&




Table 14

True Item Parameter Means for Each Test ?otn: Subtest AR ‘
Test form T n a b c
. Subtest forms ' - |
1 - 15 1.429 0.000 0.222
© 2 . 15 1.421 0.001 - 0.226
!3 30 1.427 0.052 ° 0.232
A 30 1,424 0.001 0.227
‘5 d 15 1.463 1.094 0.213
6 15 10464 . 10098 . 00229
7 30 1.463 1.098 0.229
8 30. 1.464 1.081 0.202
Anchor tesés ,
easy 1 15 1.432 0.029 0.198
eaay 2 15 10420 -00017 00219
medium 1 15 1.591 0.691 0.231
medium 2 15 A1.609 0.682 0.219
diffic01t 1 15 KIQA63 10064 00231
difficult 2 © 15 1,473 1.149 0.239
Selectfon test 30 1.431 0.036 - 0.220
Overall 300 1.459 0.517 0.222

4

power composite was formed by unit weighting and summing the
number-correct scores from the three power subtests.

The characteristics of each composite were defined by the
characteristics of its component subtests. That is, composite Form 1
(see Table 2) was constructed by appropriately weighting and summing
the scores from Form 1 (i.e., easy, short) subtests. Similarly, Form
8 was constructed by appropriately weighting difficult, long subtests,
Test length and difficulty remained constant across subtests within a
composite, although they did vary across the composites being equated.
Hence, the test-form characteristics and pairings presented in Tables
2 and 3 are applicable to composite scores as well as to the
individual subtests.

Selection Composite

All items for the three power selection subtests were drawn from
the pool of easy items., The assignment of items to these selection

tests was described earlier; mean a, b, and c parameters for
these tests were presented in Tables 13 through 15. The speeded
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Table 15 i : |
True Item Parameter Means for Each Test Form: Subtest WK

L

est rorm ) O a b . c

Subtest forms _— : _

1
2 15 R 10377 -00529 0.269
5 15, 1.476 0.714 0.301
6 15 1.484 0.667 0.270
7 30 1.468 0.668 0.277
8 30 1.468 0.666 0.262
Anchor tests
easy 1 .15 1.366 -0.545 0.240
easy 2 15 10370 "00491 00252
medium 1 15 1.503 0.080 0.264
medium 2 15 1,562 0.047 0.260
difficult 2 15 . 1.480 0.701 0.253
Selection test 30 1.374 -0.504 - 0.255
Overall 300 1.430 0.020 0.261

selection subtest used the same matrix for response generation that
was constructed earlier. The selection test for Subtest PC was 15
items long; Subtests AR and WK each contained 30 items. The speeded
subtest contained 50 items.

A selection composite score was computed by weighting the
number-correct scores on the three power tests by one and weighting
the number-correct score on the speeded test by one-half. The
weighted scores were then summed to form an AFQT-like composite score.
The 1,600 highest-scoring examinees (i.e., the top two~-thirds) were
selected from each of Samples X and Y and constituted the "selected”
samples.

Anchor Tests

For equating power tests, anchor-test difficulty was matched to
the difficulty of the two tests being equated. That is, when an easy
test was equited to an easy test, an easy anchor test was used.
Similarly, a difficult test was equated to another difficult test
through a difficult anchor test. When an easy test was equated to a
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%ﬁ difficult test, however, an anchor test of medium difficulty was used. ﬂ%
g; ; These anchor~-test specifications were presented in Table ?._ g ?
P All power anchor tests were 15 items long. Composites of power f%
£ subtests were directly equated to each other'using 15-item anchor .

tests that were constructed from the first five items from each of the
three ‘subtest anchors. -

= The anchor test used for equating two speeded tests was an C
external, “separately timed" test. This anchor test was simulated by B
assuming that the number of items attempted by each examinee was equal :
to the number of items that examinee attempted on the short test.’

That i8, the anchor .test was "administered” with the time limit equal
to the time limit of the short speeded test. This manipulation is
analogous to the requirement that all anchor tests used for equating
power tests were 15 items long, the length of the short power tests.

Generation of Item Responses

Prior to generating item tespohaes to each subtest, a vector of

true abilities was drawn for each examinee from the specified
multivariate distribution., For the power subtests, these abilities
were true theta values. The speeded-subtest abilities were true

proportion-correct scores. L

Power Subtests

For the power subtests, the true ability and item parameters were
used to compute the probability of a correct item response using the
three-parameter logistic IRT model. This probability value was
compared to a random number uniformly distributed on the unit
fnterval. If the random number was less than the probability of a
correct response, the simulated examinee was said to have correctly
answered that item. Otherwise, the examinee was said to have responded
incorrectly (see, e.g., Ree, 1981). Successive applications of this
algoritim yielded a vector of observed scored responses for each examinee,
Sets of response vectors were generated for each combination of subtest,
anchor test, selection test, and sample as required by the project
design. Item scores were summed to form raw number-correct scores.

Raw numbar-correct scores were used to equate tests using
conventional and strong true-score methods. The item responses were
used in IRT and STST equating.

Speeded Subtests

For the speeded subtests, observed number-correct scores were
generated for each examinee according to the bhinomial error model
proposed by Pieters and van der Ven (1982). In this model, the
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probability of each number-correct gscore, conditional on the number of

'  items attempted, is given by
o

P(R, = r}A = a) -(:) n; (1~ ji)a_t | [l?]

where R, is the number-correct score for examinee i;
A, is the number of items attempted by examinee 1;

i
"i {8 the correct—-response probability for examinee i; and
lower-case letters denote specific values of the random

-variables.

The probability of a correct response to an item is assumed to
vary across examinees but to remain constant across all items in the
test for a given examinee. This assumption is called the constancy

hypothesis and implies that more difficult items require longer

response times. That is, it is assumed that ‘an examinee's response
time varies with each item so that the probability of a correct
response remains constant for that examinee over all items. It is
clear that an examinee's true number-correct score is the product of
his or her precision (true proportion correct) and speed (number of
{tems attempted). That is, each pair of precision and speed values
yields a single true number-correct score. Different combinations of
precision and speed, however, may yield the same true score on a
speeded test. Thus, for amy true number- or proportion-correct .score
sampled from the multivariate ability distribution, there may be
several corresponding pairs of precision and speed values.

To generate item responses, an examinee's true proportion-correct
score was first sampled from the appropriate multivariate
distribution. This propoértion-correct score was converted to a true
number-correct score by multiplying by the number of items. This
number-correct score was then compared to the distribution of the
number of items attempted conditional on number correct. The number
of items attempted by that examinee was randomly chosen from the
number-of-items-attempted values corresponding to the specified number
correct (weighting each cell by its proportion of cases). The true
numhér-correct score was divided by the number of items attempted in
order to calculate precision,

Individual item responses were then generated for the examlnee hy
comnaring the precision level to a random number uniformly distributed
on the unit interval as described above for power subtests. The
aumber ot item responses generated for an examinee wos equal to the
numhe-r ot items attempted. It the number of items attempted was less

than the lenyth of the subtest, the “not reached” ftems wete scored s
iveorrect resoanses.  The observed number-correct score for an
cooam e was the simple sum of the scored item respansies. Raw scores

ud
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were used to equate tests using conventional and strong true-score
methods; item responses were also used for STST. IRT was not applied
to speeded tests. '

%

Adequacy of the Simulation Procedures

3
Z F .

.
H
i

A faithful simulation procedure should produce simulatel observed
test scores similar to test scores actually obtained by ASVAB
examineés, Accordingly, the summary statistics for ASVAB 8b (reported
in Ree et al., 1982, Tables 3 and 18) were used as a basis for
comparison with the simulated test scores. Examinee responses to the
Form 3 (easy, long) AR, WK, and NO sybtests and to the Form 1-(easy,
short) PC subtest were used to maximize test-form comparability
between the real and simulated data sets..

The summary statistics used for this comparison are presented in
Table 16. The mean subtest scores for the two data sets were very
similar, in general less than two raw-score points; the lone exception
was for the Word Knowledge subtest. However, the simulated WK subtest
contained 30 items, whereas the real WK subtest contained 35 items.
When the mean score for the simulated test is converted to a
proportion correct and then multiplied by 35, the resulting figure is
24.91, less than half a score point different from the real data. The
real-data variances were uniformly larger than those from the
simulated data; the higher-order moments for the two data sets were
less dramatically -- and less consistently ——- different. In general,
the real-data correlations were larger than those computed from the
simulated data. The rank order of the correlations, however, was

Table 16
Summary Statistics for Real and Simulated ASVAB Subtest Scores

Correla~ion coefficients

Subtest n Mean Variance Skewness Kurtosis PC AR WK NO
Real data (N=2,510)

PC 15 10.33 11.49 -0.65 -0.41 -

AR 30 18.52 54.91 -0.11 -1.10 71 -

WK 35 24,60 59.9* -0.69 -0.41 .81 73 -

NO 50 35.77 102.82 -0.63 -0.01 55 .64 «56 -
Simulated data (N=2,400)

PC 15 10.70 6.23 -0.41 -0.43 -

AR 30 17.52 41,47 0.33 -0.93 61 -

WK 30 21.35 34.84 ~0.18 -1.15 .69 .69 -

NO 50 34.05 98021 -0052 "0027 052 061 055 had

Note. Real-data statistics were taken from Tables 3 and 18 (for ASVAB-8b)
in Ree et al, (1982). N is the number of examinees.
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virtually the same for the two sets; it is likely, therefore, that the ts
differences in the levels of the correlations reflected the 5
differences in the variances of the two data sets. "

ﬁﬁ . Applications of Equating Transformations '

B Linear Equating .‘ ' .x

The data needed to linearly equate two test@ are score means and ‘

standard deviations.  In this study, the equated score (X' ;,) was
directly obtained for the single-group and equivq*ent-group designs by
the equation \

-~ ! - -

; X'01d * (Xnew ~ Xnew (8dg14/840ey) * X014 \ (13]

| ’ ! .

. For anchor-test equating, each test was separately lequated (in each i 7

group) to the anchor test by Equation 13, Scores on the two tests that
were equated to the same score on the anchor test were considered
equated to one another. \ T

Linear interpolation was applied as needed to ehuate each
new~-test score to the old-test score having the same equated
anchor-test score (between zero and the maximum scorA Linear
extrapolation was used to complete the equating table| for unequated

. high and low score values on the new test, as necessafy. Unéquated

i low scores were defined as those that had an equated gnchor-test score
that was less than zero or below the lowest anchor-test score that was
equated to any score on the old test. The extrapolatibn line for
these scores was the extension of the line connecting ihe lowest
equated old-test score an? a point one third of the way toward the
highest equated score. An analogous procedure was followed for
unequated scores at the high end of the new test.

Equated scores that fell outside the range delimited by zero and

the maximum score on the old test were set equal to the nearer
endpoint. No corrections were made for unequal reliabilities.

Equipercentile Equating

Equipercentile equating is done in a series of steps., First, raw
percentile tables are computed, and corresponding raw scores are set
equal, 1In addition, percentile tables and/or the equating table can
be smoothed; the two smoothing steps are optional. In this study,
five variations of equipercentile equating were examined: (a) no
smoothing was performed at all; (b) the equating table was smoothed
using cubic polynomial regression, and percentile tables were not
smoothed; (c) the equating table was smoothed using cubic splines, and

..9‘...

(;
)




4

ol
£
E—g-
Q.
g
E
e -

bl

) v : ; .
the percentile tables were not smoothed; (d) peféentile tables were
smoothed using cubic polynomial regression, and the equating table was
not smoothed; and (e) percentile tables were smoothed using cubic

splines, and the equating table was not smoothed. Equating and

smoothing were always performed using real-valued raw scores; equated
scores were rounded to integers only at the very last step (i.e., at
the evaluation phase). . : ! « :
Components of equipercentile equating are described in detail
because different implementations are possible. A subset of the -
smoothing procedures was selected and applied throughout the study; .
the data used to choose among these smoothings for the main study are

presented below.

Comnponents of the Equating Procedure

Percentile tables. The raw frequency distribution of total
scores on a test was obtained and transformed to a pércentile
distribution. The percentile rank for a score was computed on the
score midpoint (i.e., all the cases below a score plus half the cases
at the score).

Regression smoothing of percentile tables. Percentiles for a
single test (old, new, or anchor) were regressed on corresponding test
scores using cubic polynomial regression only those test scores with
reliable data (i.e., those having observed percentiles within the
0.1299,9 range) were included in this regression. The resulting
regression weights were applied to the same scores to obtain smoothed
percentiles., If the smoothed percentile was less than 0, greater than
100, or nonmonotonic (rising for lower scores, declining for higher
scores), the corresponding score was removed from the smoothed table
and later replaced by an extrapolated value (see below). Only the
amoothed portion of the percentile table was used in the initial
equating phase; the tails of the equating table were extrapolated
later in the equating procedure.

Spline smoothing of percentile tables. Reinsch's (1967)
cubic-splines algorithm was used to smooth the percentile table for an
individual test. A moderate smoothing parameter value (one-half the
num: »r of scores values), as suggested by Kolen (1983), was used to
cont.ol the degree of smnothing. Each score point was weighted by its
standard error (Guilford, 1965, p. 161):

se, = ‘/Q(l—pi) /N (14]

where se, i{s the standard-error weight applied to score i and

Py is the percentile rank of score i. Again, only the smoothed

portion of the percentile table, as defined in the previvus section,
was used in the initial equating phase.
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Equating procedure. For single-group and equivalent-groups
equating, a score on the new test was equated to the score on the old
test having the same percentile. If the percentile on the new test
fell between percentiles for two scores on the old test, one of the
following procedures was used. For unsmoothed percentile tables,.
linear interpolation was used to obtain the equated score for scores
on the new test having percentiles within the (0.l to 99.9) range and
between the percentile values for the old test's lowest and highest
scores. For regression-smoothed percentile tables, the regression
curve for the old test was used to interpolate between old-test points
using a Newton-Raphson iterative solution of the thicd-degree
polynomial. For spline-smoothed percentile tables, the appropriate
spline equatior was used to interpolate between each pair of old-test
points, again using Newton-Raphson mcthods. '

For unsmoothed equating tables (whether or not. the percent'le\\
tables were smoothed), linear extrapolation was applied to obtain ~
equated scores in the tails of the table, as needed. Otherwise, the ‘-\\
equating table was smoothed (as described below); if necessary, s
extrapolation to the tails of the table was performed after smoothing.

For anchor-test equating, each of the tests to be equated was
first separately equated (within each group) to the common anchor test
by the single-group equipercentile equating method. The linear inter-
polation and extrapolation methods described above for linear anchor-
test equating were used to equate a score on the new test to the score
on the old test having the same equated anchor-test score.

Regression smoothing of equating tables. Using pairs of scores, .
equated old-test scores were regressed on corresponding new-test scores e '
using cubic polynomial regression. Linear extrapolation was performed as
described previously to obtain equated scores for new-test scores not
previously equated to the old test (i.e., outside the range of
reliable data) or that occurred beyond a point of inflection in the
upper or lower tail. The resulting smoothed equating transformation
for the new test was bounded by zero and the maximum score on the old

“tést (i.e., equated scores outside this range were set equal to the

specified bound).

Spline smoothing of equating tables. Reinsch's (1967)
cubic-splines algorithm with a moderate value (cf. Kolen, 1983) for
the smoothing parameter was used to smooth the obtained equating
tables. The standard errors of equipercentile equating (adapted from
Kolen, 1983, p. 7) were used to weight the individual score pcints:

= 1 _ 27 _
Sei_ k {[mpi(l pi)/é’J [(pi pnld/les;.q) ) [15]

- v3 1
(p()ld/m()rv Pi)/(N“]d) (8 )] !
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where se, = standard~-error weight applied to score {i;

k = the number of items on the old test;
100 * Py = percentile rank for score i1 on the new test;

Pol1d/less largest percentile on the old test < p ;
Pold/more smallest percentile on the old test > p ;
8 = Pold/more ~ Pold/less’ M
m=N1 +N1 .

old new

NFote that Kolen presented the standard errors for equated integer
scores that range from O to k. His equation was modified here

(i.e., multiplied by 1/k) to account for the fact that all equating
tables in this study were presented in a proportion-correct metric.
The equating transformation was completed by linear extrapolation, as
necessary, and bounded” as described in the previous section.

Comparison of the Smoothing Procedures

All five smoothing methods were applied to the equipercentile
equating of the AR subtest. True-score-based RMSE and bias were
calculated for each application of equipercentile smoothing. (These
error indices are described in more detail below.) A tally was taken
of the "best"” smoothing method (i.e., that having the lowest error)
across equatings for each error index; this tally is presented in
Table 17. This tally indicated that the regression methods performed
somewhat better than did the spline methods. Summary error indices
for the smoothing methods are also presented in Table 17. According to
this criterion, there was little difference among the methods, except
that the RMSE was slightly higher for the regression smoothing of
percentile tables. None of the smoothing methods outperformed "no
smoothing."”

Three smoothing procedures were performed on all remaining tests
and composites: no smoothing anywhere, regression smoothing of
equating tables, and regression smoothing of percentile tables. These
smoothing procedures were selected to provide a good comparison of
methods that are widely used in practice (equating-table smootﬂing),
seem more appropriate theoretically (percentile~tasle smoothing), and
are supported by preliminary data-analysis results (no smoothing).

Item Response Theory Eéhating

The data required for IRT equating cre the linked item parameter
estimates for the two tests to be equated. For both the single-group
and anchor-test designs, item calibration was applied to a single
matrix containing item responses from both tests; because all items
were simultaneously calibrated, no additional linking was necessary.
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Table 17
Equipercentile Equating Smoothing Methods: True-Score Error Indices
and Tally of "Best" Method for Subtest AR

Parallel Nonparallel "Best" tally

Smoothing method RMSE Bias RMSE Bias RMSE Bias
Unsmoothed 0.008 0.002  0.045 0.008 23 22
Regression~-smoothed

Percentile tables 0.011 0.001 0.053 0.009 20 30

Equating table - 0.008 0.002 0.046 0.011 16 8
Spline-smoothed

Percentile tables 00008 0.002 0.047 0.010 9 5

Equating table 0.007 0.002 0.047 0.011 13 16
N of Equatings ' 36 45 ' 81

For the single-group design, all examinees responded to all items.

For the anchor-test design, the examinee-by-item response matrix
included data that was coded as "not reached” for the test not
administered to an examinee sample. For the equivalent-groups design,
each test was calibrated separately. The assumption of equivalent
groups implies that the two sets of item parameter estimates were
automatically linked; no additional linking procedure was implemented.

Item Calibration Program

IRT parameters were computed using the program ASCAL (Assessment
Systems Corporation, 1982). ASCAL is a conditional
maximum-like)ihood/modal~Bayesian item calibration program for the
thrée-parametet logistic item response model. The maximum likelihood
algorithms are similar to those presented by Wood et al. (1976) and
used in the program LOGIST. However, ASCAL differs from LOGIST in the
following ways.

In ASCAL, Bayesian priors have been added to the ability estimates
and to the a and ¢ parameters, A standard normal distribution is
used for ability. For the a parameter, a Beta distribution is used
with both shape parameters equal tc 3.0 and endpoints equal to 0.3 and
2.6, For the ¢ parameter, a Beta distribution 1s used with shape
parameters equal to 5.0 and endpoints equal to -0.05 and (2/n)+0.05,
where n is the number of alternatives.

The ability estimates are unbounded; the Bayesian prior
distribution imposed on ability prevents the ability estimates from
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" becoming infinitely large or small. The a parameter is bounded
between 0.4 and 2.5, the b parameter is bounded between -3.0 and
3.0, and the c parameter is bounded between 0.0 and (2/n).

The estimation process begins with the computation of
standardized number-correct scores for the examinees and conventional
proportions correct and item-total biserial correlations for the
{tems. These statistics are then transformed into IRT a and b
parameters using Jensema's (1976) transformations; ¢ parameters
equal to (1/n) are assigned to the items in this initial stage.

These initial parameter estimates are then used to estimate
abilities, and examinees are grouped into 20 fractiles, each fractile
containing approximately five percent of the examinees. The fractile
means are computed and standardized ({.e., the mean of the means is
set to zero and the standard deviation of the means is set to one).
Item parameters are then estimated using the fractile means and
irequencies as input data.

The ability and item parameter estimation process is repeated
until the parameter estimates converge Or until ten iterations have
been performed. If an estimate has not converged in ten iterations,
the current value is used. ‘

Equating Procedure

Equated number-correct scores correspond to the same theta. The
theta that would result in a true score equal to a given new-test
score was found, bounded by + 4.5, and inserted into the true-score
formula for the old test in order to obtain the equated score:

N

' - old .
X' 1d 111 Pi(e) [16]

This was done for each new-test score between the chance true
score and a perfect score, exclusive, on the new test. Linear
extrapolation, as described above, was used to extend equating to the
lower and upper ends of the equating table.

Strong True-Score Theory Equating

Strong true-score theory produces an estimated distribution of
true scores from a sample distribution of observed scores. The
t rue-score distributions are then equated such that a score on the new
test is equated to the score on the old test having the same estimated
true percentilco.
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Esti%;;iqg a Test's True-Score Distribution

The general STST model (Lord, 1980, Equation 16~2) defines the
relationghip in the population between observed scores (x) and true
scores (; ) as

1 .
o(x) =/ g(g) h (x|g) d¢ (17])
0 .

where ¢(x) is the population frequency distribution of observed scores;
g(%z ) is.-the true-score density at C; '
h(x|z ) is the conditional distribution of observed scores given
true score;
x =0, i, +.en; and
n is the number of items in the test.

The sample frequencies, f(x), are only a rough approximation to the
population observed-score distribution, ¢(x). Thus, the scores are
grouped into U intervals (see Appendix A) to reduce irregularities.
The objective is to find a g( z ) that will produce an exact fit to the
population ¢(x). Any one of several smooth solutions, all smooth
solutions being very close to one another, will suffice. Smoothness
is measured (Lord, 1980, Equation 16-4) by

——

1 { 2 .
g(z) = y(5)} |
d 18
Iy w e 4 (18]
where y(z ) is some smooth density function, either y (¢ ) : 1 or?

vy(z) = ¢ (¢ - 1) being satisfactory.

Lord (1980, Equation 16-9) has shown that the “"smoothest” solution
(i.e., that hav 1g the smallest smoothness measure) is:

U
() =YD ¥ A E R (Xfe) [19]
u=1 X tu
where Auis a parameter of the observed-score distribution . (x).
The general model thus reduces (Lord, 1980, Equation 16-11) to
U
S(x) =% A a for x = 0, ... , n
H—'—l XUl (20]
]
where a o = bX r () h(.\'!a’,) h(.‘(!’) dr
e Xeu U

The ax“'q are constants to be computed from the data; computational

formulas are derived in Appendix A. The ‘u's are parameters of ! to
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be estimated and then substituted back into Equation 20 to obtain

estimates of the true-score distribution as part of the equating

procedure.

Initial A estimates. Sdbstituting sample values into Equation
20 yields (Lord, 1969, Equation 39, corrected for a notational error)

[

f = T -f(x) =

u .
X:iu v

1™

1 Av x§u axv ! (21]

Since the fu's and axv's are known, letting

A = T a _ [22]
initial A's can be obtained by solving the matrix equation

s a1

A= fA [23]

The k s must then be rescaled (see Appendix A) to keep all A 2 0.
his restriction guarantees all g( ¢z ) 20for0< ¢ L1
Lord, 1980, p. 241) which is necessary for an acceptable solution,

Refinifng the A estimates. Maximum likelihood estimation
procédures that simultaneously use all the sample frequencies are most
efficient in refining the A's, The set of Av's that maximizes the

l1ikelihood function (Lord, 1980, Equation 16-10)

L = n2=0 {¢(x)}f(x) ‘ [24]

for the set of observed f(x)'s is found by the steps described in
Appendix A.

Equating the Tests

Given sample values and final paramete~ estimates computed above
for each test separately, the estimated true percentile (i.e., the
estimated proportion of examinees in the population who would score
below a given true score) can be computed for any score on the new or
old test from the integral

t
f(') g(.,) de [25]
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where t = true proportion correct on the test (see Appendix A for the
procedure). Equated scores on the old and new tests have the same
estimated true percentiles on the two tests.

The endpoints were fixed: scores of zero and Dew OF the new

test were equated to scores of zero and n,14 °° the old test. For -

each score from 1 to (n -~ 1) on the new test, first the estimated

new
true percentile on the new test was obtained, and then the equated
score (the score on the old test having the same estimated true
percentile) was obtained by STST methods if possible.

Strong true-score theory does a poor job estimating the tails of
the distribution when few or no observed data fall there. Hence, the
area of the old test for which STST equating was possible was defined
as that in which the estimated true percentiles were between 0 and 100
and were monotonically increasing and for which the observed
percentiles fell between 0.1 and 99.9. If the estimated true

. percentile on the new test fell outside the range of good values of

estimated true percentiles on the old test, no equated score was
returned. Otherwise, an initial value for the equated score was found
and then Newton-Raphson iterative procedures were used to refine the
equated score, i.e., to make it a value whose estimated true
percentile was actually equal to that of the new-test score within a
certain tolerance. (Appendix A describes both these steps.)

Linear extrapolation was performed on the line joining zero and
the lowest equated old-test score for unequated new-test scores in the
lower tail; the line joining n ;4 to the highest equated old-test

score was used for unegjuated scores in the upper tail.
Procedures for Equating Test Composites

The power and AFQT composites were equated in three different
ways. First, the composite scores themselves were directly equated by
applying the conventional equating transformations to the composite
scores in exactly the same manner as was done for the scores on the
individual subtests. This was done to equate power to power
composites, AFQT to AFQT composites, and power to AFQT composites.
Power composites were also directly equated using strong tcue-score
theory. In addition, both power and AFQT composites of equated
subtests were formed; no further equating transformation was applied
to these composite scores. Finally, both power and AFQT composite
scores were indirectly equated using score statistics and correlations
from individual subtests. The specific procedures and the
data-collection requirements are detailed below.
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Equating Compgpite Scores Directly

When cxaminees take all the subtests in a battery, composite
scores can be computed as the weighted sum of individual unequated
subtest scores. The composite scores themselves cau then be directly
equated. Because the goal of composite-score equating is to define
equivalent scores on two composites of subtests, this direc. procedure
is the preferred method of equating composite scoress '

When composite scores are directly equated, only one
transformation table needs to be constructed and used. Subtest scores
can be weighted as usual and combined into composites; a single
equating transformation is then applied to these sets of composite
scores. . ' '

. / .

In this study, composite scores were directly equated using the
conventional and STST transformations. Because IRT assumes that each
test is unidimensional, it is not applicable for equating '
mul tidimensional composite scores directly. The power composites were
equated directly using all of the data collection designs, with the
exception that the anchor-test design was not used with strong true-
score theory. This exception was made because of the practical
difficulties involved in applying strong true-score theory to the
anchor-test composite (which was composed of five items from each of
the individual subtest anchors). AFQT composites were not directly
equated using the anchor-test design because of its impracticality,
as discussed above. :

Forming Composites of Equated Subtests

When each group of examinees 1s administered only a single
subtest, composite scores cannot be equated by the direct methods.

'The only way in which any type of equivalence can be made hetween the’

two sets of composite scores is by first equating the individual
subtests. Composite scores can then be formed for future examinees
who are administered all the subtests in the new battery by applying
the appropriate composite weights to their equated subtest scores.

Wwith this procedure, a separate transformation table needs to be
constructed and applied for each subtest in the composite. However,
each equating transformation can be computed after the administration
of individual subtests; it is not necessary to administer any more
than one subtest (either one or two forms) to an intact group of
examinees in order to equate the composites. The primary disadvantage
of forming composites from equated subtests is that the resulting
equating transformation contains errors from three or four separate
and independent equating transformations and, therefore, probably
contains a greater amount of error than does the equating
trensformation obtained when composite scores are directly equated.
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This procedure can be used with every data collection design ‘and every
testing model and transformation form, with the exception that IRT can

" be used to equate power composites but not AFQT composites. The data
obtained previously from equating individual subtests were used to
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equate composite scores by this method., ' %
Equating Composite Scores Indirectly Through the Subtests C i

Composite scores can also be equated indirectly using
conventional linear procedures that take into account the original
composite weights, subtest means and standard deviations, and the
intercorrelations among the subtest scores. This procedure is a
reformulation of the linear equating model in which two composite
scores are considered to be equated if their corresponding standard
scores are equal. :

The fcrmulae for performing this type of composite equating were
derived as follows:

Yo = W'l [X] + G [26]

Yy = [Wy'] (xN_] + Cy [27]

[

"where YO and YN are, respectively, the old and fiew composite scores for

an examilnee;
[XOI and [X,] are vectors of old and new subtest scores;

[Wo] and [wN) are vectors of old and new weights applied to the ‘

individual subtests to yield composite scores; and

Co and CN are the old and new constants applied to yield composite

scores.

The equation for linearly equating composite scores YO and Yy is

Yo = ayy + b [28]
where
SIS
B RTEIRT
b= [Ny 1[Xyl + Cy = a * (Luy"1[Xy] + Cy) ;

0
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[Vo] and [V, ] are the variance-covariance matrices of the old and
TN new subtest scores; and :

[XO]_and [XN] are the mean vectors of the old and new subtests.

This procedure is equivalent to the linear procedure for equating
composite scores directly when each group of examinees takes all the
subtests in a battery.

An advantage of this indirect procedure is that it can be used to

equate test batteries with partial daca under certain circumstances.

It can be applied'when examinees do not take all the subtests in a

battery. There are two requirements: (a) a subset of the examinees

must have taken each possible pair of subtests so that the .

intersubtest correlations can be estimated for each battery, and (b) -

the distinct examinee subgroups must be randomly sampled from the same

population. When examinees take only a subset of the subtests in any

battery, the subtest statistics are computed from the responses of

several distinct subgroups of examinees. These values can be used as

estimates of those that would have been obtained if the entire-battery

had been administered to a single group of examinees. Under these

conditions, this procedure is an approximation to the procedure for

equating composite scores directly. Examination .time can be reduced

if the entire battery does not have to be administered to an intact

group of examinees. .
The responses from examinees who took only selected pairs of

subtests were used to equate compositel scores using the linear

procedure. Both the single-group and equivalent-groups data .

collection designs were investigated.

Linear equating procedures were applied to partial data sets
where examinees did not receive all the subtests in the battery. Two
of the subtests were administered to each examinee subgroup in a
manner that ensured that all possible test pairs were administered.
The manner in which these subtest pairs were administered to the
different examinee subgroups is presented in Table 18.

Power-test composites were composed of three different subtests.
Thus, three distinct examinee subgroups were required to administer
the three possible subtest pairs (Subtests 1 and 2, Subtests 1 and 3, .
and Subtests 2 and 3). Since subtest scores were available from 2,400
examinees in each sample, each subtest pair was administered to a
distinct subgroup of ‘800 examinees. When equating transformations
were based on subtest scores of selected examinees, sample sizes were
correspondingly smaller. Fbr each of the three power subtests, then,
score data were available from 1,600 unselected and approximately
1,067 selected examinees.
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Table 18
Administration of Subtests to Examinee Subgroups: Creating-
Partial Data Sets

Sequence number of examinees
- Subtests in each subgroup
administered t Unselected Selected

Power-test composites :
1 and 2 ' 1- 800 1- 533

1 and 3 801-1600 534-1067
2 and 3 1601-2400 1068-1600
AFQT composites .
1 and 2 1- 400 1- 267
1 and 3 401- 800 268~ 533
2 and 3 801-1200 534~ 800
1 and 4 - 1201-1600 801-1067
2 and 4 . 1601-2000 1068-1333
3

and 4 } 2001-2400 1334-1600

1

<

AFQT composites were composed of four distinct subtests. Thus,
examinees were divided into six distinct subgroups and were _
administered one of the six possible subtest pairs. Each unselected
subgroup contained 400 examinees; subgroups of selected examinees were
two-thirds that size. For each of the four AFQT subtests, score data
were available from 1,200 unselected and 800 selected examinees.

Evaluative Criteria

Error in an equating transformation was isolated and evaluated in
this study by applying the transformatién to true-score data from a
separate “evaluation” sample of examinees. Sample W abilities for the
four subtest areas were generated for 10,000 new examinees sampled
from the parent population distribution (i.e., the multivariate
distribution of ahilities that defined Samples X'and ¥). These
abilities were thetas for the three power subtests and proportions
correct for the speeded subtest. This sampling approach to the - .
generation of ability distributions was used instead of numerical
integration over a density function because the density function does
not exist for the nonnormal distributions sampled.

The thetas, in combination with the true item parameters and the
three-parameter logistic IRT model, were ured to generate true
proportion-correct scores for this sample on every power test., The
t rue mumber-correct scores saanpled for the speeded tests were
converted to true proportion-correct scores. Additionally, observed
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proportion~-correct scores were generated for every examinee in the
evaluation sample using a random-number process in conjunction with
the IRT model for power tests and the binomial e¥ror model for speeded
tests. 'frue composite scores were obtdined for each examinee by
weighting the true scores on each subtest and summing across subtests.
The evaluative indices described below were computed on the evaluation
sample so that the sample size and composition remained constant for
all equatings evaluated. I :

True proportion-correct scores on the new test were equated to.
proportion-correct scores on the old test by applying the equating
transformations computed from observed response data. The difference
between the equated old-test score and the true old-test score was
then computed for each examinee in the evaluution sample; functions of
these differencé scores were calculated as global indices of equating
accuracy. The specific indic's that were computed included root mean
squared error (RMSE) and bias. RMSE is the square toot of the mean
squared differénce between the true and equated old-test scores., Bias
is the difference between the mean true score and the mean equated

score on the old test.
\

Real-Data Application

Raw Data

Item response data for the real-data application phase of this
project were obtained from Task II of the Omnibus Item Pool and Test
Construction Project (Prestwood, Vale, Massey, & Welsh, ip press).
The items were part of the initial operational item pool for the
adaptive ASVAB and were administered to MEPS examinees during the
calibration phase of the Omnibus project from May to July 1983. Both
male and female examinees were included. During this phase of the
Omnibus project, items were randomly assigned to specific test
booklets. Within each booklet the items were randomly ordered.

All item response data were edited. A redundantly coded form
number allowed improperly recorded booklet numbers to be detected and,
in some cases, correct booklet numbers to be recovered. A patterning
coefficient was developed to detect response patterns ( "ABCABC") and
response strings ("AAAA"). Examinees who exhibited response patterns
and strings and who responded to fewer than six items were deleted
from the data set. Less than 0.25% of the examinees were deleted
during this process. For details concerning this data-editing
process, see Prestwood, Vale, Massey, and Welsh (in press). Real data
analyses for this project were based on item responses to a test
booklet containing 86 Word Knowledge items.
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In order to parallel the computer simulations as closely as
jossible, the following procedures were performed. First, three
examinee groups were defined. The f£irst 1,000 examinees from the
Omnibus data file formed Group 1, the rext 1,000 examinees formed
Group 2, and the next 1,000 examinees formed Group.3. Groups 1 and 2
were used for equating; Croup 3 was used as a hold-out evaluation
sample. ;

Items were assigned in a counterbalanced order to two 30-item
tests and a 15-item anchor test (only 75 of the 86 items were used).
Items were assigned to each test in an "ABCBA" format, where "A"
denotes assignment to the "old" test, "B" denotes assignment to the
“"new" test, and "C" denotes assignment to the anchor test. Examinee
responses were scored and total test scores were computed for each
examinee. '

Data Collection Designs

The single-group, equivalent-groups, and anchor-test data

collection designs were used to equate tests using real examinee data.
roup | responses to the old and new tests were used to equate the
test using the single-group design. The responses of Group 1 to the
old test and the responses of Group 2 to the new test were used to
equate the two test using equivalent groups. Similarly, responses of-
Group ! to the old test and the responses of Group 2 to the new test
were also used to equate tests using the anchor-test design; in
addition, anchor-test responses for the two groups were used.

Equating Transformations

Linear, equipercentile, IRT, and STST procedures were used to
equate the two sets of test scores. The applications of these
equating transformations were identical to those described above in
the simulation procedures. .

Evaluative Criteria

The criterion for evaluating equating accuracy, using real data,
differed somewhat from the criterion used in Monte Carlo simulations.
When real data are used, an examinee's true scores are not known; only
the observed scores on the two tests are avallable. The differences
between the observed old-test scores and the equated old-test scores
are a measure of how well the equating procedure can recover the
scores actually outained by the examinees. The standard error of the
ditference between the observed and equated scores was computed and
served as the base for evaluating the observed-score RMSE and bias
indices of equating accuracy.
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For all three.&EEtgas* the equated test scores can be compared
to the scores actually obtained.by the examinees in the evaluation

sample, Group 3.

f

l
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RESULTS AND DISCUSSION

Choosing an Equipercentile Smoothing Method

Results

Table 19 presents the results from the three saoothing methods
applied to each case of equipercentile equating. The true-score error
indices are presented for (a) all power subtests, (b) speeded
subtests, and (c). all composites (except the indirect composites).

Table 19 .
True—-Score Error Indices for Equipercentile Smoothing Methods
Tests/Composites
Parallel Nonparallel -
Smoothing method RMSE Bias RMSE Bias
Power subtests
Unsmoothed 0.008 0.000 0.036 0.008
Smoothed percentile tables 0.009 -0.001 0.041 0.009
Smoothed equating tables 0.008 0.000 0,037 0.010
N of equatings 108 135
Speeded subtests
Unsmoothed 0.010 0.00! 0.012 0.002
Smoothed percentile tables 0.036 -=0.010 0.039 -0.010
Smoothed equating tables 0.015 0.004 0.017 0.004
N of equatings 36 45
Composites
Unsmoothed 0.018 0.002 0.032 0.009
Smoothed percentile tables 0.018 0.002 0.036 0.009
Smoothed equating tables 0.018 0.003 0.033 0.009
N of equatings 168 210

Note. All smoothing procedures were based on cubic polynomial
regression,

In general, the differences among the smoothing methods were
small for the parallel subtests. For the parallel power subtests, the
results across smoothing methods were virtually identical; the
regression smoothing of the percentile tables was markedly poorer
(according to both error indices) for speeded subtests. The RMSE for
this case was 0.036; the corresponding RMSE values were 0.010 and
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0.015 for the unsmoothed and regression-smoothed equating tables,
respectively. Bias indices followed the same pattern as the RMSEs.

Error indices from the nonparallel-test equatings were larger
than those from the parallel-test equatings, with RMSEs ranging from
0.012 for unsmoothed speeded tests to 0.041 for smoothed percentile
tables. As before, regression-smoothed percentile tables resulted in
larger errors than did any other smoothing method.

The error indices obtained when composites were equated were
larger, in general, than thuse observed for individual subtests. As
before, errors were larger for the nonparallel-composite pairings
(RMSEs of 0.032-0.036) than for the parallel pairings (RMSEs of
0.018). All three smoothing conditions performed equally well for the
parallel composites. For the nonparallel composites, regression
smoothing of the percentile tables was slightly worse (in terms of
RMSE) than the other two smoothing methods.

Discussion

When parallel power subtests and composites were equated, all
three smoothing methods yielded comparable amounts of error; in all
other cases, regression smoothing of percentile tables typically
result 1 in larger errors than did the other smoothing methods.
Neither type of regression smoothing improved upon "no smoothing” for
any condition; when differences were observed among the smoothing
methods, they tended to favor "no smoothing.” Hence, the remainder of
the comparisons presented in this report are based only on the
unsmoothed equipercentile equating tables. '

Equating Individual Subtests

Equating Methods

Results

Table 20 reports the true-score error indices computed when
parallel subtests were equated. As this table shows, there were only
small differences among the equating methods when they were applied to
parallel power subtests. The true-scoré RMSEs for IRT and STST
methods were slightly larger (by 0.002-0.004 points) than those from
the conventional methods; all methods were essentially unbiased.
Linear equating outperformed equipercentile and STST methods when

parallel speeded subtests were equated (RMSE of 0.004 vs. 0.010-0.015),

Table 20 also presents the true-score error indices computed when
nonparallel subtests were equated. IRT and STST equatings were
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Table 20
True-Score Error Indices for Equating Subtests

Type ol subtest

Power Speeded

Equating method. RMSE Bias RMSE Bias
Parallel subtests '

Linear 00007 00000 0.004 -00001

Equipercentile 0.008 0.000 0.010 0.001

IRT 0.010 0.000 - - X
N of equatings 108 36 |
Nonparallel subtests

Linear 0.048 0.006 0.006 -0.001

Equipercentile : 0.036 0.008 0.012 0.002

STST 0.021 =-0.001 0.015 =-0.002 Y
N of equatings : 135 : . 45 |

clearly superior (in terms of RMSE) to the conventional methods for
equating power subtests. The RMSEs for IRT and STST were 0.024 and
0.021, respectively; for conventional equipercentile and lincar
methods, these values were 0.036 and 0.048, respectively. STST had
smaller bias than any of the other three methods. Nonparallel
power subtests were equated with greater error than were parallel
power subtests.

Linear equating methods worked best for equating nonparallel
speeded subtests (RMSE equal to 0.006), with STST methods performing
the most poorly (RMSE equal to 0.015). There were small differences
across the methods in bias. Parallel and nonparallel speeded tests
were equated equally well. Because nonparallel speeded tests differea
in length but not in difficulty, this may suggest that varying
difficulty has more of an effect on equating than does varying test
length. This issue will be discussed in more detail later.

Discussion

Conventional equating methods outperformed the more complex IRT
and STST methods when parallel subtest3 were equated. In fact, the
simplest (linear) method worked much better than any of the other
methods when speeded subtests were equated. Exactly the opposite was
true when nonparallel power subtests were equated, however. That is,

-109-



B

IRT and STST clearly worked better than the conventional methods; STST
yielded a smaller bias than all other methods. 1In general, parallel
subtests were equated with less error than were nonparallel subtests.
As one exception, however, nonparallel speeded tests were equated with
the same amount of error as the parallel speeded subtests, suggesting
that variation in test length alone was not a significant violation of
test parallelism.

It appears, then, that the conventional equating methods function
well when parallel tests are equated but work less well than IRT and
STST methods for equating nonparallel tests.

Data Collection Designs

Results \

A\

Table 21 presents the true-score ercor indices (for each data

collection design) for equating parallel subtests. Differences across
data collection designs were small. In general, the single-group
design resuited in smaller RMSEs than did the equivalent-groups and
anchor-test designs; this was especially true when speeded subtesty
were equated (the pooléd RMSEs were 0.008, 0.010, and 0.009,
respectively, for the power subtests and 0.006, 0.011, and 0.013,
respectively, for the speeded subtests). There were essentially no
differences in the errors yielded by the equivalent-groups and
anchor-test designs. In general, bias was small throughout; the
single exception to this occurred for equipercentile anchor-test
equating, which resulted in a positive bias for the speeded subtests.

Table 21
True-Score Error Indices for Equating Parallel Subtests Using Different Data
Collection Designs

Data collection designs
Single Equivalent Anchor
group groups test N of
Equating method RMSE  Bias RMSE  Bias RMSE _ Bias equatings

Power subtests

Linear 0.006 0.00! 0.007 0.00! 0.007 -0.001 36
Equipercentile 0.007 0.00! 0.008 0.001 0.009 -0.001 36
IRT 0.008 0.001 0.012 0.001 0.009 -0.002 36
STST 0.010 0.001 0.011 0.002 0.012 -0.001 36
Pooled 0.008 0.001 0.010 0.001 0.009 -0.001 144
Speeded subtests
Linear 0.002 0.000 0.007 -0.003 0.003 -0.001 12
Equipercentile 0.006 0,000 0.009 -0.003 0.013 0.006 12
STST 0.008 -0.001 0.016 -0.002 0.019 -0.003 12
Pooled 0.006 ~0.001 0.011 -0.003 0.013 0.00!l 36
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Table 22 presents the true~-score error indices computed when
nonparallel subtests were equated. Error indices for the nonparallel
subtests were generally larger than those observed when parallel
subtests were equated. . When nonparallel power subtests were equated,
only small mean differences among the data collection designs were
evident, except for IRT equatiyg; here the single-group design was
best and the equivalent-groups design was the worst (RMSEs of 0.012
and 0.032, respectively). Bias was large (0.013) for IRT using the
anchor-test design. Overall, there was a slight advantage for the
single-group design (mean pooled RMSE of 0.032 vs. 0.034-0.036).

Table 22
True-Score Error Indices for Ejuating Nonparallel Subtests Using Different

Data Collection Designs '

Data collection design
Single Equivalent Anchor
_group groups test N of
Equating method RMSE Bias RMSE Bias RMSE Bias equatings

Power subtests

Linear 0.047 0.007 0.049 0,007 0.048 0,005 45
Equipercentile 0.035 0.010 0.036 0.009 0.036 0.007 45
IRT 0.012 0.003 0,032 -0.002 0.024 0.013 45
Pooled 0.032 0.005 0.036 0.003 0.034 0.006 180
Speeded subtests
Linear 0.004 0.001 0.008 -0.002 0,005 0.000 15
Equipercentile 0.006 0.001 0.011 -0.003 0.018 0.009 15
STST 0.010 -0,001 0.017 -0.002 0.016 -0.002 15
Pooled 0.007 0.000 0.013 -0.002 0.014 0.002 45

For the speeded subtests, however, differences among designs were
more marked: The single-group design was consistently the best design
and linear equating was the best method. Bias was largest (0.009) for
equipercentile equating using anchor tests. No consistent differences
were observed between the equivalent-groups and anchor-test designs.
As was discussed previously, nonparallel speeded subtests were equated
with approximately the same degree of error as were'the parallel
speeded subtests, again suggesting that test length was not a major
factor contributing to the error in nonparallel-spee?ed-test pairings.

\
Discussion a ?

In general, the single~group data collection design was clearly
best for equating nonparallel power subtests using IRT and for

equating speeded subtests by any of the three equating methods. These



were the only cases in which a data collection design was clearly
‘ superior for subtest equating. -

The clear superiority of IRT single-group equating over any other
type of IRT equating is most probably due to the particular
implementation of that data collection design with item response
theory. For all other equating methods, the single-group and
equivalent-groups designs differ only in that the latter design
uses two separate samples of examinees (instead of just one) to
obtain the equating transformation. Differences between these two
designs, then, arise from the additional sampling error that is
involved in the equivalent-groups design.

For IRT single-group equating, however, all items on both
subtests are simultaneously calibrated; item calibration for IRT
equivalent-groups equating is performed separately for each subtest
and each examinee sample. It has been demonstrated (e.g., Vale et al.,
1981) that increased item set size yields better parameter estimates
for all the items. Better parameter estimates, in turn, yield a more
accurate IRT equating transformation. Hence, the single-group design
as implemented with IRT has two advantages over the equivalent-groups
design: (a) smaller sampling error, and (b) better item parameter
estimates,’

Item response theory had a lower RMSE but larger bias with an
anchor test than it did when equivalent groups were used. When
speeded subtests were equated using equipercentile procedures, both
error indices were higher for the anchor-test design than for the
 equivalent-groups design. Linear anchor-test equating was clearly
superior to linear equivalent-groups equating only for speeded
subtests. Anchor-test equating using. STST was typically slightly worse
than equivalent-groups STST equating. .

These results can perhaps be best explained by recalling the
definition of anchor-test equating used in this study. For the
conventional and STST methods, scores on each of the two tests were
first equated to a separate anchor test. Scores that were equated to
the same anchor-test score were considered to be equated to each
other. In order to equate two sets of scores, then, two.separate and
independent equatings were performed. It is likely that equating
error was compounded; this could account for the fact that anchor-test
equating was usually worse than equivalent-groups equating for .
equipercentile and STST methods; results for the linear procedure were
equivocal. Because the examinee groups were defined to be equivalent
in ability, the anchor-test design provided no tangible benefit for
these methods.

For item response theory, however, the anchor-test design was
implemented in a slightly different way. Items on both tests and the

<



anchor test were simultaneously calibrated, putting all item parameter
and ability estimates on the same scale. This probably yielded better
item parameter estimates and therefore better equating (at least in
terms of RMSE) than did the equivalent-groups design and its
assumption of exactly equivalent true-ability distributions.

‘Samplé Sizes

Results

. Table 23 presents the true~score error indices for equating
parallel subtests using various sample sizes. This table reveals that
there was a drop in the pooled RMSE as sample size increased from 1,000
to 2,400 (from 0.011 to 0.007 for both power and speeded subtests).

For the power subtests, RMSEs computed from the selected sample
generally fell between the values for the unselected samples: for the
speeded subtests, RMSEs were highest for the selected samples. Bias
was small throughout. These patterns were consistent across all
equating methods. '

Table 23 ‘
True-Score Error Indices for Equating Parallel Subtests Using Various

Sample Sizes

Sample size

1000 1600 2400

Equating (unselected) . (selected) ' (unselected)
method RMSE Bias N* RMSE Bias N* RMSE - Bias N*
Power subtests

Linear 0.009 =-0.001 36 0.006 0.001 36 0.006 0.000 36

Equipercentile 0.010 -0.001 36 0.007 0.001 36 0.006 0.000 36

IRT 0.011 =-0.001 36 0.010 c.000 36 0.008 0.000 36

STST 0.013 -0.001 36 0.011 0.001 36 0.009 0,001 36

Pooled 0.011 =0.001 144 0.009 0.001 44 .0.007 0.001 144
Speeded subtests

Linear 0.006 =~0.001 12 0.003 =~0.001 12 0,003 -0.001 12

Equipercentile 0.009 =0.001 12 0.013 0.003 12 0.007 0.001 12

STST 0.016 =-0.003 12 0.018 =0.002 12 0.009 -0.002 12

Pooled 0.011 =0.002 36 0.013 0.000 36 0,007 =-0.001 36

*Number of equating tables included in the pooled error indices.

Table 24 presents similar indices for the nonparallel-test
equatings. When nonparallel power subtests were equated, there was
iittle decrease in pooled RMSE (from 0.031 to 0.029) as sample size
{ncreased from 1,000 to 2,400, but a large increase (to 0.041) when a
selected sample was used; bias increased from 0.00l to 0.013 for the
selected sample. Most of this increase can be attributed to the
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conventional equating methods. IRT equating was only slightly
affected by this manipulation; STST was robust against the use of
selected examinee samples.

Table 24 '
True-Score Error Indices for Equating Nonparallel Subtests Using Various
Sample Sizes

Sample size

1000 1600 2400

Equating (unselected) (selected) (unselected)
method RMSE Bias N* RMSE Bias N* RMSE Bias N*
Power subtests '

Linear : 0.043 -0.001 45 - 0.058 0.022 45 0.042 =-0.001 45

Equipercentile 0.029 0.001 45 0.047 0.022 45 0.028 0.002 45

IRT 0.025 0.004 &5 0.026 0.006 45 0.022 0.004 45

STST 0.021 -0.002 45 0.020 0.000 45 0.020 -0.002 45

Pooled 0.031 0.001 180 0.041 0.013 180 0.029 .0.001 180
Speeded subtests

Linear 0.007 =-0.002 15 0.007 0.001 15 0.004 =-0.001 15

Equipercentile 0.012 0.001 15 0.015 0.004 15 0.009 0.002 15

STST 0.017 =-0.003 15 0.018 =0.001 15 0.008 =0.001 15

Pooled 0.013 =0.001 45 0.014 0.001 45 0.008 0.000 45

*Number of equating tables included in the pooled error indices.

For the nonparallel speeded subtests there was a decrease in the
pooled RMSE (from 0.013 to 0.008) as sample size increased, and only a
slight increase (to 0.014) when a selected sample was used. These
patterns were consistent across equating methods. In general, the
discrépancy in the error indices between the selected and unselected
samples was much larger for the power subtests than it was for the
speeded subtests.

Discussion

Increasing the sample size trom 1,000 to 2,400 examinees had only
a small effect on equating accuracy; for nonparallel power subtests,
the effect was negligible. The use of selected examinee samples did
not greatly affect equating accuracy for pairs of parallel subtests
and for nonparallel speeded subtests (which, for all practical
purposes, have been behaving like parallel subtests). These patterns
were consistent across all equating methods.

When nonparallel power subtests were conventionally equated using
selected examinee samples, however, both the RMSE and bias increased
substantially. 1IRT equating was only slightly affected by the use of
selected samples; STST equating was not affected at all.
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Test Lengghs and Difficulties

Results

Table 25 presents the true-score error indices for parallel-test
equatings when test difficulty and length were varied. In géneral,
both subtest length and difficulty had a minor effect on the accuracy
of test equating.. For the easy power subtests, pooled RMSE decreased
from 0.011 to 0.008 as test length increased from 15 to 30 items;
similarly, mean bias decreased from 0.004 to 0.00l. For the difficult
power- subtests, the decrease in error was even smaller. Bias was L
consistently small and positive when easy power subtests we.e equated
and was small and negative when difficult power tests were equated.
For the speeded subtests, the effect of test length on equating
accuracy was negligible.

Table 25
True-Score Error Indices for Equating Parallel Subtests Using Various ®
Levels of Test Difficulty and Length

Subtest difficulty

Easy Difficult

Test length RMSE Bias  N* RMSE Bias N*
Power subtests

Short 0.011 0.004 108 0.009 -0.003 108

Long 0.008 0.001 108 0.008 -0.001 108
Speeded subtests '

Short. 0.011 -=0.002 54 - . - -

-Long 0.010 0.000 54 - - -

Note. Difficulty was not explicitly varied for the speeded subtests.
Hence, the error indices for all speeded-test forms were pooled for this
table.

*Number of equating tables included in pooled error estimates.

The error indices for both power and speeded subtests were pooled
and are presented, separately by equating method, in Table 26. In
general, the error patterns were consistent for all equating methods.
That is, RMSE and bias decreased slightly when subtest length was
increased. IRT showed the largest decrease in RMuUE, from 0.013 to
0.007 for the easy subtests. RMSE indices were not dramatically
affected by subtest difficulty. The effect on bias Was consistent
though small; there was a slight positive bias when easy subtests were
used and a slight negative bias when difficult subtests were used. All
methods were essentially unbiased at the longer test lengths.
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Table 26
True~-Score Error Indices for Equating Parallel Subtests Using Different
Equating Methods and Various Levels of Test Length and Difficulty

Subtest difficulty

Easy Difficulc
Equating method RMSE Bias N* RMSE Bias N*
Short subtests
Linear n.008 0.003 36 0.007 -0.C03 36
Equipercentile 0.010 0.003 36 0.008 -0.002 36
IRT 0.013 0.004 27 . 0.010 -0.003 27
STST 0.012 0.003 36 0.013 -0.003 36
Pooled 0.011 0.003 135 0.010 =0.003 135
Long subtests
Linear 0.005 0.001 36 0.004 -0.001 36
Equipercentile 0.008 0.001 36 0.008 -0.001 36
IRT 0.007 -0.001 27 0.008 =-0.001 27
STST 0.011 0.001 36 0.012 -0.001 36
Pooled 0.008 0.000 135 0.009 -0.001 135

%

Table 27 presents the true-score error indices resulting when
nonparallel subtests were equated using differing levels of test
length and/or difficulty. The pooled error indices are presented for
subtest pairings where the tests that were equated were of (a)
different difficulty but equal length, (b) different length but equal
difficulty, and (c) both different length and diff.culty. These
columns correspond to test pairings five through nine, respectively.

The test-length effect that was evident (though slight) for the
parallel subtests was more marked for nonparallel power subtests. That
is, the KMSE (pooled over all equating methods) decreased from 0.043 to
0.036 as test length increaged; similarly, pooled bias decreased from
0.007 to 0.005. This same pattern was evident for all the equating
methods and was largest for the equipercentile equating procedure and
smallest for linear. There was essentially no test-length effect for
the speeded subtests.

Varying difficulty level across the subtests being equated (as
was done for the first four columns of Table 27) resulted in rather
large true-score error indices for the conventional methods (RMSEs
between 0.033 and 0.060) and somewhat smaller indices for IRT and STST
(RMSEs between 0.018 and 0.032). In general, errors for this case of
vertical equating were much smaller for IRT and STST than they were
for the conventional methods.
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Teble 27

True-Score Error  Indices for Equating Nonparallel Subtests Using Different Equating
Methods and Various Levels of Test Length and Difficulty

Different
Different difficulty Different length length and N of
Short Long Easy Difficult difficulty equatings
Equating method RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias per cell
o
Power subtests
. Linear 0.060 0.010 0.056 0.007 0.016 0.004 0.016 0.001 0.066 0.011 27
Fquipercentile 0.045 0.016 0.033 0.010 0.017 0,003 0.017 -0.001 0.052 0.013 27
IRT 0.032 0.005 . 0.025 0.005 0.017 0.007 0.013 -0.001 0.030 0.008 27
STST 0.027 -0.003 0.018 -0.001 0.014 0,003 0.015 0.000 0.025 -0.005 27
Pooled 0.043 0.007 0.036 0.005 0.016 0.004 O0.015 0.000 0.046 0.007 108
Speeded subtests
Linear 0.005 -0,002 0.003 0.000 0.008 0.000 - - 0.007 -0.001 9
Equipercentile 0,011 0.000 0.0i1 -0.00l 0.014 0.004 - - 0.012 0,004 9
STST 0.017 -0.004 0.014 -0.001 0.015 ~0.001 - - 0.014 -0.002 9
Pooled 0.012 -0.002 0.0l1 -0.001 0.012 0.001 - - 0.011 0.000 27

Note. Difficulty was not explicitly varied for the speeded subtests. Hence, the error indices

for all speeded-subtest forms were pooled for the easy
sumber of equatings for that group of cells is therefore twice as large
in the last column of the table.
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Equating accuracy was not differentially affected by the level of
difficulty of the individual subtests. That is, pooled error
estimates were essentially identical for the two different difficuity
levels investigated in this study. This was true for the individual
equating methods and for all methods overall; only IRT equating
yielded a smaller RMSE for the difficult subtests (0.013 vs. 0.017)..

Varying both the length and difficulty across subtests resulted
in the highest error indices observed for the conventional equating
methods (RMSEs of 0.066 for linear and 0.052 for equipercentile). It
resulted in indices for IRT and STST methods of about the same
magnitude as were observed when tests that differed only in difficulty
were equated. :

Discussion-

When parallel subtests were equated, there were only minor
effects on equating accuracy that could be attributed to subtest
length and difficulty. That is, there was a slight decrease in the
RMSE and bias when test length was doubled. There were essentially no
differences between equating easy-to-easy and difficult-to-difficult
subtests. Equated scores derived from easy subtests yielded a small
positive bias at the shorter subtest lengths; equating transformations
derived from short difficult subtests yielded a small negative bias.
This effect was consistent for all the equating methods.

Similar test-length effects were evident when nonparallel
subtests were equated. Subtests that varied in difficulty level were
equated with a much greater degree of error than were subtests that
differed only in length. This was true for all the equating methods
but particularly so for the conventional methods. This finding
suggests caution when tests of different difficulty are to be
(vertically) equated, and that conventional equating methods should
not be used in this situation.

Ability Levels

Results

Equating using different ability levels (one higher-ability
sample and one lower-ability sample), as well as equivalent ability
levels, was performed for Subtest PC using the equivalent-groups and
anchor-test designs. Table 28 presents the results for the different
equating methods and data collection designs when (a) sxaminee ability
distributions were equivalent and (b) examinees differed in mean
ability.

As was observed earlier, there were essentially no differences
between the equivalent-groups and anchor-test designs when the groups
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Table 28

True-Score Error Indices for Equating Across Ability Levels on Subtest PC

Equivalent ability levels

Different ability levels

Equivalent Anchor Equivalent Anchor
groups test groups test
Equating method RMSE Bias N* RMSE Bias N* RMSE Bias N* RMSE Bias N#*
Parallel subtests
Linear 0.006 0.00!6 12 0.007 -0.003 12 0.027 -0.024 8 0.010 -0.002 8
Equipercentile 0.008 0.001 12 0.008 -0.002 12 0.027 -0.024 8 0.011 -0.002 8
IRT 0.012 0.002 12 0.008 -0.002 12 0.026 -0.021 8 0.013 -0.002 8
STST 0.00% 0.001 12 0.011 -0.004 12 0.029 -0.024 8 0.012 -0.002 8
Pooled 0.009 0.001 48 0.009 -0.003 48 0.027 -0.023 32 0.011 -0.002 32
Nonparallel subtests
Linear 0.031 0.00> 15 0.030 0.003 15 0.034 ~-0.023 10 0.026 -0.003 10
Equipercentile 0.024 0.007 15 0.023 0.005 15 0.028 -0.021 10 0.015 -0,001 10
IRT 0.014 0.001 15 (@.024 0,012 15 0.030 -0.023 10 0.017 0,008 10
STST o.011 0.000 15 0.014 -0.003 15 0.031 -0.026 10 0.018 -0.006 10
Pooled 0.022 0.003 60 0.024 0.004 60 0.031 -0.023 40 0.019 0.000 40
“Number of equatings included in the pooled error estimates.,
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were of equivalent ability. There was a small but consistent negative
bias when an anchor test was used to equate parallel subtests.
However, when the groups differed in ability level, the anchor-test

design produced much better equating in terms of smaller RMSEs and
smaller bias indices. Anchor-test equating using samples of different

ability had only slightly higher RMSE than when it was applied to
samples of equivalent ability. Equivalent-groups equating had higher
RMSE and bias when the ability levels of the groups differed; this
should be expected since a major assumption of the design was
violated. There were essentially no differences in RMSE across the
equating methods when parallel tests were equated using different
ability levels.

Similar findings were evident when nonparallel tests were
equated, Few differences were observed between the two data R
collection designs when the ability levels were equivalent. As before, h
the anchor-test design produced much better equating when the groups
differed in ability levels. Anchor-test equating actually yielded
slightly lower pooled RMSEs when ability levels were different than
when they were the same (0.019 vs. 0.024). Equivalent-groups equating
again had higher errors when the ability levels of the groups
differed.

Discussion

When nonequivalent examinee samples were used to equate two
subtests, the anchor-test data collection design consistently yielded
lower indices of equating error. This was true for all equating
methods and for both parallel and nonparallel subtests. In fact,
anchor-test equating was typically as accurate using nonequivalent
examinee samples as it was using equivalent samples.

Equating Test Composites

Power and AFQT composites were equated (a) directly, (b)
fndirectly through the subtests, and (c) by forming composites of
equated subtests. Equating transformations derived using these
various methods were evaluated separately; results are presented
below.

Equeting Methods

Results

Strong true-score theory. The STST procedures used in this
simulation project were developed from Lord's published descriptions
of his methods (Lord, 1965, 1969). However, severe computer
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representation and overflow problems were enrountered when STST was
applied to composites that contained as many as 90 items; these
problems could not be solved within the time frame allowed for this
project. Lord's original computer programs (Stocking, Wingersky,

Lees, Lennon, & Lord, 1973; Wingersky, Lees, Lennon, & Lord, 1969) were
not used for this project because they were not readily adaptable to
these simulations; it is possible that these implementations of strong
t rue-score theory contain refinements to the procedures that are able
to overcome some of these numerical difficulties. However, it should
be noted that Stocking et al. (1973) limit the number of test items to

50 in their program.

Because of these numerical difficulties, STST was applied only to
composites that contained 45 items; this included pairings 1, 3, and
5. )

Equating composite scores directly. Table 29 presents the
true-score error indices for equating composite scores directly. As
was observed when individual subtests were equated, parallel
composites were equated with substantially less error than were the
nonparallel composites. For the parallel and nonparallel power
composites, the pooled RMSEs were 0.008 and 0.031, respectively; for
the AFQT composites, these figures were 0.007 and 0.025. The same
nottern was observed for the pocled bias indices.

Table 29
True~Score Error Indices for Equating Composite Scores Directly

Tyr of composite

Power AFNT Power to AFQT

Equating method RMSE Bias N* RMSE Bias N* RMSE Bias  N*
Parallel composites

Linear 0.005 0.001 36 0,006 0.001 24 0.035 0.007 36

Equipercentile 0.009 0.001 36 0.008 0.00! 24 0,037 0.009 36

STST 0.010 0.001 12 - - - - - -

Pooled 0.008 0.001 84 0,007 0.001 48 0.036 0.008 72
Nonparallel composites

Linear 0.037 0.007 45 0,029 0.0046 30 0.052 0.012 45

Equipercentile 0.026 0.008 45 0.021 0.004 30 0.046 0.014 45

STST ‘ 0.020 0.003 6 - - - - - -

Pooled 0.031 0.007 96 0,025 0.006 60 0.049 0.013 90

Note. STST was applied only to short (45-item) composites.
*Number of equating tables included in the pnoled error estimates.
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For both the parallel- and nonparallel-composite pairings, there
were consistent differences between linear and equipercentile methods.
For the parallel power and AFQT composites, smaller RMSEs were
observed for the linear equating method (0.005 vs. 0.009 for the power
composites and 0.004 vs. 0.008 for the AFQT composites), whereas
equipercentile equating was better for the nonparallel composites
(0.026 vs. 0.037 for the power composites and 0.021 vs. 0.029 for the
AFQT composites). RMSE .for STST was equal to 0.010 for the parallel =
composites (larger than either of the conventional methods) and was -7
equal to 0.020 for the nonparallel composites. This latter value for
STST equating nf nonparallel composites was based only on pairing 35, :
involving the shorter test lengths. For this single pairing, RMSE was N
equal to 0.046 and 0.033 for the linear and equipercentile methods,
respectively. '

Bias was negligible (0.001) for the parallel power and AFQT
composites aud somewhat larger (0.003-0.008) for the nonparallel
composites. Again, STST resulted in a smaller error than did the
conventional methods for equating nonparallel composites. For pairing
5 only, bias was equal to 0.011 and 0.014 for the linear and .
equipercentile methods, respectively; these values compare with 0.003 N\ .
for STST. |

&

The pooled error indices for the power composite were larger than
those for the AFQT composite for the nonparallel composite forms; no i
such effect was observed for the parallel composite forms. :

Equating unlike composites (power to AFQT) resulted in
considerable RMSE (up to 0.052 for the nonparallel, linear case) and a
positive bias. Again, linear methods worked slightly better than
equipercentile methods for parallel forms (RMSE of 0.035 vs. 0.037)
and were somewhat worse for nonparallel forms (RMSE of 0.052 vs.
0.046). The errors observed when unlike composites were equated were A
much larger than those observed for her of the other two composite ‘
types.

Forming composites of equated subtests. Table 30 presents the '
t rue-score error indices computed from composites of equated subtests. /
There were few differences observed across the four equating methods
when parallel composites were equated. That is, the levels of RMSE
for all the equating methods were essentially the same (0.004-0.006),
and all methods were unbiased.

———

When nonparallel power composites were equated, however, there
was a moderate degree of bilas for the conventional (0.006-0.008) and
IRT methods (0.004); STST was essentially unbiased. Conventional
equating methods yielded larger RMSEs (0.031~0.041) than did IRT
(0.,019) or STST (0.014) methods. The same pattern of errors was
observed for the nonparallel AFQT composites. Again, AFQT composites
were equated with less error than were the power composites.
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Table 30
True~Score Error Indices for Forming Composites of Equated Subtests

Type of composite

Power AFQT

Equating method RMSE Bias N¥ RMSE Bias N*
Parallel composites _

Linear ’ 0.004 0.000 36 0.004 0.000 36

Equipercentile 0.005 0.000 36 0.004 0.000 36

IRT 0.005 0.000 36 - -

STST 0.006 0.001 36 0.006 0.000 36

Pooled 0.005 0.000 144 0.005 0.000 108
Nonparallel composites

Linear 0.041 0.006 45 0.032 0.005 45

Equipercentile 0.031 0.008 45 0.025 0.007 45

IRT 0.019 0.004 45 - -

STST . 0.014 -0.001 45 0.012 -0,001 45

Pooled ‘ 0.028 0.005 180 0.024 0.004 135

*Number of equating tables included in the pooled error estimates.

For the parallel case, forming composites from previously equated
subtests resulted ir slightly smaller amounts of equating error than
did equating composite scores directly. For the nonparallel case,
however, equating composite scores directly using conventional methods
resulted in slightly lower RMSEs than did forming composites from
conventionally equated subtests (RMSEs of 0.026-0.037 vs .0.031-0.041).
When STST was used, directly equated subtests had larger errors than
did the composites formed from previously equated subtests.

Equating composite scores indirectly through the subtests.

Indirect methods of equating composite scores were developed for the
case in which only partial data are available. Table 31 shows that

this method using partial- data performed as well as the other méthods =~~~ =~

of equating composites (see Tables 29 and 30). However, it should be
noted that only the larger sample sizes were used when composites were
indirectly equated; Tables 29 and 30 include the results from all
sample sizes. There were no effects on equating accuracy that could be
attributed to data collection design. The use of selected examinee
samples resulted in.larger RMSE and bias for the nonparallel
composites; there was no such effect evident for the parallel
composites. Again, AFQT composites were equated with less error than
were the power composites.

{
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Table 31
True-Score Error Indices for Equating Composites Indirectly Through the
Subtests

—___ Type of composite ’
Power AFQT .
Data collection design RMSE Bias  N* RMSE Bias  N% .

Parallel composites _ _ ;

Single group (N=2,400) 0.004 0,000 4 0.004 0.000 & ..
Equivalent groups (N=1,600) 0.003 0.000 & 0.004 -0.002 4 i
Equivalent groups (N=2,400) 0.003 0.000 4  0.003 -0.001 4 .
Nonparallel composites -
Single group (N=2,400) 0.030 -0.002 5 0.024 0.000 5 %
Equivalent groups (N=1,600) 0.045 0.017 5 0.038 0.015 5 .
Equivalent groups (N=2,400) 0.030 -0.001 5 0.023 0,000 5 ki

*Number of equating tables included in the pooled error estimates.

Discussigg

In ‘general, only small differences were observed among the
equating methods used for test composites. When composite scores were
directly equated, linear methods worked better for the parallel '
composites, and STST and equipercentile methods worked better for the
nonparallel composites. When composites were formed from equated
subtests, differences among equating methods were observed only for
the nonparallel composites: Conventional methods resulted in higher
RMSEs and greater bias than did IRT and STST methods; STST was .,
unbiased. Comparison of Tables 29 and 30 reveals that there was
slightly less error involved when composites were formed from equated
subtests than when they were directly equated. The use of an indirect
equating procedure, with only a subset of the examinee response data,
did not adversely affect equating accuracy.

Data Collection Designs

Results

Table 32 shows that there were only minor differences among the
data collection designs when parallel composites were equated. The
pooled RMSEs for each of the data collection designs were essentially
identical within each type of composite. The single exception to this
ocurred for the direct power composites, where anchor-test equating
was slightly worse than was equating using any of the other designs.
This difference can be attributed to the fact that the RMSE was higher
for equipercentile anchor-test equating than it was for any other
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method using the anchor-test design. In all other cases, equating
methods performed consistently across data collection designs.

Table 32 =

True-Score Error Indices for Equating Parallel Composites Using
Different Data Collection Designs

Data collection designs

Single Equivalent Anchor
group groups test

Equating method RMSE Bias N* RMSE Bias N* RMSE Bias N*
Direct power _ -

Linear 0.004 0.00! 12 0.005 0.001 12 0.006 0.000 12

Equipercentile 0.007 0.002 12 0.008 0.001 12 0.011 0.001 12

STST 0.009 0.002 6 0.011 0.001 -~ - - -

Pooled 0.007 0.001 30 0.008 0.001 30 0.009 0.001 24
Direct AFQT

Linear 0.004 0.001 12 0.004 0.000 12 - -

Equipercentile 0.008 0.001 12 0.008 0.001 12 - -

Pooled 0.006 0.001 24 0.007 0.000 24 - -
Direct power to AFQT )

Linear 0.035 0,008 12 0,035 0.007 12 0.035 0.007 12

Equipercentile 0.036 0.009 12 0,036 0.009 12 0.037 0.009 12

Pcoled 0.036 0.008 24 0.036 0.008 24 0.036 0.008 24
Equated power subtests

Linear 0.004 0.001 12 0.004 0,001 12 0.005 -0.001 12

Equipercentile 0.004 0.001 12 0.005 0.00i 12 0.005 -0.001 12

IRT 0.005 0.001 12 0.006 0.000 12 0.006 -0.002 12

STST- 0.006 0.001 12 0.006 0.002 12 0.007 -0.001 12

Pooled 0.005 0.001 48 0,005 0.001 48 0.006 -0.001 48
Equated AFQT subtests

Linear 0.003 0.00f 12 0.004 0.000 12 0.004 -9.001 12

Equipercentile 0.004 0.000 12 0.004 0.000 12 0,005 0.001 12

STST 0.005 0.006 12 0.006 0.001 12 0.007 -0.002 12

Pooled 0.004 0.001 36 0,005 0.000 36 0.005 -0.001 36

*Number of equating tables included in the pooled error estimates.

As was observed earlier, there was no difference in equating
accuracy between the direct power and AFQT composites for the parallel
forms., There was a much greatar amount of error involved when a power
composite was equated directly to a composite of AFQT subtests; this
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_was the only instance in which a consistent positivé bias was
observed, Forming composites from equated subtests yielded slightly

less error than did equating composite scores directly; this was
equally true for all the data collection designs.

Table 33 presents the error. indices computed when nonparallel
composites were equated using different data collection designs. None
of the data collection designs was consistently best for equating
nonparallel composites. APQT composites were equated with less error

Table 33 : '
True-Score Error Indices for Equating Nonparallel Composites Using
Different Data Collection Designs

Data collection designs

Singie Equivalent Anchor
rou groups test

Equating method RMSE  Bias N* RMSE Bias N* RMSE Bias N*
Direct power : ,

Linear 0.036 0.007 15 0.038 0.006 15 0.037 0.006 15

Equipercentile 0.025 0.008 15 0.026 0.008 15 0.027 0.008 15

STST 0.021 0.002 3 0.020 0.003 3 - - -

Pooled 0.030 0.007 33 0,032 0.007 33 0.032 0.007 30
Direct AFQT

Linear 0.028 0.004 15 0.0z9 0.003 15 - -

Equipercentile 0.020 0.005 15 0.023 0.004 15 - -

Pooled 0.025 “0.005 30 0.026 0.004 30 - -
Direct power to AFQT

Linear 0.052 0.012 15 0.053 0.011 15 0.052 0.011 15

Equipercentile 0.046 0.014 15 0.047 0.014 15 0,047 0,014 15

Pooled 0.049 0.0}3 30 0.050 0.012 30 0.050 0.013 30
Equated power subtests seem o Coe L

Linear 0.040 0.007 15 0,041 0.007 15 0.041 0.005 15

Equipercentile 0.030 0.010 15 0.032 0.009 15 0.031 0.007 15

IRT 0.009 0.003 15 0.023 -0.003 15 0.022 0.003 15

STST 0.014 0.000 15 0.015 0.000 15 0.014 -0.003 15

Pooled 0.026 0.005 60 0.029 0.003 60 0.029 0.006 60
Equated AFQT subtests

Linear 0.032 0.006 15 0.033 0,005 15 0.032 0.004 15

Equipercentile 0.024 0.008 15 0,025 0.006 15 0,024 0.007 15

STST 0.011 0.000 15 0,012 -0.001 15 0.012 ~-0.003 15

Pooled 0.024 0.004 45 0.025 0.003 45 0.024 0,003 45

*Number of equating tables included in the pooled error indices.
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than were power composites. Again, the direct equating of a power to
an AFQT composite resulted in a consistent positive bias. Moderate
levels of bias were observed throughout for the conventional and IRT
equating methods; STST equating was essentially unbiased. All
equating methods performed consistently across data collection designs
with the single exception that forming composites of IRT-equated
subtests using the single-group design yielded a lower RMSE (0.009)
than did any other design in conjuntion with IRT (0.022-0.023).

Discussion

None of che data collection designs proved to be consistently
best or, for that matter, consistently worst for equating composites
of any type. With few exceptions, the equating methods performed
consistently across the different data collection designs; there wes
no distinct method-by-design interaction. STST was essentially
unbiased for those conditions where it was applied.

Sample Sizes

Results

Table 34 presents the true-score error indices computed when
parallel composites were equated using various sample sizes. When
power and AFQT composites were directly equated, there was a minor
effect on equating accuracy that could be attributed to increasing the
examinee sample size from 1,000 to 2,400, For the power composites,
pooled RMSE decreased from 0.009 to 0.005; for the AFQT cowmposites,
these figures were 0.006 and 0.003, respectively. When a power
composite was directly equated to an AFQT composite, there was no
advantage to using the larger sample size; pooled RMSE and bias were
equal to 0.033 and 0.004, respectively, for both examinee groups.

Direct linear equating of composites resulted in slightly smaller
error indices tinan did equipercentile and STST composite equating,
particularly when the smaller sample size was used. For the power
conposites, the RMSEs were 0.006, 0.010, and 0.013, respectively, for
the smaller sample size. For the AFQT composite, these figures were
0.005 and 0.007 for the linear and equipercentile methods,
respectively.

The use of a selected examinee sample did not affect the accuracy

of equating power composites directly. When AFQT composites were
directly equated, however, error increased for equipercentile
equating: RMSE for the selected sample was 0.012, compared to 0.007
and 0,004 for the smaller and larger samples, respectively; bias also
increased slightly. There was no corresponding effect when the AFQT
composites were linearly equated.
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Table 34 ' .
True~Score Error Indices for Equating Parallel Composites Using Various Sample

Sizes

Sample size

12

. 1000 1600 - 2400

Equating (unselected) (selected) (unselected)

method RMSE Bias N* RMSE Bias N* RMSE Bias N*

Direct power :
Linear 0.006 0.000 12 0.005 0.002 12 0,004 0.000 12
Equipercentile 0.010 0.001 12 0.010 0,003 12 0.005 0.001 12
STST 0.013 0.001 & 0.009 0.002 4 0.007 0.001 4
Pooled 0.009 0.001 28 0.008 0.002 28 0.005 0.001 28

i

Direct AFQT . g
Linear 0.005 =-0.,001 8 0.0046 0.002 8 0.003 0.001 8
Equipercentile 0.007 -<0.001 8 0.012 0.003 8 ‘0,006 0,001 8
Pooled 0.006 =0.001 16 0.009 0.002 16  0.003 0.001 16

!

Direct power to AFQT - _ d ‘ :
Linear 0.033 0.003 12 0.038 0.016 12 . 0,033 0.003
Equipercentile 0.033 0.004 12 0.043 0.019 12 0.032 0,004 12
Pooled 0.033 0.004 24 0.041 0.017 24 0.033 0.004 24

Equated power subtests .

Linear 0.006 -0.001 12 0.003 0.001 1}2 0.003 0,000 12
Equipercentile 0.006 =-0.001 12 ~ 0,004 0.001 12 0,004 0.000 12
IRT ‘0,007 =~0.001 12 0.005 ~0.000 12 0.004 0,000 12
Pooled 0.007 =~0,001 48 0.005 0.001/ 12 0.004 0.000 48

Equated AFQT subtests
Linear 0.005 =0.001 12 0.002 0.000 12 0.003 0,000 12
Equipercentile 0.005 =-0.001 12 0.004 0.001 12 0.003 0.001 12
STST 0.007 -0,001 12 0.006  0.001 12 0.004 0,000 12
Pooled 0.006 -0.001 36 0,005 0.001 36 0.003 0.000 36

*Number of equating tables included in the pooled error estimates.

Using a selected examinee sample to equate a power composite to
an AFQT composite caused a substantial increase in equating error.
This was the only situation in which bias was large and positive; in
all other cases, bias was essentially zero. Equating error increased
for both equating methods, but especially so for equipercentile, where
RMSE increased from 0.032-0.033 to 0.043.

When parallel composites were formed from equated subtests, there
was a slight sample-size effect; this was true for all of the equating
methods. Pooled RMSE decreased from 0.007 to 0.004 for the power
composites and from 0.006 to 0.003 for the AFQT composites. The use
nf a selected examinee sample did not affect equating accuracy.
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Table 35 presents the error indices computed when nonparallel

composites were equated using various sample sizes.

Increasing sample

size from 1,000 to 2,400 had little effect on equating accuracy; this was

true for all equating me{hods and for all types of composite equating.

!

i

Table 35 : i
True-Score Error Indices for Equating Nonparallel Composites Using Various Sample
Sizes. :
_ “Sample size
1000 1600 2400
Equating (unselected) (selected) (unselected)
method RMSE Bias N* RMSE Bias  N* RMSE Bias N*
Direct power
Linear 0.031 0.000 15 0.047 0.020 15 0.030 0.000 15
Equipercentile 0.019 0.003 15 0.037 0.018 15 0.018 .0.002 15
STST 0.021 0,003 2 0.020 0.004 2 0.020 0.002 2
Pooled 0.025 0.002 32 0.041 0.018 32 0.024 0.001 32
Direct AFQT
Linear 0.024 -0.002 10 0.037 0.015 10 0.023 =~0.001 10
Equipercentile 0.016 =~0.001 10 0.030 0,013 10 0.015 0.001 10
Pooled 0.021 =-0.002 20 0.034 0.014 20 0.020 0.000 20
Direct power to AFQT
Linear 0.045 0.002 15 0.064 0.031 15 0.045 0.002 15
Equipercentile 0.038 0.006 15 0.060 0.030 15 0.037 0.005 15
Pooled 0.042 0.004 30 0.062 0.030 30 0.041 0.004 30
Equated power subtests
Linear 0.035 =0.001 15 0.051 0.022 15 0.034 =~0.001 15
Equipercentile 0.024 0.006 15 0.042 0,022 15 0.023 0.002 15
IRT 0.020 ©0.004 15 0.019 0.006 15 0.018 0.003 15
STST 0.014 =0.002 15 0.014 0.000 15 0.015 =0.002 15
Pooled 0.024 0.001 60 0.035 0.013 60 0.023 0.00%6 60
Equated AFQT subtests
Linear 0,027 =0.001 15 ~ 0.041 ©.017 15 0.027 =0.001 15
Equipercentile 0.019 0.001 15 0.034 0.018 15 0.018 0.002 15
STST 0.011 =-0.002 15 0.012 -0.001 15 - 0.012 -0.001 15
Pooled 0.020 =-0.001 45 0.031 0.012 45 0.020 0.000 45

*Number of equating tables included

in the pooled error estimates

[t was seen earlier that linear methods were superior to
equipercentile and STST methods for equating parallel composites

directly. When nonparallel composites were equated, however, this was
not true. That is, equipercentile equating outperformed linear

equating (in terms of RMSE) for all instances of direct-composite
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equating; STST was only slightly worse than equipercentile equating
for the direct power composites. For example, when power composites
were equated using the smaller sample size, the pooled RMSE for the
linear method was 0.031; the corresponding figures for the
equipercentile and STST methods were 0.019 and 0.021, respectively.
When AFQT composites were equated, these figures were 0.024 (linear)
and 0.016 (equipercentile). Equating A¥QT to power composites yielded
linear and equipercentile RMSEs of 0.045 and 0.038, respectively.

Bias was small throughout. S

Using a selected examinee sample to directly equate composites
resulted in large increases in both RMSE and bias for-the conventional
methods; STST was robust against this manipulation. - Pooled RMSEs for
the power -and AFQT composites were 0.041 and 0.034, respectively; mean
bias indices were 0.018 and 0.0l14. The pooled RMSE and bias for
equating a power composite to an AFQT composite were 0.062 and 0.030,
respectively. These pooled values reflect the effect of using a
selected examinee sample when conventional equating methods were used;
for STST, RMSE and bias were essentially unchanged.

When nonparallel composites were formed from equated subtests, no
sample-size effect was evident for any of the equating methods or
either of the two types of composites. When a selected sample was
used for equating, however, bias increased from approximately zero t»
0.022 for the conventional methods; STST was unbiased even when
selected samples were used.

. @

Discussion

Increasing the examinee sample size from 1,000 to 2,400 examinees
had only a minor effect on the accuracy of composite equating. The
use of a selected examinee sample caused an increase in equating error
when nonparallel composites were directly equated, when unlike
composites were directly equated, and when parallel AFQT composites
were equated using equipercentile procedures. Strong true-score
theory was unaffected by the use of selected examinee samples.

Test Lengths and Difficulties

o

Results R
The error indices computed when parallel composites were equated
using various levels of composite length and difficulty are presented
in Table 36. When short composites were directly equated, it made
little difference in equating accuracy (measured by RMSE) whether the
{tems were easy or difficult. Biases were slightly positive for
equating easy composites, slightly negative for difficult ones. The

single exception to this bias pattern occurred when power composites
were equated to AFQT composites. In this case, bias decreased from
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0.012 to 0.007; there was little change in RMSE. - For the long

composites, the only nontrivial effect due to composite difficulty

occurred when AFQT composites were directly equated.
pooled RMSE decreased from 0.008 to 0.004.

In that case,
In general, the longer

composites were equated with the same amount of error as were the

shorter composites.

Table 36

True-§core Error Indices for Equating Parallel Composites Using Various

Levels of Composite Length and Difficulty

ST e EE
LA A

Composite difficulty

Easy Difficult
Composite length RMSE Bias  N* RMSE ‘ las N*
Short composites
Direct power 0.009 0.005 24 0.008 -0.002 24
Direct AFQT 0.008 0.004 12 0.006 -0,003 12
Direct’ power to AFQT 0,037 0.012 18 0.036 0.007 18
Equated power subtests 0.006 0.004 36 0.006 -0.003 36
Equated AFQT subtests 0.005 0.003 27 0.005 =-0.003 27
Pooled 0.016 0,005 117 0.015 -0.001 117
Long composites
Direct power 0.007 0.003 18 0.005 -0.001 18
Direct AFQT _ 0.008 0.002 12 0.004 -0.,001 12
Direct power to AFQT 0.036 0,008 18 0.035 0.006 18
Equated power subtests 0.004 0.001 36 0.005 -0.001 36
Equated AFQT subtests 0.004 0.001 27 0.005 -0.001 27
Pooled 0.015 0.002 111 0.015 0.000 111

*Number of equating tables included in the pooled error estimates.

Table 37 presents the error indices computed when nonparallel
compisites were equated. As was observed when individual subtests

were equated, the varying of item difficulty across composites being
equated resulted in much larger equating errors than did the varying

of composite length only; this was true for all types of composites

investigated in this study.

long composites, respectively.

For example, when difficulty was varied
across power composites that were to be directly equated, the
resulting pooled RMSEs were equal to 0.036 and 0.037 for the short and

Varying composite length across these

same composites yielded pooled RMSEs of 0.013 and 0.0l1 for the easy
and difficult composites, respectively.
was evident for all types of composites,
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- Table 37
True-Score Error Indices for Equating Nonparallel Composites Using Various Levels of Composite

Lengtli and Difficulty

Different
Different difficulty Different length length and N of
Short Long Easy Difficult difficulty equatings

Equating Method RMSE Bias RMSE Bias RMSE Bias RMSE _ Bias RMSE Bias per cell’

2y

AN

Direct power

Linear 0.046 0.011 .0.045 0.008 0.009 0.003 0.009 0.001 0.050 0.010 9
Equipercentile 0.033 0.014 \Q.026 0.008 0.0l6 0.005 0.012 0.001 0.035 0.012 9
STST 0.020 0.003 = - - - - - - - - 6
Pooled 0.036 0.010 0.037 0.008 0.013 0.004 0.011 0.00! 0.043 0.011 18%
Direct AFOQT
Linear 0.036 0.009 0.035 0.006 0.006 0.000 0.007 -0.002 0,039 0.005 6
Equipercentile 0.023 0.008 0.024 0.006 0.017 0.004 0.009 -0.00' 0.028 0.006 6
Pooled 0.031 0.008 0.030 0.006 0.013 0.002 0.008 -0.001 0.034 0.005 12
Direct power to AFQT
Linear 0.061 0.017 0.059 0.012 0.035 0.008 0.037 0.007 0.062 0.014 9 -
Fquipercentile 0.052 0.020 0.047 0.014 0.040 0.0!1 0.038 0.008 0.053 0.017 9 :
Pooled 0.056 0.01°9 0.053 0.013 0.038 0.009 0.038 0.007 0.058 0.015; 18
Equated power subtests
Linear 0.048 0.010 0.047 0.007 0.0l4 0.004 0.015 0.001 0.058 0.011 9
Equipercentile 0.037 0.016 0.028 0.010 0.016 0.003 0.016 -0.001 0,046 0.013 9
IRT 0.025 0.005 0.018 0.005 0.012 0.006 0.010 0.000 0.025 0.007 9
STST 0.019 -0.003 0.012 -0.001 0.008 0.003 0.010 0.000 0.019 ~0.005 9
Pooled 0.034 0.007 0.029 0,005 0.013 0.004 0.013 0.000 0.04v 0.007 36
Equated AFQT subtests
Linear 0.038 0.007 0.037 0.005 0.012 0.003 0.012 0.001 0.046 0.008 9
Equipercentile 0.029 0.012 0.022 0.008 0.013 0.004 0.013 0.000 0.037 O0.0ll 9
STST 0.016 -0.003 0.010 -0.001 0.007 0.002 0.008 0.000 0.015 -0.004 9
Pooled 0.029 0.005 0.026 0.004 0.011 0.003 0.011 0.000 0.035 0.005 27

*Except: N = 24 for first cell.
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In general, equipercentile methods worked best when composite
scores were directly vertically equated. For directly equating power

composites, huwever, STST outperformed even the equipercentile
methods. Equipercentile equating bias, however, was almost always

greater than or equal to linear bias for the direct composites; STST
was essentially unbiased. Conversely, linear methods performed best
when composites of constant difficulty (but varying lengths) were
directly equated.

When composites were formed from equated subtests, STST
consistently outperformed all other equating methods; the conventional
methods consistently yielded the largest errors.

Equating errors were largest when both length and difficulty were
varied across the composites being equated. In this case,
equipercentile methods worked best for the direct composites; STST
worked best when composites were formed from equated subtests.

~

Discussion

Whenever parallel composites were equated, difficulty had only a
minor effect on equating accuracy. In general, longer composites were
equated with less error than were the shorter composites. This would
be expected as longer tests are usually better estimates of ability
than are shorter tests.

For nonparallel composites, varying difficulty across composites

being equated resulted in much larger errors than did varying
composite length. STST was shown to be best for the limited
conditions under which it was applied. Equipercentile procedures were
better than linear procedures for vertical equating.

Real-Data Application

Results-

Table 38 presents observed-score error indices computed when the
equating transformations were applied to the item response data from
an independent sample of 1,000 examinees. Table 38 indicates that
nearly all the combinations of equating methods and data collection
designs yielded equating transformations that contained identical
amounts of error; there were only a few exceptions.

The data set contained responses to two randomly parallel Word
Knowledge subtests. Given the results from the simulated parallel
cubtests that were reported earlier, one would expect the linear
equating method to perform at least as well as any of the more complex
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Table 38
Observed-Score Error Indices for Equating Methods and Data Collection
Designs: Real-Data Verification :

Single group Equivalent groups Anchor test

Equating method RMSE Bias RMSE Bias RMSE Bias
Linear 0.067 0.001 0.066 -0.002 0.067 0.002
Equipercentile 0.068 -0.002 0.065 ~0.005 0.069 -0.002
STST 0.068 0.004 0.069 -0.005 0.080 -0.0§3

i

\

equating methods. This was, in fact, what was observed. In general,
the conventional equating methods performed about as well as did any
of the other, more complex methods for this case of parallel-test
equating. The linear equating method typically resulted in less bias
than did any of the other methods; linear bias never exceeded 0.002 in
absolute value, whereas the other methods resulted in bias that ranged
from 0.001 to 0.011 in ‘absolute value. Linear RMSEs (0.066-0.067)
were about the same level as those from the equipercentile
(0.065-0.069) and IRT (0.065-0.067) methods, and were slightly smaller
than those from STST (0.068-0.080).

IRT equating using the equivalent-groups design yielded an
unexpectedly large value of bias (when compared to the other methods
and designs); the bias index for this design was -0.01l. The IRT RMSE
was higher for the equivalent-groups design than for the other two
designs,

Strong true-score theory yielded moderate (comparatively
speaking) levels of bias for all three designs (0.003 to 0.005 in
absolute value). The RMSE for the anchor-test design (0.080) was
larger for STST than it was for any other value in the table.

The standard error of the difference between the equated scores
and the observed scores was computed for this data set. This standard
error is an estimate of the measurement error in these difference
measures that would be expected in the absence of any explicit
equating error. It was computed using an estimate of the test's
reliability (coefficient alpha) that is a lower-bound estimate of the
actual reliability. As such, the estimate of this standard error is
an upper-bound estimate of the actual standard error. The standard
error for this data set was equal to 0.,068.

The observed~score RMSEs reported in Table 38 were typically no
larger than the estimated standard error of the difference between the
equated and observed ccores. This suggests that the error involved in

-134-



estimating the standard error was at least as large as the equating
error itself. Partialing measurement error out of the observed-score

RMSEs is, thus, not a feasible means of estimating equating error
involved in real data.

Discussion

It is evident from these analyses that equating error and
corresponding differences among the equating methods are obscured by
the comparatively large standard errors present in real data.
Equating error, especially for parallel tests, would be expected to be
fairly small in magnitude: A difference as large as half a score
point would translate to a value less than 0.02 on the
proportion-correct metric for a 30-item test; most of the RMSEs .
computed when parallel subtests were simulated and equated were less
than half that size.

On the other hand, the standard error of the difference between
equated and observed scores was computed to be 0.068. Even when one
considers that this is an upper-bound estimate of the actual standard
error, it is obvious that equating error is easily overwhelmed by the
amount of measurement error in the data. The net effect of this
phenomenon was to make the criteria of equating accuracy (functions of
the difference between ‘equated and observed scores) insensitive to all
but very large amounts of equating error. This, in turn, suggests
that the criteria are insensitive to relatively small differences
across equating methods. This problem cannot be readily solved by
partialing measurement error out of the observed-score RMSEs, given
that the error involved in estimating the standard error is probably
as large as the equating error itself.

Only when a test is equated to itself (directly or through a
chain of other tests) can meaningful interpretations concerning
equating accuracy be made from real data. In this case, there is a
criterion for evaluating equating accuracy that involves only the
equating transformation and is thus independent of examinee responses:
Each test score should be gquated to itself, and any deviation of the
observed transformation from this "identity"” transformation
constitutes an equating error. In all other instances, researchers
should exercise caution when interpreting results from equating
studies that rely on observed-score criteria,

v
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CONCLUSIONS AND RECOMMENDATIONS

Individual Subtests

Smoochigg Methods

For the situations simulated here, nome of the smoothing
methods yielded an equating transformation that was more accurate
than that yielded by "no smoothing.” It is not clear whether other
testing situations or other implementations of smoothing procedures
would have yielded different resultsy

Equating Methods 2

Theoretically, the conventional (linear and equipercentile) and
STST equating methods are appropriate whenever parallel subtests are
to be equated; IRT methods are also appropriate if the subtests to
be equated are unidimensional and not speeded. Previous research has
indicated that the conventional and IRT procedures yield essentially
the same results in these conditioni. No studies have investigated
the utility of STST equating procedures.

Only STST procedures are theoretically appropriate for equating
nonparallel subtests in every situation; IRT procedures are appropriate
for unidimensional power subtests. Studies comparing conventional and
IRT methods for equating subtests of equal difficulty have yielded
equivocal results. Conventional equating methods have not been found
adequate for vertical equating situations (i.e., for equating subtests
of different difficulties). Studies indicate that a pseudo-guessing
parameter needs to be incorporeted in any IRT model that is to be used
for vertical equating.

The present study found that complex equating methods (such as IRT
or STST) need not be used when parallel subtests are equated. The
simpler conventional equating methods performed just as well as, and
usually better than, the more complex methods for equating parallel
tests. Either linear or equipercentile methods are recommended for
parallel power tests. However, when nonparallel power subtests are
equated, the conventional methods fail to perform adequately; IRT and
STST methods are clearly better for this case. Linear equating
performed best for parallel and nonparallel speeded tests., In general,
nonparallel subtests were equated with greater error than were parallel
subtests,

Data Collection Designs

All data collection designs performed adequately for equating
parallel power tests. For equating nonparallel tests by IRT methods or
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. for equating speeded tests, however, the single-group design is clearly

preferable and should be used where practically feasible. The

equivalent-groups design should be used to equate tests only when the
two examinee samples are, in fact, equivalent in ability. Whenever

power tests are equated using samples that differ in ability level, the
anchor-test design is essential; combining it with the equipercentile
equating method is advisable.

Sample Sizes

In most of the published studies of test equating procedures, data
were obtained from national testing programs with very large numbers of
examinees (typically several thousand); hence, sample size was not an
i{ssue in these studies. Yen's (1982) sample-size manipulation of 1,000
vs. 2,000 had no effect on the accuracy of equipercentile equating.
Douglass (1980, 1981) varied sample size from 200 to 800 examinees and
found that this manipulation influenced the consister:y of two-
parameter-IRT equatings but was not a salient factor for the one-
parameter model. Similarly, Kolen and Whitney (1982) suggested that
a sample of 200 examinees was not large enough for adequate equating
using the three-parameter IRT model.

The present study confirmed Yen's finding:; that is, there was
little advantage to be gained by increasing the sample size from 1,000
to 2,400 examinees; how small the sample size can get before equating
accuracy is markedly affected cannot be determined from these data.
Parallel subtests can be adequately equated with a selected examinee
sample. When nonparallel subtests are equated, a selected examinee
sample should not be used ir conjunction with the conventional equating
methods. IRT equating was only slightly affected by using a selected
examinee sample, and strong true-scoré theory appears robust against
this manipulation. ' '

Test Lengths and Difficulties

No studies to date have provided information concerning the
minimum number of items a test must contain before equating procedures
can be appropriately implemented. The only information concerning
item difficulties arises from the literature on vertical equating,
where tests of unequal difficulty are equated for later administration
to examinees of unequal ability.

Theoretically, only the STST method is appropriate for equating
all nonparallel tests (i.e., tests of unequal difficulty and/or
reliability); IRT methods are also appropriate for unidimensional
power subtests. Previous studies suggest that vertical equating can be
successful if IRT methods (where the IRT model incorporates some
provision for guessing) are used and the groups do not vary widely
in ability.
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In this study, equating accuracy (defined by RMSE) was not
markedly affected when subtest length was doubled (at least for the
test lengths of 15 and 25 investigated here), nor did it matter whether
easy or difficult subtests were equated, However, scores on easy
subtests may be overestimated while scores on difficult subtests may be
underestimated, at least if short parallel tests are equated. Accuracy
was not affected when subtests of different lengths were equated. s

When the difficulty level varies across the subtests being
equated, conventional equating methods should not be used. IRT or STST
methods should be used for these vertical equating situations.

Composites

Equated composite scores can be defined and constructed in any of
several different ways. For example, composite scores can first be
computed as the weighted sum of individual (unequated) subtest scores.
These composite scores can then be directly equated using conventional
or STST methods; because item response theory assumes that each test
score 1s unidimensional., IRT equating methods are not applicable in
this case. This direct—-equating method is usually considered to be
the preferred method of equating composite scores because it arises
80 naturally from the goal of composite-score equating: to define
equivalent scores on two composites of subtests.

Alternatively, the individual subtests can first be separately
equated by the conventional, STST, or (where appropriate) IRT methods.
Equated composite scores can then be formed for future examinees by
applying the composite weights to their equated subtest scores. It is
necessary to use this procedure when each group of examinees is
administered only a single subtest and composite scores cannot be
directly equated. In this case, a separate transformation table must
be constructed and applied for each subtest in the composite.

Composite scores can also be equated indirectly using conventional
' ~ar procedures that take into account the original composite
hts, subtest means and standard deviations, and the inter-
lations among the subtest scores. This procedure is actually
reformulation of the (direct) linear equating model in which two
composite scores are considered to be equated if their corresponding
standard scores are equal. The advantage of using this indirect
procedure is that composite scores can be equated even if all examinees
do not take all the subtests in a battery. With partial data, then,
this procedure becomes an approximation to the procedure described
above for equating composite scores directly.
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No previous study systematically investigated the merits of the

various procedures for equating composites of test scores. This study
found few practical differences among the procedures investigated for
equating test composites. :

In ge#eral, the equating of parallel composites is most successful
when individual subtests are first equated and composites are formed
from the equated subtests; there are essentially no differences among
the equating methods for this case. If parallel subtests are to be
directly equated, then linear methods should be used because they yield
smaller errors. '

Nonparallel composites are best equated by forming composites
from subtests that have been previously equated using IRT or STST
methods. In general, STST is the preferred method for equating
nonparallel composites in all those conditions where it is practicable
(e.g., shorter test lengths, large sample sizes, etc.). If
conventional equating methods need to be used, the nonparallel
composites should be directly equated and equipercentile procedures

. should be employed. If the goal of the equating procedure is to yield

unbiased equated scores at the expense of all other types of error,
then the STST method should be used in all cases.

Parallel composites were equated with less error than were
nonparallel composites (as was the case for individual subtests).
Composites composed of different subtests (e.g., power and AFQT
composites or, worse, composites with no subtests in common) should not
be equated; this type of composite equating is inappropriate both
theoretically and practically.

“Indirect” composite-equating procedures, where composite scores
are (linearly) equated by using suv’test statistics and
intercorrelations, can be a good substitute for the direct linear
equating of composite scores when examinee response data are not

available for all subtests in a battery. ,

No clear recommendations can be made regarding the choice of a
data collection design or sample size for equating test composites,
since no consistent differences among designs and sizes were noted.
Selected examinee samples should not be used to equate anything other
than direct parallel power and AFQT composites. Vertical equating of
composites i8 not recommended.
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APPENDIX A. STRONG TRUE~SCORE THEORY

Grouping Scores into Intervals

The purpose of grouping is to make the sample frequency distribution
smoother. This procedure attempted to group scores such that no cell
frequency was small and each had about 1/(number of groups) of the cases.

The following loop was repeated until one of the following reasonable
arbitrary limits was reached: (a) the number of groups reached the
maximum of 25; (b) the size of the smallest group was less than 25; or (c) the
variable “portion"” (originally set to 1.0 and reduced by 0.1 on each loop) was
less than .199.

(1) Alternate
(a) forming the next lowest group (group 1 being the first) by
combining the next available low scores (having started with
0, 1, 2,...) until their combined sample size exceeds (portion
*N/25), and
(b) forming the next highest group (group 25 being the first) by
combining the next available high scores (having started with
n, (n-1), (n=2), ...) until their combined sample size exceeds
(portion *N/25) '
until there are no ungrouped scores (in which case any blank groups
in the middle are eliminated, decreasing the total number of groups)
or there are no groups left td put the remaining scores into (in
which case the remaining scores are divided between the two middle
groups).
(2) Compute group frequencies.
(3) Find the size of the smallest group.
(4) Decrease portion by 0.1,

-149-

152



fomputational Formulas for the Constants a,,

The constants, a, . in the strong true-score theory general model are by
definition

%
a = a
Xu  yiu Xy
where 3y " fé y(z) h(x|z) h(ylz) dz. [20]

Computational formmnlas for each element of the integral must be
found, and then the integral must be evaluated.

First, let y(g) =1, a smooth density function,

Then, from Lord (1965, Equations 5-7 with r = 2),

2 n—Z).

h(xlo) = (D * (-0 + & c(1-0)- %% & a-0" 20T

+2(

- - -2 - -
A L G I A S ke
. 2 "1
where k & 0 (n7D Sp [Lord, 1965,
2{n%3q - si - ns;} Equation 46]
p = conventional item difficulty, and
q = l - po

This can be simplified to

x+1 -1 X

n-x n-=2
(1-%) + 2k (x—l) g

- - - x+1
(-0 -k O

h(x]|7)

™M * a0 -k (Th e

= {(2) + 2k (2:5)} ¢ (1-g)" 7"

- + —x-1
Sk (U ST et

n-2 x-1 n-x+1
-k ()¢ ({-c) .
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To simplify the notation,

_ oM n=-2
let vy = {(x) + 2k (x-l)}

- - =2
Wy T k ("x%)

_ n-2
wx3 = <k (x-2)'

Then, the product of the two h functions becomes

+ -3 -
h(x|2) hly[z) = w4 Wy FYY (1-g) 2Py

x+y+1 _,y 2n-x-y-1
+ Voo wy1 4 (1-z)

+ Cx+y-1 (I_C)Zn-x-y+1

x3 Yyl

w

x+yt+1 oy 2n-x-y-1

+ w

X+y+2 _py 2n-X=y=2
v, wy2 C (1-7)

x+y . _.\2n=x-y
Wy3 Wyo (1-2)

rx+y-1 2n-x~-y+1

+w, w (1-g)

xl "y3

x+y _py 2n=x-y
t W, W3 4 (1-z)

x+y-2 _.y2n-x-y+2
+ L wy3 z (1-2)

x+y . y20=X-y
(wxl wy1+ Woo wy3-+wx3 wy2) 4 (1-z)

x+y+l1 2n=-x-y-1

(g W F W, W) T (1-2)

x+y-1 2n-x-y+l

(W Wt W gw ) T (1-g)

xl "y3 yl

Cx+y+2 (I_C)Zn-x-y-Z

+ ¥x2 wy2

X+y-2 _py2n-x-y+2
+ W g W b (1-%) .

A
<

R
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A Beta function (Lindgren, 1976, pp. 328-9) is defined as
B (x+l, y+1) = s &* (1-0)7 ot

The Beta function is also equal to a product of Gamma functions

_I(s)(t)
B (s,t) = I'(s+k)

and there is an algorithm available (Pike & Hill, 1966, algorithm 291)
to solve for T. Thus, the Beta function can be used to evaluate the
integral.

Substituting quantities derived above into Equation 20

ay = 7} v(2) h(x|g) niyle) ot

= s} hx|o) n(ylo) 3g

+

wy2) B (x+y+l,2n-x~y+l)

(wxl wyl Y2 wy3 * Yx3

+ (wxl wy2 + L wyl).B (x+y+2 ,2n-x-y)

! + (wx1 wy3 + W g k%%l) B (x+y, 2n-x-y+2)

+ (w wyz) B (x+y+3,2n-x-y-1)

x2
+ (wx3 wy3) B (x+y~-1,2n-x-y+3)

forx =1, 2, ..., n, and

y=1,2, ..., n.
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Rescaling iu 's
Xu's must be rescaled so that they are all nonnegative to guarantee £ (%)
nonnegative for 0 < ¢ < 1. This was accomplished by setting all negative

Au's to a tenth the size of the smallest positive Ay and then dividing all
A 's by their sum because (Lord, 1969, Equation 31)

U n
T A A = I ¢(x) =1

~153=



Maximum Likelihood Procedures to Refine the xu's
(1) Compute ¢(x) (from Equation 20 with A'g inserted) and $&(x) for

x=0,1, «e.,nand u=1,2, ...U., The §,' (x) are functions of
the axu's.

U
o(x) = & a A

u=1 Xu u
U-1 - -
= I a X +ah . [20]
u=1
u £y U-1
poA A, = T AM +AM =1, [Lord, 1969, Equation 31]
u=1 u=1l
U-1
Thus Au = (1 - 3 Auku)/AU, and
u=1l
U-1 U-1 .
p(x) = Xu u + it (1- 2 Auxu)/A”
u=1l u=1
1]
=a [A,+ 7T
v u=1 Au (a u axUAu/AU)
3 (x)
' = LA = -
' (x) ddu 8u ayu A /A“

(2) Find %&EL, the first derivative of the log of the likelihood with
dAd

respect to X foru=1, 2, ..., U, derived as follows:

n
In L= ¥ f In (¢6(x)) , and
x=0
n . n '
L. 0 PR ST Y €' P L €9 —
—T s =L 7N TRy T L
dAu «=0 X d(x) 9iu «=0 X ¢ (x)



2
(3) Find - _éiflgik”_ , the negative of the second derivative of the log
u z '
likelihood for pairs of nonzero S's only foru, z = 1, 2, ..., (u-1).
(There are only (U-1) independent %'s due to Lord (1969, Equation 31).

The formula is derived as follows:

2 InL . 5 ¢ &) 8" () - 6'(x) 9'(x)
X

—3T 7
a%u x=0 % (x)
o' (x) = 2%£§§l =0,
u
/ 32 1n L _ " ~($"(x))? - n ¢ ' (x) 2
R Ry . e 1) I
u x=0 x=0
32¢(x) _ 3¢(x) , 39(x)
52 In. o o(X) T ax T T 3
o - b iy u _z u
u 'z x=0 $2(x)

n  39(x) 39(x)

= ¢ f Y 3\
X=0 X u Z
¢ (x)
n ¢; (%) ¢; (x)
=- L £ $2(x) '
x=0

. i3

g

2oty

2548
Bk



- el
CoY

(4)

(5)

(6)
(7)

(8)

(9)

Find the change values to be added to the old Xu's by the Newton-Raphson
iterative procedure, namely the

6U = (ln L)'/(—ln L)" for .l;l_ = l, 2, ce o, (U"l)o

\
N ~

Compute the new Au Se

new )\u = 0ld XU + GU for‘l_l. = 1, 29 see, (U"'l)o
Find éu and new Xu from Lord (1969, Equatioh 31) above.

Set negative ), 's to zero and rescale the remaining ’Au's so that the above
equation obtains: recompute the §,'s.

Check whether convergence has occurred (largest §, ( criterion value, 0.1
here) or the maximum number of loop has been reached (200, here); if
neither condition is true, go back to step (1). '

lambdas which had been set to zero were reinserted one at a time and the
above refinement looping (steps 1-8) was repeated until none of the lambdas
in the set were changed from zero during a cycle from Ao through Au.
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Obtaining Estimated True Percentile for a Given True Score ;g

The estimated true percentile for true score t is
£ 8o dg [25]

A computational formula must be substituted for the g(z) and then the
integral must be evaluated. Lord has shown that

A, By (8) [Lord, 1969, Equation 40)
1

g(zg) =

[/ e B

u

and %

H(2) =v&) £ hx[o)= £ v(@) h (x|c). [Lord, 1969, Equation 22]
Xx:u X:u .

A Beta distribution was used for the frequency distribution so that
combinations and factorials would be defined:

Let v(z) = ¢¥(1-0)°, with a = & = 2.
From the derivation for axuabove, we  know that

n-x-1 x-1 (l_r)n-x+l

- +
h(x|t) = w, K- 4+ W, X (1-0) - z

where

M + 2k f“‘z},
{

wl - lx} x-1
- (-2
W k D ox ], and
- {n~2
Y3 k {x—2]° S
Thus,
0oy = 7w e KT (e X
U 1
X:iu
b (x+l+t (l_c)n-x—l+o
2
-~ R (l_,)n~x+l+ﬁ:.
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Substituting back into the integral and using the Beta function to evaluate
the integral, as explained above in deriving computational formulas for au’

.
1 - 1
PRIOLE RN R NOE :

u= - -

U
=L X I {w1 B (x+a+l,n-x+8+1)
=1 X:u

+ v, B (x+0+2,n-x+§)

+'w3B (x+o,n=-x+6+2)} = 1, (because true scores are
bounded by O and 1)

To change the upper bound on the interval from ! to t, the incomplete
Beta function was substituted for the Beta function, yielding the

R Y

proportion below true score t = fg g(g) 9d¢ .
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Initial Estimate of an Equated Score

A table of estimuated true percentiles for scores on the old test was
generated. If the estimated true percentile for the new-test score to be
equated fell in the part of the table for which STST equating was possible,
the initial value for the equated old-test score was the old-test score
which defined the lower bound of the score-interval containing that true
percentile.
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Newton-Raphson Refinement of Equated Scores

Repeat the following procedure until lAl < 0.0001 or ten iterations
have been completed:

= tOld -
£ f,J g(z)oc Prew

where Prew estimated true percentile on new test to be matched as
closely.-as possible by the estimated true percentile on
the equated score, and

told = the current value for the equated true score.
L - - =
A = f/£',

with A limited by [-0.04, + 0.05].

Updated told = told - b,
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