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TMR and EMR Children's Ability to Learn

Counting Skills and Principles

. PL 94-142 proposes that every mentally handicapped child has the right to an

appropriate education. However, it is as yet unclear what constitutes an appropriate

mathematics education for trainable and educable mentally retarded (TMP and EMR)

children. In recent years, cognitive psychologists have made significant strides in our

understanding of the mathematical development of normal IQ children. This study

used a cognitive approach to examine the learning of basic counting and number skills

cr principle by TMR and EMR children to better define how these populations should

be trained.

Many authorities (e.g., Hirstmen & Burton, 1979; Dunn, 1963) have argued that

EMR pupils and TMR children, especially, are not capable of meaningful mathematical

learning. On the other hand, recent research (e.g., Baroody & Snyder, 1983; Gelman,

1982; Spred lin, Cotter, Stevens & Friedman, 1974) has demonstrated that such children

are capable of rule-governed as well as rote counting (i.e., oral counting beyond the

first 12 to 20 rotely learned terms), enumerating objects (me of a one-one principle),

the cardinality rule (the last count word uttered when enumerating a set represents

the number of items in the set), the order-irrelevance principle (the order in which

elements of a set are enumerated does not affect the cardinal designation of the set),

and choosing the larger of N and N + 1 pairs (N + 1 N rule). Moreover, Gelman (1982)

found that her subjects with mental ages (MA) greater than (but not less than) 4 In

years (implicitly) appreciated the stable-order principle (count words must be used in

the same order for every count) as well as the one-one principle (one and only one

count tag can be assigned to each item in a set), and the cardinality rule. This

research attempted to extend previous efforts by directly examining the learning

(including the transfer and retention) of basic counting skills. It also addressed such
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issues as (a) whether or not there is a critical MA for such learning, (b) whether EMR

and TMR really (implicitly) appreciate counting principles, and (a) if retardates can

learn more "advanced" skills such as producing a specified number of objects or using

fingers to automatically represent numbers (to make cardinal representations).

Method

A total of 46 ThiRs (14 33 to 50; CA 6 years & 0 months to 14-1) and 74 EMRs (IQ

51 to 78; CA 5-10 to 13-3) from 15 classes in two upstate New York BOCES districts

were administered the counting and number pretest. From the subject pool, 26 TMR

and 24 EMR children who could not successfully produce the count sequence to 40

were paired in terms of oral counting skills and ---to the extent possible -the other

pretest results and randomly assigned to an experimental or a control group. Both

groups received a total of 11 hours of individualized Instruction. Subjects were tutored

3 to 5 times a wee:, for 7 to 8 weeks. Experimental subjects received training on the

counting/number skills for which they were deficientlargely through the use of

counting games adapted from the Wynroth (1975) program. Token reinforcement

procedures were avoided. Control subjects received instruction on IEP objectives not

related to counting. Two EMR subjects were lost due to illness or behavioral

problems. Subjects were individually retested immediately and again three and one

half to four months after the training. Testers were blind to the subjects' group

assignment.

Procedure

Oral counting. On two occassions (1 to 4 days apart), the child was first askel to

count orally and, later, to count as the experimenter pointed at objects (stars affixed

to 5 x 8 cards or candy). If the child stopped counting before 40, the tester prompted

the child by asking what came next and then urged the child to continue. If the child

maintained that s/he did not know, the tester supplied the unknown term, If the child



substituted an invented term for a decade (e.g., "twenty-ten" for thirty), jumped to

decade term beyond thirty (e.g., 1...19, 60"), began repeating previously used segments

(e.g., "L..19, 1, 2, 3"), or began to spew terms (e.g., "L..19, 16, 26, 80, 80"), the child was

asked a check question (i.e., the child was asked what came after the last standard

sequence term given). If the child did not then give a correct response to the check

question, the tester supplied the correct term. The task was terminated before the

child reached 40 if the child was obviously uncomfortable about continuing, after it

was apparent the child had exhausted their standard sequence, or after the child was

supplied two terms and s/he again errored.

Unassisted counts included terms the child spontaneously gmerated or was

prompted to give. For each of the four counts, three unassisted counting scores were

computed: (1) the highest standard sequence term achieved without assistance before

any error was made ("unassisted high"); (2) "unassisted strings of four" score (1 point

for each groin of four standard sequence terms in the correct order; 0 to 10 points

possible); (3) "unassisted correct terms to 40." The latter score was computed by

awarding one point for each term between 1 and 40 mentionedes long as the terms

relative position was observed. For example, out of a possible 40 points each e the

following responses would have been awarded 7 points: "L..7;" "L..6, 8" "I...5, 10, 40."

One point instead of two, was given for two correct but reversed terms (e.g., 1, 2, 3,

4 6 r. 5 points). One half a point was given for unique, consistent, specific

substitutions that permitted the child to continue with the standard sequence (e.g.,

"fiveteen" for fifteen). No credit was given for incorrect substitutions (e.g., 1, 2, 3, 4,

9 6... or ...12, 13, 14, j, 16...). No point was given for a correct standard term that

followei an incorrect insertion (e.g., each of the following responses would have been

scored 3 points: "1, 2, 3, 12, 4;" "1; 29 3, I 10, 4, 5;" "I, 2, !, 10, 3, 4, 5").

Assisted counts Included terms generated after the tester had given a check

question or supplied a term as well as all spontaneous and prompted terms. For each



of the four counts, two assisted counting scores were computed: (1) "assisted strings of

four" score (supplied terms and correct terms in response to a cheek question did not

count toward a string of !cue) and (2) "assisted correct terms to 40." The latter was

scored like unassisted correct terms to 40 except that terms after tester intervention

were included and one half point was awarded for correct respcnses to cheek

questions.

The best two of the four scores in each of the five score categories was averaged

for the data analyses. Only the top two scores were used to better insure accurate

measurement of competence.

Counting Transfer. Transfer was gauged by assessing the subjects' ability to

generate the coup i sequence from 41 to 106. (The experimental training did not involve

counting beyond 40.) A trial was administered on two different occassices. If a child

did not get to 40 on his or her own effort, the tester asked: "What comes after 40

when we count?" A procedure similar to that for the basic counting task was

followed Including the use of prompts and supplied terms. Unassisted and assisted

counting %%ere each scored in two ways: correct terms (0-60 points possible) and

strings of fGur (0-15 points possible). Scoring was done in the same manner as

described for the basic costing task.

Transfer was also gauged on the immediate and delayed post-test by requiring

the children to use their mental number line to produce the number after a given N

(e.g., "What follows 8' when we count"). A total of 12 trials (four involved single

digit responses; two, teens; four, two-digit; and two, decades). If a child responded

incorrectly, the tester later readministered the trial. Two points were given for a

correct response, and one point was given for a correct response on the second

administration of the trial. Thus scores could range from 0-24 points.

Counting by tens. The tester explained, "Would you help "Cookie Monster" [a

muppet] count his coupons. Each coupon is worth 10 cents, so let's count by tens to



find out how much Cookie Monster has. If the child remained silent, the tester

commented, "If we count by tens, what comes after 10, 20...4" One point was scored

for each correct decade between 30 and 100 (0 to 8 pts).

. Enumeration and production of objects. The counting of a set of objects and the

counting out of a specified number of objects from a quantity of objects was gauged in

the context of a store game. There were a total of eight enumeration and eight

production trials presented on two separate occasions. Half the trials for each task

involved small quantities (2 to 5); half large (7 to 10). The tester introduced the task

and first presented a practice enumeration and production trial: "Now we're going to

play the store game. You can be the shopper, and I'll be the storekeeper. Here are

some envelopes [the tester spread out three envelopes in front of the child. How

many envelopes are there? Let's count to see." If the child remained silent or made

no attempt to use 1 - 1 counting, the experimenter said: "Count with me; this is one

[pointing to an envelope]; now you keep going." If the child still did rxrt count the set

or use 1 - 1 counting, the tester finished demonstrating the counting procedure: "This

is two [pointing to the next envelope', this is three [pointing to Um! last envelope'.

Now yoti count them." If the child still did not respond or use 1 -1 counting, the tester

proceeded with the practice production trial: "You can take one envelope to use as a

shopping bag. Take just one envelope." Then the enumeration and production test

trials were administered in alternate order. Production trials were readministered if

the child did not stop at the specified N or simply grabbed a bunch of objects.

The enumeration trials were scored according to the following criterion: 4

points for correct 1- 1; 3 points for a tag error with correct 1 - 1 (e.g., 6 to t), 2 points

for a single partitioning or coordination error, 1 point for two errors (any combination

of tagging, partitioning, or coordination errors), and 0 points for more than two errors

or no I - 1 (see Gelman & Gallistel, 1978, for definitions of the error types). The

enumeration of small and large sets were scored separately (0 to 18 possible points for

each).

Pei
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The production trials were scored according to the following criterion: 2 points

for successfully producing the specified number of objects, 1 point if one or two minor

errors were made (but a 1 - 1 poaneiple was observed) or if the child was successful

when prompted to recount.

Enumeration Transfer. Transfer of the enumeration training was gauged in two

ways on the posttests. First, on two occasions, subjects were given an extra large

enumeration trial (18 blocks and 2 chips, respectively). The procedure and scoring for

the trials was the same as that for the enumeration trials. Hence a child's total score

could range from 0 to 8.

Second, on two accessions, a child was shown a number of objects and asked if

the correct number of items had been presented. Specifically, In the context of a card

game, the child was given 3 cards and asked if s/he had the correct number 3. Other

comparisons were 7 cards where 8 was the correct number; 4 cards where 5 was

correct, and 9 cards where 9 was correct. The child was also asked if a muppet

("Cookie Monster") took the right number of objects (5 sheets ofpaper where 4 was the

correct amount, 8 dots where 8 was correct, 4 sheets of paper where 4 was correct,

and 8 dots where 7 was correct). In each of the four small and four large number

trials, two points were awarded if the child spontaneously made an effort to use 1-1

counting to cheek; 1 pointed if the child did so with prompting (e.g., "How can you find

out if Cookie Monster took the right number of dots?" or "How do you know that you

have the right number of cards " ?). In either case, the child did not have to enumerate

the set correctly to be awarded the point(s). "Skims" (child simply says number words

as his/her glides over the array) or "flurries" (child simply points repeatedly at the

array, but not in correspondence with the number words) were scored as unsuccessful

responses (0 points). Two points were also awarded for each trial in which the child

spontaneously respondid appropriately; one if s/he responded appropriately with

prompt;ng ("Did Cookie Monster take the right number of dots; is he a good or bad



Cookie Monster"!) ki either case, the child had to enumerate the set correctly and

indicate that either the "correct" amount was present (e.g., "Yah he took four papers

[as Cookie Monster should bevel") or not (e.g., "No, bad Cookie Monster," "He took too

many," or "He needs more"). Thus for each trial, a score of 0 to 4 was possible, for

both the small and large number tasks, a total score of 0 to 16 was possible.

Production Transfer. Transfer of the production training was gauged in two ways

on the posttests. First, on two oceassices, an extra large production trial was

administered (12 and 16, respectively.) (Trainft did not involve sets of more than 10.)

The transfer items were administered and scored in the same manner as the production

trials. Thus, a total score of 0 to 4 points was possible for each of the small and large

number tasks.

Second, on two oceassions, the child was asked to create sets in ways that

modeled every day situations. In the context of a card game, the child was asked to

give him/herself or the tester a specified number of cards. The child was also

instructed to take a specified number of objects (paper or dots) as prizes for
himself/herself or a muppet. In all, there were six small and six large number trials.

For each trial, a spontaneous effort to use i-1 counting to produce the required set was

scored as 1 point. The child did not have to produce the correct number of items to

receive this point. For example, if a child spontaneously started to count out objects

but did not stop at the specified value or became distracted and stopped the counting

too early, one point was awarded. An additional ,mint was awarded if the child made

only a minor 1-1 error (e.g., counted out the right number but then included an extra

item, left out a number tag, failed to tag an item), and an additional two points was

awarded if the child produced the correct number of items. Thus the score for each

trial could range from 0 to 3, the total small or large task score could range from 0 to

18.



p ardinali ty Rule. The cardinatity rule was evaluated with four small number

trials and four large number trials. Sets of 1, 4, 7 and 10 were administered in random

order on the first oceassion; sets of 3, 5, 8 and 9 on the seomd. The tester instructed,

"Now we're going to play the 'Hidden Stars' game. Count these stars out loud." The

tester presented the practice trial consisting of two stars and Alen continued: "When

you're done, PR cover them, and you ten me how many stars Pm hiding." The tester

then encouraged the child to count the array, covered the array and asked, "How many

stars am I hiding"? If the child did not resporKI, did not respect the 1 -1 principle, or

gave a tag other than the last tag generated in his/her count, the tester modelled the

correct procedure. The tester used his/her finger to count the stars ("one, two,") and

commented, "So Uwe are ts: stars." The tester then turned the card over and asked:

"How many stars am I hiding? If the child did not respond or responded inetwrectly,

the tester said, "I think I counted two stars. Let's see [tester turned the card over),

Yes, one, two." The experimental trials were then administered. A trial was scored as

correct if a child applied the rule regardless of enumeration correctness. If a child

simply repeated his/her count sequence in response to the how many question, the trial

was scored as incorrect. The child was scored on the number of small and large

number trials separately (0-4 correct possible for each).

Subitizing. Automatic recognition of die patterns three, four, five and six were

evaluated twice on two occasions for a total of sixteen trials. The tester explained:

"Let's play the 'Race Game'." Do you want to be the cowboy or Indian? O.K. Let's

put our men here at the starting line. Pll roll this to see how many spaces your

[figurine) can move, [the tester manipulated a die so that the first practice trial

showed: 2 dots). How many is that?" The tester then instructed or helped the child

move his/her figurine two spaces. The tester then manipulated the die so that the

second practice trial showed (one dot) and the same procedure as above was repeated.

Then, In random order, the experimental trials were presented (the same number was



not presented twice in a row). The criterion for automatic recognition was a correct

label for the die pattern in 3 seconds or less, without counting. A child was considered

able to recognize a number pattern if s/he was correct for the pattern at least 3 of 4

times. A child's score was the number of die patterns s/he could recognize (0 to 4

possible).

Finger representation of 1 to 10. An ability to hold up a specified number of

fingers was evaluated In a "Finger Game." A total of 8 small number and 8 large

number trials were administered on two occasions. The child was instructed: "Now

we're going to play the 'Finger Game. Show me one finger." If necessary, the tester

added: "Hold up one finger." If the child still did not respond, the tester said, "Let me

show you one finger (tester held to first finger of left hand). Now you hold up one

finger." The tester helped the child if necessary. Then in random order the small

number (2, 3, 4, 5) and large number (7, 8, 9, 10) trials were given. The same trials

were presented during a second session. To be successful, a child had to display

automatically (within about 3 seconds) a cardinal representation of the number.

Unsuccessful responses included counting out the specified number of fingers, slowly

showing the fingers, and an inability to represent the number with fingers.

Order-irrelevance Principle. On two occasions, two small and two large number

trials were used to gauge a child's appreciation that starting point and the order of a

count did not affect the cardinal designation of a set. For each trial, the child was

asked to count a set of blocks. For half the small and large number trials, the tester

then pointed to the last item enumerated and asked: "We got N counting this way [the

tester indicated the direction of the subject's count]; what do you think we would get

if we started here [tester pointed to the end-item] and counted the other way [the

tester indicated the opposite direction and covered the array to prevent further

counting)"? For the other half of the small and large number trials, the tester pointed

to the mid-item, after the child's initial count and asked: "We got N counting this way;
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what do you think we would get if we started here [tester pointed to the mid-item" and

counted all the blocks [tester made a sweeping motion over the whole set and covered

the set to prevent further counting'"? Interspersed among the experimental trials

were check trials to prevent or detect a respcmse bias. In the cheek trials, the tester

added one block and said: "You counted N blocks ; 171 add one more; how much is N and

one more altogether?" The number of correct responses to the small and large number

trials were tallied (0 to 4 points possible for each).

,Equivalence. A total of four small number trials and four large number trials

involving matching a set from a sample were administered over two sessions. On each

occasion, the child was first administered two practice trials (sample = choices = 2,

3 and 2: 1, 3, 2). The child was told: Let's play the "Cat (Dog) Game." "'Look at this

eat (dog) -see tow many balls it has (the tester pointed to the sample of the first

practice array). Can you find a eat (dog) down here that has the same number of balls

as this cat (dog)?" If the child was correct, the tester commented: "That's good, this

eat (dog) up here has one, and this eat (dog) down here has one." If the child was

incorrect, the experimenter explained, "This eat (dog) up here has one ball, this eat

(dog) down here has one." The second practice trial was then administered in the same

way. The experimental trials were administered in an identical manner, except that

no feedback (correction) was provided. The experimental trials on the first occasion

were administered in the following order: 4: 4, 3, 5; 3: 4, 5, 3; 8: 10, 8, 8; and 10: 11, 10,

9. The trials on the second occasion were 4: 5, 4, 3; 5: 3, 7, 5; 7: 7, 9, 8; and 9 :10, 8, 9.

Success was defined as 3 or 4 correct matches for both the small and large number

task.

Results and Discussion

A report of the results and their educational and theoretical implications are

described in two sections: (1) Ability Data and (2) 'Training Results. The first section

focuses largely on the pretest results. The second section focuses on the differ nce

(gain) data and evaluates the effectiveness of the experimental training.



Ability Data

On the pretest, an ability to generate the count sequence varied greatly within

the subject pool and in many ways pnrall that of young normal IQ children (see

Table With the exception of one child who used letters on °et ...on, the subjects

used only numbers in their oral counts and thus clearly distinguished between counting

and noncounting words (ef. Fuson, Richards, & Briars, 1982). The subjects occasionally

exhibited rule-governed errors such as substituting "twenty -ten" for 30. This is

e:Aisistent with earlier research (Barood: & Snyder, 1983) that indicated that implicit

rules underlie count sequence production 1 mentally retarded as well as normal IQ

chilnren. Thus, except for the first portion of the sequence, it may be that comting

nt.- -,ot be taught in a rote fasto.cri to the mentally retarded. In other words, it may

be useful to exploit the structure of the number sequence in teaching even low

functioning children to count. Moreover, errors such as substituting "five -teen" for

fifteen, or "tenny-teen" for twenty should be taken as encouraging signs, for they

suggest recognition of a number sequence pattern.

The count sequences of some subject's consisted of an initial conventional

portion, followed by a stable nonconventional segment and a final ncastable

noneonventional "spew" (cf. Fuson & Hall, 1983). Many subjects, however, did not

appear to have a stable nonconventional portion and simply spewed or repeated

previously used portions after exhausting their standard sequence. Fuson et al. (1982)

argue that the production of spews is inconsistent with a stable-order principle (ef.

Gelman, 1982; Gelman & Gallistel, 1978). Moreover, the repetition of terms in

noneonventional segments by many subjects would seem inconsistent with not only a

stable-orde principle but a "uniqueness sc,leme" (an appreciation for the need to

generate a sequence of distinct terms) (ef. bsroody & Price, 1983). These results are

consistent with data on normal IQ children that suggest that a stable-order principle

and a uniqueness scheme may be relatively sophisticated counting notions (Baroody dc
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Price, 1983). Thus it may be helpful to provide mentally retarded children explicit

guidelines concerning these malting principles (e.g., "When we count things, we must

make sure to use a new number for each thing we point to").

On the other hand, it should be noted that these counting principles are very

difficult to evaluate. That is, some of the subjects may have implieitly appreciated

the need for a stably ordered, unique number sequence but, because of the demands of

tie task (e.g., the tester's prompt to give the next number), the child may have

responded incorrectly in order to continue and thus please the tester. Moreover, under

some circumstances a spew or a repeated term is not necessarily in, wistent with

knowledge of a stable-order principle or a uniqueness scheme. A child might implicitly

appreciate that numbers should have a particular order and that each term should be

distinct, but performano_.d factors may limit their ability to observe these principles

when they count. For example, a child may exhaust his standard sequence and not

remember what s/he had previously said in such a situation. As a result, the child may

choose different nonstandard terms an different occasions. Howeveron each

occasion to countif the child appreciates the stable-order principle, s/he will ovoid

repeating standard or nonstandard terms (that s/he remembers using). Thus a spew or

repeated term per se is not inconsistent with a stable-order principle. It is essential to

investigate the nature and reason for a children's spews or repeated terms in order to

pass judgment on their knowledge of their count principles. Needed to investigate

stable-order and uniqueness principles are careful case studies oc studies in which the

child evaluates performances that violate these principles.

The testing also shed some light on the "decade problem"i.e., how children

learn the correct order of the decodes so as to count to 100 by ones. Fuson et al. (1982)

outline three hypotheses concerning how children solve the decade problem: (1)

Children can learn the decades rotely as end items for each series; (2) they can learn

the decade (count by tens) by rote and use it to fill in the count by ones sequence, or
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(3) they can learn that the decades are a modified version of the original 1-9 sequence

and use this knowledge to fill in the ones count. This last hypothesis was illustrated by

one EMR subject who would get to the end of a series (e.g., "...58, 59") and then used

ht.r original sequence to figure out the next decade (e.g., "1, 2, 3, 4, 5; 8--ah six-ty").

This procedure was repeated until she got to 100. Other data at least partially support

the first hypothesis. Some subjects could not count by tens but were able to count up

to 30 (or even 39) but not further. That is, they learned 30 as the end item for the

proceeding series ("...28, 29, 30") and some were able to continue until they got to the

next decade (40), which they had not memorized. In brief, it may be that some

children must rotely learn some of the decades before they see the pattern/rule for

generating the decades ("use the original sequence 1-9 but add -ty"). Thus, for some

children, a combination of hypothesis 1 (or 2) and 3 may be applicable. How mentally

retarded (and normal IQ) children solve the decade problem clearly needs further study

(cf. Fuson et al., 1982).

Gelman and Gallistel (1978) note that coordinating the skills of generating an oral

count and pointing to each item in an array may be especially difficult for

preschoolers when trying to start or end the enumeration process. While there Is some

question as to whether or not normal IQ preschoolers typically make "coorination

errors" (Fuson er Mierkiewiez, 1980), such errors (e.g., not tagging the first or last item

or continuing the number after pointing to the last item) were common in this

TMR/EMR sample. Nevertheless, most of the EMR and TMR subjects could

effectively enumerate small sets (see Table 1), and nearly all made an effort to use a

one-one scheme with at least small number trials. There was little evidence of a "list

exhaustion" scheme (a tendency not to stop the count sequence after the last item of a

set had been tagged), which Wagner and Walters (1982) claim precedes a one-one

scheme. That is, there was clear evidence that even severely retarded children can

learn a "stop rule" (stop the count sequence after the last item of a set is tagged),
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which Wagner and Walters argue develops relatively late. However, longitudinal

research with (mentally retarded) children who initially have no enumeration ability is

needed in order to adequately test Wagner and Walter's hypothesis that a list

exhaustion scheme necessarily precedes a one-one principle developmentally.

Moreover, most (but not all) appreciated the cardinality rulethe special status

of the last count words in the enumeration process. However, use of the cardinality

rule does not necessarily imply a deep appreciation of eardinality. It may simply

indicate that a child has learned to respond to the "How many?" question with the last

tag generated in the enumeration process (Fuson & Hall, 19P3; von Glaserfeld, 1982).

This argument is supported by the observation that a number of subjects, despite little

or no effort to use the correct count sequence or 1-I counting, nevertheless, responded

correctly to the cardinality rule task. For example, given 15 stars one boy counted:

"1...5, 19, 14, 12, 10, 9, 20, 49, 1, 2, 3." In response to the tester's question of how many

stars there were, he responded: "s" Given a set of 10, another boy announced "1, 2, 3,

4 as his roger skimmed over the set; given a set of 7 and 15, he reacted the same way,

announcing "1...8" and "1...U," respectively. In each ease, he responded to the

cardinality question correctly.

Unlike Gelman's (1982) study, however, our results did not indicate that a mental

age of 4 1/2 has special significance. Gelman found that below this MA, her subjects

showed no sign of stable-order, one-one or eardinality principles. We analyzed the

pretest results of 13 subjects who were included in the training study (as either

experimental or control subjects). The results are summarized in Table 2. Nine of

these subjects exhibited no consistency in the terms they chose after exhausting their

standard sequence (scored No in Column 5 of Table 2) , and four exhibited only some

consistency (scored Weak in Column 5 of Table 2). Moreover, only two children tended

to avoid repeating previously used (and easily remembered) terms (e.g., beginning with

1, 2, 3... again, repeating the same term successively, repeating one or more of the
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terms 1 to 9). One of these children did not repeat a previously used terms until he got

to the thirties (1...34, 35, 34 40...), and he repeated a term on only one of four trials.

Because 11 of 13 children tended to spew and repeat terms that they should have

remembered using, it appeared that most subjects with a MA of less than 4 1/2 years

did not appreciate the stable-order principle. However, because of the relative

difficulty of the principle or difficulties in measuring the principle, these results are

not greatly different than those with mentally retarded children of a greater MA (or

normal IQ children of an equal MA).

No direct evidence was collected on a 1-1 principle. Nevertheless, seven children

enumerated 1 to 5 objects with 100% accuracy, two made only a single mina*

enumeration error, and the rest (4) enumerated at least half the sets correctly. These

data suggest that mentally retarded children with very young mental ages can learn to

count objects in a manner consistent with a one-one principle. Moreover, 9 of the 13

consistently used the cardinality rule with small sets (I.e, were correct on at least 3 of

4 trials). While use of the eardinality rule in itself does not imply a very deep

understanding of cardinality, other evidence suggests that at least a few of these

children appreciated the cardinality principle in a meaningful sense. Five were

successful on the order-irrelevance task. That is, they appeared to appreciate that

order in which elements of a set are enumerated in does not affect the outcome (the

cardinal designation of a set). Moreover, seven were able to automatically

represented 2 to 5 on their fingers on at least half the trials. This indicated that they

automatically associated a cardinal term with a particular display of fingera (concrete

cardinal representation). Finally, three children could correct on one half or more of

the small number production trials. That is, they could, with some consistency,

register a cardinal term and count out objects until they reached the target. This

indicates that they mastered what Fuson and Hall (1983) term the cardinal-count

transition, a somewhat more sophisticated cardinal notion than the cardinality rule. In
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sum, there was a range of evidence to indicate that at least some mentally retarded

with in MA of less than 4 1/2 appreciated both the one-cme and eardinality principles.

The difference between our results and Gelman's may possibly be due to the academic

emphasis of our subjects' school programs.

Consistent with earlier findings (Baroody & Snyder, 1983; Strad lin et al., 1974)

producing a specified number of objects was a relatively difficult task. For example, a

number of subjects would begin counting out objects but did not stop after reaching

the specified amount. This has been attributed to a failure to remember the opal of

the task (see Resnick & Ford, 1981). Specifically, "no-stop errors" may be due to a

failure to register or to forgetting the specified amount (registered-deficit

hypothesis). Another possibility is that the child registers (and can later recall) the

specified number but, because the counting process so taxes working memory, the

child fails to match the specified N to the N in the count sequence (matching-deficit

hypothesis).

In addition to no-stop errors made by many jeets, we observed another

interesting production error. Asked to count out a set (N), the child would produce the

incorrect number of items but would label the last item with the specified N. One

TMR boy often made a no-stop error but sometimes ended his count with the correct

tag. For example, asked to give the tester seven play dollars, he responded by

counting out objects with the following tags: "1, 2, :s 4, 5, 8, 7, 8, 9, 7." That is, the

child failed to stop when seven items had been counted out, but appeared to remember

the !mai ("get seven items) and so tagged the last item in the pile "seven." Another

TMR boy regularly made this "end-with-N" error but usually after abbreviating his

count. For example, in response to count out seven dollars, he counted: "19 29 3, 4, 7".

Note that, because these subjects (repeatedly) ended their production process

with the "correct" tag, an end-with-N error cannot be reconciled with a register-

deficit hypothesis. This error is not inconsistent with a matching failure hypothesis.
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In the first example, the child is unable to simultaneously count and match and so fails

to make the match. However, with the last itemfreed of the demands of the

counting process he was again able to recall (focus on) the goal of the task and so

labeled the item "seven." In the second example, the child may have dealt with the

overload on working memory posed by simultaneously counting and remembering the

goal by abbreviating the counting process. That is, the child skipped to the target tag

(N) so as not to forget it. This may account for a number of subjects who could

correctly produce small sets of say 2 or 3 but made an end- with -N error with larger

sets. Alternatively, these "inconsistent" subjects may have simply been trying to

minimize their effort on the more demanding large production trials. That is, to avoid

work they merely gave the tippearance of performing the task and then aid the N the

tester had requested. Because the two 9118R boys described above were unable to

produce either small or large sets and because their solutions to the small number

trials did not save them effort, it does not seem that their end-with-N errors wet?

merely the result of a performance failure (a Type II error).

Though the matching-deficit hypothesis might account for the end-with-N errors

of the two MIR boys described above, we believe that another explanation (a

conceptual-deficit hypothesis) is plausible. It may be that these two mentally retarded

subjects had not achieved a very sophisticatk understanding of cardinality. More

specifically, it may be that these children remembered the specified amount tot,

because of an inability to make what Fuson and Hall (1983) the "cardinal-count

transition" (appreciate that the cardinal term 5 can represent the same thing as the 5

in the count sequence), they have no basis for even attempting to make a match.

Briefly, the pretest results also indicated that an order- irrelevance principle, the

use of fingers to represent 8 to 10, automatic recognition of number patterns and

determining the equivalence of larger sets were relati rely difficult tasks for TMR and

even EMR children (cf. Baroody & Snyder, 1983; Spred lin et al., 1974) (see Table 1).

19
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Again, however, there was a very wide range in performance. For example, a few

EMR children even exhibited elementary reasoning ability on the equivalence task.

After determining the amount of the sample set, several subjects counted the first and

the second non-matching choices and thenwithout counting the last choicecorrectly

concluded that the last choice was the match.

Like Gelman'S study (1982) this evidence suggests that basic counting skills

cannot be taken for granted in retarded populations. Unlike most normal IQ children

who acquire informal skills spontaneously through everyday experienees, many

retarded children may need remedlation of such basic skills as generating the count

sequence, enumerating objects, and a eardinality rulenot to mention more

sophisticated skills such as producing a specified amount ar establishing the

equivalence or nonequivalence of two sets. Unlike Gelman's results, however, a

mental age of 4 1/2 did not appear to be critical for learning these skills. Thus these

results do not support the conclusion that counting training or experience would be

useless for retardates with an MA less than 4 1/2. Indeed, one of the most striking

characteristics of the pretest data was the wide variation in abilities within what

might be thought of as relatively homogeneous groupseven within the elementary

level (6-to 10-year-old) TMR children. In brief, the results underscore the argument

that general labels are not useful for educational planning and that diagnosis needs to

focus on individual assessment of specific skills (e.g., Baroody & Ginsburg, 1982;

Ginsburg & Baroody, 1983).

Training Results

The training was reasonably successful in extending the TMR and EMR st bjects'

oral counting sequence. The TMR experimental subjects improved at a statistically

significant level on four of the five counting scores on the immediate posttest and on

all five counting scores on the delayed posttest (see Table 3, lines 1-5). Indeed, the

TMR experimental subjects not only tended to retain their gains better than their

20
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control counterparts but some appeared to continue to improve after the training,

rather than lose ground between the posttests. The EMR experimental subjects

improved at a statistically significant level on all five immediate posttest counting

snores, but they retained a statistically significant advantage on only two delayed

posttest scores (see Table 4, lines 1-5). The gains by both experimental groups was

accomplished despite the fact that the control subjects continue to receive their

routine mathematics instruction, which typically included oral counting. The better

performance by the TMR experimfmtals might be attributed to their somewhat larger

sample size, older age, and/or greater reliance on individualized instruction.

Moreover, because of the limited pool of EMR children available, several EMR

subjects were included that were scored in the screening as borderline in

cooperativeness. In brief, the results suggest that, in general, short -term, into live

individual tutoring that focuses on count patterns is useful even, perhaps especially,

with TMR pupils.

While the TMR and EMR experimental subjects outperformed the control

subjects on the counting transfer tasks, the differences did not reach statistical

significance (see Tables 3 and 4, lines 6-10). 'Thus, while an analysis of individual cases

indicated that a few TMR and EMR experimental subjects appeared to generalize their

learning, the training vms not generally successful in producing transfer. The data did

indicate that while some subjects were still in what Fuson et al. (1982) call the

acquisition phase of oral counting development, many were in the more advanced

elaboration phase. That is, some subjects could not produce interior terms

independently. Many thoigh could produce contiguous terms without producing the

whole sequence. Moreover some of these subjects could even use the count sequence

to solve mentally simple addition problems. Thus it appears that even TMR children

can learn applications for their oral count sequence, if given enough time and

experience.

21
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Four of the TMR experimental subjects made impressive gains in their ability to

count by tens. Unfortunately, this was not enough to produce a statistically

significant difference (see Table 3, Une 11). Almost half (5) of the EMR experimental

subjects improved their count by tan skillalmost enough to produce statistically

significant results on the immediate posttest (see Table 4, line 11).

While enumeration training with larger sets (6 to 10 objects) was not successful

with TMR children, it had some success in promoting learning and transfer with EMR

subjects (see lines 12-151 Tables 3 & 4, respectively). The training was apparently of

insufficient duration to have an impact on the production of larger sets or its transfer

for either TMR or EMR children (see lines 16-19). This is consistent with previous

research that has shown that the production task is an especially difficult one for

mentally retarded populations. Neverthrless, the fact that some EAR and TMR could

successfully produce up to 20 items suggests that, given sufficient training. this skill

can be mastered by these populations.

There was some evidence of incidental learning (cf. Ross, 1970). A number of

TMR experimental subjects learned to recognize at least a few of the number patterns

on the dice used in some of the training activities, but the gain was not retained (see

Table 3, line 20). A number of EMR experimental subjects also made significant

improvement, but the difference did not reach statistical significance on either

posttest.

Unlike the TMR group, EMR experimental subjects showed some improvement in

their ability to represent numbers 6 to 10 on their fingers (see lines 21 in Tables 3 & 4).

Unfortunately, the gain was not retained an the delayed posttest,. (Training was

hampered in a number of cases because subjects had previously learned to "sign"

numbers. This strongly interfered with their learning to use their fingers to make

either ordinal (sequential) or cardinal representations of numbers.) Both automatic

recognition of die patterns and automatic cardinal representations with the fingers
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may be important means for facilitating the development of more economical addition

strategies later (see, e.g., Baroody & Gannon, 1983; Bley & Thornton, 1981).

Finally, the training did not result in learning the order-irrelevance principle or a

better appreciation of equivalence (lines 22, 23, and 24 in Tables 3 6r 4). Axain, the

training may simply not have been of sufficient duration. Because some sithjects were

competent In these areas, it appears that these concepts are learnable by these

populations.

To address the issue of whetinr or not there might be a critical level of

development for training mentally retarded children, the experimental subjects' oral

counting training results were analyzed in terms of mental age (2 - 11 to 6 - 7), IQ (33

to 71), and chronological age (7 -1 to 16 - 5). As can be seen in Table 5, these factors

were not significantly related to the various counting (gain) scores on Posttests 1 and

2. Moreover, the children with the lowest MA (less than 4 1/2) did not learn at a

significantly less significant level than did children with a greater MA (see Table 6).

Thus, it appears that, if the child's cooperation can be obtained, oral counting training

can be effective with mentally retarded children with relatively low mental ages.

In conclusion, the results on the oral counting training, at least, suggest that

individualized instruction that does not rely on token reinforcement can produce

learning and retention in EMR and even VAR children. Transfer was not demonstrated

but this may have been due, in part, to the brevity of the intervention and the in-

adequacy of the transfer measures. Success of the oral counting did not appear to be

dependent upon mental ageat least for the range included in this study. Clearly,

much research still needs to be done to explore the learning of basic counting and

number skills and principle by the mentally retarded.

23
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Table 1

Performance of Study 1 TMR and EMR Subjects on the Pretest/

TMR (N 26)

Competent Weak Deficient

EMR (N .24)

Competent Weak Deficient

Count 1-13 622 232 152 672 122 122

141.19 422. 352 232 37% 212 422

20-29 312 192 508 25% 172 58%

30-40 02 272 732 02 252 75%

Count by tens 10-40 192 27% 54% 252 122 62%

Count by tens 50-100 4% .122 852 42 21% 75%

Enumeration 1-5 652 35$ 02 54% 46% 02

Enumeration 6-10 272 382 352 292 25% 46%

Production 1-5 38% 15% 46% 46% 292 25%

Production 6-10 19% 23* 58% 29% 21% 502

Fingers 1-5 46* 312 19% 672 21% 12%

Fingers 6-10 12% 42 85% 122 21% 674

Equivalence 1-5 152 382 46% 252 372 37%

Equivalence 6-10 8% 152 77% 12% 25%. 12%

For count by ones, count by tens, and finger representations of numbers:

competent all items correct;

weak 1 or 2 errors;

deficient 3 or more errors.

For enumeration, production, and equivalence:

competent 762 or more of the trials correct;

weak 26 to 75% of the trials correct;

deficient 0 to 25% of the trials correct.

1 Does not include data of subjects who were excluded from Study 1 either because their

skills were too advonced or because their behavior or multiple handicaps precluded

valid testing.
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Table 5

Correlations Setwern MA, IQ, or CA and Each of the Count Scores for Exoerimentals with Eoual Original Ability

Unassisted Nigh

(N m 14) (9 - 19)

Unassisted Correct

Term to 40

(m 12) (10 -26.5)

Unassisted Strings
of Four

(N . 14) [2 - 2.551

Assisted Correct
Terms to 40

(N * 12) (10 - 29.5]

Assisted Strings
of Four

(N w 14) (2 - 6)

Post 1 Post 2 Post 1 Post 2 Post 1 Post 2 Post 1 Post 2 Post 1 Post 2

MA 0.39 0.49 0.09 -0.27 0.42 0.14 -0.30 -0.55 0.28 0.19

0.16 0.07 0.79 0.40 0.22 0.69 0.34 0.06 0.40 0.57

IQ 0.40 0.43 0.08 -0.43 0.095 -0.25 -0.06 -0.24 0.11 -0.13

0.16 0.13 0.81 0.17 0.79 0.55 0.85 0.45 0.74 0.71

CA 0.09 -0.06 0.19 0.20 0.38 0.44 -0.25 -0.39 0.09 0.28

0.36 0.83 0.54 0.54 0.28 0.20 0.43 0.21 0.78 0.40

Note. For each count score the number of subjects included in the analysis is indicated in parentheses. The range in the pretest scores

29

is indicated In brackets. Pretest scores in the upper range that may have been subject to a ceiling effect were not included.
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Table 6

A Comparison of Mean Gain Counting Scores for Experimentals with MA Less Than and More Than 4 1/2

Unassisted Unassisted Assisted Assisted

Unassisted Correct Strings of Correct Strings of

High Terms to 40 Four Terms to 40 Four

Group Post 1 Post 2 Post 1 Post 2 Post 1 Post 2 Post 1 Post 2 Post 1 Post 2

MA(4.5 1.9 5.4 (14=4) 10.3 9.3 (N=5) 1.4 1.9 (N=4) 10.7 9.5 (N=4) 4.0 2.1 (N=4)

MA'>4.5 10.1 10.8 (N =lo) 7.8 7.3 (N=7) 2.2 1.7 (N=6) 12.2 9.3 (14-8) 1.9 1.9 (N-7)

Note. None of the mean differences were statistically significant (Mann-Whitney test).
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