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ABSTRACT

Large sample standard errors are derived fot the Tutker Linear test score

equating method under the common item nonrandom groups design. Standard

errors are derived without the normality assumption that is commonly made in

the derivation of standard errors of linear equating. The behavior of the

standard errors is studied using a computer simulation and a real data

_example.

Key Words: Equating, Standard Brot_s_, _Nonrandom Groups.



Standard Errors of the Tucker Method for Linear Equating

Under The Common Item Nonrandom Groups Design

Test form equating of observed scores adjusts for small differences in

difficulty amorig multiple forms of a test for a specified population of

examinees. Such equating requires a design for collecting data a d a method

for equating Forms. The common item nonrandom groups design- [Angoff, 1971,

pp. 579 -583] is a design in which two groups of examinees from different

populations (nonrandom groups) are each administered different test forms that

have a subset of items in common; Linear methods unde- this design are

examined in the present paper.

Standard errors of equating are a means for expressing the amount of

error in test form equating that is due to examinee sampling. For a given

score t one form of a test, the error in estimating its equated score on

another form is often indexed by a standard error. These standard errors

generally differ by score level. Standard errors of equating are used as a

means for expressing equating error when scores are reported, in the

estimation of sample size required to achieve a given level of equating

precision; and as a basis for comparing equating methods and designs.

Large sample standard errors for the Tucker method of linear equating

under the common item nonrandom groups design are derived under normality

assumptions as well as under less restrictive assumptions in the present

paper. Also, standard errors of Tucker equating are estimated using the

bootstrap method described by Etron [1982]. The results from different

methods are compared via a computer simulation as well as a real data example

based on test forms from a professional certification testing program.



Tucker Common Item Equating with Nonrandom Groups

Multiple forms of a test to be equated are designed to lco similar in

content and statistical characteristics; For the common item nonrandom groups

design; a new form is equated to an old (previously equated) form using a set

of items that are common to the two forms. The set of common items is

constructed to be similar to each of the full length forms in content balance

and in the statistical characteristics of its items; Scores on the common

items may contribute to the total score on each form (an internal set of

common items) or they may not contribute to the total score on each form (an

external set of common items).

The new and old forms are administered to .,,:xaminees from different

populations under this design. In order to accomplish observed score

equating; a decision must be made on how to combine these two populations;

The combined population; which has been referred to as the synthetic

22.21112tion by Braun and Holland [1982]; is a weighted combination of the two

populations from which data are gathered.

Refer to the new test form as X; the old form as Y; and the set of common

items as V. Examinees from Population 1 are administered X and V. Examinees

from Population 2 are administered Y and V. Consider that these two popula-

tions are weighted using proportional weights wi and w2 (where wi + w
2
= 1 and

wi; 0) to form the synthetic population. The general linear equation for

equating scores on X to the scale of Y is:

__cr(Y)
z(x)

a_(X)
x -

s
(X)]

s
.

8



3

In this equation ii(X)0 (Y), %(X), and %(Y) are the means and standard

deviations of scores on X and Y for the synthetic population, and Z(x) is

the value of the linear equating function at x,

The parameters in (1) depend on parameters in Populations 1 and 2. From

equating administrations we can obtain estimates of the following for

Population 1:

Ni(X) = mean for K ,

of (X) = standard deviation fob` X ,

PI(V) = mean for V

ai(V) = standard deviation for V and

oi(X,V) = covariance between X a:ld V ;

and for Population 2:

02(Y) = mean for Y

a2(Y) = standard deviation foc

u2(V) = mean for V

al((') = standard deviation for V , and

a
2
CY

i

V) = covariance between Y and V

Note that from the equating study we are unable to obtain estimates of the

following for Population 1:

= mean for YPI(Y)

al(Y) = standard deviationfrYiand

di(Y,V) = covariance between Y and V

9



4

and for Population 2:

W-(X) = mean for X ;

a-9 (X) = standard deviation for X ; and

cT-(X,V) = covariance between X and V .

This is so because Y is not administered to examinees from Population 1 and X

is not administered to examinees from Population 2.

The'assumptions used to arrive at expressions fot these parameters

distinguish the Tucker method from other linear methods for common item

equating under the nonrandom gzoups design. The Tucker method requires that

the Linear regression of X on V be identical for Populations 1 and 2. A

similar assumption is required for the regression of Y on V. Let a represent

a regression slope so that, for enample, a-(XIV) = a
i
(X;V)/a

i

(V) is the
1 .

slope for the linear regression of X on V for Population 1. Let B represent

regression intercept so that, for example, N(XIV) = at(XIV)Ut(V) is

the intercept for the linear regression of X on V for Population 1. Thn

Tucker method requires that,

11(XIV) = a-(XIV) ;

a1(YIV) = a2(YIV)

CXIV) ,==. 13-(XIV) , and

1 9
YIV) = $_(Y1V)

Tucker equating, it is also assumed that

1
(X) [1 p(X

'

V)] = a22 (X)
2
p2(X,V) and

1

10



a(y)[1.
'

02(y_v 1al (Y)[1 j = 02(Y)1 02(Y V)] ,

2 c 2

where p2 refers to a squared correlation; so that; for example; p2(x,v) =

1(X;V)/[a1(X) a
1
(V)] . This is sometimes referred to as the assumption that

the variance errors of linearly estimating X from V as well as Y from V are

the same for the two populations. Sometimes sLzonger assumptions are used for

deriving these equations; such as those used by Braun and Holland [19821, but

the assumptions listed in this paper are sufficient.

Given these assumptions; tt can be shown that for Population

01(Y) = V.) -(12(YIV

2

a;(10
(YIV

ai(Y;V)
a
2
(V)

1
(Y,V)

And; for Population 2i

(V) - 0 (V)]

[a(v) ,(v)] , and
c

ag2 (V)

P
2
(X) = P (X) - a (XIV) [11 (V) - p

2
(V)]

1 2 2 2 2
Y:0=a-[(K)- al

L

-(XlV) ra(v) - a
2
(V)] , and

a
1
(X

'

V

2g<"
2

1
(1 )

(4)

(7)



In order to arrive at the Tucker equating equatton; it is necessary to

obtain expressions for the means and variances of X. and Y for the synthetic

population. These parameters are expressible in terms of parameters for

Populations 1 and 2 as follows:

p
s
(x) = Wi i(X) W2 7(X)

P§(Y) Willi(Y) W2P2( )

2
e.9 (X) = w e(X) w-a-2 (X) w

1
w
2 1

(X) 0-(X)j
2

1 2

yY) = w-a2(Y) + w
2
a
2
(Y) +

w i(Y) P2(Y)2
2

lw

and

Substituting (2) through (7) in the above equations gives:

p_s(x) = oi(x) v.yxi(XIV)[0(V) -

0-(Y)=0-M-1-w-a-WV){0-(V) - 0 (V).1
2 1 9 1 2

(8)

(9)

2 2 2 2

2

civ)L 061)
Q2(V)]

+ wiw2ai2 (XIV)[pi(V) - p2(V)
2

, and (10)

2 2 2 2
a§(y) = Q2(Y) + wiyYlV)[ai(V) (V)]

-1- T."" CI I V ) kl
1 2P00 ( li ) ]

2

1 2 2

where all parameters to the right of equal signs in (8) through (11) can be

estimated directly using data from the study design. Equations (8) through

12





(11) can be entered into (1) to produce the Tucker linear equating function.

Aiso; the mean and variance of V fcr the synthetic population can be

expressed; respectively, as:

pg(V) = w1µ1 (V) + w2i (V) and

2 2-
ja(V) = wiai(V) + w-A(V) + wiw[pi(V ) 11(V)]

2

(12)

(13)

It can be shown that the combination of (8) through (It) and (12) and

(13) will produce counterparts of the Tucker method equation described by

Angoff [1971, p. 580], if weights are chosen proportional to sample size- -that

is, wi = n1/(n1 + -19) and w, = n2/(n1 + n2), where al and n2 are the sample

sizes of examinees ih.11uded in the equating study from Populations 1 and 2;

respectively: Gulllicseh [1950; pp. 299-301] presents a version of the Tutket

Method that differs from Angoff's version. The present equations Will result

in counterparts of Gulliksen si if we set wi = 1 and = 0.

Large- Sample_ _Standard_ 'Errors

Kendall and Stuart [1977; pp. 246-247] present a general method fdt

approximating standard errors which is based on the Taylor expansion; This

method is oEEen referred to as the delta method. Lord [1950] presents

Standard ettora Of linear equating derived using the delta method under a

variety of data collection designs; and many of these standard errors are

reported by Angoff [1971]. However, standard errors of Tucker equating are

not presented in any of these sources. (The standard errors presented by

Angoff [1971, p. 577] were derived by Lord [1950] for common item equating



with -random groups, under the assumption that p1(V) = 1:1(V) and

a
1
(V) = a2(V) Thus, they are inappropriate for the nonrandom groups

situation.)

In applying the delta method to standard errors of linear equating, Le i

[1950] made what we will refer to here as the mormaIity assumption. For

equating designs that require consideration of bivariate distributions, the

normality assumption is that all of the central moments througb order 4 of the

score distributions are identical to those of a bivariate normal distribution,

and for equating designs that require consideration of only univariate

distributions, the normality assumption is that the central moments through

order 4 of the score distributions are identical to those of a univariate

normal distribution.

Recently, Braun and Holland [1982, pp. 32-35] derived standard errors

using the delta method without making such a restrictive assumption for the

situation in which randomly equivalent groups of examinees are administered

the forms to be equated; Their resulting standard error expressions suggest

that standard errors of equating based on the normality assumption may produce

misleading results when score distributions are skewed or more peaked than a

normal distribution. Because skewed distributions are typical of many testing

programs, we derive standard errors of Tucker equating without the normality

assumption in the present paper. We also derive standard errors with the

normality assumption for comparison purposes.

Let et; 02, ...,810 be used as an alternate representation of

2 2 2 2
pi(); pi(V); ai00; oi(V)i oi(X,V)i yY), p(V)i 500; 5(V); and a-2 (Y-V)-"
respectively, and let el, e2,

'

e
10

represent their estimates. For

example, 0-isanalterhaterePresentationap-(X) . Let 2, E 2,(10

14



represent the estimated Tucker linear equating function arrived at by

substituting estimates of parameters into (8) throUgh (11) and substituting

thL':e into (1). Let C represent 993; et (the partial derivative of i with

respect to 8i) evaluated at 81,
810

. Then by the delta method

described by Kendall and Stuart [1977, pp. 246-2471;

10 10

var[k(x)] = E ar(S + EE cov(8--0 )

i=1 iAj=1
j

Because samples are independently drawn from Populations 1 and 2, the sampling

covariances between each of the first five

ei are zero. Thus,

varIL

and each of the last five

10 -.- 5

= E var(0 ) + E E kt k Cov(; ,A,)
i 3

t=1 i #j =1

10

+ E E ki tt: cov(O
i'

8
j

)
3

(14)

i#J=5

The partial derivatives (q's) necessary Ear (14) are shown in Table 1.

For this table, zx = (X)]/O
s
(X) All other notation has been

defined previously. The sampling variances and covariances for (14) can be

obtained from Table 2. In this table; n refers to sample size. (Note that

the variables X and Y in Table 2 are general.) By substituting the partial

derivatives from Table 1 and the sampling variances and covariances from the

"general" column in Table 2 into (14), We obtain the equation for the variance

error of Tucker equating. (Use the "normal" column of Table 2 Eor the

variance error under the normality assumption.) Note that the standard error

r", -11
for Tucker equating is se[t(x)] = IvarLkoc)if

1/2



= 10

Insert Tables 1 and 2 About Here

As an example of how to proceed, refer to the first term in the first

summation in (14); which is V'
2
var(8

1
) From Table 1; X1 is O(Y)/d-lX)

1

2 1 , 2,

and from Table 2; var(8-1 ) E var [11-1 00] = o- (X) /nl Note that this term is

the same under the general or the normality assumption. As another example,

refer to the second term in the second summation of (14), which is
A A

1 "
cov(8 8_).

1 3 l' 3
From Table 1, X1

s s
= [o-(Y)/a-(X)]{z-o.

s
(Y)/[2C;(X)jf

. x
A A

" i

and from Table 2, cov(e-;8-) E COV[17
1
(X);a

1

2
11(X) ] = E[X-(X)J 3

/n
1 1

under

general conditions. From the table, this term would be zero under the

normality assumption.

The standard errors will not be written here in more detail than (14)

because their full form is too cumbersome. However; the standard errors are

easily programmed via computer.

Clearly, the standard error expression is complicated. For thts reason,

it is difficult to make general interpretative statements. One such

observation, however, is that if the sample sizes for the two groups are

equal, then there is a simple relationship between the variance error and

sample size -- namely, the magnitude of the variance error is inversely

proportional to sample size. For example, a doubling of the sample size will

lead to a halving of the variance error.

In practice; when standard errors of Tucker equating are estimated;

parameter estimates must be used to calculate the derivatives shown in Table 1

16



and the sampling variances and ,:ovariances shown iA Table ; Under the

normality assumption, we need to estimate means; variances, and covariances

-obtain the sampling variances and covariances in Table 2. However; under

nonnortality, we also need to estimate skewness; kurtosis; and several higher

order cross-product moments.

Computer Simulati-Oin

A computer situlation was conducted to study the behavior of the esti-

mated Standard errors. Score distributions were simulated to reflect the

score distributions of test forms from two different testing programs: The

distributions for two test forms model those in a particular professional

certification program. (Real data Eor real forts of a test in this program are

used in a subsequent illustratf:on;) These distributions are negatively

skewed; and the simulation based on these distribdtibeiS is referred to as the

nonsymmetric simulation.

Distributions for two forms of a second test are modeled after the mean;

standard deViatiOn, skewness, and kurtosis found in an achievement testing

program: The simulation based on these distributions is referred to AS the

nearly_symmetztc_ simulation; The distributions in the nearly symmetric

simulation are flatter than a normal astribution. (Lord [1955] surveyed

distributions Eor a variety of tests and found that symmetric test score

distribUtionS tend to be flatter than the normal distribution; and he

references theoretical discussions of this issue.)

For purposes of the simulation; we assume that true scores (on the

proportion-correct scale) are distributed as a two-parameter beta

diStribUtion, and that given a particular true score; the observed score



= 12

distribution can be described by the binomial. The resulting distribution of

observed scores under these conditions is the negative hypergeometrid [Lord &

Novick, 1968, pp. 515=521].

Fbi the nansymmetric -s-imulat_i_on_, the beta true score distributions of X

and V for Population 1 were assigned parameters a = 10.5 and b 3.0. And,

for Population 2 the beta true score distributions of Y and V were assigned

parameters a = 9.5 and b = 3.0; The numbers of items contained on these

simulated test forms are 125 for X and Y and 30 for V.

For the nearly symmetric simulation, the beta true score distributions of

X and V for POpUlation 1 were assigned parameters a = 6;0 and b = 6;2; And;

for Y and V for Population 2 the parameters assigned were a = 5.4 and

b = 5;2; The numbers of items contained on these simulated tests are 52 for X

and Y and 15 for V.

PopUlatiOn Means, standard deviations, skewness indices, and kurtosis

indices of observed scores are shown in Tablz 3 for the simulated test

forms; The nonsymmetric distributions are relatively easy over 75% of the

items answered correctly, on average), negatively skewed, and have a kurtosis

index higher than that for a normal distribution, indicating more

peakedness; The nearly symmetric distributions have means near 50% of the

items answered correctly, are nearly symmetric, and are less peaked than a

normal distribution;

Insert Table 3 about here

1s
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For the simulation, let kX represent the number of itemS on X; ky the

number of items on Y; Ind ky the number of items on V; Also; for the

simulationk-=ky -.Elefinek- =k-V. Because we are aimulating an

internalsetoEcommonitetS,krepresents the number of items in X and Y

that are not cotthen, and ky represents the number of common items:

Consider the nonsymmetric simulation for a sample size of 100 examinees

per test form with the previously defined beta parameters. The following

steps were used to simulate pairs of K and V scores:

(i) Randomly generate a beta variate from the two-parameter beta

distribution for X and V in Population 1. This beta variate, which is

referred CO as p; represents a proportion-correct true score; (IMSL;

1982 subroutine GGBTR was used to generate the true score.)

(ii) Randomly generate a variate from a binomial distribution with

parameter p based on kv trials. This variate represents observed

score on V; (IMSL; 1982 subroutine GGBN was used to generate binomial

variates;)

(iii) Randomly generate a variate from a binomial distribution with

parameter p based on kg trials. This variate represents observed

score on the non-common items.

(iv) Add together the binomial variates from steps ii and iii. This sum

represents observed score on the total test form; X.

(v) Repeat steps i theciagh iv n times, where n represents thr! sample size

used in the simulation. This results in a set of n pairs Of observed

scores for X and V.

Nekt, by substituting I for X and Population 2 foc Population 1 in the

above steps; n pairs of obserVed scores were generated for Population 2 using

19
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the appropriate beta parameters. At this point; we have n patrs of scores on

X and V for POptilation 1 and n pairs of scores on Y and V for Population 2.

Based 3n these simulated data; a Form Y equivalent of each Form X integer

score was obtained usin6 Tucker equating with w1 w2 = 0.5; Also; standard

errors of equating were estimated for each X (integer) score based on the

delta method with the normality assumption as well as the delta method without

the normality assumption. This whole process was replicated 500 times.

The "true" standard error of equating for a given integer score on X is

defined here as the standard deviation of Form I equivalents of that score

over the 500 replications. The nonnormal delta method standard error

associated with each X (integer) score is the mean delta method standard error

derived without the normality assumption over the 500 replications. The

normal delta method standard error is define similarly.

Nonsymmetrtc and symmetric simulations were each conducted using sample

sizes of 100 and 250 simulated examinees per f rm. The "true"; nonnormal; and

normal Standard errors at selected score points are shown in Table 4. Also

shown are root mean squared errors (RMSE) in estimating the standard errors.

As an example of how to interpret Table 4 consider the top r60. The data in

this row are for the nonsymmetric simulation with sample size of 250 examinees

per test form, as indicated in the table. This top row gives standard errors

for estimating Tucker equivalents on Form Y of a score of 120 on Form X. The

"trae" standard error is 1.01, the nonnormal standard error 0.96; and normal

standard error 1.12. Root mean squared errors in estimating the nonnormal and

normal standard error also are shown.
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Inset:: Table 4 about here

For both nonsymmetric simulations, the normal standard errors tend to be

different in pattern froM the "true" standard errors. The nonnormal standard

errors are similar in pattern to the "true" standard errcitS However; at a

sample size Of 100 per form the nonnormal standard errors are uniformly too

small. At 250 examinees per form the nonnormal standard errors are similar to

the "true" standard errors.

For a sample size of 100 per form in the nearly symmetriC simulation,

both the nonnormal and normal standard errors are not too diSSitilat from the

"true" standard errors. The nonnormal standard errors tend to be too small

while the normal standard errors tend to be too large; For a sample size of

250, the nonnormal standard errors are nearly identical to the "true" Standard

errors; whereas the normal standard errors are too large.

Root mean squared errors in estimating the delta method standard errors

also are shown in Table 4. To calculate RMSE We find the variance of the

estimated standard errors over the 500 replications and add to it the squared

difference between the "true'' standard error and delta method Standard

error. The Square root of this sum is the RMSE. The RMSE is a measure of the

variability in estimating standard errors. Smaller values of RMSE are

indicative of more accurate estimation.

Recall that the estimation Of the normal standard errors requires

estimation of only means, variances; and covariances; whereas the estimation

of the nonnormal Standard errors requires the estimation Of these parameters

21
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as well as :tgher order central moments and crossproduct moments. Because

higher order moments and crossproduct moments may be difficult to estimate

precisely due to sampling variability, the nonnormal standard errors may be

more difficult to estimate than the normal ones. However, all but the

nearly symmetric simulation with sample size of 100 in Table 4i the RMSE is

smaller for the nonnormal standard errors than for the normal standard errors.

The results of the simulation indicate that for both tests simulated, the

nonnormal standard errors are more accurate than those based on normality

assumptions when salaple size is 250 examinees per form.

Boots-tr standard Erroxs

Even though the simulation provides evidence of the behavior of the

standard errors, a study of the delta meth d standard errors of equating using

actual test data seems desirable. Efron [1982] describes an alternative to

the delta method which he refers to as the bootstrap, and he presents a

variety of examples in which the bootstrap resulted in standard errors that

were more accurate for small sample situations than those based on the delta

method.

The computation of bootstrap standard errors requires extensive

resampling from the sample data. Thus a highspeed computer is essential.

Generally, to compute bootstrap standard errors, a random sample is drawn with

replacement from the sample data at hand, the statistic of interest is

calculated, and this process is repeated a large number of times. The

bootstrap standard error is the standard deviation of the computed values
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the statistic over repetitions of the process; The following steps are used

to bootstrap standard errors of Tucker equating;

(i) Begin with the hi examinees from Population 1 with scores on X and V

and the h2
examinees from Population 2 with scores on Y and V;

(ii)Dragarandomsamplewithreplacemer,tOfsize
n-examii:ees; from thei

sampledataofthe-examinees from Population 1. The sampling

involves drawing pairs of X and V scores. Since the sampling is with

replacement, a particular examinee's score pair easily could be chosen

more than once.

(iii) Drag a random sample with replacement of size nt etaminees; Erna the

sample data of the n2 examinees from Population

(iv) estimate the Tucker equivplent at x using the data from the random

samples drawh in steps ii and iii, and refer to this estimate

as -(x) .

(v) Repeat steps ii through iv B times obtaining bootstrap estimates

1 2
(x),...,X-(x) .

Approximate the standard error by;

se
Boot

Lt(X ) l.(x)] /(B = 1) }1/2, (15)

B

where; (x) = E_ ik(x)/B
u

These procedures can be applied at any x.

Real Data EXamplj

Data from forms K and Y of a 125 item multiple choice professional

certification testing program are used in this example. Fort X was

2,3
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administered to 773 examinees from Population 1 and Form Y to 795 examinees

from Population 2, and the forms were administered one year apart. The two

forms contain a common set of 30 items; referred to as V; Summary statistics

are shown in Table 5. The means suggest that the forms and common items were

fairly easy for these examinees. The average examinee correctly answered

approximately 77% of the items. According to the skewness indices, the score

distributions are markedly skewed; and the kurtosis indices indicate that the

distributions are more peaked than a normal distribution.

Insert Table 5 about here

Results from Tuckr equating with w- = 14,; = 0.5 and standard errors cf

equating are shown in Table 6. Consider a Form X raw score of 100 in the

first column of the cable. Reading across, this score has a percentile rank

of 54.7 and a Form Y equivalent of 102.7. The standard error of this equiva

lent is 0.33 under normality assumptions; 0.29 without these assumptions, and

3.28 using zhe bootstrap. A + one staadard error band for the Form

equivalent of a Form X score of 100 is 102.7 + 0.29 or appr, cimately (102,4,

103.0) for the delta metl-,od standard errors derived without the normality

assumption.

insert Table 6 about hei,
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Generally; the standard errors are Smallest near the average score and

become larger as we move away from the average score. The standard errors

under the normality assumption are slightly larger at the higher scores and

are smaller at the lower scores than those derived without the normality

assumption and those calculated by the bootstrap. Standard erros for the

bootstrap and the delta method without the normality assumption are nearly

identical.

For this testing program the passing score is usually close to a raw

score of 80. So, equating error is crucial in this region. From Table 6, at

raw score of 80; the delta method Standard error of equating is .44 under

the normality assumption And .54 without such an assumption. The error

variances are, respectively, ;19 (.442) and .29 (.542). Thus at a score of

80, the error variance under normality is only 66% [100(.19)/.291 of the size

of the error variance under the less restrictive assumption. Based on the

less restrictive assumption; these reSilltS Suggest that instead of

approximately 780 examinees; we would need approximately 1,182 (780/.66)

examinees to obtain the precision implied by the error variance based on the

normality assumption, which is a substantial difference. The cli586 agreement

between the bootstrap standard errors and the delta method standard errors

derived without the normality assumption in combination with the findings frOM

the previously discu6Sed titintitittal simulations shown in the RMSE column in

Table 4 suggest that; for this real data example; the sample size estimates

using the standard errors based on the normality assumption likely are not as

accurate as those based on the less restrictive assumption.
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Discus-Sian-

The results of the computer simulation indicate that for Tucker equating,

the standard errors derived without the normality assumption are more accurate

than those dertved with the normality assumpti-A for sample sizes of 250 or

more examinees per test form. The results also indicate that the standzxd

errors derived With the normality assumption may be acceptable when test score

distributions are nearly symmetric, but these standard errors appear to be

inadequate for nonsymmetric distributions. The results of the real data

example indicate that the standard errors with the normality assumption may

suggest substantially more equating precision in the crucial range than is

actually the case.

In the real data example, the bootstrap standard errors are very similar

to the delta method standard errors derived without the normality assumption,

which are preferable to the bootstrap standard errors for cost and ease of

computation reasons. Still, the resdlts are encouraging for the use of the

bootstrap in equating contexts. Ultimately, the bootstrap may prove useful

for estimating standard errors of equating in complicated situations such as

in chains of dependent equipercentile equatings or in smoothed equipercentile

equating.

The standard errors derived in this paper index equattng error that is

due to examinee sampling. Error that results from a failure to meet the

assumptions required for Tucker equating is not reflected in the standard

errors. Braun and Rolland [1982] suggest some procedures for checking these

assumptions, although they indicate that not all of the assumptions are

testable without collecting additional data. The assumptions required in
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Tucker equating seem most reasonable for testing programs in which:

(i) examinee populationS do not change much from test date to test date;

(ii) the content balante Of the set of common items is very similar to the

content balande of the total test forms; and the total test forms are each

bdilt to the same specifications; and (iii) the statistical characteristics of

the set of common items are very similar to the statistical characteristics of

the total test forms; and the total test forms are similar to one another in

statistical charadteriStiCS. Characteristics ii and iii are most readily

achieved for testing programs in which tests are constructed from a large pool

of items with item statistics that are accurately estimated from pretesting or

previous use

One reason fot deriving standard errors without the normality assumption

is that many testing programs produce score distributions which deviate

markedly from a normal distribution. For example; professional certification

testing programs often produce markedly negatively skewed score distributions

that result; in part; because the mean score on such examinations is often in

the range of 68% to 80% of the items correct; Many of the testing programs

that pro-dude skewed distributions are equated using linear method§ under the

common item nonrandom groups design with large sample sizes (250 or more

examinees per test form); For such programs; the results of the analyses in

this paper indicate that for Tucker equating; the standard errors derived

without the normality assumption are reasonably accurate and preferable to

those derived with the normality assumption.

2 7
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TABLE 1

Partial Derivatives of Tucker Linear Equating Equation

With Respect to EaCh Sample Statistic and Evaluated at the Parateters

Statiatit Derivatives Evaluated at Parameters

0_1 00
S S

G_(?)/a_(x)

u (V) w2as(Y)-ci1(X1V)/ -(X) + wlviz* 4(YIV)[u1(V) u2(V)1/ (Y)

=WiW2a(Y)t* 4.(X111)[pi(V) - -(V)Pa:(X) + Wid2(Y1V)

a7(X) -t-O-(Y)/[2a(X)]
1 x s

cr-

2
( ) -wt%(Y) dt(XIV)[01(V)

1

al (XiV)

+Wl;y (YIV)/[2%(Y)]

-a(Y)z*4.(XIV)(1 + wi = 2a:(V)/4(V)]/[2a(X)]

tc

-2=
,%(Y)[ui(V) -

1

(X)ai(V)]

-a4(Y)23t iii(XIV)[d(V)/dt(V) -1]/a!(X)

1

-wa,(Y) oi(XIV)/%(X) - wiw7zx 4(YIV)H1(V)

+w-w-2a_s (Y)z_ (1i (XIV)[ui(V) -(V)]id:(X) w yYIV)

02(V)1/%(Y)

a2"2

(Y) zlt/[2 (Y)]

a'2 (V) =Wai(Y)tii 4(X111)/[2a:(X)] wicii(YIV)[mi(V)

+tx4(YIV)[1 + wi - 2a:(V)/4(V)]/[2d(Y)]

zxa(yiv)[(522s(v)/4(v) =1]/G(y)

+w
1
Lu

1
(V) -= U-2 (V)P-a-2 (V)

2 J 2
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TABLE 2

Sampling Variances and Covariances Of BiVarlate MOments

Statistic(s)

Sampling Variance or

Covariance--General

Sampling Variance or

Covartance-Normal Nistribution

Var[;(X)1

var[O2(X)1

varra(X,Y)1

covip(X) 11(1)1

a

lE[1(

a(X;Y)/n

(X)/n

o(x)]4 d4

)}/n

11001 (Y 00012 02(X,Y)16

-2-

2a4(x)/n

[62(x)_02(y) d2-0(1y)Iiii

o(X;Y)/n

E[X 4)1 in 0

0001[Y 0(Y)] /fi 0

cov[Ap(X) Act(X,Y)1 E[X 000121Y p(Y)1/n 0

covk (Y)1

cov[Aa2(X) , Aci(X,Y)1

2:

2a (XiY)/n

2

u(K)13 [Y p(?)] 0200aNY)1/11 20(XiY)a (X)/n

30

Note: The terms in the body of the table were adapted from Kendall and Stuart (1971; pp. 85; 245,

246 and 250) and are typically based on large sample theory; Also, E refers to expected

value.
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TABLE 3

Population Means; _Standard Deviations; Skewness; and Kurtosis

for Simulated Observed Score Distributions

Variable PopulatiOn

Wither of
Items Mean

Standard
Deviation Skewness Kurtosis

Nonsymmetric

X 125 97.22 14;37 -0;66 3.24

125 93.75 15.72 -0;60 3.09

1 30 23.33 3.94 -0.67 3.23

9 30 22.50 4.26 -0.60 3.09

Nearly Symmetric

X 1 52 25.57 7.95 0.02 2.60

Y 2 52 26.49 8.37 -0.02 2.55

V 1 15 7.39 278 0.02 2.55

2 15 7.64 2.88 -0.02 2.51

I- J
Niite: Skewness is Pearson s and kurtosis is Pearson's (3- index;
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TABLE 4

Standard Errors of Tucker_ Equating for Two Simulated Tests

and at Two Sample Sizes

RMSE in Estimating

Standard Error Standard Error

Score on
Foe6 X -True Nonnormal Normal N.onnormal Normal

Nonsymmetric ni. 250

120 1.01 0.96 1.12 .08 .13

110 0.70 0.68 0.81 .04 .12

100 0.58 0.59 0.63 .02 .06

90 0.75 0.78 0.69 .05 .07

80 1.09 1.10 0.94 .08 .15

70 1.48 1;47 1.28 .11 .21

60 1.89 1.87 1.65 .15 .26

50 2.32 2.27 2.03 .19 ;31

Nonsymmetric nl =n2 =100

120 1.55 1;49 1;76 .16 .96

110 1.07 1.06 1.27 .09 .22

100 0.94 0.93 0.99 .06 .08

90 1.28 1.21 1.08 .14 .22

80 1.85 1.71 1.48 .25 .39

70 9.49 2.28 2.00 ;36 .52

60 3.16 2.89 2.58 .47 .63

50 3.84 3.51 3.19 .57 .72

Nearly Symmetric ni=n2=250

50 1;12 1.12 1.20 .07 .10

40 0.73 0;74 0.78 .05 .06

30 0.44 0.45 0.45 .02 .02

20 0.46 0.46 0.48 .02 .03

10 0.78 0.77 0.82 .05 .06

0 1.16 1.15 1.25 .07 .11

Nearly Symmetric ni=n2=100

50 1.82 1.77 1.89 .20 .17

40 1;20 1.16 1.23 ;13 .11

30 0.73 0.70 0.71 ;06 .05

20 0.77 0.73 0;75 ;07 .06

10 1.27 1.22 1;31 .13 .11

0 1.90 1.83 1;98 .20 .18
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TABLE 5

Raw Score Summary Statistics for Porma X and Y and Common -items V

for a Professional Certification Program

Variable

Standard

GrOilp Mean Deviation Skewness KUttOSia

V

1 95.75 13.38 -1.03 3.91

2 96.84 13.37 -1.00 3.89

1 23.18 4.05 -0.84 3.48

2 22.54 4.31 -0.79 3.47

Note: Skewness is Pearson's ilEi_and kurtosis is Pearson's 02 index

Sample sizes are 773 and 795 for Groups 1 and 2; respectively.

There are 125 items on X and Y and 30 items on V.
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TABLE 6

Standard Errors of Tucker Equating
for a Professional Certification Program

P6etii x

Raw Stdre

Percentile Rank
In Group 1

Form Y
tuivalent

Standard Errors

Normality Nonnormality Bootstrapl

125 100.0 126.5 0.71 0.67 0.69

120 99.9 121.7 0.61 0.56 0.58

115 98.0 116.9 0.53 0.47 0.48

110 90.1 112.2 0.44 0.38 0.39

105 73.4 107.4 0.38 0.32 0.32

100 54.7 102.7 0.33 0.29 0.28

95 40.2 97.9 0.31 0.30 0.30

90 27.3 93.1 0.32 0.36 0.35

85 13.6 88.4 0.37 0.44 0.44

80 12.1 83.6 0.44 0.54 0.53

75 8.9 78.9 0.52 0.64 0.64

70 6.0 74.1 0 61 0.74 0.75

65 3.8 69.4 0.70 0.85 0.86

60 2.3 64.6 0.80 0.96 0.97

55 0.6 59.8 0.90 1.08 1.08

50 0.0 55.1 1.00 1.19 1.20

'Based on B = 1000 bootstrap replications.
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