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ABSTRACT
9

The performance of fivvpmethods for determining the number of components to

retain (Horn's parallel analtis, Velicer's MAP,'Cattell's SCREE, Bartlett's:

Chi-Square test and Kaiser's eigenvalue greater than unity rule) was

investigated across 'seven systematically varied factors (sample size, number

of variables, number of components, component saturation, equal nr, unequaF

ndmbers. of variables per component, and the presence or absence of unique and

complex variables). Five sample correlation matrices were generated at each

of two levels of sample size from the 48 known population correlation matrices

reOesenting six .levels of component pattern complexity. The performance of

the parallel analysis and the MAP methods was generally the, best across all

situations. The SCREE test was generally accurate but variable. Bartlett's

test was lest accurate and more variable then the SCREE test. Kaiser's method

tended to sev&ely overestimate the number of components. Recomendations

concerning the conditions under which each of the methods are accurate are

discussed, along with the most effective-and useful methods combinations.
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A Comparison of Five Rules for Detormining the

Number of Components in Complex Data -Sets

A common problem in the behavioral sciences is to determine if a set of p

observed variables can be more parsimoniously represented by a. smaller set of

m derived variables. Componeit analysis and facto); analysis represent two

broad classes of procedures designed to solve this problem. The purpose of

the analysis may involve the calculation of m scores to replace the original p

observations for each subject or the interpretation df the pxm pattern matrix,
coia ;

A, which provides information for the understanding and interpretation of the

0%0

original variables. .The researchers.employing parsimony procedures must ,make

a number of decisions, including choice of method, choice of rotation, and

choice of method of Calculating the scores.' One 'of the most critical

decisions is determining how many factors or components tolretain-(m). The
1

present paper presents the results of'a Monte Carlo evaluation of five

alternative methods that have been proposed for determining the value of au

The determination of the number of components or factors to reten is

likely to be the most important decision a researcher will make. Decisions

.
involving choice of method, type of rotation, and type of score will have

relativelyless impact because of the demonstrated robustness of results

across different alternatives in these areas. However, under- or

over-extraction will distort the resultt. The obvious problem of

underextraction involves th, loss of important information by ignoring a

s-
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factor or combining it with another factor. The effects of overextractiv,

followed by rotation, is less well doctumented but equally important. Comrey

(1978) describes- some of the dangers, such as vi nor factors being built up.at

the expense of major factors and/or the creatiensof factors with only one' high'

loading anda few low loadings. These are factors that are bot unlikely to

replicate
/
and will be uninterpretable. Velicer and Jackson (198

1
assert that

,

overextraction,is,likely to be the prime re son for discrepancies between

.factor analysis and component analysis. In view -of how important this

'decision is to the analysts, it is interesting that some recent textbooks

provide little or no gliidance.in this area (Chatfield I Collins, 1980;

Jackson, 1983; and Lunneborg b Abbott, 1983). ti

Principal Component Analysis (PCA;.Hotelling, 1933) may be viewed as

involving an eigen decomposition of the P x P sample correlation matrix R,

where

El) R = L'02L

D2 is the P x P diagonal matrix containing, the eigen roots of R and L is-a P

x P matrix which contains the corresponding 'Igen vectors.' When component

analysis is employed as a parsimilny model, only the first m components are

retained. The component pattern (A) may be written as

[2] A = L
m

.1)e. ee

where,6 contains the first m eigen roots and Lm contains the

coeresponding first m eigen vectors. .Glass and Taylor,(1966), Pruzek and

Rabinowitzl( 1981), and Kaiser (1970) have reported on the widespread use :of

PCA in this manner. Velicer (1974, 1976t,!977) and Velicer, Peacock and

Jackson (1982) have shown this use of PCA and Factor Analysis result in

essentially equivalent solutions:
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A secondtlass of procedures, called common factor analysis (CFA) has also

been employed to express a let of P variables more parsimonioustif as a .smal)er

set. The factor analytic model specifies that a P x P correlation (or
,

covariance) matrix may be accounted for by m common and P unique factors.

This model may be expOessed at

£3] . . R * A A' + u2
401.. Oa Oft, 4

where A is a 0 x m pattern matrix and U2 is.th, P x P diagonal matrix of
0,

- weights for the unique factors.; .it is,important to note ,that m is frequently

assumed to be known for the derivation of theseifactor/analysis procedures.

Sometimes the maximum likelihood test is employed to test. if the assumed
4

number of factors is correct.

Since both CFA and PCA are employed as data.reduction techniques, it is

important to note. di fferences:Oetween them.* The CFA approach requires

that m, the dimension of the reduted set of variables, be known prior to the

analysin. The value of m may be Oterm)ned 4n one of two general ways. In

one approach, m may be determined.by applying' some mehtod to a PCA solution

and the result then used in the factor analysis solution. A second approach

uses a maximum likelihood test to evluate,the fit for different vales of m.

Unfortunately; many of the methods applied to the POk solution provide

different results from each oth and from the maximum likelihood approach.

Further, Jackson and Chan (198 ) have discussed numerous computational'

difficulties with the maximum likelihood approach itself. in addition, an

indeterminacy has been identified in the simultaneous estimation of A and U2

(Guttma0154;Schonemann & Wang, 1972; Steigr & Schonemanrt,' 1979). This

indeterminacy is inherent4in the factor analysis model. In light of

difficulties associated with the requirement that m be known a priori, the

indeterminacy of _9e factor model, the computation problems with Actor

6
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analysis, the widespread use of PCA, and'the general comparability of results,

0 .

across thi two methods, this study chose to focus on the PCA procedure.:

r

.!roperties of Retained Components

The comparison of methods to ddtermini the number of components to retai n

requires a description of the qualities desirable ilia retained component. A

review of the properties of principal components, linked with the goal of data

summarization, provides such a discription.

umber of substantial lbadings. Intuitively, a parsimony application of

PCA requireS. each retained component to contain at least two substantial

loadings. Summarizing power. is lost when only one variable is represented.

Algebraic (Anderson 81 Rubin, 1°956) and statistical (Lawley, 1940, Morrison,

1976) examinations of CFA agree that at least three Variables are required

before the first factor can be identified.4 Andfrson and Rubin.(1956) have

rurther demonstrated that each subsequent identifiable factor must contain at

least three non-zero loadings. At a sample level, a minimum of at liast three

significant loadings are required for factor identification.

Variance ac-ounted for
k

Pnincipal c. .nents analysis proceeds from a

correlation mal.rix, a standardized variance-covariance matrix in which the

variance of each original variable is equal to 1.0. The variance of each

principal component is equal to the eigenvalue of that component. The sum, of

ft

all P eigenvalues is equal' to e, the number of variables.. A i.o

con mnent, accounts for as much variance as a single variable.

Components with eigenvalues near zero provide no summarizing power. A

component with an eigenvalue greater than 1.0 provides more symearizing powert

1

than an original variable.

71om onent reliabilitt. Kaiser (1960)/9nd Kaiser and Caffrey (1965)

4
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addressed the issue of component reliability. Noting that a component must be

reliable to be useful, Kaiser (1960) argued that the reliability of a

component,will always be non-negative when the eigenvalue exceeds 1.0. Horn.

(.1969) noted that this approach to reliability includes all' P variables

regardless of their component loadings. In applied usage, component scpres

. are usually generated as an unweighted sum of those variables with substantial

component. loadings. Reliability estimates based only on those items

contributing to the component score can be quits high even when the component
kif

eigenvalue is below 1.0 (Horn,f1969).
ks,

The component properties reviewed above can be integrated to pre-

sent an operational dpfinitton of a useful-component. Conventional use of PCA

as a data reduction technique, combined with algebraic and statistical 4:

necessity in CFA dictate that, at the,popyZation level, at least three

non-zero loadings are required to identify a useful component. At the sample

level, three significant and substantial leAdings.are needed. ID order to

guarantee non-negative componentreliability, retained components are required

to have an eigenvalue greater than 1.0. Therefore, all components with three

or more substantial loadings and an' eigenvalue of greater than 1.0 will be

ireferred to as4major components (MJC). Such MJC components would probably, be

of interest to most investigators. Components which have either (1) less than

three substantial loadings but an eigenvalue of 1.0 or greater or (2) .4

components which have more than three substantial ieadings but an eigenvalue
I

of less than 1.0 may be of interest to some investittors and will be referred

to as minor (MNC) components. Finally, couponents with both less than three

substantial loadings and an eigenvalue less than 1.0 should neverbe retained

and will be referred to as trivial (TC) components. Table 1 summarizes these

operational definitions of major, minor and trivial (MJC, MNC, TC) components.

A

4g
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Insert Table 1 About Here
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4 Determining the Number of Components

A number of rules have been suggested to determine the appropriate number.

of components tdretain (Bartlett, 1959, 1951; Cattell, 1966; Crawford, 1975;

Everett, 1983; Horn, 1965; Joreskoi, 1962; Kaiser, 1960; Revelle & Rocklin,

1979; Veldman, 1974; Velicer1976b). These rules often do not give the same

results (Anderson, Acito & Lee, 1982; Catteli& Vogelman, 1977; Hakstian,

Rogers & Cattell, 1982; Horn, 1965; Linn, 1968; Zwick & yelicer, 1982).

Applied researchers are, therefore, often at.a loss as to how Leo proceed.

Conflicting research concluiions can be traced to differing methods of

k

defining the correct number of. components. a,

This:section will describe the five methods to be evaluated In this

study) The methO6i-are: 1) the Bartlet test; Z) the.eigenvalue greater than

1.0 rule; 3) the minimum average partial rule; 4) the scree test and 5) the

parallel analysis method. .1here methods were selected for inclusion eithar

because of their widespread use or their extensive theoretical justification.

. 4e

Bartlett's test (BART). Following Lawley's (1940, 1941) test formaximum

likelihood factor anarilise Bartlett (1950, 1951) developed an analagous-
.

statistical test for component analysis of the)null hypothesis that the

remaining eigenvalues are equal. Each eigenvalue is excluded sTquelpially . fp

until the approximate chi-square test of the null hypothesis of equality fails

to be rejected. The first m excluded components are riiilined

BART appears sensitive to the sa le size. Gorsuch.(1973) argued that as

v the number increases, the tests of signifjoinCe become more powerful and, \,



therefore, less and less substanttal differences between elgenvalues are found

to be significant. This can pOtentially lead to the retention of mOre

components as a function of the number of subjects. In response to this, Horn
1

and Engstrom (1979) have suggested changing the ilphi level at different
,

levels ,f N. Howel*, as the saMplesfte increases, the estimates of

population eigenvalues.will-becomcincreasingly accurate; 'This increased

accuracy leads to smaPer observedAdifferences between eqUal eigenvalues.

This increased accuracy.may appropriately offset- the increased)power of the

- Bartlett test .when the'populaiion
-
eigenvalues are actually equal. Zwick and

Velicer.(1982) foundthe BART test somewhat more accurate with 1prge samples

than rith small samples.

Li9envalueyeater than 1.0.(K1). Perhaps the most popular, certainly the

most commonly
emploied'method,s*a tqletain the components with eigenvalues %

.

.._ ,

greater than 1:04 Kaiser 0360) developed the rationale for this method based

.

on argurrients focusing on componAt reliability, pattern meaningfulness and

Guttman's 1954) work examining the lower. bounds for the nu lser of componentsII

in image analiifi:-"Golsuch (104) noted that many users fallow Kaiser (ipso)

and employ the Kl rule to. determine the number of components ;IS than as a

lower bound as originally presOnted. Difficulties associated with this use

are noted by Mote (1970) and Humproys (1964) who argued that rotation of a

4

'greater numberof components resulted in more meaningful sofetions. They

imply the relatively blind use of the K1 rule may sometimes lead to the

__retention of too few components.

A number of researchers (Browne, 1968;.Cattell & Jaspers, 1967; Horn,

1965; Lee & Comrey, 1979; Linn, 1968; Ravelle & Rocklin, 1979; Yeomans &

Golder, 1982; Zrssick & VeIiceco, 1982) however, have found the number of

components retained by this method often overestimates the known underlying.
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component structure. Gorsuch (1974) and Kaiser (1960) report.tfie number of

components retained by Kliis commonly between one third aad one fifth or one

sixth the number of variables included in the correlation matrix. A Monte

Carlo study by Zwick and Velicer (1982) supports this result. This

relationship of retained components to the number of variables is detrimental

to the accurate estimation of the underlying compossegt structure. The' K1

method, although commonly used, is believed by some critics to. sometimes
l

underestimate and,by many others to grosily.overestimate the number of

components. The .,'latter situation occurs particularly when there are a large

. a

le.g., P greater than 50) number. of variables involved.

'The Minimum average partial'(MAP). Velicer (1976b) has suggested a method

based on the matrix of partial correlations. The average'of the squared

partial correlation is4calculated after each of the m components has been

partialed out. Where the.miniium average squared, partial correlation is

reached, no .further components are extracted and rotated. The average squared

Partial correlation reaches a. minimum Wien the residual matrix most closely

resembles an Identity matrix. After that point, the average squared partial

will increase: Using this rule, two variables tould be expected to
O

have high loading$ on each retained component. The method 4..congruent with

the factor analytic concept of *common" factors. lellicer (1976b) points out

the method is exact, can be- applied with any covariance matrix and is

o

logically relaped to the'ebncept of .factors as representing more than one

variable. In a recent study (Zwick IVelicer, 1982), the MAP rule was more

accurat, in identifying &known number of co onents than either the K1 or.

/UPBART le. .

The SCREE test. Cattell (1966) described ttis rule which is based upon a

graph of the eigenvalues. The scree test (SCREE) is simple to apply.. The
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eigenvalues are'plotted4/a straight line is fit through the/ 1)-m smaller values

and those falling aboa theiline are retained. A number of complicatiOns may

occur including.: (1) graduil slope from.lower to higher eigenvalUis with no

obvious break' point in tie line; (2) mere. than one break point fn the line;

and (3) more thah one apparently suitable lfte may be drawnothrough the low

values. Horn and Engstrom (1979) have noted the underlying similarity of the

logic of ll,artlett's chi square test and the scree method. Both tests area

based on an analysis (one statistical, the othet4 visual) of the' essential

ci3

equality of the "remaintng"%efgenvaluds.

The scree test has been most effective when strong components are present

with little confounding due to error or'unique factors. Tucker, Koopman and

Linn (109) found the scree test to be cor'rect 12 of 18 cases.. Cliff

(1970).found ft to be accurate particularly if questionable components are

included. COttell and Jaspers (1967) found the test to be Correct in 6 of E

cases, while Cattell and Vogelmann (1977) reported the test to be accurate

over 15 systematically differing analyses. Further, Cliff and,Hamburger

(1967) found' more deftniie breaks with larger (N * 400 vs. N * 100) sample

sizes and Linn (1968) concurred in this conclusion. Ziick and Velidor (1982)

found the scree test to be most accurate with-larger samples and strong

components. They found the scree test to be the most accurate offour.methods

evaluated across many examples of matrices of known, non-complex, structure..

Use of the scree test always involvest'ssues of interrater reliadility.

Cittell and Vogelmann (1977) and Zwi44, and Velicer (1902) have reported good

interraterreliability among2naiveand among expertjudges. Howevet:', Crawford

and Koopman (1979) have reported extremely low interrater reliabilities. The

circumstances associated with high and low interrater reliability on the SCREE

procedure have not beetiidentified.
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Parallel analysis (PA). Parallel Analysis (Horn, 1965), involves a

comparison of the obtained, real data eigenvalues with the eigenvalues of a

correlation matrix of the same rank and based upon the'same number of

observations but containing only random uncorrelated xpriables. This method

is an adaptation of the Kl rule. Guttman's (1954) development of upper and

lower bounds was based upon population values. Horn (1965) noted that, at the

population level, the eigenvalues of a correlation matrix of uncorrelated

variables would all be 1.0. When samples are generated based upon such a

matrix, however, the initial eigenvalues exceed 1.0 while the final

eigenvalues are below 1.0. Horn (1965) suggested that the eigenvalues of a

correlation matrix of P random uncorrelated variables should be contrasted

with those of the data set in question, based on the same sample size.

Components.Obf the matrix of interest, which have eigenvalues greater,than

those of the comparison random matrix, would be retained. This approach

integrates the reliability and data summarizing emphasis of the population

based K] rule without ignoring the effect e size.

Horn (1965) presented one example of PA in a PCA problem. He recommended

that the comparison eigenvalues be based upon a number of generated random

matrices to avoid major sampling errors in the estimation of the eigenvalues.

Although there has been no published systematic examination of the PA method

with PCA, Richman (personal communication, Oct., 14, 1983) reported a series

of simulation studies with the method. PA was found to be very accOate when

atiF

applied to correlation matricies conforming to the formal factor a lytic

model. He further reported that PA led to.retention of too many co eonentsIt

when applied to correlation matricies conforming to the middle model described
el

by Tucker, Koopman, and Linn (1969). The method was more accurate in both

cases at 1 arget:`04m 500) than at smaller (N = 100) sample sizes.



Humphreys and Montinelli ( 1975) applied PA to principal axis factor

analysis and found the method accurate over a range of examples. Montinelli

and HupAreys (1976) developed a regression equation which accurately predicts-'

the ei genval ues of random corral ati on matrices with squared multiple

correlations inserted as the diagonel. Green (1983) Oilized this prediction

equation to evaluate the performance of factor analysis of binary items. No

such prediction equation has been reported for standard correlation matrices.
)

Variables Affecting Decision Methods

Previously reported research findings on the performance of the decision

methods described above indicate that each may be affected by a set of

different factors. These factors include sample size, the number of

variables, component saturati,n, component identification and the presence of

special types of variables. This study attempted to incorporate each of these

influenles into a simulation study. Some of the considerathons related to

each of these factors are presented in this section.

Sample size. Depending upon the decision method employed, it is possible

that the tumber of subjects may affect the accuracy of the. decision about the

number of components to retain. Sample size is typically determined both by

practical, applied considerations and the need for accurate estimation. The

sample size Aust be large enough to allow an adequate estimation of the

relatiorships between the variables. On the other hand, in applied settings,

large samples may be too expensive to be practical.

Number of variables. With the development of computer technology and

software, larger and larger correlation matrices have been submitted to PCA.

PCAs of personality inventories at the item level, for instance, often involve

80 to 100 variables. Analysis of 200 variable sets is becoming common.

Larger numbers of variables have been reported to increase the accuracy of

14
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some rules while decreasing it for ''others (Zwiiek & Velicer, 1982).

Component saturation. Linn (1968) and Zrick and Velicer (1982) have

demonstrated that the underlying component saturation affects decision

methods. Underlying components, made" up exclusively of high loadings (eig.,

.80) were more likely to be retained,,by various decision methods, than

components exclusively made up of lower loadings (e.g., .40).

Component identification. The accurate identification of a component may

depend uposi the number of. v2riables which have non-zero loadings,on that

component. Components defined by Less 4nanithree variables are not capable of

identification. Tha 'impact of unequal numbers of variables per component is,

unclear for any of the rules under discussion.

Special variables. Complex variables have A nonzero loading on more than

one component. Unique variables have only one non-zero loading and no other

variable loads substantially on the same component. Component patterns

containing both complex and unique variables are believed to occur frequently

in applied situations (Tucker 'et al. 1969). The effect of these types of

variables upon the various decision rules is unclear. Complex or unique

variables can be expected to lead to the retention of more components by K1

and BART and to make SCREE decisions more difficult. The effect of such

variables upon MAP and PA has not yet been examined empirically.

Methods To Be Included

The correct determination of the nu,er of components has been identified

as a crucial step in the data reduction application of PCA. There contimies

to be general disagreement concerning the bist method to accomplish this

step. This study compares the performance of five decision methods on

simulated data sets,. These sets incorporate variables expected to influence

each method. The K1. method was included' because it is so widely used. The

15
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MAP method was included because of its unambiguous solution, its relation to

"common factor" concepts and its good performance` in a recent study (Zwick
.4

Yelicer, 1982). Bartlett's statistical method (BART) was included because it

is the only statistical method appropriate for PCA solutions. The scree test

(SCREE) wus included because of 4s apparent.simplicity and its reported

validity.. The parallel analysislmethod (PA) was included because of its

unambiguous solution and its'renorted accuracy. Each of the chosen methods

may be differentially affected by the manipulated variables,

including sample size, the number of variables, the degree of

cowponent identification and satut7tion, and the presence of .unique or complex

variables. The robustness of the five rules in question, across these

variables, is the central focus of this study.

Method

Method of Data Generation

Studies of the effectiveness-of-thirvartous decision methods may be

categorized into one of two types. Historically, the more common type of

study employed real data representing either new work or "classic" data sets..

These studies employed some logical criteria concerning the appropriate number'

of components and compared the performance of the proposed decision method to

the logically determined value (e.g., Cattell, 1966; Horn, 19651 Humphreys &

Montanelli, 1975; Velicer, 1976). Such studies, in employing an arbitrary

logical criterion, may have inaccurately estimated the performance of the

decision nOthod in question. More recently, studies of decision rule

effectiveness have employed correlation matrices generated from component

structures entirely under the control of the investigator (e.g., Anderson,

Acito & Lee, 1982; Cattell & Yogelman, 1977; Tucker, Koopman & Linn, 1969;

Zwick & Yelicer, 1982). These studies have the advantage of a known criterion
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against which.to measure the performance of the decision methods. They are,

hoWever, open to the criticism that the generated matrices, although

.conforming to a mathematical model, may not represent real data and thus lead .

to inappropriate' conclusions (Tucker, Koopman & Linn, 1969).

The question of a rule's accuracy cannot be exained without a known

criterion. Although.logical arguments can be mounted to defend the number of

Components presently' some data sets, these arguments are always open to

question. Far the assessment of the impact of various' conditions upon a

rule's accuracy, generated data of a known number of-components is

preferable. The issue of generalization to reel data sets is an i I .ortant but

a

separate Issue which may be in.'lpendently addressed in ,the particular way the

data is generated. This study employed an approach similar to the "middle

model" of Tucker, Koopman and Linn (1969).

Procedure

The number of variables (P) to be employed was, set at 36 and 72., These

values represent small and moderately large data sets and accommodate'

constraints mposed by the selection of the number of components to be

included. Largerieti of variables have been sboWn to have a pi 'tive impact

on MAP, BART (Zwick & Velicer, 1982) and SCREE (Cattell & Vogelman, 1982) and

a negative impact on K1 (Zwick & Velicer, 1982).

The sample sizes (N) chosen were selected to reflect coition, applied

usage. They were set as a function of the number of variables. The lower N

was set at twice the number of variables. The higher N was set at five times

the number of variables. The resulting N's were 72 and 180 in the cases

including 36 variables. When 72 variable cases were examined, N's of 144 and

360 were selected. These, appear to include a representative range of sample

sizes as reported in applied educational and psychological research. Larger

17
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sample sizes have been shown to moderately improve the performance of the MAP,

SCREE and Kl methods (Cattell i Vogelmin 1977; Zwick 8 Velicer, 1902) and to

sometimes improve and sometimes weaken the. accuracy of the BART method.

(Gorsuch, 1976; Zwick,1 Velicer,,1982w

As described above,. major Components .(MJC) are defined as those with three

or more substantial loading and an eigenvalue greater than,1.0. Two types of

a/

minor' components (MNC) are defined; First, those with three or ion,

(aubstantial loadfhgs and an eigenvalue of less than 1.0. Second, these with

less than three substantial loading and an eigenvalue greater than or equal to

components(TC) are defined as. those with less than three

substantial loadings and an eigenvalue of less than 1.0.

The number of major components built into the population corgelation

matrix was 3 and 6 when P was equal to 36, and 6 and 9 when P was equal to

.72. These values were chosen to reflect a reasonable range of reported

applied usage. They permit a span of an average number of variables per MJC

(P/MJC) from 6 to 12. Although this P/MJC is somewhat high, such values aril,

required to permit variabdity in the.number of variables per component, while

still meeting the constraint of at least 3 substantial loadings in each MJC.

The distribution of P/MJwas constrained to be either an equal number of

variables per MJC or an unequal number. For the cases where an unequal number

existed, the number was symmetrically distributed about the mean number of

variables per MJC appropriate for that matrix. That is, if P were 36, and m

were 6, the average number of variables per MOC would, be 6. When P/MJC was

planned to be unequal, the number of variables' per component was 8, 7, 6, 6,

S, and 4. Similar distributions for other combinations of P and m are

presented in Table 2.
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Insert Table 2 about here
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16.

Component saturation (SAT), the magnitude of the loading of,the variables

On a MJC, was split between a high of .8 and a lowrof .5. These values bridge

much of the applied range and have been shown (Zwick & Velicer, 1982) to

differentially affect four of.the decision rUles.under consideration. Within

any one matrix, the component loadings on all major components were equal and

either high (.8) or low (.5).

For the purposes of this study,'unigue variables (UNIQ) were defined as

variables which do not load at all on either MJC's or TC's in the- population.

structure. Instild, UNIQ variablWrepresent the only variable loading on one

type of MNC. Such an MNC hal a population eigenvalue Of 1.0. Complex

variables are defined here as those variables which load substantially on a

MIC but also load dinimally (.2) on a second type of MNC in the population

structure. y.

Specific combinations of these variables were constructed. Previous work

has indicated that N, P and SAT have an impact upon some if the decision

rules. At each level of P and SAT, component patterns were constructed to

evaluate the impact of N, P/MJC ap4 a number of combinations of factors. A

*Best Case" set was defined for comparison purposes. This first level of

complexity (1) had an equal number of variables per or component, no MSC's

or TC's present an4.thus no complex or UNIQ variables. Five other levels of

structural complexity were created:for comparison to the *Best Case". This

was done by (2) including complex variables to create the MMC'sc (3) letting

the number of variables per MJC become unequal, (4) including unique varir

ables (as many as the number of MJC1s) to provide the second type. of MNC, (5)

4
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including unique and complex variables together to provide MNC's, and,
A

*finally, (6) a level was constructed which:Included unequal number of

variables per major component and both complex and unique variables. The .

fifth and sixth levels Of complexity were included to highlight the possible

importance of the' very common situation of Unequal numbers ofvatiables per

MJC..

Data Generation

Population correlation_matrftes were treated for each combination of the 6

(CoMplexity) x 2 (P) x-2 (SAT) x 2 (m) factors outlined above. Each

population correlation matrix wasdetermined as follows:

One appropriate population component pattern'(A).was created in accordance

with the level of the number of variables factor (P), the level of the

saturation fIctor (SAT), the level ofthe number of components factor (m) and

the level of the complexity factor under consideration. Post-multiplying by
4

0

its transpose (AA') resulted in a matrix R* (R* = AA'). Substitution of ones

in the diagonal of R* introduced error and produced a population correlation

matrix .R IR = R* + 02). The introduction of ones in the diagonal of R

raised it to full rank, allowing subsequent analysis. Five sample corrifiation

matrices were generated based on each of these population correlation matrices

(Montanelli, 1975) at each level of the number of observations IN) factor.

Principal component analysis was then performed on each of 'the resulting

480 (6x2x2x2x215) sample correlatimmatrices.- At the time this

analysis was performed, the number of components to be retained by each of the

four calculable rules (K1, MAP, PA and BART) was determined. Horn and

Engstrom (1979) have suggested that the alpha level Of the BART procedure

should be adjusted to compensate for the increased sensitivity of the test

With large sample sizes. Three alpha levels were selected for use with the

20
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BART in this study to incorporate Horn and Englstom's (1979) recommendation.

The/Bartlett tests were therefore performed at alpha levels of .05 (BA), .001

(BB) and .0005 (BC) in all cases. The QA decision was based on the mean

eigenvalues of 50 random correlation matrices at each level of P and 4.

.* The SCREE test was performed on computer generated plots of the

01genvalues o each of the 480 matrices. These plots were examined by two

raters trained in the SCREE method (Cattell and Vogelman, 1977). The two

raters were college graduates who had majoredin psychology. Although they

were trained in the SCREE procedure they were uninformed of its purpose. The

raters were also naive to the exact purpose of the experiment and had no prior

applied experience with the SCREE test. The graphs were presented to the

raters in different mixed orders. If either rater asked a question about a

particdlar plot, both listened to an explanation based on the instructions

given by Cattell aid Vogelman (1977). Whenever possible, examples from the

Cattell and Vogelman (1977) directions were used to clarify questions.

Independently, an experienced expert judge, uninformedis to the details of

the experiment but fully familiar with the use of the SCREE test, rated one

sample from each of the 96 cells.

The judgment required by the SCREE method raises the question of rater

reliability. Table 3 presents the interrater reliability extimates of the

mean of the raters' decisions corrected for the number of raters. The

reliability estimates are presented at each level of coaplexity, saturation

and the number of variables. The reliability estimates ranged from .61 to

1.00 with a median value of approximately .88.

Insert Table 3 about here
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The correlations of the mean of the raters decisions'with the expert's

.
judgment ranged from .60 to .90 across the 6 levels of compteiity. The 'median

and mean (Fish914 transformed).correlation of the averaged.rater's decision

with the expert's judgment were both approximately .80.

Results

/ Each decision method leads to an estimate of the number of for

components (MJC) to retain. The ',difference between these, rule determined

estimates of MJC (RMJC) and the known population. value of the number of MJC's

(PiJC) was the primaryrdependentoyariable in thii study. This difference was

computed as d = RMJC -PMJC. The mean difference from the criteria is an

'estimate of the method's accuracy. Positive d's, therefore, indicate

overestimations while neiative d's indicate underestimations. A difference of

0 indicates a correct estimation of MJC. The standard deviation of the

difference is an indication of the methods' consistency. Smaller standard

deviations indicate more consistent estimates of MJC. The mean and standard

deviation of d for each method, under various conditions; are presented below.

This results are alternately presented first for the P = 36 ,cases and then,

in a parallel fashion, for the P = 72 cases. Each level of sample.lize

(Tables 4 and 5), nu er of variables per major component (Tables 6 and 7) and

pattern complexity (Tables 8, 9, 10 and 11) will be summarized within each

level of P and SAT. Tables 12 and 13 present the 'proportion of each method's

estimates of MJC which deviated a set amount from the population value. This

representation of the distribution of the estimates is also presented at each

level of P and SAT.

Table 4 presents the means (0- and standard deviations (sd) of the

22



difference between each method's esiliate(of MJC and thiknown AJC for

different sample sixes when P 36 and the component saturation is .5 and .8.

Table 4, therefore, summerias-results col lapsed across611 SiA levels of.

pattern complexity and both levels of the number Of variables pir MJC ih order

to allow an examinatfos of the individual impact of sample size. Each of the

four rows of differences'in Table 4 represent 60 observations. Tables 4

through 11 follow essentially the same format. A detailed description will,

therefore, be given only for Table 4.

Thelifirst row of Table 4 presents the mean difference of eachmeihod's

estimate of MJC from the known value when P. was 36, the saturation was, .5 and

the sample size was 72. Under these conditions,*the MAP method produced a

mean difference score (d) of -1.08, an)nderestimation. The PA method

produced) reach smaller underestimation of :0.05. TI SCREE (0.50) and K1

(8.32) methods both overestimated the criterion with K1 providfng,a very large

overestimation. The results given by the Bartlett method were calculated for

alpha levels of .05, .001 and .0005, as indicated above. At eacii level, the

Bartlett method led to underestimations (-2:87; -3.92, -3.98 respectively).

The Bartlett method retained fewer components at the more conservative alpha

levels. The standard deviations (sd's)

associated with the mean difference scores for each method are presented in

row 2. They ranged from 0.-A for the PA method to 1.68 for the MAP method.

The third and fourth rows of Table 4 present the mean difference of each

method's estimate of MJC from, the known value and the standard deviations when

P was 36, the saturation was .5 and thi samplersize was 180. The increase in

N from 72 to 180 appeared to have had minor effects on the MAP; PA and SCREE

methods. The K1 and BART methods show some improvement at 9, higher level of

N. Rows 5 and 6 of Table 4 present the mean differences and standard

I
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deviations for each method when P was 36, the saturation was .8 and the sample

size was 72. All the, methods showe4 improved average estimates of the.

joitarion at this higher level of saturation. t should be noted, 'however,

that the standard deviatilon of the differences increased for all levels of the

BART method.ando ajesser extent, for the K1 rule as well, Rows 7 and 8,40

Table 4 present the mean differences "lid standard deviations for each method

when the sample size was °increased to 180, P was 36 and the saturation was

.8. Compared to the results in rows".5 and 64) the larger, sample size resulted

in more accurate id
P

0.0) and consistent (sd = 0.0) estimations by yiP and PA 1

methods. file performanie-of the SCREE and K1 method was not greatly

affected. The three levels of the BART. method retained more components at the

higher sample sile.' This led to a larger overestimation at Wand, a switch

from under- to overestimation at BB and BC. the standard deviations at all

three levels of BART appear to have been larger at N 11.180 than at N a 72.

4

Insert Table 4 About Here

The Kkimethod performed slightly better at the higher sample site at both

levels of component saturation. BART retained more components at the higher

level of sample size-at both levels of component saturation. Table 5 .

parallels Table 4 with P equal to 72. It summarizes the impact of 'sample si4e,

at both levels of component saturation. The MAP and PA methods were again*

minimally influenced by the sample size change at both levels of component
1.0

saturation. When the saturation was .5, the SCREE. method showed less

overestimation at the higher than at the lower sample size. This effect was

not apparent when the saturation was .8.

24, 4
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Insert Table 5 About Here ,
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The role of the number of variables is presented'from a'different

perspective in Tables 6 and 7. Table 6 presents a summary of the results for

each'average'num6er of variables per'MJC (P/MjC) when) equaled 36 and the

saturation was .5 and .8. At4both levels of saturation, MAP, PA and SCREE

performed more accurately and consistently when the average number of

variables'per MJC increased from 6 to .12. K1 showed an increased'

overestimation when P/MJC increased and the saturation was .6 and a decreased

overestimation when P/MJC increased and, the saturation was .8. The BART

method consistently showed it decrease in the number of components retained as

P/MJC increased. When the saturation was .5, this resulted in larger

underestimations; while at a saturation of, .8 8ART's estimates changed from

overestimations to underestimations as P/MJC increased.

Insert Table 6 About Here

Table 7 parallels Table 6 with P equal to 72. The MAP, PA and SCREE

methods showed iiproved performances at the higher level of P/MJC when the

saturation was .5. When the saturation was .8, MAP, PEA and SCREE showed

essentially no improvement at the higher level of P/MJC. The K1 and BART

methods-showed sOmeimprovement at the higher level of P/MJC at both levels of

saturation.

Insert Table 7 About Here

25
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Tables 8 and 9present a summary of the methods' performance when P was

. eqOal to 36 and the saturation was .5 or .8 at each of six le4els of pattern

complexity. The results are col pse across, both levels of N and P /MJC so

ttat each level of Complexity repre is 20 observations. As defined above,

at Complexity4tiVel 1, the MJC's contain equal numbers of variables. There are

no unique or complex variables at ComplexitY level 1 and hence no NNC's or

TC's. Level 2 is the same. as level 1 except it includes NNC's comprised of

low complex loadings. Level 3 is the same as level 1 except the number of

variables per IOC is unequal across NJC's; Level 4 is the same as level 1

except it includes MNC's made 'up of unique variables. Level 5' combines both

TC's comprised of complex loadings and MNC'sicomprised of unique variables.

Level 6 is the same as lev8l44 wept the number -of varibles loading on each

NJC is unequal across major components.

Insert Table 8 and 9 About Here

The range of pattern-complexity affected the methods differently.

Although the methods tended to perform best at Complexity level 1, they had

different worst cases. When the saturation was ;5, in Table 8, the worst

cases were: MAP and PA at leve1.5; SCREE at level 2; K1 and BART at level 4.

A comparison of Tables 8 and 9'indicates, MAP, PA, SCREE and kl showed

substantial improvement at all levels of Complexity when the saturation was

.8. At this saturatiOrlevel, PA slightly underestimated at Complexity.level

6. MAP slightly overestimated at Complexity levels 2, 5 and 6. SCREE

slightly overestimated at all levels of Complexity and level 6 resulted in its

largest overestimation. The BART method overestimated slightly or not at all

at levels 1, 2 and 3, K1 markedly overestimated at Complexity.levels 4, 5 and
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6 as did BART. Levels 4, 5 and 6 all contain unique variables.

Tables 10 and 11 parallel Tables 8 and 9,with P equal to 72. As was the

case when P was 36, the range of complexity appears to have differentially

affected the method's performance. At a saturation of .5, in Table 10, MAP

was quite accurate at levels 1, 2, 4 and 5 but underestimated erratically at

levels 3 and 6. At a saturation of .8, in Table 11, MAP was very accurate at

all levels of complexity. PA was quite accurate across all levels of

complexity with marked improvement at the .8 saturation level. At that level,

PA was always accurate. Generally, The SCREE method somewhat overestimated at

E A level of complexity. It performed worst when the saturation was .5 at

levels 2 and 4 and when the saturation was .8, level 4. The Kl method gave

gross overestimates at all levels of complexity when the saturation was .5.

It was quite accurate when the saturation was .8 at levels 1, 2 and 3. At the

samciaturation at levels 4, 5 and 6, the method consistently overestimated

the criterion. The BART method showed a moderate range of underestimation

when the saturation was .5 with the worst case appearing to be level 6. When

the saturation was .8, BART performed well at levels grand 3, overestimated

moderately at level 2 and overestimated greatly at levels 4, 6 and 6.

Insert Tables 10 and 11 About Here

A general overview of the performance of the different methods may be

gained by calculating the percent of times each method's estimate deviated a

set amount from the criterion. Since P and saturation appear to have had the

most substantial impact on the methods, the percentages were computed at each

twit

level of these variables. Deviations of greater than three were collapsed for

simplicity of presentation. Differences of 0 indicate accurate estimates.
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These percentages are presented in Tables 12 and 13.

Insert Table 12 About Here

As Table 12 indicates, at both levels of saturation when P was 36, PA was

clearly the most frequently accurate method followed by MAP and SCREE. Kl's

tendency to overestimate was marked. The K1 method never underestimated. The

BART meth was quite inaccurate and variable at both levels of saturation.
q

Table 3 parallels Table 12 with P equal to 72. Again, PA was the most

freqieltly accurate method at both levels of saturation. Both the PA and the

MAP methods showed i. roved performance. when P was equal to 72 compared to

36. The PA and MAP methods were nearly equivalent when the saturation was

.8. The Kl method showed essentially the same pattern of.results when P was

72 as at 36 because of attenuated range on these tables. The BART method

retained more components when P was 72 than 36. BART was more often accurate

when the saturation was .5 than .8 when F was 72.

Insert Table 13 About Herr

Discussion

The question of interest in this study was the ability of five decision

methods to estimate the number of major components present in the population

correlation matrices given only the generated sa le matrices. The difference

betweekthe estimated number and the defined number of major components served

as the primary dependent variable in this simulation study. The standard

deviation of the difference scores gave further information about each

28



26

method's consistency. Finally, the percent of correct decisions and the

percent of decisions at specificd levels of deviation from the criterion were

also calculated.

The five decision rules employed were the eigenvalue greater than one rule

(K1), Bartlett's test (BART), the scree test (SCREE), the minimum average

partial method (MAP) and the parallel analysis method (PA). The performance

of the five methods for determining the number of components was examined in

ten samples drawn from each of 48 simulated population correlation matrices

over a range of component pattern complexity. The least complex pattern

replicated earlier work (Zwick & Velicer, 1982) and included only equal

numbers of variables per component and no unique or complex variables.

Component pattern complexity was varied by modifying this clear, least complex

case with combinations that included: (1) complex variables, (2) equal and

unequal numbers of var'ables per component; and (3) unique variables. The

resultant six levels of complexity are felt to cover an adequately wide range

to permit a test of the relative strengths and weaknesses of the decision

methods examined. Major components (MJC) were defined as those having more

than three substantial loadings and an eigenvalue greater than or equal to 1.0

at the population level. Two types of minor components (MNC) were defined.

It is felt that these complex patterns expand upon the formal model and

incorporate cases likely to be encountered in real data analyses.

The Kl rule was found to overestimate,consistently the nu per of major

components. It never underestimated. This finding is consistent with those

of Cattell and Jasper (1967), Linn (1968), Yeomans and Golden (1982) and Zwick

and Yelicer (1982). At a coi.onent saturation of .5, the number retained

lifterrItil in the 1/3 to 1/2 of P

nu er of variables increased, so

range discussed by Gorsuch (1974). As the

did the number of components retained. K1

29
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retained more components when unique variables were included in the population

o

pattern. These findings are clearly contrary to those of Humphreys (1964) and

Mote (1970), who concluded the Kl method sometimes retained too few

components. Either their data represented a type of component.complexity not

included in this study or their original judgments of the nu,,er of components

in their data sets were overestimates. Given the apparent functional

relationship of the number of components retained by K1 to the number of

variables and the repeated reports of the method's inaccuracy, the K1 rule

cannot be recommended for PCA.

The results and conclusions about the Kl rule presented here are,

consistant with both previous empirical studies and the theoretical criticism

of the method. However, our conclusions are in sharp contrast to many recent

textbooks where Kl is either the preferred or only method discussed (Afifi &

Clark, 1984; Everitt & Dunn, 1983; Johnson & Wichern, 1982; Marascuilo &00

Levin, 1983; Tatiachnick & Fidell, 1983). For example, Marascuilo & Levin

(1983) are typical when they first discuss it with a caution In most cases,

Kaiser's rule is quite workable, but . p. 237) but, in a later summary,

flatly nmmmmend it ("It is one we recommend.", p. 260). The use of the Kl

rule as the default value in some of the standard computer packages (BMDP,

SPSS) represents an implicit endorsement of the procedure, particularly with

naive users. This_pattern of explicit endorsement by textbook writers and

implicit endorsement by computer packages, contrasted with empirical findings

that the procedure is very likely to provide a grossly wrong answer, seems to

guarantee that a large number of incorrect findings will continue to be

reported.

The BART method's performance was the most variable of those examined. In

addition to variability, the method was sensitive to a number of influences.
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Increases in Ho P and SAT as well.as the use of conservative alpha levels and

the presence of unique variables all lead to the retention of ,more

components. The first four of these inflUences may be seen as affecting the

statistical power of the Bartlett test. In data sets wher4the P-m

eigenvalues were in fact equal at the population leVel, Zwick and Vilicer

(1982)found the methOd to be moderately accurate. In the broader range of

complexity examined here, the test tended to retain both types of minor

components defined above. Although examination of different alpha levels led

to fewer or greater numbers of comptinents retained, the accuracy and

consistency of the method did not appear to be markedly ihlroved by adjusting

alpha levels with sample size (see Table 4) as was suggested by Hotn and Engstrom

0979). Other factors present in this study appear to have had a greater

influence on the performance of BART, across alpha levels, than did sample

size alone.
4

The Bartlett test is accurate in answering statistical questions

concerning the equality of eigenvalues (Bartlett, 1950; 1951). Researchers

inclined to examine minor components, particularly early in the course of

exploratorflaalysis, may find the method helpful. However, the Bartlett test

cannot be recommended as a general method of determining the -number f major

components to retain. The tendency of the method to retafn both minor and

trivial components might reflect the basic logic of the test. Only true error

should be expected to meet the requirement of equal eigen values. However,

most researchers would not find minor or trivial components to be consistent

with their implicit definition of a factor or component that As worthy of

retention. Therefore, the test may work correctly Mit may not be an

appropriate test for most applications.

This study did not investigate the maximum lilelihood test which assumes
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the factor analysis model. The maximum likelihood test is based on a logic

identical to the Bartlett test. Empirical investigations have found the same

pattern of results with the likelhood test as we have reported with the

Bartlett test (liaksean Rogers, Caitall 1982; Richman, personal

communication). Again, the Oioblem may be with an inappropriate formulation

of test, rather .than the performance of the test.

The SCREE method had moderate overall reliability when the mean of two

trained raters was used. The correlation of the mean of those.raters'

decisions with an expert judge:indicatid fair overall agreement. Reports of

rater reliability on the SCREE have ranged from very good (Cattell and

Jaspers, 1967) to qUito poor (Crawford and Koopman, 1979). This range may

reflect either the training or the task complexity across research projects.

The raters in this study showed greater agreement at higher than at lower

component satdration levels. They showed greater; agreement when there were

more rather than fewer variables. Perhaps more importantly, the interrater

reliability of the SCREE procedure had a fairly wide range across levels

of complexity. The moderate reliability of the SCREE method is

very ,problematic for the applied researcher., Unreliability at this point in

the analysis may well expose a study to otherwise avoidable experimenter

bias. In any case, applied researchers should note that reliability questions

always arise in any use of the SCREE method.

In general, the SCREE method was more accurate and less variable than

either the KT or BART method; This method was more accurate and less variable

at the higher level of component saturation. Larger sample sizes also

improved its accuracy when P was 72 and SAT was .5. Sample size did not

appreciably affect SCREE at other levels of P or SAT. This effect of larger

sample size is consistent with those reported elsewhere (Cliff and Pennell,

32
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1967; Linn, 1968; Zwick and Velicer, 1982). The accuracy of the SCREE method

was not affected.by an increase in the number of variables examined. An

increase in the average number,of variablesoper component did not affect the

methodsi accuracy. In an earlier study (Zwick and Velicer, 1982), utilising

non - complex matrices, the SCREE method performed better than MAP when the

major components contaitied.6 or less variables and the saturation was low..

This trend can be observed again under more aomplex conditions.

The SCREE method tended to overestimate rather than, o underestimate when

it deviated from the criterion value. As reflected in Tables 12 and 13, the

SCREE was accurate about 57% of the time. When the SCREE method was in error,

90 percent of the errors were overestimations. The SCREE method appeared to

be most variable at the low level of component saturation or when unique or

complex variables were present. 'Nevertheless, even given its variabiliti and

tendency toward overestimation, the SCREE method seldom led to the retention

of more than two components over the criterion value. Many experienced

investigators routinely examine 1, 2 or 3 components above and below the

estimate given by their favorite decision method. This practice, coupled with

good judgment concerning interpretability may often result in appropriate

solutions when the SCREE methodis employed; Thit-Optitistic-assertion

notwithstanding, the ever present question of rater reliability, the tendency

to overestimate and the apparent increased variability in the common case of

unique or complex variables all argue against the exclusive use of the SCREE

method. Given these drawbacks and the availability of other clearly superior

methods, SCREE can no longer be recommended as the method of choice for

determining the number of components in PCA.

In general, the MAP method was more often accurate and less variable than

the Kl, BART or SCREE methods. It showed an overall tendency to underestimate
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the criterion. The MAP method was most accurate at the higher level of

component satu tion or when the average number of variables per component was

large. Its per ormance was not .markedly influenced by
sample size within the

range examined in this study.. The MAP method was quite accurate under many

conditions. and, when accurate, showed little variability. In cases

represent:ng both a low level of saturation and a low number of variables per

component, the MAP method consistently underestimated the number of major

components. This effect can be most, clearly seen in Table 6 by comparing the

two levels ofp4IC when P = 36 and SAT = .5. Additional information about

this effect can be gleaned from Table 7. The MAP method gave larger

underestimates and displayed greater variability when unique variables were

present (levels 4, 5 and 6) and when there was an unequal number of Variables

per component (level 3 and 6). In this simulation study, unique variables

reduced the number of variables per component by 1. The presence of

unequal numbers of variables per component independently reduced the number of

variables per component-on the trailing major components. The presence of

complex variables (level 2 and .5) lowers the major component saturation at the

sample level. Complex variables thus independently increase the effect of low

component saturation. The combination of these influences appears to result

in components at the sa tle level which account for less variance than those

components containing only a unique variable. MAP should not retain a unique

variable component. It, therefore, fails to pick up the less well identified

major components.

Overall, the MAP method was accurate more often than were the Kl, BART or

SCREE methods. The MAP method gave results within IT of the criterion

between 72% (P al 36, SAT w .5) and 100% (P m 36, SAT .8; P a 72, SAT 0 .8)4

of the time. When it was in error, the MAP method tended to underestimate.
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Approximately 90% of the MAP errors were underestimations.

The'MAP method provides an unequivocal stopping point. It is tied to the

concept of parsimony by directly rejecting components identified by only one

variable. MAP showed a tendency to underestimate the known number of 'major

components at the component satuation level of .5 when up to six variables

loaded on a component, It is quite accurate when component saturation is high

or when there is an average of 8 or more variables per component. Researchers

wishing to ignore relatively smell major components should employ MAP as a

primary method of determining the number of components to retain.

The PA method was consistently accurate. It was typically the most

accurate method at each le") of complexity examined. The average deviation

of PA from the criterion did not exceedexceed 0.34 under any condition

examined. The difference scores of the PA methdd showed less variability than

those of any other rule. Increases' fn sample size, component saturations and

P/M1C improved the PA method4's performance when there was room for

improvement. It might have been expected that the PA method would

overestimate in the presence of minor components made up of unique or complex

variables. Some evidence of this is present at P = 72, SAT a .5,1complexity

levels 2, 4 and 5. This pattern is not replicated at other levels of SAT or P.

Overall, the PA method was the most frequently' accurote method examined.

It gave results within !I of the criterion for between 95% (I) 10 36, SAT =

.5) and 100% (P =-36, SAT = .8; P =72, SAT .8) of the cases examined. When

the PA method was in error, it showed a slight tendency.toward

overestimation. Approximately 65% of the PA method's errors were

overestimations. The accursty of the PA method in this study is consistent

with the CFA results reported by Humphreys and Montanelli (1975).

A Major drawback 14 the applied use of the PA method is the necessity of
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generating a large set of random correlation matrices at4the particular

.
combination of P and Wunder consideration. The prediction equation developed

for prindpal axis factoi analysis (Montinelli nd Humphreys, 1976) is not

appropriate for principal' components analysis.

In summarizing the results of the present study it is useful to postulate

a further division of the class of co t ionent previously labeled as Major
a

Component (MJC). Those compOnents which involve only a limited number of

variables and low saturation will be labelled as Poorly Defined Components

(PDC). Components with either a large number of variables or high turation

will be labelled as Well Defined Components (W0F). Poorly Defined onents

do not possess any "marker* varibles, i.e., variables with high loadings on

that component.' Investigators typically employ such marker variables as.

defining varibles in interpreting the co tonent. Guadagnoli and

Velicer (1984) found that'PDC's were unlikely to accurately replicate even in

fairly large samples. The combination of the two issues of dffficUlt .

interpretability and questionable replicibility, make the retention of these

components problematic.

The two methods which were the most accurate, MAP'and PA, provided

divergent results primarily when POC's were present. An A Priori decision

about whether or not to_attempt to extract and retain such Components may

dictate whether MAP or PA is the method of choice. Lacking such a decision, a

researcher may want to examine all solitions in a set bracketted by the MAP

and PA estimates. Rotational criteria and interpretability may be the basis

for a final decision.

Previous studies have examined subsets of these rules under some of the

conditions examined here. The present study provides c .arisons across a

wider variety of situations than previous investigations. In those a
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34,

where the simulated situations were similar, thiresuits of Linn (1968),

Humphreys and Montanelli (1975), Cattell and VogelmaK(1977), Hakstian,

Rogers, and Cattell (1982) and Zwick and Velicer (1982) were confirmed and.

expanded.
o.

Within the limitations imposed by the simblation approach, the results of

this study, paired with previously reported work, permit some conclusions

concerning methods of determining the number of components in real data sets.

There is no evidence supporting the continued use of Kar BART as exclusive,ive,

primary methods to deteriine the numberkof major components to retain. These

methods should no longer be employed: The SCREE procedure has been reported

to be relatively accurate. This study is consistent with those reports but

indicates that the method is.too variable and too likely to overestimate to be

employed as theosole decision method. However, the SCREE may still be useful

for initial estimates or as a complementary method employed in conjunction

with PA or MAP. The MAP method was generally quite accurate and consistent
O

when the component saturation was high or.the component was defined by more

than six variables. The MAP did not retain Poorly Defined Components. The PA

m3thod was also consistently accurate. PA retained PDC's and showed a slight

tendency to overestimate. The genera] application of the PA method is

difficult to recommend because programs needed for its application are not

widely available. Assuming that these problems can be overcome, either PA or

MAP are the method of choice, with many situations arising where both should

be employed.

O
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Footnote

Some of the materjal ircluded in the present paper appeared in the senior

35

auihor's Ph.D. Dissertatiod. Reprint request' should be sent to William R.

Zwick, Counseling Department, Rhode IslandGrqiip Health Aesociation,

530 N. Main Street, Providence, RI 02906.
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P.

Table 1

The Relationship Between the Number of Substantial Component Loadings

and Eigenvalue Size to Mallort Minor and Trivial Components.

Variables

Per

Component

4

Eigenvalue

Less Than . Greater Than

.1.0 1.0

Less

Than

3

Trivial

(TC)

Minor

(MC)

Greater

Than

3

Minor Major

(MNC) (Ng)



Table 2

Loading

Condition of Une ual Variables/C onent for Different Values of P

mlintatutilLacJimealaILLEI:

Component

P MJC P/MJC 1 2 3 4 5 6 7 8 9

36 3 12 14 12 10 Oa OM NO ND MI WO

36 6 6 8 7 6 6 5 4 - - -

72 6 12 15 14 13 11 10 9 - OD In

72 9 8 12 11 10 9 8 7 6 5 4



Table 3

Interrater

Each Level

reliability of the Trained Scree Raters with Each Other at

of the Number of Variables Pattern Co lexit and Co onent

Correct for the Number of Raters.Saturation

Complexity

Saturation

.50 .80

P m 36 Variables

1

2

3

4

5

6

.67

.96

.82

.76

.65

.77

.96

.95

. 98

. 97

.91

.77

P 72 Variables

1 .97 .99

2 .80 .97

3 .95 1.00

4 .93 .81

5 .78 .82

6 .75 .61
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Table 4

Means and Standard Deviations of the Difference from the Po Oation MJC

at Different Sample Sizes when ,P 36.

Sample Size

.110.11.11111111

MAP PA

72 d -1.08 -0.06

(sd) (1.68) #470)

180 d -1.17 4.13

(sd) (1.84) (0.39)

72 d 0.10 -0.02

(sd) (0.30) (0.13)

180 d 0.0 0.0

(sd) (0.0) (0.0)

Method

SCREE K1

Saturation .5

0.50 8.32

(1.04) (1.21)

0:68 7.30

(0.95) (1.09)

Saturation al .8

0.27 1.77

(0.50) (1.59)

.'0.23 1.32

(0.52) (1.44)

BA BB BC

-2.87 -3.92' -3.98

(1.10) (0.81) (0.79)

-1.78 -2.20 -2.27

(1.26) (0.97) (0.92)

0.47 -0.48 -0.60

(2.81) (2.31) (2.30)

1.23 0.68 0.62

(3.51) (3.27) (3.23)
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Table 5.

Means and Standard Deviations of the Difference from the.Po ulation Ma

at-Different Sample Sizes when P 12.

4

Method

Sample Size MAP PA SCREE Kl

Saturation .5

144

360

d

(sd)

d

(sd)

-0.45

(1.00)

-0.43

(1.06)

0.02

(0.57)

0.07

(0.25)

1.16

(1.30)

0.46

(0.79)

'17.80

(1.29)

15.42

(1.27)

Saturation m .8

144

360

d

(sd)

d

(sd)

0.02

.(0.13)

0.0

(0.0)

0.0

(0.0)

0.0

(0.0)

0.28

(0.55)

0.31

(1.03)

2.97

(2.81)

2.52

(2.59)

BA BB BC

-0.43 -1.60 -1.73

(1.16) (1,24) (1.15)

0.40 -0.13 '-0.22

(0.74) (0.43) (0.45)

..floasumw000mmookonimmil4o.

3.88 2.62 2.50

(3.64) (2.96) (2.88)

5.03 4.10 3.98

(4.31) (3.89) (3.78)



Table 6

Means and Standard Deviations of the Difference from the Population MAX

at Different Numbers of Variables Per Component when P m 36.

Method

P/t4.1C MAP PA SCREE K1 BA BB BC

Saturation = .5 "bast.

6

12

d

sd

d

(sd)

-2.27

(1.88)

0.02

(0.13)

0.05

(0.79)

0.03

(0.18)

0.65

(1.19)

0.53

(0.5)

7.10

(0.99)

8.52

(1.10)

-1.50

(1.35)

-3.15

(0.44)

-2.67

(1.58)

-3.45

(0.53)

-2.77

(1.54)

-3.48

(0.57)

Saturation .8

6

12

d

(sd)

d

(sd)

0.08

(0.28)

0.92

(0.13)

0.17

(0.13)

0.0

(0.0)

0.33

(0.59)

0.17

(0.39)

1.68

(1.70)

1.40

(1.33)

2.93

(2.94)

-1.23

(1.73)

2.17

(2.54)

-1.97

(1.24)

2.10

(2.54)

-2.08

(1.25)



Table 7

. Means and Standard Deviations of the Difference from the Population WIC

at Different Numbers of Variables Per Coonent when P 72.

Pit4JC

Method

MAP PA SCREE K1 BA

Saturation .5

8 d -0.92 0.07 1.02 15.90 -0.17

(sd) (1.28) (0.61) (1.22) (1.45) (1.21)

12 d 0.03 0.02 0.60 17.32 0.13

(sd) (0.18) (0.13) (1.00) (1.74) (0.85)

Saturation .8

d 0.02 0.0 0.21 3.02 5.15

(sd) (0.13) (0.0) (0.74) (3.02) (4.56)

12 d 0.0 0.0 0.38 2.47 3,77

(sd) (0.0) (0.0) (0.89) (2.34) (3.271)

88 8C

-1.37 -1.48

(1.36) (1.32)

0.37 0.47

(0.66) (0.65)

4.00 3.87

(4.04) (3.93)

2.72 2.62

(2.80) (2.73)



Table 8

. Means and Stand rd Deviations of the Difference from the Po ulation MJC

at Different Levels of Pattern C. .1exit when P = 36 and Saturation si

.5.

Method

Complexity MAP PA SCREE K1 BA se BC

d -0.30 0.0 -0.38

(sd) (0.66) (0.32) (0.92)

d -0.50 -0.10 0.88

(sd) (0.89) (0.45) (0.93)

d -0.80 -0.10 0.50

(sd) (1.06) (0.45) (1.03)

4 d -1.60 0.6 0.38

(sd) (2.09) (0.65) (0.93)

5 d -2.05 -0.25 0.58

(sd) (2.50) (0.79) (0.96)

d -1.50 0.20 0.85

sd 1.96 0.62 1.18

7.15 -0.90. -1.15 1;20

(1.46) (1.29) (1.45) (1.51)

7.35 -1.00 -1.40 -1.45

(1.22) (1.39) 11.54) (1.54)

7.30 -1.20 -1.40 -1.55

(1.03) (1.24) (1.27) (1.39)

8.45 -1.55 -1.85 -1.90

(1.10) (1.79) (1.84) (1.80)

8.20 -1.30 -1.85 -1.90

(0.95) (1.59) (1.93) (1.89)

8.40 . -1.30 -1.70 -1.75

1.10 1.42 1.66 1.68



Table 9

. Means and Standard Deviations of the Difference from the Population MJC

at Different Levels of Pattern Co lexit when P m 36 and Saturation

.8.

Complexity

Method

PA SCREE Kl 8A 88 BC

1 d 0.0 0.0 0.12 0.15 0.05 0.0 0.0

(sd) (0.0) (0.0) (0.32) (0.37) (0.22) (0.0) (0.0)

2 d 0.20 0.0 0.25, 0.15 0.30 0.10 0.0

(sd) (0.41) (0.0) (0.52) (0.37) (0.57) (0.31) (0.0)

3 d 0.0 0.0 0,10 0.10 0.05 0.0 0.0

(sd) (0.0) (0.0) (0.26) (0.31) (0.22) (0.0) (0.0)

4 d 0.0 0.0 0.32 2.90 3.20 2.70 2.50

(sd) (0.0) (0.0) (0.69) (0.85) (1.61) (1.72) (1.88)

5 d 0.05 0.0 0.32 2.85 4.55 3.80 3.65

(sd) (0.22) (0.0) (0.57) (0.74) (2.06) (2.02) (1.81)

6 d 0.05 -0.05 0.38 3.10 3.45 3.00 2.90

(sd) (0.22) (0.22) (0.54) (0.64) (1.85) (1.92) , (1.97)



Table 10

Means and Standard Deviations of the Difference from the Population Mg

at Different Levels of Pattern C

.5.

lexit when P 72 and Saturation =

Complexity

Method

MAP PA SCREE Kl BA BB

1 d 0.0 0.0 0.82 15.95 -0.25 -0.60

(sd) (0.46) (0.0) (1.09) (1.82) (0.55) .(6.82)

2 d -0.05 0.05 1.18 16.00 -0.15 , -0.60

(sd) (0.22) (0.22) (1.08) (2.10) (0.37) (0.68)

3 d -0.95 -0.20 0.40 15.90 -0.60 '-1.00

(sd) (1.19) (0.41) (0.75) (1.71) (1.31) (1.38)

4 d -0.10 0.30 1.00 17.15 -0.45 -0.95

(sd) (0.45) (0.57) (1.48) (1.46) (0.94) (1.19)

5 d -0.10 0.20 0.90 17.15 -0.40 -0.85

(sd) (0.45) (0.41) (1.11) (1.39) (9.99) (1.22)

6 d -1.45 -0.10 0.35 17.50 -0.70 -1.20

(sd) (1.60) (0.55) (0.97) (1.24) (1.45) (1.58)

BC

-0.75

(0.79)

-0.65

(0.67)

-1.10

(1.25)

-1.10

(1.25)

-1.00

(1.21)

-1.25

(1.55)
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Table 11

Means and Standard Deviations of tha Difference from the Population MJC

at Different Levels of Pattern C lexit when P = 72 and Saturation =

.8.

Complexity

1

2

3

4

5

MAP PA

d 0.0 0.0

(sd) (0.0) (0.0)

d 0.05 0.0

(sd) (0.22) (0.0)

d 0.0 0.0

(sd) (0.0) (0.0)

d 0.0 0.0

(sd) (0.0) (0.0)

d 0,0 0.0

Cull MAL 10,0i__

6 d 0.0 0.0

(sd) (0.0) (0.0)

Method

SCREE Kl BA BB BC

0.12 0.0 0.05 0.0 0.0

(0.32) (0.0) (C,22) (0.0) (0.0)

0.18 0.35 1.70 0.90 0.80

(0.41) (0.59) (1.22) (0.91) (0.89)

0.0 0.05 0.05 0.0 0.0

(0.0) (0.22) (0.22) (0.0) (0.0)

1.05 5.40 5.85 5.30 5.20

(1.31) (0.94) (2.03) (2.05) (1.96)

0.40 5.40 7.95 7.10 6.80

(0.50) (0.82) (2.16) (2.07) (1.99

0.0 5.25 7.60 6.85 6.65

(1.08) (0.85) (2.76) (2.56) (2.64,
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Table 12

Percent of Each Method's Estimate Deviating a Set Amount from the

Population MX when P m 36.

Deviation

-2

-3

Method

MAP PA SCREE Kl BA BB BC

Saturation = .5

0.0 0.0 4.1 100.0 0.0 .0.0 .0.0

0.0 1.7 16.7 0.0 0.0 0.0 0.0

0.8 10.0 33.3 0.0 1.7 0.0 0.0

59.2 82.5 36.7 0.0 9.2 2.5 1.7

11.7 2.5 6.7 0.0 19.2 11.7 10.8

9.2 3.3 2.5 0.0 10.0 12.5 12.5

19.2 0.0 0.0 0.0 59.9 73.3 75.0

Saturation m .8

0.0 0.0 0.8 36.7 25.8 17.5 17.5

0.0 0.0 5.0 12.5 1.7 7.5 7.5

5.0 0.0 20.8 7.5 14.2 0.8 0.8

95.0 99.2 73.3 43.3 26.7 34.2 33.3

0.0 0.8 0.0 0.0 6.7 6.7 6.7

0.0 0.0 0.0 0.0 6.7.. 7.5 4.2

0.0 0.0 0.0 0.0 18.3 25.6 30.0
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:Table 13

Percent of Each Method's Estimate Deviating a Set Amount from the

Population MUC when P 01 72.

Method

Deviation PA SCREE. Kl BA BB BC

Saturation .5

+3 0.0 0.0 9.2 100.0 1.7 0.0 0.0

+2 0.0 0.8 19.1 0.0 5.8 0.8 0.0

+1 24 8.3 21.7 0.0 10.8 1.7 1.7

+0 75.8 85.8 46.7 0.0 58.3 47.5 41.7

-1 6.7 4.2 2.5 0.0 16.7 25.8 31.7

-2 6.7 0.0 0.8 0.0 5.8 11.4 10.8

_73 8.3 0.0 0.0 0.0 0.8 12.5 14.1

Saturation * .8

+3 0.0 0.0 5.
.

0, 50.0 60.0 47.5 45.8

+2 0.0 0.0 1.7 0.8 3.3 8.3 9.2

+1 0.8 0.0 22.5 5.0 9.2' 3.3 3.3

+0 99.2 100.0 69.2 44.2 27.5 40.8 41.7

-1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

-2 0.0 0.0 0.8 0.0 0.0 0.0 0.0

73 0.0 0.0 0.8 0.0 0.0 0.0 0.0


