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CHAR’A‘ER 3 LAUREN B. RESNICK

" A Developmental Theot'y of
Number Understanding!

Rcscmhondwpsyctwlogicalp:msainvolvedh;eﬂymduim
has now cumulated sufficiently 1o make it possible to construct a coherent ac-
count of the changing nature of the child's understanding of number dusing the
early school years. Earlier work, concerned largely with preschool children's
informal arithmetic (e.g.. Fuson & Hall, Chapter 2; Gelman & Gallistel, 1978,
Ginsburg, 1977). has established the strength and the limits of the number
understanding that children typically bring with them to school. My concern in
this chapter will be to develop a plausible account of how number concepts are
extended and cisborated as a result of formal instruction. The chapter will outline
aﬂmyofnun&unpmnﬁmfambmdpaiodsddevdmﬂa)m
preschool period. during which counting and quantity comperison competencies
of young children provide the main basis for inferring number representation; »
the carly pﬁnmypeﬁod.dwingwhid:dﬁldseu'sinvuﬁonofmphw
nmalcompumionalpmcedmmdmemmyofminfmofmypmb-
lems pointtomoimpmtmtcxpmsionsofﬂtnumbercmwpt;md(c)melm
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i1e LAUREN B RESNICK

primary period, during which the representation of rumber is modified to reflect
knowledge of the decimal structure of the counting and notational system.

My account of developing number understanding is based heavily on recent
work—some reported in this volume—that is providing a series of formal models
of the knowledge underlying various observed arithmetic performances by chil-
dren of different ages. Each of these models has been constructed to account for a
particular set of performances. but there has been no systematic effort to fink
them into a developmental sequence. Nevertheless. an examination of the exist-
ing models strongly suggests a sequential development of mathematics compe-
tence that is characterized by (a) an expanding and successively elabordted set of
schemata that organizes number knowledge. and (d) the linking of these sche-
mata to increasingly complex procedural knowledge. In the course of the chapter
I will clanify exactly what is to be understood by the terms schemafic and
procedural knowledge. It is important to note, however, that in stressing both
procedural and schematic knowledge and their links. current theories Of mathe-
matical understanding offer promise of joining two hitherto separate and largely
competing strands of research on mathematical development. These are (a) the
behavioral, which has concentrated on number performance skills and has
viewed growth in mathematical ability as the addition of successive performance
skills: and (b) the cognitive~developmental. which has focused on changing
concepts of number but has often paid little attention to the manifestation of these
concepts in actual number performances.

NUMBER REPRESENTATION IN THE PRESCHOOLER:
THE MENTAL NUMBER LINE

This account begins by considering what understanding of number can be
assumed as the typical child enters school. Several lines of evidence point 1o the
probability that by the time they enter school most children have already con-
structed a representation of number that can be appropriately charactenzed as a
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3 A DEVELOPMENTAL THEORY OF NUMBER UNDERSTANDING 111

memal number linc. That is. numbers comespond to positions in a string, with
the individual positions linked by 2 “*successor’’ of *°next”" relationship and a
directional marker on the string sp cifying that later positions on the string are
larger (see Figure 3.1). This mental number line can be used both to establish
quantities by the operutions of counting and to directly compare quantitics. By
combining counting and comparison operations. a considerable amount of arith-
metic problem solving can also be accomplished.

Counting

Several extensive studies of counting in preschool children provide the basis
for inferring the number knowledge typical of children as they enter school.
These include Gelman and Gallistel's (1978) study of counting and number
concepts in 2- through S5-year-olds. and Fuson snd Briars’ (Fuson &
Mierkiewicz. 1980) work on counting (see also Sicgler & Robinson, 1982;
Steffe. Thompson. & Richards, 1982). These investigators have shown that from
averyudyage.childrencanwlitblycoummofobjectsmddmemblish
their cardinality. Greeno, Riley. and Gelman ( 1978) have developed a computa-
tional program that simulates the counting performances observed by Gelman
deallistclmddmisingoodncco:dwimﬂtdm:epomdbymeodmmja
investigators as well. This modelprovidesdlebuisformychmmainﬁoaof
the mental number line.

At the core of the Greeno ef al. mode! of children's counting is an ordered
lisxofnumﬁogs!inkedbylnmssormexnmmomhiplsshowninﬁgm
3.l.mpmmesublishutt:quuuityohse:bynmmmly
linkscachobjectinﬂwsetwimmofﬁ»numﬂogswdthendesimmlw
numﬂogwnedﬁdwmmbefinmeset.mfxgmm:dmmwm
nwmalhstnumcﬂogsmdpm:nwdsddisplm.mmksmmmm
ofkmwledgcnnlwaudallowchild:tnwsubmemysnnllm—mdis.m
quickly provide the appropriate number name without actually counting—
mmghdimctpanmmgnm.nisabilhyhubmmmcﬁldrwn
ywngas3or4byl(hhrmd\\’alhce(l976),llﬁmghﬁmmoeld.n'guethu
ﬂwmmofwbiﬁzingmybeafmhnofmmidpawm
ofsnnllsetsaspmofmeoounﬁngprmmm:samﬂemof
quantifying an armay. Without attempting to decide between these two accounts
ofrnpidmnfmuimdmdlm.itmmmbkmmmuhis
mrwghextmsivepncﬁccwithcomuingasamahodofmbﬁshinsmﬂy
thaﬂnnunmhgliﬂisgradudlymﬁonnedﬁmnamingofwds?Ma
mpmenmiondqwuityinwhicheachposiﬁw(nmb«nm)inﬂ:m
ooutstonmdfouqumity.kemmwtbyConﬁﬁ(IM)hsmmm
couminglisnndiwuscindegaminhgqmnmyismﬂishedaﬂyfm:ﬁadvdy
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12 LAUREN B RESNICK

small numbers by the time a child enters school. For quantities in the teens and
twenties. many 6-year-olds are unreliable counters and are not able 10 use count-
ing to establish equivalence of sets—something they can do at a much younger
age for smaller set sizes. In addition. children have difficulty for some time 1n
starting a count at a number other than 1. indicating that individual successor
links are not fully established for some parts of the string iFuson. Richards. &
Briars. 1982). It is thus clear that the number representation shown 1n Figure 3.
is still developing for lasger quantities once school begins.

- Quantity Comparisons

A smaller but still sigmificant body of work on magnitude comparivon by
children allows us to further specify the characteristics of the mental number Jine
as the chitd enters school. Typically in magnitude companson tasks. two ““tar-
get”" numbers are named and the subject asked to decide which i larger or
“*shows more.”" Vanations of this task have been extensively used with adults
(e.g.. Potts. Banks. Kosslyn. Moyer. Riley, & Smith, 1979). Investigaton
studying children (Schaeffer. Eggleston. & Scott, 1974; Sekuler & Mierkiewicz.
1977: Siegler & Robinson, 1982) have established that children can perform this
task accurately by the age of 5 or earlier—at least for small numbery.

What additions to the mental number line are necessary to account for this
ability? If we were to add to the quantity representation already described a
directional coding that specified that later numbers 1n the string represented
larger quantities, a child could compare two named numbers by starung up the
string from 1. noting when the first of the two target numbers was reached and
then labeling the other number as “'more’” or “*larger.”

Although this 1s logically possible. it seems psychologically unlikely for at
least two reasons. First, itfagces the child to treat more as 1f it were the marked
item in the ““more-less’’ pair. A number of investigators, beginning with Don-
aldson and Balfour (1968). have demonsirated that more 1s unmarked—that 1s, it
is more easily learned and more quickly accessed than less. Second and even
more compelling, 5-year-old children. like adults. show a charactenistic pattern
of reaction times for these comparison tasks: They take longer to make compart-
son judgments the closer the two target numbers are. If a child were using the
counting-up strategy (o make comparisons. the time to make a mental magnitude
companison should be a function of the size of the smaller number and not of the
size of the split between the two numbers. The existence of the split effect
suggests that the child's number representation has important anajog features that
allow direct comparison of number positions. It is as if perceptual comparnisons
of positions on a measuring stick were being made: when positions are closer
together, it takes longer to discriminate between them than when they are further

7



} A DEVELOPMENTAL THF;ORY OF NUMBER UNDERSTANDING 13

Because of the split effect for number comparisons, we can attribute to
children entering schod! two other features of the mental number line: (a) a
directional marker on the linc that interprets positions further along the linc as
“larger’* (as shown in Figure 3.1). and (b) an ability to directly enter the
positional representation for a number upon hearing its name (i.e.. without
counting up to it). Both of these feawres play a rose in various kinds of informal
anthmetic performances that have becn observed in preschool children.

Informal Arithmetic

As just noted. the mental number line can be used both to establish quan-
tities by the operations of counting and to directly compare quantitics. By com-
bining counting and comparison operations, the child can also accomplish a
considerable amount of anthmetic problem solving. For exampie. Gelman
(1972). in her “"magic’* experiments, showed that young children could recog-
nize when the number of items in a small set had been changed while the sct was
hidden from view. This would involve counting the set twice, before and after
the change. and then comparing the two numbers by entering them on the mental
number linc. Gelman and Gallistel (1978} also document some young children's
ability to ““fix"" a set so that it has a named quantity. A child with only the
number knowledge sketched thus far could build a larger set (e.g.. **fix’" aset of
three so it has five) by counting the three objects in the presented set and then
adding in more objects by **counting on'* up to five. To reduce a set (¢.8.. “fix"
a set of five so 1t has three}. the child would have 10 count the objects of the set
uptothmeandthcndiscudﬁnnmnhder.ﬂvemefﬁcieatpmcedmtof
determining in advance that two items must be added to or deleted from the set
would not yet be available to the child at this stage in the development of quantity
representation.

Thus is not o say that the child has no resources for solving addition and
subtraction problems. Ginsburg (1977) has reported a variety of successful arith-
metic calculation procedures employed by preschool children, all apparently
invented by the children and virtually all based on counting. An example is
addition by constructing sets (on fingers or with objects) o maich each addend,
then counting up the combined sets. A typical procedure for subtraction—one
that requires no more complicated quantity representation than the one consid-
ered thus far—is 10 (@) count out & st to match the larger number (the minuend),
(b} count out from this set the number of objects specified in the smaller number
(the subtrahend). and then (c) count the objects remaining in the original set.

Several investigators (e.g., Carpenter & Moses', 1982; Lindvall & Gibbons-
fbarra. 1980) have shown that young children are abie to solve certain classes of
story problems using counting procedures. Typically in these solutions they use
only forward counting. by ones, of acrual countable’ objects. However, some

8



114 LAUREN B. RESNICK
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Figure 3.2 The mental number fine with backward markers.

childien apparently acquire the ability to use decrementing (counting backward)
procedures before they enter school. This means that “*backward-next’” hnks
must have been attached to adjacent numbers in their mental number line and a
**smaller’" (less) directional marker attached to the line as a whole (sce Figure
3.2). Performances that call on backward counting include doing subtraction by
counting down from the larger number. Although thesc performances are often
used to argue that children already know important concepts of mathematics
before school begins, in fact such perfofmances require only a primitive repre-
sentation of number compared to what will develop subsequently.

EARLY SCHOOL ARITHMETIC:
THE PART-WHOLE SCHEMA

As long as the number line alpne is used. there is no way 10 relate quantitics
to one another except as larger of smaller. further along or further back in the
line. Although quantities can be compared for relative size. no precision in the
relative size relationship is possible except as a-specification of the number of
numerlogs that must be traversed between positions in the line. Probably the
major conceprual achicvement of the carly school years is the interpretation of
numbers in terms of part and whole relationships. With the application of a
Part—Whole schema to quantity, it becomes possible for children to think about
numbers as compositions of other numbers. This enrichment of number under-
standing permits forms of mathematical problem solving and interpredtion that
are not svailable to younger children.

Figure 3.3 sketches a Part-Whole schemas that plays a role in several mod-
cls of children's developing number undersianding (Briars & Larkin, 1981;
Resnick, Greeno, & Rowland, 1980; Riley. Greeno. & Heller, Chapter 4). The
schema specifies that any guantity (the whoile) can be partitioned (into the parts)
as long as the combined parts neither exceed nor fall short of the whole. By
implication, the parts make up or are included in the whole. The Parnt—~Whole
schema thus ides an interpretation of number that is quite similar to Piaget's
(1941/1965) definition of an operational number concept. To function as a tool in
problem solving. the part—whole knowledge sirucrure must be tied to procedures

9
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for constructing or evaluating quantities. The Maximum Exceeded and Minimum
Needed nodes in Figure 3.3 are connected to procedures by which deletions or
additionscanbcmadetomisfymcconmwmmcmoflhemis

slots are known. a counting-up procedure (accessed through the Minimum
Nedednode)cmbeused(oﬁll?aﬂﬂwﬁhmenumbuwededwkwplhe
combined parts equal to the whole.

Story Problems

The Part—Whole schema specifies relationships among tripies of numbers.
In the triple 2-5-7, forexunpk.?isalwaysdtwhole;Sdemnlwayﬂhc
m.rw.swzmmmnmmhmmn.m
mluiomhipmgz.s.and7hoidswhedmnnpmblemis;imns~+2- 7
7-6§=77=2=12+7=70?+$ =7 Eschof these number scatences
expressing the relations among the triple -5-7 has one or more convsponding
exmmmm-mmm«hmm.ﬁm3.4m

mmswuummm.mmmuwmnmm
u—nnmw.mnhammaum.w,mm
nmmlyw.mmmmummmmm
m.mmmmm.hmmdnmm.mw
mummmmmmm.wmmm
ﬂngivmwdsdmpobhusmbemwd&eﬁymdm&u
(Nesher & Teubal, lWS).mhmunumdelmm
m-mkmpm.nuummmm.mm-mm
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] Poter ned some masties.
=2 David tvought him S more marbies tor their game.
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How many merbles did Peter have ot the sart?

'_/1_5 Sam had § apples.
m7m-nm || Sersh neg 2.
23 5 sre boys. B row meny did they have sire_-ther?

(] vow meny are gurin?

mmmﬁmmmmr
Figore 3.4 Mappmng of stories and number sentences t0 a concrete model of Part- Whote

ma thys provides an interpretive structure than can permit the child to either solve
centain more difficult probiems directly by the methods of informal arithmetic. or
to convert them info number sentences that can then be solved through pro-
cedures taught in school.

Riley, Greeno, and Heller (Chapter 4) have developed a family of computa-
tional models that account for the development of competence in solving one-
step addition and subtraction story problems of the kind studied by a number of
investigators (e.g., Carpenter & Moser, 1982; Nesher, 1982; Vergnaud, 1982).
These mode:s suggest that it is application of the Part—Whole schema that makes
it possible to solve difficult classes of story problems that children ususlly cannot
solve until the second or third school year. These include set-change problems
with the starting set unknown (¢.g8.. John had some marbles. Michael gave him 4
more. Now he has 7. How many did he have to @art?) and various kinds of
comparison problems (¢.g., John has 4 marbles. Michael has 7. How many more
does Michael have than John?). An altemnative story probiem mode} by Briars
and Larkin (1981) solves some of the more difficult problems by constructing a
mental script that reflects real-world knowledge about combining and separating

11



U A DEVELOPMENTAL THEORY OF N''MBER UNDERSTANDING n7

objects. rather than abstract part-whole relationships. The script describes the
actions 1n the story and allows the system 1o keep track of the sets and subsets
involved. Yet in Briars and Larkin's model, too. it proves possible to solve
unknown-first problems only by instantiating a Part-Whole schema. Both theo-
ries. then, assume that story problem solution—at lcast for the most difficult
problems—proceeds by mapping the statements in the probiem into the slots of
the Part—Whole schema. This allows the numbers in the problem to be assigned
10 either “'pant’” or **whole™" status and permits a clear identification of whether
the unknown is a part or a whole. This in tumn allows flexible computational
strategies, including either direct counting solutions (for example. by counting
up from Part A if Part B must be found) or the construction of an appropriate
number sentence and then solution of the arithmetic problem specified in the
number sentence.

Mental Addition and Subtraction

We have seen that preschool children using mainly forward counting pro-
cedures are capable of solving a surprising vanety of arithmetic problems as long
as they have actual countable objects to aid in the calculation. During the carly
vears of school, children come to be able to solve many of the simpler arithmetic
problems **in their heads”"—that is, without any overt counting. It had long been
assumed that when children ceased overt counting. they had switched to an adult-
Iike performance m which the number facts (¢.g.. single-digit addition or sub-
traction problems) were simply associations. memorized and then recalled on
demand. Presumably, no reasoning went on in amiving &l an answer. Recent
work. however. has established quite clearly that there is an intermediate period
of several years during which anthmetic problems are solved by mental counting
processes. These procedures appear 1o be children’s own inventions. There is
reason 1o believe that the Part-Whole schema plays & role in establishing these
procedures, although there 1s no formal theory nor very direct cvidence yet
avalable to specify that role. '

Rescarch by Groen and Parkman (1972) is the point of reference for work
on simple memtal calculation. Working with simple addition (two addends with
sums less than 10). Groen and Parkman tested a family of process models for
single-digit addition. Figure 3.5 shows the general mode] schematically. All of
the models assumed a ““counter in the head ™" that could be set initially at any
number. then incremented & given number of times and finally *“‘read out.’” The
specific models differed in where the counter was set initially and in the number
of increments-by-one required to calculate the sum. For example, the counter can
be set imtially at zero. the first addend added in by increments of one, and then
the second addend added by increments of one. If we assume that each increment

12



118 LAUREN B RESNICK

Set counter Exit with
was etxin
counter

F QDunter
by one

Figere 2.8 Counting mode! for simpie addition. (From Groen & Parkman. 1972 Copynght 1972 by
the Amencan Psychoh.gical Association. Repnnted by permussion. )

needs about the same amount of time to count, then someone doing mental
calculation this way ought to show a pattern of reaction times in which time
vanes as a function of the sum of the two addends. This has become known as
the sum model of mental addition. A somewhat more efficient procedure begins
by setting the counter at the first addend and then counting in the second addend
by increments of one. In this case—assuming that the time for setting the counter
is the same regardless of where it is set—reaction times would be a function of
the quantity of t» sc.ond addend. A still more efficient procedure starts by
setting the counte, » “. larger of the two addends, regardless of whether it is the
first or the second, and then incrementing by the smaller. Obviously. this would
require fewer increments. Such a procedure would produce reaction times as a
function of the size of the minimum addend and has thus become known as the
min model.

Groen and Parkman evaluated these (along with some other logically possi-
ble but psychologically implausible) models by regressing observed on predicted
patterns of reaction times for each model. The finding was that children as young
as first-graders used the min procedure. Subsequently. the min model has been
confirmed in studies that have extended the range of problems up to sums of 18,
and the ages of children from 4% or so up to 9 or 10 (Groen & Resnick. 1977:
Svenson & Broquist, 1975 Svenson & Hedenborg. 1979: Svenson. Hedenbory.
& Lingman. 1976). Figure 3.6 shows a characteristic data plot. Note that prob-
lems with a minimum addend of 4 cluster together and take longer than problems
with a minimum addend of 3. and so on. It is also typical that doubles (e.¢..
2 + 2) do not fall on the regression line buy instead are soived particularly fast.
We can infer that some process other than counting is used in responding to
doubles problems, a point | shall return to later.

Counting models have also been applied to other simple arithmetic tasks.
especially subtraction (Svenson er al., 1976, Woods. Resnick. & Groen, 1975).
and addition with one of the addends unknown (Groen & Poll. 1973). in the case

13 .



3 A DEVELOPMENTAL THEORY OF NUMBER UNDERSTANDING 19

of subtraction. at least three mental counting procedures are mathematically
comect. One procedure would involve initializing the counter in the head at the
larger number (the minuend) and then decrementing by onc as many times as
indicated by the’ smaller number (the subtrahend). In this decrementing model,
reaction times would be a function of the smaller number. A second procedure
would involve initializing the counter at the smaller of the two numbers and
incrementing it until the larger number is reached. The number of increments
then would be read as the answer. Reaction times for this incrementing model
would be a function of the remainder—the number representing the dirference
between the minuend and subtrahend. A particularly efficient procedure would
involve using either the decrementing or the incrementing process for subtrac-
tion. depending upon which required fewer steps on the counter. Reaction times
would be a function of the smaller of the subtrahend and the remainder. This
choice model is what most primary school children use, although a few second-
graders use the straight decrementing model (Sec Figue 3.7). Here again, note
how the doubles fall below the regression line, suggesting a faster, noncounting
solution method.

2.
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or below dots stand for single-digit addition problems (e.8..0 + 0.0+ 1.1 + 01. Dots indicate the
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1972 by the Amencan Psychological Association. Repeinted by permission.)
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3 A DEVELOPMENTAL THEORY OF NUMBER UNDERSTANDING 121

It is risky to attribute complex processes such as min and choice to people
entirely on the basis of reaction time patterns. For this reason, it is important to
ask what converging evidence exists that points to the reality of mental counting
procedures. Observations of overt counting-on strategies for addition by several
investigators (Carpenter, Hiebert, & Moser, 1981 Fuson, 1982; Houlihan &

Ginsburg. 1981; Steffe er al.. 1982) suggest that the counting presumed in these

models is real. Furthermore, Svenson and Broguist (1975) interviewed their
subjects after each timed trial and found that on about half of the problems,
children reported counting up from the larger number (by ones or in larger units).
Finally. evidence comes from comparing children's resction-time pattems for
addition with those of adults, whom we can assume retrieve clementary addition
and subtraction facts by some kind of direct **look-up’” procedure. Adults show
much faster reaction times and a far shallower slope (20 msec) when their data
are fit to min than do children (Groen & Parkman, 1972). Their slope. which is
presumably the time needed for cach count, seems too fast to represent anything
like a real counting procedure. Groen and Parkman suggested that this shallow
slope might be an astifact of averaging over many trials in which the answers
were looked up (presumably producing a flat slope) and a few trials in which they
were counted. bg)n: recently, Ashcraft and Battaglia (1978) have suggested that
adults do not produce a linear increase in time as the minimum addend grows,
but instead produce a positively sccelerating curve that is best fit by square of the
sum. Ashcraft and Fierman (1982) tried to fit children's data to sum?. bt not
until fourth grade did sum? provide the best fit. Younger children thus do appear
to solve addition problems by counting. The converging evidence for subtraction
15 less rich. although some of Svenson's (Svenson & Hedenborg, 1979; Svenson
et al.. 1976) subjects described the choice strategy in interviews.

It is important to note, Fowever, that while min and choice appear to be the
dominant procedures duriny the carly school years, they are not the only ones
used. Several investigators have noted the use of special shortcut mental addition
strategies by children during this period. These have been documented in some
detail by investigators (Carpenter & Moser, 1982; Houlihan & Ginsburg, 1981;
Svenson & Hedenborg, 1979, Svenson & Sjoberg. in press) who used verbal
protocols and reaction times to document strategics that made special use of
addition and subtraction facts that children had committed to memory and could
retrieve directly. Most common were the use of solutions with tie references
(e.g.. 3 + 4 is solved by saying 3 plus 3 is 6, plus | more makes 7; or 13 — 6is
solved by saying 12 minus 6 is 6, plus 1 is 7). Saxe and Posner (Chapter 7) found
similar strategics among illiterate Africans. Less frequent, but of considerable
interest because they signal a developing apprecistion of the decimal number
system, are solutions that depend on knowledge of tens complements. For exam-
ple. 6 + § 1s converted to 6 + 4 (= 10), plus | more. Or, fo- subtraction, 11 — 4
1s converted to 10 — 3 + 1. These shortcut procedures provide evidence that
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children understand the compositional structure of numbers and are able to
partition and recombine quantities with some flexibulity.

The Origins of Invented Arithmetic Procedures

What must be added to the mental number line represcntaticn 0 account for
the predominance of min and choice and for the occusrence of special tie- and
complements-referenced strategies during the earliest school years? In consider-
ing this question, we should keep in mind that these strategies are not directly
taugi in most school programs. Extensive practice in addition and subtraction is
given, some of it organized to highlight commutative pairs in addition and the
complementarity of addition and subtraction. But the actual counting procedures
and the conversions to make usc of tic and complements facts must usually be
invented by the children themselves——sometimes in the face of strictures against
overt counting. Indeed, the invented character of min has been demonstrated
dircctly (Groen & Resnick, 1977). We taught preschool and kindergarten chil-
dren a procedure for addition that involved couating out both sets. Half of the
children switched to min without further instruction after about 12 weeks of

The invented character of min and choice poses an interpretive challenge.
for neither of these procedures appears to derive in a straightforward, mechanical
way from the overt counting procedures observed among younger children. That
is, they are not simply shortcuts, in the sense of dropping redundant steps.
Indeed, in each case a new step—deciding which number to start counting
from—is added. Furthermore, min seems o depend upon the mathematical prin-
ciple of commutativity, the recognition that the sum of two numbers is the same
regardless of the order in which they are added, and choice appears to depend
upon recognition of the complementarity of addition and subtraction. Yet neither
of these principles is directly taught tochildren in the earliest grades of school
any more than the actual min and choice procedures are taught, and no study has
suggested that children who use them have any verbal awareness of the general
principles involved. Our interpretive task, then, is to account for the emergence
of min and choice as procedures that accord with mathematical principles of
commutativity and complernentarity but are not systematically derived from
those principles. There are several possible explanations to consider.

A “PAIR-EQUIVALENCE'* ACCOUNT

The simplest account of the discovery of min would assert that the special
relationships between certain pairs of problems (e.g., 3 + 4and 4 + 3;2 + 7 and
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1 A DEVELOPMENTAL THEG ¢ OF NUMBER UNDERSTANDING 123

7 + 2) are noticed after extensive practice on the individual pairs. through a
general learmning process that looks for regularities and shortcuts after a procedure
becomes at least partially automated (cf. Anderson, 1981; Klahr & Wallace,
1976). In this view. the child would notice that specific pairs of problems yielded
the same answer and would infer that they could be substituted for onc another.
A preference for efficiency would then lead to the strategy of always starting the
count at the larger number.

This seems plausible until we consider that if the child is to notice the
equivalence of two problems. the result of bothy pairs must be present in shost-
term memory simultancously so that they can be compared. This could happen in
two ways. First, if commuted pairs (€.g.. 7+ 3and3 + 7) were
successively. the result of the first calculation might still be present when the
second calculation was completed. However, in our experiment (Groen & Res-
nick. 1977) the children invented min under controlied practice conditions in
which these pairings of problems did not occur. Practice on paired problems.
then. cannot be a general explanation for the development of min. although it
may play a role 1n some cases. A second possibility is that the resultof 7 + 3 can
be quickly retrieved when 3 + 7 is computed. But this would mean that 7+ 3
was already known as a retnievable addition fact. If such retrievable facts were
available. however. children would not need to use counting procedures o
compute the answers 1o simple addition and subtraction problems. It thesefore
appears implausible to attribute the discovery of min to simply poticing the
common outcome of different orders of performing addition.

A modified version of the pair-equivalence account may survive, however.
This version would assume that the equivalence was noticed first for very easily
~computable pairs (¢ g.. those involving an addend of 1). It seems plausible that
the sum of 7 + | couldbereuieved(orconsuucted)fastmxghmbcsmd-
taneously present in short-term memory with the sum of 1 + 7. Having noted
equivalence for a subset of the addition pairs. a child might plausibly construct 8
more general commutativity rule that could be applied to other pairs.

A DEFAULT " ACCOUNT

Another possibility 1s that children begin by assuming that arithmetic opersa-
tions are commutative and only gradually leam that some (for example, subtrac-
tion) are not. This wouldleadtlwmtou'ym'npmoedm'esinmeseuchform-
effort processes. Since min **works™ (i.€.. the answer tums out 0 be corvect
when checked by counting the whole joint set, and adults do not comment on the
result as wrong). they would retain it as the preferred procedure. In suppost of
this possibility is the observation that children frequently attempt to commute
subtraction problems. That is, when given the problem 2 — S, they respond with
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3 rather than ~3. 0, or **you can’t do it”'—any of which would indicate recogni-
tion of the noncommutativity of subtraction. Another common attempt to com-
mute in subtraction is shown by giving solutions such as:

348
~169
221
A child would amrive at this incosrect answer by *‘subtracting within columns'*
(Brown & Burton, 1978)—that is, by taking the smaller number from the larger
in cach column regardless of which is on top.

The Gelman and Gallistel (1978) analysis of young children's counting
makes it clear that they proceed in accord with an “‘order-invariance'” princi-
ple—that is. they recognize that objects can be counted in any order, although
d\enumerlogsmustbeassigmdinmeirmndudseqm. A natural extension
of order-invariance would allow subs=ts as well as individual objects to be
enumerated in any order. lhiswqualbwminmemgeaspanofam
search for low-effort solutions without requiring that the child construct any kind
of commutativity rule.

Neches (1981, and personal communication) has provided a formal accoum

of how min might be discovered on such a **default’ basis. His computer mode] °

of addition begins by performing a sum solution in which both subsets are
oomwdomandﬂlecmnbinedsetmcmmed.Afmammberofpnﬂiceuills.
mesys&mnoﬁcesmuapaﬁmofdwcwmingmssforfu\dingmeWis
redundant with the original counting process for each of the subsets. In recount-
ingforthepmblem2+S.forcumple.meﬁrsttwocoumsmmdmdamwim
counting out the first subset, and the first five counts are redundant with the
odgindcoumformesecondsubset.Tbesymmlnssomgeneralmdundamy
elimination mechanisms that lead it 1o reuse existing computations rather than
duplicate them. This means that two counting-on solutions are constructed. one
foreachaddew.ﬂnsymewnmnycmmtocoumonfromunlarger
ﬁdend(&uspeﬁormingtinminpmwdm)becanscitcand:mamdmmmy
when rhe smaller-addend alternative is tried.

A “"PART-WHOLE ' ACCOUNT

Still another possibility for the emergence of min is that children apply a
simple Part-Whole schema to addition. For example, a child could solve addi-
tion problems by binding the given addends to the Part slots of the ma. Since
dnslotsmahnmorda'infonwion.theddmdsmnowbe in either
mderwdiscoverdnvalueofdnewm.msismmacﬁvcexplmﬁmo{m
becamilalsommseeonmwcdlyformediscomyofchoice. Part-Whole
putsthethmcmofaeomplen:nmyaddiﬁon-mbumimpainmoambk

-
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rehdmuhipwithoocanother.Fordnpmblm9-7.foremupk.9mldﬁﬂ
nnWholeslound‘loncoftthmﬂots.ch—2.9wouMﬁllmeWholedot
md!ooeofﬂw?m:lots.lnﬁadinsdnmmiuspm(mmm
macbedtoﬂnMinimmNeededmdMaMExwededmdesofde).
mmumwmnawmdmwmm
9-2=7m7+2-9.1hismlumymm0wnbemd
to generate least-effort solution rules. Past-Whole also provides a convenient
mmdmhﬁsfwm-mdwmm.
Applicuionome~Wholemtobelphnibkmmtforthe
Wofﬂn“cm.nmmuemwhbﬂmiﬂewm
mer—Wholeschenmwdﬁl&mumedymshmsoMitmw

unﬁld:cageof7or8.ﬂ\isiswhenchildimmmtwmm
probiems (Inhelder & Piaget. 1964/1969), which are part-whole problems with-
om:requirementofspeciﬁcnmmicdqlmniﬁcaﬁoa. It is also the age at which

pm-mkmm(e.g..mmmmwﬂhmemﬁumm).
Thisagcwouldbetoolmmweoumform.Mitisposﬁblymm-
abkagcfmcm.whkhasfuaswcknwmw.

Stin.sevenlinvestigaﬁmspoimwmmﬁumdaumding‘ofmuincm
mlnimﬁpsmmﬁwmhww.hw.m
aadSiebm(lWﬁhweMnMifﬂnclmMofﬁeMmis
uwhmmbynxwmdingdﬂwm.ehilammpufmcmm
pmblcmsquitceady.mdsmmm (1978) have shown that kinder-
gumchil&munmwmwhmkhhdm
tasks. Funhemote.dﬁldsmaseﬁymﬁmyndemmmm
mmmmynwmwummum-mmm
(see Riley ef al., Chapter 4). Thus, it scems plausible that children may posscss
alcasusinpkvetsionohhem-wmeschemunqmmgmmmy
nmwhawkanndaﬂof&e:imions%i&bmimmmh.
Additionuﬂwbumionofmullm.mnmdbymmm
be one of the easy-to-recognize situations. Indeed, application of a primitive
Pm-WholcschmumsimpkmnMpmbkmmybemimpumxp'm
developingameehbanxmion.mmmypmed\nlmm.
that will play amicmwmmmwofmmmm.

DEVELOPMENT OF DECIMAL NUMBER KNOWLEDGE

Allofmemsemhdiscusedwfumsfocmdonmﬂmmhas—qmm—
titicsuploabomzo.memismkwemabletomapoboﬂcmd ‘
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development of number representation in which the fundamental relationships
between numbers are units. Yet the introduction of decimal numbers, which
form an important part of the primary school mathematics curriculum. demands
that a new relationship among numbers be leamed. This relationship is based on
tens rather than units. The initial introduction of the decimal system and the
positional notation system besed on it is, by common agreement of educators, the
most difficult and important instructional task in mathematics in the early school
years. Starting in about second grade, most schools begin to teach children about
the structure of two-digit numbers. Toward the end of second grade. addition
(and in some schools, subtraction) with regrouping is introduced. What is known
about the development of knowledge of the base ten system—its representation
in written form, and the calculation algorithms that are based on it? How does the
quantity representation change as skill in the posititional notation system devel-
ops? These questions are addressad below.

Numbers ss Compositions of Tens and Units: Restriction and
Elaboration of the Part—Whole Schema

We have already seen that an important aspect of the development of num-
ber during the early school years is the interpretation of numbers as compositions
of other numbers—that is, the application of the Part—Whole schema to numbers
pteviously defined solely in terms of position in a linear string. In story problems
and simple mental arithmetic, the Part-Whole schema is applied with few re-
strictions and lictle elaboration. I will now try to show that the development of
decimal sumber knowledge can be understood as the successive elaboration of
the Part—Whole schema for numbers, so that numbers come to be interpreted by
children as compositions of units and tens (and later of hundreds, thousands.
etc.) and are seen as subject 1o special regroupings under control of the
Part-Whole schema.

There is far less research to draw on in making this characterization of
developing place value knowledge than there is for early number concepts. story
probiems, and simple arithmetic. In addition to ongoing work in our own labora-
tory, | will refer 1o empirical and theoretical work by several others in building
this account of stages of development in decimal number understanding. The
account must be viewed as tentative and subject (0 modification as fusther evi-
dence on the development of understanding of the decimal number system accu-
mulates. In particular, the later stages of this account are based on data frosd a
small number of children who were receiving remedial instruction in our Jabora-
tory. We need to extend this data base to include more children—especially those
children who acquire place value understanding without the special intervention
included in our studies.
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chanidemifymrecnninﬂmindndevcbpmemufdeciunlknowb
edge. Fm.murisminiwmmwm;mmmmmw
tens (¢.g.. 47 is 4 tens plus 7 units) is recognized. Next, in stage two, children
mogﬂudnmiﬁiﬁydmﬂﬁplcpuﬁﬁuﬁnpofaqu&&w.mm
stage occurs in two phases: Multiple partitionings are (a) arrived at empirically
(:.g..dnequivaknccofmmplus 17 units to 40 tens plus 7 units is estab-
tlished by counting). and (b) established diréctly by application of exchanges that
nninminequivaletmofdwwhok(e.g..w+7ﬂ30+ 17. because | ten can be
exchanged for 10 units). Third. & formal arithmetic stage appears in which
exchmgeprinciplesmappliedwwﬁmmmbmtopmamam;omlefa
algorithms involving carrying and borrowing.

Stage One: UmummdMWNm

mmlicstmgeofdecimalkmwledgembemwgmofnmehbomim
okammwximmwm.mmmammmnu
linked by the simple ""next’’ relationship, there are now two coordinated lines.
as sketched in Figure 3.8. Along the rows a **next-by-one'* relationship links the
numbers. mscanbeextcndedindcfmncly.ssbownindnwpm.ia&uﬁng
that a units representation of number coexists with 8 decimal representation.
Along the columns a **pext-by-ten"" relationship links the pumbess. In s fully
developed number representation this “‘next-by-ten’ link might hold for the
numbers insidcmenwuixaswelhsformmmm.paﬁiﬁlism
efficient addition or subtraction of the quantity 10 than of other quantities.
Earlier. and perhaps indefinitely, the “'inside"" links (¢.g.. 37 + 10 = 47) might
bccmsu\mwdmewhmcaﬁmdmbyammmu
two-digi:numberimouensmdamitsm(37=30+ﬂ.Maddleto
the tens portion (30 + 10 = 40), and finally adds back the units (40 + 7 = 47).
lndmucm.nnnmimpmamfmmofﬂﬁsmmdmmbum-
stmdingisﬂmnchofﬂ:cmbmisupmwmedasacawﬁmohm
value and s units value. This means, in effect, that two-digit numbers are in-
Wdinmdmm-mkm.wimdnwmmmﬂm
of the parts be a multiple of 10.

Mismeﬁmmuﬁsmﬁﬁmdmmmdmemm
ansesﬁrstinmccmtextofonlcmmtmg—dmis.dmitisnotnﬁmﬁﬁtly
linkequumﬁfwsﬁmoflugemsofobjectsumgroupinsofmiGbym.
Scveral investigators (Fuson ef al.. 1982; Sicgler & Robinson, 1982) found that
My'Lm&ywddsmuum«aﬂymuimmemmmnd
that their counting showed evidence of being organized around the decade struc-
ture. Fmeunxp&c.menws(comnmmppingpommthecwmm'sm
wemannumhcrendingin‘)or()(c.g..ﬂmﬂ);mmmiﬂ&e
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Figere 3.8 Earliest stage of decimal knowledge represented a3 two coordinated mental sumbes fimes.

number string tended to be omissions of entire decades (e.g.. *. . . 27, 28, 29,
50 . . .""). They aiso sometimes repeated entire decades (c.g.. " ...38, 139,
20, 21 . . ."") and sometimes made up nonstandard number names reflecting a
concatenation of the tens and the units counting strings (c.g.. ™ . . . twenty-
ninc, twenty-ten, twenty-eleven . . .""). Finally, these children could usually
succeed in counting on within a decade higher than their own highest stopping
point when asked by the experimenterto start counting from a particular number,
such as S1 or 71.

In our own work on place valve, we have collected many observations of
piuwyschooldﬁldren'smdndsofesuuisbingmeqmaﬁtymmdisphys
ofbbcksorotherobjemoodedfordechwvalm(seeleOfwcxmks
of such displays). The rypical method that children use in this kind of task is t0
begin with the largest denomination and enumerate the blocks of that denomina-
tion using the appropriate counting string (¢.g., 100, 200, 300, etc., for hundreds
blocks), then add in successive denominations by counting on using the sppropri-
ate counting string. A successful quantification of the display in Figure 3.9a, for
example, would produce the counting string: 100, 200, 300, 400, 410, 420, 430,
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1 A DEVELOPMENTAL THEORY OF NUMBER UNDERSTANDING 129

440, 450, 460. 461 . 462, 463. A few children, mainly those who show the most
wphisticmdkmwbdgeofothuaspeusofplnvﬂue.coumﬂldemimﬁm
by ones and then *"multiply’ by the appropriate value (¢.g. . for Figure 3.9a: 1,
2. 3.4,400:1,2.3.4,5.6,460; 1, 2, 3, 463). However, counting using the
decimally structured number strings seems o be the earliest application of deci-
mal knowledge 1o the task of quantifying sets. Furthermore, between simpie oral
coumingconwcnccmdmcmssﬁﬂmofmetbcimﬂ-mwdmﬁng
strings for quantification, there scems to be 3 period dunng which the child
knows the individual strings well enough to use them scparately for quantifica-

Figure 3.9 Exmo(duphysndmmhmbcmﬂkmw
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19 LAUREN B. RESNICK

tion but cannot coordinate the use of several strings within a single quantification
task. In one of our studies. for exampie, all of the third-grade children we
interviewed could count any single block denomination, but more than haif of the
children became confused when two or more denominations were to be quan-
tified. Examples from the protocols of two such children appear in Figure 3.10.

Other performances characteristic of children in this early stage of decimal
number knowledge suggest that ¢hildren typically recogrize the relative values

[ }]

G

- NEN
L] 00000

S.  (Touching the hundreds) 100, 200, 300, 400, 500,600  (touching
thetenst 7, 8.9 10 11§11,
E M'lwmm!&cm‘ﬂmmmnw’

O3 0000 e
§  (Touchng the hundreds) 100, 200 .  {touching the tenst 201, 202,
» 203, 204, 205, 206, 207 . .. (touching the anes) 208, 208, 210, 211
‘ Nmm. Let's cdunt them agein. This time, why dOn't yOu COurt these (tens
snd ones).
(Touchsng the tene) 10, 20, 30, 40, 50, 60. 70 {touching the ones)
71.72,73 4.
How much ¢ the (hundreds)?
200.
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200end .
{ have 200, and { sdd this much (8 tan tHock} mare How much o thet
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mls th mumuam v m
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{Touching the hundreds dlocks) 100, 200, 300, 400, 500. 600  (touching
the tans hiocks) 700, 800, 900, ten hundred, eleven hundred
Are thess (tens) worth 1007
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1 amn quunting thew like tens.
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Figure 3.10 Examples of confusions in mulndenomnational counting.
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of the different parts that make up the whole number. For cxample. most second-
through fourth-graders we have interviewed comparea numbers on the basis of
the hugher-value digits without reference 1o the lower-value positions. For exam-
ple. when companng written numerals or block displays for the numbers 472 and
427, a child would typically say 472 was larger ™. . . because it has 7 tens (of
701 and the other only has 2 tens " It is interesting fo note that these judgments
assume that the block displays are canonical—that is. that they contain no more
than 9 blocks of a given denomination. The assumption of canonicity disappears
in the second stage of decimal knowledge. as we shall sce next.

MENTAL ARITHMETIC

The most stunning displays of a compositional representation of number are
in children’s nvented mental calculation methods. Consider the following per-
formance by an 8-year-old. Amanda:

E Can vou subtract 27 from 537

A 34

£ How did vou figure ic out?

A Well. SO minus 20 1s 30. Then 1ake away 3 is 27 and plus 7 is 34.

Amanda came up with the wrong answer, but by a method that clearly
displayed her understanding of the compositional structure of two-digit numbers.
She first decomposed each of the numbers in the problem into tens and units. and
then performed the appropriate subtraction operation on the tens components.
Next she proceeded to add in and subtract out the units components. She should
have subtracied 7 and added 3. but instead reversed the digits. Amanda per-
formed on other problems without this difficulty, yiclding commect answers. Other
children have shown similar strategies.

We have also «.gun to explore decimal-based mental arithmetic using the
reaction-time methods that yielded initial evidence for the min and choice pro-
cedures for smaller numbers. We now have reaction-time data from 12 second-
and third-grade children on a set of problems of the form 23 + 9. s+ 2,
48 + § In each problem the two-digit number was presented first and fell withio
the 20s. 30s. or 40s decade. E.achchildmpomedtodueesetsoflwm
problems. the sets consisted of all possible pairings of the units digits, with the
tens digits allowed to vary randomly. The problems were presented horizontally
onavideoscope.andmcchildmspondedonmedjgitkcysofamxpum
terminal. Time from presentation to response was recorded.

Assuming that onc is going (o usc a mental counting procedure for solving
thew.: problems. there arc two plausible possibilities that distinguish clearly be-
tween use and non-use of the decade structure:
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12 LAUREN B RESNICK

1. Set the counter to the two-digit number, then add in the one-digit number
in increments of onc. Reaction time would be a function of the single-digit
number (in this case, always the second number). We call this the min of the
addends procedure. No understanding of the decade structure of the numbers is
required for this procedure. However, the child does have to know how to count
over the decade barrier (e.g.. ** . . . 29, 30, 31 . . .*') and must have a units
number string that extends up through several decades.

2. Dacomposed:etwo-djgi:nmr’nimoawnscmnponcmandam
component, then recombine the tens ¢ mponent with whichever of the two units
quantitics is larger. Set the counter 1. this reconstituted number and then add in
the smaller units digit in incremients of one. For example. for 23 + 9, the counter
would be set at 29 and then incremented three times to a sum of 32. Reaction
ﬁmcwouldbeafuncﬁmofmesmﬂkrofmemow:sdigits.sodnplmn
called min of the xmits. This procedure is a simple version of the one Amanda
used. It not only uses the decade structure of the numbers but behaves in accord
with principles of commutativity and associativity (¢.g..23 + 9 = [20 + 3] + 9
=20+3+9]=20+[9+3]=(20+9]+3=29+3).

We fit cach of these models (along with several others that are plausible but
whose use would not clearly illuminate decimal structure knowledge) to the
reaction times (correct solutions only) of each of our subjects. We predicted the
pattern of reaction times for a *“pure’” model, for 8 model with very fast times for
doubles in the units digits, and for a model with very fast times for tens comple-
ments (i.¢., pairs that add to 10, suchas 3 + 7,6 + 4, etc.). We also interviewed
cach child on a set of similar problems in a think-aloud format. Finally. we had
reaction-time data on each child's performance on a set of single-digit addition
problems. Because a purely mathematical discrimination between models is so
difficult (the models themselves are highly intercomrelated), we used a combina-
tion of model fits, plausibility of the slopes (presumed counting speeds), chil-
dren’s think-aloud protocols, and the match between lower decade ( single digits)
and upper decade (two digits plus one digit) performances to tease out a story
about each child's performance.

Two children, Ken and Alan, provide particularly clear illustrations of the
differences between children who are in a predecimal stage of number represen-
tation and those who are clearly using a decimal representation in their mental
arithmetic. Ken's reaction times on the upper decade problems were best fit by
min of the addends (r? = .761). On the single-digit problems his data cleanly fit
the min model. with doubles (* = .695). The slcpe of the regression lines for
the upper and lower decades (1.164 and .960, respectively) indicated a mental
counting t:me of about one second per increment for both kinds of probiems.
This suggests that Ken was using the same basic units-counting strategy for both
the single- and the two-digit problems. Ken also described the min of the addends
counting-up procedure as his method in the think-aloud protocols.
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1 A DEVELOPMENTAL THEORY OF NUMBER UNDERSTANDING 133

Alan provides a contrast case. His reaction times on the upper decade
problems fit best the min of the units model (r* = .847). He also showed a next-
best fit for min of the units with complemenis, the only child to show a good fit t0
any complements model; and he showed a reassuringly poor fit to the min of the
addends model. On the single-digit problems. his data best fit min, with doubles
(r* = .831). His slopes for upper and lower decade problems were also similar
(346 for the single-digit problems; .441 for the two-digit problems), indicating a
similar mental counting speed for both kinds of problems. Although this story
seems very straightforward, it is also incompicte. for Alan's data also fit (al-
though with less variance explained) other models. It seems quite likely that he
was using a variety of strategics on different problems. This impression is con-
firmed by his interview data. He clearly described himsclf as using the min of the
units strategy for some problems, but on others he described various other
methods that relied on knowledge of doubles and complements. It scems reason-
able to conclude that Alan was using complex representations of number rela-
tionships to generate strategies that included but were not limited to min of the
units.

OTHER STAGE ONE TASKS

There are a number of tasks that an individual with the compositional
representation of number shown in Figure 3.8 ought to be able to perform, but on
which we have only impressionistic data at the present time. These inciude:

1. adding or subtracting 10 from any quantity more quickly than adding or
subtracting other numbers (except O or 1. and possibly 2). To subtract 10 from
47. for example., an individual could enter the representation at 47 and move one
step on the *‘tens-backward-next’* link directly to 3.

2. counting up (or down) by tens from any starting number.

3. constructing mental addition and subtraction algorithms that use the
ability to count by 10 from any number. For 72 — 47, for example, enter the
number representation at 72; move down the 10 string four positions 10 32. Move
down the ones string (crossing the tens position) seven positions 10 25. This
strategy is related to those (such as min of the units and Amanda’s stratcgics) that
partition numbers and operate scparately on the tens and units, but it reflects 8
somewhat different use of the decimal structure.

A FORMAL THEORY OF STAGE ONE KNOWLEDGE

We are able to benefit in our analysis of the development of decimal number
knowledge from & computer program that simulates the performances of a 9-
year-old girl, Molly, on a number of the tasks that provide the basis for inferring
place-value knowledge. The program, MOLLY, matches Molly's performance
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at several points before, during, and after remedial tutorial instruction aimed at
establishing an understanding of the rationale for the standard,

written subtraction algorithm. Prior to ous instruction, Molly demonstrated the
ability to perform tasks such as constructing, interpreting, and comparing block
displays of two- and three-digit numbers. The knowledge structure included in
the program that was used in performance of all of these tasks is shown schemat-
ically in Figure 3.11. This structure organizes conventional information about
multidigit written sumbers. The structure identifies columns according to their

positional relstionship to each other. The rightmost column is tagged as the units

column, the tens column is the one that is next to the units, the hundreds is next
to the tens, and so forth. Which column is being attended to can be desermined
by starting at the rightmost position and running through the succession of Next
links. Attached to each column is a block shape (the biock names are those used
by Dieaes, 1966, in referring to blocks such as those in Figure 3.9), a counting
string, and a coiumn value. The value specifies the amount by which a digit must
be multiplied to yield the quantity represented by the digit (e.g., in the tens
column, muitiply by 10). -

Someone who possessed this knowledge structure should be able to associ-
ate block shapes with column positions, block shapes with column vajues, and so
on. Table 3.1 gives the number of third-grade children in one of our studies who
showed reliable knowledge of each type of association at each of two interview
points during the year. Since the knowledge was inferred from the method by
which childrea solved the various problems presented, rather than by direct
questioning, it was not possible to observe cach child on each association in each
interview. For this reason the data are given as proportions—the number of
children who showed knowledge of the association over the number observed.

As can be seen, all of the children had the position-name association from
the outset. That is, they could read two- and three-digit numbers aloud using the
pruper conventions. A position-shape association was inferred when the children
constructed displays in a manner that directly matched each block shape to a
digit. The children using a column-by-column match strategy typically worked
on the leftmost column first and pointed to each colurnn in succession, saying.
*‘n of these.’* Three of our subjects worked this way successfully in their first
interview, more in the second interview. All of the children we obscrved could
apply the appropriate counting strings to block shapes as long as there was only 2
single block shape to be counted. When they had to switch denominations
(hundreds to tens, or tens to ones), however, they had difficulty: Less than half
of those observed succeeded (cf. Figure 3.10). To be counted as knowing the
value of a column position, the child had to either tell us that, for example, 29 in
the tens column was *‘worth’® 90, or selc<t 9 tens blocks to represent that
quantity. Only one child demonstrated this knowledge. Nevertheless. the chil-
dren demonstrated fairly strong knowledge of the value of block shapes, as 1s
shown in the final row of Table 3.1.
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Figure 3.11 The Next strocture: Knowledge sbuwt multidigit written aumbers and associated blocks
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Table 3.1

Proportions of Third Grade Chilkdiren Dispinying Knowiedge of Astocintions
between Columns, Blecks, and Values in Novessher snd February Interviews

November February

Columen positionColums same 1010 Vo
Columa positiowBiock shape 3 o7
Counting stringw/Block shapes

One denominstion only o6 m

Two or more desominstions b)) 36
Columa pasition/value 110 1
Block shepe/value mo %10

Stage Two: Muitiple Partitionings of Multidigit Numbers

As long as the Next structure alome is used to interpret numbers. each
written numbes can have only one block representation: & **‘canoaical’’ represen-
tation, with no more thas 9 blocks per column. In this canonical display there
exists 8 onc-to-one match between the number of blocks of a particular de-
nomination and the digit ia a column in standard writien notation. Insistence on
the canonical form, however, means that there is no basis for carrying and
bommowing—or, in block displays, for exchanges and multiple representations of
am.mummhmum-mmn
applied to multidigit numbers in a manner that allows multiple partitionings and
thereby a variety of noncanonical representations of quantity.

MULTIPLE PARTITIONING ARRIVED AT EMPIRICALLY

At first, although children recognize that multiple representations are possi-
m.mmmmmmmmmm.mm
Mamdﬁmhpﬁmﬁmdphmofhmt%mﬂhmm
method. Molly was asked to use Dienes blocks to subtract 29 from 47. She began
wmmmmmmmmmuAm
and 7 units. She then tried to remove 9 units and, of course. could not. The
expuimmukedifshecmddﬁndmynymgummin.mmd
wmmmammm.Mmﬁunmmmm.um
just 3 tens. She counted these by tens (*°10. 20, 30'") and then coatinued
mﬁngbym.mhginauﬂuﬁodwimm:m.upmﬂ.mﬁnm
mmﬁmmbkm.54~37.udlybewwithnmiuldisphyofﬂn
mpmmber.mu.mpmm4mmdcomdm;n'mbhchmﬁl#
reached 54, yielding a final display of 4 tens and 14 units. Molly thus appeared 10
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3 A DEVELOPMENTAL THEORY OF NUMBER UNDERSTANDING 137

incorporated into her plan for doing block subtraction a check for whether there
were more units to be removed than the canonical display would provide. How-
ever, at this stage she was able to establish the equivalence of the canonical and
noncanonical displays only by the counting process that yielded the same final
number in each case. :

The MOLLY program provides a formally stated theory of what Molly
knew and how she used her knowledge at each of several stages. To simulate the
stage of performance just described, MOLLY -1 uses several procedures that call
upon the Pari—-Whole schema described earlier for story probiems. In MOL-
LY-1. the schema is elaborated to include a special restriction, applied to two-
digit numbers, that one of the parts be a multiple of 10. To *‘show 47 with more
ones.”" MOLLY-1 first applies Part—Whole in a global fashion, concluding that
if the Whole is to stay the same but more ones are to be shown, there must be
fewer tens. MOLLY-! then reduces the tens pile by a single block. the smallest
possible amount to remove. Next. the schema is instantiated with 47 filling the
Whole slot. and 30 in one of the Part slots. The Minimum Needed node of the
schema is then used to access a procedure for finding the remaining Part by
adding ones blocks and counting up until 47 is reached.

Two important concepts have been added to the number representation at
this stage. First, the equivalence of several partitionings has been recognized.
Second. the possibility of having more than 9 of a particular block size has been
admirted. This is crucial for an eventual understanding of borrowing, where—
temporarily—more than 9 of a given denomination must be understood to be
present, without changing the total value of the quantity. Interviews with a
number of children in addition to Molly make it clear that prior to this stage the
possibility of borrowing os trading to get more blocks is rejected because it will
produce an “‘illegal’’ (i.e., noncanonical) display.

PRESERVATION OF QUANTITY
BY EXCHANGES THAT MAINTAIN EQUIVALENCE

A complete understanding of the possibilitics for multiple representation
can be attributed to children only when they are no longer dependent upon
counting to establish the equivalence of displays—that is, when they recognize 8
class of Jegal exchanges that will automatically preserve equivalence. Although
Molly received po explicit instruction from us on this point, it was clear that after
a certain amount of practice with the counting-up method of creating noncanoni-
cal displays. she came to recognize that 10-for-1 exchanges would retain the
Whole quantity while changing the specific amounts in the Parts. At this point
she stopped counting up and began simply to trade—that is, discard a tens block
and count in 10 umits, or discard a hundreds block and count in 10 tens. We have
observed the same kind of performance in other children as well. Some children
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who engage ia trades rather then counting up even become annoyed or amused
with an experimenter who keeps asking how they know that the display still
shows the same number. They indicate in various ways that they believe that if a
ten-for-one trade has been made, the total quantity could not have changed.

The MOLLY-2 program provides & formal theory of Molly's knowledge at
this stage. In what can be viewed as a fusther cleboration of the Parn—Whole
schema, MOLLY-2 adds to the representation for multidigit numbers as explicit
10-for-1 relationship for adjacent block sizes. This knowledge is represented by 3
Trade schems (Figure 3.12), which specifies 2 class of legal exchanges among
blocks. The schema specifies that there is a **from™ pile of blocks from which
blocks are removed. This pile becomes smaller by one block. There is also an
“into"* pile of blocks that becomes larger by 10 blocks. The walue of the blocks
in the From and Into piles is established by multiplying the sumber of biocks
removed or added by the value of the block shape (as specified in the Next
structure and s separate Value scheme that is also past of the program). Thus.
Into and the From values will be the same, even though the sumber of physical
objects ~:sent has changed. Applied ss an claborstion of the Part-Whole sche-
ma, the 'rade schems allows MOLLY-2 to construct alternative partitionings of
2 quantity without having to count up from one of the parts.

Stage Three: Application of Part-Whele to Written Arithmetic

I turn now to children’s written arithmetic—in particular, 10 how the elabo-
rated Part—Whole schema is eventually applied to the interpretation of the con-
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1 A DEVELOPMENTAL THEORY OF NUMBER UNDERSTANDING 13

ventions of writien calculation. There is abundant evidence now available that
many children leam rules for the written algorithms of subtraction and addition
without linking these rules to the kind of knowledge about place value and
number that | have described here. What they seem to leam is a procedure for
identifying columns, operating on them. making marks (writing in ligle I's,
crossing out and rewriting numbers. eic.). but not a rationale that makes the
procedure scnsible. Brown and Burton (1978) have demonstrated that when
children make efrors in written arithmetic—particularly subtraction—the errors
are often the vesult not of random mistakes. but of the sysiematic application of
wrong (*"buggy”") algorithms. Figure 3.13 describes and illustrates some of the
most common subtraction bugs. Elsewhere (Resnick. 1981) | have analyzed a
number of the Brown and Burton bugs to show that they typically follow rules of
syntax. or procedure. while ignoring of contravening the '“semantics’” of ex-
change—hat is. the principles embodied in the Part—-Whole, Trade, and Value
schemata described here. For example. in the bug called Borrow-Across-Zero
the child follows a rule specifying the need for a written-in little 1 and a crossed-
out and decremented number to its left. The syntax of subtraction is largely
respected. However. the semantics of exchange is violated, for the (uild has in
fact borrowed 100 but added back only 10—thus failing to conserve the original
quantity.

vcmcd.mthmyassumesdmmecmdgoridmhsbemlmmdbmis
mcomplete for certain problems. either because an incomplete algosithm was
taught or because certain steps have been forgotten. When these problems—
which most ofien comain zeros in the top number—are encountered, the attempt
to apply the leamedalgoriﬂlmcremsmiume.mmildwwmpe
with the impasse by *‘repairing’" the learned algorithm. The repairs proceed in 8
**gencrate-and-test’” mode that is shared with many other problem-solving pro-
cess theories (e.g.. Newell & Simon, 1972). First, a repair is generated from a
very limited list of potential repairs. The list includes moving into the next
column to perform an action (this would produce the Borrow-Across-Zero bug),
skipping an action, copying a number. and the like. Once generated, a repair is

algorithm must obey. These include rules such as acting at least once on each
coluum.showingdecmmcmmmmtmemmuks.MMWﬁﬁngmMone
digitineachmswcolunm.ﬂmiinotlﬁnsineitherdlectiﬁcliﬂamemk
gemwmliamamfmmwhmlmm&mm&smnm
“mming"of&ciunlmmbas.m:ismuiﬁcmumdﬁammeaigiml
Wbolequmtitymustbepmerved.naisdmeuyﬂuingimhempiroraiﬁc
lists that even identifies the value of the borrow and increment marks. The theory
thus describes an almost wholly syntactic set of bug-generating processes.
Given this characterization of the origin of buggy arithmetic, it can be
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1. Swaller-From Larger. The student subtracts the smeiler digit in a column from the
wmwwmmhmm 542

/]
S, 0=-Nepn mmuommnmwnmimuw
) 709 : s0o8

55; :51
6. 0~ N=0. Whenever thure is O on top, 0 18 written as the snewes
80se 3080

~482 =52
402 o030
7. N-QOe=90, mn—:’h:mumci-"ua:mm

-&5 _cog
8. Oen't-Dacvemunt-Tovo. Whan borrowing from & column in which the top dwget 1 0,

the student rewrites the O 2 10, dut does net changs the 10 10 § when mcremenning
The active column, -’03

wos
= LY

9. Zwo-tnstesd-Of-Serrow. The mudent writes O a8 the anewer in sny column n which

the bottom digit is larger then the top. e
320 842
210 200 ’

10. Sorrow-from-Botiom instess-Of-Zera. if the top digit in the column bewng dorrowed
MEO.MMWMMMMW(M:MMMN

mmmm’swngm. .
7% _‘ﬁ-;oq
Figure 3.13 Descriptions and caampies of Brown and Burton's (1978) common subtraction bugs. *

(Adapred from Resmck. 1982. Copyngix 1982 by Lawrence Eribaum Associases. Reprimed by
permission. )

aqpndduloneofdnimmonuuuuksofpﬁmuqnubuﬂaﬁﬂunukﬂaun@uﬁsdn
¢kwckxxnumcﬁ1uunﬂbdg:suucunesdunpnnﬁdea‘Wnunnﬁcﬁnﬁﬁmnugr'ﬁf
pn:sdutsoflnhnmlk:nnﬁn;audcanﬁn;.Aslcluweuumcndhtu:Qu
discussion, there is evidence that children have or can relatively easily acquire
substantial semantic knowledge—in the form of Part—Whole and Trade schemata
and associsted procedures—applied to concrete representations of number. It
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therefore seems likely that 8 useful method for assisting children in the develop-
ment of a semantic inlerprcmionofwﬁuennﬁthmaicwwldbcwcal!dnh'
ammmnmcmmwmﬂmusuwmmdnuwsmuﬁmmummmkmmnn
performance of addition and subtraction with concrete materials (cf. Dienes,
1966). In an earlier work (Resnick, 1981) 1 described one method for doing this,
via what was termed mapping instruction. In this instruction the child is required
1o perform the same problem in blocks and in writing. alternating steps between
tmtmmUmeMmcmmmmmﬂwuMmmnmﬁmmmmbemmmwdua

frobtem 300 - 130 Biochy Acton o Wisting Actren
The civeid
.500 1 Dusplays rger aumber w1 hiacks.
/739 -
— mmmmw

1

E .@0 3 Yeades | huncvad bioch for 10 tens blocks
-"'/39 4 Nowtss the wach
e

. JL_
| aammonnt |

y J o | ey gy
| conmmmmus J ot ed Lo - |

Mo
8o
U "o .
NN o, 3 o ° Yrodes 1 van biork Tor 1D unets bhocks
U U %o -’/_.iz___ 6 Notses i wace
1NN °
U U i
[ "1 '1
i:| |:, U o mo 7. In eoch Genomunstion removes the number ot
[ - 739 tncks s90crind € the BOtHOm e
L —_— 8 1n sach cOlumn nOtATNS The NUMBE! remEnng.

Figure 3.14 Outline of mapping instruction for subiraction. {From Ressick, 1982. Copyright 1982
Mlmmmnhmm.wwm.)
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19 ' LAUREN B. RESNICK

"record’* of actions on the blocks. Figure 3.14 summarizes the process for s
saberaction problem.

Mapping instruction has been successfully used with several children who
children demonstrated that they had acquired an understanding of the semantics
of the written algorithm. Once again, Molly’s performance and our simulation of
it provide both s clear exampie of typical behavior and a theoretical account of
the mental processes invoived.

VALUE OF CARRY AND BORROW MARKS

Webanmdutrlhuwlyindrirdevebpmeuchim“umgﬁu
the values of digits in various columns of standard notation, using the Next
structure only. There is evideace in our data, however, that this ability to assign
vnhndmnmexnndno&enmnﬁoumadeinmemofmud
borrowing. In one of our studies, third-grade children were asked 10 tell us the
value of the carry and borrow digits in written addition and subtraction. In
virtually every case they simply named the digit rather than its actual value. For
exampie, when they were shown the solved problem in Figure 3. 15, the little | at
a was assigned a value of | instead of 10, and the little 1 at b was assigned 2
value of 1 instead of 100. Whea asked 10 select the biock(s) that would represemt
these | marks, the children typically selected a single units block. By contrast,
after instruction Molly and others who had been taught via mapping assigned a
value of 10 to the | at a and 100 to the | at b. and selected blocks accordingly.

EXPLAINING THE WRITTEN BORROWING ALGORITHM

Molly's most stunning display of understanding wntten borrowing came in
a follow-up interview about four weeks after instruction. During this time she:
had had no direct instruction on subtraction. When asked to do problems in
writing in this follow-up interview, Molly did not use exactly the procedure she
had leamed from us. That is, on problems with 0 in the top number, she did not
begin by decrementing in the hundreds column and changing the O in the tens

e
1

-~
39
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Figure 3.15 Solved problem showg carry and borrow marks
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)] € lmwmvnmmm”n“-ﬂmﬂm
mmmmm“nm:wum.mumm:

Swo See if you o chack Thax, end check st T FapS and make
-~/ mummm‘“mmmmnﬂ
33 me what's wrong

S Shefettite S0-keptus V0.

€ What should she have done?

§ WMaenal

E  Whyuthat?

s tomoommmwwmmmmmupm
{the ones)

€ MmﬁmﬁcMmWM’

S A hundred.

1] £ OX. 90 how dO you weite that?
S vwmtomuﬂmhnmm’um.mno,mﬂm
(andreds), which 5900, Wrnes (L F /8 1
, 0K &Mnmiommmmm’
S lwum:mmnmmmmmm and tens cotwmnd
mouomwmwmwmmmm

”

Figure 3.16 Two cxtracts of Molly's explanations

column to 10. then decrementing this 10 to produce 9 as pant of the exchange into
the units column. Instead, she used the **school algorithm,”" going right 1o left
and changing each O directly 10 9.

This algonthm cannot be directly mapped onto blocks, and thus one cannot
explain why 1t works by simply describing exchanges as if they had been done
with blocks. Thus. any justification Molly was able to offer for her written work
would have 10 depend on her schematic knowledge. Figure 3.16 gives two
extracts of Molly's cxplanations. In the first case Molly was asked to check
another child's work. She knew the 10 in the tens column should be changed to
9. but she did not justify this as the outcome of a trade. instead, she gave an
explanation in tcrms of the values of the decrement and increment marks (9 teas
in the tens column plus | ten in the units column), with the clear implication that
a whole-preserving exchange had been made (otherwise she would not have
sought the **other ten'"). In the second extract, Molly shows even more clearly
tha!stxwassemhingforpmsmmakeupthelmmushcmmdhadbeen
borrowed 1n the course of decrementing the thousands columa.

MOLLY-mevMuaﬂ:eoqofbowﬂmexmmmu.
To construct analogous explanations, MOLLY-3 uses an Exchange schema (Fig-
m3.!7)mudcvehpsbyimwﬂingbumwmgnmmb;ofm.m
Tmmmsmmmdmwmmemeb
ments. As a result, for writien borrowing there is 8 From column that pets
smaller by 1 and an Into column that gets larger by 10. The values of these
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Figure 3.17 The Exchange schems.

decrements and increments are, as in the case of trading, determined by multiply-
ing by the column value. In the units column, the increase of 10 in the Into
column is multiplied by 1; but in the tens column it is multiplied by 10 to yield a
value of 100. As 2 result, when interpreted under control of the Exchenge
schema, the increment marks would be represented by teas or hundreds blocks,
never by unit cubes. The effect of having the Exchange schema is to allow
MOLLY-3 to interpret borrowing s it bad trading: as an exchange among parts
that maintains the value of the whole.

MOLLY-3 uses its newly constructed Exchange schema to construct expla-
"ations for the standard school borrowing algorithm that paraliel those of Mol.y.
For example, for the problem 403 ~ 275, MOLLY-3 handles severa! questions
about increments and decrements as follows: It keeps track of its actions by
building s temporary Changes structure that specifies old and new values in
particular columns. The Changes structure also records whether the new value is
larger or smaller than the original. Faced with the question, Where did the 13 in
the units column come from?. the program examines its current Changes struc-
ture, scarching for a 13 as a mew value in the units column. Finding this. it can
determine that the 13 is larger than the original value for that column. Now it
looks for a place in its knowledge where larger is linked with a column into
which something is added. It finds the Bonow schema. It instantistes this sche-
ma, with the units column ss the Into column. It can then *‘read out’’ the answer
from the instantisted schema as: /1 comes from borrowing I ten from the tens
column for the units column. :
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Now given the question, Where is the 100 you borrowed from the hundreds
column?. MOLLY-3 uses its Changes structure to determine that the hundreds
column is smaller. As a result, it searches for a structure in its own knowledge
base in which a column is made smaller by taking something from it. This leads
1 10 the Borrow schema, which it activates and tries to instantiate. It fills the
From column with the hundreds column. and it knows this column has gotten
smaller by one times the column value (of 1000). It must now fill the slots on the
Into side. To do this it tries at first to find a column made larger by 10 times a
column value of 10, but it cannot find such a column in the written notation.
Instead. it finds a value of 90 shown in the tens column. At this point it calls on
the Part-Whole schema, sets the Whole equal to 100 and Part A equal to 90.
meisitcmdctemimdml’mﬂrmstequﬂIO.Nowitinspecmhewrimn
nomionagain.lookingforacolmthtslnmminctemenlwim"al_moflo.
Insablctoﬁndthisindncxmitsoolumnofﬂnwﬁmm.Asarem!titm
conclude that: The lwfmm:hehundndscolmimbemnmkimowmw
the tens column plus the 10 in the units column. MOLLY-3 can answer the
analogous question for borrowing acToss IO Z€y0S (for example, when 2003 is
the top number inaprobkm)byimaﬁngﬂnmghmehﬂ~wm1eschemmiee.
first setting the Whole slot equal to 1000 and Part A 1o 900, then setting the
Whole to 100 and Past A to 90. It then answers: The 1000 from the thousands
columnhasbrenmdeimorheﬂ!)inlhehundmdsmhmn.plusdwminm
tens column. plus the 10 in the units column.

CONCLUSION

Other topics in mathematics (multiplication. division, fractions), of course,
wnllhavehecninuoducedbyﬂnendoftbeuﬂyschoolymmdwﬂlhave
inducedcbangcsinmpusenmionmtmsidaedm.m“nkbeexpemd
mnallchildtenbydnendofptinmymolwillhawachievedmelevdd
understanding represented by Molly. Yet such understanding is certainly an
mxpoﬂﬂgodofcsﬁyinmﬁminplmulue.m.hmamimbkpoim
uwmchtomludcmsmdﬂnwgniﬁwdewwmw
carly school arithmetic leaming. What general conclusions about the nature of
number understanding and its development can be drawn from this account?

The Centrality of the Part—Whole Schema in
Number Understanding

First, it seems clear that a reasonable account of the knowledge underlying
changingmuhemﬁcsmpcwmbcgiminmofﬁewwnd
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their successive claborations. As we have seen, the Part—Whole schema piays a
central role. Although I have not attempted here:to explain the origin o1 .he
Part—- Whole schema, it seems likely that it arises in connection with various reai-
life situations in which partitions must be made but no exact quantification is
required. Such situations are easy to imagine in the life of the young child. For
example, a hole in moduwisccmnpktcmzlemsmaamnismissmg;
food is shared with the recognition that the individual portions together represent
all (the whole) that is available; or a child gives some (but not all) of her candy to
her brother.

I have pointed to evidence that Part-Whole in this primitive form is avail-
abie to children before school begins. 1 have also suggested that its systematic
application to quantity characterizes the early years of school. A first elaboration
of the basic Part-Whole schema, in this view, is its attachment to procedures for
counting up (the procedures attached to the Minimum Needed node) and taking
away (the procedures attached to the Maximum Exceeded node). These pro-
cedures, which are based on the units number string, produce a quantitative
interpretation of Part-Whole. The schema in tum allows numbers to be in-
terpreted bork as positions on the mental number line and. simulianeously. as
compositions of other numbers. This interpretation of number appears to underlie
both story—-problem solution and the invented mental arithmetic procedures for
small numbers that characterize the carliest school years.

Further elaboration of the Part-Whole schema appears to characterize sub-
sequent development of an understanding of the place-value system of notation
and the calculstion procedures based on it. Children apparently find it easy to
place a special restriction on Part—-Whole such that one of the parts must always
be a multiple of 10. This initial claboration generates an interpretation of multi-
digit numbers as compositions of units, tens, hundreds. and so on. This in tum
permuts invention of several quite elegant mental calculation shortcuts. However.
further claborations—those specified in the Trade and later the more abstract
Exchange schemata—are required before multiple parutionings of quantity can
be recognized and the rules of written asithmetic interpreted. Since Trade and
Exchange are always called upon by Part-Whole. it seems reasonable to view
them as elaborations of the more general schema for partitioning quantity.

Microstages in Development

Many readers will have noted parallels between the analysis offered here
and interpretations of the number concept proposed by Piaget and others working
in the Genevan tradition. Indeed, this analysss shares two central emphases with
the Piagetian view: (a) an emphasis on part—whole (class inclusion. for Piaget)
relationships as a defining characteristic of number understanding. and () the
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propasal that ordinal (counting) and cardinal (class inclusion or pant—wiole)
relationshups must be combined in the course of constructing the concept of
number

It 1 espectaliy pleasing to have amved at this convergence because the
present anabysis was conducted quite independently of Praget’s work. 1 did not
<et out to either support or disconfirm Praget’s theory of number understanding
hut rather to build a plausible account. from a current cognitive science point of
view . of what number knowledge must underlic the vanous anthmetic perfor-
manves ohsenved 1 young school children  In doing this. | drew on formal
theoretical analyses that warked from task performances fo the kind of knowl-
edge children ““must have™ in order to engage i the performances observed.
This effort ta butld & theors of understanding on the hasis of detailed analyses of
provedures used 10 performung sk is quite different from the Pragetian method
ot hyputhesizing a mental structure and then seeking tasks that nught reveal its
presence of absence One might well charactenze the methods used here as more
hottom up than those of Piaget

One result of these more bottom-up task- and performance -dnven methods
i~ that we are ahle o detect tndeed. are forced to recogrize—relatively small
changes in cogmitive structures n a sense. we have been able to produce a
microstage theory tor number understanding. a theory that specifics many small
changes in number representation and schematic interpretation of number in a
pend of deselupnent for which the Piagetian analysis recogmized only the
macrosiuges ol pregperativity and concrete operativity This ennched theory of
vhanges in number knowledge 18 of clear importance to those concerned with
imstruction. for it specifics ““what to teach’™™ at successive stages of learming or
development The microstages of understanding developed here also permit us to
FIVE @ MOre precise psvchological interpretation o certawn key mathematical
concepts than has heretofore been possible.

An Interpretation of Cardinality

One example of such interpretation 1« the one that 1s now possible for the
development ot an understanding of cardinality. Gelman and Gallistei (1978)
included % ir pnnciples of counting a cardinality principle. which specifics
that the final count word reached when a set of abjects 1s being enumerated is the
lotal number in the set—that 1s. the set's cardiality. For the preschool child,
who has not yet come to mterpret quantity in terms of a fully developed
Part--Whole schema. this 1s the only meaning of cardinality available. This
critenon of understanding cardinality has been criticized (e.g.. Bessot & Comuti,
1981} as too weak and in particular as not reflecting the Piagetian definition of
cardinality We can now see that a higher stage of cardinality understanding can
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be recognized in the child's subsequent application of the Part-Whole schema to
number. Although a primitive form of partitioning is clearly present in early
counting behavior (this is what is required to keep counted and not-yet-counted
objects separate). the Part—-Whole schema used later in solving story problems
yields the understanding that a total (whole)quantity remains the same even under
vanant partittonings.

The meaning of cardinality is further elaborated when the place-value sche-
mata outlined here are acquired. When the Part-Whole schema with the multi-
ple-of-10 restriction is applied to two-digit numbers, the amount represented by
the number becomes subject to multiple partitioning without a change in quan-
tity. This is exactly parallel to the new understanding of cardinality for smaller
numbers that was achieved when the Pari—Whole schema was applied to them.
Without application of the Part—Whole schema, the cardinality of a number
resides in the specific display set and the number attached to it through legal
counting procedures. With Part-Whole, cardinality resides in the total quantity,
no matter how it is displayed or partitioned.

The Trade and Exchange stages of multidigit number representation show
vet a higher level of understanding of cardinality. At these stages it is recognized
that cardinality 1s not altered by a specified set of legal exchanges. An analogy
¢an be drawn with the earlier recognition of quantity as unchanged under vanous
physical transformations (such as spreading out a display of objects—the classic
Piagetian test of conservation). However, the transformations produced under
control of the Trade schema do in fact involve a change in the actual number of
objects present. Thus. recognition that the value of the total quantity remains
unchanged requires a level of abstraction conceming the nature of cardinality that
was not required for earlier stages of understanding

Procedural Knowledge and Understanding

An important charactenstic of the account of number development otfered
here 1 the close link between procedural skill and understanding. It has been
charactenstic of many past efforts to promote understanding of mathematics to
speak as (f understanding and procedural skill were somehow 1incompaubic.
Wertheimer (1945/1959). for example. in pressing tor structural understanding
as the goal of education. attacked the teaching ¢f algonthms and other aspects of
“mundles  dnll ©* Praget. too, was largely disinterested in procedural shills.
despite the role that *“reflective abstracuion’ —the pracess of reflecting on one’'s
own procedures to draw out pnnciples—plays in hus theory of development
(Piaget, 1967/1971). Many educators inspired by Piaget’s emphasis on under-
standing have actively argued against any kind of procedural emphasis in mathe-
matics mstruction.
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The present analyses. by contrast. suggest that procedural skill often under-
hes understanding For example. the account proposed here for the invention of
the min and choice calcuiation procedures suggests that inventions reflecting an
anderstanding of number can come about only when procedures become well
enough established that their results can be inspected and compared. Similarly.
children apparently leam about the decade structure of the number system
through what must be. at first, rather *‘mindless™ repetition of conventional
vounting Mrings

We do not vet have a tull theory to propose about exactly how practice in
counung and other mnthmetic procedures nteracts with existing schematic
Anowledge to produce new levels of understanding. Nevertheless, it alrcady
wems clear that o detailed theory of how new levels of number understanding are
ahicved will seveal active nterplay  between  schematic and  procedural
know ledpe
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