
DOCUMENT RESUME

ED 249 597 EA 017 122

AUTHOR Walk, Decker F.
TITLE The Software Problem.
PUB DATE Jun 84
NOTE 7p.; In "Making Cur Schools More Effective:

Proceedings of Three State Conferences." See EA 017
101:

PUB TYPE Speeche-/Conference Papers (150) -- Viewpoints (120)

EDRS PRICE M7v1/PC01 Plus Postage.
DLISCRIPTORS *Computer Assisted Instruction; *Computer Software;

Curriculum Development; *Economic Change; *Economic
Factors; Educational Economics; *Educational Needs;
Educational Trends; Elementary Secondary Education;
Programing

IDENTIFIERS *Market Analysis

ABSTRACT
This paper addresses the reasons that it is difficult

to find good educational software and proposes measures for coping
with this problem. The fundamental problem is a shortange of
educational software that can be used.as a major part of the teaching
of academie subjects in elementary and secondary schools--a shortage
that is both the effect and cause of insufficient market demand for
more diversified educational software. Related problems include (1)
the time and cost of designing and coding programs, (2) machine
incompatibility, (3) software piracy, (4) locating and reviewing
software, (5) competition by manufacturers for the more lucrative
home market rather than for schools, and (6) problems in integrating
software into a classroom's other activities. Because the software
problem is primarily economic, the principal solution is to provide
economic incent'ves for educational software development. These
include government and private funding of software projects,
collaborative contracts between software firms and educators, and
wise purchasing decisions to help shape the course of production and
innovation. Curriculum design should incorporate highly adaptable
generalized programs, and teachers can develop their own educational
software. The problem will be mitigated only as more organizations
invest more in developing good educational software. (TE)

* Reproductions supplied by EDRS are the best that can be made *

* from the original document. *

THE SOFTWARE PROBLEM

Decker F. Walker
School of Education
Stanford University

U.& DEPAATIMENT OP EDUCATION
NATIONAL INSTITUTE OF EDUCATION

EDUCATIONAL RESOURCES INFORMATION
XCENTER iERIf i

ttus do:Lone-Pt flAS tyre,, ,elifitlyted lito

lek*nres1 hip, the 1erS0.1 in ofeen.qatkral
WWWHWI

of ,I'lenir trey been made to Improve
,1,flodu4 loon ouat.tv

Pot ot u ,,pa.ons stated in thrc din u
rneat .10 not rgftttillairity ,ewesent off *el NIE

povoon (71 WA, V

When the time comes to use computers for something beyond computer
programming and computer literacy, the software problem looms. There

seems to be a great deal of software: simply wading through all the
titles searching for what you want can be a day's work. But try finding ,

some software to teach exactly what you need taught and you will, at least

nine times out of ten, encounter the software problem.

Why is it so difficult to find good educational software? Is there

anything a teacher or school administrator can do to alleviate the
problem? Is it likely to get better in a few years? These are the
questions I will consider in this section. In considering them I will

need to begin with the more basic issue of how computers are usedin
schools.,

Computers in Schoois: Varied Pati.aros of Use

Computers can play a variety of roles in education, ranging from the
most marginal of roles--as a supplementary optional activity for a few

students, to the major role as a "teacher" of a course. Much of the
excitement about computers in education is attached to the idea of the
computer as a "teacher" in its own right--as a Socratic tutor, as a
magnificent diagnostic device locating and remedying students'
misunderstandings, or as the ultimate audio-visual device branching
students through the Library of Congress on personalized learning paths.
But the present reality is that computers play mainly a marginal role in
schools except in computer programming and computer literacy classes and
such vocational courses as typing, accounting, and electronics.

The software problem is relatively mild in these applications because
teachers can use the software developed, for more general purposes, such as
operating systems, languages, word processors, accounting programs, and
the like. But when we turn to important applications of computers to
mainstream academic courses such as English, math, science, social studies
and languages we find the software problem much more severe. We also
find, and it is no coincidence, that use of computers as a major part of
the teaching of these academic subjects is quite rare today.

That the software problem is most severe in mainline academic
subjects is an important clue to some of the origins of tree problem. In

f.hose educational applications where computers are now being widely used- -

computer literacy, programming, vocational applications--generally only a
single piece of software is needed, an operating system, a language, or a
word processor. In the teaching of an academic subject like algebra,
however, perhaps as many as a dozen or more substantial programs will be
needed if the computer is to be useful over the entire course. If we

287

2

multiply number of subjects taught (perhaps an average of 8 per year)

by the number of grade levels (I2) by the number of programs needed per

course (say 10) we see that nearly 1,000 programs are needed simply to

cover the public school academic curriculum with oilly one program per

. topic.

So, even though software seems to be flooding the market - -our files

at Stanford include over 100 catalogs of educational software with more

'than 3,00p titles -- coverage of the software needs in academic subjects

remains spotty. When you consider that most of the items in the catalogs

are concentrated in a few subjects and topics (elementary math drill and

practice, spelling, and computer literacy), it is easy to appreciate the

enormous variety of the demand for software. This variety means that the

market for any single piece of software filling only one of-these

thousands of niches will be smaller than the Market for more generally

useable programs. Until the number of computer-using teachers in the

various subjects increases substantially, the market for software in those

subjects is too limited to justify an investment in producing it. And, so

long as the selection of software is limited, many schools and teachers

will be reluctant to use computers in their teaching. This is the

familiar Catch 22 situation that confronts any innovation, but the

fragmentation of the market into so many niches makes the problem more

severe in the case of substantial applications of computers to mainlihe

academic subjects.

Good Educational Software

Computers have been called "chameleons in the classroom" because they

can be used in so many different ways. Computers used for drill and

practice with individual students seem so different'from the machines used

as an "electronic blackboard" to present animated geometry diagrams or

from the machines used by a small group of students in a simulation game.

The differences are produced by the software: the computer may well be the

same machine in all these applications.

The qualities that make a computer work well for one of these

educational uses may not necessarily be desirable in the others. And this

is another source of the software problem: varied criteria. A piece of v7)

software that does a good job of teaching arithmetic facts through drill

and practice will not satisfy educators who want programs that develop

understanding of number concepts. A program that entertains and motivates

students with color graphics and animation will please those whose

educational philosophy is child-centered and displease those wh.sse

philosophy is more subject centered. Such dtversity of criteria further

reduces the likelihood of finding software that will be generally regarded

as good and increases the number of niches in an already fragmented

market.

Finally, we must recognize how. Aigh are the standards typically used

to judge educational software. Few dispute that computer programs can

teach number facts, but we also know that traditional methods such as

flashcards, can do the same job and much more cheaply. Computers, being

more costly, must accomplish more than traditional methods if their use is

288

3:

to be justified economically. By extension of this line of' reasoning,

-ways must be found to use computers to teach the most difficult concepts
and skills, those wnic6 su4stantial numbers of children now fail to learn
using traditional methods. To develop programs that achieve these high
standards is not an easy task; We certainly cannot expect that anyone

should be able simply to sit down 'and write such programs. They reqUire
thorough analysis, deep thought, and inspired design. .

Current Dimensions of the Software Problem

The fundamentaf'problem is a shortage of educational software that-
can be used as a major part of the teaching of academic subjects in
elementary and secondary schools. The number and variety of programs 4

needed to alleviate this shortage is large, but, as the saying goes, "you
ain't seen nothin' yet." We have yet to consider Several other aspects of
the problem that make it larger and more severe than it seems so far. The

aspects that follow are presented in rib particular order.

1. Development time and cost. The best estimates of the time
required to design and code a computer program range from 100 to 300 hours
per hour of running time. This does not include the time needed to think

up the program ideas. This translates into a development costifor a
program that students might use for one hour of between $2,000 and
$100,000, depending on its sophistication and complexity. By contrast, to
produce text material to occupy a student for an hour is a matter of a few
hundred dollars atmost. And remember that the market for the software is
limited by the number of machines available and the large number of small
niches in the marlriet, much .greater limitations than apply to text
materials..

2. Machine incompatibility. A new form of f4urpny's law: The program

you wantTi only available for a machine you don't have.

3. Software piracy. Software manufacturers are reluctant to invest

in the development of products that will be copied at no charge by the

customer. If one can sell only one copy of a program per school, the
price necessary to recover the investment must be large, between $3C) and

$500 per copy. This, obviously, makes it.prohibitively expensive for a
school to buy enough copies to supply one fn' each computer and therefore
ensures either that the software will only be used as a supplement orthat
it will be illegally copied.

4. Locatin and reviewin .software. Even when good software exists,

finding t an ver y ng nat is goodare nontrivial problems. Indexes

are beginning to appear that list software by subject, grade, and other

useful properties, but at this moment coverage of such indexes is spotty.

A number of journals publish reviews of software, but finding a review of
the program you have in mind remains difficult. What we need are

specialized publications that review programs in a small area with
particular reference to their usefulness in the classroom. Again, we are

confronted with the problem of a plethora of small nicheswhich make- it
uneconomic to provide reviews to such a smallaudience.

289

5. Cam tition for the home market rather than the school. The

number o ns ailed mac nes n ames Tar exce s r in schools,

and individuals buy a total dollar volume of software several times
greater than schools. Software manufacturers can therefore sell to a
larger market by producing for the homes And most of them do. This means
that software is designed primarily for condition's in the home - -one
student per computer, unsupervised use, episodic use with little extended
continuity in the development of skills and ideas.

6. Problems in integratin5 software into the classroom's other
even en a well-designed piece of software WTI not fit exactly

TWErrifiren teacher's plans. Adjustments must be made to accommodate it.
If the software is not modifiable, then all the adjustments must be made
elsewhere, and there are limits to a teacher's willingness to tailor
everything else to one program. And when a teacher uses several programs
in the course of a year, each of which requires a different seteof
adjustments, the problem may become insurmountable. Examples include the
spelling program whose words do not match the teacher's pals, the math
program which introduces skills in a different sequence from the school's
curriculum, and thy' science program which uses a different notation from
that n the textboo4.

All these difficulties translate into a higher cost to provide the
software needed. The cost of equipping a single course in one school with
enough software to be used one hour per week for 30 weeks in a school
year, assuming appropriate programs were available at today's typical
price of $50 per diskette, and an optimittic 'playing time' of three hours
per diskette and -one diskette for each three students in a thirty-student
class, comes to $5,000. This figure is too expensive by a factor of ten.
So long as costs are this high, the market in schools will be thin.

What To Do?

What can be done today to overcome the software problem? The

software problem manifests itself as an economic problem, even though not
all of its causes are economic. The home market for educational software
programs will likely continue to be bigger and richer than the school
market, and therefore software companies will continue to produce for that
market. Eventually, competition forsthat market will make the smaller
niches in the school market relatively more attractive, and we will then
see more production of software specif1011y for schools. In the 4'4

meantime, however, the home market is fit from saturate& so the present
situation is likely to continue for some time.

Only large-scale actions would change this economic situation
substantially. If the government and private foundations could be
persuaded to finance dozens of software projects in educatim,, that would
make a dent in the problem. If districts formed consortia and invested
their own funds in the development of software, that would have a
significant impact.' Million dollar contracts between software development
houses and school districts to develop software collaboratively and share
royalties would have an effect. And the simple growth of a school market
for software will, in itself, stimulate more and better software.

Progress in this fundamental aspect
investment or expenditures or both.
sloWly, the software problem will not
good intentions or hard,work.

the problem requires growth of
this growth fails to come or comes\--'"°

improve, regardless of anybody's
. .

In the present thin market, buyers' decisions have an immediate and
powertul shaping effect on .producers. Tho%e products that 411 will be
widely imitated, while those'that do not will rapidlY disappear' from the
catalogs. Schools can influence the future direction of growth in
software by being discriminating buyers. Buy only programs that give yti,
the most for your money. One measure of the value of a piece of software
is the number of, student -hours of use per.dollar of cost. This figure
ought to be computed in reviews of software pr$qr to every purchase.
Another important quantitative indicator is the)extent of your curriculum
'covered by a program. One that is useful in only 1% of p year's classed
is less valuable than one useful in 10% of classes.

What actions can an individual dchool or district take to cope with
the software problem? One thing that should be done is old-faihioned .

curriculum development. Scope and sequence charts are needed showing just
where what types of computer programs Ean be used and teacher's guides
showing how they can be integrated with the other ingredients of a good
course.

The problem can be eased by extensive use of tool-type programs and
modifiable programs. The Music Construction Set is a program that
transforms a computer into a composer's typewriter. A staff and various
symbols are displayed on the screen and these can be moved around with
keyboard commands or a light pen to compose music which can then be played
by the computer with the press of a button. Suc program can be used
throughout the year in a music class. A spelli 1 'gram which permits
teachers to enter their own words.is much more value. than one with a
fixed word list. Insist on programs that can be used as tools ,by teachers
and students, programs that can be tailored td suit your curriculum.

One type of educational software that is little known in this country
but widely discussed in Europe and Japan can be used to great effect in
academic classrooms. These programs are called "electronic blackboard's,'
programs. One such program, Quadrilaterals, is published by Reader's
Digest. A teacher uses this program on a single computer at the front of
the classroom, with a screen large enough for all students to see. , Using
game paddles, the teacher is free to walk around the room while
controlling the display. The teacher can choose to 0.ave text displayed or
only diagrams. Questions can-be posed for class discussion and then the
animation powers of the program used to show the answer on the diagrams.
The program is used very much like a chalkboard by the teacher, so that no
extensive inservice is necessary to prepare teachers to use it. Such
programs can be extremely cost-effective ways to use computers in the
teaching of academic subjects.

Teaohers can create their own educational software. To do this 'from A
scratch' in Basic or assembly language is a difficult and time-consuming
activity that cannot be expected from teachers working full time. But,
using an authoring system such as Pilot, teachers can develop lessons in

291%,

only slightly more time than'it takes to develop ditto masters or overhead

projection sheets. However, to develop software that is truly Onteractive

and that accomplishes things conventiooal methods cannot remains a high

art, difficult and time-consuming. It might be reasonable to expect a

talented, dedicated teacher working with ad authoring system after school,

weekends, and holidays, to produce two or three)pours' worth of such

programs in the course qf a year, but not more. tiniest your school has an

unusual concentration of thesd rare birds, it is unwise to rely upon

teacher-made computer software for a major part of your courseware. If \\...

you are deterkined to rely on teacher -made software, you might consider

contracting with the most able teacher-developers to-spend a.sOstantial

portion of their time for yeac or so dbvelopfng software. You might

'Agcn consider entering into a consortium with neighboring districts to

?ool the tAlents of your teacher-developers.

It is possible to lease or purchase a complete set of integratedp

softWare designed for school use. Computer Curriculum Corporation, for

example, nes complete computer-adminfiteredvourses in most orthe

subjects of elementel and secondafy schools. "MWny publishers of basal

texts for the elementary school alsb offer computer software designed t

accompany and enhance their text material'. Control.Data Corporati'on's

PLATO system offers a good selection of software.for most school subject's.

These integrated. software systems are expensive, and they are not

tailorable to an Individual or teacher's needs, but they may be

mere cost-effective than assembling your own software from catalogs or

developing teacher-made materials in many instances.

Over a somewhat longer period and on a larger stale, you might

contemplate entering into collaborative arrangements with software '

developers to work on the most pressing software development needs.

Consortia of districts contracting with private developers and involving

local teachers in the development process can be a powerful development

strategy. Collaboration is also possible with professional associations.

Such initiatives put your school into thefsetware development business

and this might be difficult to arrange with your board, but they give you

more control over the software than you get any other way.

In summary, the software problem is serious and can be traced to some

fundamental economic causes that are not easily overcome, but there are

constructive ways to cope with the problem if you are willing and able to

invest the money, time, energy, and initiative. The problem will not go

away in the foreseeable future, in any event, and it will only get

substantially better as more organizations invest more in developing good

edutational software.

-dr

292

7

