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'AN INvEpTIGAtioNOF .1'WO PROCEDURES',.

ECM SMOOTHING TEST; NORMS

: Patricia B. Jones-,.
Darrell Sabers

Uni,yerisitY-:of Arizona
*

Psychometricians- have developed, a variety techniques. for

smooth distribUtions . to nor* and equate teat date.;

Angoff(1971) and. Kolen(1983) have reviewed some of these techniques.
I.

'ot

"creating continuous,

For example, hand 'smoothing Permits:14irect control the-,adherenCe. . Of

but is not: irialt,tical.

nature- and 7 is therefore ill - suited for computer a lications.
the functiOn to the frequency distribution,

TraditiOrial linear interpolation is useful for determining -:

. , . ,

values of a function but is not helpful : in ,fiIiiftioating irregUlarities. . 1 ,
.

caused by sampling error or test unreliability Specifi0 'functions
a

(e.g., logistic and quadratic) haveo been suggested by Marco(1977) . and4.
v.

Lindsay and Orichard(1971) to fit sets of data-i While theie procedures'
tr,,

coo lend themselves to computer applications, one must. assume':that 'cethe'

functional form o f the ecivation satisfactorily fits- the, dabik.
5

Researchers familiar with item response theory are well aware that the

exact form of the function used to fit
:

-s ubstantial controversy.

If the functional for' of the equation is T needed; .ta geneiral
. ,

analytical curve-fitting procedure permitting_ the creation of a_

.

continuous, smooth distribution is .ueeful. Furthermore, it is- ,desirable

to be able to control the smoothness of that distribution by some easily

specifiable parameter. Kolen(1983) hat. found 'cubic spline Mot-hing

procedures to be effective in t4e sm*thing of equiperceritile equating

f unctions. These procedures are very general, however, and can be, used

given aet of date can engender

, :

k
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to smooth

distribution.

variety of functions regardless of the shape

Spline techniques are used in fields as diverse as

shipbuilding (Theilheimer and Starkweather, 1961) and astronomy (Jones,

1973, 1977) but have not bees frequently applied in psychometrics. Two

psychometric uses are found in- their applications in multidimensional

scaling (Winsberg and Ramsey, 1981) and teat equating (Nolen, 1983). If

one :test, is to be equated to another .it may be necessary ::to . create

continuous distribution in order. to approximate ability levels that are

not discrete. Furthermore, smoothing of . score distributions may be

desirable to approximate the distribution of the population from which
;-

scores are assumed to have been sampled. For these applications cubic

spline curve fitting techniques appear to be well-suited:.

Description of Cubic Smoothing Splines

For some time polynomial curves' have been used to create continuous

distributions for sets of discrete data. The primary drawback to such

procedurea is that a substantidi number of terms must be incorporated tp
Afit the obtained, data points. As the number or thede points increases,

so in general dotis, the order",of the polynomial. .Relat_iyely small

changes in ornate values of data points can lead to substantial

changes in polynomial coefficients. Moreover, the need to incorporate

large-order polynomial teima leads to additional cOMpittational

instability. The problems encountered in the use of pOlynemial

approximations therefore tend to °make them a less attractive solution to

curve fitting than might be .expected.

An alternative . procedure out ined in Ahlb Nilson and
. ...

Wellsh (1967) is to connect piecewiae polynomiS1 segmented-such

2

that many
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by the . analyst. This procedure -.Ayes a great ' deal more

ii
.

culRvb fitting since one may connect points with line;:"

hose functional form is relatively simple while maintaining

o fit co'mplex \curN.res. The simplest example of this fitting
,in the use- of continuous piecewise linear line segments for

.

the putpose of interpolation. HoWevere piecewise linear functions are
.-

inaccur for . curvilinear .situatidna, particularly in regions Of

subi3ta curvature such as pi4ght be expected near the extremes of

cumulative frequency distributions.

Although these PiecewiseN pegments. may take on any of a number

functional forms, in practice- piecewise cubic polynomials are frequently

used because they disP1 certain optimal properties such as minimum

curvature (Ahlberg et ail:, 1967) while retaining a relatively simple

form. The minimum curvature property is predicted by' theotem

Holladay and is useful since it avoids the problems of oscillatory.

functions sometimes. -encountered. in fitting a single...Polynomial to./c
large number of data points. 'The entire col'ection

0

f piecewise

functions is called a- spline; the points at which the line segments are

joined are called knots or ducks. Iti order to display the optimal

properties described. above, the piecewise segMents are sutoected to

several restri'ctions., of which is that the first ,and second.

'derivatives must be continuous at, the knots (i.e.,; the values of the
first and second derivatives of the curve must be identical at the knot
regardless of the spline segment on which they are evaluated).

. DeBoor(1978) and Reinach(1967) haye discussed the use of smoothing

splines. In these procedures

polwlomials

spline consisting

fitted to the data as above but a
f piecewise

certain amount



atitud .,ice permitted in the fit of the curve to the d1ata. Whereas the

praCedures _outlined by Ahlberg et al. restrict the ordinate value of the

curve at the knots to the. obtained deita values, the fitted value. is

Thepermitted to 'deviate from these values in smoothing splines.

MY.

.
this departure is controlled by the specification'

smoothing paraMeter 'called E in this paper. A value of E=0 implies'
0

that the cubic aline is simply a spline of Interpolation consisting of

segments of cubic lines joined. at the knots, the procedure 'outlined in

C

Ahlberg et al. A larger 'value of E specifies the extent to which the

'function is allowed to deviate from the obtained data points. -The .

limiting value of E is determined by the total deviation sum of squares

of the data points from 'a straight line fitted to, the data points and in

its limiting. case, the spline simply becomes a straight line.

The spline function S(x) is evaluated by determining Locations

of the knots, x. , representing sc ore points in Ehis paper. *The vslue

of the spline function for a given value x then represents the ordinate

value of the distribution undergoing smoothing (i.e.; percentile rank,,
I

observed frequency, etc.). Using the notation of Ahlberg at al. we have

S(x) = mj-1 (x x''

where h.

x
371

X < X

following equation:

(x - x-i 1)3.
(

6 hj 6 h.- Y3-1 Mi-61 h12
, '''". )(.1 '2S

3 -`---I'j
M h2 x x+ ( yi )( ] -1 )

6 hj

x . , the length of the, interval of interpolation;

and the values of . are deterMined by solving theMj

(1)

0

4
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7 4.

are referred as' as momenta of the spline function and are

a:clad. derivatives of the function evaluated at, the knots. Since the

xi and y . are known in . this application, the entire 'system .. of
3

equations may be solved .through the use-of well-developed, efficient

,recursion techniCiues,

While Holladay's theorem requires that f5x = 'y for, all x
j

o

in practice this restriction is not necessary. Instead one may imp

some minimization requirement on the function: this can .:vire done by
drequiring a least-squares solution for a .spline with fewer knots than

n
data points- or by restricting S' Cy. - SCx . ))Z E.

L.

5;11the spline becomes the smoothing spline mentioned above.

1la 1.1.14.1.o=

The use of spline. functions 'represents an analytical- procedure

.which combines flexibility of form, replicability of cutve-fitting'

techniques, and computational ease' with a subJective element ;Which'

pet-Mita the analygst to control the fit of the curve. Rather than .prior,
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specificaition of several values in a range generally found to
.

. .provide an good. blend of cuive fib. and smoothness may be tried before

choosing the value giving the best results. Compering the smoothed
/

curve and the original 'distribution o the same graph for several values.

of E may assist in the aelection of E. Interpolated values of the spline

function tan be used for computer plotting within the dine program which

calculateri-' the .values of the smoothing function at. the knots.

Deterniinetion of the optimal smoothing range is largely a matter of

experience when tiVe shape of the true distributiabhaft unknown. Reinsch

suggests restricting E to the interval N <" E < N vt2N) where

N represents the number of possible. score's. For an 80 item test, this
'

places E between° 68 and 94. How7ver, as Kolen (1983) points out,

Reinsoh assumed that the ,y j were independent, an assumption not met

when smoothing a curve of cumulative frequencies, for example. In

practice, the optimal value of E' depends on the shape of the curve being
. .

smoothed, the error within the sample (which is in part. a function of

the 4 number of subjects sampled) and the size of the y . . Optimal

values of E will differ for cumulative frequencies and cumulative
NI.

relative frequencies. ,
A e.

The evalUationi of, the spline function can be carried out through

use oe Fortran- callable subroutines a/yailabid through. IMSL(1982)- or by

use of deBoor's (1978) subroUtines SMOOTH, SETUPQ, AND CHOL1D. The

lattEir procedures were used in (the Analyses described in this paper.

They are well- documented, 'appear to be quite robust.; and . easily

modifiable by the user; furthermore they are quite economical and are

easily transported from institution to institution.

In the present study smoothing splines were developed , for ,



distributions of 'Percentile ranks by two methods. In Method 1, the PR

values were determined from cumulative frequency counts of raw score
v. .111111

values -and: then smoothed, creating a continuOui distribution of PR

values. In Method 2, the raw frequencies. were 4moothed to create a

continuous distribution. The area under the curve was then determined

by integrating (1) to obt the following:

0

S(x) dx -1
h.3 Mj-i(xj'j- x0)4

24 24 hi

Mi (x0 _
+ '3-1 "3

24 h3 2

yj_i -'' J--. J ) ( X0 L M- 11- xAM.; 1 h.;2'

) + (yi )( v -. xj-i )2
6 2 hj ' 6

2 h3

C'
,

where xj_i<xo
3

<xi and Mj , 11 -

-1 3
, h , x,' and y are

J

defined as before. When x
0

= x this simply reduces to
3

2s Yj yj_i) hj j hh13.13 S(x). dx =
(M t M3-1.

x3-1 24

(3)

This latter area is essentially the area of a trapezoid with 'a cubic

correction for curvature. After integrating'the'entiie curve, the area

under the curve is normalized to 106. If 0 represents the. lowest

possible, score, X_max
the highest,, and x any sc9re on the interval

0 < x < x , then

.S(x) dx

f)1154&-.

inn

):dX,
a

represents the PR For a subject with a 'score of x.

This paper represents an attempt to explore the behavior, of cubic
.

splines in order. to determine their appropriateness for use in test

norming. Two studies were carried out: : the first explores the

feasibility of the use of spline functions for data obtained in norming
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the Curriculum Referenced Tests of Mastery (CRTM) (Saber/is and Sabers,-,

1984). Because questions were, raised -concerning which, of the tc.it,

smoothing techniques more closely approximated the _population, from. which

the data were sampled, a second Monte Carlo "Study was designed to

generate a theoretical 'population, sample repeatedly from it, and smooth

the results in a comparative study.



Methodology:

Initial explorations

Study One

of the behavior of Cubic 'spline functions were

made using data from the Fall, 1982, administration of prototype

mathematics and reading teats of the CRTM. The prototype tests" were

administered .both on and off-level to samples of 300 to 400 students

.

per teat. Grade levels of booklets and students ranged from first to

eighth- grade. Once the authors were familiar ,with the behavior of cubic
./ I

splines, -splines were used;to smooth 40 distributions .resulting from_the

Winter, \ 1983, adhinistration of'standard..reading and Mathematics tests

On- 'and off-level to samples of 3000 to 4000-students;

The two smoothing procedures described previously were used on the

prototype testa; appropriate values for thit smoothing parameter E. were

determined for each distribution and procedure and the results compared

for ::problems An curve fit. Because the criterion distribution is

unknown,. it is not possible to determine which method better

approximates the true distribution of PR Valuei.

Results and Discussion:
N

Results for Method 1 appeared quite good: small irregularities

PR distributions were effectively removed and with proper attention to

the values of the smoothing parameter, ahooth distributions were

obtained. Values of E which appeared appropriate for the Fall prototype

teats ranged between 1.0 and 50. Discernible differences smoothed

test score distributions were noted only for increments in E of five or

r

more, so relatively few analyses were ceded to obtain a satisfactory

.



distribution in most cases.

Little smoothing was ' requited far the January narming of the'.

standard tests. With -reprOentative 'national samples of over 3000
.

students, PR distributions were quite smooth. For the- !sake' ofr
i

uniformity in reportimi 'norms, all values of E were set to zero (i.e.,

no smoothing, inte/polation -only) and spline functions were used

determine intermediate values for subsequent test equating. .Because

CRTM standard 'test 'norms are often used as a basis reporting .norms

on custom CRTM Testa, it is imperative that PRa be available. for ", han-

integer scores.
1

Two _difficulties arose, when using Method 1 for non-zero valuets of

, k
highE. First, when several anomelously high or low frequencies appear close

together, the spline -function is ineffective in aitoothing out the

/b.

anomaly. Increasing values of E, can cause the smoothing procedure

have minimal impact on red'iona needing smoothing while having greater

impact on regions needing less smoothing. Second, end values of the
.

spline function tended to depart from the aisymptotic values oft 0 and- 100

with increasing values of E, a result of the tendencyf the function to

approach, a least- squares line. Thia resulted in PR values greater than

I.

100 or less than 0,

Method '2 Was developed to solve the problems mentioned above.

Since frequencies, unlike cumulative frequencies, represent independent I

observations, it was, hoped that the impact -of several. anomalous

successive values could be minimized. Although a, slight improvement wee

noted in using Method 2' the problem was not totally solved. A potential

solution to the problem lies in the use of variable length intervals

between data points; i.e., binning data in such a way that the impact of

.

'too-large. or too-small I. frequencies is minimized. Still another f

10 12'
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.Potential) solution lies in the use of ,least-squares aplinea rather than

smoothing aplinea. Subsequent studies are planned to examine the

-procedure's.

. The second problem noted, the non-asymptotic ends of. the .

distribution,. was solved by Ahe second procedure. OCc;asional negative
I

-smoothed frequencies were noted 'near 'the. extremes of the distribution

with the smaller samples in the 'Fell testing; - but this is 'unlikely 'Ito

occur when the number of sub3ects is large. It should also7 be .noted .

that with small, numbers of subjecte and small values of E the spline

function established d in the either procedure is occasionally. not ^

monotonic.

Appropriate values of E for Method 2 were substantially larger than

for the first procedure. Although appropriate values in Method 1 ranged

between 10 and 50 for tests containing 50 to 80 items, the values for

Method 2 ranged between 300 and 700. , This is due in **part to the

substantial differences in the appearance of the curves being smoothed

in each niethOd and these differences are of no consequence rin the

evaluation of the two methods.

Both methods produced very good, usable results. Because the

procedure is analytical, consistent results were obtained in smoothing

data distributions while substantially reducing the time and expense of

smoothing' and interpolating distributions.

*.



Methodology:

4

While cubic splines were found to be an -effective smOothing.

procedure in Study One and while Method 2 appeared t ' give. slightly

better results in [smoothing test data, the goal in smoothing

distribution is ,to remove irregularities to approximate the test - score

.
distribution in the parent _OpUlation. Since nothing- is known about the

parent population except that which can be generali2ed from. a sample, it

is not possible using student sample data to determine. which of the two

methods more closely approximates the actual distribution of test scores

the population. To answer this question, a Monte Carlo study waa

undertaken.

...**The following asaum of true score theory were made:

1. x = t + e, the observed score is the sum of a true score and

an error score.

22. ax? = at
2 + ae

'sthe observed score variance is the sum of true

score variance and error score variance.

3. ae = 1 -Pxx)ax
2 error score variance is a function of observed

score variance and -te t reliability P.

. Distributions of score values were simulated by sampling 400

pairs of randoitt normal de.viates. Setting ut = px = X36 and gt 12, and

letting 21 and 22.. represent. the -pair of random normal deviates, observed,

score values were computed according to the following formula:

at 1-17-13
xxxx

12- cc

.TX
12 zi + 36



Item value% were then_ grOcupe into discrete categories with a -1-

point interval. The resulti* distribution os' then smoothed by the two

methods described .previously and smoothed PR (PR ) values were

compared with the PR values for a normal (PR n
) distribution" with a \

mean of 36 and true-score standard deviation of 12, by calcu sting the

value 'of T, the total fit swror, as/ below:
_

.

T = (PR - PR ) 2.
1=1

114

The amoothii prodedure which yield's the lowest. value,

(5)

T is presumed

to give the closest fit fbr the set of data under consideration. While

this is the procedure actually employed in this study, others could be

used depending on the needs of the analyst.

The values of T are not directly comparable. until optimal smoothing

(minimizing the value' of T) has been carried, out for each smoothing

procedure. To determine . the value of E which minimizes T, IIjSL

-subrout e ZXGSN- was used. The. method employs a golden .section search
Nprocedure (IMSL,. 1982) which assumes that a function has a unique minimum

within the range° of values tinder consideratiOn.- For -- smoothing

procedures local minima rather than a unique minimum value may be

encouhtered. The failure to find a unique minimum results from

differing values of E causing a function to. approximate more closely

the criterion in one region while causing- it to depart . from the
.

criterion in another. HoweVer, since T is compared for the two.'

smoothing procedures, if the procedure, which failed to converge produces

local minimum anywhere for which. T is less than the procedure which

converged, we may assume the procedure with the unknown absolute minimum

yields better results for the given data set. In the present study,
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Method 1 always converged to a minimum. Results for Method 2 were mdre.

variable. Chese results and their. impli-Cations are discussed below.

Valuesrof
Pxx

used in the study were, 1.00, (no measurement error),
. .

0.91 -(reliability comparable\ with that of many well standardized

achieveme testa currently available),' ari 0.74 (permitting

Incorporation of substantial errors of measurement). For each .value :of

xx
,1ifty sampling' distributicfris were established. By specifying the

same initial seed value, the distributiOni were restricted to the sme

ssmplftf values aproakthe three values* of p * . Thus- results foe
xx

4. 1
smoothing the digribUtion -at- omi: 1.00 msy be comi3ared-with..

smoothed ,reamats of the ssme'di$tribution at p = 0.91. : Differing
xx

values of T ,in these distributdons are due to the relative magnitude of

measurement errors.

Rea Bits and Discussion:

''2.47"

Tables 1, 2, and 3 present the values of T and optimal smoothing

values of ,for the two procedures at p
xx

= 1.06, 0.91 and 0.74

respeCtively. For comparisOn with T
1

and T
2

the summed, squared
44

deviations T
0

of the unsmoothed PR.valpes from the PR values for .4

normal istribution are also presented in each taii, in column 6.

These v ry over the three distributions because 15rZhe relative

contribution of measureflient error to'the-procedure. .Asterisks. denote

values of E whiCh failed to converge to a minimum.-

In every c;:e\with either Method 1 or Method 2, the smoothed result

P

better approximates the giVen normal distribution than does the

unsmoothed distribution indicating that the two analytical' Smoothing

procedures are at least partially successful in recovering the

distributiOn from which they were sampled. 'While in some cases the

:
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improvement- may not be substantial; in others overall deviations are

markedly reduced. Figure 1 presents results of one such smoothing at

1.00. Here deviations from the nolal distribution for Method 1 are
k,

represented by a .star; deviations for Method 2' by a triangle and

deviations for they unemoothed distribution by a solid The

Corqesponding values for the. sample (#41) 'for T1 , T2 , and To

representing the summed squared deviationi are 20.89, 19.5'4 and: 65.90

respectively. For this-set of smoothed results, a marked improvement
/.

can .be served fdt either method and the effects of sampling error are
. .

,Clearly diminished.

For Pxx = 1.00 Method 2 yields better 'results than Method

approximately ijIalf the cases 'although in general results from the two

procedures are quite close(see Table 1). This indicates that the exact

smoothing procedure chosen for a highly reliable test may be of less

importance than .the fact of smoothing itself. As the unreliability

the test increases. the superiority of Method "2 to Method 1 in terms Of

minimizing.the error becomes more apparent. When
Pxx

=-0.91, -Method. 2--

gives better -results than Method 1 in 76x of the cases. Xsee Tables' 2).

Although results are generally fairly close (as in Sample #1' for which

T 1: and .T 2 equal 51.90 and 50.89 respectively), sometimes the

discrepancy is greater (as in. Sample #32 for which the corresponding

values. were 96.38 and 84.40). When Pxx
= 0.74 the. discrepancy between

the two procedures becomes more substantial (see Table 3). Method 2 is

r .

clearly eutrior to Method Iin all but four of the cases. In three of

* these four, convergence to an optimal smoothing parameter did not occur

fact, it did not occur in most cases. of Method, .2. at this

reliability). . With. Choice.- of another minimization proCedure it. is

17



possible that lower values of T2

of these values.'

One

would be found for at least some

effect which, stands out Quite sharply is that as test
r--

reliability decreases, the 'smoothing procedure loses its effectiveness

in recovering ,the original, normal distribution. `. Comparison of
1

, distributions for a given .run over the three S'ellabilities shows that,

as expected, the net effect of measurement error is a flattening of the

entire.: distribution of test scores, yielding vlatykurtic

distribution. At the same time, some of the larger sampling anomalies

are smoothed -out. . Therefore, measurement . error in itself has a

smoothing effect.; furthermore, once the distribution systematical'

departs from the original. as happens' when the distribution

flattened, both smoothing procedures lose their efficacy in recovering

the original. distribution. 'For this reason. spline smoothing procedures

cannot be :expected to compensate for poor test reliability.

Meart;ei,rAnkil Standard' deviations of T1' T2., TO, El , and I E
2

are

displayed in Table 4. Sei.ieral conclusions are readily apparent in these

tables.

1. While average sizes of T1 and T2 are close for
XX

= - 1.00,

6

values div...erge as p decreases with 7 <.T1 .

...
xx 2 .

2. The average size of the smoothing parameter tehdlcs to decrease

as reliability decreases regardless' of the .smoothing procedure
r

chosen.

3. As reliability decreases, the use of cubic spline_ 5m.00thing

procedures loses its effectiveness in restoring the shape of the

original distribution.

4. The variances

decreases.

T T
1 _2

18

and TO increase as reliability



. The variances of E
1

and Ej decreaSe as reliability decreaaes.

Theme results, therefore, confirm the conclusions. based on examination

of results of individual. runs presented in Tables 1, 2. and 3.

The failure of the convergence procedure for Method 2 in moat cases

when p = 0.74 should not be considered a. weakness, but rather a .

xx

strength. It can be noted that despite the failure of the minimizatljpe

1procedure to find an dptimal smoothing parameter, Method 2 generally

gave .superior results for the value of E select50. In fact, there

eXistsa range of° smoothing values which can be expected to.yierd'. good.
t ° .

reSults. .Itishould also bknoted that failure tp, converge is a weakness

of the golden section search method, not the smoothing procedure. With

test data, the optimization procedre used in this section could not and

would not be used.

I
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Conclusions

6 . 111/

0

.

'Both studies showed that spline smoothing techniques are a
1

convenient and econordcal procedure for analytiCally smoothing teat

score diatributiona and generally give goOd results. Method 2; the..

method. 'of integration; was developed in response to two problems

/-7.--
encountered in Method 1 -- the occurrence of several successively low o

,

high .values on the curve which proved resistant to smoothing, and the
,

tendency of the ends' of the distribution to _depart from the horizontal.

. .
,..-,

Method 2 improved the ,first problem and .essentially eliminated the

second.'

O

In' the Monte. Carlo study it was found that both smoothing

procedures give similar results for highly. reliable teats (p = 1.00)
xx

but as measurement error increases, .Method 2 is found to give better.

resu'Aa. Neither procedure was completely effective, however, in

V.

restoring the shape of they original distribution once measurement error

had systematically Changed the curve.

Optimal smoothing parameters tended to vary substantially from

sample to sample. jlowever, when -a test is highly reliable, a larger

smoothing parameter may well be necessary,' because the measurement error

'is not present to smooth out the effects of sampling' error. Generally,

Method 2 is quite /robust with respect to .the choice of smoothing

parameter. For Method 1 the choice may be:more-critical and confined to

a rather,narmow range of values.

Because Method 2 generally gave results as good as 'or superior

Method is 'and because it was more robust with rIgard to the choice

smoothing parameter, Method 2 should be used whenever ,.appropriate.

'
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However, either method may be expected to give good results,

particularly when tests are reliable, and both are easy, efficient, and

economical to use.

ti

19
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Table' 1. Deviations from Noe'mal Distribution for Each Smoothing Method
and Comparison Deviations for No `SmoOthing CT1 and T

o
Optimal

Smoothing Parameter Yalu's CE 1 and ,). 0.xx -00.

2

3

it or

5 ,

6

7
8
9

10
11
12
13
14
15
16
17
18
19
2q
21L-2
22
23
24
25
26
27
28
29
30
31
32'
33
34
35
36
37
38
39
40
41'

'

42
43
44
45
46
47
48
49
540

Ti
. ,

Ei T:'
....E

To
83.75 18.56',04" , 84.54 461.825 105.53
85.98 6.31 88.12 206.77 94.73
112.66 29.77 117.61 329.14 146.42
26.56. .54 22.27 265.52. 32.39

.305.63
282.62

6.25
- 32.78

306.4'6
269.72

430.18
'3 69.00 -.

328.16
319.79

50.16 6.23 51.02 341.52 59.48
167.96 G 21.48 173.01 259.08 197.45
5.38.01 87.78 625.96 260.28* 647.39
720.60 71.41 715.21 344.73 798.64
203.79 18.76 224.61 173.89*

N
225.45 ..

383.01 64.68 373.85 314.33 460.87-
581.71 117.84 563.12 382.20 704.10
12.57 11.6.5 12.86 366.16 25.76

479.56 62.66 471.28 334.32 553.58
196.77 9.66 195.11 324.79 209.80
149.83 8.54 145.86 97.09* 160.52
189.95 22.54 192.67 303.80 217.67
230.57 35.65 234.06 460.04 26.7.02

264.44 13.68 258.92 85.25* 282.96
4.66 31.32 3.12 493.78 40.02

196.77 38.00 191.07 454.74 241.31
40.49 45.94 35.73 253.52 93.04
88.50 8.75 86.90 130.42* ,. 100.19
183.80 5.83 183.89 117.07* 191.39
100.47 10.24 94.18 333.62 113.67
151.44 33.01 153.97 51.84 184.57
150.90 . 1,1.32 145.74 306.56 164.09
411.65 115.18 400.84 285.33 530.89
87.04 44.80 84.93 294.82 131.99
68.54 13.44 63.00 366.78 84.65
34.90 20.39 36.75 445.52 58.17

104.60 10.15 . 101.54 310.07 ",,y. 118.87
29.50 18.67 30.42) 224.30 54.57

340.82 21.39 349.51 21.22.4.' 364.06
334.40 37.33 341.98 372.78 373.82
259.01 8.52 360.12 131.10 270.23
74.07 20.81 74.49 357.29

248.43 33.92 2.49.78 304.07
.100.32
-289.81

207.40 48.'75 210.13 401.55 259.59
.
20.89 42.07 19.54- . 495.03 65.90

245.84
352.26

8.66
29.40

219.08
363.99

29.44
137.30

257.57
392.97

50.28 39.76 51.58 486.80 92.84
46.15 2f.96 43.35 a32.14 74.24

110.31 29.70 108.68 375.09 140.84
80.g2 42.60 78.54 ,295.38 131.92
30.47 13°.96 30.64 431.69 47.02
.80.50 7.88 73.3.2 261.90 90.37
102.99., 13.33 97.06 25.02 122.49

-* indicates value of E
2
-which failed

c

to converge to a minimum.
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Table 2. Deviations from. Normal Distribution for Each Smoothing
Method_and Compariaon Deviations for No Smoothing (T , and T );

Optimal Smoothing Parameter Values (E 1 and 82 ). pxlx ----

T1
Ell I T9 E 1 T

1 51.90 33.83 50:89 ,506.g8 .93A39

2 176.72 ' 6.99 174.74 278.85 185.87
3 94.25 10.11 82.16 251.77 106.47
4 2.54.79 7.42 255.11 361.80 265.12
5 279.74 1.6.06 276.85 434.73 305.24
6 297.61. 36.41 263.07 497.51 342.73
7 35.68 23.22 33.49 331.1.4 69.14'

8 2455.40 1_3:25 251.22 296.71 272.55
9 437.60 13.01 403.17 46.22* 455.01

10 374.t9 20.31 386.97 231.98* 398:48
11 118.24 12.18 '116.55 '557.14 131.78
12 .110.48 24.93 108.36 322.78 145.04
'13 23.9.61 35:57 239.27 332.31 2$2.92
14 94.1.5- 7.55 , 93.03 324.60. 1104.24

15 181.83 10.68 175.97 ''' 257.54' ''" 195.79
16 271.59 14.67 272.87 358.98 291.38
17. 83:4.9 17.52 78.28 314.29 107.49
16. '142.417 .. 14.24 138.64 332.05 159.53
19 638.41 18.28 648.31 335.36 ,660.05
20 204.67 25.28 194.57 490.34 239.48
21 99.23 13.42 105.03 83.70*. 115.28
22 129.05 12.66 123.45 330.32 145.77
23 134,43 43:57 134.56 457.45 191.26
24 179.98 7.53 174.31 331.49* 189.87
25 492.85 6.99 471.34 190.41* 502.20
26 124.28 9.21 121.27 225.11 136.47
27 46.69 13.67 45.30 267.55 61.92
28 348.73 23.91 337.90 382.28 376.55
29 241.15 16.20 237.87 342.18 258.99
30 6.26 20.75 4.63 256.42 .28.22

31 176.73 3.39 163.12 , .. 25.87 180.70

32 96.38 13.25 84.40 '332.00 114.54
33 473.62. 6.97 468.61 198.33* 482..66

34 80.91. 9.87 75.40 '193.99 93.63
35 263.61. 7.60 255.47 95.99 273.83
36 1089.95. 42.32 1092.79 .475.63. 1141.47
37 158.10 3.99 157.23 79.36* 162.35
38 53.68 7.97 50,6$ 314.1.9 63.15
39 441.10 11.96 442.34 409.03 .455.24

40 98.56 25.09 , 1p0.00 390.84 130.70
41. 1.07.6i . 25.70 144.00 322.74 182.59
42 482.16 7.80 . 479.04 206.96* 491.73
43 222.93 24.20. 214.52 398.75 .256.55
44 126.83 24.97 125.35 343.91 160.80

45 260.78- 9.26 242.54 51.26 273.13
46 12.27 8.61 . 12.88 256.12 22.17

47 263.33. 34.78 .4265.58 358.89 308.88
48 110.57, 9.74- .1 03.24 403.06 125.26
49 163.16 . 7.65 148.59 310.80 173.00

50 485.48 9.94 488.85 383.97 497.77

* 'indicates value of E
2
which failed to converge to a minimum,
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Table' 3. 1,4Deviationa from Normal Diatribut n for Each Smoothing
Method and Comparison _Deviations for /No S mliootfiing .(T ,T2 , and To
Optimal Smoothing Parameter Values CS

1
and E2 ). pxx = 0.74,:

T E is T2. E2 T
1 241. 166 10.94 226.86. 212.36 254.65
2 548.42 8.80 498.20 138.34* 560.53
3- 635.44 7.21 509.24 34.61* . 645.81
4 993.73 9.54/ 943.37 58.29* 1005.17
5' 913.36 7.73 872.68 ' 183.86* r 925.6

4. .115.47* --6 791.53 8.70 702.23 ,802.89

7 242.01 .11.16 200.21 71.42* 255.47
8 877.74 25.00 , 834.73 71.91* 911.00
9 11-70.78 16.49 1067.33 58:04*- 1193.64

10 610.88 :5.05 577.59 30.79* 617.05
.11 504.86 4.42 479.76 .15.36 5139.55

12 305.66 8.4:7 289.06 111.19*. 318.00 -

13 391:18 8.77 377.0 346.33 40.4.82

14 484.15 2.67 487..68 36.60* 487.91
15 467.11- 8.09 384.54 9.53*. 478.60'
1.6 849.73 6.00 852.49 143.63, 857.29
17 365,89 23.59' 348.40. 476:38 397.76
18 460.66 13.03 413.49 25.08* 479.10
19 960.47 13.53 960.93 404.00 977.07
20 568.97 15.53 484.15 .43.95* 590.65
21 348.88 5.15 303.43 74.93* 354.70
22 567.28 7.20 532:89 37.00* 576.01
23 4 7.15 27.70 429.68 190.73* 485.80
24 13.23 6.61 654.23 37:68* 718.67
25 970.64 4.73 823.31 63.94* 996.56
26 499.23 14.00 494.92 174.17* 518.57
27 338.95 8.35 311.61 43.29* 350.99
28 535.10 11.33 481.71 227.23* 550.85
-29 597.27 13.55 531.90 52.52* 615.38
ao 164.18 8.87 158.55 -272.45 175.91

31 814.95 3.80 725.76 129.74 819.50
32 563.62 6.82 487.20 102.98* 570.83
33 1131.19 8.38 1012.76 59.87* 1141.39
34 465.82 10.24 440.02 171.39*. 480.60
35 818.65 4.39 762.21 98.17* 823.86 k

36 1904.61 21.94 1878.25 223.99* 1938.69
37 467.34 11:00 479.25 188.76* 484.26

38 308.66 7.12 29,0.95 292.54* 318.08.

39 797.37 9.70 763.84 .39.78* 811.00
40 442.70 5.10 399.21. 64.82* 448.82

41 624.= 10.06 553-.88 67.40* 639.14
42 972.38 3.87 889.62 12.41* 976.71
43 562.88 4.66 497.60 105:67* 567.99
44 512.46 4.28 469.98 97.73* 517.56
45 828.46 3.98 744.60 97.54* 833.17
46 340.77 8.17 296.13 67.00* 351.24

47 442.19 14.91 411.16 45.92+,- 462.91

48 574.83 4.49 497.68 117.21* 579.76
49 641.65 2.67 509.34 53.12* 642.94

50 1304.74- 8.02 1233.36 12.44* 1316.71

* indicates value of E2 which failed, to converge to a minimum.
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Table 4.

Square

Rehab!.

Means'and Standard beviationa of Ti-, and To (Spinmed

Errors) and El and E2 (Smoothing Parameter Values)( for Each

pxx

pxx F 1.00
Mean 186.1 186.2 220.4
S D 159.8 - 163.0 - ,179.7

= 0.91
-

pxx Means 227.1 222.7 248.-2
S D 190.7 191.0 193.0

= 0.74
Mean 64147 591.4 654.4
S D 315.3 : 304.6 316.7

T , T2 To

29.8 307.0
25.7; 122.

16.5 305.6
10.1 122.5

9.5 116.4
402,7

n = 50

24 .26

.
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