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ABSTRACT _
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ABSTRACT
The performance of five»methods.for determining the number of components to
retain (norn's peraliel anafézis. Velicer's MAP, Cattell's SCREE, Bartletc's
Chi- Square test and Kaiser's eigenvalue greater than unity rule) was
investigated across ‘seven systematically varied factors (samole size, number
of variables, number of components component saturation. equal or, unequar
numbers of variables per comnonent. and the presence or absence of unique and
complex variables). Five sample correlation matrices were generated at each

\of two levels of sample size from the 48 known population correlation matrices
representing six levels of component pattern complexity. The performance of
the paraliel analysis and the MAP methods was generally the best across all._
situations. The SCREE test was generelly accurete but variable. Bartlett's
test was less accurate and more variabie than the SCREE test. Kaiser s method
tended to seveiely overestimate the number of components. Recontandations
concerning the conditions under which each of the metnods are_eccurate are

discussed, along nitn the most effective~end useful nethods combinations.
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g A Comperison of Five Rules for Detormining the

Number of Components in Complex Data Sets
A common probiem in the beheviorai sciences is to determine {if a set of p
observed variables can be more persimoniously represented by a smaller set of
m derived variables. Component analysis and factor analysis represent two
broad classes of procedures designed to solve this problem. The purpose of

the analysis may invoive the calculation of m scores to replace the original p

observations for eacn subject or the:® interpretation éf tne pxm pattern metrix,

A which provides information for the understanding and interpretation of the

'originei variebles.f The researchers empioying parsimony procedures must make
~a number of decisions, including choice of method, choice of rotation, and
chofce of method of Celculating the scores. One 'of the most critical
decisions is determining how many factors or components to retein-(m) The
present paper presents the results of a Monte Carlo eveluation of five
alternative methods that have been proposed for determining the vaiue of m:
The determination of the number of components or factors to retein is
l1ikely to bc the most important decision a researcher wiii mhke. Decisions
. involving choice of method, type of rotation, and type of score wili have
relatively Jess impact because of the demonstrated robustness of results
'across different aiternatives in these areas. However, under~ or
over—extraction uiii distort the results. The obvious probiem of

underextraction involves tn9 loss of impqrtant information by ignoring a
. ¢ , Py
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faotor or cembining 1t with anotner factor. The effects of overextractio'.,
follow&d by rotation. is less well doctumented but equally important. ‘Comrey
(1978) describes some of the dangers, such as ninor factors being built up at
the expense of major:factors and/or the creation of factors with only one high”
Woading and a few low loadinos. These are factors tiiat are both(?nlikely to

replicate and will be uninterpretable. Velicer and Jackson (1984) assert that

s : . .
overextraction, is. 1ikely to be the prime rc=son for discrepancies between
.factor analysis and component analysis. In view of how 1mportont this
'decision is to the analysis, 1t is int@resting that some recent textbooks

.provide ltttle or no gqidance 1n this area (Chatfield & Collins, 1980

Jackson, 1983' and Lunnehorg & Abbott. 1983). . . v
Principal Component Analysis (PCA;.Hotelling, 1933) may be viewed as

involving an eigen decomposition of the P x P sample correlation matrix_g.

where

ni1_. - - R=LDZL.

Pt ot oy ' - '

02 is the P x P di agonal mattix containing the eigen roots of R and L isa P
— - s~ >

x P matrix which contains the corresponding eigen vectors.f When component

“analysis 1is employéd as a pansimpny model; only the first m components aré )

retained. The component pattern (A) may be written as

A\

(2] A=bloDn o . o

~ﬂm

where 0. contains the first m efgen roots and Ly contains the
| corresponding first m eigen vectors, .Glass and Taylor ,(1966), Pruzek and
“Labinowitz (1981), and Kaiser (1970) have reported on the widespread use of
PCA in this manner. Velicer (1974, 1976Q\N?977) and Velicer, Peacock and

Jackson (1982) have shown this use of-PCA and Factor Analysis result in

essentially equivalent solutions.

LR
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A second ‘class of procedures, colled'common factor analysis (CFA) has also -
been employed to expraess a set of P variables more parsimonious?& as a smaller
set. The factor analytic model specifies that a P x P correlation (or

covarienoe) matrix may be accounted for by m common and P unique factdrs.
e—— . . -
. This model may be expressed as S Je '

(31 . ﬁaﬁnwu? |
where - A is a P x m pattern matrix and U2 is: the P x P diagonal matrix of
$ .
- weights for the unique factors. eit is important to note that m is frequently

[

‘assumed to be known for the derivation of theselfactor enalysis procedures..
Sometimes the maximum likelihood test is employed to test 1f the assumed

~ LI
! ¢

number of factors is correct.
Since both CFA and PCA are employed as data. reduction techniques, it is =«
important to note spme differences petween them, - The CFA approach requires y )
that m, the dimension of the reduced set of variables, be known prior to tne
analysis. The value of m may be determﬂned #n one of two general ways. In » -
one approach, m may be determined by epplying some mehtod to a PCA solution ;s
and the result then used in the factor analysi's solution. A second approach
uses a maximum jikelihood test to ezgluete the fit for different velées of m,
Unfortunately. many of the methods applied to tne PCk solution provide
'different results from each other and from the maximum likelihood epproech.
Further, Jackson and Chan (1980) "have discussed numerous computetionek
difficulties with the maximum 1ikel{hood approach itself.. In adaition, an
indeterminacy has been jdentified in the simultaneous estimation of A and u2
' (Guttman,Llﬁg4.'Schonemann & Hang, 1972; Stei\er & Schonemanm,’ l979) This
indeterminacy is inherent*in the factor analysis model. In light of . —
difficultiee associated with the requirement that m be known 2 griori; the
indeterminacy of the factor model, the computation problems with fector

\
£
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analysis, the widespread use of ?CA and the general comparability of results

L

across the two nethods. this study chose to focus on the PCA procedure. . . o
& ~ . C
s " ) o ’ r ' . , _ o 4

°roperties‘of Retained CQQPonents
" The comparison of methods to ddtermine the number of components to‘retain

\

requires a description of the qualities oegireble in ‘a retained component. A
review of‘the properties of princioal componentss'linked with the goalrof data
summarization, provides such a diseription. o | i

. Number of substantial lbadinﬁg. Intuitively, a parsimony appfication of

'PCA requires-each Fetained component to;conxain at least two substantia} | \k
'_ i loadings. Summarizing power. is lost when only one variable is'represented: :
Algebraic (Anderson & Rubin, 1956) and stati:tical (iawley, 1940, Morrison,
1976) examinations of CFA agree that at least three variables are requdred
before the first factor can be_identified. Andg¢rson and Rubin {1956) have

Furthér demonstrated that each subsequent identifiable factor must contain at

13

least three non-zero loadings. At a sample level, a minimum of at ldast three
significant loadings are required for factor identification.
b
Yariance ac-ounted for, Pnincipel cGMponents anaiysis proceeds from')

correiation mavrix, a stcndardized variance-covariance matrix in which the

variance of each original veriabie is equal to 1.0, The variance of each v
prino%bal component is equal to the eidenvalde of that component. The sum of
all P eigenvaiues is equat to‘E, the number of variables. A 1.0 cigenvalue
N combonent, :u:m:;mts for as much variance as a single vnrinble.
Components with eigenvalues near zero provide no summarizing power. A

component with an eigenvalue greater than 1.0 provides more symmarizing power}

a

than an original variable. .
/////’ﬁhomponent reliabiliql. Kaiser (l960)/9nd Kaiser and Caffrey (1965)
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addressed the issue of'component'reliability.“ Noting that a component must be
raliable to be useful, Kaiser (l960) argued that the reliability of a '
component will always be non-negative when the eigenvalue exceeds 1.0. Horn.
‘(1969) noted that this approach to reliability includes all’' p variables
. regardlessxof their coimponent loadings. In applied usage, component scpres
< . are usually generated as an unweighted suit of those variables with substdntial

component. loadings. Reliabi}ity estimates based only on those ftems

. contributing to the component score can be quite high even when the component
eigenvalue is below 1.0 (Horn,,1969)

ANy

The component properties reviewed above can be integrated to pre-
sent an operational definition of a useful- component. Conventional use of PCA
is a data reduction technique, conbined with algebraic and statistical nﬁ%
necessity in CFA dictate that, at the popu\ation level, at least three - a
non-zero loadings are required to identify a useful component. At the sample
level, three significant and substantial leadings are needed. In order to
guarantee non-negative component reliability, retained components are required
to have an eigénvalue greater than 1. 0. Therefore, all components with three
or more substantial loadings and an eigenvalue of greater than 1.0 will be
referred to as.major %omonents (MIC). Such MJC components would probably be
-of interest to most investigators. Components which have either (1) less than
three substantial loadings but an efgenvalue of 1.0 or greater or 12) .
components which have more than three substantial loadings but an eigenvalue N
of less than 1.0 may be of interest to some investigators and will be referred
to as minor (MNC) components. Finally, couponents with both less than three
substantial loadings and an eigenvalue less than 1.0 should never: ‘be retained
and will be referred to as trivial (TC) conponents. Table 1 summarizes these
operational definitions of major, minor and trivial (MJC MNC, TC) components.

EKC : 8 . <~. . : : %} f
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v« Determining the Number of Components
o A number of rules have been suggested to determine the appropriate numben i
of compenents td’retain (Bartlett, 1959. 1951; Cattell, 1966; Crawford, 1975;j' - ﬂ{

Everett, 1983; Horn, 1965; Joreskog, 1962; Kaiser, 1960; Revelle & Rocklin,
1979; Veldman, 1974; Velicer..19766). These rulgs often do not give the same
results (Andersod. Acito & Lee, 1982; Cattelf\& Vogelman, 1977; Hakstian, ° R
Rogers & Cattell, 1982. Horn. 1965; Linn, 1968. Zwick & Velicer, 1982).

Applied researchers are, therefore. often at a loss as to how to proceed._ b é

Conflicting research conclusions can be traced to differing methods of

—
L

_ defining the correct number of.;omponents. . o ] -
This . section will describe the five methods to be evaluated in this
study> The methoﬁxﬂa*e. 1) the Bartlett test; 2) the eigenvalue greater than
1.0 rule; 3) the minimum average pertial rule. 4) the scree test and 5) the A
A parallel analysis method. - Q?here methods were selected for 1nc1usion either
because of their widespread use or their extensive theoretical justification.
v aartlettgi test (BART). Following Lewley s (1940, 1941) test for. maximum ‘\)
11kelihood factor anaﬁi?is. Bartlett (1950 1951) developed an enelagous '

statistical test for component analysis of the null hypothesis that the

° r?

’ remaining P-m efgenvalues are equel. Each ejgenva}ue is excluded seque@;ielly S RN
until tfié approximate chi-square test of the null hypothesis of equality fails R
to be rejected. The fiest m excluded components are réiainedj '

BART appears sensitive ﬁo the sample size;/ Gortueh:(1973) argued that as ‘ |

4

3 the number 1ncrease§; the tests ef sibnif}eﬁﬁee become more powerful and, \\

.
| J .
b . f - s
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therefore. less and less substantiei di fferences between eigenva!ues are found

". to be significant. Tnis can potentislly ieed to the retention of wore

9
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components as a function of the number of subjects. In response to this, Horn

l

and Engstrom {1979) nave suggested cnenging the glpha Tevel at different i

ieveis of N, Howeuer. as the sampié’size increases, the estimates of

- population eigenvalues will become’ increasingly accurate ‘This increased

accuracy ledds. tp angler observedtdifferences between equa% eﬂgenvalues.

S,
This increased acourecy mgy approprietely offset the increasedeower of the
Bartlett test'when the population eigenvalues are ectuaily equai. Zwick and

Velicer (1982) found the BART test somewhat more accurate with lgrge samples

than yith small samples. ‘ AN S - ?'
igenvalue greater'tnan 1.0 {K1). Pernaps tne most popular, certainly the
most commonly employed metbod. ie to retain the components with eigenvalues '

greater than 1.0: Kaiser \1160) developed tne rationale" for this metnod based

' on arguments focusing on compenéht reltability, pattern meaningfuiness and

Guttmen s 1954) work examining the lower. bounds for the number of components
in 1mage analysis. Gorsuch (1974) noted that»meny users follow Kaiser (1960)

and empioy the K1 rule to- determine the number of componentssceﬁﬁer than as &

1ower bound as originally presdnted. Difficulties associated with this use
are noted by Mote (1970) and Humpreys (1964) who argued that rotation of a
‘greater number -of components resul ted in more meaningful solhtions. They
imply the relatively blind use of the Kl ruie may sometimes iead to the
___retention of too few components. .

A number of researchers (Browne. \968 Cattell & Jaspers, 1967; Horn,
1965; Lee & Conrey. 1979; Linn, 1968. Ravelle & Rocklin, 1979; Yeomans &
Golder, 1982; Zu?ck & Velicer, 1982) however, have found the number of
components retained by this method often overestimates thé known underlying

7 ‘ - 10 | |
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| ' component structure. Gorsuch (l974f'and Kaiser (1960) report-tne number of -

,‘. . components retained by X1'js commonly hetween one third and one fifth or one

- sixth the number of variables included in the correlation matrix. A Mante -

Carlo study by Zwick and Velicer (1982) ‘supports this result, This '
relationship of retained components to the number of variables {s detrimental
to the accurate estimation of the underiying compoﬂent structure, The KIi
method, although conmonly used, 1s believed by some critics to sometimes

. underestimate and.by many others to gross?y overestimate the nqmber of

| components. The tatter situation occurs pavtﬂcularly when there are a large
We.g., P greater than 50) number of variables involved. S ‘ .

The Minimum average partial‘(MAﬂl, Velicer (1976b) has suggested a method

. \ &
based on the matrix of partial correlations. The ‘average ‘of the squared

L

. partial correlation 1s calculated after each of tha m components has been 3
partialed out. where the minimum average squared partial correlation is
reachqd, no -further components ‘are extracted and fotaCed The average squared
ﬂartial correiation reaches a minimum when the residual matrix most closely
resembles an dentity matrix. After tnat point. the average squared partial
will increase; Using this rule, two variables gouLd be expected to ' )
have high Joading$ on each retained component. The method 1s‘congruent with
the factor analytic concept of “common” factors. Velicer (1976b) points out
the method is exact, can beeapplied with any covariance matrix and is
logically releped to the’ Cbncept of factors as representing more than one

'variab1e. In a recent study (Zwick & Velicer. 1982}, the MAP rule was more

-

7 accur:ﬁ; in 1dent1fy1ng o~known number of components than either the K1 or.
]

BART
The SCREE test. Cattell (1966) described this rule which is based upon a

graph of the‘eigenvalues. The scree test {SCREE) 1s simple to apply. The

N
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eigenvalues are’ plottedg a straight line 1s fit through thé P-m smaller values
";e, and those falling abo¥e thetline are retained. A numb&r of compiicatibns my ¢
océur 1nc1uding. (1) graduai slope from.lower to higher eigenvaiues with no
- obvious break: goint in the ljne. (2) more than one break point in the line.
_and (3) more than one apparently suitable itne wmay be drawnﬁ}hrough the low -
| values. Horn and Engstrem (1979) have noted the mnderbying similarity of the
logic of Bartlett S ch1 square test and the scree method. Both tests are '
based on an analysis (one statistical, the other visual) of the essentia]
equa11ty of the remainﬁng \etgenvaiués. . '
The scree tast has been most effective when strong components are present
‘ _with little confounding due to error or unique factors. Tucker, Koopman and
* Linn (1969) found the scree test to be correct in 12 of 18 cases.. Cliff
(1970)‘foand it to be accurate%hwgrticularly if questionable components are
included. Cattell and Jaspers (1967) found the test to be correct in 6 of ¥
cases. while Cattell and Vogelmann (1977) reported the test to be accurate
over 15 systematically differing analyses. Further, Cliff and'Hamburger
(1967) found more definiie breaks with larger (N = 400 vs. N = 100) sample
sizes and Linn (1968) concurred in this conc?usion. Zwick and Velicer (1982)°
found the scree test to be wmost accurate with” larger samples and strong \
components. They found the scree test to be the most accurate of four methods
) evaluated across many examples of matrices of known, non—complex._structure“
Use of the scree test always involves jssues of interrater reliability.
Cattell and Vogelwann {1977) and Zwief and Velicer (1982)‘ﬁavefreporte¢_good
“.{nterrater. r%Iiability among naive and awmong expert judges. Howevér; Crawford
" and Koopman (1979} have reported extremely low 1nterrater reliabi!ities. The

circumstances associated with high and low ianrrater relfabilfty on the SCREE

procedure have not been" {dentified.

PAvui e providea by enic
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Parallel analysis (PA). Parallel Analysis (Horn, 1965), involves a

comparison of the obtained.'real data éigeni&lues with the eigenvalues of a

| correlation matrix of the same rank and based upon the same number of
observations but containing only random uncorrelated yariables. This method
{s an adaptation of the K1 ;ule. Guctman's (1954) development of upper and
lower bounds was based upon pobulation values. Horn (1965) noted that, at the
‘population level, the eigenvalues of a correlation matrix of uncorrelated
variables would all be 1,0, When samples are generated based upon such a
matrix, however.‘the {nitfal eigenvalues exceed 1.0 while the final
eigenvalues are below 1.0, Horn (1965) suggested that the eigenvalues of a
correlation matrix of P random uncorrelated varfables should be contrasted
with tﬁose of the data set in question, based on the same sample s{ze..
ComponentS'J? the matrix of interest, which have eigenvalues greater, than
those of the comparison ggggom matrix, would Be retained. This approach
integrates the reliability i;a\aata su;mgriziné emphasis of the population
based K1 rule without ignoring the effect 6;\33””1§\§1ff’

Horn (1965) presented one example of PA in a PCA problem. He recommended
that the comparison eigenvaiues be based upon a number 6f generated ranQom
matrices to avoid major sampling errors in the estimation of fhe eigenvaldes.
Although there has been no published systematic examination of the PA method .
«ith PCA, Richman (personal communication, Oct., 14, 1983) reported a series
of simulation studies with the method. PA was found to be very accurfate when
applied to correlation matrictes conforming to the formal fact§§ anélytic
model. He further reported that PA led to retention of too many components
when applied to correlation matricies conforming to the middle model described
by Tucker, Koopman, and Linn (1969). The method was more accurate in bgkh
cases at larg;?“$8\= 500) t¢han at smaller (N = 100) sample sizes.

©

ERIC : 13

Aruitoxt provided by Eic:



S S . e , A R -
) n
Humphreys and Montinell{ (1975) applied PA to principal axis’factor
analysis and found the method accurate over a range of examples. Montinelld
and Humphreys (1976) developed a regression equation‘khich accurately predicts
the eigenvalues of random corraiation matrices with squared multiple
correlatic;s inserted as the diagonal. Greén (1983) ugilized this predictfbn
equation to evaluate the performance of factor analysis of binary items. No-.

such prediction equation has been réported for standard correlation matrices..

Variables Affecting Decision Methods -
Previously reported research findings on the performance of the decision \\ .

methods described above indicate that each may be affected by a set ot
different factors. These factors include sample size, the number d;
variables, component saturation, component {dentification and the presence of
special types of variables. This study attempted to incorporate each of these
influenges {nto a simulation study. Some of the ccnsiderax*ons related to
each of these factors are presented 1n this/ section,

Saggle size. Depending upon the decision method emplqyed. it 1s possible
that the humber of subjects may affect the accuracy of the. decision about the
number of components to retain. Sample size is typically determined both by
practical. applied considerations and the need for accurate estimation. The

ixn sample size hust be large enough to allow an adequate estimation of the
éelaticnshibs between the variables. On the other hand, in applied settings,

large éhmples may be too expensive to be practical.,
Number of variablés. With the development of computer technology and

software, larger and larger correlation matrices have been submitted to PCA.
PCAs of personality'inventories at the {tem level, for instance, often involve
80 to 100 variables. Analysis of 200 variable sets is becoming common.

Larger numbers of variables have been reported to increase the accuracy of

Aruitoxt provided by Eic:
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some rules while decreasing it for ‘others (Zw;zﬁ & Velicer, 1982).

Component saturation, Linn (1968) and Zéﬁck and Velfcer (1982) have
demonstrated that the underlying componeut saturation affects decision
methods, Underlying components made up exclusively of high Toadings (e.g.,

.80) were more likely to be retained. by various decision methods, than
components exclusively made up of lower loadings (e.g., .40).

Component 1dent1f1cation. The accurate identification of a component may -
Ldepend upon the number of. variables which have non-zero loadings on that
component. Components defined by less tian three variables are not capable of

\"1dent1f1cation. Tha impact of unequal numbers of variables per component 1s’

unclear for any of the rules undervdiscﬁssion.

Special variables. - Complex variables have 2 nonzero loading on more than.
one component. Unique variables h;ve only one non-zero loading and no other
variable loads substantially on the same component. Component patterus
containing both complex and unique variables are believed to occur frequently
in applied situations (Tucker et al. 1969). Tne effect of these’ types of
variables upon the various decision rules is unclear, Complex or unique
variables can be expected to lead to the retention of more components by K1
and BART &nd to make SCREE decisions more difficult. The effect of such
variables upon MAP and PA has not yet been eiamingd empirically.

Methods To Be Included
The correct determination of the number of components has been identified

as a crucial step 15 the data redqction application of PCA, There contiqﬁes
“0 be general disagreement concerning the best method to accomplish this‘
step; This study compares the performance of five decision mathods on
simulated data sets. These sets incorporate variables expected to influence ,,

each method. The K1 mathod was included because it is so widely used. The

Aruitoxt provided by Eic:
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. .
MAP method was 1ncluded because of its unambiguous solution, its reiation to
“common factor® concepts and its good performance in a recent study (Zwick ‘&
~ Velicer, 1982), Bartlett's statistical method (BART) was included because 1t
| is the only statistical method appropriate for PCA solutions. The scree test
(SCREE) was included because of 1ts apparent ‘simplicity and its reported
validity.. The parallel analysis, method (PA) was included because of its
unambiguous solution and 1ts'reported accuracy. Each of the chosen methods
may be differentially affected by the manipula:ed variables,

R {ncluding sample size, the number of variables, the degree of
component identification and saturation, and the presence of- unique or complex
variables, The rcbustness of the five rules in question, acrpss these

- variables, is the central focus of this study. :
?ethod

Method of Data Generation ‘

Studies of the effectivdué§§“6?‘t§§“varf0ﬂs-decision methods may be
categorized into one of two types. Historrcally, the more common type of
study employed real data representing either new work or “classic" data sets.
These studies employed some logical criteria concerning the appropriate number’
of components and compared the performance cf the proposed decision method to
the logically determined value (e.g., Cattell, 1966; Horn, 1965; Humphreys &
Montanell1, 1975; Velicer, 1976). Such studies, in employing an arbitrary
logical criterion, may have inaccurately estimated the performance of the
decision mBthod in question. More recently, studies of decision rule
effectiveness have employed correlation matrices generated from component
structures entirely under the control of the investigator (e.g., Anderson, -
Acito & Lee, 1982; Cattell & Vogelman, 1977; Tucker, Koopman & Linn, 1969;
Zwick & Velicer, 1982). These studies have the advantage of & known criterion

~
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ageinst which. to measure the performance of the decision methods. They are,
_ however, open to the criticism that the generated matrices, although
fconforming to a mathematical model. may not represent real data and thus.lead
to {nappropriate conclusions (fucker. Koopman e Linn._leﬁs).
The question of a rule's accuracy cannot be exﬁ%ined without a known
" criterion. Although.logical arguments can be mounted to defend the number of
components present'in some date sets, these arguments are always open to
question. Far the assessment of the 1mpect of various conditions upon a
rule's accuracy, generated data of a known number of - components 1s ‘
preferable. The issue of genera!ization to real data sets is an inportant but
separate fssue which may be 1n~ependently addressed in the particuler way the
data is generated. This study employed an -approach similar to the “middle
model" of Tucker;-Koopman and Linn (1969).
Procedure
The number of variables (P) to be employed was set at 36 and 72. These
values represent small and’eoderetely large data sets and accommodate -

constraints ‘imposed by the selection of the number of components to be

included. Largerfzefs“of rerieples have been shown to have a p tive {mpact .
on MAP, BART (Zwick‘& Velicer, 1982) and SCREE (Cattell & Vogelman, 1982) and
a negative impact on K1 (Zwick & Velicer, 1982). o
The sample sizes (N) chosen were selected to reflect common, applied =~
usage. They were set as a function of the number of variables. The lower N
was set at twice the number of variables, The higher N was set at five times
the number of variebies. The resulting N's were 72 and 180 in the cases
including 36 varieoles. ¥hen 72 variable cases were examined, N's of 144 and

360 were selected. These appear to include a representative range of_sample

sizes as reported in applied educational and psychologicel research., Larger

Aruitoxt provided by Eic:
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sample sizes have been shown to moderately 1nprove the performance o% tne MAP,
SCREE and K1 methods (Cattell & Vogelman, 1977; Zwick & Velicer, 1982) and to
somet1mes 1mprove and somet1mes weaken the accuracy of the BART method-
(Gorsuch, 1975; Zwick & Velicer.,IQBZ}w
As.&escribed above, major éomponents {MIC) are defined as those with three
or more substential loading and en eigenvalue greater than, 1.0, Two types of
minor components (MNC) are defined. First, those with three or more ‘
esubstantie\ loadings and an eigenvelue of less than 1.0, Second. those witn
1ess than three substantial loading and an eigenvelue greater than or equal to
.0. Tirfvial components (TC) are defined as those with less than three
substantial loedings and an eigenvalue of less than 1.0. ) .
o The number of major components built into the population corfelation
matrix was 3 and 6 when P was equal to 36, and 6 and 9 when P was equal to
72, These valnes were chosen to reflect a reasonable range of reported |
applied usage. They permit & span of an average number of variables per MJc
* (p/MIC) from 6 to 12. Although this P/MIC is somewhat high, such values enif
required to permit veriabifﬁ;y in the number of variables per component, while
still meeting the cénstreint of at least 3 substantial loadings in each MJC.
The distribution of P/MIC- was constrained to be either an equal number of
variables per MIC or an unequel number. For the cases where an unequal number
existed, the number was symmetrically distributed about the mean number of
variables per MIC appropriate for that matrix. That is, if P were 36, and m
were 6, the average number of variables per MJC would be 6. When P/MIC was
planned to be unequal, the humber of variables per component was 8, 7, 6, 6,
5, and 4, Similar distributions for oiher combinations of P and m are

presented in Table 2.
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Iuse;t Table 2 about here P8
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Component saturation (SAT), tne uagnitude of the loading of..the vafiables
on a MIC, was.split between a high of .3 and a low'of'.s. These values bridge
much of the applied range and have Béen shown (Zwick & Velicer, 1982) to |
differentially affectéfoﬁr of - the décision rd1es.under conéideration. Within
any one matrix, the component ioadings on all major components were equal and
either high (.8) or Tow (.5). T -

. For the purposes pf_this sgydy.‘unidue variables (UNIQ) were defined as
variables which do not load at all on eitﬁ;r'MJC‘s or TC's in the- population
structure, Iusté%d..UNIQ variablés“rﬁpr&sent the only variable loadiné on one
type of MNC. Such an MNC has a population eigenvalue of 1;0. Complex
variables are defined here as those variables which load substantially on a
MIC but also Toad minimally (.2) on a second type of MNc in tne population
structure. e

Specific combinations qf these variables were constructed. Pr&vious work

' has indicated that N, P and SAT have an fmpact upon some of the decision
‘rules. At each level of P and SAT, component patterns were constructed to
evaluate the 1mpact of N, P/MIC qu a number of combinations of factors. A

’ "Best Case"” set was defined for comparison purposes. This first level of
complexity (1) had an equal number of variables per major component, no MNC's
or TC's present.anﬂ.thus no compleg’or UNIQ variables. Five other levels of ‘
‘structural complexity were created:fqr comparison to the "Best Case”. This -
was done by (2) including complex variables to create the MNC'sk (3) letting
the number of variables per MIC becoﬁe unequal, S?) including unique vari-

ables (as many as the number of MJC's) to provide the second type of MNC, (5)
& ' .
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) including unique and complex variables together to provide MNC's, and,

”

. “finally, (6) a level was constructed ehich included unequal number of ,L‘
variables per major component and both compiex and unique variables. The .

fifth and sixth levels of complexity were included to highlight the possible

importance of the very common situation of dnequal numbers of variables per

Y

MJCL
Data Generation
.. Population correlation,natrices were created for each combination of the 6

(Complexity) x 2 (P) x 2 (SAT) x 2 (m) factors outlined above. Each
pOpulation correlation matrix was"determined as follows: '
One appropriate population component_pattern (A). was created in accordance
‘with the level of ‘the number of variables factor (P), the leyel of the
saturation factor (SAT), the level of. the number of components factor (m) and .
the level of the complexity factor under consideration. Post—multiplying by
its transpose (AA') resulted in a matrix R* (R* s AA'), Suostitntion of ones
in the diagonal of R* introduced‘error and produced a population'correlation
matrix R (R = R* + D). The introduction of ones in theodiagonal of R
raised'it to full rank. allowing subsequent analysis. Five sample correlation
-matrices were generated based on each of these population correlation matrices
(Montanelli, 1975) at each level of the number of observations (N) factor.
Principal component analysis was then performed on each of 'the resulting
480 (6 x 2 x 2 x 2 x 2 x 5) sample correlatiog matrices.- At the time this
analysis was performed, the number of components to be retained by each»of the
four calculable rules (Ki, MAP, PA and BART) was determined. Horn and
Engstrom (1979) have suggested that the alpha level of the BART procedure
should be adjusted to compensate for the increased sensitivity of the test

with large sample sizes. Three alpha levels were selected for use with the
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- BART in this study to 1ncorporgte Horn and Englstom's (1979) recommendation.

. The{@artﬂett tests we}e therefore performed at alpha levels of .05 (BA), .00
(88) gggi?ooos (BC) n all ci?E;: The ?A decisfon was based on the mean
eigenvalues of 50 random correlation matrices at each level of P and N.

The SCREE test was performed on computer generatéd plots of the
'eﬂgenvalues J% each of the 480 matrices. These plots were examined hy two
raters trained in tﬁe SCREE method (cattell and Yogelman, 1977). The two
raters were college graduates who had majored in psychology. Although they
were tfained in the'SCREE procedure they were uninformed of its purpose. The
_raters were also naive to the exact purpose of the experiment and had no prior
applied experience with the SCREE test. The graphs were presented to the
raters in different mixed orders. jlf either rater asked a qﬁestion about a
particular plot, both listened to an explanation based on the instructions
given by Cattell f?d Vogelman (1977). Whenever possible, examples from the
Cattell and Vogelman (1977) directions were used to clarify questions.
Independently, an experienced expert judge, uninformed gs to the details of
the experiment but fully familiar with the use of the SCREE test, rated one

sample from each of the 96 cells.

The judgment required by the SCREE method raises the question of rater ¢

reliability. Table 3 presents the interrater reliability extimates of the
mean of the raters' decisions corrected for the number of raters. The.

relfability estimates are presented at each level of complexity, saturation

s 8,

~and the number of variables. The reliability estimates ranged from .61 to o

1.00 with a median value of approximately .88.
S evesees D 4B B 4P G W WP D IO W B o B W B D W P G D >

Insert Table 3 about here
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The correlations of thé mean of the raters decisfons'with the expert's
§ judgment ranged from .60 to .90 across the 6 levels of complexity. The median

- and mean (Fishey 4 transformed)- correlation of the averaged rater's decision

. with the expert's judgment were both approximately .80,

4

4
Results

s Each decisjon method leads to an estimité\of the number of major
compongnts (MIC) to retain. . The;g;fferonce between these rule determined
estimates of MIC (RMIC) and the known population: value of the number of MIC's
(PRIC) was the primary dependent variable in this study, This difference was
< computed as d = RMJC - PMJC, The mean differencé from the criteria is an
" estimate of the method's accuracy. Positive d's.'tharefore. indicate
overestimations while negativa d's indicate underestjmations. A di fference of
0 indicates a correct estimation of MIC. The standard deviation of the
difference 1s an indication of the methods’ cousistency. Smaller standard
deviations indicate more consistent estimates of MIC. The mean and standard
deviation of d for each wethod. under various conditions, are prasented below.
Tie results are alternately presented first for %he P = 36.cases and then,
{n a parallel fashion, for the P = 72 cases, Each lével of sample.gize
(Tables 4 and 5), number of variables per major component {Tables 6 and 7) and
pattern complexity (Tables 8, 9, 10 ind 11) will be summarized within each
level of P and SAT. Tables 12 and 13 present the broportiou~of each method‘
estimntes of MJC which deviated a set amount from the population value, This
representation of the distribution of the estimatas is also presented at each

Tevel of P and SAT. . .

Table 4 presents the means (d) and standard deviations (sd) of the
¥
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difference between each method s estimate/of MIC and th known MIC for
different sample sizes when P = 36 and the component saturation is .5 and .8,
Table 4, therefore, summanrizes- results collansed across all sis levels of - \,//”“,
pattern complexity and both leyels of the number of variables per MIC in order
to allow an examination,of the individuel {mpact of sample sizé. Each of the

four rows of differences in Table 4 represent 60 observations. Tables 4

through 11 follow essentially the same format. A detailed description will.

c",

therefore, be given only for Taﬁie 4

Thétfirst ro;jof Table 4 presents the mean difference of each method'
estimate of MJC from the known value when P was 36, the saturation was. .5 and
the sample size was 72, Under these conditions, the MAP method produced a (
mean di ffesence score (d) of -1.08, aqsanderestimation. The PA method L.
produced ‘a ruch smaller underestimat/;n of -0.05 TU@ SCREE (0.60) and Kl
“(8.32) methods both overestimated the criterion with Kl providing,e very lerge
overestimation. The results biven by the Bartlett method were caiculeted for
alphz levels of .05, .001 and .0005, as indiceted above. At each levei. the
Bartlett method led to underestimations (-2,87, =3, 92, -3,98 respectively)
The Bartlett method retained fewer components at the more conservative alpha |
levels. The standard deviations (sd's) '
asséeiated with the mean difference scores for each method are presented in
row 2. They ranged from 0,70 for the PA method to 1,68 for the MAP method.
The third and fourth rows of Table 4 present the wean difference of edch
method's estimate of MIC from the known value and the standard deviations when
P was 36, the saturation was .5 and the'semple,size:uae 180, The'increese in
N from 72 to 180 appeared to have had winor effects en the MAP, PA and SCREE
methods. The K1 and BART methods show some, {mprovement at tép higher level of

. N. Rows 5§ and 6 of Table & present the mean dffferences and standard

. I -
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deviations for each method when P was 36, the saturation was .8 and tne sample
~ size was 72. A1l the.methods showed improved average es&imates of the.
_{cpiterion at tnts higner level of saturation. It should be noted, however,
~ that the standard deviatﬂon of the differences 1ncreased for all levels of the
| BART method-and, to a/tésser extent, for the K1 rule as well. Rows 7.and 8 of
Table 4 present the mean differences and standard deviations for each method
when the sample size was Yncreased to 180, P was 36 and the saturation was -
.8. Compared to the results in rows 5 and Gg;the larger sampie size resu}ted
in more accurate (d = 0. 0) and conststent (sd £ 0.0) estinations by MAP and PA :
methods. The performance of the SCREE and K1 method was not greatly

affected. The three levels of the BART. method retained more components at tne
higher sample sifle. * This led to a larger overestimation at BA_and a switch

\)

from‘under— to overestimation at BB and BC. The standard deviations at all.

three levels of BART &ppear to have been larger at N = 180 than at N =72
ﬂ?

v \ ‘

The K¥method performed sldghtty better at the higher sample sfze at both
levels of component saturation. BART retained more components at the nigher
level of sample size-at both levels of conponent saturation, Table 5
paraliels Table 4 with J equal to 72. It summarizes the impact of sample size.
at both levels of component_saturation._ﬂThe MAP and PA methods were again® |
. minimally influenced by the sample size change at both levels of component
saturation. When the saturation was .5, the SCREE method showed less )
overestimation at the higher than at the ]ower sample size. This effect was

not apparent when the saturation was .8.

(] e
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A | : ! Igsert Table 5 About Here
The reJe of the number of variables {s presented from e‘djfferent
perspective 1n Tables 6 end 7. Table 6 presents a summary of the results for
each average number of veriables per MIC (P/MIC) when_g equaled 36 and the
saturation wes .5 and .8, At both levels of saturation, MAP, PA and SCREE
performed more accurately and censistently when the average number of
, variab\es‘ber NIC increased from 6 to 12, Kl showed an increased
- overestimation wﬁen P/HJC fncreased and the saturation was. .5 and a decreased
overestimation when P/MJC increased and the saturation was .8. The BART
method consistently showed g decrease in thé number of components reteined as
P/MIC increased. When the saturation was .5, this resulted in larger
underestimations; while at a saturation of, .8 BART's estimates changed from
overesttmetipns to underestimations as P/MIC increased.

’ " Insert Table 6 About Here
Table 7 parallels Table 6 with P equal to 72. The MAP, PA and SCREE
methods showed improved performances at the higher level of P/MIC when the
seturation was .5. When the seturetion was .8, MAP, PA and SCREE showed
esseutielly no improvement at the higher Jevel of P/MJC. The K1 and BART
methods"shoued some {mprovement at the highar leve] ‘of P/MIC at both levels df

saturation.

------'- ----------- P us €D ¥ D @ @ @ W B B D @ »

Insert Table 7 About Here -
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Tables 8 and 9-present a summary of the uothods‘ performance when P was
equal to 36 and the saturation was .S'or .8 at eacﬁ of six 159915 of pattern
complexity. %ﬁe results are col psed across both levels of N and P/MIC so
that each level of Complexity represents 20 observat!ons. As defined above,
< at Complexity&fével 1 the MIC's contain equal number; of variaoles. There are
no unique or complex variables at Complexity level 1 and hence no MNC's or
TC's. Level 2_ 1s the same as level 1 except it includes MNC's comprised of
tow complex loadings. Level 3 1s the same as level 1 except the number of
* variables per MIC is unequal across MIC's. Level 4 is the same as level 1
except it 1ncludes MNC's made up of unique variubies. Level 5 combines both
. TC's comprised of complex loadings and MNC' s-cgmprisod of unique variables. o
Level 6 is the same as levEi=H dxcept the number -of yaribles‘}oading on each '{ff

MIC {s unequal across major components.

--.1.--..--.....¢..---. ........ ceesne

Insert Table 8 and 9 About Here

----------------------- - ub G U W W D W W D @ W B e
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The range of pattern.complexity affected the methods diéforently.
Although the methods tendeq to perform best at Couplexity Tevel 1, they had
different worsi cases. Hhon'the saturation was .5, in Table 8, the worst
cases were: MAP and PA at level 5; SCREE at level 2; K1 and BART at level 4.
A comparison of Tables 8 and 9 indicates, MAP, PA, SCREE and K1 showed
substantial 1mprovement at all levels of Complexity when the saturation was
.8. At this saturotigﬁ/level PA slightly underestimated at Complexity. Tevel
6. MAP slightly ‘overastimated at Complexity levels 2, § and 6. SCREE
slightly overestimated at all levels of Complexity and level 6 resulted in 1ts
largest overestimation. The BART mothod overostiaated slightly or not at all ‘
&t levels 1, 2 and 3, K1 markedly overestimated at Complexity.levels 4, 5 and

Aruitoxt provided by Eic:
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6 as did BART. Levels &4, 5 and 6 all contain unique variables.

Tables 10 and 11 parallel Tables 8 gnd 9 with P equal to 72, As was the
case when P was 36, the range of complexity appears to have differentially
affected the method's pérformance. At a saturation of .5, in Table 10, MAP o
was quite accurate at levels 1, 2, 4 and Slbut underestimated erratically at
levels 3 and 6. At a saturation of .8, in Table 11, MAP was vefy accurate at
all levels of complexity. PA was quite accurate across all levels of
complexity with marked improvement at the .8 saturation level. At that level,
PA was always accurate. Generally, The SCREE method somewhat overestimated at
é . h Tevel of compiexity. It performed worst when the safuration was .5 at
levels 2 and 4 and when the saturation was .8, level 4, The K1 method gave
gross overestimates at all levels of complexity when the saturation was .5,

It was qd?ie accurate when the sgturation was .8 at levels 1, 2 and 3. At the
sam§:§aturation at levels 4, 5 and 6, the method consistently overestimated
the criterion. The BART method showed a moderate range of underestimation
when the saturation was .5 with the worst case appearing ﬁg be level 6. When '
the saturation was .8, BART performed well at levels 1 and 3, overestimated

v

moderately at level 2 and overestimated greatly at levels 4, 5 and 6.

Insert Tables 10 and 11 About Here

---"”-""-----------‘----- - D 4 €D B W3 D 8D W W W W

A general overview of the performance of the different methods may be
gained by calculating the percent of giwms each method's estimate deviated a
set amount from the criterfon. Since P and saturation appear to have had the
most substanttgl impact on the methods, the percentages were cpmputed at each
lavel of thesa variables. Deviations of greater than three were collapsed for

simplicity of presentation. Differences of 0 indicate accurate estimates.

27
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These percentages are presented in Tables 12 and 13.
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Insert Table 12 About Here
As Table 12 indicates, at both levels of saturation when P was 36, PA was
clearly the most frequently accurate method followed by MAP and SCREE, Ki's

tendency to overestimate was marked. The X1 method never underestimated. The

BART meth was quite {naccurate and var&gble at both levels of saturation.
Table }3 parallels Table 12 with P equal to 72. Again, PA was the most
'frequerly accurate method at both levels of saturation. Both the PA and the
MAP methods showed improved performance when P was .equal to 72 compared to
36. The PA and MAP methods were nearly equivalent when the saturation was
.8, The K1 method showed essentfally the s;mn pattern of -results when P was
72 as at 36 because of attenuated range on these tables. The BART method
retained more components when P was 72 than 36, BART was more often accurate ‘"hf

~

when the saturation was .5 than .8 when F was 72,

Insert Table 13 About Hern

Discussion
The question of interast in this study was the ability of five decision
methods to estimate the number of major components present in the population
correlation matrices given only the generated sample matrices, The difference
between_the estimated number and the defined number of major components served
as the pr%uary dependent variable in this simulation study. TQe standard

deviation of the difference scores gave further {nformation about each
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method's consistency. Finally, the percent of correct decisions and the
percent of decisions at specificd levels of deviétipn from the criterion were
also calculated. ' ‘

The five decision rules employed were the eigenvalue greater than one rule
(K1), Bartlett's test (BART), the scree test (SCREE), the minimum average
partial matﬁod (MAP) and the parallel analysis method (PA). The performance

of the five methods for determining the numper of componehts was examined in
ten samples drawn ffom each of 48 simulated population correlation matrices
over a range of component pattern complexity. The least complex pattern
replicated earlier work (Zwick & Velicer, 1982) and included only equdl
numbers of variables per component and no unique or complex variables.
' Component pattern complexity was varied by modifying this clear, least complex
case with combinations that included: (1) complex variables, (2)\equal and
o g unequal numbers of var’'ables per component, and (3) unique variables. The
resultant six levels of cumplexity are felt to cover an adequately wide range
" to permit 3 test of the relative strengths and weaknesses of the decisioﬁ
methods examined. Major components (MIC) were defined as those having more
than three substantial loadings and an eigeﬁvalue greater than or equal to 1.0
at the population level. Two types of minor components (MﬂC) were defined.
It {s felt that these complex patterns expand upon the formal model and
incorporate cases likely to be encountered in real data analyses.

The K1 rule was found to overestimatebconsisteutly the number of major
components. It never underestimated. This finding is consistent with those
of Cattell and Jasper (1967), Linn (1968), Yeomans and Golden (1982) and Zwick
and Velicer (1982). At a component saturation of .5, the number retained

~srtem—fell in the 1/3 to 1/2 of P range discussed by Gorsuch (1974). As the

number of variables increased, so did the number of components retained. Kl
&
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retained more comgonents when unique variables were included 1n the population
pattern. These findings are clearly contrary to those of Humphreys (1964) and
Mote (1970), who concluded the K1 method sometimes retained too few |

components. Either their data represented a type of component. complexity not

{ncluded in this study or their original judgments of the number of components

in their data sets were overestimates. Given the apparent functional
relationship of the number of components retained by K1 to the uumber of

variables and the repeated reports of the method's 1naccuracy. the K1 rule

&

cannot be recommended for PCA.

The results and conclusions about the K1 rule presented here are,
consistant with both previous empirical studies and the theoretical criticism
of the method. - However, our conclusions are in sharp contrast to many recent
textbooks where K1 is efther the preferred or only method discussed (Afifi &
Clark, 1984; Everitt & Dunn, 1983; Johnson & Wichern, 1982; Marascuilo &,
Levin, 1983; Taﬁachnkck & Fidell, 1983). For example, Marascuilo & Levin
(1983) are typical when they first discuss 1t with a caution RIn most cases,
Kaiser's rule 1s quite workable, but . . . “; P 237) but, in a later summary,
flatly recommend it ("It is one we recommend.”, . 260) The use of the Kl
rule as the default value in some of the standard computer packages (BMDP
SPSS) represents an fmplicit endorsament of the procedure, particularly with
naive users. This pattern of explicit endorsement by textbook writers and
implicit endérsemen; by computer packages, contrasted with empirical findings
that the procedure 1s very 1ikely to provide a grossly wrong answer, seems to
guarantee that a large number of incorrect findings will continue to be
reported.

The BART method's performance was the most variable of those examined, In

addition to variability, the method was sensitive to a number of influences.
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Increases in N, P and SAT as well.as the use of conservative alpha levels and
the presence of unique variables all lead to the retention of more |
components. The first four of these influences may be seen as affecting the
statistical power of the Bartlett test. In data sets wheré'the P-m

eigenvalues were in fact equal at the population level, Zwick and Velicer

(1982)- found the method to be moderately accurats. In the broader range of
complexity examined here, the test tended to retain both types of minor -
components de‘ined above. Although examination of different alpha levels led
to fewer or greater numbers of compdnents retained, the accuracy and
consistency of the method did not appear to be markedly 1mpfovod by adjusting
alpha Jevels with sample size (sce Table 4) as was suggested by Horn and Engstrom
{1979). Other factors present in this study appear to have had a greater
influence on the performance of BART, across alpha levels, than did sample |
size alone.

The Bart]ett‘test is accurate in answering statistical questions
concerning the equality of eigenvalues (Bartlett, 1950; !95]). Researchers
inclined to examine minor cowponents; part}cularly early in the course of
explorﬁtory”iiaiysis. may finq the method helpful, However, the Bartlétt test
cannot be recommended as a general method of determining the number of major ~
components to retain. The tendency of the method to retafn both minor and
trivial components might reflect the basic logic of the test. Only true error
should be expected to meet the\;;;;irement of equal eigen values. However,
most researchers would not find minor or trivial components td be consiétént
with thefir implicit definition of a factor or cowponent that {s worthy of
retention. Therefore. the test may work correctlx but way not be an

appropriate test for most applications.
This study did not investigate the maximum 111elihood test which assumes

J1
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the factor analysis wodel, The maximum likelihood test is based on a logic
identical to the Bartlett test. Empirical investigations have found the same
pattern of results with the l{kelhood test as we have reported with the
Bartlett test (Hakstian, Rogers, & Cafiell 1982; Richman, parsonal -

' communication). Again. the problem may be with an inappropriate formulatfon °

of test, rqther than the performance of the test.
The SCREE method had noderate oveirall reliability when the mean of two

trained raters was used. The correlation of the mean of those raters'
decisions with an expert Judge, “{ndfcated fair overall agreement. Reports of
rater reliability on the SCREE have ranged from very good (Cattell and
. Jaspers, 1967) to quite poor (Crawford and Koopman, 1979). This range may
reflect efther the training or the task complexity across research projects.
‘The raters in this Study showed grqatbr agreement at higner than at lower
component satdration levels. They showed greatef*agreement when there were
more rather than fower variables. Perhaps more tmportantly, the interrater.
reliabilit& of the SCREE procenure had a fairly wide range across leyels |
of conplexity. Thé moderate reliability of the SCREE mathéd is

very problematic for the applied researcher. Unreliability at this point in
the‘analysis may nell expose a study to otherwise avoidable experimenter
bias. In any case, applied researchers should note that reliability questions
always arise in any use of the SCREE method. ‘ |

In general, the SCREE method was more accurate and less variable than

either the KT or BART method. This method was more accurate and less variable
at the higher level of component saturation, Larger sample sizes aiso
impnoved {ts accuracy when P was 72'and SAT was .5. Sample size did not
appreciably affect SCREE at other levels of P or SAT. This effect of larger
sample size is consistent with those reported elsewhere (Cliff and Pennell,
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1967; Linn, 1968; Zwick and Velicer. 1982), The acéuracy of the SCREE method
. was not affected.hy an increase in the number of variables examined. An
increase in the average number of variab}es.pﬁr component did not affect the
_ method's accuracy. In an earlier study (Zwick and Ve]icer. 1982), utilizing |
non-complex matrices, the SCREE method performed better than MAP when the |
| major components contaiqed 6 or less variabies and the saturation was Tow..
 This trend can be observed again under more complex conditions.

The SCREE method tended to overestimate rather than to underestimate when
it deviated_from the_critevion value. As reflected in Tables 12 and 13, the " ” i
* SCREE was accurate about 57% of the tiﬁe. When the SCREE method was in error, ° N
90 percent of the errors were overestimations. The SCREE method appeared to
be most variable at the low level of componeni satqgation or when unique or
complex variables were present, Nevertheless, even given its variability and
tendency toward overesg:mation. the SCREE method seldom led to the retention .
of more than two components over the criterion value. Many experienced p
{nvestigators routinely examine 1, 2 or 3 components above and below the .
estimate given by their favorite decision method. This practice, coupled with
good judgment concerning interpretability may often result in apprdpriate
solutions when the SCREE method is employed.” This‘6bt1m1stic“assertion
notwi thstanding, the ever present question of rater re]iabillty. the tendency
to overestimate and the apparent increased variability in the common case of
unique or complex variables all argue against the exclusive use of the SCREE
method. Given these drawbacks and the availability of other clearly superior
methods, SCREE can no longer be recommanded as the method of choice for '
determining the number of components in PCA.

In generé\. the MAP method was more often accurate and less variable than

the K1, BART or SCREE methods. It ghowed an overall tendency to underestimate
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the crioerion."lhe MAP method was most eccorete at the higher level of
component saturdqtion or when the average number of variables per component was
large, Its pe::irmonce was not. nerkedly influenced by sample size within the
range examined in this study. The MAP method was quite accurate under many

_ conditions .and, when accurate, showed 1ittle variability. In cases

. reprgsenting both a low level of saturation and a Yow number of variables per h E
component, the MAP method consistently underestimeted the number of major o %
components. This effect can be most clearly seen in_Teble 6 by comparing the
two levels of P/MIC when P= 36 and SAT = 5. Adiiitional information about
this effect can be gleaned from Table 7 The MAP metnod gave larger
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‘ underestimates and displayed greater variability uhen unique variables were
present (levels 4, 5 and 6) and when there was an unequal number of variables
~ per component {level 3 and 6). In this simulation study, unique variables
reduced the number of variables per component by 1. The presence of
unequal numbers of variables per component independently reduced the number of
~ variables per component-on the trailing major components. The presence of
complex variables (level 2 and 5) lowers the major component saturation at the

sample leyel Complex variables thus independently increase the effect of low

- C e l — e

component saturation. The combination of these influences appears to result
in components at the sample level which account for less variance than those
components containing only & unique variable. MAP should not retain a unique
variable component. It, therefore, fails to pick up the less well fdentified
‘major components.

Overall, the MAP method was occurete‘more often than were the K1, BART or
SCREE methods. The MAP method gove results within XV of the criterion
between 72% (P = 36, SAT = .5) and 1003 (P = 36, SAT = .8; P = 72, SAT = .8
of the time. when it was in error, the MAP method tended to underestimate.
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Approximately 90% of tno_MAP errors were underestimations.

The MAP method provides an uneouivocai stopping point. It is tied to the
concept of~pars1mony by directly }ojecting components 1dentifioo by only one
_vardab1e. MAP showed a tendency to underestimate the known number of major ,
components at the component satuation level of .5 when up to six variables J |
loaded on a component. It is quite accurate when component saturation is high
or when there {s an average of 8 or more variables per component. Researchers '
wishing to ignore relatively small major components should employ MAP as a
primary method of determining the number of components to retain.

Tne PA method was consistently accurate. It was typically the most
accurate method at each level of complexity examined. The average deviation
of PA from the criterion did not exceed-exceed 0.30 under any condition
examined, The difference scores of the PA methou showed less variability than
those of any other rule, Increases in sample size, component saturations and
P/MIC improved the PA mothod:s performance when there was room for
improvement, It might have been expected that the PA nethod would
overestimate in the presence of minor components made up of unique or complex
variables. Some evidence of this 1s present at P s 72, SAT = .5, complexity
levels 2, 4 and 5. This pattern is not replicated at other levels of SAT on P.

0vera11 the PA method was the most frequently accurate method examined.
It gave resulgs within *1 of the criterion for between 95% (P = 36, SAT =
,5) and 100% (P =-36, SAT = .8; P = '72, SAT s ,8) of the cases examined. When
tne PA method was in error, it showed a slight tendencj.toward
overestimation. Approximately 65% of the PA method's errors were
overestimatfons. The accuraky of the PA motnoq in this study s consistent
with the CFA resuylts reported by Humphreys and Montanelli (1975).

A najor drawback in the applied use of the PA method is the necessity of

iR
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generating a large set of random correlation matrices at’the particular .
. combination of P and N under consideration. The prediction equation developed
for prinsipal axis factor analysis (Montinelli and Humphreys, 1976) is not
appropriate for principalocomponents analysis., ¢

In summarizing the rosults of the present study it 1s useful to postulate
a further division of tne class of component previously labeled asbuajor
Component (MIC). | Those components which involve only a 1imited number of
variables and low saturation will'be labelled as Poorly Defined Components
{POC). Components with efther a large number of variables or high g:::ration
will be labelled as Well Defined Components (WoF). Poorly Defined onents
do not possess any “marker" varibles, 1. Qs variables with high loadings on
that component.” Investigators typically employ such marker variables as.
defining varibles 1n 1nterprot1ng the component. Guadagnoli and
Velicer (1984) found that PDC's were unlikely to accurately replicate even in
fairly large samples, The combination of the two issues of dffficult
interpretability and questionable replicability, make the retention of these
components problematic.

The two methods which were the most accurate, MAP and PA, provided
divergent results primarily when POC's were present. An }_\_ Priori decision
about whether or not to attempt to extract and retain such components may
dictate whether MAP or PA is the method of choice. Lacking such a decision, a
researcher may want to examino all solutions in a set bracketted by the MAP
and PA estimates. Rotatfonal criterfa and interpretability may be the basis
for a final decision. ' |

s Previous studies have examined subsets of these rules under some of the
conditions examined here. The present study provides comparisons across a

wider variaty of situations than previous investigations. In those a

-
!
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where the simulated situations were similar, the results ot Linn (1968),
_ Humphreys and Montanelli (1975), Cattell and !pgelmaﬁ’(1977). Haks;?an.
Rogers, and Cattell (1982) and Zwick and Velicer (1982) were confirmed and . .
expanded. o
Within the limié;tions 1@posed by the simﬂlat;on approach, the results of
this study, paired with previously reported work. pernit some conclﬁsions' (
. concezning methods of determining the number of components in real data sets.
There {s no evidence supporting the continued use ot K1 or BART as exclusive,
-primary methods to determine the numbenr of major components to retain. These
methods should no ionger“be employed: The SCREE procedure has been reported )
to be relatively accurate. This study is consistent with those reports but
indicates tﬁ;t the method-1s too variable and too 1ikely to overestimaté to be
employed as the’sole decision method. However, the SCREE may still be useful
for 1nitial estimates or as a complementary method employed 1n.conjunction
with PA or MAP, The MAP method was generally quite accurate and consistent
when the com;onent saturation was hign“pr'the componenihwas defined by more
than six variab}es. Thé MAP did not retain Poorly Defined Components. The PA
mathod was also consistentl?'ac%urate. PA retained POC's and showed a siight
tendency to overestimate. The genera] application of the PA'msthod 1s
difficuit to recommend because programs needed for 1ts application are not
widely available. Assuming that these problems can be overcome, efther PA or

MAP are the method of chofce, with many situations arising where both should
be employed. '

9
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The Relationship Between the Number of Substantial Component Loadings:
and Eigenvalue Size ‘to Major, Minor and Trivial Components.
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. ¢ Number of Variables Loading Substantially on Each Comp

~ Table 2

onent under the

Condition of Unequal Variables/Component for Different Values of P
| and Numberg of Major Components (MJC}. ’ N

r'd

Component
P MIC P/MIC 1 2 3 4 § 6 1 8 9
% 3 12 1% 12 W - - - e - -
6 6 6 8 7 6 6 5 & - - -
72 6 12 5 14 13 mow 9 - - -
72 9 8 2 11 10 9 8 1 6 5 4
48



Table 3.

!nterréter reliability of the Trained Scree Raters with Each Other at
" Each Level of the Number of Variables, Pattern Compiexity and Component

Saturétion, Correct for the Number of Raters,

-

-~ o Saturation

Complexity : .50 . .80

| 4

P = 36 Variables

1 .67 .96
2 .96 .95
3 R
4 .76 .97
5 - .65 .91
6 a 77
P = 72 Variables -
1 .97 ' .99
2 .80 | .97
3 .95 1.00
4 .93 .81
5 .78 o .82
6 .75 .61
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Table 4

Means and Standard Deviations of the Difference from the Pogélation MJC

at Different Sample Sizes when P = 36,

Metﬁod
Sample Size MAP " PA SCREE K1 BA BB BC
Saturation = ,5
722 4 -1.08 -0.06 0.50 8.32 -2.87 -3,92' -3.98
(sd) (1.68) (0.70) (1.04) (1.21) (1.10) (0.81) (0.79)
10 d -7 013 068 7.30 -1.78 -2.20 -2.27
(sd) (1.84) (0.39) (0.95) (1.09) (1.26) (0.97) (0.92)
Saturation = .8
72 4 0.0 -0.02 0.27 1.77 0,47 -0.48 -0.60
(sd) (0.30) (0.13) (0.50) (1.59) (2.81) (2.31) (2.30)
‘80 d 0.0 0.0 ’ '0023 1032 1023 ' 0068 0.62
(sd) (0.0) (0.0) (0.52) (1.44) (3.51) (3.27) (3.23)

—
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Table 5

. Means and Standard Deviations of the Difference from th

at Different Sample Sizes when P = 72, S ~

e‘?o ulation MJC

A

Py ‘

Method

Sample Size WP ~ PA  SCREE K1 BA BB . BC

v o Saturation = .5

144 d -0.45 0,02 1,16 '17.80 -0,43 -1,60 -i.73 ‘
(sd) (1.00) (0.57) (1.30) (1.29) (1.16) (1,24) (1.15)

360 d -0.43 0.07 0.46 1542 0.40 <-0,13 '-0,22
(sd) (1.06) (0.25) (0.79) (1.27) (0.74) (0.43) (0.45)

Saturation = .8

144 d4 - 0,02 00 0,28 297 3.8 2,62 2,50
(sd) (0.13) (0.0) (0.55) (2.81) (3.64) (2.96) (2.88)
%0 d 00 00 031 25 505 410 3.98
(sd) (0.0) (0.0) (1.03) (2.59) (4.31) (3.89) (3.78)

o1




Table 6

Means and Standard Deviations of the Difference from the Population MJC

at Different Numbers of Variables Per Component when P = 36.

Mgthqd
. \
P/MIC ) MAP PA SCREE K1 BA B8 8C
-

Saturation = .5 g

6 d -2.27 0.05 0,65 7.10 -1.50 -2.67 -2.77

S «d  (1.88) (0.79) (1.19) (0.99) (1.35) (1.58) (1.54)

| 12 4 002 0.03 0.53 8.5 =-3.15 -3.45 -3,48
 (sd) (0.13) (0.18) (0.75) (1.10) (0.44) (0.53) (0.57)

Saturatien = .8

6 d4 008 0,17 0,33 1.68 293 217 2.0
(sd) (0.28) (0.13) (0.59) (1.70) (2.94) (2.54) (2.54)
372 4 0.2 00 017 140 -1.23 -1.97 -2.08
(sd) (o.;B) (0.0) (0,39) (1.33) (1.73) (1.24) (1.25)
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Table 7
Means and Standard Deviations ¢f the Difference from the Po

at Different Numbers of Variables Per Component ﬁhen p =72,

ulation MIC

——

Method

LY

P/MIC MA> PA  SCREE  KI BA BB BC

“Saturation = .5

8 d -0,92 0.07 1,02 1590 -0.17 -1.37 -1.48
(sd) (1.28) (0.61) (1.22) (1.45) (1.21) (1.36) (1.32)

12 4 003 002 0.60 1732 033 037 0.47
(sd) (0.18) (0.13) (1.00) (1.74) (0.85) (0.66) (0.65)

Saturation = .8

8 d 002 00 021 3.02  6.15 4,00 3.87
(sd) (0.13) (0.0) (0.74) (3.02) (4.56) (4.04) (3.93)
2 4 0.0 0.0 038 247 377 272 2.6
(sd) (0.0) (0.0) (0.89) (2.34) (3.27) (2.80) (2.73)




Table 8

Means and Standard Deviations of the Difference from the Po

ulation MJC

at Different Levels of Pattern ngglexitz when P = 36 and Saturation =

ERIC

Full Tt Provided by ERIC. !

’ 050 \'
Method -

.Complexity MAP  PA SCREE  KI BA B8 BC
R ¢ -0.0 00 0,38 7.5 <09 -1.15 -1.20
(sd) (0.66) (0.32) (0.92) (1.46) (1.29) (1.45) (1.51)

2 . d . -0.50 "0.‘0 0088 7.35' "1000 "‘_040 . "1045
P (sd) (0.89) (0.45) (0.93) (1.22) (1.34) "(1.54) (1.54)
3 . d "0080 "00‘0 0.50 7030 -].30 "'1040 '1055
J (sd) (1.06) (0.45) (1.03) (1.03) (1.24) (1.20) (1.39)
4 d -1.60 0.0 038 845 -1.55 -1.85 -1.90
g (sd). (2.09) (0.65) (0.93) (1.10) (1.79) (1.84) (1.80)
b 5 .4 -2.05 -0,25 0,58 820 -1,30 -1.85 -1.90
(sd) (2.50) (0.79) (0.96) (0.95) (1.59) (1.93) (1.89)
6 4 -1.50 0,20 0,85 8,40 . -1,30 ~-1.70 -1.75
sd 1.96 0,62 1.8 1,10 1.42 1.66 1.68
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Table S

Means and Standard Deviations of the Difference from the Population MJC

at Different Levels of Pattern Complexity when P = 36 and Saturation =

8.
Method
Complexity " MAP  PA SCREE K1 BA BB BC
1 d 0.0 0.0 012 0,15 0,05 0.0 0.0
(sd) (0.0) (0.0) (0.32) (0.37) (0.22) (0.0) (0.0)
2 d 0.20 0.0 0.2 0,15 0,30 0.10 0.0
(sd) (0.41) (0.0) (0.52) (0.37) (0.57) (0.31) (0.0)
3 d 0.0 0.0 0.10 0,10 0,05 0.0 0.0
(sd) (0.0) (0.0) (0.26) (0.31) (0.22) (0.0) (0.0)
4 d 0.0 0.0 0.32 2,90 3,20 2,70 2.50
(sd) (0.0) (0.0) (0.69) (0.85) (1.61) (1.72) (1.88)
5 d 0.056 0,0 0.32 2.85 4.55 3,80  3.65
(sd) (0.22) (0.0) (0.57) (0.74) (2.06) (2.02) (1.81)
6 d 0.06 -0.056 0,38 3.10 3.45 3.00 2.90

(sd) (0.22) (0.22) (0.54) (0.64) (1.86) (1.92). (1.97)

Q P -
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Table 10
Means and Standard Deviations of the Difference from the Pop

 at Different Levels of Pattern Complexity when P = 72 and Saturation =
.5.

ulation MJC

Method

Complexity MAP PA SCREE Kl 8A 88 BC
1 d 0.0 0.0 0.8 1595 -0.25 -0.60 -0.75
(sd) (0.46) (0.0) (1.09) (1.82) (0.55) .(0.82) (0.79)
2 d -0.05 0,05 1.18 16,00 -0,15 . -0,60 -0.65
(sd) (0.22) (0.22) (1.08) (2.10) (0.37) (0.68) (0.67)
3 d -0.95 -0.20 0.40 15.90 -0.60 -1.00 -1,10
(sd) (1.19) (0.41) (0,75) (1.71) (1.31) (1.38) (1.25)
4 4 -0.10 0,30 1.00 17,15 -0.45 -0,95 -1.10
(sd) (0.45) (0.57) (1.48) (1.46) (0.94) (1.19) (1.25)
5 4 -0.10 0,20 0.90 17.16 -0,40 -0.85 -1.00
(sd) (0.45) (0.41) (1.11) (1.39) (9.99) (1.22) (1.21)
6 4 -1.45 =-0.10 0.35 17.50 -0.70 -1.20 ~-1.25

(sd) (1.60) (0.55) (0.97) (1.24) (1.45) (1.58) (1.55)

ERIC

Full Tt Provided by ERIC.
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Table 11 _
Means and Standard Deviations of the Difference from the Populatior MIC

at Different Levels of Pattern Complexity when P = 72 and Saturation =

.8,
Method
Complexity MAP  PA  SCREE  KI BA B8  BC /
. 4 00 00 .012 00 005 00 0.0
(sd) (0.0) (0.0) (0.32) (0.0) (C.22) (0.0) (0.0)
» 4 005 00 0.8 0.3 170 0,90 0.80
(sd) (0.22) {0.0) (0.41) (0.59) (1.22) (0.91) (0.89)
3 4 00 00 00 005 005 00 . 0.0
(sd) (0.0) - (0.0) (0.0) (0.22) (0.22) (0.0) (0.0)
4 - 4 00 0.0 105 540 585 530 5.20
(sd) (0.0) (0.0) (1.31) (0.94) (2.03) (2.05) (1.96)
s 4 00 0.0 040 540 7.95 7.0 6.80
U . (sd) . {0.0) . (0,0) _(0.50) (0.82) (2.16) (2.07) {1.99
6 4 00 00 00 52 7.60 6.85 6.65

(sd) (0.0) (0.0) (1.08) (0.85) (2.76} {2.56) (2.64;

ERIC 5

Full Tt Provided by ERIC.



Table 12
Percent of Each Method's Estimate Deviating a Set Amount from the

Population MIC when P = 36.

Deviation MAP PA SCREE BA B8 BC
Saturation = .5
0.0 0.0 4.1 0.0 0,0 .0,0
000 107 ' 16.7 0.0 000 0.0
0.8 10.0 33.3 1.7 0.0 0.0
59,2 82,5  36.7 9.2 2.5 1.7
1.7 2.5 6.7 19.2 MN.7 10.8
9,2 3.3 2.5 10,0 12,5 12.5
19.2 0.0 0.0 59.9 £73.3 75.0
Saturation = .8
0.0 0.0 0.8 25.8 17.5 171.5
0.0 0.0 5.0 1.7 7.5 7.5
5.0 0.0 20.8 14.2 0.8 0.8
95.0 99.2 73.3 26,7 34.2  33.3
0.0 0.8 0.0 6.7 6.7 6.7
0.0 0.0 0.0 6.7. 1.5 4.2
0.0 0.0 0.0 18.3 25.8  30.0




-Table 13

/

/

<

rcent of Each Method's Estimate Deviating a Set Amount from

Population MIC when P = 72, -

the

. Pe t g e

Method

Deviation MAP  PA  SCREE Kl B8 BC
Saturation = .5

_+3 0.0 0.0 9.2 100.0 0.0 0.0

+2 0.0 0.8 19,1 0.0 0.8 0.0

£ 2.5 83 2.7 0.0 .7 .7

X0 75.8 85.8 46,7 0.0 41.5 4.7

-1 6.7 4,2 2.5 0.0 25.8  31.7

-2 6.7 0.0 0.8 0.0 .4 10.8

-3 8.3 0.0 0.0 0.0 12.5 14,

Saturation =

#3_ 00 00 60 500 47.5 45.8

+2 0.0 0.0 1.7 0.8 8.3 9.2

+ 0.8 00 225 5.0 3.3 3.3

X0 99.2 100.0 69,2 44,2 40.8 4.7

-1 00 00 00 00 0,0 0.0

"2 000 000 008 000 0.0 000

. =3 0.0 0.0 0.8 0.0 0.0 0.0
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