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The 1980s are a time of profound challenge to the technological strength, * )

of the United States in the economic as well as the military spheres, and .

Jour country's performance in research and development in its engineering .

laboratories wilf*be an important and perhaps determining aspect of our
success in meeting this challenge. Advanced engmeermg development is
now based mainly on scientific computation, which in turn relies on math-
ematical modeling and laboratory experiments. Together th y represent
one of the areas in which the strength of-nations is being tested today.

Mathemmatics is esséntial in the development of theoretical and corm-
putational models for solving the highly complex_problems of engineering
and basic science, which encompess a range of scientific difficulties, On one
. side are questions of computer architecture and the sciénce of algorithms.
" On the other dide is the modelmg of chemical and physical processes
by means of fathematjcal ‘equations. The issues are tied together by
mathematical theory, which seeks a fullunderstanding of the nonlinear-
phenomena eontained in the equations and implements tiis understanding
throagh compufational methods. This span of sclgptlﬁc activities. forms
the subject that is known as applied mathematics.

The pﬁnclpal conclusion of this committee is that computational
modeling, which i a high-leverage element of our nation’s scientific and
technological effort, requires increased emphasis and support. The conclu-

"sion is documented by an examination of typlcakllappllcatwn areas, which

reveals the pervaswe difficulties that accompany computation of realis-
tic problems and leads one to consider both what computers can do and
what they cannot currently do but mlght eventually be capable of doing,
As illustration, we examine several deep theoretical problems, including
turbujence and combustion. At the frontiers of attack on these prob-
lemns we discover the limitations unposed by our curtent understanding of* .
model formulation and computational capability. We examine modeling

"'problems and a‘lgorithms adapted both ty specific features of the desired

solution and t¢ the computer architecture. We also examine compuser
architecture ahd component délgn and manufacture as a mathematical
modeling problem.

The Comm:ttee recommends inc reased support for

1 Research‘ in comp,utatlonal modeling and applied mathematics,

.
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AR . plied mathematics.” . .. by .
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b These recommended increases include financial support from govern-
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“ {. INTRODUCTION ..

- H ,
The extensive use of computers in advanced deselopment work began dur-
g World War II, and today computmg is.a vitah component of science, ,
engineenig, and modern technojogy . Most advanced technological devel-
opment,ifrom aircraft design to automobiles to petroleum to satellites now
follows this pattern of reliance’ on the computer. Moreover, the needs of
national defense have posed scientific and engineering design problems as,
_ difficult” as any+ever encountered. Numerical computation and applied
" mathematics have played gn essential role in dealing with such problems.
In faet, nubnerical fluid dynamtcs was born during the 1940s for the pur-
pose of' assisting irf the design of nuclear weapons, combat aircraft, and ‘.
converitional ordnance aiftl is now applied w1dely by industry, - £

Most problems of engineering or scientific interest are foo complex ‘
to be modeled and computed exactly. Instead one considers a series
of @ppro:o'mat,e models' and computations, each of which illuminates a.
different aspect or idealized portion of the overall problem. When used by
a skilled engineer or scnentlst these mathematicg] models greatly enhance
the judgment that goes into design *decisions an educe the amount of
expensive laboratory, and field testing required. These 3dvantages account
for the widespread use of these models.

More speoiﬁcally, mathematical models are used in engmeenrlg deslgn
problems in the )ollo“nng modes - . . .

) ,s : ' .- T

1 Te provide the ﬁrst test of a new des@:\dea. Beyond common
sense and simple hand caleulatiops, the compiiter. model is usually the
cheagest and fastest fest of an idea. This test is applied before deciding
whether to conduét a series of experiments or to build 2 prototype.

2. To reduce the time and cost associated with laboratory and
field tests. Usua)ly engineering Pproblems contain.sevéral critical design -
parameters that will have involved a certain amount of trial and error in
the search for the optimuth choice. The Eomputer is used qualitatively
{Will an increase in parameter X improve or degrade performance - or
perfermance parameter ¥?) and quantitatively (Whlc}pmlues of «design’
parameters X ,..., X, will optimize performance?).

3 To asslstrm laboratory or field tests that determine model

) parameters. equations. Often the model parameters are measured

\ B ' 3! | . . f
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. they.are faster, cheaper, and more-effective,

- : ) i '. S

only indirectly. Thus, a coiputer model of the laboratory apparatus
may be nceded to extract the desiréd information from the observed data.
Usually these models are simpler than the complex engineeting models,
and their defining equations can be solved with greater precision and fewer
approximations. ¢

4. To replace laboratory or fidlH tests. Sometimeytests are 1rnposmble
or impracticable. For example, measurement of chemical reaction rates ’
t extreme conditions of pressure and temperature is Very difficuls, and .
accurmulated éXperience through trial and error is not adequate for solving
the problem of landing the Space Shuttle, for reasons bf hurnan safety as
well as cost. ) o, . -

5 To improve the education and Judgrnent of engineers and ﬁ:
tists using the models. The mathematical models Iﬂnd domputer soluti
provide a vast increase in the quality and caliber of the data. Thus while

" the laboratory measurement may produce some oversll quantity {e.g., total.

flow in and out), the computer model might yield detailed velocities and
concentrations at each ‘point of the flow field. Because the equations are
nonlinear, it issdifficult to foresee all the relevant phenomena, much less to
uhderstand their relative importance. Thus the rnqdel becomes for users
an experimental tool that allows them to understand a problem at a level
of détail that cannot be achieved by other means. . .

L -

~

In summary, mathematical and computer models aré used because

However, models have limitations.
validity of the equations used, in the adequacy of the solution algorithm,
and in the size and speed of the computer. Alsq, theé cost, accessibility, and
reliability of computer softyare and, sometimeg, the cost of the computa-
tion itself can be limiting factors. These limitations in some senge define

‘the frontiers of science, but more SpEClﬁcall}" they definé the frontiers of
applied matherfiitical science.

Probleris of réalistic ¥nterest ‘typically mvolve the study of dwe}se
physucal phenomena ofl many sceles of lengt.h in fully threé-dimensional
settings. Though essential, experimental science in these contexts ig ex-
pensive and difficuit. The design of modern strateglc weapons systems

epitomizes these cha;‘actenstlcs. For examplg, in the d
submarine, the architecture of the vessel, the design

ignof a TRIDENT
the ‘missile, and -

the design of the nuclear warhead all need

be m

which yequires many thousands of hours ol ‘b"mp

oftled and integrated, ,

r time and stretches

There are hrmtat.lons in the C

of

available computing power snd modeling techniques'to their limits, *

Generally, . desigy and evaluation’ of new kinds ogﬂ‘jefense _systems,

r
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such as remotely, controlleg or robotic
entirely novel systems, UsIng parallel comp

L

~ £
b
.

. icles,” will require analysis of
r architectures ameng other

things. Theneeds “of industry for te#hnelogical advances are similar and
are _domm ated by such, basic concerns as pollution, depletion of resources,
engrgy conservation, and efficient use of manpower. It seems safle to
say that defense and industrial needs will continue to lead numerjcal
computation’and applled mathematics into new and challenging regimes

Depending on the complexity of the problem and the magnitude of the
effort expended, models range fromn excellent to merel,v suggestwe in their
quality and usefulness. In all cases, improvement of computer modeling is
one of the most promising avenues to improved techno
by our nation. .

’ *, As one of the aims of_this report, the Committee wantz to show and

.

emphame that in the computational approaches to most of today’s press-

. .mg and challenging scientific and technolagical problems the mathematical
aspects cgnnot and should not be considered i in isolation. Thére is a unity
“among the various steps of the overall modelmg procesﬁ‘rom the formula-

- tion of the physical problem fo the construction of appmpnate mathemati-
cal models, t ign of suitable numerical methods, t.helr computational

mplementation, and, last but not least, the validation and interpretation

of the computed results. In particular, the Committee wants to illustrate
that the stepg are jpore often than not deeply interconnected gnd that
the computational process may indkgd be pattdof the model construction.
At the Samé‘ ttme there are problem areas, such as turbulence, where cur-
rent theeretical research- may promlse a deeper insight into an important
physical phenomenon ' : ]

In line with these%ims, the report uses a “matrix approach” that
'views the same problem. from three different standpoints. It Chapter 2, the
traditional approach ig taken of diScussing a number of typical problems
leadmg/ to computational modelmg from the viewpoint of the scientific
or engineering discipline in which the,v arise. Then in Chapter 3 certain

< of these problems are touched on again, this time fiom the viewpoint of
the computatwna] and mathematical diffieulties that atise in connection
with them. For example, these difficulties may involve latge numbers of
degrees of freedom; different scalgs of time and length, or"singulamles of
variouys types. In Chapber 4 the viewpoint becomes that of the numerlcal
algorithms involved in th computat,lons .such ag varlous discretizati
methody; tinuation approaches, and splitting techruques
cessity, many topics have been left out. The list of applications, -
for example, i3 by no means scmplete, and, in fact, entire areas such
as.resctor safety and reactor physics are not mentioned at all. Neither
did the Committee attempt to address all computational and matheinati-
e . ) ]

Y
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' tise and interests of the Comn‘]hthee and its advisers, and. thé report’s broad,

. colleagues across the country and from abroad. A list of names of all
" thosg.who helped in this work is given in Appendix A, and the Committee
s extremely grateful for all thé often extensivg documentations, spegial

- mathematics and modeling often in a central position. '

X

rgal diffictilties nor Al vanajons of numerical a.lgonthms The choice ol'
topics was motivated in pa.rt‘by energy-related consndqratlons, the exper-

purposé Wwhosa, achievement would be hindeted by any aftempt to be.en-
cyclopedic. For the same reag;n, the repott is nohﬂmued;,o be a tech-
" nical summary, and this is alsd reflected in the fact that no attempt was
made fo reference the relevant llterature The report is mainly addressed
to scientifically literate readers who know how to consult the literature
when -necesary. -+ '

*-4The Committee obtained advice and technical suppert from many

wnt.e-ups and other comments that we received, The report is the result of
* a study beglin by the Commm,l,’»ee in 1981 on computational mathematical
modeling and.mathgmatlcs applied tg the physical sciences with particular
reference th'thgneeds of the Departient of Energy (DOE). The prepara-
tion of the réfiort was #Bported by the Applied Mathematical Sciences
Researctt Program, of the Office of Basic Energy Sciences of DOE, and the
Committee also expresses its thanks and apprectation for this support.

’ As stressed ir;, the®Overview, the Committee found that improvement
of the mgthematical and computer modeling of scientific probleme ig an

« important priority for our nation. The challenge is broad, and there are
no simple remedies for current shortecomings. Aceordingly, the Committee
recommends the following: -

1 ?}(fﬁl‘f:eased researﬁ'%t‘tpport for computational modehng qnd appl:'ed
mathematics X

The t.echnologmal cha.llenges of the coming decades will impose new
testa of our abilities in computational and applied mathematics, and meet-
ing the tests will require increased research effort. As illustrated in this
report, the challénges are typically multidisciplinary in nature with: applied

L4

Hence, to support research in this area, multidisciplinary teams of
adequate size to make progress Mﬁ?ﬂnplex problems should be
encouraged; and ofganizational means shoutd-He devised to facilitate their

establishment, continuity, and success..
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2 Increased suppart for computing facilities ded:cated i comptrta
tional modeling and epplied mathematics -
*  -Ready sccess to modern computing systems is essential. Ladk $>l'
. equipment, is the critical factor. most sttongly limiting academic researc
in computational mathematics. There is need both for comremently usabl
local equipment and for access to large—scale computers, Local faci me}
are necessary for entire problems of modest size and for such tas
code development, interactive debugging, test l‘Uns and, graphical analyms
Large-scale computing is essential because of the size of many typical
problefns as documented inthis report. In this connection, the Committee
strongly endorses the findings and recommendatidns in the recént Report.
of the Penel on Large-Scale Computing in Science and Engineering, Peter
D. Lax, Chairman, Nationhl Science Foundation, Deeembei' 26, 1982, °
- 4
‘8. Increased support for education and menpower development in
computational arid applied mathcmahcs
" % Today there are unmet mappower needs in computational and ap-
plied. mathematics, as discussed, for example, in Science and Engineering
Education for the 80s and chom; a National Science Foundation report,
Qctober 1980, These needs are l'o in industry, government laboratories, .
and academic institutions. The eritical challenges in this ares call for a
focus ok quality. Specifically, the complex mterdlsmpfmary nature of the
. problems poses special educational challenges for students and young re-
searchers, and graduate and postdoctoral fellowship support for participa-
tion in multidisciplinary teams of the type. dlscussed above would also be _.
helgful. oo
A valuable aspect of such muitldzsmphnary education is the interac-
tion it creates between applied mathematicians and other apphed sclentlsts .
in universities, gcn.rernment and industry. ¥




2. APPLICATIONS
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2.1 HYDRODYNAMIC SYSTEMS - -~

Hydrodynamic processes touch nearly every aspéct of our lives. In a report
evenl many times larger than the present one, we could. not possibly discuss
all hydrodynamics applications. Therefore, we have chosen 2 few, with
the hope that they will serve to illustrate the importance of hydrodynamic
models and to point out some of the problems that occur in developing
&he models.

A large fraction of the mrrent research in computational modeling
is. done with hydrodynamics applications in mind. The great variety of
zgsponses that we received to our requests for material for this report
attest to the diversity of thske applicktions, Among them were applications
haying to do with aircraft and wing design, both at subsonic and supersonic
X speeds; global weather prediction and local phenomena such as tornadoes;

, water waves and-ship hull design; piping networks, such &8 in nuclear
/ reactor or power plant design; geologic phenomena, such 8s glacier flow
or convection in the Earth's mantle; biologicsl flows, such as the Aigw of

, blood in the heart; and chemically reacting flow, such, ag combustion.

The general system of equations governing hydrodynamics are called
the Navier-Stokes equations. They are a statement of mass and momen-
tum conservation, the momentum equation being a formulation of |
Newton's second law, F' = ma. The Navier-Stokes equations were first
developed in France by Navier in the early 1800s. They represented 2n
improvement over the Euler equations that were first derived in 1755, in

_ that the Navier-Stokes equations included viscous effects that were absent
in the Euler equations. However, it was nof until 1904, when Pr(gal;l’dtl de-
veloped the boundary-lsyer approximations, that predictions of practical |
viscous flows could be made. Practical solution of the full Navier-Stokes .
equations had tq await the development of modem high-speed comput.ers' .
/beginning in the 1940s.

Why are equations that have been known for over 100 years 50 hard to ..
solve? The answer lies largely in their inherent nonlinear characteristics. ™
Ifimediately upon looking at the equations one sees that the convective .
transport terms (the acceleration in F' = ma)} involve velocity times its )

e ) R
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. gradient. This nonlinearity is always present, and it is responsible for

the existence of complex phenomena such as shoek waves and turbulence.
In principle the Navier-Stokes equations aloné provide a desgnptlon of

turbulence, however, one would have to resolve such small length scales in ~

their solution that this approach is not of practical importance. Therefore,
a gréat many approaches to approximating Yurbulence effects are being
pursuéd. Typically, these models introduce further nonhpeantles into the

" system.

are related to the disparate time and length scales that must'be resolved.

In particular, convective transport is characterized by the fluid velocity,
whereas pressure waves travel at the sound speed-typically orders of mag-

nitude faster th uld speeds. At the same time the effects of dlﬂ’uswe
processes {e.g., 8 ng stresses) are felt instantaneously throughout the®
flow. In some cases the fluid can react ghemically.. In those cases, the reac-

tion rates display a strong nonlinear dependence on the fluid t.emperature

This introduces yet more characteristic scsles into the models.

Depending on characteristic parameters such as the Reynoids number,
the solutions to the Navier-Stokes equations either ¢can be smooth snd
steady or they can exhibit regular oacﬂlailons Or they car be completely
_chaotic. 1t is clear that depending on the regime the appropnate solution
" procedures could be quite different.

Finally a word about botndary conditions. In some prohlems the flow
is enclosed, and hence boundary conditions are applied at the boundaried
of the enclosure (e.g., an automobile engine cylinder), which. can often
have a complex shape. In other cases, such as an aircraft wing, the flow
ia effectively unbounded, and the boundary condition should be applied at
“infinity” (see Section 3.4). Some modeling problems arise in approximat-
. ing infinity by some finite boundary. In still other problems, such as
the flow of blood in a heart, the boundmy is both complex in shape and

deforms depending on the forces exerted on it by the fluid. Modeling such

a problem is clearly a challenge.

2.1.1 Wings, ‘Wind Tunnels, and Computers

———

The economics of the energy shortage implies that planes will fly at spéeds
close to hut less than the speed of sound, At such speeds there i

“supersonic bubble” over the wing, where the local velotity of the"air

relative to the wing is greater than the speed of sound. In this case the
presence of shock waves is typical and undesirable. They are undesirable

‘ 9

Other problems that arise in the solution of hydrodynamic problems '
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because the drag can be computed as bemg proportmnal 1o the third power
of the shock strength. The goal of efficient wing design is to produce
wing shapes with no shocks or only weak shocks in this transonic region.
A general mathematical theory shows that shockless wing foils exist for

- given transonic cruising speeds. However, the problem of finding such wing

shapes is both overdetermined and extremely sensitive to small changes in
the data, i.e., “ill-posed” (see Section 3.6). The solutioch to such ill-posed
problems is Still valid from an engineering point of view because operation
at neighboring off-design conditions will prohuce only wea.k shocks and
small drag, see Mg, 2.1. . )
Using_computer algorithms created by applied mathematicians, it is
now possible to solve both the inverse problem (design) and the forward

. problem {of determining the flow fieldl for a given wing shape and velocity) -

with sufficient accuracy that the use of costly wind-tunnel experiments can_
be greatly reduced. This accomplishinent is a st.nkmg success of recent
appited mathendhtics. .

The theoretical areas that have contributed to this study include the
theory of nonlinear elliptic equations, complex function t.heory, and,mixed
problems, for which a prototype is the Tncoml equatxon, -

.
4

a% E2N
i

i

which is _efllip_tic for ¥ > 0 and hyperbolic for y<0. The elliptics,zegion

“ corresponds to the subsonic region, and the hyperbolic region to the su-

"+ personic “bubble." In a numerical method for the design problem, an

analytic continuation makes the elllptlc region: hyperbolic. The resulting

_equation is solved by the methed of characteristics, and then the ana.lytlc

contmuatmn back to real values of space is performed humerically.

..'-

) 2‘1"‘2 Chaos 'I\erulence, and Droplets

Lo

T -z& R *

'I‘utbulence produces a boundary layer along the t.railmg edge of an sircraft
wing. The boundary layer degrades the wing_ perfo;mance and thus is_an

S 1mport.am part Qf the. dt}glgn problem. The flow behind the trailing edge of

a wing contains a vorbex"'ﬁﬁeet and the roll-up of this yortex sheet-produces
tul'bulence that constxtubes asafety hagard for small aireraft ﬂymg in the
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* which the line is stretching, it is geometrically stable. In.regions in which
it is contracting, it is unstable. Instead of contractmg, it forths a spiral .
. vortex structure and hence is stable.

The two-phase flow of water and steam in a cooling pipe, or of oil
and gas in an oil-reservoir production well, is also a problem in wbich
the geometrical ingtabilities of large-scale fluid motion are important.
Here an internal movible boundary separates regions of different material

- - properties. In some cases (a heavy fluid, e.g., water, falling into a light
fluid, e.g., airgy the material interfage.is unstable against formation of
fingers. There is continuation of the nonlinear Instabilities leading to
pinchoff of droplets and a chaotic regime (mist) that can be analyzed on

. various length sceles, a8 discussed below in the case of turbulence. |

During the combustion stroke of an automobile engine, the flame
is quenched.when it reaches the cold cylinder.salls, and incompletely
burned fuel present in the combustion charilser at this time contributes to

('bs%)tlon and to a loss of fuel éfﬁclency The rate of advance of the flame
"t fromy the spark plug to the cylinder walls is governed by the laminar flame
speed and the rate of turbulent mixing. Of these two effects, the second
/\ . is more important. The turbulent mixing is produced by vortices that
' detdch from the turbulent boundary layer at the wall during the intake
and compression strokes (see Fig. 2.2). Thus, an accurate ‘modeling ol'_w '
this problem requires an ability to treat a number of fluid smgulantles
. flame fronts, vortices, tu:bulence, boundary layers, undary-layer
separation. Bﬂd\% i
- The examples above ghow that singularities in fluid flow/may be .
geometrically unstable. When this instability occurs in a regime governed "
by the scale-invariant Euler equatlons, the phenomerion is repeated on f )
+ ali length scales and leads to chaotic golutions. Turbulence,.vortex roll-
up, convection fingering, and droplet formation sre examples f this
phenomenon, which we now discuss from a'general point of view.

The Euler equations of fluid dynamic& allow intrinsic singularities,
namely vortices, boundary and shear discontinuity layers, vontact or
material interface discontinuities, and sbock waves (F‘lg 2.3 shows a com-
putation of the stretchmg of a vortex tube in a perfodic inviscid flow).
Depending on the problem, special discontinuities such as flame fronts or
chemical reactjon fronts (for fluid dynamics with chemistry) may occur.
Within the singularity, the Euler equations fail to be a correct description
of nature, and cprrections (either parabolic effects or perhaps a more com-
plicated Euler equation with more state vanables) may be required.. As an
example, consider a sbesr layer (i.e., a jump discontinuity in the tangential
velocity component). Taking the curl of the Navier-Stokes equations, we ** |

- obtain for j . T

e

e . R 12,
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v w= VX = vorticity

. the equation ,
7z Aw \
,Et—+(v Ve — (w Viv= qu s .

where v ig the kinematic viscosity. To understand the significance of thls
equatmn, we speclalme to two dimensions. Then w is a vector in the z
dlrect,lqn, W V)v,

d -
v ‘&'{'}'(IJ-V)

is the total, or Lagrangian "time derivative, so that the Navier-Stokes
equationt says that yorticity moves by passive transport plus diffusion.
The extra term, (w- Vv above, induces vortex préduction as a result of
the stretching of vortex lines in three dimensions’ and is important for

considerations of geometrical stability as discussed below. In summary,
the diffusion_term vAv of the Navier-Stokes equation is responsible for
the vorticity leaving a boundary or internal shear layer and diffusing into
the rest of the flow. Without viscosity there is no mechanism for vorticity
 to enter (an initially irrotational) flow region. The Prandt] boundary-layer _
“7 by "
FIGURE 2.2 Stretching of a flame by avortwal structure, Such stretching
is ;mportant for the efficient operation of engines; it enhances ing by
increasing the aréa of the flame. (From A. J. Chorin, Flame advéction and
propagation algonthms, T Comput. Phys 35, 1-11 (1980) |
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FIGURE 2.3 Successive stages in the stretchmg of 8 vortex tube in an

inviseid periodic flow. Vortex stretchmg is the mechanism'by which energy

in a turbulent flow is transferred to eyer smaller scales where it is eventually

dissipated. a, step 10, time = 0.65; b, step 20, time =0.88; ¢, step 30, -

time 3 1.04; d, step 40, time = 1.21. [From A. J{ Chorin, The evolution
_of ato ulent vortex, Commun. Math Phys, 83, 526-527 (1982).) *

- -
. -




3

ot

i equatlons area specxal version oi‘ the Navier-Stokes equ ations {scaled in the

sniormal direction, sp that diffusion occurs only ‘%rmal to the boundary).
Dften the fluid singularities are geometricdlly unstable. They may

bifurcate in a predictable fashion, developing “rolls™ @ouett.e Jfow) or

“oefis™ (Benard flow), or they may become irregular and hlghlgr convaluted
with a tendency toward chaos, knovwn a8 turbulence. There is no scientific

_ rgason'to questlon the'vahdlty of the Navier-Stokes equation as & micro-

scopic description of physics even into the turbulent regnne. However, its
usefulness\aa a description of Ergqscale fluid motions in the turbulent
region can be questioned, and sorrie other description of fluid flow, such as
a random ensemble of mteractmg vortices, be more effective.

There are three energy of 'leng.h sclestin which quiite distinet charac-

teristic phenomena domiiiate. ‘The smallest length scale is that on which
g enargy dissipstion dominates. On this length scale, the Nawer-Stokes
" ,equations are the correct equations. The viscosity is large, causing velocity

fluctuations to be ;apldly smoothed and solutions to be (Jocally) “laminar.”
Since smoothness of solutmps is a local property, we may conjecture that
all‘ solutmns of the Navjer-Stokes equations s should be smooth for.all time.
This conjecture is the major unsolved groblem of the energy dissipation
range: It f‘s lﬂ\own that solutions, with*smooth data will remain smooth

. for a short time, and sglutions mth smooth and small data will remain

smooth for all time. Both statements exclpde turbulent ragimes.
For weak solutions, Leray showed that the' set of times ¢ for which
v{z, %) fails to mmooth is a get of theasure zero. Recently.considerable

: progress has béen made in mtnctmg the posslble alngulantles of the

(Navier-Stokes equations. -+ « e,
For longer length scales, "viscous effects do not lay &.major role

“and the fluid’ flow ¢an bé degcribed by Eulér equano .}'Iowever, this.

simplificatiop gwes rise to problems The probiems are’ no merely techni-
cal but reflect, the intrinsically complex phenomenology of fluid dynamics.,
Thie Euler equations are scale-invariant. Thus if v = v(z,t) is a solution, so
is v = v{qz, at). The inertial range is the sét of length scales dominated by
scale-invafiant, unideraal Dhysiés. ‘Whatever phenomena can oceur (e.g.,
vortices) wlll be repeated on gl} length scales in the inertial range. The
inertial rang%;s limited at the smal r,pnd by viscous dissipation. A§ the
larger end, itis limitéd by the spe ial boimdary and. initial corditions

imposed on the ﬂqw, which result in special (nonuniversal) flow behavior, -

The inertial region is dominated by scale-invariant behavior. jI‘here

" is a flow of energy from large-scele motions to smallen ones (the “enerdy

cascade”}. Tlis eabcadé seems plausible on physical grounds a2 a type of
third law of thermodynamics but does not have a rigorous mathematical
status. It can be explaiged as a gonsequence of the ,geometqqal instability®
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. dimensional) torus has a strange attractor as its limit set and that this

-

of vortex lmes and Bhear layers. As these go~unstable, they generate
(smaller) new vortices'and vorticity. -

The energy cascade leads to'a chmenswnal analysis oﬁcharactenstm
exponents and, to the Kolmogorof{, 5/3 power law

. . — :
v E(k) o k5% » ) ’

Pl

for the energy distribution as & Tunction of wave number k. A discussion of

", the experimental data in connection with the Kolmogoroff theory has the
+ vortices, which occur on all length secales in the inertia) range, as filling

space. Actually, it may be better to assume the contrary: vortices of
a given size fill only a small part of space. Then the simaller vortices,
which are driven by ‘the largen ones, will oceur only within the region of ~
these larger vortices, and in fact only within d small part of this region.
This is the notion of Antermittency. It leads to the idea of a singular set
for solutions of the E r equations, which is a Cantor set of fract.lonal
dimension less th . ¢

Intermittency leads to modifications in the Kolmoyoroff exponent

and to a renormalization group type picture of turbulence, Numerical

calculations to determine intermitiency and energy cascade .exponents '
have been performed. The calculations start by tracking vortex lines in
a fluid flow.and proceed fhrough a sequence or renormalization group
length scale transformations to focus on the singular Cantor set within
the solution. )

In most problems, the inertial region contains lengthg too small to be .

used directly in a fluid caleulation, Its importance lies-in its role of fixing

parameters Such ag an effective or eddy viscosity, which-are then used to
determine the large-scale motion of the fluid. The inertial region is not
particularly well understood from either the theoretical or numerical point
of view. PO

The large-sca]e fluid motions are - produced directly by the initial and
boundary~conditions imposed on the flow. These motions are strongly
problem dependent. Numerical calculations and experiment aré important
tools in their study asis the detailed analysts of simplified and idealized
flow configurations. An important theoretical question is the evolution of
initially unstable flow configurations. This quéstion arises in connection

with the onset of turbulence and in connection with the energy cascade,

" where la.rge-scale vortices excite and drive small-scale ones. e "

-In some problems (superbntlcal turbulence), the instability in an ini-
tially laminar flow is nonturbulent but arises froms the bifurcation of a
fixed point. Further bifurcations lead to'hlgher-ﬂlmensnona] tori, and a
general theory explainsthat generiéally the flow on the (sufficiently high-
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strange dttractor is chaotic in nature. This picture has been analyzed in
the context of the Loréntz flow, which is the truncatjon of the Navier-
*  Stok®s equations to include only a small number of mades. The strange
attractors found there have a Cantorlike structure. An example of super-
critical turbulence is Couette flow.”
" Suberitical turbulence occurs when the finite (noninfinitesimal) per-
turbation is less stable than the infinitesimal one. Then turbulence oceurs
. below the critical Reynolds numbers at_ which the linear theory shows
"ll'lstablllt}’ and may go directly to turbulent behavior without a discrete
. ¥ sequence of nonturbulent bifurcations starting with laminar ﬂow
{ " § . ¢

o : . N o %

.

'2.2 CHEMICAL SYSTEMS AND COMBUSTION C

From the invention and manufacture of an enormous range of syn{
thetic materials (e.g., plastics) to the refining snd burning of fossil fuels,
chemistry and chéﬁuca.l processes affect nearly every phase of our liyes.
Naturally it is important to understand and control, as fully as possibls;
many of these complex chemical processes. ¥or example, we seek to find
new and better materials, to reduce costs, and to generate energy more

\  efficiently and with less pollution. Appligd mathematics and computa-
tional modeling dontinue to play a valu ahié role in meeting these goals. .

One of the oldest chemical'processes harnessed by man is combustion. -
"The' successful modeling of combustion provides an extraordinarily rich
.source of challenges for the computational mathematician. Frequently,
combustion models have to incorporate all the difficulties of complicated
- fluid mech@Mics coupleﬁ with complex chemical kinetica. The challengdes
include developing algorithms,to engure accuracy and to reduce computer
time and sbor{ge. The modeler also seeks appropriate simplifications that
take advantage of any special attributes of the governing physics in order
to gain more efficiéht computatlon Since combustion contains a wide

/" range of chemical processes, we use it here ag an example to illustrate
points of mathematical interest in general‘themical systems. '

Even within the tapic of combustioh there is an enormous diversity
of applications. The first topic that probably comes to mind i the model-
mg of internal combustion engines, and this is an 1mpqrtant application.
Modeling is a-part.of ongoing research to design new types of engines (e.g.,

_ direct injected stratified charge), to improve fuel ecofiomy, to utilize alter-

" nate fuels (e.g., alcohols), and to reduce pollutant formation. Sitnilarly,

research for other combustors such as gas turblnes or power-plant boilers
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benefit from computatmnal models Still there are many othemmportant )

combustion problems Mide from power generation. For example, the field
of fire research is devoyed to problems+such as howfires spread in‘build-
ings and the beha\rior"ﬂglf\m
current topic in reactor safety is the characterization of hydrogen-air fires
such as occurred in the Threé Mile Island accident. Another public safety
question deals with the problems of fire and explosion associated with
a liquid-nataral-gas tanker accident.~Problems of burning foal and coal
gasification are also fopics of great current mterest ’ .
Perhaps

chemical equilibrifin. At equilibrium all chemital reactions are ssumed

1o have gone to cSmpletion, and the specte;s ‘concentrations .are such that

the mixture is in 8 minimum free-energy state. The mathematical com-
putation of the chemical equilibrium state is posed as a conistrained ini-
mization problem In combustion the equilibrium composition correSponds
to the products of combustion long after the combustion is complete.
Phy. sicalty, the next step in complication comes with the inclusion of finite-
rate chemical reactions. Here the mathematlcal,problem is one of solvipg
systems of stiff ordinary differential equations (see Section 3.2 for a discus-
sion of stiffness). Models of shock tubes or flow reactors, which are used

. frequently to probe fundamentsal questions in chem:cal reaction kinetics,

fall into this class of problems. The physical situation is complicated fur-
ther by the inclusion of fluid motion and heat and mass transport. In this
case the mathematical problem is ‘one of solving systems of parabolic’or
elliptic partial differential equations.

Congsider the internal combustion engine as an example. What are )

simplest chemical process from a physu:al viewpoint 15

various fire-retardgnt materials, An important

the things that we might hope to learn from modeling"‘ Ultimately, we

hope to influence geometrical considerations such as combustion chamber
shape and component placement (e.g, valves, spyricplugs, fuel injectors).
We also hope to prgvide a fundamental underst,am, on the moecular
level, about how fuels are oxidized and how pollutants are formed. With
such understanding we can suggest ways to alter the cdmbustion proc
to advantage. I the past only power and size were important considera-
tions, and engine optimization could proceed ‘mostly experimentally. Now,
however, there are too many parameters to optimize simultaneously, and
_computational modeling is i'm:l“easinglj‘r important.

. Because of limitations in available computational resources, two tacks
are taken in engine modeling. One is to consider mostly hydrodynamic
effects. Here the modeling of boundary shapes and component placement
is of »primary importance (e.g., How should the-piston face be ghaped,
and where should the spgrk plug be placed’). Cofnplex domains and two-
and three-dimensional effects are important. The models must incorporate

18
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FIGURE 2.4 Velocity vectors computed in a direct-injection, stratified-
charge engine at 2 position near top dead center. The combustion takes
place in a swirling envjronment in a cup-like region machined into the
piston, Several vortices’are seen to develdp in the cup. [From T. D. Butler,
. L.D. Cloutmah .J. K. Dukowicz, and J. D. Ramshaw, Muitidimensional
. numerical mmulatl on of reactivg ﬁow in,internal combustlon engines, Prog.
Energy Combust, Sct., ,:;.g}‘% (19’81)-], e .

. -

ribe é‘w‘-‘j‘:“' ’{'.p .
turbulent hydrod:,?""armc efﬂedi&‘ aﬁd sometimes phase-change pro‘Eelsses
such as fuel spl:ay lnjq@tlons. The chemistry is ususlly simplified in these
models becauséit is not feasible to consider both complex chemical kinetjcs
and hydrodynarmcs on current computers. Fi igure 2.4 shows the velocity

stratified charge engine. This is-a new engine concept that is being studied
in a U.S. Department of Energy-sponsored cooperative profram including
General Motors Research Laboratories, Princeton University, and three
National Laboratories. .
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In addition to the hydrodynamic aspects of engine combustion, there
are impolant unanswered questions about the chemistry. Therefore, the
second tack is to consider simplified hydrodynamic situations, such as
lamiinar flames, and treat the chemical kinetics in great detail. 'These

odels address issues such as ignition phenomena and pellatant formation, .,

Figure 2.5 shows some species profiles computed in an atynospheric pres-
sure acetylene-oxygen premixed flame (acetylene is an important reactant
in soot formation). This model used 30 chemical species and-103 reactions.

The results were computed asing an adaptive ‘mesh placement strategy, |

and they resolve detailed structure within the fame. Note that the fame

is very “thin”- its thickness is on the order of one millimeter, while com-

bustion chamber dimensions are on the order of tens of centimeters.

An interesting aside is to riote that these two approaches to combus-
tion modeling match corresponding approaches to experimental investiga-
tion. That is to say, it is usually not possible to measure or compute minor
species concentrations in complex turbulem flows, whereds it is possible

b0 cfo 80 in laboratory flames.
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FIGURE 25 Species mole fraétmn proﬁles showmg the mterna] structure
““of an atmospheric-pressure stoichiometric acetylene-air flame. [From J. A.
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The inhetently disparate time scales of chemical reactions, in other

words their stiffness, contribute to the numerical difficulty of solving com-’

bustion models (see Section 3.2). The inherently disparate time and length
scales for fuid transport, heat transfer, and chemical reaction are respon-
sible for the presence of steep fronts in the solutions. Also, thete are many
degrees of freedom in the system of equations. The number of governing
partial differential equations is large because a transport equation must be

. included for each species involved.in the chemical reaction set. A system

of 30 to 50 species, involving 100 or more chemieal reactions is typical even
for fuels as simple as methane, Also, for practieal combustors, the model
must ultimately include complex three-dimensional geometries. Because
complete models of Teal combustors are too large for present computers,
an important challenge is to simplify the models (including the physical
assumptions) to a tractable level. In addition to these problems, there are
potential difficulties related to scaling. The temperatures are on the order

. of 10® K, while some species can have important effects even when their

mass fractions are as low as 1010, Moreover, before the computation,

. the peak mass fractions of the various species are usually known only to

within several orders of magnitude.

Many of the challenges of combustion modehng have been met byjhe '
.Dumerical-analysis wmmunlty, however, many more'qwait resolut_lon For

example, for systems of ordinary differential equations tand
to treat the stiffness that results from the complex chemical kinetics by

using stable implicit methods, However, for systems of partigl differential ¥
. equations the application of these methods leaves many open qugstions

about hoy to treat the linear algebra and how to compute the error
estimates. Operator splitting methods are important in rendering the
linear algebra tractable for large problems. Stiffness also oceurs in low-
Mach-number flows due to very high velocity, but low-amplitude; pressure
wayes. Usually, we do not care about the details of these waves, but
they can tinreasonably limit the size of the time step in explicit methods.
Subcyeling methods, rather than implicit methods, are sometimes used
to alleviate this problem. Subcycling is a form of operator splitting (see
Section 4.7) in which the invicid hydrodyndmic equations are solved with
small time steps, while the yiscous parts of.the equations and the energy
‘and mass transport equatlons are solved usmg a much larger time step.
Another particulsrly important toplc in combustion models ,COngerns
the adequate resolution of localized behavior such as flame fronts. Ohe

. line of research considers. adaptive meshing strategies in which a spatial

mesh network is adjusted dynamically so as to capture the local behavior
accurately Other work considers front-tracking methods, where the ﬂame

Y




is treated as & local discontinuity and conservation equations connect.both
sides of the front and predict its movement.

Combustion models must account also for fluid turbulence, an area
where even the underlying physics is not well understood. Here, computa-
tional models such as the random vortex method are proving valuable
in simulating turbulence effects, especially in the investigation of large-
scale turbulent eddies, the so-called coherent structures. We classify these
methods as “problem-dependent methods” because the physics and the
numerical model depend heavily on each other {see Section 4.9). Recently,

——the-random-vortex method 155 been combined with s fame propagation

algorithm so that combustion events can be modeled. Figure 2.6 is & se-
quence of computer plots that shows the vortex velocity fields and Bame
fronts as computed from a model of turbulent combustion behind a step.

2.2.1 Asymptotic Analysis

We mentian here that applied analysis (in eoncert with computation) is
valusble for many problems in combustion. Asymptotic methods, for
example, can actually take advantage of phenomena such as steep fronts.
They can thus be used to provide insights and to suggest spproximations
that help to reduce the complexity of the numerical models and thus render
them miore tractable. An important aspect of the asymptotic analysis is

. the possibility of considering the dynamical stability of flames. Such work
may lead to fundamental understanding of such phenomena a8 the onset
of turbulence, "

ASyroptotic methods e?xplmt. the fact that the overall act.watlon energy o

of the chemical reaction is typicaily large, & well-known cohsequence of
which is that flame fronts are very thin. That is, chemical reaction is
only important in s thin region where the temperature first approaches
its burned value. On the unburned side of this région, chemical reactign
is negligible because the femperature is too low, and on the burned side,

it is negligible because the reaction has essentially gone to completion, .

depleting the unburned fuel. Mathematically speaking, this thin chemi-

.Cally reactive region may be thought of as an internal boundary layer,.

separating the unburned and burned gases. In the limit of asymptotically
large activation energy, the boundary layer is infinitely thin, and we may
use asymptotic matching principles to connegt, or match, the solutions in-
side and outside the bofindary layer. The result is a flame sheet model in

which the solutions on éither side of the_sheet are connected by nonlinear
jump cond;hona‘tl;hat depend on loct_ﬁ conditions at the front. Though the
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" resulting problem is still nonlinear, it.represents a significant simplification
over the original problem with Arrhenius kinetics and is in fact equivalent
to the original problem in the asymptotic limit of infinitely large activation
energy.

The first studies using large activation energy asymptotics began to
appear about a dozen years ago and were noteworthy for providing for the
first time analytical lame speed formulas for a steadily propagating planar
flame. The most significant regults to come out of this approach to date are
the predictions of instsbllity and bifurcation phenomena, which describe
celluiar and pulsating modes of flame propagation. These more complex
solutions branch, or bifurcate, from the basic solution (in this case, a

FIGURE 2.6 A sequentlal series of compuber plot.s dJsplaymg velocity
fields and flame fronts in turbulent combustion behind a step at inlet
Reynolqls number of 10000. The combustion is.stabilized by a recirculation
region behind the step. The unburned gas is & mixture of propane and air
at an equivalence ratio of 1/2. [From A. F. Ghoniem, A. J. Chorin, and
A.X. Oppenhelm, Numerical modelling of turbulent fiow in a combustion
tunnel, Phil. Tranas. R. Soc.'London® Ser. A 304, 303-325 (1982).]
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steady, planar flame) as one or more parameters exceed critical values for

instability of the basic solution. Their significance lies partly in the fact
that they represent intermediate modes of propagation of the flame in its
evolution from a laminar to turbulent form of propagatise. Experimental
observations of these transitional modes in their pure form have recently
been reported, and the theory thus identifies critical parameter thresholds
that separate one form of flame propagation from another. A puwmber
of bifurcation analyses using nonlinear perturbation methods have been
successful in characterizing these nonsteady and/or nonplanar flames for
parameter values near the instability threshold. However, numerical ap-
proaches may be used to great advantage in deseribing these transitional
solutions when parameters far exceed their critical values for instability of
the basic solution,

-t

2.3 PLASMA PHYSICS

Controlled nuclear fusion provides a possible long-range energy source.

As currently conceived, a fusion device must contain a deuterium and
tritium plasma for a sufficiently long time for net energy production. The
confinement may be effected either by magnetic fields or by simple iner-
tia effects Inertial confinement of a pellet, coupled with laser or particle
beam heating, is a distinct possibility, although the bulk of.the world

fusion program centers on magnetic confinement of a plasma. The un- _

derlying problems in magnetic confinement are the determination of the
equilibrium, stability, transport, and heating properties of plasmas under

_realistic conditions. Numerical modeling and computation represent major

tools in this study. In recognition of their importance, the Magnetic Fusion
Energy Computing Center has been established at Lawrence Livermore
National Laboratory in Livermore, California. This Center is the third
largest scientific computing center in the United States, and its sole func-
tion ig to provide computing ecapability to the scientists and engineers in
the U.S. fusion community. Fusion plasma physics spans a diverse colleé-
tion of fields, with significant &fforts occwrring in the fields of Hamiltonian
particle dynamics, statistical inechanics, kinetic theories, and dissipative
and nondissipative single and m_ultlﬁmd models. The complexity of the

problems involved makes computation an integral part of the research and ‘

development program for fusion. - °. -

Controlled-fusion conﬁnement experiments have indicated that, even
in grossly stable conﬁgurations, fluctuations may play an important role in
determining energy and partlcle transport. Thus, an underatandmg of the
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‘nonlmear behavior of various plasma models is fundamental to describing
sith behavior. For both ideal magnetohydrodynamics, a ﬂu@%fel and

the Vlasov-Maxwell system, a kingtic model, linearized equafhng have
been studied extensively. These analyses are appropriate for describing
small-amplitude deviations.f{rom a quiescent equilibrium but omit the
effects of mode-mode coupling and the onset, properties, and evolution
of turbulence. The development of a self-consistent model of plasma
equilibrium with ﬂuctuatlons, stochastic particle and magnetic-field-line
behavnor, and resultmg transport will continue to be an mﬂlﬁn‘m&%h
area.

Plasma fusion applications present many problems in which the equa-
tions of Hamiltoniap dynamics appear. These systems describe single-
particle phase-space trajectories in the Viasov-Maxwell theory. of colli-
sionless plasmas. In addition, the trajectory of a magnetic field line in
a toroidal system is described by » nonlinear Hamiltonian. Thus, the
question of the existence and construction of adiabatic invariants, ex-
plicitly time-dependent or not, is of fundamental importance for these dys-
tems. Significant progress in this area might be made by combining ideas
from modern topological dynamies, numerical simulation, and perturba-
tion analysis. For example, if magnetic field lines sre ergodic throughout
a volume rather than lying on closed .invariant surfaces, as is given by
the Kolmorogoff-Arnold-Moser. theory, then, owing to electron st.reammg,
the thermal conduectivity within this volume will be very fast. Thus, such

.. Questions as when ergedicity arises and what the properties pf Hamiltonian
' 'aynamms are under ergodlc circumstances impact strongly on these ap-
plications.

Since computational modehng of the full three-dlmensmnal plasma
equations is out of the question, cuirent work utilizes a range of different
compromises, simplifying to different degrées.-either the physics or the
geometry to obtain a number of computationally tractable problems, each
of which illuminates in a distinet fashion, a different aspect of the full
plasma problem. In spite of these difficulties, the computational approach
is a major route to progress on the problem of controlled fusion. The
reason is simple. Experiments are expensive and must be supplemented to
the maximum extent possible by theory. The theory is highly complex and
nonlmear and is obtained by a combination of numerical experimentg and
physical'intuition. Clearly improved computational methods are one of the _
methods through which progress is achieved in this area. Development of
more powerful computers will also be required, aalt. is hard to believe that |
‘smart algorithms will by themselves suffice: .




2.4 PARTICLE PHYSICS

The problem is to find the equations that describe the elementary particles

* of subnuclear physics. This preblem is among the most difficult to have

been considered serjously by science in this century. In recent years there
have been significant gains in our understanding of the mathematical
structure of the equations of quantum field theory. An analysis of the
mathematical existence question for the quantum ¢* equation

» ' 82¢

7 A¢+m’¢+>\¢3=0

_shows that in space-time dimension & < 3, the theory exists, whereas in

d 2 5, there is no such theory (as would be given by standard methods)
except for the trivial case A = 0. The method: of proof suggests nonex-
istence for the physical case d = 4 as well and offers confirmation from

the side of exact mathematical analysis of ideas advanced by theorefical .

physics. This mathematical confirmation is much more compelling than

_ any confirmation yet offered from experimental physies.

" The ¢* model is “near” to the Sine-Gordon equation, which is ¢com-
pletely, integrable. Among recent results are the discoveries of a large
class of stable, localized (in space), periodic (in time) solutions {analogs
of the Sine-Gordon breather) and of the existence of breather formation
resonances in soliton /antisoliton scattering. There are many related chal-
lenging problems in nonlinear mathematiés and dynamical systems theory.

" The problem with the ¢* equation in d = 4 dimensions is one of several
reasons for- considering in its place quantum gauge fields. A standard

approach to the quannzat.mn problem reduces it to the existence question ’

for a singular non-Gaussian functional mtegral over an infinite-dimensional

space. In the case of ‘gauge fieldithe gauge potentlals form an infinite-

dlmensmna.l affine space 4 on which the group § of gauge equivalence
* acts. The f{nctmnal integral is only defined over the mﬁmte-dunenamnal

manifold
M=4/§

Thie manifold is not flat. The integration over M has been shown by exact

mathematical analysls to require introduction of coordinate patches. Only

-locally, within a single cootdinate patch can M = A/ be regarded asan

open subset of Euclidean (Hllbert) space.

One of thé methods proposed for understanding integration over M is ...

‘o understand the critical points A € M. This question leads tq a study of
. classical solutions of the Yang-Mills equation and a reduced form of this

equation, called the self-dusl Yang-Mills equation. Here we are looking.at
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a specific nonlinear elliptic equation in d = 4 dimensions.” A remarkable
analysis has led to a complete clagsification of its solutions, using methods
of geometry, topelogy, and aldebra (ﬁber bundles, the index theorem, and
-algebraic varieties). » ,
The development of ’numerlcal methods for the study of quantum
fields is in its infancy, mainly because thesproblem is to a large extent out
of range of present-day computing machines. Among the methods used
on this problem, we mention Monte Ca® integration over a space-time
discretized version of M = 4/G. The discretized problem is calied a lattice
gauge field, and even after discretization, the dimension of M is too high
to allow evaluation of integrals by direct quadrature. A second approach is
to generate series coefficients from cluster expansions of statistical physics
and to reconstruct the desired function space integral from a Padé anelysis
of tii coefficients. Other attempts-have been based on finite elements and _
on the renormglization group. It may be that a collaboration of numerical -
analysts with mat.hematlcal or theoretical ph}'s:clsts on.thls problem would
=g benefieial: S - . . ‘ Tt e

2.5 CONDENSED-MATTER PHYSICS

o

LR 3

2:5.1 Statistical Physics . . ik

Lt - . N

In this subject, the equation of state, transport coefficients (pressure,
viscosity, and thermal conductivity, for example), and other macroscopic

- properties of matter are related to and derived from intermolecular forces.
The area has diverse and important applications, ranging from metallurgy
to polymer chemisiry to semiconductors and is an active area of research
from the points of view of theory, numerical methods, and experitent.
Here we limit ourselves to the two mathematical aspects of this subjeet:
mathematical theory and numerical, methads.

" The equations of statistical physicsinvolve a large or mﬁmte nurober
of degrees of l‘reedom, and 80 the mathematical theory-of use here is
analysis over infinite-dimensional spaces. Almost the same mathematical
structure arises as in the study of quantum fields, the relationship between
the two being thgt a quantum field js a continuwm limit of a statistical
physica (cryst.al of lattice) model. - & LA

In a small class ol' models, including the two-dimensional Ismg model ’
" exact solutions are known." A larger but stifl restricted class of models has o
been analyzed mathematically with. respect to quahtgtlve beha\rlgr One -
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FIGURE 2.7 Monte Carlo simulatlon f a kinetic lsing model compared
with x-ray and neutron defraction measurements on an alloy ‘of 60 percen

gold and 40 percent platinum that has been heated and then quenched to
60 pergent of its critical temperature. The abcissh is a reduced momentum
transfer, and the ordinate is a reduced scattenng intensity. (From M. H.
Kalos, New York University.) '

issue recently addressed in this work was the stability of surl‘acea, ag is
relevant to the problem of crystal growth. Another is the effect of aperiodic
or random crystal structure on bulk material properties. A striking recent
development was the mathematical demonstration of the dipole binding
(Kosterlits-Thouless) phase transition. . - *

The numerical methods for statistical physics_are basically of three
types: In molecular-dynalmcs calculations, one takes a large number of

particles and follows theu' motmn by mtegratlon of the ordmary dlﬁ’erentlal

equation ¢

¢

d?z; i
- Ez-ﬂﬁ:(zj*'zi), kzl .-‘.fv;

cieﬁned 'by the intermolecular forees Fj.

number N of particles that ¢can be included. - ; o

. P L - L "':

S - .

-, . . '

N

k]

This method is_“exact” in its. .-
treatment of intermolecular forces, to thé extent that they are known .
and that quantum effects can be neglected, but it.is approximate in its .
treatment of statistics, since there are computer-dlct.ated limits on the .
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Next we mentlon the method of series expansions, apphed to the
caleulation of the equilibrium distribution dw and the partition Z, which
typically hag the form -

L dw—ef"fz’ﬂd:c)\ S

-,.zfdw

where V" is the intermolecular potential. }energy. Then -thermodynamic
functions such 8s pressure emerge as derivatives or logarithmic derivatives
of Z with respect to the patameters (e.g., in V), If the pOtent.ml energy

» . V(a:) ZU(:, . x,)
. .. (4] . ‘.

. is a sum of pair pc':tent.ials U then the idehtiby

and

¥

eV =1+(V-1)
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FIGURE 2.8 Energy of liquld helium as a function of density. The broken
line and points with errors show results of the Monte Carlo_ quadrature of
.. the many-body nonrelativistic Schrédinger equation. The solid line s a fit
_to the experimental data..(From M. H. Kalos, New York Universjty.)
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substituted in the definition of dw above yields an expansion that is rapidly
convergent, where v
N S (RS

i.e., where UZ0. This is the region of noninteraction, and so series ex-
pansions'are especially useful to give weak corrections, for example, real
gas corrections to an ideal gas. The expansions appear to converge up
to critical points and with considerable work have been used to extract
information on the equation of state in that region.

. Monte Carlo methods are used in the quadrature of very large-
dimensional spaces, such as the determination of dw above, as well asin
the direct simulation of stochastic systems. These methods have become
an experimentsl tool of mathematical physics. In studying the qualita-
tive and quantitative behavior of a highly idealized model such as the
Ising model in equilibrium or very far fromi equilibrium, or of lattice gauge

theories, cohtinuurn and lattice models of polymers, and atomic models of

quantum liquids and solids, one can carry out numerical studies in Which .

the high-dimensional (i.e., many-body) character of the’ problem is not
distorted. .

In application to the calculation of the equilibrium distribution dw,
the essence of the Monte Carlo method is as follows: Starting from an ar-
bitrary point in a given ensembple, one modifies a single particle position ,

“at random” but usually so 8s to lower the potential energy V, occasionally
s0 a8 to raise V. After enough such elementary steps, convergence to the
distribution dw i3 obtained, As describéd here, the method is extremely
simple, and complications arise from the necessity to obtain convergence
in a reasonable time for realistic problems.

- Perhaps the most significant success has been’in the mlcroscoplc

theory of classical fluids, where Monte Carlo modeling has provided the

“experimental” basis for the accurate expansion in je~Y — 1| mentioned
above. Another conspicuous success is the extraction of critical exponents
by joining ideas of the renormalization group to Monte Carlo simulation.
Figure 2.7 shows Monte Carlo similation of a kinetic Ising model compared
with scattering measurements on a real alloy.

Figure 2.8 shows how Monte Carlo methods appliedto the many-
body nonrelativistic Schrédinger equation give a quantitative account of

. the energy of gea.l) liquid helium as a function of denslty
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Out of a wide range of geophysical applications we limit ourstlves here to
three,modeling problems in connection with the dlseovery and production
of petroleum Mathematically the discovery process is an inverse problem
(see Section 3.6)~that of constructing geologic maps using seismic¢ signals,
which in turn are generated by vibrations or, explosions at the surface of
the Earth. As the signals penetrate the Earth, they cross layers of differing
density. This causes reflected signals to be returned to the surface, where
they adre then recorded and analyzed. The raw data are very noisy, owing
to irrelevant near-surface density fluctuations. The noise is removed by
averaging signals from neighboring receptors or from nelghbomg souTce
locations. Then multiple flections must be subtracted, and a coggpen-

sation (called normal moveout) must be introduced for effects offfonver-
tical signal propagation. Reflection from nonhorizontal layers rates
complicating shear waves as well as pressure waves. The subtraction of

2.6 GEOPHYSICAL-APPLICATIONS

multiple reflection signals can be based on Fourier analysis in a half—space

and a Wiener-Hopf factorization.
The correction for nonvertical signals can be based on a reduced

Helmholtz equation, (—A + k% + v)u = 0, but in brder to focus on sig-.

_nals movmg in only one direction (either up or down}, one takes first' a
square root and then a power series expansion” of the square root. This

process is. known &s the pa'}abohc approximation dnd leads to the famlli;: .

" Schrodinger equation. Alternatively, the analysis can be based on ray
trdcing and the solution of ordinary differential equations. The numericsl
problem is to implement these steps efficiently, in view of the large amount
of data to be analyzed. .

The production problem is to describe the flow of oil, water, chemi
and/or heat in a porous sandstone layer. - The equations to be solved

are a coupled system of nonlinear parsbolic equations. Generally- the |

e¢quations describe mass ¢onservation of individual species, and typically
some are nearly elliptic whereas others are nearly hypérbolic. In the
hyperbolic equations, coherent shock and rarefaction waves describing oil
banks, absorption {ronts, and flame fronts may form (see Sections 3.2 and
3.3). Depending on a dimensionleas number known 2s the mobility ratio,
heterogeneities, and geometrical ¢ffects (convergence versus divergence),

the fronts may betome unstable with reapect to the formatlon of fingers

{see Section 2.1). -
Critical issues in this problem are the efﬁclenf‘f solution-of large sparse
linear systems arising from space and time discretizations and the con-
“trol of numerical mst.abllltles m the solutlon methods. Th%&hysxcal in.
§ e . L} .
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FIGURE 2.9 Successive time steps in the movement of an oil-water in-

terface toward a ptoducing well. The view is a vertical cross section,

with the well located on the left boundary of the computational region.
TheAnstability is caused by three factors: by a heterogeneous conducting
channel near the bottom of the reservoir, by the converging cylindrical
flow-pattern near the producing well, and by the better flow properties of
the less viscous displacing fluid (water). {From J. Glimm, B. Lindquist,
" 0. McBryan, and S. Yaniv, Statistical fiuid dynamcs I: the influence of
geometry on surface instabilities, in Frontiers in Applied Mathematics, Vol.
.1, R. Ewing, ed., IAM Phlladelplua, Pa. (to be publlshed)]

v .
stabilities mentioned above are co_ntrolled‘by the use of heat (to thake

the oil flow more essily), or the use of a heavier pushing fluid (polymer-

thickendd water in place of water or water and CO; in-place of CO2).

¢ third modeling problem we discuss is the process of lifting the
oil J}:‘he surface of the Earth. Because of the sudden drop in pressure,
corisiderable ges will typically come out of solution, and the resulting two-
phase mixture is in the droplet or mist regime mentioned in Section 2.1.

In contrast to the case of reservoir flow, even the basic equatlons for two- )

. phase flow in a pipe are not well understood.
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2.7 METEOROLOGY '

* Accurate forecasting of the movement of large-scale weather patterns is
clearly an important problem. Here we mean the tracking® of highs and
lows on the order of 1000 kilometers in diameter. In addition, we are
also concerned with the prediction of cloud patterns, precipitations, teip-
sperature, and other elements of the weather in as much detail as posslee
Global predictions of the atmospheric flow are now made routinely at as
many as 12 levels in the troposphere and stratosphere. |

By studying dynamic models of the atmosphere, estimates have been
made of the sensitivity of t.hs atmosphere to small perturbations, often .

« quantified in terms of the error doubling time. Iftwo initial states of the
atmosphere differ by random variations of 1°, then it is found that the
reSultant states will differ by 2° in about 3 days and by about 4° in about
6 days. Hence, meteorologists have said that the weather is unpredictable

_ for periods of more than 2 to 3 weeks. But, the forecasters are still far -~ .
from heing able to predict. the weather accurately for even 1 week. The
best results are clrrently obtained by the European Centre for Medium
Range Weather Forecasting, whose 4-5 day forecasts are currently superior _
to those of the U.S. National Weather Service. .

The accura.cy of short-range predictions is limited by four somefwhat
distinet factors: - -

LN

LY

1. Initializations: (a) The accuracy and completeness of obser¥ational
data and (b} the compatibility of these data with the mathematical model,
7 which is, of course, a simnplified repregentation of the atmosphere.

2. The limited number of grid points or spectral components used
in the truncated, le numefical, model as a result of limited computer
* power. v

3. Missingror severely truncated physical processes such as cloud
dynamics, proper representation of turbulence, and radistion fields, lead-
mg to inadeqUiacy of the mathematical model describing the atmosphere.

4. The inherent finite limits of prédictability of certain types of non- ,
lineds dynamical gystems such as the atreosphere. (Compare the prevmus &
paragraph ) -

b4 ) . *
The study of problems related to the reduction of?he influence *of
" these factors is at the heatt of.most research that is directly related to the
improveément of weather prediction.
The sparsity and inaccuracy of observational data [1(3)] are bemg

B - T
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partially ovgrcorne by the use of weather-observing sat.ellltes Concerning g

. " 1(b), considerable researchi is currently directed toward the analysis and
ﬁlbermg of the observed data. 50 as to make them wmpntlble with numeri-
cal models. Items 2.and 3 .are closely rélated-since, in a general way, the
lack of a complete representat.lon of all physical processes is related to the .
incomplete numericsl resolution of the mathematical model. Such phyal-
cal processes include cloud dynamics {and the assoeiated cloud physics), |
boundary-layer dynamics (including detailed features of the terrain and |
local heat, moisture, and dust sources), and detailed radioactive processes.
In item 4 a new concept, “finite limits to predictability” has emerged |
frofit“the work of E.'N. Lorens, ndmely the ides that the atmosphere and
perhaps certain other dynamicsl systems may have finite limits of predic-
tability regardless of the accuracy and detail of their initial conditions
and the accuracy with which they are computed Lorenz concluded from
a simplified model ‘that hydrodynamlcal systems with an energy spéctrum
(in the customary sense) having. 8 power-law exponent greater than —3
(e.g., —5/3) should be ifnpredictable in. detail after a finite time. He sug- . .
gests a time of about 15" days for the atmosphere, whose large-scale energy

" specttum seetns to have an exponent of .about -32. 8, with smaller scales

- (i'e., Togs than say, 20-km) having the —5/3 power law sssociated with
hofiieggheous turbulence. Thig question of predictability is clearly related |
to that of the stablhty.of hydrodynamical, sysbems and to modern t.heorles
of bifurcatibn and chags (see Section 3. 5) L

- - A large c’omponen?: of atmosphenc research is concerned th.h topu:s .

that have little direct application to forecasting. Their motivation may

o lie in basic sciéntific mqulry or in applications to other dlsclplmes, e.g. .

“ radlo-wave transmission for satellite commumcatmns They may involve |
the study of Tundamental hydrodynamlc phenomena or other physical
processes several steps removed from ,specaﬁc application. In all of these
st.}:dies we find extensive use “of analytlcal and nmnencal modeling of

: qphyaiw systems"and Mw In, dddition, a wide variety of stat:stlcal

s approaches are used in all areas o‘l*‘gt.mnspherlc research.

Let us mention a few mol'e al‘eé’s"of study. In addxtmn to the p

) tion of large-seale Weat‘.ﬁer pnt.terns, computerp are g used in lzmlted%

o= regions to study the developm’ent. and ‘rnovement.“’o ‘smaller-geale. dlstur- .
bances, such as humqanes, thunderstoms, and tomwadoe ‘Here adaptwe ‘

#fidsinethods are used gee Section 4.2). Tt is hoped, fp;ﬁexammthat a .
better underst.andmg&of the details of these destructive .phenomena will. .
lead to the possibility-of altering their oourse and development. _ .

dhn the longer t:i:ne scale, where seasonal forecasts of_average ramfa]i s o

and temperature -sfe-made over large regions of the globe, Lhere are re at,_ e

presenf, severa.l potehtlally useful but unproven ldeas. Here, however,
o e ,.\,, { ’ ‘.‘34' ’ ‘L‘:-.'
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some New mathematncai and physicsl ingight is needed in order to develop
a satisfactory “average™ system of equatlons This is an lmportant’ open
problem. ,

-On the.qtill longer time scale of decades, and beyand defermining
the effect of our méchanized civilization on the environment 13 a basic
problem. Significant progress has already, been made, through, the use
of simple climate models in conjunction with paleontology, astronomy,
geology, and voleanology, in efforts to understand the factors that influence
irregular alternations of ice ages and interglacial periods. These statistical-
.dynamical climate models will be essential for predicting the long-term
effects of the observed increase in carbon dioxide and similar problems
that will almost certainly arise as our industrial civilization expands.

. -

[ et

w2 8 ASTROPHYSICAL APPLICATIONS

- Al
-

Astrophysical studies pose a wide range of problems for mathemati-
cal and computatlonal analysis. The underlymg physical theories in-
glude hydrodynamlcs, miMetohydrodynamics and plasma theory, radia-
tive transport theory, atomic and nuclear physics, and general relativity
. theory, and hence various cornments made in gther apphcatlons sect.lons
“  of this report apply to this area. . 3 ’
In recent years considerable progress has be pde in theoretical and,, M
numerical studies of a number of astrophysical topics, as, for instance, the
study of stellar interiors, the formation of stars and galaxies, the spiral
structure of galaxies, the physics of supernovae and the evolution of su-
JPernovae remhants, the formation of the solar system, and the behavior of
binary star systems, to mention just'a few. The computational approaches
may range from relatively simple 51mulat|0ns to the numerical solution of
complex systems of partial differential equations. -
As an example of the first type, simulations have been applied to
the study of star formation in a galaxy. It may be assumed that when a
massive star becomes a supernova the shock wave emanating from it can
compress the surrounding interstellar gas creatmg new. stars. If at leaat
one new star is also a massive star the phenomenon can repeat, leading
_"to a chain reaction in the crestion of stars. This is equivalent to a direct
.. .percolation problem, and, s is typicsl for such problems, phase transitions
are involved. This is a nonlinear .problem with a.complicated structure in
o SPBCE and time, Accordingly, analytic techniques are difficult, whereas




computa,t:onal sunulauons are relatwely strmghtforward and lead to the
development of realistic model galaxies. -

As a second type of example we mention a problem that is amenable
to considerable mathematical analysis as well as to computational attack.
Thig is the question of the spiral structure of galaxies. The so-called
density wave theory approaches this question asa dynamical problem in
the form of the gravitational instability of a gafactic dish with_respect to
gpiral modes. There are three basic approaches in the calculation of spiral
. structures of galaxies on the basis of density wave theory that may be
“¢h terized loosely as the stellar model, particle mode), and fluid model.

stellar model represents the classical approach in the study of
stellar systerms. In brief, a galaxy has a stellar component and a gageous
component. The latter usually has a sufficiently small mass to be negligible
in first approximation. The basic equations governing the behavior of the
stellar component are the Boltzmann equation, usually in collisionless form
when close encounters between stars are omitted, and the Poisson equation
for the gravitational potential. In a sense, these equations are much simpler
than the Vlasov equations of plasma physics, but their numerical solution
nevertheless poses challenging questions.

In the particle model, the stellar component is " considered 25 a very
large but finite number of partlcles As in our first example, the computa-
tional approach then assumes the form of a s:mulat,lon process. In brief, the .
mouons of the individual stars are followed, and their gravitational feld

‘is caleulated by a selfconsistent evaluation of the field. This technique
L has provided valuable qualitative information. But the number of stars in
these models is usually of the order of 10**Y, and hence, by necessity?
numerical simulations are extremely limited in accuracy and provide only
few quantitative data-for, specified galaxy miodels.
In the third approach, the stellar system is considered to be a con-
tinuous medium. In this setting one may then study the characteristies
of wave patterns over the galactic disk and then dependence on the mass
_ distribution. In particular, the spiral structure of galaxies may be ex-
plamed in terms of spiral wavé patterns of some kind. Such stationsry
wave patterns over a field of differential rotation are to be expected;_ in ..
fact, hjrdrodynamlc waves over shear flows are known o exist for some
time especially in the form of self-excited modes. The general form of -
the resultmg theory of spiral galactic structures requires elaborate com-
_putational techniques. At the same:time,, asymptotic approaches have - -
_ “provided_analytic Tesults that have led to a better understanding of'the _ .
dynamical mechanisms despite thelr hlmt.auons in accuracy ancl in, the ‘

types.of gala:aes covered. - - J
As noted _earlier, these are only sothe examples of the many dlﬂ'erent s
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. types of problems in astrophysics that relate closely with applied and com-
putational mathematics. Many of these problems involve extremely wide
rangesin lengtb and time scales. For example, caleulations of stellar evolu-
tions have to range over billions of years, while the dynanncs, say, of the
supernovae phase takes placé within milliseconds. Similarly, the size of a°

eutron star differs hy substantial orders of magnitude from the size of its
correspondmg relevant gravity us, n e

and computationsl difficulties, diScuased in Section 3. 2 are especmlly ap-
plicable bere. Moreover, the wide range of the underlying physical theories
leads to many substantially different types of mathematieal models, which
in turn require very different computational techniques. -

[

2.9 STRUCTURAL MECHANICS

During the past two decades, the use of computers bas transformed
large parts of solid mechanics into practical tools, for 8 multitude of
technological developments. . Sophisticatéd comw-tat-:dml software is
employed-throughout the nation’s industries and research laboratories in
the analysis and design of structures and. mecbamcﬁ‘%qmpmenu There
i3 a strong interaction.between applied matbematics and solid mechanics.
Mathematicat analysis bas provided insight into model formulation and
the development of pewerful numerjcgl methods; and, vice versa, novel
engineeting approaches bave led to new reaearch aress in applied mathe-
matics.

"In the case.of linear problems t.here exlsts now a relatavely broad
expenence in computmg sohitions for a range of problems concerning

. the bebayior of solid bodies subjected to ‘tpecified loads. In general,

... the computed results are considered reasonably relisble, and they bave

. been corroborated over a period of time by ohservatmn and practical

... experimentation. There appears, however, to be a growing need for the

.. development of computable error estimates that can provide a realistic

.. check on the solution accuracy. Such a posteriors bounds bave been shown

. to be feasible; byt their applications to large, realistic problems in sohd

~ mechanics still requires considerable research and sofiware development.
The general availability of economical a posterion estimates would make
possible the consistent use of adaptive 111"3al:1-reﬁma'lneut'.‘r niques that
would reduce the cost of data preparation by the users and make it poss:hle
to generate near-optimal solunons for a given amount of computatmnaL .
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" to'honlinear dwpzen?ent Béimdary conditions. The sofge of nonlinearity

" cracks under dynami

extending the computational methodology to nonlineay p‘roblems,, Sources '

* ¢f nonlinearity in structural problems are (i) geometricy nonlinearity due,

to nonlinear st.ram-d:splacment relations, (2) material¢nonlinesrity due
to nonlinear constitutive equations, (3) force nonlinearity due to nonlinear
stress boundary conditions, and (4) kinematic constraintinonlineari

¢ The genéral trend in computatx::na.l solid mechanics today is toward

" affects the form of the resultirig nonlinear equations ancl ;hence; infiuences

the effectiven thé solution techniques.

The numerical apalysis of all of these nonlinear problems is not yet

at a satisfactory stage. Mahy computer programs for such problems exist,
but the mathematical basis for most of the methods used is insufficiently

_understood, and theré,ds littie known about the accuracy of the computed

results. Moreover, in the case of nonlinesr problems, few numerjcal com-.
putatlons can be gup@emented with sufficient, experimental experjence.

* The situation” is &5-!.“ best understood in the case of finite elast.lclty o

Even there the matheniatical theory of the underlying equations.is incom-
plete, and the approxlmatlon theéory for these équations is generally based

.on various sxmphfymg@ssumptlons that may or may not e vahcl l‘or a ,-

arglcular problem; ! o

*The state of ﬁ‘hevgt in elasto-dynamic problems is in even worse
shape. It is known thsf_multiple solutions may exist and shéck waves can
develop. Moreover, A8l solutions are necegsarily physically relevant.
The questions of how to, model such phenomena numerically snd how to
determine the physically realistic solutions are as yet largely open. When
it comes to problems in finite plasticity even less is known. Although there
has been much progress in this area during recent years, no satisfactory
and complete mathematical model is available as yet. Especially, there
‘are profound mathematical and computational difficulties in modeling
phase changes, viscous eﬂ'ects' cracks and singularities, the growth of
implementation
copatitutive equations deseribin t.hese materials,

of ph¥sicelly reasonabl
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: 'There is a pervasure peed in technology to evaluate quantltat.wely the

mte Ey and the remﬁi‘nihg reliable lifetime of components and structures,
e.g,, Trom bridge glrders to Mgh-perfofmance ceramic t.urbme dlsks
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the past decade considerable progress hss been made. This developing
technology is called nondestructive evaluation {(NDE) to distinguish it
from older nonquantitative nondestructive testing practices. NDE presents
challenges to the applied mathematical sciences on many levels. A few of
the more’nmportant and topical problem areas are mentioned here.

——h—NBEmhwhomeempeaenH&e%—subjeebed—WWn o

penetrating radiation with the aim of deducing information about its in-
ternal state from a measurement of the radiation field external to the part.

" Examples include the use of ultragonic radiation, x rays, and neutrons.

Because of its flexibility, rélative cost, and safety, ultrasonic methods are
often used in NDE applications. The deduction of information about fiaws
from the incident and scattered ultrasonic fields relies on the solution or
approximate solution’ of the inverse scatiering problem for elastic waves.
In some regimes it is possible to develop and adapt imaging techniques
to the ultrasenic setting, In either case information about defects must,

_be obtained from band-limited noisy data. A fundamental limitation to -
our current Ebility to utilize ultrasonfc techniques brosdly is dur limited
understanding of the elastic inverse, scatiering problem in elther t.he fre-

quency or the time domain.

In other important NDE applleatmns, electrical currents are mduced o
in a material. These currents procluce fields that vary depending on .

whether a defect, e.g., a crack, is present in the material. The utilization
of these so-called eddy-current. techniques depends on the ability to infer
information about the defects from the mensured flelds they produce. This
agein is an inverse problem that is imperfectly understood.

Passive methods in NDS are also widely used. For example;. when a

pressure vessel or aircraft is in service, a crack once formed may grow and
propagate. This will be accompanied by the release of acoustic energy.
This energy can in turn be monitored at selected sites. The problem then
bécomies oné of 1dentlfy1ng and classifying the sotrces of thése sound pat-
terns using acoustic emission studies, an mcreasingly unportant technique
in NDE, In mathematlcal terms the problem 18 the so-called inverse source
problem, which is beset with the same type of difficulties that the inverse
scattering problems pafsesses. Sparse, noisy data often taken at highly
nonoptimal locations are the raw information from whxch source charae-
teristics must be deduced.

The techniques of NDE have apphcat.xon in other areas, ,&md much
can be learned in other applications fields that is valuable to NDE For
example,, there is a close connection between the need for inverse acatterlng
results in geophysics and NDE and acoustic imaging results in. NDE and
biomedical applications. An ares of great success in medical applications,
tomography, can pnovnde useful information in selected NDE appllcatmns
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The greatest success of tomography has been in medical applications
such as the CAT (computer assisted tomography) scanner. Unlike ordi-
nary x-ray technique, which masks important features by superposing on
a single picture information on planes perpendiculer to the beam, com-

puterized x-ray tomography provides pictures of individual thin slices ° |

" tion of two ‘variables from its integrals along lines. This problem, as well

.. 88 itg three-dimensional version, was solved by Radon in 1917 and later

" rédiscovered in various settings such as probability theory (recovering a
. probability distribution from its marginal distributions) and astronomy

. able in practice. Vanous algorithms for the numerical inversion of this

‘area of application: has, however, its own requirements and may need &
‘modification of existing reconstruction algorithms or even a custom-made

. information about the object to be reeonstructed.

through the body. Several hundred parallel x-ray pencil beams are
projected in the plape of the slice, and the attenustion of the x rays in
each beam is measured separately and recorded. The procedure is repeated ’
for many different beam directions. An elaborate caleulation then permits
approximate reconstruction of the x-ray attenuation denslt.y asa functmn
of position within the slice.

The idealized mathematical problem is the reconstruction of a fune-

{determining the velocity distribution of stars from the distribution of .
tadial velocities in various directjons). Of course, much work was needed
to adapt. the Radon inversion formula to the incomplete information avail-
ill- posed probleni have been proposed, with the present trend favoring t.heh
so-called convolution algorithm on account of its speed and accuracy. Each

one. Some salgebrale methods, for instance, can easily incorporate ¢ priori

Recent advances in medical tomography include nuclear magnétic
resonance (NMR) tomography and positzon emission tomography (PET).
In NMR. strong magnetic fields are used to affect the nuclear magnetic
spin rate of bydrogen atoms. By varying the fields and their direction, the
plane integral8 of the density of hydrogen can be measured and the den-
sity reconstructed by an algorithm based on the above three-dimensional
version of Radon's theorem. The technique is now regarded as competi-
tive with x-ray tomography for many purposes; and, of course, it is not
ionizing. The advantsge dfPET over CAT is that metabolic processes
can be followed. A’ ¢ompound such as glucose is made using carbon-11
atoms, which emit positrons. Photons resulting from the annihilation of
an emitted positron with an electron are detected by a bank of detectors
that can record coincidences. Recently, algorithms based on probabilistic
arguments have been proposed for the RET reconstruction problem.
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2.11 MATHEMATICAL MODELS IN THE BIOLOGICAL SCIENCES

The biological manifestations of the physical laws of the universe present
us with a rich variety of new phenomena that require-the deviopment

i 018 and’ computational methods. We shall discuss
Jjust a few examples of mathematical research in cardiovascular physiology
and neurophysiology, with the knowledge that there are many other areas
of biological sciences in which mathematics and computing are fruitfully
applied. .

Blood flow in the heart obeys the incompressible Navier-Stokes equa-
tions, which, in turn, are simply a statement of Newton’s laws in
differential form (see Section 2.1). The distinctive biological character
of the problem comes, however, from the moving boundaries that are in
contact with the blood. These include the muscular heart walls and the

CURYED PIVOTING DISC YALYE EEP.4: 1.9 . STREANLINES

FIGURE 2.10 Computer-generated plots showing the predicted opening
movement of a curved pivoting-disk valve mountgd in the mitral (inflow)

position of the/eft ventricle. The curvature makes the valve open more

widely than a‘stiaight valve pitoted ab the same point. It also helps -
to prevent stagnation in the smaller opening of the valve. [From D. M. , -
MecQueen and C. 8. Peskin, Computer-assisted design of pivoting-disé~ =
prosthetic mitral valves, J. Thorac. Cardiovase. Surg. (in press).|
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. explanation for mitral valve prolapse;

"o 0.2 os 06 as 0 b2 lsm_

‘F‘IGURE 2.11 Transmission and “reﬂection” of a nervg impulse at & junc-

tion where the dismeter of the neuron suddenly i increages. The plots show
computed voltage as a function of time at equally spaced positions. The
Jjunction is at £ = zp, and the ratio of diameters theré is 2.5:1. Note t.he
increase in propagation speed for = > zq. A reflected wave is set up when
the larger fiber re-excites the smaller fiber after the refractory period of the

smaller fiber has elapsed. [From S. S. Goldstein and W. Rall, Changes of

action potential shape and velocity for che.ngmg core conductor geometry,
Bwphystcal J. 14, 731 (197 4)] 4

elastic heart valve leaﬂets. The motions of these boundmea are not known,
in advance; they must be computed along with the m’btmn of the fluid.
These considerations have led to the development. of a computational .
model of the left- heart that ¢an be used in the .computer-aided design
of aftificial heart valves, In this model, the fiuid eduations are solved
by finite-difference methods on a regular, square mesh (see Sectjon' 3.4).
The boundaries are represented in Langrangian form as a collection of
moving points. Coupling coefficients between boundmarkers and fluid
mesh points are computed with the aid of an app ation of Dlrac 5
§-function. “This computer model (Fig. 2.10) has been used in the design
of prosthetic heart valves to remedy problems of stagnation and blood
clotting in the smaller opening of the valve. The model has also been
helpful in the study of disease processes, providing, for exa.mple, a posslble
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" Just as the flow of blood in the heart is ultimately governed by

Newton's laws, the conduction of electrical Slgnals along nerves is ul
L‘ﬁ timately governed by Maxwell's_ tquanons (Figs. * 2.11 and 2.12), Here
also, pature provides a peculiar boundary condition that leads to entirely

new phenomena. In this case the boundary ¢ondition comes from certain

voltage-dependent channels located in the nerve membrane. These intro-
duce a nohlinearity, snd the equations of nerve conduction take the form
of nonlinear diffusion equations—the Hodgkin-Huxley equations. Without
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“FIGURE .12 Computed elect'.rical mgnpls at the ,m’pu{. end of a neuron. A
"bne!‘ pulse of current is‘applied at thep eriphery of a tree, and the result~
_mg voltages are computed {logarithmié-seale) at the input.(BI), at succes-

 sive branch points (P, GB, GGP), and fintly st the cell pody (SOMA).
[Modified from J. Rinzel ancl W. Rall, Transient response in a dendritic
neuron model for current ‘injected at one branch, B:ophyascal J’ 14, 759
(1974)] }
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| ) the nonlmeant.y, signals introduced at one end of the nerve wonld decay
'rapidly; because of the nonlinearity such signals evolye into a spectﬁc?
i wa,vefonn that propagates at a constant. speed mthou dlstortmn Thls .

dmtance commumcatlon in the nervous syatem
Currently. there is a-wide range of mathematu:al putational, and
physiological research activity related to the Hodgkin-Huxley equations. ‘

Mathematically, there is extensive research on the bagic theory of .non-

linear diffusion equations. A particularly fruitful approach here has been

the use of piecewise linear models that expose the basic structure of the
equations. Singular perturbation meylgnds have also been useful because
. the equations exhibit a disparity ofgfne scales.

An important physiological enterprise is the modification and applica-
tion of the Hodgkin-Huxley equations to other excitable tissues. In the
heart, for example, equations of the Hodgkin-Huxley, type describe the
electrical progesses that generate the cardiac rhythm and, coordinate the
heartbeat. Mathematicians are just beginning to use these equations as
a bagis for a theory of the abnormal rhythms of the heart, of which the
most, serious is ventriculat fibrilation. This theory has connections with
recent work on chaotic dynamical systems and transltlon,t,p turbulence: it .
appears that fibrilation is directly analogous to turbulence. This work has
enormous practical significance, since the principal cause of sudden death

~ following heart attacks is ventricular fibrilation. w
Progress has also been’ made in the modeling of the input to the
neuron (whose output gignal is the nerve impulse). The neuron integrates
information received through a tree of dendrites in which the signal-
ing mechanism is often described hy the“linear diffusion equation with
_ leakage. Mathematical modeling of the dendritic tree ‘hes Hiad a substan-
tial impact on experimental neurophysiology. One reason for this is that™
dendrites are too small to be penetrated with microelectrodes. Thus the
neurophysiologist can only record voltage or inject current at the celi body
and is forced to rely on the theory to indicate the significance of these
measurements with respect to activity in the dendritic tree.
Some major successes of the theory are és'foliows: oy
1. Elumdatlon of the dramatic differences bet;ween eﬂ'ects of a synapse \
close to the cell body and effectsof a similar synapse far olfi:m the dendritic = .
tree. ¥ i
2. A posmble explanaticm of the role of dendntlc spines in learning |
and memory.,  * -
3. Pregliction of the existence of, dendrq-d,endnt,lc synapses based

-
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, on 8 mathematical model of field potentials in the olfactory bulb. Such
synapses, previously unheard of, were subsequently found in electron
Imcrogl'aphs Thls work led to a fundamental new concept of, local in-

R8RS : gital” meode, ie.,
w;t.hout. nerve 1mpulses Such prooessmg is 1mportant. in neural neE works
such as the retina. Indeed, an extensive mathematical theory of the retina
has been developed, and this is another exciting, area’of current research.
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2.12 ELECTRONIC COMPONENTS. - 9
*  The design_and fabrication of modern integrated circuits is @ complex C—]

process. The number of devices that one can put on a chip epends on
the size of the chip and how small one can make its features. T the
years, the dargest increase in the number of devices ot a thip has resulted
from t.he contmmng reduction in feature size and with this a reduction in
device size. . ]
. Consequently, process and design engineers have had continually to - ;
redesign the process steps and then recaltulate the resulting device charac- |
teristics to ensure goodgawect.ncal behavmr This has’ had to be eomputa-

s g e

error approach is prohibitively expensive and time-consuming. Moreover,
expenmental techmques tell us only what happened, not why, Effective
~ device design depend#“on deterrmmng both the what and the why by vary-
* ing the problem paraméters'in the computational model.

The mathematical ‘models on- which- the- ‘t.h%ry .of semiconductor |
" devices rests are differential equations that descfibe the fiow of current
{holes and electrons) under the influence of electric fields. When feature -
sizes were large, the devices could be treated as though they consisted °*
of plane surfaces and edge effects could be neglected. This allowed the o
development and successful use of one-dimensional analytical models ob- v
tained by solving a system of three coupled, nonlinear ordinary differential
equations. As device sizes shrunk, these models became more complicated
and leés accurate as edge effects became ‘more important. In véry large- v
scale ifitegration where device dimensions have reached a few micrometers,
these models are no longer adequate, anti the coupled, nonlinear, pa:tial
differentjal equations must now be solved in two wﬂ%etmes three
dimensigns. These differentjal equations consist of a nonlmear Poisson ‘
equat.mi“t.hat. describes the potential of the electric field+aiid two non- ' >
lmenr transport equations that describe the motion of the holes and the
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‘electrons. Moreover, the smaller sizes have made some physicel effects
important whereas they were previously neglected. This results in further
;- complications ta the basgic equations. T
v Partisl differential equatlons play an increasingly important rale

+ formed by implafiting certain dopant iops’into selected areds of the chip.
Subsequent high- temperature procésses, such as growing an dxide layer,
- will cause thiese atomic impurities to diffuse. Their final diggribution is an,
" important factor i in determining device characteristics. Insights into these -
& . fabrication processe& are especially important for'increasing the yield of
reliable devices, which is a critleal factor in*their economic viability.

The design of the ove ircuit to be placed on a chip leads to large
systems of nonlinear differentfliequations that need to be soived numeri-
celly. Then the efficient layout of the circuit 'on the chip introduces com-
binational and graph theoretical proble‘ms “which again pose formldable
. computatmh@yms N e

4

in simulating the fabrication pro:&e_sw}'—he transistors in a chip are




3. COMPUTATIONAL AND MATHEMATICAL DIFFICULTIES
- : ¢ - * L3
» ~ <
Computational mathematics and modeling is & relatively young science, -
one that is expanding rapidly. The success and importance of the field '
stems from the fact that its application provides the possibility of tack-
ling significantly more complex and difficult problems than would other- ,
_ wise be possible. Perhaps the greatest opportunity provided by a com- .
putational approach is that it opens the wide realm of strongly non- . \
hn'bekar phenomena to systematic, relatively accurate, and efficignt model-
ing, improving the chance that important phenomena can be isolated
and andlyzed. Nonlinearities pervade nearly all aspects of applied mathe;
matics, and to a large extent these nonlinesrities are responsible for the
difficulties that are encountered in computational m g. Qur purpose
in this chapteris to explore the source of some of - hese difficulties. In -
Chapter 4, we will discuss the direction :of some of ‘the computatxonal ‘e
research"ﬁeeded to resolve the problems V4

e - e

4 . -

3.1 DEGREES OF FREEDOM  .° L

There are several reagons'for the degrees of freedom in a mddel, and .
hence the size of computational problems, to increase. One is that we o
attempt to increase the accuracy and complexlt}' of our representations of
the physlcai conservation laws. Increased degrees of freedom come either
wfrom increasing the number of demndgt ot independent varmbles For ex- .
ample, in chemica! models the number-af dependent variables is increased )
by increasing the number of chemical species. considered. . An bbvious
" need forincreased independent variables comes from the npéd to répregent ,
phenomena in two and three spatial dimensions. However, eved higher- o
dimengiona) problems arise when the independent variables are not the spa- o
tial coordinates but are various state descriptors; such higher-ditnensional *- ..
problems are common in phymcs and chetmstry. Unfortunabely"the direct
application of numerical methods that work. well mgﬁhe or two dlmenalons s .
often are not.usable in three dimensions. Therefore, i‘ncreasl.ng the degrees PR
of freedom may reqmre significantly different. a]gonthum % . . ‘




Another way to inctease the degrees of freadom .in prohlems is to. ..
allow the possihility of multivalued solutions..Certsin physical systems .
allow the solutions-to hifurcate, a phenomenon discussed in Section 3.5.
Other systems have hysteresis or “history-dependent”;properties. In these,
problems the solutions depend not only on the boundary conditions hut
also on the path that the transient solution follows. Structural dyngmics
" models for plastic materials in which the stress depends not only on the
strain but on the straining rate as well ekhihit this behavior.
Consider an example to quantify the magnitude of the computational
. requirements for multidimensional prohlems. First suppose we want to fol-
low the evolution of a chemical model having N chemical species. Suppose
also that the problem is stiff (see Section 3.2) so for each time step in. -
the evolving system we solve N nonlinear algehraic equations in NV un:,,
knowns. Even for models with & large numbher of species thisisa relatwely
straightforward task. However, i " We now want to introduce transport .
phenamena, such as fAluid mixmg, ‘the prohlem has to mclude ‘the spatial
dependence of edch chemical species. ~
For a one-dimensional case assume that we use I spatial mesh points .
and that we estimatg 3 what, each species'will do on the basis of its currént
local value and that of its immediate neighbors (a three-point spatial stencil, .
3 involving all species). We now have NT unknowns and a nonlinear systeth. ...
' : that has 3V T nonzero entries in each equation. It is typical to have 40 to 50 .
species and to require$00 mesﬁ points to resolve the species concentratmns .
accurately. In this case over thrg quarters of a million words of memory
are needed just to store the approximating local linear system along with _
the solution. This alone is, }arger than the fast-access memory of most
modern computers. Suppose further that the same model is to be _posed
in two dimensions on a I X I mesh apd in threednnensmns on an IxIxI o
mesh. The solutions themselves require NI and NI® words of storage,,
respectively. Worse, the totslity of coefficients in the typical linear system ...
will be 5N2I? and TN2I3. It is of practical interest to want solutions to
three-dimensional combined kinetics and transport problems. However, =
& even for a modest system of 20 species and 50 mesh points per spatial
i dimension, 2.5 million words are needed to store the solution alone. An, .
additional 350 million are required to store the coefﬁc;ents of the linear ~_|
system. (For comparison, we note that the largest computers. currently
availahle have 4 million words of fadt-aceess menfiory.) Moreover, in'the, |
high-dimensional cases, the linear’ system is not convement.ly st.ructured
_ for éfficient solution.” "7‘_;3
‘Clearly a major prohlem in solving hlgh dlmensmnal syst,emﬂ" of par-
tial differential équations js that after discretization the resulting, gyg
of apprommatmg linear equatmns can he much too large to he solved
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effectively by direct means: Except.in simple cases the resulting equations
have to jfe solved iteratively, and, especially for strongly nonlinear equa-
tions, the convergence prqpemes of the 1teratwe process may be a major
CONCETT:.

Operator splitting methods, such as a.lt.ematmg direction implicit
(ADI) (see Section 4.7), also provide & current effective approach for
high-dimensional problems. The approach here is to alternate the solu-

" . tion of a set of lower-dimensional problems. The alternated problem ap-

proximates the original problem with sufficient accuracy, but the set of
lower-dimensional problems is much more easily solved, even in aggregate.

Again convergence and agcuracy properties must be established in a.ll but
the simplest of cases. :

For some problems if may be more eﬂic:ent to depart from the_con-
ventional ideas of dlsc.reuzatmn on & mesh network and consider mst.ead
mesh-free methods or (seé Sictions 4.8 and 4.9). ‘Monte Carlo methods.
Unknowns can be changed mstead of the amounb of material at a given

. locatxon, ‘Onescan sk for the amount, of & given wavelength in the, golution., .
as a whoIe. In fBuid. mechamcs, vortex methods could be a more eﬂicxent '

approach Such methods réduce the size of the linear ‘algebra problems, in
compariion with the mesh-onented methods, if the, new unknowns carrjr*

- «<all the-lmportant—mf ormatlon dealred-"‘ *

- 'Deélslpns about- which methods are most eﬂ‘ectwe may depend

st.rongly on ed.vances and changes in° computer architecture. ‘Since new.

archltectures, such ag vector aud parallel ‘processors, are now evoimg,
the lmmencal analyst has to re-evsluate_hls approaches periodically. Also,

_congiderationis suc'fi a3 the relative cost of memory. versus central ptocesscar
' .tlme can. beal; heavxfy on c[emm‘b‘nsieéafding' slgonthn;s ; :

SO 2 DIF‘FERE_I}IT mmﬂmmwcmseaws

*T" '@J‘z{_: ".-".

In prmclple a model can contain mpcmt lengish scales thst range {rom _

the size of an itom to the size of the universe. In practice,. however, we -
limit the range of scales by approximation (see, for example, Sectfon 3.7). .
N'everbheless, it g often the case that mathematlcsl models of phys:csl
processes are charact.enzed by the smmltsneous presence in thelr solutlon

) _models will have regtons pf ;trongly 1ocsl:zed behavwr, such as shocks,

sbgep Ironts or .other near dlsconinnumess Therefore important topics of

. resea.rch in numencai analysis are the conslderatioh of such circumstances
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and the development of efficient theories and methodologies for their com-
putational solution. Indeed, we often find situations for which solutions
are not possible, or at least not practical, without the application of spe-
clahzed methods to deal with the multiple characteristic scales.

Fhiid mechanics and chemical kinetics are two areas that provide a
rich source of examples for multiple and disparate scales. Fluid-mechanical

_processes are commonly characterized by groups of parameters that are

indicative of the various scales in a problem. Some examples are the Mach
number (relates velocities to sound speed), the Reynolds number (relates
inertial forces to viscous forces}, the Prandtl number (relates viscous effects
to thermal effects), and the Damkdhler number (relates chemical reaction
rates to diffusion rates). When any of these numbers is very large {or
small) it is likely that’the solutions to the models will have regions of
localised behavior. For the case of large Mach fumber the possibility of
shocks exists. Similarly for large Reynolds number we expect to encounter
boundary layers in the vicinity of solid walls. When ‘the Prandtl number.

is large we expect that therma! boundary layers will be much thinner

than viscous boundary layers. And when Damk&hler numbers are la.rge we

 expect narrow reaction fronts.

In chemical kinetics we find large numbers of chelmcal reactions com-
peting for the available chemical species at eidely different rates. As a
result some species are either consumed or produced rapidly or slowly,
while other species are being both produced and consumed simultaneously
at high rates, with their net production rate being relatively slow. This
chemical behavior is responsible for the many widely. differing time scales
in the mathematical models. The computational models of these processes
are characterized as either multirat@'problems or stiff problems.

It is worthwhile to point out the distinction between. multirate prob-
lems and stiff problems. In both problems the system itself fs- equally
capable of rapid or slow changes. Multirate problems are those in which
at least one’ component of the solution is changing rapidly, even though
others are changing slowly. Numerical methods for these problems must
take time steps that are small enough to resolve the fast transients, so they
are controlled by accuracy not stability considerat,ions. Stiff problems, on

the other hand, are those in which all oomponents of the solution are _
changing slowly compared with the fastest characteristic scales possible in .

the model. In these cases explicit numerical methods are forced to take
much.smaller time steps than are needéd to maintain accuracy in order
to maintain stability. Often problems that begin as multirate problems
become stiff problems as an equilibrium or steady-state condition is ap-
proached. “Stiff problems are usually solved eﬂielently by implicit methods

- . -
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For stiff or multirate problems, it is_perhaps useful to consider methods
that treat the fast components differently than the slow components.
Given that multiple-scale problems are of practical importance, we
must consider: why are there computational difficulties, and what can be
“done to ameliorate the dificulties? In the case of disparate length scales
one difficulty is that of representing accurately the highly localized be-
havior. If the solution is represented discretely on a mesh network, the
mesh must, be sufficiently fine to capture the localized behavior accurately.
The whole topic of adaptive meshing is critically important for these prob-
lems (see Section 4.2). Here, instead of computing on a fixed prespecified
mesh, the mesh adjusts itself dynamically as the solution develops in order
to maintain accuracy in the solution.
For sithations in which the localized behavior is lmuwn to be ap-
* proximated well by very sharp fronts (e.g., shocks or flames), front track-
ing methods can have significant adv§ntages. Unlike the adaptive mesh
approach where the solution is resolvéd smoothly through the front, the
front tracking methodd approximate the front by a discontinuity whose
magnitude, speed, and location are to be found. Then elsewhere in th
ion the conventional discrete representations are adeguate.
In problems like chemical kinetics, the disparate’time scales ca

methods are well known to be extremely inefficient, and some for
implicit method is needed. For systems of ordinary differential eq
the problem has been worked out, and high-quality computer soft;
available. However, when stiffness i8 encountered in the context of
of partial differential equations the remedies are much less developed. The
same techniques uged for ordinary differential equations, when applied
directly the partial d:ﬂ'erentlal equation prohlems of practical iriterest,
often yield problems that are simply 00 large for current computers. -
Several approaches show promise. One is to develop pperator-splitting
methods in which &9 stiff parts of the problem are split off and solved as
a series of emaljer and hgnce more tractable problems. Another approach
is to attempt to remove the stiffness.by solving instead an approximate
{vet sufficiently accurate) system of eguations. This tack benefits from an
asymptotic analysis of the equations. Both approaches have found recent
successes in fluid mechanies and in combustion chemistry. -

B T .

Pee




P
- ' e

3.3 SINGULARITIES IN COEFFICIENTS, DATA, OR STATES

«e—. Difficulties similar t0 those encountered in multiple-scale models are often
found in problems having singularities in coefficients or states. That is, a
singular or discontinuous coefficient can give rise to localized behavior in
tbe solution, sucb as very steep fronts. An example could be a material
interface in a structural or beat-transfer problem, say between a steel and a
plastic part. At tbis material interface the solution (stress or Lemperature
gradient) might change rapidly. In order to maintain accuracy in-the
computed folution, the numerical procedure would have to resolve this
frontlike behavior. The situation is analogous to the oecurrence of a shock
or a flame front. However, we usually know where the material interfaces
are, so they are perhaps easier to deal witb than phenomena such as shocks.

Pbase transitions can also produce discontinuous coefficients. Take
a model in which a melting front is traveling through a region. Usually
the properties of the molten material are quite different than those of the
solid material. In fact, different governing equations may éven be required
for the two regions {e.g., fluid motion may be.modeled in the liquid but
not the solid}. In-any case, the solution is likely to exhibit jumps in its
properties at the transition, and the numerical metbod will need to locate

- and resolve it. Thia sitvation is more like a shock, in that the position of
the phase transition front is not known g priors, and thus the ‘numencal
method must both locate and resolve it.

3.4 BOUNDARY CONDITIONS

The solution to a boundary. or initial-boundary-value problem depends
strongly on the boundary conditions. Thus it is important to understand

the relationsbip of the boundary conditions to the differential equations

and 0 their discrete representation. Most important, the boundary con-
ditions must be chosen so that the problem is well posed. For a large class

of problems there is a satisfactory theory of admissible boundary condi-

tions, but for many problems, those involving coupled hyperbolic-elliptic

- systems or disparate time scales, for example, only a_rudimentary theory
is available, L
A posslble error in prescnbmg boundary condltlons for hyperbollc .

" equations is to overspecify or underspecify the number of boundary condi- - .
tions. Overspeclﬁcatlon usuaﬁy causes nonsmooth solutlons with mesh 0% . .

o —_,.<_"" -
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cillations near the boundary, Underspecification does not ensure a unique”
solution, and the numerical solution may tend to wander in steady-state °
. calculations, In either case, the results are not accurate and one should °
be skeptical of even the qualitative behavior of the solution. It should
be noted that the way in which boundary conditions are specified for the
difference equations can change a well-posed contmuous problém into an
ill-posed (unstable) discrete problem. i -, , -
Two of the most common methods used to lncorporate boundary
ditions into discrete equations are the extrapolation and uncentered
differences methods. In the extrapolation method, the domain of the prob-
lem is extended and the solution is extrapolated to fictitious points oytside
the integration region, The nonphysical solution at these points is defined
so that the discrete equations are consistent with as many relationships
a8’ cap be derived from the boundary c_ond_ltlons and differential equa-
tions. The extrapolation formula can do this best by incorporating the
discrete boundary conditions-into the extrapolant. Additional relations
can be generated by differentiating the boundary conditions with respect to
time, replacing all time derivatives by space derivatives using the ongmal
. differential equation, and discretising the resultmg eluations.

s’ * The uncentered differences _approach is to extend the number of
boundary conditions so that all components of the solution are defined
at the boundary. Again, these additional boundary conditions must be
consistent with the original problem and as many relatlonshlps as can be
derived from it. An uncentered difference approximation is then used to

. approximate the spatial derivatives at the mesh points nearest the bound-

Irreguler domains can be imbedded in an underlying regular grid LT
that is not aligned with the boundary, or an irregular grid can be con-
structed that conforms to the boundary. The discrete approximations to )
the equations away {rom the boundary are much simpler on the regular L
imbedded grids, but the boundary conditions are difficult to approximate. |
Boundary-fitted grids can be generated algebraically in the original physi-
cal domain, or the domain {and hence the grid) can be mapped onto a
regular grid in a simpler domain and the equationa solved-there. The
algebraic-giid-generation methods Tiave the advantage that the equations
and boundary conditions are unchanged,,but the differential operators are
more dlﬂicult to .approximate on the nonumform grid. When using the
mapping method fahe differeritial operations are easily apprommated but
the transformation can greatly comphcate’f.he equation and gometimes

.. -:obscure 1mportant. Properties such as}ﬁ;e conservatlon laws expressed by
L 'the equanons g ',;; B . . . - T




3.4.1 Boundary Conditions at Infinity

~ Many *physical problems require the solution of partial differential equa-
N tiops on some infinitely large domain 0. For computational reasons this
s 5\ ':‘ domain is often replaced by a finite domain f31. Then the difficult problem
DR of Qpeclfymg boundary conditions at its finite artificial boundary B arises.
\It.‘lg especially important that these artificial boundary conditions do not
“introduce spurious phenomena. Consider, for example, & nonviscous fiuid
that at subsonic speed leaves {3; through the boundary B. There i8 one
_ characteristic direction that points back into the region {1}, and there-
* _ fore one boundary condition has to be specified on B. But, in general,
> no detailed knowledge of the solution on B.is known and therefore other
principles have to be applied. For example, if one has solved the problem
by difference approximation then one predicts the solution on B from in-
side wy, for all the deperfdent variables, Thus this procedure amounts to
overspecification of the solution on B. Another pringiple has been proposed,
namely, to specify the boundary conditions on B so that no reflection of
high frequency takes place. Howayer, numerical experiments have shown

that sueh approaches ‘do not always work.

T

3.5 BIFURCATIONS AND CHAOS

hld

3.5.1 Bucklixig and Collapse Behavior, Bifurcat_.ions_ ;

In general, the equilibrium equations of a mechamcal structure involve a
finite number of pafameters, that is, they have the generic form F(z,p)=
0, where z varies in some state space X and p € R™ represents a parameter
vector. Thus, in general, the solution st {(z,p) € X X R™; Flz,p) =0} is
. a manifold X x B™, and one topic of interest is the location and chamct,er.
of the singitlar points of Thesolution set. ~ 7 T~ % ,
Without going into detail, suppose that we follow some curve on_ .
the solution manifold defined by some combination of parameter values..
with one degree of freedom represented by a single variable ). -Then
we may encounter certain critical points on the solution curve where
_ the mechanical structure may suffer a loss of stability. Such a loss of
stability actually corresponds to a dynamic phenomenon whereby the
structure undergoes a sudden change of deformation. The dynamics of this | .

»
. W
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phenomenon are not described by the equations of equilibrium F(z,p) = 0,
but it is possible to deduce from the shape of the (static) solution manifold
at that point what type of sudden changes may be expected.

We use a few figures to illustrate the situation. In the upper left-hand
part of Fig. 3.1 the point denoted by (1) is a so-called limit point or turning
point and an increase of the load-intensity X beyond the critical value A,

.results in a jump from (1) to (presumably) (2). This type of behavior is
called a snap-through or collapse. In the case of the upper right-hand part
of Fig. 3.1 the instability phenomenon is related to the bifurcation of the
solutions at (1). This behavior is called buckling. This part of the figure
is a clagsical example of stable buckling where a distinet change in the
character of the load deformation is encountered when the load-intensity
X passes the buckling load X, but where no failure of the structure occurs.
On the other hand, the lower part of Fig. 3.1 shows an unstable buckling
point where we again observe a dynamic departure from the hifurcation
point to some other state [presumably the equilibrium state {2)]. The
geometrical shapé of the bifurcation branch I is the determining factor in
the ‘question of whether the bifurcation point is stable or not.

_ These examples already indicate that for a deeper understanding of
the bebavior of a mechanical system it is necessary to analyze the shape of
the full solutjon manifold. Of course, the choice of the parameters entering
into the definition of the equation is of critical importance here. In essence,
catastrophe theory provides some information about the selection of par-
ticular minimal numbers of parameters, but in practice the parameters
are simply chosen to correspond to the certain natural features of the

" gtructural problems.

In view of these observations the aim is to develop procedures for

a computatlonal analysis of the form of the equilibrium surface. Some

methods for this purpose aré mentioned in Section 4.4 on continuation

methods, but the entire problem is still a wide open research problem. In’
particular, it has to be noted that we can compute only points that are
approximately on the solution maml'old of a discretization of the original
problem. Thus, the questions arise whether phenomens, such as limit

_ points, or stable or unstable hifurcation peints, encountered on the solution

set of the discretized problem actlIally correspond to similar phenomena

_ for the ongmal problem, and, if so, what errors have been encountered.

These questions are ag yet largely.ungnswered and represent considerable

. research challengés. In this connection, it might be mentioned that for

nonlinear problems of this type the solution manifold of the discretized

equations often has a different number of conndeted components than
that of thé original equations. The components that do not approxima%e

. the exact soluwion manifold have been called spurious, or numerically

- .
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irrelevant solut.lons They are being observed more and more often in
various apphcatlons, but their study has only recently begun.

3.5.2 Chaos in Deterministic Systems

It has been remarked that one of the most engaging problems in nonlinear
dynamies i8 that of understanding how simple deterministic equations can
yield apparently random solutions. As is now widely recognized, gystems
with this behavior appear in many of the branches of scientific endeavor.
This near universality has come to the attention of physical scientists and
applied mathematicians principally through the use of computers in the
study of properties of dynamicsl systems. -

The onset of chaos in' deterministic systems (t.he stdchastic instability)
signals an unusual sensitivity to initial conditions, i.e., the trajectories in
phase space diverge widely as time goes on even t.hough the initial con-
ditions are arbitarily close to one another. The behavior is such as one
"would expect in a space with everywhere negative Gaussian curvature. On
the other hand the trajectories may in fact tend to a single orbit nearly
filling a subspace of the phase space (a strange attractor) in an ergodic
manner. In even the simplest systems of this type it is possible for several
such attractors to coexist side by side, with the initial conditions deter-
mining which one is readhed asymptotically in time. These and other
numerous unusual propertjes of dynamical systems displaying chaotic be-
havior have led to some ogen problems in computational mathematics.

Examples of such pro jems include the following: When on varying a
parameter the stochastic instability sets in, the continued use of an algo-
rithm describing the evolution of the system prior to the onset of chaotic
. behavior may no longer be appsopriate. In this event it may be more prac-
tical to take advantage of the stochastic nature of the system and use more
or less conventional statistical methods. In order to effect such a change in
computational methods it is necessary to detect the change from orderly
behavior of the system to chaotic behavior. Theoretically, the sensitivity
.of the system to initial conditions accornpanies the occurrence of positive
Lyapounov exponents,” i.e., numerical indices of the asymptotic rate of
divergence of initially nearby gystem trajectories. Since the Lyapounav
exponents are defined as time asymptotic quantities, stra.lghtl‘orward COm-
putation of these quantities requires a_considerable computatlonal effort,
including a celculation of the evolution of two initially nearby trajectones,
or the simultaneous integration of the associated variational equations.

An nnporl:ant too} for studying the pmpertles of dynamical systems
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i the chaotic regime is the first return map, sometimes referred to as -

the Pojncaré map. Such a map displays in a graphical manner various im-
portant agpects of the attractor. Unfortunately, the simplicity of generat~
ing such a map is restricted to systems no larger than three dimensional,
because of the self-evident difficulty of making multidimensional graphic
displays. As the study of higher-dimensional dynamical systems advances
there will be an.ever more urgent need for-a higher-dimensional equivalent
of the first return map.

Az mentioned earlier, in the chaotic regime it may be more appropriate
to deseribe the properties of the system trajectory in statistical terms than
in terms of a trajectory evolution. In order to obtain such a statistical
description it is necessary to have appropnate information about the in-
variant measure associated with the given dynamical system. With few
exceptlons guch measures cannot be derived @ prior{ but must be obtained
from detailed calculations of the trajectories. A finite machine computa. -
tion of the system trajectory. will inevitably introduce some errors that
may be all the more serious in the chaotic regime because of the previously
mentioned exponential divergence of nearby trajectories. There is then the
quest.ion of how accurate the computation of a chaotic trajectory must
be in order to yield enough information for constructing the appropriate

Hnvariant measure.

While the above examples have been drawn from dynamical sys-
tems representsble by ordinary differential equations there are other sys-
tems, e.g., those described by partial differential equations and by integral
equations, whose study is likely to be replete with similar computational
difficulties.

3.5.3 Symmetry Breaking

Bifurcations commonly arise in connection with a loss, or breaking d!‘
symmetry. In such cases the extra structure of the problem symmetry

may simplify the analysis. We give an example from fivid mechanics. A .,

classic experiment concerns flow between two rotating vertical cylinders.
For small angular velocities of the cylinders the flow is laminar and is called .

Couette flow. As the angular velocity is increased the vertical translation < \

symmetry is broken and axisymmetric Taylor cells appear. ‘These cells
resemble a row of adjwent smoke rings, each one rotat.mg in a sense
opposite to its immediate nelgh,]:or A further increase in velocity. bresks

the axial symmetry, and the Taylor cells become wavy with a time periodic

shape. Eventually the Row becomes turbulent. Specific experiments on
58 '
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these systems are a classic topic in fluid mechanics. However as often

‘happens in acience, one cannot see important phenomena in the absence o

a carefully thought out theory. Recently a number of precise experiments
have been conducted concerning the role of strange attrectors. Routes to
turbulence and, in particular, wavy Taylor cells were carefuily observed.

. The results confirmed some of the theoretical predictions but not all of

them. One t.heoretlcal proposal was that generic limiting sets, known as
strange att.ract-ors, would dominate turbulent flow patterns. This proposal
was supported by the fact that strange attractors were observed in low-
mode approximations to fluid flows. More refined calculations with more
modes included indicate an absence of these strange attractors, but the
phenomenon is still indicative of the highly complex solution manifolds
that can arise in nonlinear problems.

*

3.6 ILL-POSED INVERSE PROBLEMS v

r "

The notion of a well-posed.problem is due t¢ Hadamard: a sblution must
exist, be unique, and depend edntinuously on the data. The term “data”
can have a variety of meanings; in a differential equation it could include
any or all of the following: boundary values, initial values, forcing term,
and even the coefficients in the differential equation.- Since data cannot be
known or measured with srbitrary precision, it was felt for along time that
real physical phenomena had to be modeled hy mathemat.lcally well-posed
problems. This attitude has chanyd considerably in recent years, and it
is now recognized that many applied problems are ill-pbsed, particularly
when they require numerical answers in the presence of contamination of
the data. -

Ill-posed problems often arise in the i mverslon of we]l-posed problems.
Consider, for instance,\a well-posed problem that smooths the data or

attenuates its high frequencies. The inverse problem, in which the role of

data and solution are interchanged, will then be ill-posed. A simple but
important example is the Fredholm integral equation of the first kind |

"ol i K
’ /;) k{z, y)u(y)??% vz), 0<z<1 _ -
bi", in operat-or form o R '
- K'u Yo ‘ -
Assuming the keme! to be continuouvs on t.he closed unit square, the
59 ’
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Riemann-Lebesgue lemma gives - . /

l -
. lim | k(z,ykinngdy=10
A= JO 2 -
" so that K attenuates High frequencies and thus transf orms widely different
functions ¢ into approximately the same v. If v is regarded as the data, the
solution u of the integral equation, therefore, cannot depend continuously

on the data. Indeed, it is not necessarily uniquely solvable, eithér—take, '

for'exa.mlale, ya N
K(z,y)=Y afo)bly) - L

=1 .
, unawatre of these difficulties, one attempted to solve the integral equa-
on by discretization, one would find that the corresponding matrix prob-
lem is singular or ill-conditioned (and the finer the dlacret.matlén the more
il-conditioned the matrix problem).

. More general inversion problems can also be reduced to an equatlon "

of t.he form Ku = v, where K is a contifiuous transformation, v is the
data, and ¢ is the solution being sought. \[t may happeén_that u itself is
" not the quantity of principal interest but rather some functionals of  such
" a5 some of its momeits or its values at a f ified points.

Thus, there are three pieces of information that are central to the
numerical resolution of an inverse problem: (1) the model M, representing
the equation involving a mapping K between approptiate spaces; (2} the
observation operator O, representing the measurements that can be made;
for instance, we might have O(v) = {v{z.);¢ = 1,2,...,n}; (3) the intel-
ligence operator J, which apeclﬁea the information,we wish to extract from
the solution. For instance, wé might bave J(u) = { f z*u(z)dz; k=9,1,2}.

Most of the existing approaches focus almost exclusively on the model

M, taking account of & priori information about the solution such as
smoothness, positivity, and bandwidth. The Tychonov regularization .

method is,of this kind. By reat.rlct.hlg K to a suitable subspace it may
be possible for the restriction of K to be one to one with a continuous in-
verse. It might be more appropriate to study the tripletad,0,J for different
choices of O and J. Ope goal of such a pew approach would be to clagsify
and quaritify ill-posedness by developing comparison principles and order

. 4. Btructure. ‘ )
Hl-posed problems with their at.tendant. numerical difficulties abound :

int practice. For instance, ih scattering from.obstacle$ one may wish to
determine the shape of an object (or its surface impedance, if its shape is

ot
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b is some form of asym

known) from far-field measurements. Coefficient identification problems
arise in many contexts, one such problem being the determination of the
sound speed in subsurfaoe media from measurements of the field at or
near the surface. Another clads of ill-posed problems is associated with
image reconstruction (tomography), the medical applications of which are
now widely used (CAT scanners, for example) (see Section 2.12). More
recently, similar ideas have been applied to the nondestructive testing of
mechanical structures to detect cracks in fuel rods, weaknesses in rotor
blades of jet engines, and faults in screws in ships. Optiinum filtering
and inverse problems in Fourier optics (restoring data demgned by a band-
limited filter, for example) are other areas of current re h. -

¥

L
3.1 EFFECTIVE MEDIA

-

The study of “bulk” or “effective” parameters for composite media is of
fundamental importance. Depending on the particular applicatjon area it
may be relevant to consider a perjodic (or an almost periodic) or a random
formulation. ~ - % '

+ -

371 Horﬁogenization, the Deterministic Approach

Many problems of physical interest involve several length scales. As én”

important example we mention the study of composite materials in struc-
tural mechanics. Owing to a particular manufactunng process, a distinct
structure, e.g., periodically or almost periodicity, is often present.
Homogenization i¢ an approach for deriving, the . macroscopic
properties of the material from the known microscopic ones. A vanatlon'
of this is to replace a complicated geometrical configuration by & simpler
one, eg.,’to replace a framéwork by a plate or to smooth out a rough

*er surfaee .

Homogenization may be applied to linear and nonlinear problems and
can provide, qualitative information about physical macrolﬁvs as well as

\'80011 approxlmatlons to the various parameters appearing in these laws.

'T he most important mathematical tool for the deterministic approach
tic expansion. The’theotetical results concern the”
certain of the relevant scales become very small.

-

limiting behavior wh
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One is likely to ohtain different homogenized formulations from different
limiting relations between the lengtlt scales,

‘The numerical solution of a problem introduces, & new Jength scale:
the mesh size in a finjte:element method, the step size in a finite-difference
method, or the wavelength in 2 spectral method. Different limiting rela--
tions between this new length scale and the original physical length scales

. usually lead to different results. In this sense the numerical treatment has

to be considered simultaneocusly with the homogenization process. One has
to design algorithms that will adaptively select the correct homogenized
formulation and discretize it appropriately.

Whereas much theoretical work has been done within the last ten
years analysing the effects of multiple scales in continuous media, the
study of numerical discretizations of such problems is still very muclg in
its mi‘ancy $

4

3.7.2 Ana.lym of Random Media *

-

Assessmg" the eﬂ'ect of random fluctuations in the coefficients of a par_
tial differential equation ig a basic mathematical problem that arises con-
stantly in science, applied science, and engineering. Finding effective con-
ductivities of composite conducing materials such as%oil or 2 metal alloy,
finding effective fluid equations for flow in porous media (Darcy’s law),
determining the rate of sedimentation of particles in a fluid, and many
other problems are problems that may require "analysis of random media.
In addition to the quantitative aspects of the problem, many interesting
qualitative questions can be posed as well. For example, what is the nature

‘of the spectrum of the Schrodinger equation with a random potential? It

has been shown that in one dlrnonslon, fora large class of random poten-
tials, the spectrum is always discrete. For randomness of large magnitude,
it was recently shown that there is no diffusion, without restriction on the
dimension of the space.

From the applications’ viewpoint, one can i‘requent.ly model ade-

_, quately a random medium, such 8s a sugpension, for example by a con-

tinuum with suitable constitutive properties. The continuum equations .
may be linear or nonlinear, and the constitutive Jaws may be known
only qualitatively from experimental dats. In such 2 context, theoreti-
cal investigations are ‘useful and. necessary in order to undemtand how
the phenomenological continuum equations arise from the known micro-
scopic structure. One can then find mathematical characterizations for
the relevant constitutive laws that can lead to interesting eoncluslons;

¥
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‘ Examples of this arise frequently a8, for mstance, the determination of |
_bounds for the effective conductivity of composites.

The effective media ideas of Maxweli in the last century dominated
theoretical calculations for a long time. - In the last two decades, press-
ing technological needs have caused a major expansion in materials re-
search, In attempting to achieve a mathematical understanding of the
methodological basis for effective media caleulations that abound, one finds
a lack of theoretical foundations.

Mathematical methods in random_ media are drawn from analysls,
probability theory, asymptotic methods, and differential equations. The
goal ig*to develop tools that bridge the gap between microscopic and
macroscopic descriptions, give qualitative information about constitutive
laws, and determine when residual stochastic effects remain and how they”
can be characterized. In addition, it is of interest to find important specific
problems on which more detailed analysis, including numerical analysis,
can be carried out so that these problems car gerve as benchmarks in the
theoret.lca.l development .

e et hd
3.8 VALIDATION, ERROR ASSESSMENTS AND i
SENSITIVITY ANALYSIS :

The resulta look good, but. are they really nght.“' The question is often
not answered satisfactorily. Indeed, often too little attention is paid to
the difficult topic of model and code validation. Once the results look
plausible, we are often either unable or unprepared to take the valida-
tion process furthef. The validity of a model depepds both on having a
proper physical model (Do the governing equations adaquately represent
the physlcs'f') and on having an accurate computational representatlcn of
the governing equations. The mathematician has a responsibility in both
areas. He shouid help determine the “well-posedness” of the. models and~
from a mathematical point of view help the physical scientist determine
the appropriateness of the model. Given that the equatiofis are proper, the
computational mathematician must be sure that the numerical procedures
used accurately approximate the solution® of the governing- equablons
Frequently modeling is done in conjunction with experiments, and %
those results are used to validate the model. Comparigon with experiments

“simultaneously tests both the validity. of the governing equatiops in the . ‘
" mode! and of their numerical solution. In this case the source of any

discrepancy is not easily isolated. A reasonable goal should be to validate
the numerlcai procedures and the physical models separately so that,a
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model can be developed more confidently. The design of relisbie numerical
error estimates for Jghe ¢omputationat methods is an important step. '

3.8.1 A Posteriori Error-Estimates

*

An lmportant current research topic is the development and application
of a posiétiors error estimates. Such procedures are valuable for models in
~ which differential equations are approximated by their discrete analogs on .
a mesh network. When dSposteriort estimates of the error associated with
the discretization of the continyous model are possible—and they often
are-then potentially it is possible ¢o control the errors. Adaptively moving
the mesh network to control or mimimize the error is one application of ..
this approach. With a posteriori error estimates, it should be possible,
in principle, to give a strict bound for the error on eomplet;on of t.he .
computation, \
The selection of the specific accuracy requirements depends strongly
on the goal of the computation. Often it is desired o obtain detailed .
information ebout thé solution itself; in other cases, the main focus is the
value of a specified functional of the solution, as, for example, a stress in-
tensity factor in fracture mechanics or a drag coefficient in fiuid dynamics.
Other goals may be the determination of certain critical date, such as
collapse points or buckling points and- their associated loads in structural
mechanics. Sometimes special technigues; 8.8 variationa! techniques, can
~—yield highly accurate estimates of partlcu.lar functionals.
. In connection with most of these goals we are interested in quantlta-
tive results thet have o desired accuracy. For ‘this the error has to be
defined, in that a family of exact results has to be specified with which
the computed data are to be compared, a norm has to be prescribed in .
terms of which the error is to be measured, snd some pr@dure hastobe ..
established for estjmating the error. :
Such error estimation capabilities are ce y lmpori;ant. in man
applications, provided they csn be guaranteed to be reliable. For exampl
for thie many types of certification computations required in‘the design of .
complex structures or nuclear plants, the availability of religble estimates
of the accugacy of the computed data iz obviously important. In other
cases, such est:mates may reduce the total design effort and avoid un-
necessary overdesngn At the same time, the availability of effective er-
ror estimates introduces the possibility of applying adaptive techniquesto
structure the eomputation to achieve a desired error tolerance at minimal
cost or to provide the best possible solution within an allowable cost range-
Many of thé tpeprgtiéal'atudies of solution algorithms for classes of
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differential equations provide for some a priori ervor estimates, usually
of an asymptotic type. For the practical error assessment these a priori
bounds are rarely computable or very accurate. Thus, one is led to the
- necessity of developing a posteriori error e;stlmateslhat utlhze information _
.- gained during tiie computation-itself.. ‘
" * For the finite-element sofution of cert,am classes of elliptic boundary-
value grqbrems! gome computable and reliable a posteriori error estimates
have beendeveloped-nﬁ&anal}'zed in recent years. Most of these a pos-
‘teriori estimates are based,og 8 local ana.lysls For a given mesh A consist-
ing of elements Ay, ...,An ‘and with a correspondmg approximate solution
on that mesh, an error indicator. 17 18 associated with the jth element A,
These 7, have to be computable in terms of information about the prob-
iem and the approximate solution on ﬁ, and,.at most, on the {mmediate
neighbors of -that element. -On ‘the basis of the mdzcstors Nise+uTln 80
error estimaté€(A) is then constructed. Of course, the 1,'2s well as {A) .
depend on the chosen norm. The thebretically tmportant question is then
‘the relationship between ¢(A) and the norm of the actual error ¢{A). The
effectivity bF the egtimation may be judged by the effectivity index § =
€(A)/fle(A)l):, In practice, it is usually more important for-9. to be close
to 1 than that 8 <1. Moreover, it is esaeutlal that & converges to 1 when
|le(A)]| tends t& zero, so that for am accuracy of, say, 5 to 10 percent the
value of 61| is gxpécted.to.be less thas, say, 0.1 br 0.2.

The Fequireifént of designing errot estimators with these properties °
for realistit classey’of problems and varios different norms certainly repre-
sents a demanding research task. The results available so far suggest that -
such error estimgtors can'be developed at least for linear problems. For

resuits available Tor model problems i in one space dimension indicate that * -
estiniators for the érfor along continuation paths and for the location of
critical points are-céy.gt&twnaljy[eambla There is certainly conmderable
need for concentrabe(iresearch in-the: general area. .-

- -_— . ,_--- P

3.8.2 Other Validaﬁdn}i‘e‘éaur‘es" ) —

Checking for mesh dependencles md eonvergenoe rates is anothenway to_

" help validate a model. If a method is supposed to be,'say, “second order,” .

. then as the mesh intervals are-haived, the érrors shoufd'l')bﬂ’duced by a
factor of 4. ﬁ‘thls does not hapf»en apeordmg to on€’s errot estlmate then -.
the method does not have the desired order yet and may be in error. Also
one should continue to refine the mesh until the results are independent of

: _reﬁnemenr. to wifhin the desxred accuracy. Solutlons can g]s& be checked. e
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for aensltmty to mesh orientation. The solution should not be ahgmng

itself with some special property of the mesh network.

Numerical mpethods can slso be validated by comparing.them with
analytic solutions. Often this is possible by choosing limiting cases where: _
an asymptotic analysis applies. In some cases complex constitutive laws

can be replaced with constants so an exact solution is possible, HJgher- P

dimensiona) models can sometimes be validated by comparison with pre-
viously confirmed lower-dimensional results. Bounds on solutione are
another way to help verify a model. Often conservation laws or minimum
and maximum principles apply, or the solution is known to approach a
previously known equilibrium or steady-state condition. These properties
can be used as a basis for validation.

To the extent possible one should always write computer codes in

& modular fashion such that each part of the model can be validated -

aeparately Even though this is Just good structured programming prac-

tice, and not, necessarily related to mathematlca, it is an important aspect
of Inodel vahdataon

3.8.3 Sensitivity Analysis _

In addition to the independent and dependent varmbles, most models also
depend on certain physical parameters. Unfortunately, those parameters
are often not krmown accurately. Sensitivity analysis is & systematic
means. fo quantify the relationship of model parmt.\érs and aodg¢l results,
Doing the sensitivity analysis requires solution of an additjonal sjstem
of differential equations.
the relationship between the dependent variables of the system and the,

parameters. The results anrgwen in terms of a matrix of partial denm-‘

tives of the dependent varidbles with respect to the system arameters.

One way to think of the analysis is as a method to Krmde heoreﬁcal_

barg” for the model.
r:}ew methods are being developed 10 solve these senaltmt.y equatmns
quite efficiently: The methods rely on the dbservation that_the Senmt.mt.y'
equations are linear, regardless of the nonlinearities in the ongmal miodel.”

The method solves differentia) equations for the Green’s function Q(\the
sensitivity equations, and then the sensitivity coefficient matrices are comn-

These equations are & formal tatement of i}

puted by quadrature for the various imhomogenous terms corresponding” <

eters. These methods have been Bucceesfully apphed to probz
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4. NUMERICAL METHODS ST :

W\

4.1 DISCRETIZATION METcIODS

Many important physjcal problems are modeled by boundary or initial-
boundary-value problems. In this modeling, the physical state under
consideration is characterized by a function 4, which is the unique solution
to the boundary or initisl-boundary-value problern. Thus a major part of
the analysis of the physical problem is the detereratAon of u or gome of )
its derivatives or some.functional of it, RS
In nearly all important problems the detenmnatlon of.u s an mﬁmte- .
dimensional problem in the sense that 4. dqes not lie*in an explicitly .
" known finite-dimensional s or, slternatively, callﬂot.be exp:essed in ’ .
terms of a set of expllcn\ own i‘unctlons by means. of - 8 ﬁmte set of
anditis necessary totesort to sometj{pe of approximation or dlscretlmtlon e
method. In essentially all discretisation methods one attemp‘ts,to construct _
a function, Uapprox,Which on the gne hand is s ¥elosd? to yand.on the other
is charactenzed'by a finite et of parsmeters, and g0 can begalculated.
The aim of finding’ u,ppm -that is “cfo‘se” 0y “fnade precise.by: - °
requiring E\,&t Jlez = tapprox | £ 7 for that “u—- u,ppmﬂ < 7{jul]), where 2
[is]} is & physically relevant norm and  is a physically relevant tolerance. = ..
The goal is thus to find Gapprox satisfying t]ns errgr-criferion, with the _ T
Teast expenditure gfsomputationsl effort, The aelegnoq of adigeretiastion . ., [l
procedure is mﬂl[euna& a‘numbefof consnderau@ls, t.h:e mosj; unpo::tant
of which we noizli "‘: n:‘.}';-::“—'_-; ~ R X

~ . : S'* L m T =
:i‘*\ ‘d""' "

-\.-0

L The-goals of ;Eha analysls Q’t}ﬂ: :phymca‘} roblent: - b
2. ¥nown, mathemabncal pt-'opert.les of the phymcaT pmblem and the : I
algonthm N “Ev ol R TR
3. Hardw;‘ue conslderatmna, e.g., the availabllxty of - paralfel process--_ -
iIl S > .‘.- :,:- ‘=
4, \Computer-sclence consuderatlons, e g " data-management reqmre- ) .
ments Sa- e
* 5. Restrictions on computatlon time and expen&e
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" As indicated above, the exact solution is approximated by a function
Uapprox ; Which is expressible in terms of a set of explicitly known {basis)
fUnct.lons by means of a finite set of parameters, which are determined
“in the computation. One brg_ad classification of methods is in terms
of the nature of the basis functions, namely () those involving global
_basis functions having global support and (b) those involving local basis
functions having smail support. Another classification is based on the
extent to which the method is adaptive. Adaptive methods refine and
modify themselyes on the basis of parnally completed computations.

. Of course, these classifications afe not precise, and there are tethods

" possessing the different properties in various degrees. We now turn to a’
] more detailed discussion of the most commonly used discretization proce-
Metaat duT*es

_____...____.____._

T R . %,

4.1.1-Finite Diﬁ‘ete:_lcé's_'"; e
_One of the most frquently used dlscretlzatmri methods is the method
“of finite differences. The central idea is to rep}ace each partial deriva-

- nve oecumng in the differential equation in the underlymg boundary. or
lmtlal-boundary-value problem by an approximating difference quotient.

. For example, the. first-order derivative du(z,y)/3z may be replaced by

y,  theforward difference [ulz + &, y) — u(z,)l/h or the backward difference

- {u(z,¥) - u(z — h,y)|/h, whereas the Laplacian Au = t;. +uyy may be

{ ‘ replaced by the five-point difference’ operator

Lu(zth, y) + u(z, y+ h)+u{z—h, y) +u(:c,y k)~ 4u(z, )

Auz e

" propriate difference quotients JeadsNo & sysbem of. equatlons, called
difference equatlons, for the Iﬁ.lmbEJ'S by, which are to aEprommat,e the
values of the exact solutipn u(a:,y) at the ﬁmt&dlﬁ%mnce mesh points
(7, kR), Gk =0%+1,12,..., where his g smal} positwe number, cﬁilgq the
. mesh parameter._ Nopyni form meshes may be considered as we 1, ‘but,_at
. “considérable comphcat:i kin the form of the d”ﬂ'erence quotlenbs jn tha

IIS

Thls replacement of all derwatwes \Ythe differential equation by ap-
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1. Accuracy of the method; ‘\' ) ' s
) 2. Stability of the method; ' .
I ’ 3. Efficient solvability of the finite-difference equations;

4. Robustness of the method with respect to the input dats (e.g.,
coefficients, forcing functions, meshes); and

5. For nonlinear problems, the separation of legitimate approximate
solutions, which correspond to an exaét solution, from spurious ap-
proximate solutions, which do not correspend to any exact solution.

t

. Finite-difference_methods are an example of the local basis class of

" approximation methods. They can be adaptive. Adaptivity is usually
introduced via adaptive mesh selection: the mesh chosen at any stage in
the computation is based on the previous computations.

Much important work on difference metheds remains to be done, We
mention in particular the construction of effective difference methoeds for
nenlinear problems, in particular for.those problems whose solutions have
shocks.

L4 .
e

* 4.1.2 Variational Methods of Discretization

QWe will now discuss a class of discretization methods based on variational

ormulations of the physical problem under consideration. As noted above,
the problem of calculating the exact solutjgn u i8 infinite dimensional in
the sense that u is only known o priori tGidie in an infinite dimensional

" space, say H. For a linear problem, a variational method of discretization
congists of (a} a finite-dimensional space § C H, called the trial space,
in which the approximate solution is sought,s(b) a finite dimensional test
space V, and (c) a bilinear form B{u,y) defined on HXV. The approximate
golution is then determined by requiring that

Uapprox € s ‘\

) B(;zappm,. ,vi = B(u,v), forallveV

where for vE€V, B(y, v} iscomputable from the data of the problem without
knowing «. Sine S and V" are finite dimensional, %spprox ¢an be calculated
by ‘means of the solution of a system of linear equations if the original
equation is linear. Usually, Tor nonlinear problems, B is nonlinear.in v,
" and the }'egulting system cof equations becomes nonlinear. . ’

TRyl
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The approximate solution depends on the selection of '$,V,.and B.
For any problem there exists a wide variety of variational methods of
discretization, ie., a wide variety of choices for S,V , and B. The rational
selection of 8,V, a.nd B is a central problem.”

Variational methods can be of either the local-basie or global-basis
type. Of those of global-basis type we mention the various versions of the
spectral method and the p version of the finite-element method. Finite-
element methods, considered in more detail below, and coﬂocauon methods
are typically of the local-basis type. We also note that vanatlopal methods

can be adaptive. ‘

Finite-element methods arise if l'or & and V we choose spaces Sh and Vj
of piecewise polynomials of fixed degree. _Bhat is to say, the underlymg
spatial domain for the problem is broken up into small geometric pieces,
called “elements,” whose size is measured by a parameter . The functjons

« in_both S, and V, are then restricted to be polynomials in z and y on

each piece but allowed to be different polynomials on the different pieces.
In designing finite-element methods, i.e., in selecting S, V;, and B, one
atlempts to achieve approximability, stablllty, and systems of equations
that can be solved eﬁ’ecuvely
- Approximability here refers to the ablhty ol' the dhace S to ap-
proximate the unknown solution u. The solutlo_n ¢ is unknown & priors,
and often only the information ¥ € H is available. In such situations
}- Sk has to be selected so that every function. in H can be approximated
sufficiently well-by one in Sy. However, an approximation based on a few
large elements can provide additional information on u, which can be used
in turn to refine those elements. This type of adaptive element selectlon
is especially important for problems with sharﬁly varymg solutions (see
Section 4.2).

In the choice of the bllmear form B one has, in eﬁ’ect, the freedom to
choose a variety of variational principles, many of which have a natural
physical connection with the ongmal probler. For instance, the stan-
dard Ritz method is based on the principle of minimum potent:al energy.
An alternate variational pmnclple is the complementary énergy principle. _
Apprommatlon methods based on this principle are referred to as com-

_ plementary energy or equzhbnbum methods. These methg u!volve 8
constraint that is usually difficult to satisfy. One way to circBmvent this
dlfﬁculty is to treat the constraint by means of a%grange mult:pher This

41.3 Finite—Elemem Methods
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. ES Y well as parabolic equat-xons

L3

leads to the so-called mixed methods,, They appear to be promising for
many important problems and have recently received a large amount of
attention.

4.1.4"Transformation Methods
lf P -

In the transformation or pseudospectral method, the discrete approxima-
tion u is first mapped by a transformation of the form .

Tu= i"‘: a’J¢’J("?-)

T

into the #-dimensional function space of the coefficients, a,. The basis
functions ¢, and the transformation are chosen o that T and T-! are

fast (order of m log m operations) and go that differentiation D is simple
in transform space. The denvat.lve approximation can then be written as

T"‘DT

du o T e
3z ‘ 1'/

r

Some common transforms are based on the fast Fourier transform, where
the @, are trigonometric functions or Chebyshev or Legendre polynomials.. .
Selecting the ¢, as piecgwise polynoniials with compact support, such as
the B-splines, is another good choice. By choosing the transformation
to incorporate some crucial property such as the perfodicity or symmetry
of % one can improve the accuracy of the method for a fixed number of

" basis fuictions. This can sometimes beﬁ be done by choasing the basis

functions close to the elgenfunct.lons of the dlﬁ'erentlal equat.lon

) \ ) "

4.1.5 Semidiscrete Methods Y : '
.. . - .

When solving a partjal differential equation.dne sometimes discretizes with
respect to some but not all of the variab esfor dxample, for the diffusion
equation governing the cooling of a hot e may discretize with respect
to, the space but not the time variable, thereby replacing the original
partia} differential equation by a system of ordinary differential equations?
Such an approximation method is referred to asa semidiscrete method or

as the method of lines. Semidiscrete methods max\? used for, hyperbollc ;

- S L.
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One has, of course, eventually to discretize with respect to the time
variable as well. Semidiscrete methods are based essentially on the view
that very effective time discretization methods are available (in the form of
preprogrammed software packages for the solution of ordinary differential
equations) and that the spatial discretization is the main concern. An
alternative point of view is to consider both discretizations simultaneously.
Such fully discrete methods have been analyzed and tested extensively.

Among important research problems for semidiscrete methods we
mention the problem of adaptive mesh selection for the spatial discretiza-
tion. .

1

4,1.6 Method of Characteristics..

This is a method for hyperénollt'o equations, pa;\tlcularly for those involving
only one space dlmenslon In these equations the solution 8t some point
in space-time depends prlmgrlly on its values along a fixed, finite number

™ of curves {characteristics} going back in time from the given point. The .

approximations to these values are determined from difference equations
that are closely related to the charactenstles of the differential equations.
This method has &' natural generalization to quasi-linear second-order
equations in two independent variables. It i3 especially important for
problems whose solutions have shocks.

1
4

4.2 ADAPTIVE GRID METHODS

-
¥

For reaﬁstic probiems it is rarely feasible to design numerical processes Lhal;‘r
are reliable and accurate at a reasonable cost.and yet that do not utilize
some form of adaptivity. Put simply, most two-dimensional and virtually
all three-dimensional problems are undercomputed without this technique.
This statement will almost certainly remain true affer the next generation
of computers is available. The adaptive approach is to distribute the come
putational eﬂ'ort nonun:aromly, so as to concentrate on the most singular
parts of the solition or the most important parts of the solntlonjmm the
point of view of critical demgn parameters. Corresmndmgly, one must
give less computational effort to the regular or less critical parts of the

solution (also see Section 4.9). At the same time, adaptive approaches . .

may also lead to 8 simplification of the mput data needed for the program
‘ 72 _ o <
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and hence free the user of part of the drudgery typical in preparing such
input and in having to make the many a prior{ decisions required by most
of today’s. programs.

- The goal of adaptwe grid methods is to choose.a grid that is par- -
ticularly refined, or that is aligned or oriented optimally, with respect to
the solution in regions of space and time that gr¢ critical for solution ac-
curacy. Thus adaptive grids utilize local mesh reﬁanent or optimal local
mesh orientation. .

The simplest adaptive grid is a preliminary, al(alytlcally determined
coordinate transformation. For example, in the transformed coordinates
the problem may be approximately mdependent of one variable or other-
wise, simplified. The next strategy is to choose ‘a numerically deter-

" mined coordinate transformation. Typically, in two dimensions the coors,

dinate transformation is obtained by the solution of a subsidiary part.ial ’
differential equation. The resulting grids may be éxpected to give both

"improved mesh refinement and mesh orientation. The method is.some-

what problem dependent and can give rise to discretization errors in the
mapping of solution variables between the various grids.

Lagrangian grids for time-dependent problems are adaptive for
material {nterface singularities, because the grid. points move with the
material particles. Since these well-established methods also develop

. rezoning and mesh entanglement problems, they provide a reservoir of ex-

perience concerning the difficulties associated with other evolving, adaptive
algorithms.
A refined grid can be constructed without recourse to a coordinate

‘transformation. In response to a critical solution pariifneter or solution

error criteria, selected regions of space can be flagged, preferred orienta-’
tions selected and refined subgrids introduced locally. Then, small time
steps are chosen on the finer subgrid, and an interpolation problem must
be so'lved to blend fine and coarse grid solution values. Finally, the con-
struction is recursive, so that three, four,' ete. levels of refinement can be
introduced automatically, in response to some & posteriors error estimate

“on the next coarser grid. Precisely defined, reliable error estimators appear

to be central to the design of effective adaptive procedures.

In the context of finite elements for elliptic problems there is a devel-
oped theory.for o posteriors error estimates (and, hence, for.adaptivity),
which is based on local analysis. For a given mesh made up of elements

‘Ay,...,Ap and with the aid of the correspgndmg app mmmate, solutlon, an

error indicator 7; is computed for ¢ach element A ;. For certain classes of
problems it has been proven that asymptotically the errorg begome optimal
when all-the 5, become equal. This equilibration principle provides the .

basis forthe control of the adaptive process. Iiressence only thoge elements

- o1 NP
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A, are refined for which the error indicators are too large in comparison
with those of the other elements. And elements that are unnecessarily
small are combined with their neighbors. The study of suitable algorithms
for this has only recently begun. For example, some results have been ob-
tained for algorithms based on the assumption that during the refinement
process none of the elements ecould be combjned wlthout increasing the
maximum value of the error indicators. :

In time-dependent problems, differential equatlons can be introduced
for the ever-changing optimal location of the grid nodes, These equations
are then solved simultaneously with the original partigl differential equa-
tion, leading to what are known as moving mesh methods,

Alignment of the grid without refinement is also possible, if fixed
or moving boundaries or interior interfaces are specified as part of the
problem. By alignment (without refinement), a regular grid index structure
can be preserved. Maintaining the grid structure has the advantage tbat jt
potenially allows fast iterative methods, such as fast Fourier transforms,
to be used as part of the solution algorithm.,

Adaptive grid techniques have been applied successfully toa range of
time-independent problems _The newer time-dependent methods need to
be developed to the point where they can be applied. to meaningful two- -
and especially three-dimensional problems®and compared with alternative
methods. An important question requiring further attention is the con.
structjon of efficient, computable & posteriori error estimates for realistic
classes of problems. Specifically, even for steady-state problems, there is
the question of the validity of the equilibration principle mentioned above
as well as the design and analysis of suitable adaptive control laws to
. implement this principle., This latter problem may require examination
and incorporation of results in such fields as automatic control theory,
artificial intelligence, and lesriing processes. It also raises the problem
of the choice of appropriate refinement techniques that’ produce meshes
with desirable properties. Last but not least there is the question of data
management, whlch must be handled successfully to control the vastly in-,
creased algonthmlc complexity assoclated with adaptwnty and to achieve
computatlonal efficiency.

- -




4, 3 METHODS F‘QR SOLVING DISCRET DIFFERENTIAL
EQUATIONS . ]‘

. ,' . e ?
Finite-difference and finite-element discretizations of partial differential
equations usually .give rise to large systems of equations in which each
. unknown is coupled to only a few of the other unknowns. Systems with
" tens or hundreds of thousands of equations are relatively common. For

time-dependent problems these systems arise.from the use of implicit
time discretizations. For sufficiently fine grids, the numerical solution of
these systems consumes a major part. of the computer tnme for an entire
. snmulat.wn
Most nonlinear systems are solved by some form of iterative method
based on linearization, such as Newton's method. At each step, these
methods result in large sparse linear systems. In many cases, iterative
methods converge only if the initial guess is sufficiently close to the solu-
-tion, A
’ There are two basu: approaches to solving large sparse linear systems
of equat.lons dlrecﬁ“sparse matrix methods (i.e., some form of Gaunssian
elimination that takes advantage of the location of most of the zeros)
and jterstive methods, where the sparsity makes each iteration relatively
inexpensive. No method is best for all problems. For many problems

a combination of methods is attractwe Usually this takes the form of a.

block iterative scheme using a direct methed to solve the su‘bsystems whose
diagonal blocks are matrices. Combination mgthod‘s aYe of particular
importance for the solution of linear systems ans“mg from coupled systems
of partial differential equatwns

" Direct methods are relat.lvely well underabood today, and a number

of excellent mplementatlons of them exist for serial ‘computers. Direct .

methods vary in the extent to which they take zeros into account. The
simplest, nontrivial approach is band elimination, which takes account
only of those zeros occumng outside the band determined by the extreme
nongeros of the matrix. The most complex approach is general sparse
elimination in which ail the entries that remain zero during the thma.-
tion "are taken into account. For systenis that do not requu'e “pivoting
(€., those havilig symmetric, positive deﬁmte matrices) t.here is 8 sym-

bohc preprocessing phase in whieh the Jocation of these zer0 Qnt.nes i8
_calculated. There exist good techniques (the nested dwsectmn ordering
and the mjnimum degree ordering).for atranging the unknowns and-the,
“equations so as to minimize the zero fill-in during t=:hinmat.ionH For mod el
problems it has been shown that the nested digsection ordering provides
asymptotically optimal results with respect to work and storage.” The




v T / :

3 . .
minimum degree algerithm is a valuable heuristic approach that is com-
petitive in practice but that has defied analysis. For systems that require
pivbting for numericel stability one cannot compute the zero structure a
priort. Moreover, the ordering of the unknowns and equatlons to minimize

. zero fill-in will usually be significantly altered.

Some of the strong points of direct methods_’are as follows: (1) They
provide an exact answer (modulo round-off error) to the linear system with
a fixed number of operations independent of the system’s condition num-
ber. Most production structural analysis packages such as NASTRAN use
some form of direct method, even for three-dimensional problems. In these

applications {many ofwhlch are based gn fourth-order elliptic problems) .

it is necessary to use higher-order precigion because of conditioning prob-
lems, (2) For problems with two dependent spatial variablgs, their execu-
tion time is often shorter than the execution time for iterative methods,
especially for problem3 of moderate size, Some of theu' principal disad-

vantages are the following: (‘1) they reqmre considerably more storage than

iterative methods, even for two dimensidns; (2) they will almost always be
noncompetitive with iterative methods fox three-dimensional problems in
terms of running time; and (3) except for the simpler ‘methods such as

bdnd elimination (and to a legser extent profile or envelope ellmmatlcin) L. |
they do not vectorize well. In fact, owing to the necessary indirect ad-

dressmg involved, there are as yet no efficient implementations of general
sparée direct matrix methods for the CRAY-1 or CDC CYBER- 205 super-
computers
Except for structural problems, iterative methods are commoily used.
Classicel iterative methods, such s succegsive overrelaxation, Chebyshev
semi-terative methods, and such newer methods as the preconditioned
‘con]ugate gradient method, are fairly well understood for syfametric, posi-
tive defiflte systems, and they are easy to implement. However, the situa-
tion is not so bright for nonsymmetric or indefinite systems, though i in
practice classical iterative methods may, converge rapidly with a clever
choice of the jteration pa:ameters Nonsymmetric. ayst:ems with indefinite

»

symmetric parts are espegially difficult to solve, and no satisfactory general . _.

algorithms are known at this time. Such problems arise in the simulation
of secondary and tertiary thermal recovery techniques for petroleum reser-

" voirs {see Section 2.6).

Some of the prmcipal advr;ntages of iterative methods are the l‘ollow-

ing:
v " . L *
1. They tend to requwe mlmnml storage (proportlonal to the number '
of unknowns); . . S '
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2. They are reasonably fast for a wide range of problems. Moreover,

the number of iterations requifed is independent of the number of space

dimensions in the underlying paMial differentisl equation (but not of their

orgler, or of the mesh size); . .
" 3. They can take advantage of good initial guesses to the solution, es

would be available in time-dependent or nonlinear problems; and

4. Many of them vectorize reasonably well on supercomputers.

Some of their disa.dvantages follow:

1. Mathematically rigorous stopping criteria may be difficalt to for-
mulate, eg., for linear systems with matrices.that are not symmetnc
positive, definite; "=

2. Many of the methods require a selection of iteration parameters,
and the performance of the methods depends critically on such a selection
{this difficulty is being overcome somewhat by the relatively new adaptive
methods and the preconditioned conjugate gradient-type methods),

3. The interaction between linearization and iteration is not well
und®rstood, especially for discretizations of coupled systems of partlal )
differentisl eqqations; and

4. Nonsymmetnc or indeﬁmt»e prob!ems may csuse grea.t dlﬂicult.les
for iterative’ methods

+

The relatively new multigrid iterative method combines the well-
understood behavior of a given iterative technique with the fact that an
underlying dlﬂ‘erent.lal equation is being solved approximately. It alter-. .
nates iterating,. toward the differentisl equation’s solution, on fine and
coarser subgrids of the spatial network, with the goal of performing no’

_ more computatlonal work on the finer (bence expensive),grids than is ab-’

solubely necessary In} many cases of practical interest, such as in neutron
“diffudlon in complex environments, the technique yields sufficiently ac-

" curate solutions to the equations.in.a eompl.itatlonal time proportional to™

the number of unknowns. This has been a long-sought-for goal in ¢he
approximation.of elliptic equations in more than one space dimension. As )
an iterative method it also hasa natural extenswn to nonlinear equalions;

~and its loglcal structure, together with. the already necessary calculation

‘of residusl errors, points toward the incorporatmn of adaptlvxty i‘ or the

nestmg spatial grlds _ . . . L .
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tions in science and engineering where the equation under consideration

14 CONTINUATION AND HOMOTOPY METHODS

N h dad

For more than a centu:y the so-called continuation principle has proved
to be an important tool in mathematical theory. For example, early uses
date back at least 100 years to H. A. Schwarz and his work on conformat
mappings; then, in the early part of this ac:&ﬁry, J. Hadamard and M.
Levy applied these techniques in connection with the inversion of nonlinear
mappings, and it is also a basic tool in J. Leray.and J. Schauder's work on
differential equations. But it was essentially. only in the early 1950s, with
the advent of automatic computing, that continuation approaches began
to be used in numerical applications. Since then they have grown inte.gn
extremely powerful Lechmque for the numerical solution of wide classes of
‘nonlinear problemns, N

One of the problems to which continuation techniques applied
concerns the solution of a nonlinear equation F(z)} = 0 in some space
X. In order to compute a specific solution z* € X a possible approach is
to imbed the equation into a family of equations H(z,£) =0, 0 < tf 1,
for which there exists a computable solution path z = z{£), 0 <t < &, in
X beginning at a known point £{0) and ending at the desired solution .
z(1} = z*. In other words, one considers a family of smoothly changing
problems, the final problem being the original problem in question and the
mlglai problem being one whose solution is easily determined. Use of the
continuation, therefore, requires an ability to solv@& sequence of problems ~
wherr the solutlons to nearby problems are known. | hw)

A related, but conceptually distinct, problem arises in many app

always includes a number of physically relevant, intrinsi¢ parameters. In _
other words, the equation has the generzc form F(z,p) = 0, where z belongs
to some state spage X and p varies in a parameter space P. In this setting
it is rarely of interest to=determine only a few specific. solutions. Instead,
the requirement is t6 follow paths on the solution manifold {(z,p) € Xx
P; F(z,p) =0} in the space X' X P of all state snd parameter variabies and,
thereby to detect specific features of the maml'old that signify.a change of
behavior of. the system under study.. .
For the first of these problems, namely the computation of a speclﬁc
solution ol some question, two distinct continuation technigues a:eravnil-
able.’ The first involves the case When the path of solutions to the family
is smooth, which in turn allows its representation as a solution of a .
differential equation. The second approach is based on homological rather
than homotopic concepts and makes use of a numerical form of a result in
algebraic topology (Sperner’s lemma). This approsch hes been reformu-
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lated and is now consldered prinupall}r in the form of a]gomhms mmhqng
piecewise-linear solution paths. Much of the rg;eftgresearch in this area .
concerns these piecewise-linear continuation method$ and their application v
d fixted-point problems in economics optimization and game theory. ~ , -

. Continuation methods for following paths on the solution-manifold of .
parametrized equations developed mainly ‘in structural engineering under
the namhe of imeremental methods. Applications to other areas, as, for .

" example, to computational fiuid_ dynamics and to phase transitions in -
“statistical physics have only begun to appear relatively recently. For a
numerical analysis of 4 given solution, manifold ¢ontjnuation methods have N
to be considered,in a broader sense as a collection of numerical procedures P
for complpting a variety of t@_s;ks, int_z'iygiing t_he\foll_owing: .
- - . e

__:,—‘ - . - . " '..

o L‘ Follow numqmally any curve on the mamfold Speclﬁesl by an ta . d’

pnon given copibination of parametéer values with, one degree of freedor. |

.. 2.°0n any such curve determine the exact locaf.zon of target pmnts

,'_ ~where'd giveis state variable has & specified valite, . 5 I
A - "B It’desxred at &nyﬁuc]t ﬁargetpomtéyitch tothe t.raceqfa dlﬂ'erent .
4= solutao “path,_ e o
='_",' " 47 Ok any S\Eh cum 1dentafy and comput,e ;he mmal points where .

“Stablllty miay be.iost, . e

. 5. From any one of the cntical points follow a path in the. critlcal PR

. boundaty. _Tn.econtrast to_the case under 1, such pathe are ty:plc:ﬁ] '

o speclﬁetfﬁy ct.lbmahons of the p&rameﬁers ith:two deg;rees of freedom

;-

L
P (T

together v({th the ‘xmplxczt necgnrement {all pomts oi‘ the path arein o
- the erifical bo ¢ A
. 6.0n any’ “aolutton paﬂl sle‘séumne'ﬂle I'ocatlon of blfmcanon pomxs e

- aad thep&ths mt}ersectlng-atﬁthat,pmnt __',. AN “_-.__:‘: AT L B
> ' Fbr speclﬁc spphc&hons addmona.l taska may arraq FO; matanee 12 ,.,‘. - Yetaas
" ! the pgrametrized equation repx:psents the equihbnum‘t;quatmn ofa gys e
of differential equations then we may wish to locate Hopf bifurcation. Points . o ‘\f’.‘h
-“on 8 particular_solution Fath where periodie. 5ojuhons of ‘the. djma:mcaL Cea e
sy‘.;tembraaoh oﬂ‘from the statlcequ‘_ﬂ,.ib_“h' < \_“-_\ e o T 3‘_\;
In recent years much research Lhas been, cfgvot&d to these various, gsks,\ L

_ but there remain many open q,uestxona esp,ec.la}ly in_ connection with the.

miore speclalized tasks, such as'the. location. Qr_ilopf bxfurcatw}x points. . ..
Morecver, library- guah@y pachgea for the bgzum: tﬁk&.‘f;& afe, stﬂl under ey

" @evelopient, and the sofhvargjs by fan'nqt §0 advanced. yanced 8, say, in ' the case
qf gofim-are fbr tlie solutmn of ordihary diﬁ%renua[_eqnstmns Ebr Qpec,iﬁc. )




'applications,’as, for example, to fluid-dynamic prbblems or to the case
of sbructural problema,mvolvmg plastlc:ty, , and vxscoelast:c effects,

45 OPTIM[_ZATION METHODS e

Optnmzahon problems qecur in gl areas of mence, engineering,
. .economics, and applied statistics, They, Tnay mvolve some Jeast-squares

. appmmnatlon of observed data,ﬁttmg of parameters occumng in a math-

... - . ematical model oh the basis of exparunenbal observations, optimization of k
:._l_ the desxgn§ g engmeenng structure, optimal’ control of an engmwﬁ
- L SYStempor %elmg of economic or. busmes gystems, These are only a 4

__'_._., (e few example es Ql at.do not evesr-begin to cover ﬁle numerous types of op-
- .- timization. problems—‘thht.,anse in-practice. ~ A
e ...  Broadly &peikm%'iﬂ all of these problems a rea} functmn qsually
.. - xalled the objectire e Taniction, i3 to be minimized or maximized over some .
—- ] s ;Quatmlnt set i in agiven finite- or mﬁmte-dlmenswna.l space. The problems
=T @ ¢t tonsiderably depending on ‘the mathematical characteristics
Y ﬁve-{ﬁhmo ana the constraints, the dimension of the Spnce e
"am:gun of eq:glp Te mformatlon that is acvaﬂnble, and the reqph-ements
128 ons.’ PN
R }\ ‘oot “overview, of the research problems noncemmg computa- .-
tlol:ia.l metheds for such optimization problema jn ﬁmbe-dlmens},ona.l spages . |
.has J:een:gwen it “the report Program’ Divections for Computatzona?’ '..___',
.- Mathematics, Jupe 979, prepazed for the  Applied Mathemmiatical Sciences  “& ]
.5~ Résgarth Program. of the. U.S. Departmens. of Energy (edited by R. E._
:'; mﬁdfeston,&mﬁg Natlonal Labomtpnes) Thls reporg 1den£1ﬁbd +he fol-

-\- o
aa A
- 5

il

" ,1\_- -

S
‘-——-...—..‘____‘_n
‘:.

fer L .ﬁnﬁlys:a .an?,companaomo teehmgues‘f_?r dhaimg mth nonlmear
nequality constiaiits. = 37T SR :
= q_ﬁonauucﬁorr of afg_énth!qs 3‘91‘ emumnmmts vyherg computer 7’"
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peasy 3. Produetion of hlghﬁtzﬂi!by software and-other software—dlrected

’\

]Jevelopmm of a]gonthms and_softwam for pmbfems m

Wlllch
'T -




""‘!-

s, Tenhmquea 0. asq‘st i ﬁndmg global {‘gr specnﬁed{ i,
6. Largescale lines. pmgramg wzth spemai structure, g, é‘:mrcagp .
and block:angular. s o A S i

e “Methods:Tor non&:ﬁ'eren;iabie'optumzauon:.' G ;
; 8 Techniqtges for: sele,cted‘ponhnehr’ estimation’ pmbieﬂm,_snéh a&*_ . o

* separable or constmmed least mares,mé data i‘iﬂ:xng in.special normm. . o
9. Investigativn.of the eonnect:ou tstweamﬁxed 'pmni mathoda and_ L _
a.lt.ernatwg methods for Solving) nonﬁ _@_ua R
" 10. Further study,of s\el,ec;&qd aspecta of lineare eomtraiged—ﬂ@le:gg,' o

,'such as special types of sonstraintq applxca&mn-(}l'm;ugm gmﬂre:f& "_.‘h_‘

_ techniques, the merits of Vmopa aoﬁve set, sj:ratégc{s _and_the influenc

. er scaimg N &

T,he rgport does ot addrqss mﬁni@e—ﬁfn\m%kohai . eb}‘ema,‘ fqrex
ample, problems‘in gontrol theory, of. the galculus of Ym:;atnbﬁs. Herethe " .
mathematical p:oblems ‘often. beeatne fonmdable, an& ‘special t.eghmques ”
are nteded i most ap;)hqauons For'the Qompup‘atlonai sofution, theprn- .7~ "7
¢ipal approach a‘ppj{es ﬁmte-almenmhnél' o_phtnl:zatlon methpc{g fa., adra-_ AR
cretized form of the . prqblem,. Tl'us' m turd, rqises Qhe “angal: cﬁmsth;m i
) concernmg the gonvm:genog an@ qua‘hty of the agpmxmaho,ua

!.-\-.-

. ers Gmrwﬂ&:om G

Many physxcal Wm .(-)I'  their. bi.w‘tjxahc‘a].model’é, mmlve a'f umber )
T of discrete o'bjects tha{t are %ne yfdd’ucem oe-Bsers of | certain data"o*r_ _:
", commpdities and thet insuin sve inbe:connggtedhglmlq thatean ;r;ms mit. . "

these ifems fior ome‘q_f The “obiecls 47 gﬁd{hene&g * The dnderlynie ,::
N msthanancalsl.lzue}u{e:sﬁ_}ena ph,con oL B colection gﬁfm&ig_@ 2
T connectediy B’ ‘a braichen % s 4 e ratesni

" The modeh“n'g_nfm %iﬁi;&es qf phys:@ksxﬁﬁerqamfams 0I~g.;rapha
18 J:ather natuysl, for | exmple, 4 in. gi;g‘cm of cﬂ!ﬁm;mfcgtlbﬂ ar,t;cmspon
Stydrks wiitte 1hie Dyepthiss Fepreshit, sty power Hnts, foads, air . "L
ne routed, o ater plped, it Gnespondingly, fhe-verbices arqpower: A
', generation stafians, conimintics, afriinetenninalicon witer restrs

oﬂleg casey, the, mne@bﬂ hétﬂeen*n*ﬁgqhgufga #tﬁblﬁm .
theoretica), mmrﬁﬁaho& %’Ms’quq,ﬁrrmpﬁmﬁe nge, of & : . =

" discretization of,a ]ngml&:lj 'bﬁun.glal?’;y. e p:pﬁl,ém o 8 glven‘ grid ot —
bhe represéntatl e d hﬂ'da).a.;f_rg.a qpmpu. ‘13,.. z ,. "
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(‘ormspondmg to the wlde range ol‘ apphca.tlons, the l‘ormrs of graph L
problems differ widely. For certain petwork models mterest may center
" on the connectivity properties of the graph, that i is, on the determmatmn‘ .
of whether a particular commosty can. be h;ansported between specific .|
verticdS. Then questions arise aboa.L t the ma.xlmum posslble flow that can .
be accommodated under pa.mcular coﬁ}l.ramts Theueproblems in “trp are
related to the so-called vxdneramlty and rehabilfty problems for networks.
On the other’ hand‘, il tlme enters mto consl.derauon then questlons of
waiting time and of best rqutmg may.anse These are onfy a.few of 1 many
types of such problems - —‘. v -.~-‘ IR - ~
- Frem a comput.atxona] wewpoml. these vanous problems ha:ze stl.mu- "
- lated the development of numerous comb;nabonal and grapl;,theoretleai .al~ - . ...
. gorlthms But there remain many open resca.rsh_qnestlons, eSpecially” when
it comes to the productmn of generaI robust software and the avallab;llty,
of algorithms for problems.involving large graphs. AT O
Graph-theogetical Tormiulations are also finding increasing appﬁcatlon )
in connection with tfre numerical soiut(en ‘of problems that do not have an
inherent graph-¢ -structure, O'ne\such clasg of_problems concerns the com- "
putational handlmg ol‘ large sparse fnatrices. Many of the algorlthms used
here perform a sqquence ol steps that transform me matrix into succes-
sively simpler matrices of'say, a more nearlyhuppett trigngular or dlagonal -
type. These transformations achleve their hifn, by. mtroBucmg zeros in . q:,'
plaece of ongmally nonzero matrix elements. But, as an unavoidable, by-~
product Lhey also introduce nonzero ele;nents 1mp]a where the ongmal
matrix elements were 2€r0. Thus, ip order to ex Q!t the sparsn)( sﬁruc- s
ture of the mairix one must provlde &Hﬁt& at.ruct that either, a.llocates N
from the o\lsgt space for all :the filkin ?iugmg c‘omputatloh or that. ,.,"._
.allows lor a dynamlcal allocatlon_nf space | for Yhe fl~in;when it oceuts, In..
both cases, gmbh-theorettcal approacheg. form ﬂkghpals for tha deslgn of -
.desirable aigﬂﬁthins o5 TS EN
An exampie of tire use ef.a static data structure 15 thg cass ?fhena.row
and colunin llepreseni.atlbn Lan *bring the matnx into. banded fqm xqth N
small bandwidth. This'is frequently the casqof theiqear 3yst.ems a‘nsmg : '_
in the finite-element discretigation of elhplnc boundary vaiup problemj;
and the corresponding bandwidth optimization foutines are \mde'ly uged .
in practice !On the other hand, il a dynamic storage structure s used, thell .
special care has'to be taken i in the design of pivoting st{ateg:es for, reducmg
. flkin while at the same time mamtammg numerical stability. _ Varmus
sparse matrix packages hiye been déveloped for this purpose. They are”,
typoially rather largg and complex. pleces of éoftwa.re But the ﬁeld is stlll
tﬂler active deveiopmem anitl;exe rema\m many open research questlons
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In particular, much still needs to be done on the interrelation between °
sparse matrix algorithms and special-purpose computer architectures.

In recent years graph-theoretical approaches have also found increas®
ing application in the design of algorithms for the numerical solution of
problems of mathematical physics, in particular, of fluid dynamics. For ex-
ample, it has been observed that certain natural finite-difference discretiza-
tions of the equations of viscous, incompressible flow admit interpretations
« a8 gystems defining flows on certain associated networks. Typically, the

network nodes correspond to the idealized control volumes represented by
the mesh points of the finite-differencé equations, whereas the network
arcs correspond to the paths on which one may identify the discrete finite-
_difference mass fluxes. Such observations can lead to remarksble savings _
in computing costs because they open the way to a priori transformations
" .of the original (discretized) system of equations to completely equivalent
_ .. systems in substantially fewer varisbles. For flow problems in two and
~ . three space dimensions the reduction factors are nominally 1/3 and 1/2,
respechvely In graph- -theoretical terms this approach corresponds to the
-transformatlon of the Maxwell-node equations to the Maxwéil-mesh equa-
t@ﬂs, bng used i in electrical-circuit problems. &
“The key re regpirement in the application of network t.echmques to fluid-
" ﬂow problems is that the dlscmuzed momentum and continuity equations
p‘e inteipretable as “Ohm’s laws” and “Kirchhofi-node laws” on an as-
mat@d‘natwor!c This requirement permits great generality in the actual
form 01' these laws and easily accommodates both implicit time-dependent
e Qll g8 nonL{lear abeady~state difference forms of the Navier-Stokes
\ equat.mns\ N
'l is'even pe 31b1¢ to ext.end the network approach o compresable flow
p\-q‘ léms Here. i h¢.new idea appears to be the introduction of pseudo-
ﬁo\-(s Ynto the node Jew.and the identification of corresponding pseudo-
s chg.tacler;xshqq o augl{;eut the. Ohm s laws obtained from the momentum
- g‘zquatxons,.,, the nonstationary case _this produces numerical schemes |
‘. vh ng staf:ﬂlty 13 mﬂapendent of ) coustic velocities.
- NN The .e{ltire Py is s st }nd’er ﬁctl\y research devebpment _For ex-
1»«@. amp\' tu%m:e eﬂ:gljs )};.bﬂrfg, ﬁs species flow probleyos undet the
\,ﬂk‘_ ryiey )f' ¥ /k} eory. Th 1&;11 dea,,as #h important special case,_
\ ph’ } pr/olﬂem /ﬂla/are & centr rcern in the design of reliable _
2 and tfe saf,gty amylysi
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4.7 SPLITTING METHODS AND DEFECT CORRECTIONS

-

Splitting is a means to separate a large intractable problem into a sequence
of smaller, or at least more easily solved, problems. These methods are
invoked to reducé significantly the computational effort (time and memory)
needed to solve a problem compared with solving it directly. Often a
form of splitting is required to make solution practical, and some cases
even tractable. Various forms of splitting are common in engineering and
scientific applications, even if they are not always recognized as such.

Defect correction is a widely used, if often unlabeled technique of
splitting. It presumes that one wants to solve a given hard problem, that
cne has in hand a guess at its solution, and that one also has a nearby
problem that can be sclved easily. It corrects the guess by selving the
easier problem with special data computed from the guess.

To illustrate the method, suppose that after discretization it is neces-
“sary to solve a finite-dimensional system of equations of the form

% v)—b= 0 . I )
" where Ais a noplinear operator, b is a known vector, and v is the solution.
Often v is difficult to obtain directly, but the Yesidual errof .
) % = Alw) -? (
for an approxlmate solutlon w is easy to evaluate. If there i is a related
system’
Pw)~-b=0 -

that approximates the original ystem and that is easier to solve, the defect
correction algorithm may be appropriate. Given an estimate v, near a
root v of the original system, we can expand the original equatlon in

a Taylor series to get .

0= A(vn) -+ P(vm-u) P(Un) (JP‘JA)(%d-I“"n)*'Q(ez)

where € = vnﬂ ~ . The defect correctlon lbemt.on is any approxlmatlon
to the. above equat.xon The simplest such lberahon is

_.:@ | P(vm-l) p(u,.) A+t ._"

. "‘-Thns iteration will convelzge lf vn and Jp (the Jaeoblan of ﬁ) are,near
enough 1o v,m and; JA, respectwely . }; f e
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One of the most common splitting algerithms in engineering apphca-
tions is the alternating difection implicit (ADI) method. Here, the nodel
problem is a partial differential equation”system having two or more in-
dependent spatial coordinates. Its direct solution requires too much com-
puter storage and time to be tractahle, Using an ADI splitting, the prob-
lem is reduced to a manageable sequence of one-dimensional problems.
In terms of the defect corrections, the system P is the sequence of one-
dimensional prohlems that is much % easier to solve, yet that closely ap-
proximates the original system. .+~

Other forms of splitting alsc arise. For example, in certain systems of
partia} differential equations some of the equations are weakly coupled to
the others. In these cases, solving the equations sequentially (rather than
coupled) can result in significant savings. Similarly, in some comhustion
prohlems, considerahle savings are realized through operator splitting al-
gorithms in which the chemical rate terms are handled separately from the
speties transport terms. These methods are equwalent to matrix sphttmgs
of the Jacokian of the syst»Bm

Analysis of spllttmg methods ig important because the methods of-ten
do not converge. We must be concerned-about accuracy and convergence
of the factored system. Even though each iteration may be fast, we
must have some idea about the overall convergence rates and about any
degradation in accuracy resulting from the split. Analysi® will also likely
lead to the identification of matrix properties that suggest,a beneficial
splitting that would not be apparent from physical reasoning. Splitting v

. _can be considered as either a splitting of the original equations or as an '
approxlmate factorization of the iteration matrix. The former is the most
intuitive, and the one in whlch physical insight is valuable. However, the
latter is prohably thé one more amenable to analysis. .

\ .
"4,8 MONTE CARLO TECHNIQUES -

-

Mathematlcal aolutwn methods can he broken into two broad classes, -
Monte Carlo methods and deterministic methods, depending on whether
chance events are included in the method. All scientists are familiar
with deterministic methods hut most have little familiatity with Ménte
Carlo. methods. Deterministic methods do not depend on ‘chance, and
calculahlons performed using the sime mput data gnd the same computer

_code will provide exactly the same results, Monte Carlo calculat.lpns using ’
- the same mput. data ai‘ld t.he same computer code will provlde diﬁ'erent, . ﬁ




a probability density p(z) is
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results, depending on what chance events occur. In this section we discuss
what Monte Carlo methods are and how they might be improved.

. The Monte Carlo method estimates averages on a probability model.
Any quantity that can be expressed as an average value can be calculated
by Monte Carlo techniques. Sometimes a probability model is obvious
from the problem itself. For example, the probability that tossing three
fair coins and obtaining a desited outeome [for example two heads (H) and
one tail (T)) is easily estimated by Monte Carlo methods. The probability
model consists of assigning a probability of § to an H and a probability
of 4 to a T on each toss and assigning a score of 1 to a desired outcome
(HHT, HTH, THH) and a score of 0 to any other outcome (HHH, TTT,
THT, HTT, TTH). The computer has a random number generator that
generates random numbers uniformly on the unit interval (0,1). A uniform
distribution means that any random number £ is equally likely to have any
value between 0 and 1. Thus a ¢oin toss can be simulated on a computer
by: .

"H occurs if § <
T occurs if & »

"To toss three coins the computer uses three random numbers &, &,
and &£3. A typicdl set of tosses might be & = 0.7 (T), & = 0.1 (H), and
€3 = 0.4 (H), scoring 1. The probability of obtaining two heads and one
tail is (Approximately) the average score (3) after many!’et.s: of computer
tosses, - . -
Sometimes a probability.model is not immediately apparent, but after
a little thought the desired calculation can often bé expressed as the
estimation of an average valqe. For example, the integral

A

r=-1—f:f(z)dz .

b—a

can be thought of as the average value of f(z) on the interval {a, I'))."'I'o o
see this, note that by definition-the average value of f(z) with respect to

3 .,

b= [ fowas.

Thus [ is the average value of f(z) with respect, to the probability density .

p(z).= 1/(b ~ a). Here p(z) is a uniform probability density on (e,b), and

sk - - -
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z values can be samples uniformly on (e,5) ‘by setting
Ty = af(b-a)&,

whereupon ) .

S LA )
I = e— Y
N eL P

where [ is the estimate of /.

There are many applications for the Monte Carlo technique, but the
application to neutron and photon transport has probably consumed more
computer time than all other applications combined. Because of this, and
because neutron and photon transport problems have a natural probability .
model, the remaining discussion will pertain to neutron or photon trans-

‘port problems. Furthermore, because neutron and photon transport are

similar, the remaining discussion will refer to particle transport. .
Particle flow in nature is a random process. (3ge cannot say exactly -

" what will happen to an individual particle. One can only say what the

" probabilities are that various events occur. For example, a particle travel- ) .

ing through matter has a certain probability to collide per unit distance;
the actual distance between collisions is unlmown, but the probability of
t.ravelmg a distance { without coHisions is known. Smularly the nuclide

. -

" is always selected {using the random number generator) from a number of -

a particle will collide with is not known, but the probablhty of colhthng ﬁ

with the nuclide 13 known.
Fhe simplest Monte Carlo model for partlcle transport problems uses
the natura! probabilities.that various events cceur for the probab:ht.y
model in essentially the same way as tt\e coin toss example. That is,
pa[tlcles are followed from event to event in a computer, and the next event
possible next events :iccordmg to the natural event probabilities. This
type of model is called the analog Monte Carlo model because it is dlrect.ly ‘

" .- analogous to.the naturally occurring transpo .

The analog Monte Carlo model works well when a sngmﬁcant. frac-

_ _];fon of the particles contributes to r,heﬁest.lmat.e of the average. Thigis .
. analogous to having a significant fraction of the particles in the physical .
gituation entering a detector. There are niany problems for which the i ‘|

fraction of particles contribution (scoring) is very small, less than 105,
For these problems, analog Monte Carlo fails becsuse f?\(\ ifany, of the »
particles contribute, and the statlst.lcal unce:(?zta( in th ns;ver is mlac- .

-

-, ceptable . . ' . 1, E

A.lthough the analog Monte Carlo mode] is probsbly the simplest .

' concept.ual probability model, there a}'e an 1nﬁ1;'nte number of probablht,y ¢ -
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models for particle transport .that will estimate the same average value
as the analog Monte Carlo model. These’other techniques ave known
" as nona‘naiog Monte Carlo models, and they are useful because although’
thé average value remasins unchanged, the variance (uricertainty) of the
estimate can often be made much smaller than the varjance for the ané'l’?‘g
estimate. Practically this means that problems that would be lmposalble

to solve in days of computer_time can be solved in minutes of eomputer

time,

A nonanalog Mont€ Carlo model attempts to follow “interesting” par-
ticles more often than noninteresting perticles. An “interesting” particle,
by definition, is a particle that contributes a large amount to the quantity
(or quantities) that needs to be estimated. There are many nonanalog
techniques, and they, ail are meant to increase thé odds that a particle
stores {contributés). T ensure that the average score is'the same in the
nonanalog game as in the analog game, the score is modified to remove
the effect of biasing (changing} the natural odds. Thus, if a particle is
artificially made g times as likely to execute a given random walk, then
the particle’s score is weighted by (that is, multiplied by) 1 /a. The average
score is thus preserved because the average score is the sum, gwpr sl ran-

. dom walks, of the probability of a random walk and the score due to that ¥

random walk. The trick in obtaining low-variance solutions is to choose ¢'s,
" Such thut all random watks contribute the same score, in fact the i average
score. This then would be a zero-variance: solution.

It is always possible for any (linear) partitle transport problem to
select ¢'s for each random walk such that every particle’s score.is the
average score; that is, a zero-variance solution. The hooker js, of course
that the perfect ¢’s are not known, thus a zero-variance solution is not_
practneal However, people have often been successful enough in guessing
good g's, thht is hiasing the odds, to improve the caleulational efficiency
by setrerai orders of magnitude. This is.typically done iteratively with a
person making several short Monte Carlo eomputer runs (calculations} and
using information gained on each run to bétter guess how to bias the next
run. When the person:s guesses no izger improve the caleulation, a long
run is done with the optlma] biasiny ed in the short runs. .

Can the computer learn to optimize the biasing?- The colppyter i,
after ail, supplying the information. that the person uses to learn. In
the-past decada’a number of computer learning tkchnjques hate been

. tested. - Thus far it has proven impossible for a computer to- take an
: arbitrary transport problem and, without human aid, optimize the bmslng
. However, two things*are worthy of note. First, computer learning aided

by human judgment appears to be su‘bstantmily better in many cases than
human learning afone. ThJs typlcally works by havmg the computer mform

ey
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-the person how the computer would bias the subsequent run and having
the person selectively alter the computer's suggestions according to the
person’s intuition. Second, the amount of human judgment required is
decreasing. The day may come when the computer needs tio human aid.
Once human aid is no longer needed, the computfeqécan learn to

adjust its own blamng particle, as the caleulation proceeds. An interesting
'lmpllcatlon of an’ adaptive Monte Carlo ﬁchmque is that the commeon
central limit theorem of statisties that would constrain the accuracy of
the caleulation to decrease as the square root gf.ghe number of particles
followed no longer applics. The common centr limit theorem applies
only when each particle's random walk is independent of all others and
the sampling process is identical for all particles. Congequently, the rate

* of convergefice may be more rapid. Although some limited statistical
theories exist for dependent random variables, it has not been investigated
whether these theories profitably be applied to Monte Carlo particle
transport problems. T # is uncertain how fast an adaptive Monte
"Carlo calculation is converging or indeed what the maximum convergence
rate for a good learning process might be. Empirical evidence shows that
the conyergence can be substantially faster than the Square goot of the °
number 3T particles. In light of this, Monte Carlo methods can be expected
to become more competitive with debennlmstlc calculations.

’ L

4.9 PROBLEM-DEPENDENT METHODS . e

. A variety of adaptive methods have a common goal: to overcome the
computer size and grid resolution limitations, which-are especially severe
in singular problems, by use of computatlonal elements that fit or model
the singularity more directly. In this way, it may be possible to incorporate

into the solution algorithm considerable analjtic information beyond that .

provided by the equations themselves, This theme oceurs in many aspects
of numerical analysis: In the finite-element method, one- may choose
elements that include any singularities i in the solution being computed (see
Section 3.3). Grid adaptivity (‘see Section ¥, 2) i8 also problem dependent.
.Here we discuss examples of somewhat more special methods. Of necessity
they.apply only .to classes of problems that possegs rélated singularities. .
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491 'f‘he Riemann Problem and Nonlinear Wave ;\iodes

* The Riemann problem for a nonlnesar hy perbolic system of consemation
laws 15 the Cauchy problem in one space dimenston for data that sre
everywhere constant except for a single jump discontinuity at the orgin.
The solution of the Riemann problem prosvides a resolution of this discoh-
tinuly mto the nonlinear modes. or waves. which propagate coherently
m time. Ths 1dealized problem can be thought of as 'an approximate
description of a higher-dimensional flow field.espécially in the neighbor-
hood of a discontinwity hypersurface. This point of view has led to a num- .
ber of improved ﬁmbe—dii'ferencegschqmes. which attempt to determune the
various nonlinear wave modes at each point in space and time and to ad-
Just the diffetencing of the differential equations to take advantag? of this
knowiedge. This adaptivity is to the Structure of state space. in contrast
to the coordinate space adaptivity discussed in Section 4.2.

L]

-

4.9.2 Front Tracking . . -

[N
L]

Front tracking is a combination ¢f adaptive grid methods w tth the uge.of
_Riemann problems. The method is adapted % probiéins that have impor-
tant singularity hypersurfaces (lines in two space dimensions, surfaces In
" three space dimensions}, such as shock waves and contact discontimuties.
In one version of this method, there is ap overall time-dependent coordinate
transformation to map the discontinuity into a fixed grid hine 1n soe set
" of computational coordinates. In another ersion, the discontinuity is rep-.
resented by a moving lower-dimensional gnd-tbat follows { “tracks™} the
- dynamical motion of the discontim\.tit).' The motion of the discontnuity
" and of the movjng grid points that track it are governed by solutions of,
Riem¥nn problems. or equivalently by the method of charactenstics.

4.9.3 Vortex Method . ?

This method introduces small hesor surfaces of vorfiaty into a fBuid flow.
The method is adapted to the study of shear-layer discontinuities, bound-
ary fayers, boundary-layer separation, and turbulence. The equations df
motion of an ideal fluid yield simple equations for the motion of a collec-

. tiono»ortices imbedded in the Auid. In fact, the vortices move passively
Fi
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with the Auid, and their mutual interaction ie deseribed by a Hamiltonan
system of ordinary differentialequations, with Cowlomb type interaction
energy. In the case of the Navier-Stokes equations, the vortex motion also
“Tomtams a diffusion term. .

These methods have been applied successfully to the problem of tur-
bulent flame propagation (see Section 2.2).. In this probiem, the turbulent
mixing is a primary factor in deterrmnmg the flame speed. The turbulence
comes from the boundary layer and in the boundary layer 15 calculated by
a vortex method. Related methods have been developed under a variety of
names such as boundary integral methods and Green’s function methods.

4.9.4 Scale Invariance and the Renormalization Group

Scale transformations are the transformations 1 = 8z, acting on space or
on space and time. A function u is homogeneous of degree o« if

[ ] —-
u(sz,sy,82) = s%u(z,9,2)

and scale invarisnt if @ = 0. Many problems\lave solutions that are scale
invariant or approximately scale invariant over some parameter range.
Such solutions are called similarity solutiogs. Using the scale invariance,
. one of the independent varigbles can be ehmmat«edt makmg the solution
: , mere elementary to compute. ' - N
=  However, seale invariance can also indicate the occurrence of com-
plex phenpmens. Specifically, any singularity that occurs in 8 seale
invariant problem must be repeated in all length scales {for which the
seale invariance holds). Mathematically, Cantor sets, snowflake curves,
and fractals are examples of such phénomens. Ja statistical"physics, criti-
esal phenomena in the equation of state is & scale-invarisnt problem. One
general picture of turbulence holds that scale invariance (vortices on a
large range of length scales) descni:e theinertial range, or energy transport
‘range, of turbulence. -

To implement these ideasin a ;:ornput.auonal algorithm, one integrates
aver a given set of length scales i in a standard manner. The result of this
computation is taken as data for a.new calculation over a new set of length
scalés (with the original degrees of freedom eliminated from the prob-
lem). This process is iterated and if convergent gives the,sca}e exponent ,
«. Sample numerical ealculations of this type were discussed in Section

2.1 in connection with turbulence. The method is well establighed for per-
“turbative calculations (with & small parameter) in cntlcal phenomena in

statistical physics, '
T I ~




FIGURE 4.1 The evol'ﬁtiog ‘and merger of isolated vortex structures as
predicted by contour dynamical techniques. [From E. A. Overman Il and
.N. J. Zabusky, Phys. Fluids 25, 1297-1305 (1982).}
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Sinee the renoWn group’method$ are novel, it is wortfh men-
tioning that the matfiematical foundations of ths}nethod have been estab-
lished recently in several cases including examples of hierarchical models

in statistical mechanies, interval maps, and renormalized quantum fields.
« -

- 4.9.5 Contour Dfnamical Methods . ’ P

B
Congour dynamical methods are being applied 1o a variety of incorppress-
ible flows 1n two dimensions. These generalizations of the “waterbag”
method provide simplified models for following the evolution of contours
aeparatmg regions of piecewise-constant (pe) deBSIty that are the sources
L of the flow. The flow is the result of the self and mutdal interaction of con-
tours that evolve, mainly by area-preserving maps. These glethods have
been applied to the Euler equations, where pe finite-area-vortex regions,
and/or vortex sheets a.tJdenslty interfaces are sources of the flow; and
the equations for & weakly lonized and strongly mpgnetized ionospheric
plasma cloud, where pe jon-density regions are sources of the flow. For the
former, a large class of steady-state translating and rotating solutions with
pc vorticity (“V-states”} have been found. Figure 4.1 shows the merger
and. breaking for a perturbed corotating V-state (two pe finite-area vortek
regions with the same circulation), a familiar process in free-shear layer
experiments. Notice how the two regions merge to {orm one region (by
* snipping out the common boundary at ¢ = 10) and then stabilize by eject-
ing vorticity in thin filaments. With these methods it is possible to obtain
detailed information about the reglons becausé the’ dimension is reduced
b7 one. The curvature of the contour provtdes a predictive signature of
the exol\rmg small-scale structure, e.g., the rolt up of vorticity filaments,
et,c

4.10 COMPUTER SOFTWARE AND HARDWARE

. As previously discussed, large-scale scientiflc calculations that tax the

resources of the most powelggl computers will continue to be essential to

modern research and development efforts. To obtain long-term reliability

and stability of future applieations codes, implementing and testing of

high-level mumerical software should be coordinated. This will require a*
! ' . - -‘ .
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eration supported among

strong research and development effort witjg
Eprical methods researchers,

applications prograjumers, the theoreticg

Repetitior of expensive, error-prone, and time-consuming coding of
commonly used methods should be avoided. Much of the current scientific _ |
software now being developed is redundsnt. If the common elerents of the
existing codes were available as modules, future applications programmers
could use these routines and eliminate -much of their efforts. New software -

o is most readily ‘accepted if it is compatible with existing techriques and
) simple enough so that potential users can obsarve tangibly better results
in a trial run than those existing methods can produce. If such high-
level routines were avallable,, theg could perfofm many of the common
procedures found in applications codes, including grid generation, rezon-
ing, numerical interpolation, differentiation, ap@ integration, they could
approximate differentia] boundary condltjon/ﬁ d solve large, sparse non-
linear systems of equations.
a An important goal is the machine independencg of applications pro-
grams, This is a difficult task because methods tailored specifically for a_
particular machine architecture will probalty.become more the norm than
the exception. We can, by keeping machine-dependent codes in libraries of
high-level software with standard user interfaces, strive to keep the user’s
seientific applications codes portable. The underlying library routines will
be, necessarily, less portable because the architecture of the new machines
will certainly be different from that of teday's supercomputers. To uti- p
e the inherent powers of the new machines we wall have 10 re-examine
traditional methods and identify the better ones for g__partlcular machine _
-architecture.” - - SR D
The cont:gulng revolution in microelectromes is havmg a prefound, - '
impact on sc:entlﬁc computmg Indeed, it is llkely to change our contept
dramatically 6f what scientific computations can and cannot be effectively
performed. Most certainly the impact of this revolution will be much
\ greater than, say, the impact that floating-point hardware had. Moreover,
-/ while the costs of individual tasks will be greatly reduced, the domain of
scientific computations wlll be greatly expamfed and “frontier computa-
tions” will continue to be“¥Xpensive. -

These® changes are being brought about by 2 number of factors
Indlvidual components are becoming mcreasmgly Taster and smaller \ery
large-scalg integration of such components is not only reducing the size of
the packaged systems but also providing opportunities for customized in-
formation processors. Also, the decrease in the cost and size of computer .
_.memory implies that we can look for much larger memory systems. This
" wilt obvuate many of the existing difficulties with secondary 3torage
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Despite the lact that components are becoming [aster, .the Bynits of «
raw machine speedar¢ not visible, and lurther gains will eventually have
to be made by using clever architectures and algorithms. Seme kind ol‘
parallellsmqseems to be unavoidable. The programming issues involved in
using parallel ma,chmcs are still not satislactorily resolved. The automatic
detectjon of parallelism and the resulting schedullng of multiple resoyrees
are important apen’ prablents. )

Architectures, such as systolic arrays, based on.specific subtasks cah'
* increase the performance of systems lnvol\nng these subtasks by several

orders of mag‘mtude and clearly have a bnght lutare. Algorithms contain-
1ng compute-1atensive subtasks that can be vectorized in this fashion have
a bright [uture. Becausg these architectures are in géneral regular, the
alporithms that cap be vectorized for such machines tend to be regular, ¥
. L.e., simple, nonadaptl;?'e uniform-grid, low-order algorithms. It is clear
that.there are nicely behaved problems for which thesé regular algo}ithris
on specialized machines will require significantly less time than algorithms
requiring fewer operations on serial machines. It is also clear that no
matter how fhst the specialized machipes are, there are problems that
are w&ddilﬁ 1t that more sophisticated algorithms are needed lor
more genefal-purpose computers. . N

In order to bring about these advances in architecture, it is necessary
to involve practitioners of scientific computation jn the design process.
Luckily, modem design automation.tools should MBke it possible for in-
terdisciplinary design teams to successlully synthesize innovative special-
purposersystems, and automated labrication [acilities should make it pos-
 gible for such systems to be built, debugged, and used. @

_These advances in_machine architegture should also have 3 dramatm

. ef[‘ect on the ‘design and analyas of algorithins lor seientific- computing. '
Traditionally, such analysis has b ased on (asymptotic) estimates of _
the number ol arithmetic operation: However, with these gew architee- ~
tures it is quite likely that the running time of an algorithm will be more
e[gendent on the movement of dats than on the number of arithmetic

(dperatmns Thus, we need to develop new analytic models of complexify of

L

€

/ . scientific algorlt.h;ns 30 thatYsuch models give us useful ml‘ormatmn about

the reIatwe performance of al-gorlthms -
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