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LOGO PROGRAMMING AND THE DEVELOPMENT OF PLANNING SKILLS*

Roy D. Pea and D. Midian Kurland

Introduction

A belief which has never gone completely out of style is that learning
mentally rigorous disciplines, such as logic, geometry, or Latin,
exercises the mind such that general thinking powers are enhanced.
Implicit in this belief is the idea that rigorous thinking in one dis-
cipline may transfer, or be generalized to, rigorous thinking in other
disciplines. It is well recognized that transfer, particularly of in-
telligent performance to novel task environments, is the hallmark of
human cognition (e.g., Anderson, 1982; Brown, Bransford, Ferrara &
Campione, 1983; Laboratory of Comparative Human Cognition, 1983).
To date, no studies have adequately demonstrated this transfer of
mental rigor, however defined. In fact, Thorndike (1924) said he
had put this claim to rest in his studies of students' performances in
other disciplines after they had learned Latin.

Today we find reourgent interest in and deep commitment to a version
of this belief cast in the context of new information technologies
available to schools. In particular, does learning to program a com-
puter provide such experiences in higher mental functioning that the
rigors of computer programming transfer to thinking and problem
solving in other areas? Many are optimistic that it does. Nickerson
(1982) has characterized the current wave of opinion as follows:

Perhaps the basic reason for the belief that programming
might be an effective vehicle for the acquisition of generally
useful cognitive skills is the assumption that programming is

*We would like to thank the students and teachers of the Bank
Street School for Children for cooperating in these studies. Invalu-
able assistance was provided by Sally MacKain, Moni Hamolsky, and
Jeff Aron in coding videotapes, and Sally MacKain was our tireless
experimenter for study two. Jan Hawkins made continuing contribu-
tions to the project. These research studies were part of a compre-
hensivc program on the development of programming skills in class-
rooms supported by the Spencer Foundation, to whom we are grate-
ful.
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prototypical of many cognitively demanding tasks. It is a
creative endeavor requiring planning, precision in the use
of language, the generation and testing of hypotheses, the
ability to identify action sequences that will realize specified
objectives, careful attention to detail, and a variety of
other skills that seem to reflect what thinking is all about.

Our paper is a report on several studies that evaluate the empirical
validity of these expectations for the general cognitive effects of
learning to program. Like any empirical study, they require a finer
grained focus than these overarching ideas will allow and, in this
case, we have examined the development of planning skills in relation
to learning to program in the Logo programming language (Abelson &

diSessa, 1981; Papert, 1980). We will return to a discussion of the
mental activities involved in programming and our choosing to study
planning as a higher mental function after briefly sketching out the

larger terrain in which these concepts have become embodied in

educational practices.

It is important to set the broader context for these claims about the
cognitive benefits of learning to program. The widespread availability
of microcomputers has led to their rapidly increasing use in the
nation's schools, and a vast number of these schools are using com-
puters primarily for instruction in programming. At all grades, but
particularly at the elementary and secondary levels, the two reasons
most frequently cited by schools for placing such a heavy emphasis

on programming are its presumed impact on thinking skills beyond
programming activities (e.g., Coburn, Kelman, Roberts, Snyder, Watt
& Weiner, 1982), and its contribution to the student's "computer
literacy," since programming is thought to be a major aspect of

computer use.

Cognitive Consequences of Learning to Program

The current expectations and frequent claims for the effects of learn-
ing to program on thinking are best exemplified in the writings of
Papert and Feurzeig (e.g., Feurzeig, Papert, Bloom, Grant & Solo-

mon, 1969; Feurzeig, Horwitz & Nickerson, 1981; Goldstein & Papert,
1977; Papert, 1972a, 1972b, 1980; Papert, Watt, DiSessa & Weir, 1979)

concerning the Logo programming language (developed in the last
fifteen years as a learning environment for children: see Byte,
August 1982), although such claims are not unique to Logo (see

Minsky, 1970).

Two key catalysts appear to have contributed to the belief that
programming may spontaneously discipline thinking. The first is from
artificial intelligence, where constructing programs that model the
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complexities of human cognition is viewed as a way of understanding
that behavior. The contention is that in explicitly teaching the
computer to do something, you learn more about your own thinking.
By analogy (Papert, 1972a), programming students would learn about
problem-solving processes by the necessarily explicit nature of pro-
gramming, as they articulate assumptions and precisely specify steps
to their problem-solving approach. "In teaching the computer how to
think, children embark on an exploration about how they themselves
think" (Papert, 1980, p. 19). The second influence is the wide-
spread assimilation of constructivist epistemologies of learning, most
familiar through Piaget's work. Papert (1972a, 1980) has been an
outspoken advocate of the Piagetian account of knowledge acquisition
through self-guided problem-solving experiences, and has extensively
influenced conceptions of the benefits of learning to program through
"learning without curriculum" in "a process that takes place without
deliberate or organized teaching" (1980, p. 8; also pp. 27, 31). (It
should be noted that Piaget never advocated the elimination of organ-
ized teaching in schools.)

Ross and Howe (1981) have summarized Feurzeig et al.'s (1969) four
expected cognitive benefits of learning to program. In this early
period, most programming outcomes were postulated for the develop-
ment of mathematical thought:

(1) that programming provides some justification for, and
illustration of, formal mathematical rigour; (2) that pro-
gramming encourages children to study mathematics through
exploratory activity; (3) that programming gives key in-
sight into certain mathematical concepts; and (4) that
programming provides a context for problem solving, and a
language with which the pupil may describe his own problem
solving. (p. 143)

Papert (1972b) argued for claims (2) through (4) in noting that
writing programs of Logo turtle geometry is a

new piece of mathematics with the property that it allows
clear discussion and simple models of heuristics [such as
debugging) that are foggy and confusing for beginners
when presented in the context of more traditional elemen-
tary mathematics.

1

He provides anecdotes of children "spontaneously discovering" phe-
nomena such as the effects of varying numerical inputs to a proce-
dure for drawing a spiral on the spiral's shape. He concludes that
learning to make these "small discoveries" puts the child "closer to
mathematics" than does faultlessly learning new math concepts.

3
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It is important to distinguish between the expectation that program-
ming can discipline thinking, and the prediction that programming will

discipline thinking. We consider the possibility argument very plaus-
ible, .especially if thinking skills are explicitly taught in the context
of programming, but this experiment has never been carried out.
The much stronger predictive claim, best known from Papert's (1980)
arguments, is more commonly assumed--that programming will disci-
pline thinking through the child's spontaneous explorations and

reflection on programming activities. Although our can/will distinc-
tion may seem to split hairs, it is central for any empirical work on
the question, since it will determine the character of the "treatment"

for the experimental groups who are programming. Our experience
has been that the pedagogy of discovery learning ("learning without
curriculum") for Logo programming mapped out in Papert (1980) is
taken quite seriously by teachers, and that little direct instruction of
computational concepts, programming methods, or concepts of a theory
of problem solving is offered when Logo programming is undertaken in
school settings. We see it at its extreme when teachers talk excitedly
about how Logo can be used in "stand-alone" centers within class-
rooms.

Within the last several years, and in the absence of experimental
support for the first series of claims (see reviews in Pea & Kurland,
1984; Ross & Howe, 1981), much broader claims for the cognitive
benefits of programming beyond mathematics have been made in a new
generation of theoretical writings. In Mindstorms, Papert (1980)

argues that generalizable cognitive benefits will emerge from taking
"powerful ideas" inherent in programming (such as recursion and

variables) in "mind-size bites." Feurzeig et al. (1981) provide the
most extensive list of cognitive outcomes that may emerge from learn-

ing to program. They argue that

the teaching of the set of concepts related to programming
can be used to provide a natural foundation for the teach-
ing of mathematics, and indeed for the notions and art of

logical and rigorous thinking in general.

It is important to note that their emphasis on teaching distinguishes

their discussion of programming benefits from Papert's recommenda-

tions for learning to program "spontaneously" without curriculum

(1980). We review their claims because they are the clearest articu-
lations to date of what general zhanges in higher mental functioning

may be expected from learning to program. Seven fundamental
changes in thought are described, which we summarize and explain

here:
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(1) rigorous thinking, precise expression, recognized neec.
to make assumptions explicit (since specific algorithms
must be written for programs to work);

(2) understanding of general concepts such as formal
procedure, variab1:1, function, and transformation
(since these are used in programming);

(3) greater facility with the art of "heuristics," explicit
approaches to problems useful for solving problems in
any domain, such as planning, finding a related prob-
lem, solving the problem by decomposing it into parts,
etc. (since "programming provides highly motivated
models for the principle heuristic concepts");

(4) the general idea that "debugging" of errors is a
"constructive and plannable activity" applicable to any
kind of problem solving (since it is so integral to the
interactive nature of the task of getting programs to
run as intended);

(5) the general idea that one can invent small procedures
as building blocks for gradually constructing solutions
to large problems (since programs composed of proce-
dures are encouraged in programming);

(6) generally enhanced "self- consciousness and literacy
about the process of solving problems" (due to the
practice of discussing the process of problem solving
in programming by means of the language of program-
ming concepts);

(7) enhanced recognition for domains beyond programming
that there is rarely a single "best" way to do some-
thing, but different ways that have comparative costs
and benefits with respect to specific goals.

Planning

For our current studies, we will be examining one aspect of claim
(3)--thc problem solving heuristic of planning. Why planning?
Planning is a central aspect of intellectual functioning. Although, in
everyday activities, problems that result from poor planning are
readily attributable to other causes since feedback is delayed, Nicker-
son (1982) observes that "the immediacy of the feedback in program-
ming contexts may help to make the causal link between adequate
planning and effective performance more apparent" (p. 43). Does the

5
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effectiveness of planning become more apparent to a person learning
to program? Doe3 the development of planning skills for more general
use as thinking tools become more likely when one learns to program?

Before moving on to planning and programming, we highlight a funda-
mental cognitive issue raised by asking whether programming promotes
the development of any of these general cognitive skills. Is it
reasonable to expect transfer (without overt encouragement) across
knowledge domains, from programming to science research projects,
math problem solving, or social affairs? It is notoriously difficult for
people to spontaneously recognize the connections between "problem
isomorphs"--problems of identical logical structure but different
surface form (Gick & Holyoak, 1980; Hayes & Simon, 1977; Simon &
Hayes, 1976)--and to apply problem-solving strategies learned in one
context to new problem forms. When Scribner and Cole (1981) as-
sessed the cognitive consequences of literacy, they "found localized
changes in cognitive skills manifested in relatively esoteric experi-
mental settings" (p. 234) instead of generalized changes in cognitive
ability. With such problems of near transfer, the expectation of
spontaneous transfer across diverse knowledge domains must be

viewed cautiously. Nonetheless, we began our research enterprise
with the hope of documenting such transfer from Logo programming,
because of the novel character of the domain and the great interest
such activities seemed to hold for students.

Apart from the important role of planning in programming, it is useful
for many domains of activity to develop planning skills for the suc-
cessful accomplishment of a coordinated set of goal-directed activities.
A plan is a symbolic or literal representation of a set of actions
designed to produce an intended outcome. Much human action ap-
pears to be guided by planning. Current general models of planning
consist of four componen:: processes that may be invoked recursively
throughout the process of constructing and carrying out a plan:
(1) the representation of the planning problem situation; (2) the
process of constructing a plan to achieve that goal; (3) the execution
of the plan; and (4) remembering the planning process. For exam-
ple, the attempt to construct a plan may result in the redefinition of

the goals, while trying to execute the plan may result in revision of

the plan structure. Few developmental studies of planning have been
carried out (e.g., Klahr & Robinson, 1981), although important
aspects of these four interrelated components of the planning process
for planning development have been discussed by Pea (1982), who
reviews planning studies in cognitive science and artificial intelli-

gence. Through this work we refined questions for studying the

revisionary processes and products of planning activities in the two
experiments reported here.
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These two experiments focus on plan construction processes. In
order to reveal how children plan, we were guided in our design of
the tasks by empirical features of planning processes. Specifically,
we felt the tasks should: (1) represent situations that are congruent
with what is kr_;wn about plan construction, especially when planning
is likely to occur; and (2) provide "process accessible" data, exter-
nalizing the planning process to allow observers to see and record
processes of plan construction in action.

With respect to (1) , the planning context should: (a) t)e one where
a child might be expected to see planning as appropriate and valu-
able; (b) be complex enough so that the means for achieving a goal
are not immediately transparent and the possibility of alternative
plans is recognized; and (c) involve a domain where children have a
sufficient knowledge base so that action sequences can be planned
and consequences of actions. anticipated.

With respect to (2), the task should reveal: - (a) whether alternatives
are considered; (b) whether the planner tests alternatives by simulat-
ing their execution; (c) what kinds of revisions or debuggings of a
plan are made; and (d) what different types and leve's of planning
decisions are made. Planning is appropriately characterized as a
revisionary process. As a consequence of considering alternatives,
effective planners revise their plans. They work between top-down
planning strategies that create a plan from successively refining the
goal into a sequence of subgoals for achievement in sequence, and
bottom-up planning strategies that note the emergent properties of
the plan or the planning environment and add data-driven decisions
to the plan throughout its creation (Hayes-Roth & Hayes-Roth, 1979;

Pea, 1982). Planners may go through many cycles of revision in

considering the consequences of differently organized plans. In

order to understand children's planning, a context should be pro-
vided for revealing these revisionary efforts. Are children able to
revise their plans to take account of what they learn during plan
construction? Furthermore, planning decisions can be made at differ-
ent Irrels of abstraction. At an abstract level, one can think about
desig_. criteria for a plan (e.g. , feasibility [ Kotarbinski, 19651)
without considering specific actions or even a specific domain for the
plan. Alternatively, planning can occur concretely as a sequence of

local decisions without an overall framework. Such "planning in

actions' (Rogoff & Gardner, 1982) is probably more important in

everyday actions than the creation of preformulated plans. The
experimental task should be able to reveal these levels of plan deci-
sion making.

In addition to the features of plan construction, we considered the
everyday practice of planning. To construct plans for situations

9



requiring sequencing of multiple actions, planners often must simulate
actions and observe their consequences. Although planning is fre-
quently thought of as an internalized symbolic process requiring
mental representation of and mental operation on symbolic elements,
the complexity of symbolic manipulations for many planning tasks
often leads to some kind of externalization of the planning problem
space. For example, architects and interior designers may construct
planning spaces in which they can physically try out alternate ar-
rangements as part of the planning process, and programmers :nay
create flovicharts.

Planning and Programming

How is planning manifested in programming? The core of computer
programming is that set of activities involved in developing a reusable
product consisting of a series of written instructions to make a com-
puter accomplish some task. Global theories of expert programming
skill acknowledge that programming is highly complex because "it
involves subtasks that draw on different knowledge domains and a
-variety of cognitive processes" (Pennington, 1982, p. 11). As in the
case of theories of problem solving in general, cognitive studies of

programming reveal a set of distinctive mental activities that occur as
computer programs are developed. These activities are involved
throughout the development of a program, whether the programmer is
novice or expert, since they constitute recursive phases of the prob-
lem-solving process in any general theory of problem solving (e.g.,
Heller & Greeno, 1979; Newell & Simon, 1972; Polya, 1957). They

may be summarized as: (1) understanding /defining the programming

problem; (2) planning or designing a programming solution;

(3) writing a programming code that implements the plan; and
(4) comprehension of the written program and program debugging.
In Pea and Kurland (1983), we discuss each of these cognitive sub-
tasks in detail; here we characterize only the roles of planning in
prcsramming.

After achieving an initial problem representation, and in the absence
of a ready solution, the programmer must map out a program plan or
design that will then be written in programming code. Atwood et al.
(1980) provide an informative description of the requirements of this

process:

Software design is the process of translating a set of task
requirements (functional specifications) into a structured
description [design or plan] of a computer system that will
perform the task. There are three major aspects to this
description. The original specifications are decomposed into
a collection of modules, or substructures, each of which

8
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satisfies part of the original problem description. This is
often referred to as modular decomposition of the problem.
In addition, these modules must communicate in some way.
The designer must specify the interrelationships and inter-
actions among the modules [also called procedures in smaller
systems). This includes the control structure, which
indicates which modules are used by a given superordinate
module to do its work and the conditions under which they
are used. Lastly, a design may include a definition of the
data structures required. (p. 3)

According to Brooks (1982), one-third of the time a program team
spends on a software project (including coding and testing) should be
devoted to planning. -Atwood et al. (1980), in a detailed analysis of
the think-aloud protocols of two expert software designers as they
solved a design problem, found that they had available many general
plan-design strategies, such as problem decomposition, subgoal gener-
ation, retrieval of known solutions, generation and principled (or
policy-driven) selection of alternative solutions, and evaluative anal-
ysis and debugging of solution components.

One may raise the objection that it is possible to bypass planning in
program development; that is, one may first make an initial reading of
the problem and then compose code at the keyboard to achieve the
task. And it has been observed (Galanter, 1983) that preplanning
frequently occurs when programming in PASCAL (a compiler lan-
guage), but often little or no planning occurs prior to writing code
for programming languages such as BASIC or LOGO (interpreted
languages). What are we to make of this observation in terms of
defining planning as a distinct cognitive subtask in programming? Is

it optional? The answer to this question certainly has consequences
for thinking about the cognitive outcomes of programming.

The distinction commonly made between preplanning versus planning-
in-action (Rogoff & Gardner, 1983) is important. Programmatically,
our planning tasks should be sensitive to both. The BASIC program-
mer is planning-in-action as he or she generates programming code
without a prior plan, making decisions that are guided by the con-
straints of the program content. Bamberger and Schon (1982) have
described such planning-in-action creative processes in art, music,
and other related domains as a consequence of an iterative series of
"conversations" between the creator and his or her uncompleted
creations. Bereiter (1979) has characterized a similar process in
composing language text as "epistemic," in which one comes to see
and understand new things about what one wants to express as ideas
are channeled into a written product.

9 -
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Although planning-in-action is certainly possible, even sufficient, to

produce some programs, such planned-in-action programs create
problems for the inexperienced programmer. In contrast, expert
programmers can draw on their knowledge of a vast range of plans
when creating programs (Atwood et al., 1980; Soloway et al., 1982).
The novice programmer who wishes to revise a program that he or
she created without preplanning will undoubtedly find it difficult to
understand and, therefore, to debug it. Expert programmers need
do little in the way of preplanning because of the automaticity of
many programming projects, and because they have had a great deal
of experience with gimiiar programs or software systems. In other
words, the expert programmer is able to integrate the subtasks of
planning and code writing. In contrast, the child or novice
programmer has neither the sophisticated understanding of

programming code nor the experience of devising successful
programming schemas necessary for engaging in planning-in-action.

Taking all these considerations into account, we decided that a class-
room chore-scheduling task, analogous to a planning scenario used by
Hayes-Roth and Hayes-Roth (19'9), met this series of requirements
for a planning task. We found from classroom observations that all
children had to carry out certain classroom chores on a regular basis.
The children were familiar with a list of chores (e.g., washing the
blackboards, watering the plants) and the actions. involved in doing
each. The task was made novel by requiring children to organize a
plan that would allow one person to accomplish all the chores. We

designed a classroom map' as an external representational model to
support and expose planning processes.

Study One

Participants

Thirty-two students from a private school in Manhattan participated in
the study. The children were seen in two sessions, at the beginning
and end of the year, the second session occurring four months after

the first. Half of the children were 8- and 9-year-olds (mean age,
9.3 years; s.d., 0.7 years); the other half were 11- and 12-year-olds
(mean age, 12 years; s.d., 0.6 years).* These twee age groups were
selected not for theoretical reasons, but because their ,teachers were
willing to participate. Nonetheless, this age range is representative
of children learning Logo programming in American schools. The 32
children came from four different classrooms. The experimental

*Children's ages at the time of the first session.
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groups were composed of four boys and four girls of each age who
were learning Logo computer programming; the control groups con-
sisted of four boys and four girls of each age not receiving the
treatment.

The selection of the children was not random. Participants in the
experimental groups were selected on the basis of two criteria: (1) a
large amount of time working with Logo during their first two months
of computer use (prior to the first experimental session); and
(2) teacher-assessed reflectiveness and talkativeness so that rich
think-aloud protocols would occur during the task.

Only the second criterion was used for the control groups. To

ensure comparability of groups, we also administered a digit-span
task and the WISC Block Design subtest. The former was used to
assess the size of a basic processing capacity, the latter to determine
cognitive style in terms of field-dependence or field-independence
(e.g. Case, 1974; Case & Globerson, 1974). Experimental and

for both ages did not significantly differ on scores for
either ensure.

Materials

A transparent plexiglass map of a fictitious classroom was developed
for the task (see Figure 1). The map was 22" by 30", with a scale
of 1" to 15". For the second task session, a replica map was used
that was different only in that its orientation was transposed 180° to
ensure that children would not remember their specific movements or
direction of the spatial approach from the first session.

There were six major chores: (1) watering (two) plants; (2) erasing
and washing (two) blackboards; (3) feeding a hamster; (4) putting
each of 17 chairs under its adjacent table; (5) washing (five) tables;
and (6) putting away objects (returning and washing paintbrushes;
disposing of trash paper) lying on the art table. These chores may
be accomplished with a minimum of 39 distinct chore acts. Some of

the chore acts are subgoals since they are instrumentally necessary to
accomplish others (i.e., the watercan is needed to water plants; the

sponge is necessary for washing tables and blackboards). Finding

the optimal sequencing of these chore acts is thus a challenging task.

Experimental Design

The planning task was administered in both sessions one and two.
The two sessions were separated by four months (early and late in

the school year) during which time the children were learning Logo

computer programming. Between-participant group variables were:

13
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(1) Group (Logo, no-Logo) ; (2) Sex (male, female ) ; and (3) Age
(younger, older ) . The key within-participant variables were:
(1) scores for first-last plans within session ; and (2) scores for
session one versus session two.

Procedure

Logo classroom context. The study was located in two classrooms at
a private school in Manhattan. One classroom included 25 (11 boys,
14 girls) 8- and 9-year-old children (third and fourth graders ) ; the
other consisted of 25 (11 boys, 14 girls) 11- and 12-year-old children
(fifth and sixth graders) . The children encompassed a variety of
ethnic and socioeconomic backgrounds and a range of achievement
levels. Many of the children were, however, above national norms in
school achievement and came from upper-middle-class and professional
families. The experimental groups were students in these two class-
rooms; the control groups were made up of students in same grade-
level classrooms in the same school.

Each classroom had six microcomputers during the 1981-1982 school
year. Both the younger and older groups had three Apple II Plus
computers and three Texas Instruments ( TI) 99/4 computers. In each
class, children were learning Logo, a programming language designed
to be easily accessible to children and to encourage the development
of thinking skills (Papert., 1980; Byte, 1982) . A widely distributed
MIT Artificial Intelligence Laboratory version of Logo software was
used for the Apple computers; a commercially available TI version of

Logo was used for the TI computers . Teachers received extensive
training in Logo classroom use before the school year, and the com-
puter programming activities during the year were intended by the
teachers to be largely child- initiated so as to encourage the Piagetian
discovery-learning pedagogy advocated for Logo by Papert (1980) .
While teachers gave the children some simple instruction in Logo
during the first several weeks and occasionally held group sessions to
introduce new aspects of Logo during the year, their self-defined role

was principally that of responding to students' questions and prob-
lems as they arose. Students were encouraged to create and develop
their own computer programming projects.

Teachers scheduled computer use for students in their classrooms so
that everyone would have equal time to use them--about two 45-minute
work periods per week. There were additional optional times for

computer use throughout the day-- before school and during lunch

period when computers were available on a first -come, first-served
basis. Logs kept at each computer over the course of the year
showed that, on the average, the children spent about 30 hours
programming in Logo.

- 13 -
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Classroom chore-scheduling task. The children were tested individu-
ally. E took the child from the classroom to a filming room, where he
or she was seated at a table with the plexiglass map upright on an
attached stand 6" away and tilted back 6° from the vertical plane. A

videocamera located approximately 8' from the map filmed each session
through the map.

The child was told that the goal would be to make up a plan to do a
lot of classroom chores. The loci of the chores on t'ae map were
pointed out as the chores were described. E then explained that the
child should work to come up with the shortest spatial path for doing
the chores, and that he or she could make up as many plans as were
needed to arrive at the shortest plan. The child was then instructed
to think out loud while planning, and to use a foot-long wooden

pointer to show the path taken to do the chores. Finally, the child
was given a pencil and paper to make notes (optional and rarely
used), and a list of the six chores to keep track of what she or he
was doing.

After the child had indicated completion of a plan by moving the
pointer to the exit door on the map, E asked: "Can you make up a
shorter plan?" If the child answered "yes," the session continued
with the formulation of another plan; the session terminated when the
child believed he or she had arrived at the shortest plan he or she
could formulate. The same procedure was followed for the second
session four months later.

Results

Three principal types of analysis were performed. In the first sec-
tion, we review analyses of plans considered as products, with a
focus on efficiency. In the second section, we consider the types of
plan revisions children made, that is, what were the qualitative
features of the plans that contributed to plan improvement? In the
third section, we examine the planning process, especially in terms of
the types and levels of abstraction of component decisions of the
planning process. In the final section, we integrate the findings for
these analyses by examining the extent to which a child's processes

of plan formulation contribute to the quality of their plans. Unless

otherwise specified, differences are statistically significant for alpha

less than .01 and interactions are not significant. There were no sex
differences revealed for any comparisons.

Product Analysis: Plan Efficiency

Data reduction from the videotaped sessions took place in three

phases. First, the videotapes were carefully transcribed, with se-
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quential notations made of utterances, pointing, and other gesturing.
Then, for analyses of plans as products, we recorded the sequence of
chore acts (moves) for each plan created. Finally, for every plan
created, we calculated thei distances that would be traversed if the
plan were to be executed. The mean number of plans per child was
3.64, and there were no significant group or age differences in this
respect.

The analysis of plans as products involves the distances of the indi-
viduals' plans, and their efficiency relative to the shortest distance
plan for accomplishing the chores. The key variable for efficiency
analyses is "plan route efficiency," calculated as a score (as in Goldin
& Hayes-Roth, 1980):

Route efficiency = 100
(Total distance - Optimal distance) * 100

Optimal distance

We believe the route efficiency score represents the single most
straightforward index of the effectiveness of an individual's planning
efforts in this task. Since not all children created the same number
of plans, we use the first and last plans for analyses.

Route efficiency score significantly increased with age, from first to
last plan within session, and for the mean session route efficiency
score across age groups, which increased from 65 to 80 (out of 100
possible). A better sense of the improvement of scores from first to
last plan within and across sessions may be gleaned from Table 1,
which is displayed in Figure 2. The Logo programming group did not
differ from controls for route efficiency scores, at either age, for any
plan or session. Further analyses for both sessions reveal that,
compared to the younger group, the shortest plans of the older group
were shorter, as were their longest plans. No comparable differences
were found between experimental and control groups. Neither WISC
nor digit span were significantly correlated with route efficiency
scores.

Qualitative Analysis of Plan Improvement Through Revision

We have shown that each age group improved in efficiency from first
to last plan, but how did plan revisions lead to improvements? We

wanted to know what kinds of plan revisions were made, so we need-
ed fine-grained observations that would point to concrete features
that varied across plans, rather than, in the case of strategy analy-
ses, descriptions of general task approaches which might map some-
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what indirectly onto concrete plan features. We will refer to this
approach as a featural analysis.

Table 1

Mean Plan Route Efficiency Scores Across Plans and Sessions

(Study One)

Session 1 Session 2

1st Plan Last Plan 1st Plan Last Plan

mean sd mean sd mean sd mean sd

Logo Programmers

Younger 39.6 (19.6) 70.1 (23.8) 52.7 (37.1) 86.4 (14.6)

Older 76.3 (26.9) 96.2 (12.1) 89.3 (25.3) 107.3 (5.5)

Nonprogrammers

Younger 39.3 (26.3) 46.8 (32.3) 49.5 (26.6) 67.4 (28.3)

Older 55.5 (42.9) 80.5 (23.2) 85.2 (19.1) 100.0 (7.4)

Our aim was not to examine all types of plan revision, but only those
accounting for the bulk of progress made across plans. We derived
such a set by observing many plans and noting the major changes in
plan structure that led to improvements. For the most part, we can
characterize the children's substantive revisions of structure to

improve their plans as resulting from "seeing" the chores differently
over time. These phenomenological shifts, whereby the task and its
elements come to be understood differently from plan to plan, are

characteristic of human problem-solving efforts, and are an aspect of

problem-solving skill that might be expected to improve as a conse-
quence of learning to program. The general importance of such
"reseeings" while solving problems has been extensively documented

by Gestalt psychologists (Wertheimer, 1961) and recent studies of
problem solving in cognitive science (e.g. , Bamberger & Schon, 1982;

DiSessa, 1983; Heller & Greeno, 1979).

More specifically, the initial formulation of our task as the carrying
out of a set of named chores (e.g. , "cleaning tables," "washing

blackboards," "pushing in chairs") is a frame or set for problem

understanding that must be broken for the task to be accomplished

effectively. Performing each named task, in whatever order, is not
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Figus 2
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-a effective plan. Each chore must be decomposed into its component
icts, and the parts must then be reconstructed and sequenced into
an effective all-encompassing plan. The child's understanding of
part-whole relations for the task is thus transformed during plan
revision. To move toward the optimal solution of this planning prob-
lem, a child must reconfigure the chore "chunks" in terms of their
spatial distribution on the classroom map. Major breakthroughs in
plan structuring occur through discovering spatial clusters of chore
acts. Progress in plan structure is thus made through restructuring
the chunks of activities to be accomplished--from a list of named
chores to a list of spatial clusters of chore acts.

The kinds of changes children made are better understood in this
context. There are two major types of plan features, and we have
assigned one point for each of 14 plan features present. There are
nine "chore act clusters," and five plan features that involve "mov-
ables" (such as brushes, watercan, sponge). In all cases, the plar
feature eliminates redundancies in travel that arise when an area in
the classroom is visited twice to do different chore acts that could be
accomplished in one trip. Below, we illustrate the types with an
-example of each (details are provided in footnote 2). For example,
for one chore act cluster, an improved plan occurred when each of
the tables with chairs was visited only once, at which time the table

was washed and the chairs at that table were pushed in, rather than
performing each of these tasks in two separate trips. For one cluster
type involving "movables," major improvements in plan structure
occurred when the sink was visited only after all three movable
things to be returned to that location (sponge, watercan, paint-
brushes) were no longer needed.

Children's plans were then analyzed in terms of these plan features.
We found that mean cluster scores and plan efficiency scores, dis-
cussed earlier, were highly correlated for first and last plans for

both sessions (rs ranged from .66 to .72). The qualitative analysis
of plan clusters was thus related to the quantitative measure of plan
distance. More efficient organization of chore acts into cluster. was
highly correlated to shorter plan distance.

The mean plan cluster score significantly improved for each age group
across plans and sessions, but Logo programmers did not differ from
the control groups on any of these comparisons. The children reor-
ganized their plans into more efficient clusters during the revision
process whether or not they had programmed.

Process analyses. We also wished to compare planning processes
across children and plans. In creating their plans, did our Logo

programmers engage in more advanced decision-making processes than
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the nonprogrammers, even though their plans were not more efficient?
Work by Hayes-Roth and colleagues has led to a detailed syster,: for
coding the levels of abstraction and types of planning decisions made
by adults as they think aloud while constructing plans to carry out
errands in an imaginary small town. Our categories are a subset of
those used by Goldin and Hayes-Roth (1980) and Hayes-Roth and
Hayes-Roth (1979) for categorizing planning decisions made by adults,
supplemented by categories that emerged for this classroom environ-
ment. We examined the process of plan construction by categorizing
each segment of the children's think-aloud protocc.:s in terms of the
type of planning decision being made and its level of abstraction.
Relevant aspects of the system for our purposes will now be brie ".y
reviewed.

The type categories specify different conceptual categories of deci-
sions made during planning. The first three types of decisions
choose plan features; the other two are more strategic in nature,
determining features of the planning process:

1. Plan: represent specific actions the planner intends to take
in the world (e.g., "go to wash the art table this way," while tracing
out a path).

2. Plan abstraction: select desired attributes of potential plan
decisions, noting kinds of actions that might be useful without speci-
fying the actual actions (e.g., "go to closest chore next" or "organ-
ize plan around bunches of chores").

3. World knowledge: assess data (e.g., of chore or instrument
locations, distance, or time) concerning relationships in the task
environment that might affect the planning process (e.g., "the ham-
ster is next to the door" or "the chores are all in a circle") .

4. Executive: determine allotment of cognitive resources during
planning, such as what kinds of decisions to make first, or what part
of the plan to develop next (e.g., "I'll decide what order to do the
chores in before figuring out how to walk").

5. Metaplan: reflect planner's approach to the planning prob-
lem and the methods he or she intends to apply to it, or establish
criteria to be used for making up and evaluating prospective plans.

A complementary analysis of planning decisions codes their level of
abstraction. For "abstractness level" categories, decisions at each
more specific or concrete level specify a more detailed plan than those
at the next higher level of abstraction. Levels for all types except
the "metaplan" are hierarchically organized (see Appendix for de-
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tails). A good planner moves flexibly among both types and levels of
abstraction as she or he constructs a plan (Goldin & Hayes-Roth,
1980). Here we present an example of level stratification for the
"plan" type category described earlier, moving from abstract to
concrete down the list:

Level Definition

1A: Outcome

1B: Design

1G: Procedures

1D: Operations

Determine which chores will be accomplished
when plan is executed (e.g., "I'll definitely do
the hamster and the plants, because they'll
die").

Deteimir! specific spatiotemporal approach to
planned activities (e.g.. "I'll do the chores by
going in a circle").

Determine specific sequences of gross actions
(e.g., "I would do the hamster, and then get
the sponge," without noting path).

Determine specific sequences of minute actions
(e.g., noting the details of the path for a se-
quence of gross actions in the plan).

With the process analysis, we ask whether the organization of the
planning process in terms of the types, levels, and sequences of
planning decisions is different for the programmers than for the
nonprogrammers. Below we survey findings on: (1) frequencies of
different types of planning decisions; (2) decision choice flexibility;
(3) relationships between the amount of "executive" and "metaplan-
ning" activity during the planning process and decision-choice flexi-
bility; and (4) whether students' scores on cognitive style and proc-
essing capacity measures distinguished different planning process
profiles.

Frequencies inin Decisions in Terms of Types

Five types of planning decisions were distinguished. The first three
types- -Plan, Plan Abstraction, and World Knowledge, referred to as
"low level"--cor.zern specific details of planning. The latter two- -
Executive and Metaplan, referred to as "high level"--pertain to higher
level executive or metacognitive aspects of plan decision-making.
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Each student's pr ocol was divided into segments assumed to repre-
sent d'Itividual pl nmg decisions. The mean number of segments for
all pl- _2E9 d was 43.8, whizh did not significantly differ across
groups, plans, sessions, or by age. Most of these planning decisions
were of the Plan type (Session 1 [Si]: 95.7%; Session 2 [S2]: 96.4%).

The overall frequencies of decisions of other types were Plan Ab-
straction (Si: 0.6%; S2: 0.5$), World Knowledge (Si: 1:6%; S2:

1.414), Executive (Si: 1.7%; S2: 1.2$), and Metaplan (S1: 0.4%; S2:

0.5%). "High level type" planning decisions constituted about a of
all the planning decisions the children expressed. The Logo pro-
gramming group did not differ from the control groups on any of the
comparisons for types of planning decisions. Nonetheless, we found
interesting differences in when and by whom such higher level deci-
sions were made.

As for differences in the types of planning decisions made for first
versus last plans by the 32 children, only for session one did we find
that children made significantly more high level-decisions in their
first plans than in their last, and older children produced more
high-level decisions than did younger children. These plan and age
effects dissipated for the second session.

2. Decision-Choice Flexibility

As in planning studies by Goldin and Hayes-Roth (1980), we tried to
determine the degree of flexibility of a child's decision making during
the planning process in two ways: (1) by looking at the number of
transitions a child made between types of decision making while
creating the plan, and (2) by looking at the number of transitions
made between levels of decision making irrespective of the decision
type. For both sessions, the mean number of type transitions per
plan is highly correlated with the mean number of level transitions
per plan. The programmers did not differ from the nonprogrammers
on these indices of decision-choice flexibility.

The mean number of type transitions for the group of 32 children was
2.4. More type transitions were made in the first than in the last
plan, but not significantly so. In session one, older children made
significantly more type transitions per plan (4.0) than did younger
children (1.5).

The mean number, of level transitions for the group of 32 children was
2.7, not differing by plan or by session. For both sessions, older
children made significantly more level transitions per plan (4.0) than
did younger children (1.4).
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L High-Level Planning Decisions a id Decision Flexibility

We find that children who engage in more high-level decision making
during planning (i.e., types 4 and 5) also display more flexible
decision making by shifting opportunistically between different deci-
sion types and levels. High-level decision making during planning
was significantly correlated with both the number of type and level

transitions. Goldin and Hayes-Roth (1980) report similar findings for
adults in their errand-scheduling task.

4. High Level Planning Processes, WISC, and Digit Span

Neither processing capacity (as indicated by digit span) nor cognitive
style (as indicated by WISC Block Design score) were significantly
correlated with the frequency of high-level planning decisions.
Although the mean number of type transitions was significantly corre-
lated with digit span, there were nonsignificant correlations of .3 to
.4 between digit span and mean number of level transitions. WISC

score did not significantly correlate with either mean number of type
or level transitions per plan.

Relating Plan as Product and as Process

How related are the decision-making processes to the effectiveness of
the plan as a product? We find that, for this task, the process and
product measures are weakly related. Neither the plan efficiency
mean score for all plans produced nor the distance of the shortest
plan a child created correlated significantly with any of the high-level
plan process measures; that is, mean number of type transitions per
plan, mean number of. level transitions per plan, or frequency of
high-level (types 4 and 5) planning decisions.

We also tested for a relationship between the frequency, of high-level
planning decisions and mean cluster scores from the feature analysis.
The nonsignificant relationships indicate that children revise their
plans to accomplish the acts more efficiently without necessarily using
(verbally explicit) metaplanning resources. Only for the last plan of
the younger children in the first session are these variables signifi-
cantly correlated (r = .65).

On the face of it, these results suggest that a school year of Logo
programming did not have a measurable influence on the planning

abilitie3 of these students. While we grant that an average of 30
hours of programming is small compared with what professional pro-
grammers or college computer science majors devote to such work, it
is a significant amount of time by elementary school standards. If we
take seriously the claim that writing Logo programs has a positive
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effect on children's high-level thinking skills, we would expect to see
some effect from this amount of effort.

Study Two

Since, in our second experiment, we wanted to look more closely at
potential programming effects on planning skills, we designed a new
task that resembled programming in its deep structural features
(e.g., on-line feedback on the success of planning efforts). These
alterations were constructed with the expectation that, given the
closer analogs between the demands of this task and .hose of com-
puter programming, such planning skills that students might have
developed for the latter domain would more likely be transferred to
the new task context.

Participants

The second experiment took place one year after the first, in the
same school and with the same two teachers. As in the first experi-
ment, half of the children were 8- and 9-year-olds (from combined
classes of third-fourth graders), the other half were 11- and 12-
year-olds (from combined classes of fifth-sixth graders). A major
difference from the first year was that both teachers decided to take
a more directive role in guiding their students' explorations of Logo.

In the classroom with the younger students, this amounted to the
teacher's giving weekly group lessons and demonstrating key compu-
tational concepts and techniques. The older students were also given
more group lessons and required to complete specific assignments. In
both classrooms, however, students were encouraged to develop their
own projects when working on their own at the computer.

Study two followed the same general pre-post design of study one.
The first testing session took place early in the school year, followed
by a second session six months later. Thirty-two students partici-
pated in both sessions of study two (none of whom had participated
in the first study). For the second session only, an additional 32

students were tested in order to produce a more sensitive test for the
planning task analyses. The 32 children tested for the first session
were drawn from four different classrooms (two combined third-fourth
grades: two combined fifth-sixth grades). Four boys and four girls
of each age formed an experbrental g-oup that was learning Logo
computer programming, and four boys and four girls of each age
constituted a control group not receiving the treatment. For the
second session, an additional 32 students were drawn from these same
classrooms. Again, four boys and four girls of each age were se-
lected. Participant selection in both cases was random, with the
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stipulation that equal numbers of boys and girls be selected from each
classroom for each of the experimental and control groups.

Materials

Two different versions of the chore-scheduling task were used in this
study. The first was identical to the chore-scheduling task used in
study one, and was administered early in the school year. For the
second session, a new computer-based, chore-scheduling task was
developed. This task incorporated new design features that made the
task bear a closer resemblance to programming. ,Modifications to the
original task were also made to eliminate problems with scoring that
resulted because stt.dents developed a number of different plans, or
plans that were incomplete. In addition, the new task was designed
to monitor and record automatically each student's performance. This
enabled us to dispense with the use of videotaping to score each
student's performance. And because the computer could provide them
with immediate, meaningful feedback on the adequacy of their plans
after each attempt, students were able to monitor their own perform-
ances.

The new task consisted of four components: (1) an 8i" by 11"
colored diagram of a classroom; (2) a set of six 4" by 6" goal cards,
each depicting one of the six chores to be accomplished (wiping off
the tables, wiping off the board, watering the plant, straightening
the books, pushing in the chairs, and throwing away the trash);
(3) a plan input interface, namely, a microcomputer program that
enabled students working with the experimenter to design and check
their plans interactively; and (4) a graphics interface that enabled
students to see their plans enacted in a realistic representation of the
classroom (see Figure 3).

The plan input and graphics interfaces were computer programs that
created a graphics robot programming and testing environment, or
microworld, within which children could develop their plans. With

these interfaces, the children could "program" a robot using a simple,
English programming language, and then see their plan actually

carried out.

The commands in the robot programming language (RPL) consisted of

a set of six actions (walk to. pick up, put down, wipe off, water,
straighten up), and the names for all the objects in the classroom. A

typical fragment of an RPL program is shown in Table 2. Each

action-object pairing constituted a move in the plan. Each action and
each object were coded to a single key on the computer keyboard.
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Diagram of Classroom Model - Study Two
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As the student talked through a plan while looking at the classroom
diagram and goal cards, the experimenter keyed in each move using
just two keystrokes--one for the action and one for the object. If
the student gave a command that could not be carried out at that
point in the plan (e.g., telling the robot to wipe off the table before
going to pick up the sponge), the computer program immediately
rejected the move and provided a precise context-specific error
message on the screen (e.g., I'M NOT CARRYING THE SPONGE). If

a student indicated that his or her plan was done when there were
actually one or more chores still remaining, the program provided a
message to this effect, and a list of the outstanding chores appeared

on the screen. A message always displayed on the screen informed
students that they could at any time ask to see the list of remaining
chores or review their plan by having it listed on the screen. To-
gether, these features ensured that all the students would develop
runnable, albeit not necessarily optimal, plans.

Table 2

Example Fragment of an RPL Command Program

WALK TO THE SHELF
PICK UP THE SPONGE
WALK TO THE BOARD
WIPE OFF THE BOARD
WALK TO THE WATERING CAN
PUT DOWN THE SPONGE
PICK UP THE WATERING CAN
WALK TO THE PLANT
WATER THE PLANT
WALK TO THE SPONGE
PUT DOWN THE WATERING CAN
PICK UP THE SPONGE...

The second part of the new classroom chore-scheduling task was a
graphics interface designed to provide detailed feedback to the stu-
dent on the adequacy of his or her plan. There were four types of
feedback: (1) a readout of the total time the student's just-completed
plan would take if carried out in action; (2) a representation of a
classroom displayed on a high resolution screen in which a step-by-
step enactment of the student's plan could be carried out under the
student's control; (3) a step-by-step readout of each move the stu-
dent had entered and the time it took the robot to carry out each
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move; and (4) a hard-copy printout of the student's plan that could
be referred to during subsequent planning attempts.

Experimental Design

The original planning task was administered to 32 students at the
beginning of the school year. For the next six months, half of these
students learned Logo computer programming. At the end of the
school year, the original 32 students plus a group of 32 additional
students (half of whom had also been learning Logo) were adminis-
tered the new planning task. Between-participant grouping variables
were: (1) Group (Logo, no-Logo); (2) Condition (feedback, no-feed-
back); and (3) Age (younger, older). For the pretest, the key
within-participant variables were. the same as those in study one.
The key within-participant variables for the second session were:
(1) total time for the robot to carry out each of the three plans;
(2) total time for thinking about what move to make next in each of
the three plans; (3) use of feedback and debugging aids in each of
the three plans; and (4) degree of similarity of each plan to the
others.

Procedure

For the first session, the procedure was identical to that in study
one. In the second session, children were taken individually from
their classrooms to a testing room, where they were seated at a table
in front of two computer monitors (one color and one monochrome)
connected to an Apple computer. The diagram of the room, with the
six goal cards and a picture of the one-armed robot laid out around
it, was placed on the table directly in front of the monitors.

Students were told to imagine that they had a robot who could under-
stand and carry out commands to perform classroom duties. Their
task was to devise a plan for the robot to clean up a classroom in the
least possible amount of time, covering the shortest possible spz.:.ial
path. Students were told that the robot would follow their instruc-
tions to the letter, and that the robot did the chores rapidly but
moved very slowly. Therefore, to make a good plan, they should try
to minimize the total amount of the robot's travel in the room. To

emphasize the need to develop an efficient plan, the experimenter told
each student that the best possible plan was one in which the robot
would complete its task in approximately 15 minutes. Students were
told that each action the robot could carry out would take a constant
amount of time (e.g., picking up or putting down an object equalled
15 seconds) and that the robot moved at a constant speed wherever it

went. They were further informed that the robot had one arm, and
therefore could pick up and carry only one object at a time (e.g.,
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the sponge or the watercan, but not both). To help students remem-
ber all its characteristics, a drawing of the robot with its one arm
and small wheels was kept alongside the goal cards in front of the
students at all times.

As the chores were described, students were shown the goal cards
and the loci of the corresponding chores on the room diagram. The
experimenter then explained that the students should work to come up
with the shortest spatial path for doing the chores, and that they
would have the opportunity to create three plans in order to arrive at
the shortest one possible.

After these instructions were offered, the experimenter pressed a key
to start the program running and initialize the millisecond computer
clock. The purpose of the clock was to record the intervals between
the student's moves (thinking time). This enabled us to determine
how reflective each student was while creating each plan, and where
in the planning process the students spent more time thinking.

-Students were given as much time as they needed to think about what
to do and to call out each individual move. The experimenter typed
each move into the computer, where it was either accepted and added
to the plan list, or immediately rejected and the student told what
was wrong. The computer did all the monitoring and error checking,
and gave the only feedback the child received on how the plan was
developing. The experimenter's role was to explain the purpose of
the task, and then serve as the student's typist without commenting
on the adequacy of individual moves or plans. When all the chores
were completed and the robot was directed out of the classroom door,
the program calculated and then displayed how long the just-entered
plan would take. This estimate was based on the set amount of time
each chore act took to carry out, plus "travel time" calculated by
converting into time units the distance the student's plan required
the robot to travel.

In the feedback condition, as soon as a student completed a plan, a
color image of the classroom appeared on the graphics screen and,
simultaneously, the student's first move was printed on the text
screen. The student was given a hand-held button that, each time it
was pressed, took the program through the plan one move at a time.

As the student pushed the button, a line corresponding to the move
entered was drawn on the room diagram indicating the path the robot
would follow in carrying out the student's plan. Simultaneously, on
the text screen, the specific move the student had entered was
printed out (e.g., WATER THE PLANT), as was an elapsed time
counter indicating the total time needed by the robot to carry out the
plan up to the current move (again based on the distance traveled
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plus the time needed to do each of the indicated actions). Simul-
taneously, the student's plan (minus the commands to check or review
the plan) was printed out one a printer so that, when devising subse-
quent plans, students could see exactly what they had done on their
earlier attempts.

In the no-feedback condition, students created three plans in a row
without benefit of seeing them enacted or printed out. Upon the
completion of each plan, they were simply told how long it would take
the robot to carry it out, and then went directly to entering their
next plan.

For each move of each plan the computer recorded four kinds of data:

o What the move was (e.g., WALK TO THE PLANT).

o Whether the move was legal (e.g., if the command WATER
THE PLANT was issued before telling the robot to pick
up the watering can, the move was recorded, but flagged
as illegal so it would not be added to the plan listing that
the student could see, and was not attempted by the
robot when it carried out the student's plan).

o How long the move would take the robot to carry out.

o How long the student paused to think between the previ-
ous move and the current one.

These raw data were used to create the following set of plan-level
variables:

o Total time: the total time the robot would take to enact
the plan.

o Illegal moves: the number a- times the student issued a
command that the robot could not carry out.

o Check list: the number of times the student asked to
check the list of remaining chores.

Reviewplan: the number of times the student asked to
see the listing of the plan up to its current position.

Total thinking time: the total amount of time that elapsed
between each move.
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o Thinking time by position: the average amount of time
the student paused to think between moves in the begin-
ning, middle, and end of the plan.

O Pauses: the number of times the student paused for 10
seconds or longer between moves in the plan.

Also, the similarity of each plan to the other two was calculated in
the following manner. First, each set of three consecutive moves
(1-2-3, 2-3-4, 3-4-5, etc.) in the first plan was compared to each set
of three consecutive moves in the second plan. Wherever three moves
coincided (e.g., moves 3-4-5 in plan one were the same as moves
13-14-15 in plan two), a cluster of size three was counted. When all
the clusters of size three, had been checked, eAch set of four consec-
utive moves in the first plan was compared to each set of four con-
secutive moves in the second plan. For each match, a cluster of size
four was counted. This process continued until sets of all possible
sizes in plan one (i.e., from sets of size 3 to the total number of
moves in the plan) had been compared to all possible sets of the same
size in plan two. Once this was done, the process was repeated,
comparing plan two to plan three, and then all three plans to each
other.

In order to calculate the degree of overlap or similarity between
plans, the number of clusters of each size was adjusted to reflect the
fact that a cluster of size X was also two clusters of size X-1, three
clusters of size X-2, and so on. Thus, for every cluster of size five
that was located, two clusters of size four and three clusters of size
three were subtracted from their respective totals. Ln this way, the
cluster counts that were finally left reflected the unique number of
sets of each cluster size that overlapped between plans.

Our measure of plan similarity, or percent plan overlap, between one
plan and another was calculated by multiplying the number of clusters
of each size by cluster length, summing these totals, and dividing by

the total number of moves in the shorter of the plans being com-
pared.

Results

The logic of the analyses for study two was somewhat different from

that of study one. In study one, we were interested in characteriz-
ing students' overall planning processes, and the qualitative features
that contributed to plan improvement. Since study one had failed to
distinguish between students on the basis of their programming
background, study two was designed to take a closer look at potential
programming-related effects.
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The original version of the chore-scheduling task was administered as
a pretest near the beginning of the year to verify the comparability
of the treatment and control groups. The plan -route efficiency
scores on this task were subjected to an analysis of variance in which
Age (older, younger) and Group (Logo, no-Logo) were the independ-
ent factors. This analysis indicated that, as in study one, there was
a highly significant main effect. for Plan (E<.000), but not for Group
or Age. While the mean efficiency score for the older students was
higher than that for the younger students (see Table 3 and Figure
4), the difference was not significant.

Table 3

Mean Plan Route Efficiency Scores for First and Last Plans

(Study 2 Pretest)

First Plan Last Plan

mean sd mean sd

Logo Programmers

Younger 32.6 (33.3) 68.1 (22.5)

Older 64.7 (29.0) 78.6 (18.9)

Nonprogrammers

Younger 56.6 (36.1) 68.2 (31.3)

Older 62.7 (16.0) 80.0 (13.0)

Since there were no significant differences in planning scores between
the experimental and control classes prior to the Logo treatment,
subsequent analyses are confined to the second session.

The purpose of this study was to investigate how students who have
been doing computer programming for a school year differ in their
use of planning skills from students without programming experience.
Given our chore-scheduling task, how might programming-related
effects be expected to manifest themselves? We hypothesized that
students with programming experience might differ from their nonpro-
gramming peers in four major respects:

- 31 -

33



100

80

60

Percent

40

20

Plan Route Efficiency - Study Two Pretest

Emerinsntal Control

First Plan
Plans

beerinontal Control

Last Plan

Young

0
Old

- 32 -

34



1. Programmers should be better planners overall, since pro-
gramming provides a rich environment for learning the utility of
planning. Therefore, lengths of plans for the programming students
should be less than those for nonprogrammers (i.e., total time would
be significantly less for programmers).

2. Programmers should make more and better use of the feed-
back available, since programming teaches the utility of debugging
partially correct procedures. This means that programmers should
ask more often to see a listing of their plans (review plan) and refer
more often to the list of remaining chores (check list) than nonpro-
grammers. In addition, in the programming group, differences on
these dimensions between students in the feedback and no-feedback
conditions should be greater than in the nonprogramming group.

3. Programmers, relative to nonprogrammers, should spend more
time early in their first plan thinking over alternative plans (i.e.,
significantly more pauses and longer wean thinking time in the first
third of the first plan). On subsequent plans, their thinking time
should become more evenly distributed across the plan as they con-
centrate on debugging different parts of it.

4. Programmers should seek to improve or debug their first
plan through successive refinements in subsequent plans, rather than
trying a different approach each time. This means that, relative to
the nonprogrammers, the degree of similarity between successive
plans for programmers should increase across plans (i.e., percent
plan overlap should be greater than for nonprogrammers and should
be greater between plans two and three than between plans one and
two).

To evaluate the first hypothesis--that programmers would construct
shorter overall plans- -a repeated-measures analysis of variance was
performed with total time as the dependent variable. Group (Logo,
no-Logo), Condition (feedback, no-feedback), and Age (younger,
older) were then entered as between-subject factors, and Plan (first,
second, or third) as a within-subject factor. As expected, there was
a strong main effect for Age (2.<.000), indicating that older students
produced better plans overall than the younger students. There was
also a significant main effect for Plan (E<.000) . Separate F values
were calculated comparing first plan to second plan, first plan to
third plan, and second plan to third plan. These F values were
evaluated against an F that had been adjusted by the amount speci-
fied by the Newman-Keuls test (Keppel, 1973). This analysis indi-
cated that first plans were significantly different from both second
and third plans, but that the second and third plans did not differ
significantly from each other.
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No other main effects or interactions were significant at the .01 level.
Means for the main subgroups are presented in Table 4 and graphed
in Figure 5. As can be seen, all groups tended to develop better
plans with each attempt. However, even the best group was still
almost 200 seconds above the best achievable time of 900 seconds.
(For comparison, a group of 16 adults with no programming experi-
ence had an average third plan time of 979 secoiids with a standard
deviation of 54 seconds on this same task.)

Table 4

Total Execution Time of Plans (in Seconds)

Plan 1 Plan 2 Plan 3
mean sd mean sd mean sd

Logo Programmers

Feedback:
Younger 1376 289 1197 145 1179 114

Older 1190 150 1095 135 1113 119

No Feedback:
Younger 1430 199 1282 180 1230 151

Older 1120 157 1075 141 1126 164

Nonprogrammers
Feedback:

Younger 1409 141 1235 143 1153 175

Older 1124 137 1167 172 1053 93

No Feedback:
Younger 1228 257 1265 127 1149 143

Older 1283 202 1164 198 1183 194

To evaluate the second hypothesis--that programmers would make
more use of the available feedback aids provided in the planning
environment--separate analyses of variance were conducted for:

(1) the number of times students checked the list of chores to be
done; and (2) the number of times they asked to see a listing of
their "plans. Group, Condition, Age, and Plan were again the inde-
pendent factors. Surprisingly, there were no significant main effects
or interactions for either variable. The reason for the lack of effect
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appeared to be due to students' not using these features of the task
environment. As can be seen in Tables 5 and 6, students in all
groups rarely asked for the feedback that was available to them, even
though there was a message on the screen at all times indicating its
availability. In addition, students in the feedback condition tended
not to spend much time watching their plan enacted on the screen,
nor did they refer to the printed copy of earlier plans when creating
a new plan.

Table 5

Number of Times Students Checked the List of Remaining Chores

Plan 1 Plan 2 Plan 3
mean sd mean sd mean sd

Logo Programmers

Feedback:
Younger .75 .46 .25 .46 .13 .35
Older .50 .53 .25 .71 .50 .76

No Feedback:
Younger .63 .74 .50 .76 .75 .71
Older .13 .35 .25 .46 .13 .35

Nonprogrammers

Feedback:
Younger .38 .52 .50 .76 .35 .13
Older .38 .52 .25 .46 .52 .27

No Feedback:
Younger .50 .76 .13 .35 .00 .00
Older .13 .35 .25 .46 .35 .13

To evaluate the third hypothesis--that programmers would be more
reflective about their plans, and would spend more time thinking in
the first third of the first plan than nonprogrammers--the total

amount of thinking time per plan (see Table 7) and the average
length of time between moves in the beginning, middle and end of

each plan were analyzed (see Table 8 and Figure 6). In addition,
the number of pauses in each plan was compared (see Table 9).
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Table 6

Number of Times Students Asked to See Listing of Plan

Plan 1 Plan 2 Plan 3

mean sd mean sd mean sd

Logo Programmers

Feedback:

Younger .88 .83 .63 .92 .25 .46

Older .38 .74 .50 .76 .63 .92

No Feedback:
Younger .50 1.07 .25 .71 .38 .52

Older .25 .46 .25 .46 .13 .35

Nonproiramrs
Feedback:

Younger .38 .74 .13 .35 .25 .46

Older .50 .76 .25 .46 .50 .76

No Feedback:
Younger .50 .53 .13 .35 .25 .46

Older .38 .74 .50 .76 .50 .76

Table 7

Total Thinking Time (in Seconds) During Plan

Plan 1 Plan 2 Plan 3

mean sd mean sd mean sd

Logo Programmers

Feedback:
Younger 2088 1109 1276 892 1089 821

Older 2049 1076 1535 602 1305 431

No Feedback:
Younger 1726 562 1142 310 902 175

Older 2041 738 1445 1101 994 410

Nonprogrammers
Feedback:

Younger 1808 714 1270 522 1029 348

Older 1248 526 977 542 1160 796

No Feedback:
Younger 1824 315 1013 273 807 230

Older 1717 753 1151 614 1212 873
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Table 8

Mean Thinking Time in Each Third of a Plan

Plan I Plan 2 Plan 3

mean sd mean sd mean sd

Logo Programmers

Feedback:

Younger 1st 6.27 3.94 5.40 6.37 4.95 4.95

2nd 4.94 2.67 2.75 1.47 2.32 1.09

3rd 3.90 2.03 2.49 1.25 1.96 1.10

Older 1st 6.89 4.76 4.85 2.02 4.55 1.89

2nd 5.15 2.83 4.75 3.02 3.27 .82

3rd 3.16 .96 2.34 .93 2.47 1.21

No Feedback:

Younger 1st 5.48 2.07 3.87 1.83 3.08 1.63

2nd 3.81 1.72 2.75 .96 1.83 .71

3rd 2.90 1.15 2.22 .69 2.23 1.11

Older 1st 7.72 3.52 5.05 5.41 2.82 1.31

2nd 4.72 1.54 4.29 3.09 3.08 2.20

3rd 3.27 1.53 2.88 .84 2.13 1.01

Nonprogrammers

Feedback:

Younger 1st 5.83 2.23 4.23 2.95 3.42 1.61

2nd 3.56 1.90 3.11 .84 2.21 1.53

3rd 3.36 .84 2.49 1.00 2.77 1.09

Older 1st 4.40 1.44 3.19 1.59 4.27 2.90

2nd 2.65 .92 2.38 1.06 3.06 2.12

3rd 2.63 1.51 1.93 1.07 2.05 .69

No Feedback:

Younger 1st 7.72 3.11 3.34 1.85 3.12 2.22

2nd 3.40 1.77 2'.34 .59 2.00 .66

3rd 3.09 1.32 2.26 .32 1.64 .37

Older 1st 6.33 2.55 3.81 2.17 4.68 4.29

2nd 3.82 2.77 2.99 2.06 2.30 1.36

3rd 2.79 1.30 2.24 .75 2.88 1.95
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Table 9

Total Number of Pauses (Greater than 10 Seconds) During Plans

Plan 1 Plan 2 Plan 3

mean sd mean sd mean sd

Logo Programmers

Feedback:
Younger 4.38 3.93 1.75 1.91 1.38 1.77

Older 5.63 4.60 3.13 2.53 2.50 1.60

No Feedback:
Younger 4.50 2.56 1.50 1.93 1.00 .53

Older 5.13 2.36 2.25 3.20 1.00 1.41

Nonprogrammers

Feedback:

Younger 4.50 3.63 1.63 1.06 1.50 1.41

Older 2.50 2.73 1.88 2.59 2.13 2.10

No Feedback:
Younger 4.25 1.98 1.25 .89 .75 .46

Older 3.50 2.67 1.75 1.91 2.00 2.00

On total thinking time in plans, the only significant effect was a main
effect for Plan (E< .000 ) . The Newman-Keuls test indicated that
students thought significantly more during their first plan than in
their second or third, but that the amount of time they spent think-
ing in their second and third plans did not differ significantly.
Similarly, the only significant effect involving the number of 10-

second or greater pauses in a plan (Table 9) was a main effect for
Plan (E< . 000) . Post hoc comparisons showed the same pattern: the
first plan was different from the other two, but the second and third
were not different from each other. When thinking time was broken
down into thirds, corresponding to the average thinking time in the
beginning, middle and end of the plan, in addition to the significant
main effect for Plan (E< 000 ) , there was also a significant main effect

for Position ( first , second, or third part of plan; E< . 000 ) , and a
significant Plan by Position interaction (E <. 000) . As shown in Figure
6, students put more thinking time into the beginning third of a plan

than into the middle or end third. They also spent more time think-
ing on their first plan than on their second or third. Thus, while
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the pattern of thinking time for the programmers conformed to what
we had hypothesized, it did not differ as predicted from the pattern
for nonprogrammers.

To evaluate the fourth hypothesis, that programmers would have a
greater tendenc7 to debug plans by successive refinement rather than
trying different approaches on each attempt, the amount of overlap
from plan to plan (plan similarity) was analyzed. As can be seen in
Table 10, the successive plans for all groups tended to overlap from
plr.n to plan between 35% and 55%. A repeated-measures analysis of
variance indicated that there were no significant effects for Group,
Condition, or Plan. Thus, there was no evidence that the program-
mers were more likely to follow a model of plan debugging by succes-
sive refinement than nonprogrammers.

Table 10

Percent Overlap Between Successive Plans

Plans 1 & 2 Plans 2 & 3

mean sd mean sd

Logo Programmers

Feedback:
Younger 56 25 45 18

Older 42 23 42 14

No Feedback:
Younger 54 10 55 15

Older 38 18 52 16

NorRrogranzters

Feedback:
Younger 36 22 37 25

Older 35 14 45 19

No Feedback:
Younger 42 17 54 16

Older 56 21 43 26

In addition to asking whether the programmers produced plans more
similar to each other than nonprogrammers, we were interested in
whether there was any relationship between percent plan overlap
(i.e., refinement strategy) and how good (fast) the plan was.
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Therefore, percentage of plan overlap was correlated with the other
main planning variables. As can be seen in Table 11, there was a
small but significant relationship (r = -.26) between degree of overlap
from plan two to plan three and the execution time of plan three.
However, this was not the case for the degree of overlap between
plans one and two and the length of plan two (r = .03). In general,
it appeared that students who modified previous plans, leaving larger
portions intact, did not develop appreciably better plans than stu-
dents who varied their approaches from plan to plan.

Table 11

Correlation of Plan Similarity with Time for Robot
to Execute Plan (N=64)

1. Similarity Plans 1&2

2. Similarity Plans 2&3 .33**

3. Similarity Plans 1-3 .12 .42* ** --

4. Time of Plan 1 .11 .02 .12 --

5. Time of Plan 2 .03 .03 .08 .16 --

6. Time of Plan 3 -.07 -.26* -.10 .28** .32**

*v.05
**2<.01

***2<.001

Conclusions

We examined the hypothesis that learning Logo programming contrib-
utes to students' planning skills by comparing the activities of groups
of programming and nonprogramming students on several different
planning tasks. In studies one and two, students who had spent a
year programming did not differ on various developmental comparisons
of the effectiveness of their plans and their processes of planning
from same-age controls who had not learned to program. Results
from study two are particularly striking in this respect, since the
computerized planning task was designed to have a strong resem-
blance to programming, including feedback in different representa-
tional media (e.g. , picture of plan in execution, list of moves in
plan) that, because of their planning experience, programmers might
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have used to greater advantage. We made this effort to have the
task resemble programming so that we could observe whether or not
there was a transfer of planning skills, but the programming groups
clearly did not use the cognitive abilities alleged to be developed in
Logo in these tasks designed to tap them.

What do we conclude from these findings? There does not appear to
be automatic improvement of planning skills from learning Logo pro-
gramming. Why? We believe there are two major categories of possi-
ble explanations. First, there are objections to the tasks we have
used and our resultant data. One argument says that these tasks do
not tap planning skills. But the tasks have great surface validity,
and the route efficiency measures in particular were developmentally
sensitive, within and across sessions, and across age groups in
general. Even the adults we tested in the experiment two task were
not at ceiling performance. Thus, the developmental gap between
actual performance and optimal performance could have been influ-
enced by the greater development of planning abilities through pro-
gramming. But whether or not a student programmed did not account
for the variability we found in planning task performances. A second
objection to our planning tasks is that they are not close enough to
programming tasks for the transfer of planning skills from the pro-
gramming domain to have been likely. But this is a moot point since,
in both studies one and two,.. according to the Logo hypothesis,
transfer of the concepts and practices of planning was expected to
occur spontaneously, not because of the resemblance of the target
task to the programming domain.

The second category of explanations concerns Logo programming, and
here we may distinguish among three different kinds of arguments.
First, there are problems with the Logo programming environment
(not the instructional environment) as a vehicle for learning these
generalizable cognitive skills. Second, the quality of learning about
and developing such planning skills with the Logo discovery-learning
pedagogy is insufficient for the development of generalizable planning
skills. This is an objection to the "learning without curriculum" that
Papert advocates for Logo programming. Third, perhaps the amount
of time students spent in the Logo pedagogical environment was not
sufficient for us to see the effects on planning of Logo programming
experience. Children may need more Logo experience of the type
they were getting in conjunction with the Logo discovery-learning
educational philosophy. It should be noted in this context that,
given the current limitations of computer resources and time in

schools, and the rich array of the currently available uses of class-
room microcomputers as tools for problem solving (e.g., as word
processors, database management systems, electronic spreadsheets), it

- 43 -

45



would take a great leap of faith to persist in fostering years of Logo
discovery learning whose effects cannot be demonstrated.

On the basis of these two studies, we cannot tease apart these three
alternatives. Although there may be problems with current implemen-
tations of Logo technology (e.g., Tinker, 1982), we do not see inher-
ent limitations to Logo as a vehicle for developing planning and
thinking skills. From our perspective, the great challenge is in our
second argument, which we consider to be the most likely source of
the lack of planning skill transfer in our studies. Learning how to
plan well is not intrinsically guaranteed by the Logo programming
environment; it must be supported by teachers who, tacitly or
explicitly, know how to foster the development of planning skills
through a judicious use of examples, student projects, and direct
instruction. But the Logo instructional environment that Papert
(1980) offers to educators is devoid of curriculum, and lacks an
account of how the technology can be used as a tool to stimulate
students' thinking about such powerful ideas as planning and problem
decomposition. Teachers are told not to teach, but are not told what
to substitute for teaching. Thinking skills curricula are beginning to
appear, but teachers cannot be expected to create them spontane-
ously, any more than students can be expected to induce lessons
about the power of planning methods from self-generated programming
projects.

At a minimum, what we have demonstrated is that the strong claims
for generalizable cognitive benefits from learning to program in Logo
with the discovery-learning pedagogy need serious reexamination.
In spite of the fact that our studies were conducted in relatively
computer-rich classrooms--with one computer for each four students
(as compared with the current ratio of one computer for every 183

students in elementary schools that have microcomputers [Becker,
19831)--we did not observe the predicted cognitive benefits of greater
planning skills in students learning Logo programming.

Nonetheless, we applaud the widespread interest shown by educators
(especially revealed through Logo use) in helping students to develop
problem-solving skills of a generalizable nature, in contrast to a

previous focus on "fact" learning that characterizes much of the
programming and computer literacy curricula (Pea & Kurland, 1984).
However, if we think that learning general problem-solving skills is
important, these results indicate that we cannot expect this tr happen
spontaneously in the short space of a school year. More generally ,
there is no currently available programming language or computer
environment that can, in itself, without instructional guidance, help
students to develop these advanced thinking strategies, or make them
aware of the broad range of problem riomains to which they might be
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applied. At the current time, learning these skills is a deeply social
affair, and it is by and large through interactions with skilled
teachers that skill in problem solving and planning develops. The
current range of programs to teach thinking skills attests to the
interest in these goals as cognitive objectives of education. With

limited resources, students may come to a deeper understanding of
problem-solving skills from being taught such heuristics rather than
inducing them in a spontaneous learning-discovery environment such
as Logo.
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Footnotes

1It is possible for the route efficiency score to be greater than
100 (a "perfect" score) because of score adjustments due to students'
omitting chore acts and ending up with partial plans. Washing the
paintbrushes was a chore act forgotten by many students, as was
erasing the blackboards before washing them. Extensive forgetting of
chores was rare, and experimental versus control groups did not
differ in the number of omitted chores. To make the total distance of
each plan comparable from one student to the next, an adjustment
method was used to build up each partial plan to a "full" plan, i.e.,
one accomplishing every chore in the task. This conservative adjust-
ment consisted of calculating for each plan for each individual the
"median length of moves" (more meaningful than the mean, since
interchore act distances were sometimes very small or very large).
In order to derive "total plan distance," we added to the student's
partial-plan distance the product of the number of omitted acts and
their value for median move length.

2 The fourteen plan features were nine different "chore act
clusters," and five features involving "movables" (e.g., brushes,
watercan, sponge). For the chore act clusters, improvements in plan
structure occurred when:

1. Clusters 1 to 4. Each of the four tables with chairs was
only visited once, at which time the table was washed and the chairs
at that table were pushed in.

2. Clusters 5 to 7. During the only visit to the art table, five
component acts were dealt with in .a cluster: the table was washed,
the trashpaper and paintbrushes were picked up, and the two nearby
plants were watered (Cluster 7). Cluster 6 included any four of
these acts, and Cluster 5 any three of them.

3. Clusters 8 to 9. Each of the two blackboards was only
visited once, at which time it was erased and washed (Cluster 8 for
one blackboard, Cluster 9 for the other).

For features of plans involving "movables," improvements in plan
structure occurred when:

4. Cluster 10. Going to the sink, both instruments (sponge,
watercan) that would be needed during a sweep around the room were
picked up.

5. Clusters 11 and 12. The sink was not returned to urtil all

three movable things (sponge, watercan, paintbrushes) were no
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longer needed for other component chore acts (Cluster 12). Cluster
11 was returning any two of these three movables at once.

6. Clusters 13 and 14. Instruments at the sink (sponge,
watercan) were picked up once rather than each time they were
needed (e.g., getting the sponge to clean the blackboard, returning
it, getting it to wash the tables). We designate getting the sponge
only once as Cluster 13 and getting the watercan only once as Cluster
14, although neither is literally a cluster of acts.
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APPENDIX

CODING CATEGORIES AND DEFINITIONS FOR PROCESS ANALYSIS

A. Decision Type Categories

The coding categories have been slightly modified from Hayes-Roth
and ;-layes-Roth (1979) and Goldin and Hayes-Roth (1980), but are
comparable on most points. The type categories of analysis specify
different conceptual categories of decisions made during the planning
process. The first three categories of decisions choose plan features,
the other two are more strategic in nature, determining features of
the planning process.

1. Plan: represent specific actions thg planner intends to take
in the world (e. g. , "go to wash the art table this way" while

tracing out a path).

2. Plan abstraction: select desired attributes of potential plan
decisions, noting kinds of actions that might be useful with-
out specifying the actual actions (e.g., "go to closest chore
next" or "organize plan around spatial clusters of chores") .

3. World knowledge: assess data (e.g., of chore or instrument
locations, distance, or time) concerning relationships in the
task environment that might affect the planning process
(e.g., "the hamster is next to the door" or "the chores are
all in a circle").

4. Execiltive: determine allotment of cognitive resources during
planning, such as what kinds of decisions to make first, or
what part of the plan to develop next (e.g., "I'll decide what
order to do the chores in before figuring out a path").

5. Metaplan: reflect planner's approach to the planning prob-
lem, methods they intend to apply to it, or establish criteria
to be used for making up and evaluating prospective plans.

B. Abstractness "Level" (Within T oe) Categories

For the "abstractness level" categories of analysis, decisions at each

more specific or concrete level specify a more detailed plan than those
at the higher level of abstraction. Levels for all the types but
"metaplan" are hierarchically organized. Level stratification moves in
the definition charts from abstract to concrete down the list:
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1. PLAN TYPE

Level Definition

1A: Outcome Determine which chores will be accomplished
when plan is executed (e.g . , "I'll definitely' do
the hamster and the plants" ) .

1B: Design Determine specific spatiotemporal approach to
planned activities (e. g . , "I'll do the chores by
going in a circle" ) .

1C: Procedures Determine specific sequences of gross actions
(e.g . , "I would do the hamster, and then get
the sponge" without noting path).

1D: Operations Determine specific sequences of minute actions
(e.g. , noting the details of the path for a
sequence of gross actions in the plan) .

. PLAN-ABSTRACTION TYPE

Level Definition

2A: Outcome Determine which kinds of chores are desirable
(Intentions) to accomplish when plan is executed (e. g. , "Do

all the important chores" ) .

2B t Design Determine kinds of desirable spatiotemporal
( Scheme ) organizations of planned activities to achieve

outcomes (e.g . , "I'll organize a plan around
clusters of chores" ) .

2C: Procedures Determine characteristics of desirable kinds of
(Strategy) sequencing of gross level individual chore acts

(e.g. , "Pll do the closest chore next" ) .

2D: Operations
(Tactic)

Determine characteristics of desirable kinds of
sequencing of the specifics of individual chore
acts (e.g. , "I'll take the shortest route to the
next chore" ) .
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3. WORLD-KNCWLEDGE TYPE

World knowledge type decisions suggest decisions at the correspond-
ing plan abstraction level, or instantiate decisions at the corre-
sponding plan level.

Level Definition

3A: Outcome
(Chores)

3B:, Design
(Layout)

3C: Procedures,
(Neighbors

or
Instruments)

3D: Operations
(Routes or
Chore Act
Details)

Level

4A: Priority

4B: Focus

4C: Scheduling

Note facts or values regarding specific chores
to be accomplished (e.g., "feeding the hamster
is the most important chore" or "washing black-
boards takes a long time").

Note facts of spatiotemporal organization of a
group of planned activities (e.g., "there are a
lot of things to do by the sink") .

Note facts regarding the world of the chores
relevant to ordering individual chore acts (e.g.,
"the closest chore to where I am now is watering
Plant 1"; "Oh, I have to go get the sponge
first") .

Note facts that relate to the specifics of
performing specific chore acts or travelling from
one chore act to another (e.g., "through the
benches is the shortest way to get to the black-
board" or "I can hold the watercan in r,.y hand
while I'm dc_ng that chore") .

A. EXECUTIVE TY1.1

Definitibn

Establish principles for allocating cognitive
resources during the entire planning process
(..:-...g., "I'll decide what to do before deciding
when to do things").

Indicate what kind of decisions to make at a

particular point in the planning process (e.g.,
"Now I'll figure out the shortest way to get over
to the trashcan").

Resolve any remaining conflicts between compet-
ing decisions that have been made, choosing one
to execute next in the plan of action.
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,

Level

5A: Problem
Definition

58: Problem-
Solving
Model

5C: Policies

5. METAPLAN TYPE

Definition

Define the planner's representation of the task
and its goals, resources, and constraints.

Define the general strategy the planner takes in
making up a solution to the planning problem.

Note a set of global constraints and desirable
features for the developing plan.

5D: Evaluation Define a set of dimensions against which tenta-
Criteria tive plans may be evaluated.
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