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ABSTRACT
Large sample standard errors are derived for the Tucker ilnear test score
equating method under the common item nonrandom groups design: Standard
errors are derived withoiut the normality assumption that {is comtonly mads in
the derivation of standard errors of linear equating. The behavior of the

standard errors is studied using a computer simulation and a real data

: example.

Rey Words: FEquating, Standard Errocs, Nonrandom Groups.




examinees: Sach equating requires a design for collecting data and a methiod

for squating Forms. The comuon item ronrandom groups design [Angoff, 1971,

pp. 579-583] is a design in which two groups of examinees from different
lidve a subset of items in common. Linear methods undew this design are
examined in the present paper.

Standard errors of equating are a means for exptessiig the amount of
error in test Form aquating that 1§ die to examinee sampling. For a given
scors 1 oneé form of a test, the error in estimating its equated score on
anotlier foru is often Lndexed by a standard error: These standard errors
geunerally differ by score level, Standard errors of equating are used as a
means for expressing equating error when scores are reported, im the
estimation of sawple size required to achieve a given level of equating
preciston, and as a basis for comparing equating methods and designs.

Large sample standard errors for the Tucker method of linear eguating

dnder the cormon item nonrandom groups design are derived under normality
assumptions as well as under less restrictive assumptions In the present

paper. Also, standard errors of Tucker 2quating are estimated using the
bootstrap method described by Efron [1982]. The results from different

methods are compared via a computer simulation as well as a real data example

based on test forms From 4 professicnal certification testing progras.
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Tucker Comion Ttem Equating with Nonrandow Groups

Multiple forms of a test to be equated are designed to ba similar in
content and statistical characteristics. For the common ftem nonrandom groups

design; a new form is equated to an old (ﬁfé6i66é1§ éﬁﬁété&S form using a set
of items that are common to the two féfﬁé. The set of common items 1is
constriicted to be similar to each of the full length forms ln content balance
and in the statisctical characteristics of its items. Scores on tlie common

ttems may contrtbate to the total score on each form (an internat sst of
common items) or they may not contribute to the total score on each form (an
external set of common itéﬁé5.

The new and old Forms are administered to sxaminses from differant
populations under this design. In order to accomplish observed score
equating, a decision must be made on how to combine these two populatious.

ﬁbéﬁlétigﬁ by Braun and Holland t1982j; is a weizhted combination of the two
populaticns from which data are gathered.
Refer to the new test form as X; the old form as Y, and the set of common

items as V. Examinees from Population 1 are administered X and V. Examinees

from Population 2 are administered Y and V. Consider that these two popula-
tions are weighted using proportional weights w; and w, (where w; + vy = 1 and
wi; w3 > 0) to form the synthetic population. The general linear equation for

o)

(%) i aeon [x = u, O] +u 0 . )

-



In tHls equation uéiki, uétij, détij, and dé(ij dre the means and standard
deviations of scores oa X and Y for the synthetic populatton; and ¢(x) 1is
the vatoe of the Iinear equating functiom at x.

The parameters in (1) depend on parameters in Populations 1 and 2. From

equating administrations we can ottain estimates of the following for

Population 1:

mean for X ,

ut(i)

standard deviation for X

diiij
ui(V) = mean for V

standard deviation for V , and

Gi(V5
Ei(X;V) = covartance between X and V
and for Popalatton 2:

mean for Y ,

il

uz(?j

ctandard deviationm foc Y

Wl

cé(Y)
ﬁz(V) = mean for V
5,(v) = standard deviation for V , and

covariarce between Y and V .

62(&;V)

Note that from the equating study we are unable to obtain estivates of the

fotlowing for Population I:

uy (1) gean for Y ;

standard deviation for Y , and

o1 ()

covariance between Y and V ,

61(2,65




and For Population 2:

ué(ij = meaa for X ,

W

5, (X) standard deviation for X , and

dti;VS = covariance between X and V .

equating under the nonrandom groups desizn. The Tucker method requlres that
the tinear regression of X on V be identical for ?6§uiéfi6ﬁ§ I and 2: &
similar assamption is required for the regrassion of Y on Vi Let a represent
a regressiasn slope so that; for enample; di{XiV§ = 6i(k;V)/6%(V) is the
slope for the iihééf regression of X on V fdf Pbﬁﬁiétiéﬁ 1. Let B represent a
regression intercept so that, for example, B;(X|V) = U, (X) - & (XK|VIu (V) 1s
the tutercept for the linear regression of X on V for Population l. The

Tucker method requires that;

[

;i(XIVj &é(le) ;

1]
Ri

di(YIV)

(x|v) , and

i
w0

Bt(xlv) =

i
w
~
G
<
~—

Bl(?iv)
in Tucker equating, it 1s also assumed that

? (01 ~ p2(x, )] = o3([1 - p2(X,V)] ane




i
w
[

(D [1 = o2(¥, 1] = 3D - p3Y,M]

where p? refers to a squared corralation; so that; for example, 5%(X;V) =
5i(k;V)/[6i(&§ ai<v5] . This ls sometimes referred to as the assumption that
the variance errors of linearly estimating X from V as well as Y from V are

u (D) = 1w, (D + A (V) Lu (v - w0} (2)

U

7%<?5 dgéij + d%<§i65 {d%(Vj - dg(V)] , and : (3)

KA
agtvﬁ

0, {¥;9) = o, (%)

(Y;v)
And, for Populattion 2,

u (X)) = o K|V [u (V) -, (], (5)

My (X)

i

5500 = 01 - a x|V [of(W) - op(n)] , and (6

200
5, (X, V) = 6, (X,V) ~———r . 7
a) (V)




obtain expressions for the means and variances of X and Y for the synthetic

popalaticn: These parameters are expressible in terms of parameters for

Populations 1 and 2 as follows:

US(X) = WIUI(X) + wzuz("()
= Wéh§(Y5 R

n €Y) = w (Y) +w

2 ' ]é

2‘ N é‘ - ‘ o Y ETAY YT Y _ P |
cs(x) = wlcl(x) wzcz(K) + wlwz[ul(x) - uz(X) , and

4

B A g
o, (Y) w o, (Y) + wyo, (Y) + wlszul(Y) s (Y) .

Substituting (2) through (7) in the above equations gives:

(D] (8)

us(k) = Ul(le— Qiai(X|V§[ﬁi(V5 -
(0 = uy (0 + v e, (D[ (0 - w, ], (9)
(x) = ) = wia%(glV)[afévi = o]

# w0 - w07, and (10)

(0 + w SV [V = 55w
2

o2 (¥)
S

1
o =) (11)

+

@here all parameters to the right of equal signs in (8) through (il) can be

estimated directly using data from the study design. =Equations (8) through

12







Xiso, the mean and variance of V fcr the synthetic popalation can be

expressed,; respectively; as:

b€y = wu. (V) F woi; (V) and (12)
S 171 2°2
G2(V) = w0 (V) F uyan (V) F e, [ug (V) = 512 (13

It can be shown that the combination of (3) through (1) and (12) and
(13) will produce counterparts of the Tucker method equation described by
ts; wj = aj/(n; + 15) and wy = np/(np + n3), where nj and ny are the sample
sizes of sxaminees in:luded in the equating study from Populations l and 2,
respectively. Gullixsen [1950; pps 299-30l] presents a version of the Tucker

fethod that diffsrs from Angoff's version. The present equations will result

in counterparts of Gulliksen's; Lf we set w; = 1 and w; = 0.

Large Sample Standard Errors

standard errors of linear equating derived using the delta method under a

variety of data cotlection designs, and many of these Standard errors are

reported by Angoff [1971]. However, standard errors of Tucker equating are

not presented in any of these sources. (The standard errors presented by

13




with random groups, under the assumption that u;(V) = py;(V) and

6,€V) = 6;(V) . Thus; they are inappropriate for the nonrandom Zroups

situatton.)

and for equating designs that require cousideration of only univariate
distributions, the normality assumption ts that the central moments through
order 4 of the score Aistributions are identical to those of a univariate
normal Aistribution.

Recently, Braun and Holland [1982, pp. 32-35] derived standard errors
uslng the delta method without making such a restrictive assumption for the
situation in which randomly equlvalent groups of examinees are administered
the forms to be equated. Thelr resulting standard error expressions suggest
that standard errors of equating based on the normality assumption may produce
misleading results when sccre distributions are skewed or more peaked than a
normal distribution. Because skewed distributions are typlcal of many testing
programs, we derive standard errors of Tucker equating without the normality

assumption in the present paper. We also derive standard errors with the

normality assumption for comparison purposes.

Let éi; 62; TP be used as an alternate representation of

B, (8) 5 w5 (V)5 GA(Y); 6h(VY; and o, (Y;V),

N

éi(X;V)

.

(XY, u (V) 0 (X); o (V)
1 1 l

DIy

represent their estimates. For

D> 1~
DIyl v

respectively; and et 8;; 85; -::5 8j;
example, 8, is an alternate representation of . (X) . Let 2 = 2(x)

14




represent the estimated Tucker linear equating function arrivad at by
sibstituting estimates of parameters into (8) through (11) and substituting

thece into (1): Tet £ represeat 55/3%& (the partial derivative of ¢ with
respect to éi5 evaluated at 8, 8,5 «ev, 8, - Then by the delts method
described by Kendall and Stuart [1977, pp. 246-247],

S P S 1 B S
var{a(x)] = £ {° var(e,) + II 2727 c66(éi;éj) .

1=1 0 gg5m1 U

3ecause samples are independently drawn from Populations 1 and 2; the sampling

covariances between edch of the first five étis; and each of the last five

) ) 10 3 < 5
- ,r,‘,‘,,,, _ . 2 o~ ] - - .. A
var{2(x)] = E &7 var€e,) + [ I &7 &7 cov(9.,0.)
i=1 L 1#451 + 3 173
1w IR o
+ £ L 27 27 cov(O,;0;) . (13)
= . i’
1#j=5 * 3

The partial dertvatives (27's) necessary for (14) are shown ia Table l.
For this table; z_ = (x - uséxi]/as(ij . All other notation has been
defined previcusly. The sampling variances and covariances for (14) can be
sbtalnsd From Table 2. In this table; a refers to sample size. (Note that
thHe variables X and Y in Table 2 are general.) By éuBstitutiﬁé the partial

error of Tiicker equating: (Use the "normal” column of Table 2 for the

variance error under the normality assumption.) Note that the standard error

' ' ' 5]}i/2

for Tucker equating is se[2(x)] = {var[a(x

e

i;
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As 4n example of how to proceed, refer to the first term in the first
summation in (14), which is ifzva?(alj . From Table 1; ¢ 2 is D/
and from Table 2, var(8) = var [m (X)) = o{(X)/n, . Note that this term is
the same under the general or the normality assumption. As another exanple;

~ “

2725 cov(8,,6,): From Table 1, 2] 45 = [0 (1)/0, (0 ]{-2 0 (1)/[252C0 ]} ,

and from Table 2, cov(gi;ggj S ccv[;i(k5;;%(k)j = E{k—ui(k5]3/ni ander
general conditions. From the table, this term would he zero under the
normality assumption.

The standard errors will not be written here in more detail than (1%)
because their full form is too cumbersome: However, the standzrd errors are

Clearly; the standard error expression is complicated. For this reason,
it is difficult to make general interpretative statements. One such
observation, however, is that if the sample sizes for the two sroups are

proportional to sample size. For example; a doubling of the sample size will
lead to a halving of the variance ertor.

In practice, when standard errors of Tucker equating are estimated,

16
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obtain the sampling variances and covariances in Table 2. However; under

fondormality, we also need to estimate skewness; kurtosis; and several higher

order cross-product monents.

Computer Simulaticn

A computer simulation was conducted to study the behavior of the esti-

mated standard errors. Score distributious were simulated to reflect the
score distributions of test forms from two different testing prograis. The
iistributions for two test Forms model those in a particular professtomal
certification program. (Real data for real forms of a test in this program are
ised in 4 subsequent illustration.) These distributions are negatively
skewed, and the simulation based on these distributions is referred to as the

nonsymmetric simulation.

program. The simulation based on these distributions is referred to as the

nearly symmetric simulations The distributions in the nearly symmetric

simuiation are flatter than a normal 2istribution. (Lord [1955] surveyed
distributions for a variety of tests and found that Symmetric test score
distribitions tend to be flatter than the normal distribation; and he
references theoratical discussions of this issue.)

For purposes of the simulation;, we assume that true scores (on the
proportion-correct 8cale) are distributed as a two-parameter heta

distribution, and that given a particular true score; the observed score




= 15 -

cbserved scores under these conditions is the negative hLiypergeometric [Lord &

Novick; 1968, pp. 515-321].

the beta true score distributions of X

For the nonsyume tric simulati

and V for Population 1 were assigned paramecers a = 10:5 and b = 3:0: 4&nd,

9.5 and b = 3.0:. The numbers of ltems contained on these

parameters a

stmulated test forms are 125 for X and Y and 30 for V.

For the nearly symmetric similation, the beta true score distributions of

X and V for Population 1 were assigned parameters Z = 6.0 and b = 6.2. 4nd,
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b = 5.2. The numbers of items contained on these simulated tests are 52 for X
and Y and 15 for V.‘

population means, standard deviations, skewness indices, and kurtosis
indices of observed scores are shown im Tablc 3 for the simulated test
forms: The nonsymmetric distributions are telatively easy (over 75% of the
items answered correctly,; on average),; negatively skewed, and have a kurtosis
tndex higher than that for a normal distribiition, indicating wore
peakedness. The nearly symmetric distributions have means near 50% of the
ites answered correctly, are nearly symmetric; and are less peaked than a

normal distribution.:

- e o et et . g e et o g S e P S 1 e v
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For the simulation, let k, represent the number of iteis on X; ky the
diufiber of items on ¥; and k the number of items on V. A&lso, for the
simolation k. = ki. Define kg = kx - kv; Because we are simulating an
internal set of common 1iteds, kg represents the number of items in X and Y
that are not commof, and kv represents the number of common items .

Consider the nonsymmetric simulation for a sample size of 100 examinees
per test form with the previously defined beta parameters. The following
steps were used to simulate palrs of X and V scores:

(1) Randomly generate a beta variate from the two-parameter beta
distribution Eor X and V in Population l. This beta variate, which is
referred to as p, represents a proportion-correct trie score. (TIMSL,

(11) Randomly generate a variate from a binomial distribution with

score on Vs (IMSL, 1982 subroutine GGBN was tsed to generate binomtal
vartatess:)

(iif) Randomly generate a ¢ariate from a binomtal distribution with
parameter p based on kg trials: This variate represents observed
Score on the non—-common items.

scores for X and V.
Next, by substituting ¥ for X and Population 2 for Population 1 in the

above steps, n pairs of observed scores were Zenerated for Population 2 using
O
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score was obtained using Tucker equating with w; = w, = 0.5. Aleo, standard
errors of equating were estimated for each X (lnteger) score based on the
delta method wich the normality assumption as well as the delta method without

the normality assumption: This whole process was replicated 500 timeés.

associated with each X (integer) score is the mean delta wethod standard er.or
derived without the normality assumption over the 507 replications. The
dorfal delta method standard error is define similarly.

Nousymmetric and symmetric simulations were each conducted using sample
sizes of 100 and 250 simulated examinees per form. The "true”, nonnormal, and
dormal standard errors at selected score polints are shown im Table 4: 4&lso
shown are root mean squared errors (RMSE) in estimating the standard errors.

As an example of how to interpret Table & consider the top row. The data i

standard error 1.12. Root mean squated errors in estimating the nonnormal and

normal standard error also are Shown.

O
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For both nonsymmetric simulations, the normal standard errors tend to be

different in pattern from the "true” standard errors. The nonnormal standard
errors are similar in pattern to the "true” standard errors. However; at a
sample size of 100 per form the nonnormal standard errors are uniformly too
small. At 250 examinees per form the nondormal standard errors are similar to

the "true” standard errors.

For a sample size of 100 per form in the nearly symmetric simulation,
both the nonnormal and normal standard errors are not too dissimilar from the
“true” standard ervors. Tt
while the normal standard errors tend to be too large. For a sample size of

250, the nonnormal standard errors are nearly identical to the “true" standard
errors; whereas the normal standard errors are too large.

Root mean squared errors in estimating the delta method standard errors
ilso are shown in Table 4. To calculate RMSE we find the variance of the
estimated standard errors over the 500 replications and add to it the squared
difFerence between the "true” standard error and delta method standard

srror. The square root of this sum is the RMSE. The RMSE is a measure of the
¢ariability in estimating standard errors. Smaller values of RMSE are
{ndicative of more accurate estimation.

Recall that the estimation of the normal standard errors requires
ostimation of only means, variances, and covariances, whHereas the estimation

of the nonnormal standard errors requires the esti ation of these parameters

21



as well as 'igher order central moments and cross-product moments: Because

higher order moments and cross—product moments may be difficult to estimate
precisely due to sampling variability, the nonnormal standard errors may be
more difficilt to estimate than the normal ones. However, ~r all but the

nearly symmetric simulation with sample size of 100 in Table 4, the RMSE is

The results of the simulation indicate that for both tests simulated; the
Honnormal standard errors are more accurate than thoss based on normality

assumptions when saiiple size is 250 examiniees per forii.

Bontstrap Standard Errors

standard errors; a study of the delta meth d standard errors 6é equating using
actual tes- data seems desirable. Efron [1982] describes an alternative to
the delta method which he refers to as the bootstrap, and he presents a
variety of examples in which the bootstrap resuited in standard errors that
were more accurate for small sample situations than those based on the delta
fie thod.

The computation of bootstrap standard errors requires extensive
resampling from the sample data: Thus a high-speed computer is essential.
Generally; to compute bootstrap standard errors; a random sample 1is drawn with
replacement from the sample data at hand, the statistic of interest is
calculated, and this process 1s repeated a large number of times. The

bootstrap standard error is the standard deviation of the computed values of

ERIC 22
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the statistic over repetitiuns of the process. The following steps are used
to bootstrap standard =rrors of Tucker equating.
(1) Begin with the g examinees from Population 1 with scores on X and V
and the n, examinees from Population 2 with scores on Y and Vs
({1) Draw a random sample with replacement of size nj examiiees; from the
sample data of the n; sxaminees From Population l. The sampling
involves drawing paits of X and V scores. Since the sampling is with
replicement, a particular examinee's score pair easily could be chosen
more than onces
{iii1) Draw a random sample with replacement of size s examinees; fr m the
sample data of the np examinees from Population 2
(iv) Tstimate the Tucker equivaient at x using the data from the random
samples drawn in steps 1i and 1if; and refer to this estimate
as EBékS .
(v) Repeat steps il through fv B times obtaining bootstrap estimates
Ei(xjgié(x);;;;;gé(i§ . Approximate the standard error by:

B . - . o
P AP - fol— A 12 --i1/2 o
sepoopld )i = {Bfi [QB(X) -2 (x)]°7( = L} / , (15)

where, 1. (x) = £ 2, (x)/B .

T &~ >

=1

These procedures can be applied at any x.

Re4al Data Example

certification testing program are used in this example. Form X was
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administered to 773 examinees from Population 1 and Form Y to 795 examinsas
from Population 2, and the forms were administered one year apart. The two
forms contaln a common set of 30 items, referred to as V. Summary statistics
are shown in Table 5: The means suggest tiiat the forms and common items were
fairly easy for these examinees. The average examinee correctly answered
approximately 77% of the items. According to the skewness indices, the score
distributions are markedlv skewed, and the kurtosis indices indicate that the
Alstribuiions are more peaked than a normal distributions

e T o i R A o e i o o o

——— o o o et " e o e e i o o e s o ot

Results from Tucker equating with wj = wy; = 0.5 and standard errors ¢

equating are shown in Table 6. Consider a Form X raw score of 100 in the
First column of the :able. Reading across, this scoce has a percentile rank
of 54.7 and a Form Y equivaleat of 102.7. The standard error of this equiva-
lent is 5;33 under normaltity assumptions; 0.29 without thess assump:ions; and
.5.23 using -he bootstrap. A * oue staadard error band for the Form V

163.0) for the delta mettod standard etrors derived without the normality

assumption.

—— e s 0t o ot e s

Tnsert Table & about hei.

o
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are smaller at the lower scores than those derived without the normality
assumption and those calculated by the bootstrap. Standard erro.s for the
tuotstrap and the detta method without the normality assumptton are nearly
tdenttcal.

For thils testing program the passing score is usually close to a raw

 raw score of 80; the delta method standard error of equating is .44 under
the normaliiy assumption and .54 without such an assumption. The error
variances are, respectively, .19 (.462) and 29 (.542). Thus at a score of
80, the error variance under normality is only 66% [100(.19)7:29] of the size
of the error variance under the less restrictive assumption. Based on the
less restrictive assumption; these results suggest that instead of
approximately 780 examinees; we would need approximately 1,182 (780/ .66)
svaninsss to obtain the precision implied by the error vatiaace based on the
normality assumpt Lon, which 1s a substantial difference. The close agreement
batween the bootstrap standard errors and the delta method standard errors
derived without the normality assumption in combinationm with the findings From
the previously discussed nonnormal simulatfons shown in the RMSE column in
Table & suggest that; for this real data example; the sample size estimates
using the standard errors based on the normality assumption likely are not as
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Discussion
The results of the computer simulation indicate that for Tucker equating,
the standard errors derived without the normality assumption are more acturate
than those dertved with the normality assumpti-i for sample sizes of 250 or
more examinees per test form. The results also indicate that the standerd
ercors derived with the normality assumption may be acceptable when test score

tnadequate for nonsymmetric distributions. The results of the real data
example indicate that the standard errors with the normality assumption may
sugzest substantially more equating precision in the crucial range than Ls
actually the case.

In the real data example; the bootstrap standard errors are very similar
to the detta method standard errors derived without the normality assumption;
which are preferable to the bootstrap standard errors for cost and eass of
computation reasons. Still, the results are encouraging For the use of the

bootstrap in equating contexts. Ultimately, the bootstrap may prove useful

equating;

The standard errors derived in this paper index equatlng errotr that 1S
diue to examinee sampling. Error that results from a failure to meet the
assamptions required for Tucker equating is not reflected in the standard
errors. Braun and Holland [1982] suggest some procedures For checking these
assumptions, although they indicate that not all of the assumptions are

testable without collecting additional data. The assumptions required in
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Tucker equating seem most feasonable for testing programs in which:
(1) examinee populations do not change much from test date to test date;
(11) the content balance of the set of common items 1is very similar to the
conteat balance of the total test forms; and the total test forms are each
biilt to the same specifications; and (1i1) the statistical characteristics of
the set of common ftems are very similar to the statistical characteristics of
the total test forms; and the total test forms are similar to one another in
Statisticdl characteristics: Characteristics it and 1ii are most readily
achieved for testing programs in which tests are constructed from a large pool
of items with item statistics that are accurately estimated from pretesting or
previous use:

One reason for deriving standard errors without the dormality assumption
{s that many testing programs produce score distributions which deviate
Warkedly from a normal distribution. For example, professional certiftcation
testing programs often produce markedly negatively skewed score distributions
that result, in p:rt, because the mean Score on such examinations is often in
the range of 68% to BOZ of the items correct. Many of the testing programs
that produce skewed distributions are equated using linear methods under the
common item nonrandom groups design with large sample sizes (250 or more
examinees per test form): For such programs, the results of the analyses in
this paper indicate that for Tucker equating, the standard errors derived
without the normality assumption are reasonably accurate and preferable to

those derived with the normality assumption.
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TABLE 1

Partial Derivatives of Ticker Linear Equating Equation

With Respect to Each Sample Statistic and Evaluated at the Parametprs

Statistic Derivatives Evaluated at Parameters
by (%) =0 1)/ (%)
b (V) 50, (D6 (K[ /5,0 + w a2<Y|V)Lu () = i, (¥ 1/6_ (D)
“wiwz°é(Y)zi 1(XIV)[ul(v) - ué(V)]/cS(X) + wiaZ(YIV)
o2 (X) ~20 (1)/[265(0) ]
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+ay w0 (V)2 ai<x|v3[ui<v) (V)]/c (X) - w QZ(YIV)

20 o,/ [20,00))

0‘2 Zx 03

o= (V) =a,6 (Dz q <x|v>/f20 ()] = wy YV U (V) = w0 /o7 (V)

2 1 2
+z_ o 2ex|vy[1 + v, = 20 (V)/c (V)]/[Zcé(Y)]
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TARLE 7

Sapling Varladces aid Covatlances of Bluarlate Moets

Sanpling Variance or

Sampling Vartance or

Statiétié(é§ Covariance~~Genaral Covartance-Normal Bistribation
it 2 2

vat ()] o (X)/n g (X)/n

var[d (X)] {E[X - )]4 - oA(X)}/n 10 (%)l

LA

[ o4X) | 32(Y5]

corfH %), ok,1)]

[e]x - (X)J3 ¥ - u()] - ox XY]/n o

l (X)o ( ) + & (X, ]/n

o(X;Y)/n

20 (1) /n

(K1)

Note: The terns fn the body of the tabte wpre adapted from Kendall and Stuart (1977, pps 85, 245
246 and 250) and ave typically based on large sample theory. Also, E refers to expected

value.
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TABLE 3

Population Means, Standard Deviations; Skewness; and Kurtosis

for Simulated Obsérved Score Distribatlons

- - Number of - Standard -
Variable Population Lteis Mean Deviation Skewness Kurtosis

Nonsymnetric

1 125 97.22 14,37 -0.66 3.
2 125 93.75 15.72 -0:60 '
I
2

e o o R —— —— o — — ——— — o — o —

52 25.57 7.95 0.02 2
52 26.49 8.37 -0.02 2
15 7.39 2.78 0.02 2
15 7.64 2.88 -0.02 2

<<k
NG DN

Nots: Skewdess is Pearson's /B; and kurtosis is Pearson's 8, index:
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TABLE &

Standard Errors of Tucker Equating for Two Simulated Tests

- RMSE in Estimating
Standard Error Standard Error

———

Score on —= - —m - - - -
Form X “True" Nonnormal Normal Nonnotmal Normal

Nonsymmetric ﬁiaﬁ§=250

120 1.01 0.96
110 0:70 0.68
100 0.58 0.59
90 0.75 0.78
80 1.09 1:10
70 1.48 1:47
60 1.89 1.87

50 2.32 2.27

W e e DO IO T =
[ ]
O NN VOV
W W 0 PO N
.
(@]
x
.
—
w

—_——————_-—-——————_——.—_.___.__.___—_....—-_

Nonsymmetric  nj=n,=100

1.49 1.76 .16 .26
1.06 .27 .09 .22

"

o B 00NN IC I
NOV O VI NI

100 : 0:93 0.99 .06 .08
90 . 1.21 1.08 (14 ;22

0 ; 1.71 1.48 .25 .39
70 : 2.28 2.00 .36 .52

[0
o
WD W e = O

Nearly Symmetric  mj=nz=250
.07 .10

0

8 .05 .06
5 .02 .02
> <02

50 1.12 t:i2 1
40 0.73 0.74 0
30 0.44 0.45 0
20 0.46 0.46 0
10 0.78 0.77 0
0 1.16 1.15 1

#b N

82 .05 .06
25 .07 A1

___._._.—-.—__.—_—__—-____—_-—-—.——_.—_'-___—_

Nearly Symmetric mj=ny=100

50 1.82 1:77 1.89 .20 .17
40 1.20 1.16 1.23 .13 o1t
30 0.73 0.70 0.71 .06 .05
20 0.717 0.73 0.75 .07 .06
10 1.27 1.22 1.31 13 .11
0 1.90 1.83 1.98 .20 .18
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TABLE 5

Raw Score Summary Statlstics for Forms X and Y and Common Ttems V
for a Professional Certification Program

, B B Standard )
Variable Group Mean Devtation Skewness Rurtosis
X i 95.75 13.38 -1:03 3:91
Y 2 96 .84 13.37 -1.00 3.89
v I 23.18 4.05 -0.84 3:48
v 2 .47

22.54 4.31 -0:79 3:47

Note: Skewness 18 Pearson 5 /ﬁ and kurtosis 1s Pearson s B, index.

Sample sizes are 773 and 795 for Groups ! and 2; respectively.

Thera are 125 items on X and Y and 30 items on V.

34
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TABLE 6

Standard Errots of Tucker Equating
for a Professional Certification Prograum

Standard Errors

Form X  Percentile Rank  Form Y

Raw Score In Group 1 squivatent Normality Nonnormality Bootstrapl

0:67
0:56
0.47
0.38
0.32
0.29
0.30
0.36
0.44
0.54
0.64
0.74
0.85
.96
1.08
1.19

125 100:0 126.5
120 99.9 121.7
115 98:0 i16.9
110 90.1 112.2
105 73:.4 107 .4
100 54.7 102.7
95 40.2 97.9
90 27.3 93:1
35 18.6 88.4
80
75
70
65
60
55
50
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