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One important contribution of psychological science to education has been to
provide concepts and principles for formulating behavioral objectives in much of
the school curriculum. As we achieve greater understanding of cognitive pro-
cesses, the concepts and principles that we develop can be used in formulating
objectives of instruction in more cognitive terms. These objectives are in the
form of cognitive analyses of instructional tasks: Resnick (this volume) sunmma-
rizes several examples of such analyses. This chapter presents two cxamples of
cognitive task analysis in some detail,

The theoretical issuc studicd in this repcarch is the nature of understanding.
The goal that students should acquire understanding of concepts and principles of
mathematics, rather than merely acquire rote procedures., is widely accepted.
However, in comparison to goals involvirg concrete skills such as computational
algorithms, objectives of understanding ‘have not beea formulated in definite,
specific ways. Instructional objectives of the form, **the students should under-
stand [a concept]™ have not been considered sufficiently specific to be assessed
behaviorally and therefore have played ajdecreasing sole in instructional design.

In the research described in this chapter. the goal was to develop definite
theoretical characterizations of understanding in a specific domain of problems.
The general strategy used was to choose some performance that provides persua-
sive evidence of understanding and to develop hypotheses about cognitive struc-
tures and processes that cause the performance to occur. Assuming that the
performance does require understanding. then the cognitive structures and pro-
cesses that bring it about constitute understanding, and hypotheses about those
structures and processes are hypotheses about the nature of understanding. If the
hypotheses are approximately correct, they describe knowledge that constitutes
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understanding. and thus can be adopted as meaningful and definite cognitive
objeetives for instruction.

The rescarch described here involved analyses of performance on two tasks in
the domain of high school geometry. These two analyses illustrate several gener-
al pomnts. First, the analyses provide definite hypotheses about understanding,
lustrating the feasibility of developing such hypotheses for school tasks and
showing the kinds of cognitive objectives for instruction for understanding that
can be obtained from such analyses.

A second point is one emphasized by Resnick (this volume). She notes that
cogaitive scientists have begun to give more attention to processes of acquisition
and instructional intervention, ‘following a period of almost exclusive focus on
apalyses of performance of relatively complex tasks. The examples I discuss here
are consistent with that trend, in that some aspects of acquisition and instruc-
tional intervention are included in the theoretical analyses, along with questions
about characteristics of cognitive structures and processes that constitute under-
standing.

A third point is that analyses of knowicdge structures involved in performing
school tasks can address questions of theoretical interest as well as potential
instructional utility. The examples 1 discuss are concerned with two significant
theoretical issues in the psychology of understanding.

One example considers knowledge for solving problems with structural under-
standing. Important discussions by Judd (1908), by Katona (1940), and especially
by Wertheimer (1945/1959)! distinguished problem solving with understanding
from problens solving of a rote, mechanical nature. Previous discussions have
consisted mainly of examples that illustrate the phenomenon of structural under-
standing in compelling ways. A goal of the analysis presented here is to elarify the
concept of structura! understanding by providing a definite and specific kypothesis
about cognitive structures and processes that constitute this kind of understanding
in the context of a specific problem domain.

The second example considers understanding of a general formal principle
related to solutions of specific problems. This issue has been especially salient in
relation to questions of cognitive development, where Piaget's (e.g.. 1941/1965)
rescarch was interpreted as indicating that young children lack understanding of
important general logical and mathematical concepts. but more recent studies
(c.g.. Gelman & Gallistel, 1978) indicate that significant understanding of those
concepts should be attributed to voung children. A theoretical problem arises
from the obvious fact that this understanding cannot be construed as explicit

'Wertheimer's analysis is the most widely known; indecd it would be appropriate to use the labe!
""Wertheimer's problem’ to refer to the question of leamning to solve problems with understanding. It
is a pleasure to note that the XX11 Intemational Congress of Psychology. for which the initial version
of this chapter was prepared, was held very near in time to the 100th anniversary of Wertheimer's
birth, and near his birthplace as well. Werthcimer was bom 15 April 1880, in Praguc.
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knowledge—for example, preschoolers obviously do not know the concept of
cardinality in an explicit way. The thcoretical problem is how to characterize
understanding of a principle that is not explicit. The analysis presented in the
second example provides a characterization of knowledge that constitutes one
form of implicit understanding of a formal principle.

A fourth general point illustrated in thesc examples is that understanding is
not a uniform cognitive state. There are different knowledge structures that
constitute understanding in different forms. This is important for theory, because
it implies that there will not be a single correct cognitive mode! of the under-
standing of a concept or a procedure. It also is important for educational practicc,
becausc it implies that goals of teaching for understanding must be formulated in
more precisc and differentiated terms than is customary in order to play an
effective role in instruction. The examples presented, involving structural under-
standing and implicit understanding of a general principle, involve related but
distinct forms of understanding. Both are desirable outcomes of instruction, but
adoption of them as instructional objectives would lead to the design of quite
different sets of materials and tasks.

The first example includes thcoretical analyses of alternative knowledge
structures that can be acquired in learning to sclve some proof excrcises that are
included in geometry courses. One alternative has knowledge that constitutes
understanding of a structure of relations in the problem: the other lacks that
understanding. The alternative that simulates knowledge for understanding pro-
vides a definite hypothesis in which problem-solving procedures are integrated
with a general schema for part—-whole relationships. The analysis also provides a
definitc hypothesis about cognitive structures that can cnable such transfer to
occur. In observations reported here, substantial variation was found among
students in their performance on a transfer problem that has the same structure as
a set of problems that the students had previously lcarned to solve. In the model
that was developed to represent understanding of structure. the schematic knowl-
edge that provides the basis of understanding also provides a basis for transfer-
ring problem-solving procedures to novel problems. Thus, the analysis is con-
sistent with the view that ability to transfer knowledge to novel problems
provides evidence that students understand the structure that the problems share.

The second example, involving understanding of a formal principle. analyzes
implicit understanding of the principle of deductive consequence. This is a
metaprinciple in relation to solutions of -proof problems: it constitutes a general
criterion of validity for proofs. Understanding of the principle involves knowl-
cdge about what proofs are. which may be distinct from knowing how to con-
struct correct proofs in specific situations. One form of understanding of deduc-
tive consequence is knowledge of the logical requirements for a deductively valid
inference. Evidence that a student knows these requirements can be obtained ina
task of checking proofs. In this task. the student must distinguish valid proofs
from invalid arguments; thus successful performance requires knowledge of the
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defining features of valid deduction. In the study reported here. we first found
that students taking a high school geometry course did not acquire this under-
standing to a significant degree. Then an analysis was formulated of a cognitive
process that would provide a basis for suecessful performance on the task of
proof checking. This analysis was used in Cesigning instruction that had a benefi-
ctal effect on students” performance on proof checking. and thus. 1 propose. on
their understanding of the principle of deduetive proof.

STRUCTURAL UNDERSTANDING

The analysis of structural understanding that I conducted was focused on pro-
cesses of learning and transfer. Discussions of structural understanding such as
those by Judd (1908), Katona (1940), and Wertheimer (1945/1959) have dis-
tinguished meaningful learning from rote learning of problem-solving pro-
cedures. Meaningful learning occurs when the material that is learned is related
to some general structure or principle. whereas in rote learning the new pro-
cedure or information is simply associated with the specitic probiem situation in
which it is experienced. Evidence for understanding resulting from meaningful
lcarning often is obtained by showing that after meaningful lcarning, individuals
are better able to transfer their knowledge to new kinds of problems.

One of the classical examples of meaningful learning given by Wertheimer is
learning the proof in geometry that opposite vertical angles are congruent. Figure
4.1 shows the problem, along with representations of two ways to think about the
solution. Wertheimer pointed out that children often learn this proof in a mechan-
wal way, represented by tbe equations in Fig. 4.1. memorizing the algebraic
steps. Wertheimer contrasted this. mechanical kind of thinking with a niore
meaningful version, in which the proof is understood in relation to spatial rela-
tionships among the angles. e used a diagram like the one at the bottom of Fig.
4.1 to explain these relationships. The spatial pattern can be scen as a pair of
overlapping structures, cach involving a pair of angles that form a straight line
and containing a shared part.

Empirical Observations

| present some data that illustrate the range of understanding that can occur
regarding problems like Fig. 4.1. The data consist of thinking-aloud protocols
that were obtaincd from six students during the year they studied geometry in
high school. During the ycar, each student was interviewed approximately once a
week. In each interview, the student solved a few geometry problems and
thought aloud as he or she worked on the problems. Thc major use of this sct of
data has been in developing a computational model that simulates the problem-
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Prove: X=2

X+Ye=180

Y +2=180°

XeYoYe2

FIG. 4.1. The problem of vertical angles, with two solutions.

solving performance of the students. The model has been described in other
rcpuris (Greeno, 1976, 1978 Greeno, Magone, & Chaiklin, 1979).

The third interview, which occurred during the fifth week of the course,
included three problems involving the structure of two whole units cach com-
posed of two parts, with one of the parts shared by the two wholes. The first
problem, given to all six of the students, is shown in Fig. 4.2. A sceond problem,
given to four of the six students after they worked on Fig. 4.2, is about scgments,
rather than angles. It is shown, along with its solution, in Fig. 4.3. Finally. the
problem of vertical angles, shown in Fig. 4.1, was given to four of the six
students.

At the time this interview occurred, the students had completed & section of
the geometry course in which they learned to solve proof problems involving
segments. Thus, problems like Fig. 4.3 were review problems for them; in fact
Fig. 4.3 was an example problem in the section that had been completed. They
had begun to learn about angles; concepts such as right angles. adjacent angles,
and supplementary and complementary angles had been introduced. However,
proof problems involving angles had not yet been studied in class. One of the

£
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students was working independently and had donc some proofs involving angles.
For the other five students, problems such as Figs. 4.1 and 4.2 were novel. and
presented tests of transfer of knowledge about solving rclated but distinct prob-
lems, such as Fig. 4.3.

To anticipate results that I describe later, the theorctical analysis is a simula-
tion of lcarning that can occur from example problems involving segments. Two
versions of lcarning were simulated: | refer to these as stimulus-response learn-
ing and mcaningful learning. The difference between the versions is a hypothesis
about the knowledge that enables transfer to occur between problems like Fig.
4.3 and problems like Figs. 4.1 and 4.2.

In both simulations of learning, study of example problems leads to acquisi-
tion of knowledge used in solving problems, consisting of procedures for writing
lines of proof. The simulations differ in the representations of problems that
provide the cues for use of the procedurcs. In the simulation of stimulus— re-
sponse learning, problems like Fig. 4.3 are represented quite specifically; the
cues for writing lines of proof include segments that are perceived in the diagram
of a problem, with features involving the ends of the segments that are needed for
the additivity «f their lengths.

In the simulation of mecaningful learning, a morc abstract represcntation is
involved. The lcarner represents the problem using a schema that identifies
part—whole refations among the objects in the problem. The problem-solving
procedures that are acquired have arguments that are specified in terms of the
slots of the part—-whole schema. This enables the procedures to be used for
problems that have different kinds of objects, providing that the objects in the
new problem can be represented using the schema of part—whole relationships.

For example, in stimulus—response leaming, a procedure is acquired in which
the length of a segment is subtracted from both sides of an equation. This
corresponds to Step 6 of the proof in Fig. 4.3, In meaningful learning, the

Given: L AOB snd 1 COD e right engles FIG. 4.2. A problem used 1o lcsl
Prove: LAOC ™ 80D transfer.
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Given: RORY
AN=OY
Prove: AQ = NY
Statement Assson
1. RONY 1. Given
- . 2. AN=OY 2. Given
FIG. ‘4.3. A problem from previous 3. RN= RO ON 3. Segment sddition (Step 11
leamning for students, and the third 4 OY=ON+NY 4. Segment sddition {Step 11
example problem for simulation of 5. AO+ON=ON+ kY 5. Substitution (Siep1 2.3, 4)
leamning. 6. A0=-NY 8. Subtraction property [Siep §)

procedure lcarned from Step 6 involves subtracting a part that is shared in two
whole units from each of them. The conditions for applying the procedure
acquired in stimulus—response learning include the existence of segments,
whereas the conditions for applying the procedure acquired in mezningful learn-
ing include objccts designated as parts and wholes. Thus, the procedure acquired
in meaningful leaming is potentially applicable in a new problem involving
angles, whereas the procedure acquired in stimulus—response learning cannot be
applied unless there are segments in the problem.

The protocols that were obtained provided an impressive range of perfor-
mance. Some of the students gave quite clear evidence that their representations
of the problems included the part—whole relationships that provide the basis for
transfer from segment problems like Fig. 4.3 to angle problems like Figs. 4.1
and 4.2. Other students gave quite clear evidence that these genceral relationships
were not included in their representations. A summary of the six students’
performances on Fig. 4.2 is in Table 4.1. Two students, S3 and S5, gave proofs
that secmed to result directly from use of the overlap—part—wholc schema de-
scribed previously. These proofs were not correct technically: they involved
subtraction of the shared angle £BOC before statenients about addition of angles
were included. This property of the crrors is consistent with the hypothesis that
the schema was used, becausc the subtraction procedure is a salicnt component
of the schematic knowledge. For a correct proof, some lower-level operations
have to be performed first, and it is plausible to expect that the schema would
lcad students to think of the top-lcve! operations earlicr, and this would lcad to
the kinds of crrors that S3 and S5 committed. Both S3 and S5 gave correct
solutions to the segment problem (Fig. 4.3) and remarked about the similarity of
that problem and Fig. 4.2.

Two students, 82 ana $6. gave correct proofs but did not provide evidence of
using the schema. $2 was the student who was working independently and had

i0
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worked on proofs about angles. There was no evidence in $§2°s protocol that the
schema was used. S6 worked out a proof that involved an analogy to proofs for
scgment problems, but it apparently was based on the substitution procedure
rather than the structure of part—whole relations. $6 seemed to realize that if
cxpressions involving addition could be found, they could serve as arguments in
a procedure that involves substitution, and solved the problem by finding those
EXpressions,

A fifth student, S4, may have used the overlap-part—whole schema for repre-
senting the problemi, or at least was aware of the gencral similarity of the
structure of Fig. 4.2 and problems with scgments. S4 mentioned subtraction as a
component of the solution and asked whether the "definition of betweenness’
should be used. **'Definition of betweenness'™ was the name given in the course
text for addition of lengths of segments, and S4°s usc of this rather awkward term
provided evidence of appreciating the similarity between Fig. 4.2 and cormre-
sponding probicms that involved segments. S2 did not succeed in solving Fig.
4.2. 82 was asked to solve the problen: with segments shown in Fig. 4.3 and had
considerable difficulty with it. A rcasonable interpretation is that 82°s represen-
tation of Fig. 4.2 may have included the important part-whole relationships, but
that §2's knowledge of the problem-solving operations was too wcak to enable a
solution to be found for the problem.

Performance on the vertical angles problem. Fig. 4.1, is summanzcd in Table
4.2. This problem was not given to students S4 and SI.

When the vertical angles problem was presented. $3 gave strong evidence of
understanding its relation to Fig. 4.2 and Fig. 4.3, saying ‘‘You know some-
tking, I'm getting sort of tired of that problem.’” 83 gave a proof of the vertical
angles thecorem that was similar to the one that 83 gave for Fig. 4.2, with
subtraction incorrectly used before addition of angles was asserted.

S5 did not succeed in finding a proof for the vertical angles theorem. Howev-
cr. there was further evidenee that 85 had used the overlap-part—whole relation-
ships in solving Fig. 4.2. When that problem was shown again and 85 was asked

TABLE 4.1
Performance on Fig. 4.2

Students Perfarmance

S3,.85 Conceptually correct proofs with technical errors. Protocol evidence for overlap-
part-whole schema—e.g., *'1 have to subtract.”* **These arc the same.’”

S2 Correct prool. No protocol evidence for schema.

S6 Correct proof using substitution procedure. Protocol evidence against schema: “"'m
trying to find a way that | can substitutc.**

54 Failed to find a proof. Protocol evidence for schema: **I would have to sub-
tract . . . would | have o use the definition of betweenness?™

Sl No progress toward proof,

11
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TABLE 4.2
Performance on Fig. 4.1

Student Performance

S3 Proof with technical errors jike Fig. 2. Protocol: *It's the san.e problem again: I'm
getting sort of tired of that problem.™

$S Did not'find a proof. Saw thc way to proceed using subtraction when Fig. 4.2 was
shown again. )

S2 Correct proof using supplementary angles. Found an analogous proof involving
complementary angles for Fig. 4.2

S6 Did not find a proof. Was trapped by pereeptual distraction.

whether a similar method could be used for Fig. 4.1, S5 apparently saw that the
structure provided a way to procecd, saying, “‘I could say if | had this, I could
subtract the supplementary angle from that one.”’

S2 gave a correct proof for the vertical angles theorem, using a theorem that
two angles that are supplementary to the samie third angle are cangruent to cach
other. When S2 was asked whether there was a connection between the vertical
angles theorem and Fig. 4.2, S2°s response did not provide evidence for use of
the overlap—part—whole schema. S2 assimilated Fig. 4.2 to the solution scheme
uscd for the vertical angles theorem, saying that Fig. 4.2 could be solved using
complementary angles.

S6 was unablc to prove the vertical angles theorem, and gave performance
that Wertheimer (1945/1959) noted as evidence for a lack of structural under- .
standing. S6 procceded with the problem by noting that X + Y = 180° and that
W + Z = 180°. There probably are perceptual factors that produce the tendency
10 think of the problem in thic way. S6 was trapped in this view of the problem
and never escaped from it. A representation with two distinct pairs of angles is
inconsistent with the overiap- part-whole schema, so §6°s performance provides
further strong evidence that those relationships were not in S6'y repre: cntation.

In summary, three students gave quite strong evidence thal i str icture of
rclationships in the overlap—part—-whole schema was in their represeniation of
Fig. 4.2. None of these students gave proofs that were cntircty correct; however,
S3 and S5 gave proofs that showed a good grasp of the probleni. S3 showed good
transfer to the vertical angles problem. and S5 recognized the structure of that
problem when Fig. 4.2 was shown again. The third of these students. S4. failed
ts find a proof for Fig. 4.2, apparently because of weak knowledge of problem-
solving procedures. A fourth student, S2, solved both Fig. 4.2 and the vertical
angles problem successfully, but did not provide any protocol evidence of using
the overlap—part—whole schema. It is possible, of course, that the relationships
in that structure were recognized and uscd by S2 in an tmplicit way. A fifth
student, S4, solved Fig. 4.2 successfully and gave relatively clear evidence of
not being cognizant of the overiap—part-whole relationships, especinlly in the

(22
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vertical angles problem thai S4 was unable to solve. The sixth student, S1, made
no progress on any of the problems, apparently lacking a great deal of the
knowledge required for successful performance.

Theoretical Analysis

The goal of the theorctical analysis was to identify a set of learning processes and
knowledge structures that could simulate acquisition of learning with structural
understanding. In developing this model 1 collaborated with John Anderson;
some of the results were presented in Anderson, Greeno, Kline, & Neves (1981)
as part of a general discussion of the acquisition of problem-solving skill.

To clarify the specific structures responsible for understanding, two versions
of the learning simulation were formulated. One of these is called stimulus—

, fesponse learning, and the new problem-solving proccdures acquired by this

system are associated with relatively specific situational cues. In the other sys-
tem, called mcaningful lcarning, the new problem-solving procedures are ac-
quircd as integral parts of schemata that represent problem-solving situations in
terms of general part—whole relations.

The models thiat were formulated simulate learning of procedures from
worked-out cxamples, as do many recent computational models of learning
procedures (Neves, 1981 Vere, 1978). The learning that was simulated is based
on two tasks that arc given carly in the geometry course and onc task that
produces learning that should occur some years carlier.

The first two example problems used for simulation of learning are shown in
Fig. 4.4. and the third example is shown in Fig. 4.3. The examples were used to
investigate three different aspects of learning in which new material is related to
a schema. In the first probleni, meaningful learning involves an existing schema
and the model simulates learning to apply that schema in a situation where it was
not applicable previously. Mcaningful learning in the second problem involves
claborating an cxisting schema by forming new problem-solving procedures that
becomie part of the schema.. In the third problem situation, meaningful learning
involves building a ncw schema, which has previously existing schemata as
subschemata. In all three cases, rote learning was simulated by a process that
acquires problem-solving procedures and associates them with relatively specific
representations of the problem situation. ,

The simulation models were programmed in ACTP (Greeno, 1978), a variant
of Anderson’s (1976) ACT production system. In this system, there is declara-
tive knowledge represented by a semantic network and procedural knowledge in
the form of production rules. In lcarning from cxamples, the input for learning is
the solution of a problem, and the system learns by adding productions to its
procedural knowledge or by adding semantic-network structures to the declara-
tive knowledge that it has available for solving problems. The procedures for
lcarning used in this simulation were not the same as thosc developed and

’ 13
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0

Given: AS=§
8 8C=3
Find. AC

Solwtion: AC=§e3eB -

Giwen: ABC
s Prove: AB=AC -8C
A
Staverment ' Reseon
v K¢ 1. Giwen
FIG. 4.4. First two example prob- 2. ABeRCSAC 2. Sepment sddition (Shep 1}
lems for simulstion of leaming. 3. ABeAC-BC 3. Subwaction pragenty (e )

investigated by Anderson in his use of ACT as a model of leaming (Anderson,
1981). . , .

For lcamning new productions, a process was developed for keeping a repre-
sentation of the problem situation in working memory. This representation deter-
mines the information that is included in the conditions of new productions when
they are added to the system. The representation includes semantic information
that is taken from the problem situation (cither the diagram or the system’s
semantic knowledge) that increases the coherence of the problem represcntation.
The process for selecting the added semantic information is similar to that uscd
by Kintsch and VanDijk (1978) for forming coherent represcntations in their
model of text comprehension, 2lthough the one developed for ACTP adds more
information than Kintsch and VanDijk's does.

Processes also were implemented for schema-based leaming. The process for
lcarming to apply an existing schema in a new situation uses the problem repre-
sentation in working mcmory to form the condition of the schematizing produc-
tion, and uses the action performed in the example to dctermine how to assign
components of the situation to slots in the schema. Acquisition of new pro-
cedures and synthesis of a new schema required knowledge of general structural
features of schemata in the system. This knowledge constitutes a kind of meta-
schema—a schema that enables the system to acquire new schematic knowledge.
For example, procedures attached to schemata include information aboui conse-
quences that are matched against goals to dctermine whether use of the procedure
is desirable, and .information about prerequisites that are tested in the problem

2
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TABLE 43
General Components  Schemata

Schema

Slots

Schematizing Productions

Contextual Associations

Procedural Attachments
—Prerequisites
—Performances
—Consequences

situation to determine whether the procedure can be applied. The process for
acquiring new procedures identifies conditions in the problem situation that are
included as prerequisites, and a generalized form of the action in the example is
included as a consequence of the procedure. The process for synthesizing a ncw
schema also includes knowledge about the general structure of schemata, in the
form of actions that store new semantic knowledge in thc form required by the
procedures that retrieve and utilize schemata for problem solving.

The schemata that are critical for the system’s meaningful lcarning are in-
cluded in its declarative knowledge.2 The structure of schematic knowledge in
this model is not unusual: it is a somewhat simplificd version of the concept that
Bobrow and Winograd (1977) used in the Knowledge Representation Language,
(KRL). The main components are listed in Table 4.3. Like all schemata, those
used here provide a set of relationships among some objects. The objects fit into
the structurc in positions called slots. There arc procedures for applying the
schema in specific situations; these are referred to as schematizing productions.
There is some information that identifics features of the situation that are relevant
for performing procedures:; these are called contextual associations. An impor-
tant feature of these schemata is that they have procedures associated with them,
in the manner of KRL. The organization of these procedure descriptions is
patterncd after Sacerdsti’s (1977) model of planning in problem solving, called
Network of Action Hierarchies (NOAH). Information stored about each pro-
cedure includes prerequisite conditions, consequences, and specific actions that
are carricd out in performing the procedure.

Learning New Applicability Conditions. The first example problem that the
model learns from is the first problem in Fig. 4.4. I assume that students learn to

2] consider the use of declarative structure for representing schemata as a detail of implementa-
tion. rather than a substantive psychological hypothesis. In fact. I am inclined to believe that the
relationships incorporated in these schemata probably are represcnted in humans as cognitive pro-
cedures. rather than as declarative structures. 1 believe that a model could be formulated in which
schemata would be represented procedurally, and that it would be functionally cquivalent to the
madel that | describe here.
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solve problems like this some years before they study gcometry. The problem
was included in the analysis to clarify the requirement of haviny knowledge
about applying schemata to represent problems.

In the simulation of stimulus-responsc lcaming from the first cxample prob-
lem, the action of adding lengths is associated with a representation of the
problem situation that specifies some relevant propertics such as the collincarity
of the scgments. The knowledge acquired by rotc learning enab'cs the system to
solve new problems that are closely similar to the onc in which learing oc-
curred, but gencralization is very limited. For example, the rote lcamer docs not
gencralize to a problem in which the total length and one subsegment are given,
and the other subsegment is to be calculated.

Mecaningful leaming occurs in the first example problem when there is an
active schema that is assumed as prior knowledge: the relationship between parts
that are combined to form a whole. The components of this schcma are shown in
Tablc 4.4. We have evidence from studies of children’s performance on arithme-
tic story problemns (Riley, Greeno, & Heller, 1983) that this schema has been
acquired by most 8-year-old children. The schema is used in understanding
problems such as the following: **There are five girls and cight children; how
many boys are there?"” The schematizing production identifies the sct of boys
and the sct of girls as the parts and the set of children as the whole. Then, using
the information stored in procedural attachments, the procedure of scparation is
choscn and the numbers are subtracted to find the answer. -

When the system leams meaningfully from the {1, .t example problem it learns
to apply this schema to problems involving segments. It iacquires a new sche-
matizing production, which is sketched in Fig. 4.5. As a result. in future prob-
lems like this onc the model can interpret the segments as a part—whole structure.

TABLE 4.4
Components of Whole/Parts Schema

WholeiParts

Slots: Whole. Part t. Pant 2
Conlext: Set — Number
Schematization:

Set l%}
Sct 3
Sct “Xdof'

Procedures:
Combine’Calculate
Separate Caleulate
Adpust Parts

16
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Luesrned schematizing production:

Endpoint 1

Segmant 1

Condition Endpoint 2 Segment 3

<

X Endpoint J

Apply Whote/Parts schema, with

Action Segment 1= Part 1
Segment 2 = Pun1 2
Segment 3 = Whoie

FIG. 4.5. Schematizing production leamed from the first example with meaningful learning.

One conscqucence is that the whole collection of procedures associatcd with the
schema is then available for solving a variety of problems, which is not the casc
when simple stimulus—response learning occurs. For example. the knowlcdge
acquired in meaningful learning generalizes to problems in which the total Icngth
and onc subsegment are given and the other subsegment is to be calculatcd,
because whenr the whole/parts schema is applied, the procedure of separating the
whole into parts is made available.

Learning New Procedural Attachments. The second example is the second
problem in Fig. 4.4. From this problem the model leams procedures required for
writing steps of proof. (Previously, the model’s only procedures involved cal-
culations with numbers.) The stimulus—response learning system simply learns
actions of writing lines of proof like Steps 2 and 3 in the example when thc
stimulus conditions are equivalcnt to those of the example problem, including
collinear points and a goal to prove that the length of one segment is the dif-
ference between lengths of two other segments.

Meaningful learning from the second example involves an addition of struc- -
ture to the part-whole schema that is already known by the system. The ncw
structurcs are procedurcs that are associated with the schema. They arc skctched
in Tablc 4.5. Note that the prcrequisites of these procedures include problems
that have been schematized as part-whole structures. The actions of the pro-
cedures are dcfined in terms of the slots of the whole/parts schema. This means

17
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TABLE 4.5 .
Procedures Learned from the Second Example .

A. Write-segment-addition:
Prerequisite: .- Whole/Parts schema.
Statement: Collincar Points
Perform: Write statement:
' “vart | + Part 2 = Whole™*
Write reason: **Segment Addition™
B. Writc-subtraction '

Prerequisite: Whole/Parts schema,
Staternent: Part 1 + Parnt 2 = Whole
Perform: Write statement:

“*Part | = Whole ~ P.it 2"
Write reason: ‘‘Subtraction Property™”

that the actions involve writing steps of proof that refer to objects that occupy the
slots of an instantiation of the schema. The main consequence of this learning, in
contrast to the stimulus—response learning from this example, is that the pro-
cedures that are learned are applicable in any problem situation that is repre-
sented using the whole/parts schema. The procedures acquired in stimulus~
response learning can only be applied in situations involving Segments with
collincar endpoints.

>

Learring a New Schema. The final learning task that was simulated used the
problem in Fig. 4.3. Stimulus—-response learning from this example acquires the
procedures for writing proof steps involving substitution and the subtraction
property,.based on Steps 5 and 6, and-associating them with relatively specific
problem conditions, as in the earlier examples..

The meaningful version of learning from this examplic results in a new sche-
ma, sketched in Table 4.6, in which two part—whole schemata are included as

TABLE 4.6
Schema Acquired from Fig. 4.3

Overlap!WhaleiParts

Slots: .
Part 1, Pant 2. Pant 3, Whole 1, Whole 2
Subschemata: .
Whoie/Pants |, (Pant 1, Part 2. Whole 1)
Whole/Pants 2 (Pan 2, Pant 3, Whole 2)
Procedures:
Write-Substitution
Write-Subtraction (2 sides)
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subschemata. The problem solver represents the segments RO. ON. and RN as a
part-whole structure, and also represents the segments ON, NY, and OY as a
second part-whole structure. This enables it to apply the procedures for writing
steps based on segment addition, corresponding to Steps 3 and 4 of the example.
Steps 5 and 6 of the example involve new procedures for the model. They also
involve both of the part—whole structures represented in the problem. This leads
to the formation of a new schema, with two part-whole structures that share onc
of their parts. Problem-solving procedures corresponding to Steps 5 and 6 of the
example are acquired and associated with the new schema.

Conclusions

The simulation of meaningful learning provides a dcfinite hypothesis about a
process that can acquire problem-solving procedures with structural understand-
ing. Although transfer to problems about angles was not implemented. it is clear
that the knowledge acquired in meaningful learning from cxamples about scg-
ments is applicable in problems like Figs. 4.1 and 4.2. For a student to make that
application, schematizing productions would have to be lcarned to enable the
appropriatc schemata to be used to represent relationships among-angles, or the
student could usc more general interpretive processes to comprehend the prob-
lems as instances of the overlap—part-whole structure.

It is significant that a plausible simulation of meaningful lcarning could be
formulated using only knowledge structures of relatively standard kinds. Sche-
mata with characteristics that are standard in knowledge representation systems
and learning processes that are commonly proposed for learning from cxamples
were combined in a straightforward way to form a simulation of lcarning with
significant structural understanding. This seems quite cncouraging for the pros-
peet of developing definite hypotheses about understanding over a substantial
range of instructional tasks.

UNDERSTANDING A GENERAL FORMAL PRINCIPLE

The second analysis I present was concerned with a somewhat different aspect of
understanding, involving a formal principle. This study. in which 1 collaborated
with Maria Magone, was concerned with geometry students’ understanding of
the general concept of proof. This constitutes a metaprinciple in relation to the
tasks that students arc taught to perform in their study of geometry. The skills
that siudents are required to lcarn involve constructing proofs. The question
addressed in this study is whether students understand what nroofs are—that is,
whether they know the general features that are required for something to be a
proof.
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The concept we focused on can be cafled the principle of deductive conse-
quence. In a formal proof, cach assertion that is made is deductively required by
the premiscs of the problem or by other assertions that have been made ex-
plicitly. This imposes a strong criterion for statcmients to be acceptable for
inclusion in a proof. For each statement that is put into a proof. there must be a
sufficient basis in carlier statements that the added statement must be true if the
earlier statements are accepted. This criterion contrasts with ordinary exposition,
in which statements are expected to be reasonable in the light of previous infor-
mation—for example, new statements shonld not directly contradict statements
made earlier—but there is not a general constraint that each new statement is
required by the assertions made previously.

The task that we used to investigate understanding of deductive consequence
involved checking proofs. We presented proof probiems with solutions worked
out. and asked students to check whether each proof was correct. If the student
said that there was an error, we asked what was wrong.

Our study had three parts. First, we gave proof-checking problems to some
students who were taking a course in geometry. (These were different students
than those who gave the protocols described in the first section.) Six problems
were given in interviews held in November. and four of the same problems were
given in Muy.'Fiflecn students participated cach time. with ten students par-
ticipating in both interviews and five additional students who were different in
the two interviews. The performance of students on proof-checking tasks was not
assertion needed to justify a step had been omitted. ’

The second part of our study was a theoretical investigation. We developed a
computational model of correct performance on the proof-checking task. includ:
ing problems with errors of omitted information. Because the students whom we
observed had not performed these tasks successfully, the model we developed
was not a simulation of performance that had been observed. However, we
attempted to develop a model that was psvehologically plausible, in the sense
that it used procedural and propositional knowledge that we felt could be ac-
quircd by human learners. and would simulate performance of human problem
solvers who had acquired that knowledge.

The third part of the study was an instructional experiment to test whether the
proof-checking knowledge incorporated in the model could be acquired by
human learners. We developed instructional materials fpr training the procedure
of checking proofs. A group of 15 college-student subjects who had studied
geometry in high school received this instruction, along with sufficient review of
basic geometry to make the instruction possible. A control group was given only
the review materiais. The experimental group suceceded better on proof cheek-
ing and other geametry problems than the control group. both in the domain of
problems that was used in the instruction and in another domain of problems that
was used in a test of transfer.
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Performance on Proof Checking

One of the proof-checking problems that we used is shown in Fig. 4.6. The proof
shown is not valid. For Step 1 to be justified, lines AC and BD should have been
asscrted as parallel. Because this was neither given nor proved in prior steps,
Step 1 is not justified.

Performance of the geometry students on proof-checking problems is shown
in Table 4.7. The problem in Fig. 4.6 was the one that is called *‘Missing given’
in Table 4.7. Note that performance on that problem was poor toth in November
and in May. Performance on other problems was somewhat better. The valid
proof had a diagram in which the statemeni to be proved appeared false; appar-
enllyso:mstudemscamtodisregnrdmeappummcofd\cdiagmm between
November and May. Other sources of errors included reasons given in the
probiem that are not theorems of geometry, and reasons whose antecedents did
not apply to the objects that the statements referred to. In two problems, the
diagrams were consistent with the statements to be proved; in the other two
problems, the statements to be proved were incorrect in the diagrams. About half
the students found the errors in the problems with consistent diagrams, both in
November and in May. Performance in November was somewhat better on the
problems where the discrepancy could be seen visually; these problems were not
included in the May interviews.

Theoretical Analysis

The goal of the theoretical analysis was to develop a definite hypothesis about
knowledge that would enable students to solve proof-checking problems success-
fully. To do this we formulated a computational model of correct proof-checking
performance.

Grven: KB/CE ane KB OD
Prove. L ACD » ¢ ABD

Sratement Resson
1 ¢ ACD ~ ¢ BODE corresponding L s .
2 (BOE » ¢ ABD siterrate inwrior ¢ FIG. 4.6, A difficult proof-check-
3 ¢ ACD » ¢ ABD transitive property ing problem.
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TABLE 4.7
Performance on Proof Checking
Problems Number November May
Valid proof ' ] .50 93
Missing given ’ | .06 19
Other invalid:
Diagram consistent 2 .46 .46

Other invalid:
Diagram inconsistent

(25 )

72 —

The procedure that we implemented is sketched in Table 4.8. This procedure
is applied to each step in the proof. I all the steps are accepted. and the final step
corresponds to the problem goal, then the proof is accepted.

First, the reason that is given in.the proof step is checked against a list of
thcorems that are available for use. (The list includes definitions and postulates
as well as thcorems; the model does not recognize this technical distinction.)
Each theoremm is associated with its *‘deep structure,” in which the antecedent
and consequent of the conditional proposition are represented with variables that
can be matched with objects in the statement and in previous statements and the
given information.

The second step of the procedure involves retrieving the antecedent and
conscquent of the theorem that is given as the reason. Then there is a matching
process, in which the consequent of the theorem is matched with the statement
and the variables in the consequent are repiaced by the objects that are mentioned
in the statement. if the consequent cannot be matched to the statement. the stepis
rejected. This happens if the property or relation asserted in the statement docs
not match the property or relation of the consequent.

In the fourth step of the procedure, the objects that were found in the state-
ment arc substituted for the variables in the antecedent, forming one or more
propositions that should have been asserted in previous steps or in the given
information. Finally, there is a search for thosc propositions in the set of previous

TABLE 4.8
. Procedure for Verifying a Step

() Test whether reason is a theorem.

(b) Retricve deep structure of reason.

(c) Instantiate conscquent in statement.

(d) Form corresponding instantiation in antecedent.

(e) Determine whether antecedent has been asserted.

() Determine whether statement matches problem goal.

22
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statements and given information of the problem. If they are found, the proof
step is accepted; otherwise, it is rejected.

To clarify the procedure, consider its application to the first step of the
problem in Fig. 4.6. First, the reason **Corresponding angles' is checked with
the list of available theorems. This is successful; there is a thcorem (actually, a
postulate) called **Corresponding angles’” on the list.

Next, the deep structure of this thcorem is retrieved. The antecedent is *'If
angles X and Y arc corresponding angles with lines L and M as sides, and lines L
and M arc parallel, and line N contains their other sides,” and the consequent is,

"**“Then X and Y are congruent.”’ =

In the third step, the consequent of the reason is matched with the statement of
the proof step. The step says that ZACD and £BDE are congrucnt. Therefore, X
and Y in the conscquent arc replaced by these angles.

In the fourth step. the propositions that have to be asscrted arc formed. This
includes a pattern in which ZACD and £BDE are corresponding angles, with
two of their respective sides collinear. There also must be an assertion, either in
given information or a previous statement, that the other sides are parallel.

Finally, in a scarch for these propositions, the system fails to find the asser-
tion about parallcl lincs that is needed. The system rcjects the first step of the
proof. '

The knowledge required for checking proofs can be compared with knowl-
cdge for constructing proofs, especially as a mode! for solving proof construction
problems was formulated carlicr (Greeno, 1978). The knowledge needed for
proof cheeking is much simpler in one way than the knowledge that is needed for
constructing proofs, but is somcwhat more complex in two other ways.

The factor that makes knowledge for checking proofs simpler is that steps of
the proof are alrcady shown. This eliminates the need to scarch for a sequence of
problem-solving inferences to achieve the goal of the problem. As a result, the
strategic knowledge used for choosing plans and goals that guide the search for
inferential operators is not needed for proof checking.

On the other hand, two components of knowledge arc required for proof
checking that arc not necded for constructing proofs. First, the procedures for
verifying steps of proof and checking whether the main goal has becn. satisfied
must be added. The other complexity involves the way in which postulates and
theorems arc represented in the models of:- proof construction and checking. In
the mode! of proof construction, postulates and theorems arc represented im-
plicitly as problem-solving operations in the form of production rules, with the
antecedents as conditions that are tested and the conscquents as actions that assent
propertics or relations that are inferred. However, in the model of proof checking
there is an explicit representation of postulates and theorems, which are stored in
a list so that reasons can be checked to determine whether they are theorems and
their anteeedents and consequents can be retrieved in the process of determining
whether the needed assertions have been made.
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Instructional Experiment

We performed a test of our ideas about proof checking by designing some
instructional materials based on the computational mode! of proof checking that
we had implemented. This instruction was given to some human learriers. The
subjects were able to use the procedure that was taught in the instruction. and it
resulted in some improvement in their performance in proof checking. We take
this as evidence that the mode! of proof checking has some psychological valid-
ity. in the scnsc that it simulates a cognitive procedurc that human problem
solvers can learn to perform.

Materials. Instructional materials were designed for presentation to small
groups of student subjects. A description was given of a five-step procedure.
referred to as the *'if—then”" procedure because of its emphasis on the anteced-
ent-consequent structure of reasons for proof steps. The steps are: (1) Check if
the reason is a valid theorem, postulate, or definition; (2) Divide the reason into
its *'if"" and *‘then’’ components: (3) Check the antccedent: has it previously
been shown in the given information, the diagram, or in previous steps of the
proof? (4) Check the consequent: does it match the relationship of the statement?
(5) If the statement is the last one in the proof, does it match the goal of the
problem™’ Note that the steps of the procedurc correspond to the steps shown in
Table 4.8, except that instantiation of the rcason is left implicit. In the instruc-
tion, instantiation was shown implicitly in examples. in which the antecedents
and consequents of reasons werc converted to appropriate propositions about the
objects in the problems.

After the procedure was explained, two cxample problems were worked by
the group of student subjects working together, with supervision by the instruc-
tor—experimenter. Then booklets were provided that contained proof-checking
problems. On each problem, the students first worked individually on the prob-
lem, then one student was asked to check the proof aloud. going thorugh the
“if-then™" procedure for each line of the proof. Any errors or omissions were
corrected by the instructor, and questions asked by the students were discussed.
Two booklets of proof-checking exercises were preparcd for use in two training
SCSSions.

In addition to the materials for instruction in proof checking, there also were
materials that reviewed basic concepts of geometry and construction of proofs.
Initially, the instructor reviewed basic definitions, postulates, and theorems
nceded to solve proof problems involving congruence of triangles. Booklets were
provided that contained problems of constructing proofs, and students worked
individually, then reviewed each problem, as described previously. Two book-
lets of problems in proof construction were prepared for usc in two review
sessions. All problems used in the review of proof construction and in training of
proof checking were in the domain of congruent triangles.
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Materials also were prepared for assessing the results of instruction. A sct of
problems involving congruence of triangles was prepared as a test, designed to
be given individually to the students. The test problems included 10 proof-
checking problems and three probleis of constructing proofs.

Finally, materials were prepared for testing transfer. These included a bricf
review of definitions, postulates, and theorems involving angles formed by par-
allel lines intersected by a transversal. These concepts and propositions had not
been included in the previous instruction or testing, and there was no discussion
of proof checking during the review of concepts about parallel lines. A transfer
test was presented, consisting of 11 proof-checking problems and three problems
of constructing proofs, all concerned with angles formed by parallel lines inter-
sected by a transversal. .

Subjects and Procedure. Subjects were 30 students at the University of
Pittsburgh who had studied geometry in high school but were not majoring either
in mathematics or computer science. Subjects were paid for their participation in
the cxperiment.

The study wiw conducted in §-hour sessions on consecutive days. Subjects in
an cxperimental condition received the review of triangle congruence and proof
construction in two group sessions; then training in checking proofs about con-
gruent triangles was given in two further group sessions; and finally the test
problems and the transfer to parallel lines were given in two individual sessions.
Subjects in a control condition received the two review sessions and the test and
transfer sessions, without the intervening instruction in proof checking. Fifteen
subjects (nine women and six men) participated in each of the conditions.

The subjects in the experimental condition participated on 6 consecutive days;
subjects in the control condition participated on 4 consccutive days. For cach day
on which they participated, subjects chose a convenient time from among a
number of available sessions. Group sessions usually had three or four students.
In the test and transfer sessions, involving individual subjects, students were
asked to think aloud as they worked on problems, and their protocols were
recorded on audio tape.

Results.  Performance of the students in the control and experimental condi-
tions is summarized in Table 4.9. The instruction apparently had a positive
cffect, cnabiing students in the experimental condition to detect a higher propor-
tion of errors than the control students. The difference in performance on invalid
proofs was significant (1(28) 2.35, p < .05), and there clcarly was not an interac-
tion betwecen training conditions and sessions. The data in Table 4.9 are based on
strict scoring of crror detcction, in which errors had to be identificd and the
reasons for the errors given correctly. Data also werc tabulated using a more
lenient criterion, where errors had to be identified correctly but the subject’s
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TABLE 4.9
Proportion Correct
Number of
Problem Type Session Problems Control Eaperimensal

Invalid Test 17 42 .62
Transfer 8 .50 70
Valid Test 3 .87 .89
Transfer 3 .87 89
Proof construction Test 3 .2 .53
Transfer 3 .33 .49

explanation of the error was incorrect in some way. With the lenient criterion,
there was a significant main effect of training (1(28) 2.89, p < .01) and a
nonsignificant interaction with sessions (1(28) = 0.59, p > .50), as with the
strict criterion. ' '

An examination of the individual problems failed to reveal any systematic
differences in the kinds of problem for which the instruction in proof checking
was especially effective. For example, some errors in proof involve incorrect
reasons; others involve antecedents that have not been established. There was a
somewhat larger effect of instruction on problems with incorrect reasons in the
test session. but (he effect on problems with antecedents not established was
greater in the tranisier session. One specific problem for which instruction had an

.especially large effect is the problem shown in Fig. 4.6. which was included in

the i-ansfer session. One of the 15 control subjects detected the error in this
prob.em correctly, whereas eight of the experimental subjects did.

The thinking-aloud protocois were examined to determine whether the sub-
jects used the proof-checking procedure in an explicit way. Three of the subjects
in the experimental condition used the procedure on nearly all the steps in every
problem. Most of the students in the experimental condition applied the pro-
cedure when they appeared to be uncertain about a step. Only two of the subjects
in the control condition used a form of the proof-checking procedure that in-
cluded explicit checking of the antecedents and consequents of reasons.

The experimenters formed two gencral impressions of differences between
subjects in the two conditions. First, experimental subjects appearcd to read the
statements of the proof more carefully than did the control subjects, even when
the experimental subjects were not using the proof-checking procedure ex-
plicitly. Second, the control participants typically checked steps by comparing .
the statements with the problem diagrams. Only one student in the experimental
condition appeared to use the strategy of comparing statements with diagrams.
The rest attended primarily to the reason and related it to information' from
previous steps in the proof.
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There was a substantial difference between the two conditions in performance
on proof construction problems in both the test and transfer sessions. The dif-
ference was significant (#(28) 2.94, p < .01) and the interaction with sessions
was not significant (1(28) = 1.02, p > .50). A substantial part of the difference
was due to one problem in the test session that used a pattern of overlapping
triangles on which experimental subjects had some specific practice that was not
giver. to control subjects. Even without that problem, however, there was an
advantage for the experimental subjects: .43 to .30 on proof construction prob-
lems. It scerns likely that the training in proof checking gave subjects some skills
that facilitated their performance in proof construction problems as well.

Discussion. The subjects who were viven training in proof checking did not
beconic experts on that task, but they clearly acquired some skill that subjects
without that training lacked. The result provides general support for the computa-
tional model of proof checking, showing that it is learnable at lcast to an cxtent.
The fact that students still failed to detect some crrors may be attributable simply
to the relatively small amount of training, combined with the absence of any
constraints on the subjects to use the procedure they had learnced in the test and
transfer problems. As a methodelogical point, the cxperiment has the interesting
feature that human problem solvers were trained to perform in agreement with a
madel that existed carlier: thus, we succeeded in getting human performance to
simulate a computer program, rather than the other way.

An smportant conceptual question is whether the skill reprosented in the
computational model and acquired to some extent by the student subjects con-
stitutes significant understanding of the concept of proof. It seems to us that it
does. Knowledge of the procedure enables an individual to analyze relations
between cach step of a proof and the information in previous statements and the
premises of the problem. The relation that is examined is deductive consequence,
the defining characteristic of formal proof. It scems reasonable to characterize a
procedure for testing the features of deductive consequencce as a form of signifi-
cant implicit understanding of the concept of formal proof.

The view that ability to check proofs reflects understanding of the principle of
deductive consequence is strengthened by contrasting correct performance on
proof checking with performance by students who have not received instruction
in the task. Typical untutored performance strongly resembles comprehension of
narrative or expository text, where cach new statement is accepted if it is con-
sistent with previous information and « in be added to it in a coherent structure.
In a proof. a stronger criterion of acceptance should be applicd to cuen new
statement: 1t must not only be consistent with prior information. it must follow
from it deductively. The pracedure for checking applics this stronger criterion,
and knowledge of the procedure therefore provides a form of knowledge that
relates directly to characteristics that distinguish formal proof from ordinary
texts.
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CONCLUSIONS

In the introduction to this chapter | mentioned four general points that are
illustrated by aspects of the analyses that | have discussed. 1 now return o those
poiats as a framework tor presenting some conclusions

First, the analyses illustrate the applicability of methods of analysis developed
in cognitive science to school tasks, and show how those methods can lead to
formulation of cognitive objectives of instruction. The analyses suramarized by
Resnick (this volume) involving reading. physics, and elementary mathematics,
and the investigations reported by Scardamalia and Bereiter (this volume) involv-
ing writing, should Icave littlc doubt as to the feasibility of research into the
cognitive requirements of significant instructional tasks using currently available
concepts and methods of cognitive science. Of course, this should not be in-
terpreted as suggesting that more powerful and valid concepts and methods will
not be developed in the future, but only that significant and uscful insights can be
obtained with the tools that we have at present.

‘These analyses also provide characterizations of knowledge that can be
adopted as definite objectives of instruction. The analysis of structural under-
standing given here identifies a specific cognitive structure of general relation-
ships as the knowledge that constitutes understanding of the structure of a class
ol geometry problems. The analysis of voderstanding of the principle of deduc-
tive consequence identifies a cogaitive procedure that incorporates defining fea-
tures of valid deductive inference. Both these characterizations could provide
objectives lor instruction that are specific enough to be incorporated into instrue-
tiomal materials, it it is thought that their acquisition would be valuable

The second general point involves analysis of acquisition and instructional
intervention. In the example of structural understanding. a theorctical analysis of
acquisition was developed. This analysis was ad hoc in many ways, and much
work remains for the development of a general model of schema-based learning.
Even so, some suggestions for instruction can be taken from the anaivsis, A
major condition for meaningful learning to occur in the niodel is the activation of
an appropriate schema in the learner’s knowledge structure. This suggests that at
a minimum, instruction with the goal of structural understanding should include
an effort to activate gcncrzil schematic knowledge that can provide an appropriate
structure for the material being learned. A straightforward method would involve
stmple discussion of the structure involved: in the case of tie part-whole sche-
ma, pointing out to students that segments or angles in the problen.s have other
segments or angles as_their parts, and discussing the way in which these
part-whole structures are involved in the inferences that are made in solving ihe
problems. Another instructional method involves structurai mapping. where an
analogy is used involving the problem that is the target of instruction and a
problem from another domain that has the same structure in a salicnt form. The
efficacy of analogical mapping for geometry problems has not been studied
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systematically;® however, its general usefulness is widely recognized, and it has
been studied systematically in other domains such as electricity and clectronics
(Gentner, 1980; Riley. Bee, & Mokwa, 1981) and in elementary mathematics
(Resnick, in press, this volume).

In the example of understanding the principle of deductive consequence,
instructional materials were developed for teaching the procedure of proof check-
ing that incorporates defining features of valid deductive inference. Instruction
using the materials was modestly successful, and becausc we gave only 2 hours
of instruction, it scems quite likely that sustained use of the method in a gcome-
try coursc would have substantial benefit for students. This example, involving
an instructional objective in procedural form, is particularly adaptable for in-
structional purposes, as a procedure can both be taught and assessed in a straight-
forward way.

The third gencra! point involves theoretical significance of the analyses. De-
velopment of definite models as hypothescs about cognitive structures that con-
stitute uinderstanding should provide some clarification of understanding in rela-
tion to general concepts of psychological theory. The major psychological
concept involved.in the example of structural understanding is that of a schema.
This concept has been central in the theory of language understanding that has
been developed recently (e.g., Norman & Rumelhart, 1975), and it would be
reasonable to expect that it would also be useful in the analysis of understanding
in nonlinguistic domains. A satisfying conceptual continuity is provided by the
finding that a schema organized in essentially the same way as those hypoth-
esized in analyses of language understanding and knowledge representation
(Bubrow & Winograd, 1977) can provide a plausible account of structural under-
standing of a class of mathematical problems.

The theoretical contribution of the analysis of understanding the principle of
deductive consequence involves a characterization of implicit understanding. We
attribute implicit understanding of a principle to an individual when the principle
plays a significant functional role in the individual’s performance. One way in
which a principle can be functional is in a procedure for cvaluating cxamples to
determine whether they satisfy the principle. The procedure for proof checking
that was formulated and that students acquired in instruction ¢valuates solutions

M can repont an anccdote in which the method of analogical mapping provided a successful
instructional expenience for the vertical angles problem. An cighth-grade student was shown the
proof of the thearem. but was unable to recall it about two weeks later. Twao analogous situations
were then discussed. One of these involved distances «n a map, with two cqual total distances and a
shared component, and the conclusion of cqual partial distances with the shared componcnt removedd.
The other situation involved a person standing on a scale holding onc of two fitled suitcases; the
comhined weights of the person with cither of the suitcases was cqual. and the conclusion was that
the suitcases had to be cqual. With these items of background. the student generated the proaf of
cqual vertical angles and remembered it on two later occasions, one 2 days later and the other 7
months later.
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of proof problems according to the principle of deductive consequence, and thus
illustrates this form of implicit understanding.

Using performance in an evaluation task such as proof checking as a criterion
for knowledge of a gencral concept has two important precedents. First, in
experimental studies of concept identification. subjects’ ability to distinguish
correctly between positive and negative examples is taken as the criterion of their
acquisition of the concept. In a more complex domain. knowledge of the gram-
mar of a language is tested by the ability of a human subject or computational
system to discriminate correctly between strings that arc sentences of the lan-
guage and strings that are not sentences according to the grammar.

The final general point mentioned in the introduction was that *‘understand-
ing"" refers to numerous distinct forms of knowledge. The cxamples discussed in
this chapter illustrate two major categories of understanding: intrinsic and the-
orctical understanding. Intrinsic understanding of a problem ir.volves cognizance
of relationships among elements of the problem or steps in its solution. Theoreti-
cal understanding involves cognizance of relationships betwecn the problem and
general principles that constrain or justify aspects of the solution. (A more
extended discussion of these forms of understanding has been given by Grecno &
Riley, 1981.) Structural understanding, in the characterization given herc, is a
form of intrinsic understanding. involving cognizance of a sct of relationships
among problem components. Understanding the principle of deductive conse-
quence is an example of theoretical understanding. involving cognizance of a
significant constraint on valid solutions of proof problems.

The difference between these two forms of understanding emphasizes the
importance of identifying the cognitive structures and processes that are intended
when we ask whether someorie understands a problem or a procedure. The
cognitive structures identified in each of the analyses constitute significant un-
derstanding of proof problems. We would say that a student with cognizance of
the part—whole relations in the vertical angles problem has more understanding
of that problem than a student without that cognizance. Similarly. a student with
cognizance of the defining features of valid deductive inference has more under-
standing of any proof problem than a student without that cognizance. Further-
morc. there arc other significant forms of understanding in the domain of proof
problems that could be taken into account in a theoretical analysis or in design of
instruction.

Although an undiffercntiated concept of understanding is inadequate for both
theorctical and instructionai purposes, a more differentiated and specific charac-
terization of understanding is both important and feasible. Concepts and methods
of cognitive psychology have now been developed that make it possible to
formulate objectives for instruction that are specific enough to be used as the
basis of instructional design and assessment, and that also correspond to signifi-
cant forms of understanding.
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