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Mastery of the Basic Number Combinations:

Internalization of Relationships or Facts?

Accurate and automatic production of the basic number combinations is a major

objective of elementary mathematics education.' Typically, it is not an objective that

is easily and quir!kly avtained. Indeed, teachers regularly lament about how difficult it

is to get their pupils to master the basic "number facts." This "problem" may be due,

in part, to educators' misconceptions of (a) how children learn the basic number

combinations -and (b) how -number combinations are represented in 'adult long-term

memory. This paper first outlines the historical debate on how number combinations

are learned or internalized. Then the paper critically reviews the empirical evidence

for and conceptual adequacy of current models of how number combinations are

represented in and efficiently produced from long-term memory. An alternative view

is offered that argues that, while adults may retrieve some number combh-lgtions from

associative memory (a reproductive process), many combinations can be accurately

and automatically produced from stored rules, algorithms, or principles (efficient

reconstructive processes).

Views on Mastering the Number Combinations

One view of arithmetic learning that arose early in this century, was the "drill

theory," a product of associative theories of learning. This theory assumed that (1)

children must learn to imitate the skills and knowledge of adults; (2) what is learned

are associations or bonds between otherwise unrelated stimuli; (3) understanding is not

necessary for the formation of such bonds; and (4) the most efficient way to

accomplish bond formation is drill (Brownell, 1935). Because drill theory viewed adult

production of number facts as a reproductive process (e.g., the automatic association

of two digits and their sum), the goal and method of instruction were clear. Children

must form and strengthen bonds between two digits and, in addition, their sum
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(Thorndike, 1922). Such links or associations are strengthened largely by means of

repetition.2

Drill theory proponents did not consider children's counting strategies, discovery

of.relationships, or invented algorithms (devices for reasoning out sums, differences,

etc.) important vehicles for mastering the number facts. Indeed, counting and

invented algorithms were viewed as hindrancesas attempts to evade the real work of

"memorizing" the number facts. For example, Wheeler (1939, p. 311) explained the

relative difficulty of large number facts this way:

As -the size of the addend seems to -be the- general factor- in- causing -the

differences in the difficulty ranking, we wonder if the children are not

computing the sums by physical or mental counting, a crutch which is

probably developed in the child while building the number concepts

[author's emphasis]. Psychologically the child should be able to learn 5 + 4

= 9 as easily as 2 + 3 = 5....

Similarly, Smith (1921, pp. 764-5) considered invented algorithms an impediment` to

learning the facts:

Another pupil required a long time for the sum of 6 and 9. He explained his

process as follows, "6'and 10 are 16; 6 and 9 are 1 less than 6 and 10; then 6

and 9 are 15." He had to think through a similar form every time any

number was added to 9 and of course gave much slower responses.... We

should be careful about letting pupils acquire forms or roundabout schemes

for securing a result in the lower grades which will prove a handicap to

them in the upper grades.

In sum, drill theory proposed that adult number fact knowledge (i.e., a network of

automatic associations) is best achieved directlyby drill.

Early in this century, anothervery differentaccount of arithmetic learning

was advanced (see, for example, Brownell & Chazal, 1935; Buswell & Judd, 1925;

Wheeler, 1935). According to Brownell (1935, p. 19):
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The "meaning" theory conceives arithm( llosely knit system of

understandable ideas, principles, and process Tding to this theory,

the test of learning is not mere mechanical faci, "figuring." The true

test is an intelligent grasp upon number relations and the ability to deal

with arithmetical situations with proper c 'imprehension of their

mathematical as well as their practical significan

In this view, drill, counting, the discovery of relationships; and the use of invented

algorithms each have their place in learning the number combinations. Brownell noted

that, initially,_counting.may_ be. a necessary _arithmetic_strategy_fori children because it

may be their only means of relating to numbers. As soon as they are ready, however,

children should be introduced to more mature methods of dealing with arithmetic.

Brownell suggested, for example, the algorithm of transforming an unfamiliar problem

into a familiar one (e.g., 7 + 5: [7 + 3] + [5 - 3] = 10 + 2 = 12). Eventually, the child

"comes to a confident knowledge of [a number combination], a knowledge full of

meaning because of its frequent verification. By this time, the difficult stages of

learning will long since have been passed, and habituation occurs rapidly and easily" (p.

24). Drill may. serve to increase the facility and permanence of recall.

Meaning theory differs from drill theory in its view of number combination

learning, then, in several important respects. First, learning mathematicsincluding

mastery of the number combinationsis viewed as a slow, a protracted process.

Children are not expected by meaning theory to imitate immediately the skill or

knowledge of adults. In other words, the child's psychological readiness for learning is

considered. At first children are expected to engage in immature strategies (the use

of counting and later invented algorithms). Mature knowledge (including an

appreciation of mathematical principles) then evolves from this experience. In sum,

"children attain 'mastery' only after a period during which they deal With combinations

by procedures less advanced (but to them more meaningful) than automatic responses"



(Brownell, 1941, p. 96). Second, because it arises from meaningful experience, habitual

production of the number combinations has underlying meaning.

It appears that meaning theory is essentially correct about how the number

combinations are learned. Counting experience is now viewed as an important basis

for understanding arithmetic and performing it mentally (e.g., Gelman & Gallistel,

1978; Ginsburg, 1982, Resnick, 1983; Steffe, von Glasersfeld, Richards, & Cobb, 1983).

The use of invented algorithms and other rules or principles are frequently advocated

as aids in mastering the basic combinations (e.g., Cobb, 1983; Folsom, 1975; Rathmell,

1978; Trivett, 1980). Indeed, research (e.g., Brownell-&--Chazal,-193-5T-Thiele,---1938;

Swenson, 1949) consistently demonstrates that teaching children "thinking strategies"

is more effective than drill in facilitating learning, retention, and transfer of basic

combinations (Suydam & Weaver, 1972).

Yet many educators still believe that learning the basic number combinations is

essentially a straightforward, rote memory task that should be accomplished quickly.

Indeed curriculum guides frequently overestimate how quickly children should master

the combinations. For example, "Mathematics K-6: A Recommended Program for

Elementary Schools" (The University of the State of New York/The State Education

Department, Bureau of General Education Curriculum Development, Albany, NY

12234, 1980) includes mastery of the addition and subtraction facts (sums/minuends to

18) as an objective for the second level. (The third grade objectives is mastery of the

addition and subtractions facts to 25). Such guidelines overlook the psychological

evidence that mastery of basic addition and subtraction is often not achieved until

third-grade or even later (e.g., Ashcraft, 1982; Woods, Resnick, & Groen, 1975) and that

different groups (families) of combinations are not mastered in even a year's time

(e.g., Baroody, 1983; Ginsburg & Baroody, 1983). Eleanor Duckworth (1982) wisely

points out that most things worth knowing take a long time to learn and that teacher

training needs to reinforce this point. Such advice is appropriate even when we



consider the teaching and learning of basic skills such efficient production of number

combinations.

Views on Mental Representation

It appears that advocates of meaning theory and the teaching of thinking

strategies view the learning of rules, algorithms and principles as a means to an end:

as vehicles for establishing specific numerical associations ("facts") in long-term

memory. That is, over the course of development, children replace slow counting

procedures and thinking strategies (inefficient reconstructive processes) with rapid

-fact--retrieval- (an -efficient- reproductive- process) in order-to -do- -simple -mental----

arithmetic (e.g., Ashcraft, 1982; & Ames, 1951; Resnick& Ford, 1981). In Brownell's

terms, with experience, the production of the number combinations becomes habitual

a mechanical process that, is separate from but that can be related to a person's

underlying semantic (meaning) system.

While a number of models (e.g., Ashcraft, 1982; Siegler & Shrager, 1983) have

been proposed for how the number combinations are organized in an adult's memory,

all share the assumption that some kind of reproductive process underlies production

of the basic facts. Winkelman and Schmidt (1974) propose that addition and

multiplication facts share a parallel organization. They argue that there are

associations between two digits (e.g., 3 and 3) and both their sum (6) and product (9).

As a result of associative interference, there is a greater tendency to associate 9 with

3 and 3 than, say, 7. Another,,model (Ashcraft & Battaglia, 1978; Ashcraft & Stazyk,

1981) proposes that the addition facts are mentally represented in memory as a printed

table. The time needed to produce a particular fact is determined, in part, by the

mental "distance" traversed during a memory search, i.e., the time needed to find the

intersection of the two addends in the table. This helps to account for the slightly

longer reaction times for problems with larger addends. Groen and Parkman (1972)

suggest a direct access model in which all remembered facts are equally accessible.
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Those facts that are not committed to memory are generated by the more immature

counting-on (reconstructive) strategy. Resnick and Ford (1981, p. 74) give the following

example to illustrate this model:

If an adult were asked "How much is 3 + 4?" he or she would probably know

immediately without really having to figure out the answer. Most adults

have stored in long-term memory a response, 7, that is linked with the

stimulus 3 + 4. It is as if there is a huge directory in their heads, and some

of the entries were number facts that merely had to be "looked up." But

think, now, what happens when a person has an occasional lapse of memory,

when a number fact slips out of grasp. The answer is usually reconstructed

in some way.

In brief, according to current theories, efficient production of number combinations is

exclusively a reproductive process. Reconstructive processes are sometimes viewed as

a less efficient back-up when a basic combination is not committed to long-term

memory.

A number of chronometric studies have been undertaken, but no single model of

mental representation has emerged as superior. Typically, differences among the

models (structual variables such as min, sum, sum squared, etc.) are rarely, if ever,

significant (Keven Miller, personnel communication, June 22, 1983). Moreover, though

Ashcraft (1932) argues that his empirical evidence supports a table-like fact retrieval

(sum-squared) model, the case for this (or any other association-based) model is not

entirely convincing (Baroody, in press). Ashcraft uses a verification task (the subject

is presented with an equation such as 5 + 3 = 9 and is required to respond true or false)

to generate his data base. However, the verification task produces different results

with older subjects than does a more straightforward production task (the subject is

presented with a problem such as 5 + 3 and required .to produce the answer). More

specifically, zero problems tend to be verified inefficiently but produced efficiently.



Indeed, the reaction time latency curves for verification and production data typically

differ in shape. It appears then that, because of the extra decision stage(s) required by

the verification process, verification data may not accurately reflect memory search

times and may not be the most suitable basis for drawing conclusions about the mental

representation of number combinations.

Ashcraft, Fierman, and Bartolotta (in press) attempt to address the later

criticism by reporting data that apparently shows that the verification and production

tasks yield compatible results (parallel functions). The primary analysis (an ANOVA)

involves the factors of grade, task and problem size. Unfortunately, problem size is

analyzed in terms of a relatively crude small versus large sum breakdown. No

justification is given for collapsing the data in a manner that might mask differences

in the tasks.

Ashcraft et al. (in press) also notes that, while the slopes for his verification and

production data are not parallel for previously used predictors (models), they are

parallel when a new predictor (a revised retrieval model) is used. The revised model

includes accessibility as a basic factor in retrieval of number combinations. To gauge

this factor, Ashcraft proposes the use of a difficulty index. One index measure was

their subjects' subjective ratings of problem difficulty. A second difficulty index was

the Wheeler (1939) difficulty ratings. With the Wheeler variable as the predictor

variable, the slopes for the verification and production data are indeed parallel.

However, it is not clear why use of the Wheeler index is justified. Apparently, the

Wheeler difficulty norms were based on the number of elementary students who

"mastered" each factthat is, produced the fact correctly and quickly. Unfortunately,

the criterion of success was not more precisely defined. Moreover, the subjects in the

Wheeler study were given a particular type of training. While the Wheeler index

correlated well with a number of other difficulty indices of its day, there is no reason

to believe it was or is a definitive measure of difficulty. After all, such indices are
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affected by the nature of the task, age of the subjects, criterion of success, the

previous training of the subjects, etc. Unfortunately, data of Ashcraft's subjects'

subjective difficulty ratings, which would seem a more appropriate index, were not

reported. In brief, it still does not appear safe to assume that the verification data

accurately reflects differences in the search/retrieval time of number combinations.

Clearly, one barrier in finding .a clearly superior model of number combination

representation/retrieval is the limitations of current methodology. Both production

and verification data are "noisy." Both tasks assume a more or less unidirectional

sequence of stages or processes (e.g., see Ashcraft, 1982), yet solving even simple

problems may involve recursive processes (e.g., various checks). This may be

especially true in ambiguous situations such as on the verification task where a subject

is given a problem like 7 + 3 :- 21. Indeed, because it introduces ambiguity and because

it involves an extra decision stage, the verification task may be especially noisy.

Moreover, the aim of chronometric analyses has been to uncover the way in which

adults generate number combinations (cf. Siegler & Robinson, 1982); Yet detailed

observation of adult arithmetic performance suggests that adults (like children) use a

variety of strategies (see, e.g., Browne, 1906). In effect, adult chronometric data may

reflect an averaging over different strategies rather than use of a single process (cf.

Siegler & Robinson, 1982), and this may help to account for inconsistencies within the

data of a single subject or sample and the inconsistencies among chronometric studies

(cf. Baroody, in press).

It may be, then, that a clearly superior model has not emerged because current

models are somehow inaccurate or incomplete. That is, the mental representation and

efficient recall of number combinations may be more elaborate than simple

associative models allow (Baroody, 1983). Because adults are flexible information

processors, they may use several meansincluding reconstructive processesto

efficiently generate number combinations (Baroody & Ginsburg, 1982). It may be that
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some combinations are generated quite quickly from stored informal algorithms. Many

others may be produced rapidly and directly from rules or principles that form an

adult's mathematical semantic (meaning) system. By exploiting already internalized

regularities or relationships, the child eliminates the need to learn ,and store hundreds

of individual numerical associations. In sum, utilizing stored algorithms, rules or

principle to quickly construct a range of combinations is cognitively more economical

than rzalyiig exclusively on a network of individually stored facts.

Take, for example, the N + 0/0 + N family of combinations: 1 0, 2 + 0...10 + 0/0

+ 1, 0 + 2...0 + 10. I worked with one kindergarten girl who was puzzled by 6 + 0 and
-

finally responded "60." After helping her see that 0 was another name for nothing, she

answered 6 + 0 correctly. Later in the session, she immediately responded to 3 + 0

with "3." A week laterwithout further interventionshe correctly and automatically

responded to 0 + 5, 3 + 0, 4 + 0, 7 + 0, 6 + 0 and 0 + 8 (non-zero problems were

interspersed). It appears that the child initially had an informal identity rule:

"Nothing added to a set does not change the set." When she was introduced to the

term "zero" and the written symbol 0, she assimilated this formal mathematics in

terms of informal identity rule. The result was a formal N + 0/0 + N = N rule: "When

zero and a number are added, the sum is the number." By using this abstracted rule,

the child then appeared able to answer any N + 0/0 + N problem quickly and accurately

(cf. Miller & Wellman, 1984; Thiele, 1938). How else can the transfer to the 3 + 0, or

5, etc. trials be explained? In all probability, she had never been exposed tolet

alone practiced the combination "3 + 0 is 3 or "0 + 5 is 5". Thus it is not clear how

association/fact retrieval models can- account for such behavior.

In contrast to current models that posit associations among specific numbers,

then, the alternative model allows that efficient generation of number combinations is

due, in part, to storing and using algebraic or verbal labels. Thus instead of forming

and storing individual associations for 3 + 0 and 3, 0 + 5 and 5, 88 4' 0 and 88, and 0 +
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1,000;000,000 and 1,000,000,000 etc.; the child may abstract a relationship and

summarize the relationship in algebraic terms (N + 0 = N/0 + N = N) or use a (verbal)

rule ("When zero and a number are added, the sum is the number"). Then when new

problems are introduced, the most relevant algebraic expression or label is sought and

used to reconstruct an answer. Such an economical process would make sense with an

infinitely large number system.

In the case of zero combinations (N + 0 = N/0 + N = N, N 0 = N, and N x 0 = 0/0

x N = 0), the algebraic or verbal) rules are relatively easy to learn. This would help to

account for the observations that zero combinations are mastered relatively early _

(e.g., Groen & Parkman, 1972; Woods, Resnick, & Groen, 1975). Yet because of the

form in which they .are stored, the zero combinations may be particularly susceptible

to performance failures (Type II errors). That is, because the algebraic or verbal rules

are so similiar, they are relatively easy to confuse. While he referred to "designs"

rather than rules, Thyne (1954) observed 20 years ago that "these designs would seem

to be very 'easy' to learna possibility which might be expressed paradoxically by

saying that is the very 'easiness' of the zero facts which makes them so 'difficult'. In

other words, even young pupils can soon acquire a knowledge of how to answer zero

facts in a way which is at once most consistent and most unreliable" (p. 205). Indeed,

confusion in selecting among the rules is especially likely to occur in verification

situations, where the stimulus (e.g., 5 x 0 = 5) may trigger two conflicting rules (N x 0

= C and N + 0 = N).

More recently, Ashcraft (1983) has allowed that reconstructive processes may

play some role in the efficient production of number combinations but that this is

limited to the special cases involving 0 and 1. Specifically, he is willing to grant that

children may learn an N 0 = N rule and use well-learned "just before" count sequence

relationships to generate solutions to N - 1 problems. But there at other possibilities

for rule-governed production of basic subtraction combination. Children may quickly
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learn a N - N = 0 rule or identity principle, to efficiently deal with problems such as 2 -

2, 9 - 9, 86 86. For problems with terms that differed by one (e.g., 6 - 5, 7' 6, 8 - 7

or even 106 - 105), the child might realize that the answer is always one ("The

subtraction of 'number neighbors' produces a difference of one"). Some adults may

continue to use a nine rule: "A teen N minus 9 is N + 1" (e.g., 16 - 9 = 7, 17 - 9 = 8, 18

9 = 9). Finally, it is not implausible that some subtraction combinations may be

efficiently reconstructed from addition counterparts (e.g., 10 - 7 is 3 because 7 + 3 is

10). In brief, efficient reconstructive processes may play, a role in more than the

efficient production of 0 and 1 combinations.

The teaching or encouragement of thinking strategies may, then, have a more

dirt; ect bearing on mastering the basic combinations than is currently allowed. Such as

instructional approach may not only help children to form specific numerical

&ssociations, it may help children to make rules algorithms and principles more

explicit. As a result, algebraic or verbal labels may be internalized more readily and

hence whole families of combinations may be learned more quickly.

Summary

.In summary, in contrast to current models that view representation of the basic

number combinations as a network of hundreds of specific numerical associations, it

would seem cognitively more economical to, mentally represent many groups or

families of combinations 'in algebraic or verbal terms: as rules, algorithms or

principles from which a whOle range of combinations could be reconstructed.

According to this alternative model, "mastery of the facts" would include discovering,

labeling, and internalizing, relationships. Meaningful instruction (the teaching of

thinking strategies) contributes directly to this process and clearly would seem more

efficient for this purpose than a drill approach. Thus, in contrast to current modelS

that hypothesize reproductive processes replacing (slow) reconstructive processes, the

alternative model suggests that some of the reconstructive processes involved in

13
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learning the combinations originally may continue to operate in adults, though more

automatically.

14
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learn a N N = 0 rule or identity principle to efficiently deal with problems such as 2

2, 9 - 9, 86 86. For problems with terms that differed by one (e.g., 6 5, 7 6; 8 7

or even 106 - 105), the child might realize, that the answer is always one ("The

subtraction of 'number neighbors' produces a difference of one"). Some adults may

continue to use a nine rule: "A teen N minus 9 is N + 1" (e.g., 16 9 = 7, 17 9 = 8, 18 -

9 = 9). Finally, it is not implausible that some subtraction combinations may be

efficiently reconstructed from addition counterparts (e.g., 10 7 is 3 because 7 + 3 is

10). In brief, efficient reconstructive processes may play a role in more than the

efficient production of 0 and 1 combinations.

The teaching or encouragement of thinking strategies may, then, have a more

direct bearing on mastering the basic combinations than is currently allowed. Such as

instructional approach may not only help children to form specific numerical

associations, it may help children to make rules algorithms and principles more

explicit. As a result, algebraic or verbal labels may internalized more readily and

hence whole families of combinations may be learned more quickly.

Summary

In summary, in contrast to current models that view representation of the basic

number combinations as a network of hundreds of specific numerical associations, it

would seem cognitively more economical to mentally represent many groups or

families of combinations in algebraic or verbal terms: as rules, algorithms or

principles from which a whole range of combinations could be reconstructed.

According to this alternative model, "mastery of the facts" would include discovering,

labeling, and internalizing relationships. Meaningful instruction (the teaching of

thinking strategies) contributes directly to this process and clearly would seem more

efficient for this purpose than a drill approach. Thus, in contrast to current models

that hypothesize reproductive processes replacing (slow) reconstructive processes, the

alternative model suggests that ,some of the reconstructive processes involved in

15



13

References

Ashcraft, M. H. (1982). The development of mental arithmetic: A chronometric

approach. Developmental Review, 2, 213-236.

Ashcraft, M., H. (1983). Procedural knowledge versus fact retrieval in mental

arithmetic: A reply to Baroody.. Developmental Review, 3, 231-235.

Ashcraft, M. H., & Battaglia, J. (1978). Cognitive arithmetic: Evidence for retrieval

.and decision processes in mental addition. Journal of Experimental Psychology:

Human Learning and hemory, 44 527-538.

Ashcraft, M. H., Fierman, B. A., & Bartolotta, R. (in press). The production and

verification tasks in mental addition: An empirical comparison. Developmental

Review.

Ashcroft, M. H. & Stazyk, E. H. (1981). Mental addition: A test of three verificatidn

models. Memory and Cognition, 9, 185-196.

Baroody, A. J. (1983). The development of procedural knowledge: An alternative

explanation for chronometric trends of mental arithmetic. Developmental

Review, 3, 225-230.

Baroody, A. J. (in press). A re-examination of mental arithmetic models and data: A

reply to Ashcraft. Developmental Review.

BaroodY, A. J., & Ginsburg, H. P. (1982). Generating number combinations: Rote

process or problem solving? Problem Solving, 4(12), 3-4.

Browne, C. E. (1906). The psychology of the simple arithmetical processes: A study

of certain habits of attention and association. The American Journal of

Psychology, XVII(1), 2-37.

Brownell, W. A. (1935). Psychological considerations in the learning and the teaching

of arithmetic. The teaching of arithmetic (Tenth Yearbook, National Council of

Teachers of Mathematics). New York: Bureau of Publications, Teachers

College, Columbia University.

16



14

Brownell, W. A., & Chazal, C. (1935). The effects of premature drill in third-grade

arithmetic. Journal of Educational Research, 29, 17-28.
r

Bus Well, G. T., & Judd, C. H. (1925). Summary of educational investigations relating

to arithmetic. Supplementary Educational Monographs, (No. 27).

Cobb, P. (1983, April). Children's congtruction of thinking strategies to find sums and

differences. Paper presented at the annual meeting of the American Educational

Research Association, Montreal.

Duckworth, E. (1982). A case study about some depths and perplexities of elementary

arithmetic. In J. Bamberger & E. Duckworth (Eds.), An analysis of data from an

experiment in teacher development (Report to NIE on grant number G81-0042).

Folsom, M. (1975). Operations on whole numbers. In J. N. Payne (Ed.), Mathematics

learning\ in early childhood (37th Yearbook of the National Co'uncil of Teachers

of Mathematics) (pp. 162-190). Reston, VA: NCTM.

Gelman, R., & Gallistel, C. R. (1978). The child's understanding of number.

Cambridge, MA: Harvard University Press.

Ginsburg, H. P. (1982). Children's arithmetic. Austin, TX: Pro-Ed.

Greeno, J. G. (1978). Understanding and procedural knowledge in mathematics educa-

tion. Educational Psychologist, 12 (3), 262-283.

Groen, G. J., & Parkman, (1972). A chronometric analysis of simple addition.

Psychological Review, 79, 329-343.

Jerman, M. (1970). Some strategies for solving simple multiplication combinations.

Journal, for Research in Mathematics Education, 1, 95-128.

Kraner, R. E. (1980). Math deficits of learning disabled first graders with mathe-

matics as a primary and secondary disorder. Focus on Learning Problems

in Mathematics, 2 (3), 7-27.

Miller, K. F., *& Wellman, H. (1984, April). Learning the rules of arithmetic:

Children's understanding of zero. Paper presented at the annual meeting of the

American Educational Research Association, Montreal.

17



15

Rathmell, E. C. (1978). Using thinking strategies to teach basic facts. In M. Suydam

& R. Reys (Eds.), Developing computational shills, 1978 NCTM Yearbook.

Reston, VA: NCTM.

Resnick, L. B. (1983). A developmental theory of number understanding. In H. P.

Ginsburg (Ed.), The development of mathematical thinlin . New York:

Academic Press.

Resnick, L. B., & Ford, W. W. (1981). The psychology of mathematics for instruction.

Hillsdale, NJ: Erlbaum.

Siegler, R. S., & Robinson, M. (1982). The development of numerical understandings.

In H. W. Reese & Lewis P. Lipsitt (Eds.), Advances in child development and

behavior: Vol. I. (pp. 241-312). New York: Academic Press.

Siegler, R. S., & Shrager, J. (in press). Strategy choices in addition: How do children

know what to do? In C. Sophian (Ed.), Origins of cognitive skills (From the 18th

Annual Carnegie Symposium on Cognition, Pittsburgh).

Smith, J. H. (1921). Arithmetic combinations. The Elementary School Journal, June,

762-770."

Steffe, L. P., von Glasersfeld, E., Richards, J. & Cobb, P. (1983). Children's counting

types. New York: Praeger.

Svenson, 0. (1975). Analyses of time required by children for simple additions.

Acta Psychologica, 35, 289-302.

Thiele, C. (1938). The contribution of, generalization to the learning of the addition

facts. New York: Bureau of Publications, Teachers College, Columbia

University.

Thorndike, E. L. (1922). The psychology of arithmetic. New York: Macmillan.

Thyne, J. M. (1954). Patterns of errors in the addition facts. Edinburgh: Scottish

Council for Research in Education.

18



16

Trivett, J. (1980). The multiplication table: To be memorized or mastered? For the

Learning,of Mathematics, 1, 21-25.

Wheeler, L. R. (1939). A comparative study of the difficulty of the 100 addition

combinations. The Journal of Genetic Psychology, 54, 295-312.

Winkelman, J. H., & Schmidt, J. (1974). Associative confusion in mental arithmetic.

Journal of ExperimentalEx err it 1 Ps cholow, 102, 734-736.
Woods, S. S., Resnick, L. B., & Groen, G. J. (1975). An experimental test of five

process models for subtraction. Journal of Educational Psychology, 67 (1), 17-21.



17

Footnotes

1. Basic number combinations will refer to the 121 most basic addition problems,

including those with single digit addends (0 + 0 to 9 + 9) and those in the series,

10 + 0 to 10 + 10 (and their commuted pairs). It will also refer to the

corresponding subtraction, multiplication and division problems. In general, the

term number combinations rather than number facts will be used. Number facts

connotes a mechanical or rote associative process, and this term will be used to

denote that meaning. Since number combinations may be learned in a

meaningful manner, this less prejudicial term is preferred by the authors (cf.

Brownell, 1935).

2. Thorndike's (1922) association theory of number fact learning was actually more

sophisticated than this basic. model. He argued that frequency of practice was

not sufficient to account for number fact learning. He argued that bonds should

not be formed independentlythat instruction should be organized so as to build

upon earlier, related learning. In addition to readiness, Thorndike argued that

internal factors such as interest play a role in learning the number facts.

Moreover, he even appeared to advocate the learning of rulei=albeit in other

terms. For example, he noted that "the facts are best learned once for all as the

habits '1 times k is the same as lc' and 'k times 1 is the same as k"' (pp.144-145). It

appears that Thorndike was advocating the teaching of a rule for this group or

family of combinations, rather than formation of bonds for each of the indivIdual

facts. It is not clear, however, whether he was alio advocating the use of the

commutativity principle or the learning of two rules (one for N + 1 and another

for 1 x N).


