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- : Abstract

:

A theory of how people lean certain procedural skills is presented. it is based on thpf idea
that the teaching and learning that goes on in a classroom is like an ordinary conversation.
The speaker (teacher) compresses a non-linear knowledge structure (the target procedure)
into a linear sequance of utterances (lessons). The listener {student) constructs a
knowledge structure (the learned procedure) from the utterance $e{'.|uence {lesson
sequence). In recent years, linguists Yave discovered that speakers, unknowingly obey
certain constraints on lhe sequential form of their utterances. Apparently, these tacit
conventions. cailed felicity conditions or conversational postulates. help listeners construct
an appropriate knowledge structure from the utterance sequence. The analogy between
conversations and classrooms suggests that there might be felicity conditions on lesson
sequences that help students learn procedures. This research has shown that there are.
For the particular kind of skill acquisition studied here, three felicity conditions were
discovered. They are the central hypotheses in the learing theory. The theory has been
embedded in a model, a large computer program that uses artificial intelfigence (Al)
techniques. The model's performance has heen compared to data from several thousand
students learning ordinary mathematical procedures: subjracting multidigit numbers, adding
fractions and solving simple algebraic equations. A key criterion for the theory is that the set
of procedures that the model “learns" should exactly match the set of procedures that
students actually acquire, including their "buggy"” procedures. However, much more is need
for psychological validation of this theory, or any compiex Ai-based theory. than merely
testing its predictions. Part of the research has involved Fnding ways to argue for the
validity of the theory. "
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Felicity Conditions for Human Skill Acquisition:
Validating an A-based Theory
G .

, )
' Kurt Vanl.chn

Abstract

+

A theory of how people Ic@l certain procedural skills is presented. It is based on the idea that the
teaching and learning that g8es on in a classroom is like an ordinary comcrsation. The spcaker
(teacher) compresses a non-lincar knowledge structure {the target procedurc) into a lincar sequence
of utterances (lessons). The listencr (student) constructs a knowledge structure (the learaed
procedure) from the utterance sequence (lesson sequence). In recent years, linguists have discovered
that specakers unknowingly obey certain constraints on the sequential form of their utterances.
Apparcntly, these tacit conventions. called felicity conditions or comversational postulates, help
listeners construct an appropriat¢ knowledge structure fromthe utterance sequence. The analogy
between conversations and classrooms suggests that there gnight be felicity conditions on lesson
sequences that help students learn procedures.  This rescarch has shown that there are.  For the
particular kind of skill acquisition studied here, three felicity conditions were discovered. They are
the central hypotheses in the learning theory. The theory has been embedded in a model, a la.ge
computer program that yses artificial intelligence (Al} techniques. The model's performance has
been compared lo data from scveral thousand students lcarning ordinary mathematical procedures:
subtracting multidigit numbers, adding fractions and solving simple algebraic cquations. A Key
criterion for the theory is that the set of procedurcs that the model “learns” should ¢xactly match
the set o procedures that students actually acquire, including their "buggy” procedurcs. However,
much more is need for psychological validation of this theory, or any complex Af-based theory,
than mercly testing its predictions. Part of the rescarch has involved finding ways to argue for the
validity of the theory. . -
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; Chapter 1
Objlectlves of the Research N

)

‘ . AN

There arc two goals for the rescarch presented here.  One is psychologicpl and the othcr is
methodological. The psyctological goal is to formulate and validate a theory of a certain 'Kind of
human learning. The metiodological goal is to use artificial intelligence (Al) techniques o model
that learning. and t0 do it in such a way that the complcxny of the Al-based model does not
prevent the theory fromm mecting rigorous criteria of scientific validity. The first section of this
chapter discusses the psychologlcal goal; the secprtd section discusses the mcthodological one. The
third section introduces “the grganization of the rest of the document.

v

1:1 The psychological goal; Step theo;‘y and rc[;air theory

Onc goal of this rescarch is a psychologically valid theory of how people learn ceriain
procedural skills. There are ,other Al-based theories of skill acquisition (c.g. Anderson. 1982:

"~ Newell & Roscnbloom, 1981), However, their objectives differ from the ones pursucd here. They

concentrate on Kknowledge compliation: the transformation of slow, stumbling performance into
performance that is “faster and more judicious in choice” (Anderson, 1982, pg. 404). They study

skills that arc taught in a simple way: first the task is explained, then it is practiced until proficiency

is attained, For instance, Anzai and Simon (1979) modclled a subject whose skill at solving the
Tower of Hanoi puzzle cvolved from a slow, stunibling first attempt into an abllity to solve the

puzle rapidly using the optimal sequence of moves. The subject received no instruction after the’
initiai description of the puzzle’'s operations and objectives. The rescarch presented here studies
skills that arc taught in a more complex way: the instruction is a lesson sequence, where cach lesson
consists of explanation and practice of some small piece (subsklll) of the witimate procedural sklll

Studying multi-lesson skill acquisition shifts the central focus away from practice effects (kn0wlcdge
compilation) and towards a kind of siudent cognition that could be called knowledge integration: the
construction Of a procedural skill from lessons on its subskills,

£

This study puts more emphasis on the teacher's role than the knowledge compilation research
does, [t is not the case that multi-lesson skill acquisition occurs with just any lessor sequence.
Rather, the lesson sequences are designed by the teacher to facilitate knowledge integration.
Knowledge integration, in turn. is “designed” to work only with certain kinds’of lesson sequences.
So, what is really being studied is a teacher-studeént system that has both cognitive and cultural
roots. An cqually appropriate name for the central focus of this rescarch js knowledge
communécation: the transmission of a procedural skill via lessons on its subskills.

The skills chosen for the present investigation are ordinary, written mathematical calculations.
The main advantage of mathemati®al procedures, from the experimenter’s peint of view, is that they
are virtnally meaningless for the learmer. They scem as jsolated from common sense intuitions as
the nonscnse syllables of carly learning rescarch. In the case of the subtractlon procedure, for
cxample, most clementary school students have only a dim conception of its underlying scmantics,
which is rooted in the basesten representation of numbers. When compared 0 the procedures they
usc to operate vending machines or play games, arithmetic procedrres are as dry, formal and

10
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disconnected from everyday interests a5 nonsense syllables are different fivin real words.  This
iolation is the bane of teachers, but a boon to psychologists. 1t allows psycholugise to study a skill

- that is much more ccmplex than #ecalling nonscnse syllables, and yet it avoids biinging in a whole
world's worth of azsociations. . -

It is worth a moment o review how mathematical procedures are tought in a typical American 5
school. 1n the case of subtraction. there are about ten lessuns in its lesson sequence. Tl lesson ,
' xequence introduces the procellure increinentally, one step per lesson. su o speak. For instance, the
first lcsson might show how to do subtraction of two-column prablems. The sccond lesson
: dcmunSlp.nc\ $ three-coltmn problem sulving. *“The third introduces burrewing, «and so on. The ten
lessons are 5prcad over about thiee years, starling in the late sccond grade (i.e. at about age seven).
{fhese lcssons are interleaved with review lessons and lessons on many other topics. 1n the
_classroom, a typical lesson T35t an hour. Thgeacher solves soine problems vn the buard with the
class, then the students solve problems qn/thg:it.own. If they need help. they ask the teacher, or P
, . they refer to worked examples jn e textbook. A textbook cxample consists of a seQuence of
captioncd “shapshots” of a problem being solved, c.g.

-

’ Take'la ten to Subtract . Subtract
. ‘ make 10 ones. the ones. the tens.
3 ' . 2 » 2 . 2 , .
\ ﬁls ﬁls ;15
- w18 -19 - -19
b : ' 6 16

1

Textbooks have very little text cxplaining the procedure (young children do not read well).
Textbooks comain mosilly cxamples and excrcises.
-

»
Math bugs reveal the learning process . .
"’ ' \

Error data arc used in testing the theory. ‘There have been many cmpirical studies of the
errors that students make in arithmetic (Buswcll, 1926: Biueckner. 1930: Brownell, 1941; Roberts,
1968: Lankford. 1972; Cox, 1975; Ashlock., 1976). A common analytic notion is o scparate
systematic crrors from carcless errors.  Systematic errors appear to stem from consistent application
e of a faulty mcthod, algorithm or rule. These crrors occur along with the familiar unsystematic or
“carcless” errors (¢.g. a facts crror, such as 7—3=5), or siips as | prefer to call them (c.f. Norman
1981). Since slips occur in cxpert performance as well as sudent behavior, the common opinion is
that they are performance phenomena. an inhcrent part of the "noise™ of the human information
processor.  Systematic crrors on the other hand arc taken as stemming from mistaken Or missing
knowledge about the skill, the product of incomplete or mISgI..Ide lcarning. Only systematic crrors
arce uscd in testing the present ticory,

Brown and]Burton used the metaphor of bugs in compulter programs in developing a precise,
detailed dcscript{vc formalism for systematic crrors (Brown & Burton. 1978). The basic idea is that
a studcnls errors can be accurately “cproduced by taking some formal representaiion of a correct

’ procddurc and making onc or more small perturbations to it, cg. deleting a rule. The
perturbations arc cafled bugs. A systematic crror is represented by a set of one Or more bugs in a
correct algorithm for the skill. Bugs describe systematic crrors with unpracedented precision,  If a
student makes no slips. then his or her answers on a test will be exactly mached by the buggy
algorithm’s answers, digit for digit. To illustrate the notion of bugs. consider the' following
problems, which display a systematic crror:

ERIC ‘11

Aruitoxt provided by Eic:
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308 80 - 183 702 3005 7002 34 251
- 138 - 4 - 95 - 11 - 28 - 239 - 14 - 47
78 76 88 591 1087 4873 24 244

-]

.One could vaguely describe™ these problems as coming from a student having trouble with
borrowing. cspecially in the prescnee of seros. More precisely, the student nisses al! the prublems
that require borrowing from #ero. One could say that the student has not mastered the subskill of
borfowing across zero. “This description of the systematic error is fine at one level: it is a testable
prediction about what new problems the student will get wrong. It predicts for example that the
student will miss 305-117 and will get 315-117 correct.  Systematic errors described at this level ape
the daca upon which several psychological and pedagogical theories have been built (e.8. Durmin &
Scandura, 1977).

Bugs go beyond describing what kinds of cxcrcises the student misses. They describe the,
actual answers given. The student whose work appcearts above has a bug called Borrow: Ac,uss-Zero.
A correct subtraction procedure has been perturbed by deleting the step wherein the zero is
changed 10 a ninc during borrowing across zero. This modifcation <reates a procedure for
answering subtraction problems. As a hypothesis, it predicts not only which new problems the
student will miss, but also what the answers will be. For example. it predicts that the student above
would answer 305-117 =98 and 315-117=198. Since the bug-based descriptions of systematic crrors
predict behavior at a finer level of detail than missing-subskill descriptions, they have the potential
to form a betier basis for cognitive theories of lcarning and problem solving. Bug-based analysis is
used in ftesting this thcory.

It is often the case that a student has more than onc bug at the same time. Indeed, the
example given above illustrates co-occurrence of bugs. The last two problems are answered
incorrectly but the bug Borrow-Across-Zero docs not predict their answers (it predicts the two
problems would be answered correctly). A sccond bug. called DifFN—N=N, is present. Wh2n
the student comes to subtract @ ¢olumn where the top and bottom digits are cqual. instcad of
writing zero in the answer, the student writes the digit that appears in the column. So the student
has two bugs at once. :

Burton developed an automated data analysis program, called Debuggy (Burton, 1981). Using
it, data from thousands of siudents Icarning subtraction were analyzed, and 76 different kinds of
bugs were observed. Similar studics discovered’ 68 bugs in addition of fractions (Shaw ct. al., 1932),
several dozen bugs in simple lincar equation solving (Sleeman, forthcoming), and $7 bugs in
addition and subtraction of signed numbers (Tatsuoka & Baillie, 1982).

It is important o stress that bugs are only a notation for systematic cirors and not an
explanation. The connotations of "bugs” in the computer programming sense do not necessarily
apply. In particular, bugs in human procedures arc unstable. They appear and disappear over

—~——-— short periods of time, often with no intervening instruction, and sotnctimes cven in the middle of a
testing session {Vanl.chn, 1981; Bunderson, 1981). Ofien, onc bug is replaced by another, a
phenomenon called bug migration. v

Mysterics abound in the bug data. Why are there so many different bugs? What causes

them? What tauscs them to migrate or disappear? Why do certain bugs migrate only into certain

" other bugs? Ofien a student has more than onc bug at a time — why do certain bugs almost

always occur together? Do co-oceurring bugs have the same cause? Most importantly, how is the
educational process involved in the development of bugs?

This rescarch was launched partly in order to explain the mysteries just mentioned. The goat

12
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is to give a unified account of what causes students 0 hav. just the speciﬁg bugs that they do have.

As an illustration of the kind of explanations that the present theory offers. consider a common bug

among subtraction students: the student always borrows from the. /efimiest colunn in the problem

no maiter which colwinn oiiginaies the Bofrowing. Problem a below shows the coirect placement of
- borrow's decrement.  Problem § shows the bug's placement.

-

5 . 2 . 5
a 3 65 b. 38'6 c. 8l
‘ ~109 ~109 -
. 2586 166 48

(The small numbers represent the student’s scratech marks.) Debuggy’s name for this bug is Always-
Borrows-l.eft. It is moderately common: In a sample of 375 students with bugs, Six students had
this bug. 1t has been observed for years (c.i. Buswell, 1926, pg. 173, bad habit number 527).
However, no ¢ne has oficred an explanation for why students have it. The thcory offers the
following cxplanation, which is based on the hypothesis that students usc induction (generallzation
of examples) to learn where to place the borrow’s decrement.  Every subtraction curticulum that 1
know of introduces borrowing using only two-column problems, such as problem ¢ above. Multi-
column problems. such as @ arc not used. Consequently. the student has insufficient information to
unambiguously induce where to place borrow's decrement. The correct placemem is in the left-

adjacent column, as in a. However. two-column examples are also consistent with decrementing the.

leftmost eclumn, as in & If the student chooses the lefimost-column generalization. the student

" acquires Always-Borrow-Left rather than the correet procedure. According 1o 1his explanation, the
cause of the bug is twofold: (1) insufficiently varicgated instruction, and (2) an unlucky choice by
the swdent,

The bugs that students exhibit are important data for developing the theory. These bugs will
My be called observed bugs. Equally important are bugs that students den? exhibit. When there are
strong "reason$ to belicve that a bug will never oceut, it is called a stgr bug (after the linguistic
convention of placing a star before sentenees that native speakers would nevet ulter naturally). Star
bugs. and star data in general, are not as objectively attanable as ordinary data (VanLchn, Brown &
Greeno, in press). But they are quite useful. To sce this, consider again the students who are
taught borrowing on two column problems such as problem ¢ above. In two-column problems, the
borrow’s decrement is always in the fens column. Henee "teus eolumn” Is an inductively valid
description of where to decrement. However, choosing "tens column” for the decrement’s
description predicts that the student would place the decrement in the tens column regardless of
where the borrow originates.  This lcilds to strange solutions, such as 4 and ¢ below:

5 15

d. 1l5 ¢ & e. als &
-~ 910 . ~190
1660 ° 2665

To my knowledge, this kind of problem solving has never been observed. In the opinion of several
expert diagnosticians, it never will be observed. Always decrementing the tens column is a star byg,
The theory should not predict its gecurrence. This has important implications for the theory. THe
theory must explain why certain inductively valid abstractions (8., lefimost column} are used by
_«students while certain other abstractions (e.g. tens column) are pot. .

These examples have illustrated one side of the rescarch problem: to understand certain
- aspects of skill acquisition (i.c., knowledge integration/communication) by studying bugs, The next
subsection is a brief discussion of the theory, It concentrates on the insights that have been
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obtained into how buggy procedures are acquired.

Step theory. repair theory and felicity conditions

For historical and other rcasons, it is best to view the present theory as an integration of tvp
theories.  Step theery describes how students acquire procedurcs from instruction.  Repair theory
describes huw students barge through situations where their procedure has reapched an Impasse.™
The two theorics share the same representations of knowledge and much else. 1 will continue to
refer to then together as "the theory.”

Repair theory is based on the insight that students do not trcat procedures as hard and fast
algorithms. [f they are unsuccessful in an attempt to apply a procedure to a problem. they are not
apt o just quil. as a compuler program docs. Instead. they will be inventive, invoking certain
general purpose tactics to change their current process state in such a way that they can continue
the procedure. These tactics ‘are simple ones. such as skipping an operation that can’t be performed
or backing up in the procedure and taking another path. Such local problem solving tactics are
called repairs because they fix the problem of being.stuck. They do not fix the underlying cause of
the impasse. Given a similar exercise later, the student will reach the same impasse. On this
oceasion, the student might apply a diffcrent repair. This shifting among repairs is one explanation
of bug migration. A remarkable carly success of repair theory was predicting the existence of this
kind of bug migration before the phenomenon was observed in the data.

Step theory is based on the insight that classroom lcarning is like a conversation in that there
arc certain implicit conventional expectations, called felicity conditions, that facilitate information
transmission. In this domain, the felicity conditions all seem to reflect a single basic idca: students
expect that the teacher will introduce just onc new "piece™ of the procedure per lesson, and that
such “pieces” will be "simple” in certain ways. Although students do not have strong cxpectations
about what procedures will be taught, they have strong cxpectations about how procedures will be
taught. * Step theory takes its name from a slogan that expresses the students’ expectations:
procedures arc taught one simple step at a time.  Scveral felicity conditions have heen discovered,
including:

1. “Students expectlesson to introduce_at most onc new “piece™ of procedure that is, rough.y
speaking, one disjunct of a disjunction. Such “pieces” are called subprocedures. This felicity
condition will be described in more detail in a moment

2. Students inducc their new subprocedure from examples and exerciscs. That is, students
expect the lesson’s material to correctly excmplify the lesson’s target subprocedure.

3. The students expect the lesson to “show all the work™ of the target subprocedure. This
felicity condition, called the show-work principle, requires a little more explanation. Suppose
a target subprocedure will vltimately involve holding some intermediate result mentally, as
when solving 3-+4-35, onc holds the intcrmediate result 7 mentally. When this subprocedure
is introduced, the show-work principle mandates that the lesson’s cxamples write the
intcrmediate result down. In a later lesson, the students may be taught to omit the cextra
writing by holding the intermediate result mentally.

* John Sccly Brown originated rcpair theory (Brown & Vanlchn, 1980). The present version

remains true to the insights of the original version although most of the details have changed.
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Austin (1962) invented felicity conditions as a way of analysng ordinary conversations. A typical
linguistic felicity condition is: In nonmnal conversation, the speaker. uses a definite noun phrase only
if the speaker believes the listener can unambiguously determine the noun phrase’s referent.
Typically, ncither the speaker nor the hearer is aware of such constraints. Yet, if o conversation
violates a felicity condition, it is soiehow marked. ¢.8.. by the speaker appearing sarcastic or the
hcarer inisunderstanding the speaker.  Austin's idea has been developed by Searle. {1969), Grice
(1973). Gordon and Lakoff (1971). Cohen and Perrault (1979) and many others. It has becoine a
whole new field. discourse analysis. “The present work is. 1o my knowledge, the first application of
ideas from discourse analysis o the study of learning. Two kcy ideas have been imnported:

1. Felicity conditions are operative constraitas ©n huyman behavior despite the fact that the
participants are not aware of them. Textbook authors probably do not consciously sealize that
the lessons they write obey c.g.. the show-work principle. They strive only to make the
lessons effective. So too, the speakers in a ¢onversation try only 0 cominuniate ceffectively,
and are not aware that they obey certain felicity conditions.

2. The sceming purpose of felicity conditions is to expedile communication. In particular, there
scem 0 be certain inkerent problems that the listener {student) must solve. For instance.
whencver a speaker uses a noun phrase, the listentr miust decide whether it refers to a
previously mentioned object or 1o vne that is new to the conversation. Ihe felicity condition
mentioned a moment ago helps the listener decide: IF I say "the theory” right now. you will
probably take it to mean the one presented in this paper. If I say "a theory,” you will
probably take it to mean a hitherto unmentioned theory that [ will soon be telling you

*something about. Felicity conditions expedite communication by helping the listener solve
inherent* problems.  Felicity conditions do not usually solve the inherent problem for the
fistener (student). but they do simplify the listener’s task. An inherent problem for classroom
knowledge communication will be discussed in a moment. -

Jther ideas from discourse analysis (c.g.. conversational implicature — the deliberate violation of a
felicity condition in order to achieve a special effect) have not yet found analogs in the domain of
classroom learning. It remains an open question just how Ffar the analogy belween conversation and
multi-lesson knowledge communication will go.

1.2 The micthodological goal: competitive arguments for cach hypothesis -

The rise of AL has given psychology the tools to build computer prograns that apparently
simulate complex forms of cognition, such as skill acquisition, at a level of deiail and precision that
is orders of magnitude greater than that achicved by carlier models of cognition. Unfortunately, the
potential of Al models 1o explain human learning (or other kinds of cognition) is largely unrealized
duc to methodological weaknesses. Until recently, it was rare for a mode! te be analyzed and
cxplicated in terms of individual hypothescs. One was asked to accept the model in fofo. Critics

" have pointed out that a typical Al/Simulation “explanation™ of intelligent behavior is to subslitute
on¢ black box. a complex computer program, for another. the human mind (Kaplan. 1981). Efforts
at cxplicating ,.‘ograms have increased recently.  Although extracting the hypotheses behind the
design of the medel is a necessary first step, many other issues remain to be addressed: What ave
the relationships between the hypotheses and the behavior? Could the given cognition be simulated
if the hypotheses were violated or replaced by somewhat different ones? Would such a change
‘produce inconsistency, or a plausible but as yet urobserved human behavior, or merely a minor
perturbation in the predictions? Which alternatives if any can now be rejected in favor of tle
chosen hypotheses? The connection of explicit hypotheses 1o the data scems to me to be critical to
progress in computational theories of cognition. ‘The emphasis must be on the cunncction;
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cxplication alonc is only a beginning.

Al has given psychology a new way of expressing models of cognition that is much more
detailed and precise than its predecessors.  Unfortunately, the increased detail and precision in
stati~g models has not beep accompanied by correspondingly detailed and precise arguments
analy zing and supporting them. Conscquently, the new, richly detailed nodels of cognitive scienee
ofien fail to incet accepted criteria of scientific theorics. It is nut new to point out that current
theorizing bwsed on comptitational models of cognition has been lax in providing such support
{Pyiyshyn. 1980: Fodor, 1981). Perhaps what is new would be to give a complex Al-based theory
proper support.  Not only would this be interesting in itsclf, but it would show that there is nothing
inherent in Al-based models thai prevents their use in scientifically acccptable theories.

‘The methodological goal of this rescarch is to give an Al-bascd thcory proper support. By
support. 1 refer to various traditional forms of scientific roasoning such as showing that specified
cmpirical phenomena provide positive or negative ¢vidence regarding hypotheses, showing that an
assumptior. is needed to maintain empirical content ana faisifiability, or showing that an assumption
has conscquenecs that arc contradictory of at least implausible, However. one form of suppost has
turned out to be particularly uscful. | have found that the internal structuie of the theory — the
way the hypotheses interact o cntail empirical coverage — comes ou! best when the theory is
comparcd with other theories and with alternative versions of itself. That is, a key to supporting .
this thecory is competitive argumentation. In practice, most competitive arguments have a certain
“king of the mountain” form. One shows that a hypothesis accounts for certain facts, and that
certain variations or alternatives to the hypothesls. while not without empirical merit, are flawed in
some way. ‘That is, the argument shows that its hypothesis staads at the top of a mountain of
cvidence, then proceeds to knock the competitors down. Two cxamples of competitive arguments
will be presented so that the remaining discussion of the validation problem can be conducted on a
more concreic footing.

|

An argumeni for one-disjunce-per-lesson :

Consider the first felicity condition listed a moment ago. A morg precise statement of it is:
Lean ing a lesson mrma'uces at most one new disjunct into a procedure. Ip procedures, a Gisjunetion
may taxe many forms. egl a conditional branch (if-then-clse). This fcllqty condition asscris that
lcamers will only learn a conditional if each branch (dxs.]ﬁct) of the condmonal is taught in a
separate lesson—i.c., the Lhcn-part in onc Jesson, and the else- part1 in another.

The argument for the felicity condition hinges on an depcndcnlly motivated hypothesis:
mathcmatical procedures are learned inductively. They arc ncra]lzcd frpm cxamples. There is an
important philosophical-logical thecorem concerning induction} If a generalization (a procedure, in
this casc} is allowed to have arbitrarily many disjuncts, then ah inductive Jearner can identify which
gencranzation it is being taught only if it is given all possible examples, Both positive and negative.
This is phys*.ally impossible in most interesting domains, including this one. If inductive lcarning
is to bear cven a remotc rescmblance to human learning, disjunctions must be constrained.
Disjuncticns are onc of the inherent problems of knowledge communicatio. that were mentioned
earlier.

Two classic methods of constraining disjunctions ‘arc (i) to. bar digunctions from
generalizations, and (i) to bias the learner in favor of gcncrah.J tions with ;Lhc fewest digjuncts. The
felicity condition is a new method. {t uses extra input information, the lesson boundaries, to control
disjunction. Thus, there are three competing hypotheses for cxplaining how human learners control
disjunction (along with several other hypotheses that won't be mentioned fiere): (i) no-disjunctions,

| N
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(it} fewest-disjuncts, and (iii} onc-disjunct-per-lesson.

Competilive argumentation involves cvaluating the entailments of cach of the three
hypotheses. 1t can be shdwn that the first hypothesis should be rejected because it forees the theory
to make ahsurd assumptions ahout the student’s initial set of concepts—the primitive concepis flom
which procedures are built.  The empirical predictions of the ather two hypotheses are identical,
glven the lesson sequences that oceur in the data. so more subtle argumenis are needed 10
differentiate between them.  Here are two:

(1} The onc-disjunct-per-lesson hypothesis explains why lesson sequences have the structure that
they do. If the fewest-disjuncts hypothesis were true, then it would simply be an accident
that lesson boundaries sall exactly where disjuncts were being introduced. The one-disjunet-
per-lesson hypothesis explains a fact (lesson structure) that the fewest-disjuncis hypothesis
does not explain. -

(2) The fewest-disjuncts hypothesis predicts that students would learn cgually well from a
"scrambled™ lesson sequence. To form a scrambled lesson sequence. all the examples in an
existing lesson sequence are randomly ordered then eliepped up into hour-long lessons. Thus,
the lesson boundarics fall at arbitrary points. (To avoid a confound. the scrambling should
not let examples from late lessons come before examples from carly lessons.) The fewest:
disjuncts hypothesis predicis that the bugs that stucents acquire from a scrambled lesson
sequence would be the same as the bugs they acquire from the unscrambled lesson sequence.
This empirical prediction needs checking. 1f it is false, as | am sure it is, then the fewest:
digjuncts hypothesis can be rejected on empirical as well as explanatory grounds.

This brief competitive argument sketchs the kind of individual suppor that cach of the theory's
hypotheses should be given. Such argumentation scems essential fur demonstrating  the
psychological validity of a theory of this c0mplcxuy

However. many hypotheses of the theory are so removed from empirical predictions that it is
difficult to show that they are well-motivated. ‘This is particularly true with the hypotheses that
define the representation used for the student’s procedural knowledge. Al models of cognition
invariably use some knowledge representation language. It is widely recognized that the architecture
of the knowledge representation has subtle, pervasive cffects on the model and the model's
empirical accuracy. Despite this belief, most discussions of knowledge representation have been
conducted on non-cmpitical grounds. {e.g. Can the knowledge representation cleanly express ghe
distinction hetween the generic coneept “clephant.” the set of all clephants, and a prototypical
clephant?) Knowledge representations have been treated as nolatiomal Sch¥mes, but they can be
taken as theoretical assertions. 1t is elcar that the mind contains information. and it is plausible that
that jnformation is structured. As Fodof (1975) points oul. it makes sense to ask if the strueture of
the mind'’s information is the same as the structure of the model’s information. where the structure
of the model's information is defined by the knowledge representation language. It is just as
sensical and important to ask whether hyputheses of knowledge representation are psychologically
true as it is to ask whether hypotheses of learning or problem solving processes are psychologically
true. However, it is considerably more difficult to ascertain the truth of hypothsae <f knowledge
represcntation since their impact on observable predictions is often gquite indirect.

A major goal of the present rescarch is (0 provide empirical arguments defending cach
principle of the theory. /ncluding the principles that define the knowledge representation. The
arguments for the knowledge representation are intricate and depend crucially on other, more casily
Gefended principles, such as the felicity conditions. The following section sketches one of the
simplest arguments,
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One-disjunct-per-lesson entails a goal stagk

The argument starts with the one-disjunct-per-iesson hypothesis, brings in some data. and
concludes that students’ procedurcs employ goal stacks. A goal stack allows a procedure to be
recussive.  For instance. a recursive procedure for doing borrowing is: :

Regroup (C) = ’
1. Add 1010 the top digit of column C.
2. BorrowFrom (the next column to the left of C).

BorrowFrom (C) =

1. Ifthe top digit of column C is zero, then Regroup (C).

A 2. Decrementthe top digit of column C by one.

i has two goals. Regroup and Borrowfrom, both taking a column as an argument. This
procedure gencrates the following problem state seQuence:

4 49
a. 5013 b. 6'%0!'3 c. 5'013 d. 5'0'3 ~—
- 8 8 - 8 8 - 8 8 ' - 8 8 RN

States & and ¢ result from a recursive invocation of the gogl Regroup. A goal stack is needed to
maintain the distinction between the two invocations of Regroup so that, for instance, the
invocation of ‘BorrowFrom on the hundreds coiumn (viclding state ¢) returns lo the right
invocation of Regroup. ‘This recussive procedure can borrow across arbitrarily many 7cros®, e.g.,

. 4 49 499
a, 5003 b. 6.0%!3 c. 6'0!3. 4. slo'o!3 e. 6'0'0'3 r. s'olols
- 88 - 88 - 88 - 88 - 88 - B8..,.

The problem state sequences just given are exactly how many students borrow across zero. But this
does not prove that they have a reeursive borrowing procedure. They could, for instance, have a*
borrow Ptocedure with two loops: one loop moves left, adding tens to zeros; the second loop moves
right. decrementing as it goes:

Regroup (C) =

1. OriginalC « C.
2. Add 10to the top digit of column C.
3. C «thenextcolumn to theleft of C.

» 4. |If the top digit of column C is zero. go to step 2. .
5. Decrement the top digit of column C.
6. C ¢ the next column to the right of C.
7. » I C#CriginalC then go tostep 5.

This two-loop 'proccdurc is not recursive. A goal stack is not nceded to interpret it. So, two very
different procedural structures are both consistent with student problem Solving behavior. The one-
disjunct-per-lesson hypothesis provides a way 1o tell which knowledge structure students have.

* The maximum depth that the goal stack achieves while solving a problem is proportional to the
number of £¢r0s in the problem. Since students can solve problems with arbitrarily many zeros, the
goal stack has no apparent maximum depib.  Evidently, this goal stack is not the same as the one(s)
that are hypothesized to underlic other kinds of cognition. c.g. parssing center-cmbedded English
sentences such as R. Stallman’s pun, "™The bug the miouse the cat ate bit bites.”
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The recursive procedure has one disjunction: the conditionat statement in Borrowf rom. The
two-loop procedure has two disjunctions: the conditional statements on lines 4 and 7. This is not
an accident.  Any two-loop procedure must have two disjunctions. one o terminate cach loop. A
recursive procedure can ‘always gel away with onc disjunction.  Tn essence. the goal stack
automatically performs the second. right-moving loop as it pops.

Since only onc disjunct is introduced per lesson. and the two procedures have different
disjundions. the two procedures will require different Icsson sequences in order to be learned. In
particular. the recursive procedure can be learncd with 4 single lesson. assi ming that the leatner
alrcady knows how to borrow from non-zcro digits (i.c.. the student can solve 57—9). The lesson
wollld have cxamples such as the problem state scquences given above. On the other hand, the N
two-loop procedure could only be learned using two lessons. | The first lesson would ntruduce just
the left-moving loop. 1t might use an cxample such as

a. 600'3 b. 50''s c. &0lo'a
- 886 - 86 - 88

which only docs part of regrouping and stops. The second lesson would coniplete the teaching of
the procedure by showing how to do the right-moving loop. It might usc an cxample such as
. ) 4 , 49 499
a. 5003 b, 603 c¢. s'''s d. 6'0'0'3 e. 5'0'0'3 . slo'o's
- 86 - 88 o= _§_B_ Il 86 = 86 - 8§68..,..

Al this point in the argument, a difficult knowledge structure issuc has been reduced to an entirely
cmpirical question: if students have a two-loop procedure. then they must have been taught it with
a lesson scquence like the two-lesson sequence above. On the other hand, if the single-lesson
sequence is the only onc in usc. then students must have a recursive procedure. Now for the punch
line: No subtraction curriculum that 1 have cxamined uscs the two-lesson sequence. The curricula
all usc the other one. The data support the hypothesis that students have a recursive borrowing
procedure. and hence, a goal stack.

An important hypothesis about knowledge representation has beenr supported by an

cntailment of the onc-disjunct-per-lesson hypothesis in conjunction with a simple cmpirical

" ohscrvation. Discovering such cntailments is perhaps the most impottant contribution that this
research has 1o make. Most of this document is devoted to describing them. (ln particular, two
other arguments supporting the goal-stack hypothesis will be presented.) Howeyer, these arguments
are often quilte a bit more complex than the oncs given above. The bug data arc particularly . -icky,
which is why thcy have been avoided here.  Complex inferences are a Stecp price (witness the
length of this document!). Arc they rcally nceessary, or is tacre a "shallow™ thcory, onc with more
casily tested assertionS, that will account for learning in this. domain? I think not. The next
subscction cxplains why. ‘

Why not use a shallow theory?

The complexity in 4 theory's verification derives from the ambition that problem solving
knowledge be described i1 cnough detail to actually solve problems. To see this, consider the fate
of a particular shallow theory, onc of a class of stochastic lcarning models that cxplain the
ubiquitous learning curves of skill acquisition {scc Newcil & Roscnbloom, 1981, for a review). A
typical modcl has a pool of responscs, some cogrect and some incorrect.  The subject’s response is
drawn probabilistically from this pool. Leaming curves are ¢xplained by simple functions which
add or replace items in the pool depending on the reinforcement given the Icarner. Consider what
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it would mean to apply such 4 model literally to learning the skill nf/ subtfaction. A sublraction
response is 4 sequence of wriling actions. l.et's say that cach umc & student observes the teacher's
cxamples or answers 4 subtraciion exercise correctly, the actmn scqucucs is added to the pool. To
answer a problem, Uie student merely draws an action -cquence from the pool and executes it.
Clearly, the student’s sulution would havlittle tv do with the problem. ard there would never be
any fearning. The mudel makes an absurd predictivn.  Althuugh une could dugment the model by
associating stimuli patterns with cach action sequence in the puol, it's clear that there are far o0
many subtraction problems for this to work. Onc would have to postulaie a matcher that finds the
¢losest pool item to the problem. At last we have sumcthing that has a prayer of predicting the
data. But now qall the interesting theoretical machinery is hiding in the maicher. Many learning
phenomena can be generated just by manipulating the matcher and the encoding it uses for the
stimuli. The shallowness of e theory has vanished. To validate the architecture of the matcher
and the representation of stimuli would require the kinds of deep inferences that this approach was
supposed to avoid. ‘The only way fo get a shallow. mogdel to work that | can scc is o ignore the
details of the response that the subjects make. and Simply classify their response as right or wrong.
This gross description allowed the stochastic models to predict the appropriate learning curves with
some degree of accuracy. This simplification 1o one bit responses, right versus wrong. characterizes
much rescarch on skill acquisition and vlrtually all cducanonal rescarch on malhcmaucal skills.

It was just shown that a shallow theory whd not work for this domaig. That’s unfortunate,
When theories are shallow. then argumeniation is casy. In a sense, the data do J{? arguing for you.
Most experimental psychology s like this. The arguments are so direct that the place they can
be criticized is at the bottom, where the raw data is interpreted as findings. Expe¥imehtal design
and data analysis technigues are therefore of paramount importance. The reasoning from finding to
theory is ofien short and impeccable, On the other hand, when theories are decp in that the
derivation of predictions from remote structures is long and complex. argumentation becomces
lengthy and intricate. However, the effort spent in forging them is often repaid when the
arguments last longer than the theory. Indeced, cach argument is almost a micro-thcory. An
argument’s utility may ofien last far longer than the utility of the theory it supports. . {For examples,
sce the discu_oion of crucial facts in VanLchn, Brown & Greeno, in press) As an illustration of the
, transition from shallow to decep theories, linguistics provides a particularly good ¢xample.

From shallow theories and deep nan-thea’h’es, towards deep theories

Prior to Chomsky, syntactic theories were rather shallow and almost taxonomic in character.
The central concern was 10 tune a grammar 1o cover all the sentences in a given corpus. Arguments
belween alternative grarnmars cou!%d be evaldated by determining which sentences in the corpus
could be analyzed by cach,” When Chomsky reshaped syntax by postulating abstract remote
strucwures, namely a base mm,ﬂr and transforrations. argumentation had 1© become much more
subtle. Since transformations inferacted with cach other and the base grgmmar in complex ways, it
was difficult 10 ¢valuate’ the .empirical impact of alternative formulatidns of rules. Theories of
syntax changed consta ;y and gradually as interactions are unccvered. What has been retained
from the early days )2 not whole theorics, but a looscly defined collection of crucial facts and
argumen!s. Tk /

e
A

As Moravcsik has pointed out (Moravesik, 1980). Chomskyan hinguisties js virtwally alone
among the social sciences in cmploying decp theories, Moravesik labels theories “deep” {without
implying any depth in the normative sensc) if they “refer to many layers of unobservables in their
explanations.... *Shallow’ theories are those that try to stick as close to the observables as possible,

[and] aim mosty at corrclations baiween observables.... The history of the natural sciences like
;
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physics. chemistry. and biology is a clear recerd of the success story of ‘decp’ theorics.... When we
come to the social scicnces. we encounter a strange anomaly. For while there is a ot of talk about :
aiming to be ‘scientific,” one finds in the suckal suiences a widespread and unargued-fur predilection i
- - . . for ’shallow” theories of the mind." (Moravesik. 1980, pg. 28)

Al-based modeclling cfforts are certainly deep in that they postulaie rgmote structures and
mechanisms that are quite unobservable. However, very few cffarts, if any. could be cafled proper
theories. They lack arguments conneciing their remote Structures to anpirical findings.  In one

.7 sense. the history of Al-based cognitive 1escarch is the dual of linguistics' history. ‘Thréughout s
©history. linguistics has had a strong empirical tradition.  Only lately has it adopted deep theorizing.
On the other hand, Al has always had a strong traditipn of deep modelling. and vnly recently has it
begun to cunnect its models to observations. The present rescarch effort is intended to be another
step in that direction — putting Al-based. deep models on firm empirical footings.

~

1.3 Overview of the theory and the document

- The preceding sections indicated the kind of skill acquisition under study. sketched a few
hypotheses about it. and discussed the validation method. This section summarizes the research
project by listing its main componcnls. v

(1}  Learning model. The first component is a learning model; a large, Al-based computer
program. lts input is a lesson sequence. Lt Hutput is the set of bugs that are predicied to occur
among students taking the curriculum represented by the given lesson sequence. The program.
named Sicrra, has two main parts: (i) The Jearner lcamns procedures from lessons. {ii) The solver
applies a procedure to solve test problems. The solver is a revised version of the one used to
develop repair theory (Brown & VanLehn, 1980). The leamer is similar 1o other Al programs that
learn procedures inductively. For instance, aLbx (Neves. 1981) learns procedures for solving ,
algebraic cquations given examples similar (o unes appedring in algebra textbooks. 1tx (Mitchell e,
al., 1983} starts with a trial-and-crror procedure for solving integrals and cvulves a more efficient
procedure as it solves practice exercises. Sierra’s leamner is similar 1o LEX and ALEX in some wéys
(c.g., it uses disjunction-free induction). It differs in other ways (c.g. it uses lesson boundaries
crucially, while the instruction input o ALEX and LEX is a hoinogeneous sequence of examples and
excrcises). In particular, Sicrra is the first Al lcarner 1o use rale constraints (deseribed in the next
chapter). As a piece of Al, Sicrra’s learner is a modest contribution.  OF course, the goal of this
research is not to formulate new ways that Al programs can learn.

(2)  Data from human learning. The data used to test the theory come from several sources:
the Buggy studies of 2463 students learning to subtract multidigit numbers (Brown & Burton, 1978;
VanLehn, 1982), a study of 500 students learning 1o add fractions (Tasucka & Baille, 1983), and
various studics of algebra crrors (Greeno, 1982; Wenger, 1983). The data from subtraction play the
most prominent role since they derive from the largesi sample and the most objective analysis
methods. Bugs from the other procedural skills play the secondary, but still important role of
testing the across-task gencrality of the theory. As of this writing, only the subtraction data have
?’Q: analyzed. A formal assessment of the theory’s task-gencrality must be delayed for Another
rep

% ?

(55)\ A comparison of the model’s predictions (o the data, The major empirical criterion for
thic theory is observational adequacy: (i) the mudcl should generate all the correct and buggy
procedures that human learners exhibit, and (i) the model should not generate procedures that
learncts do not acquire, ic., star bugs. Although observational adequacy is a standard criterion for
generdtive thearies of\na\tural language sy tax, this is lhi first Al learning theory 1o use it
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(4) A set of hypotheses. As mentioned above, carly Al-based theories of cognition ysed
only the three components listed so far: a model, some data, and a cofparison of some kind. Such
an “cxplanation™ of intclligent human behavior amounts to substituting one black box. a coMplex
computer program, for another, the hutman mind. Recent work in automatic programming and
program \crification suggests a betier way ¢ usc programs in cognitive theories:  The theorist
develpps a set of specifications for the model’s performance. These serve as the theory’s hypotheses
about,the cognition being modelled. The modcl tecomes @ tool for calculating the predictions
made by the combined hypotheses. ‘The present theory has 32 such hypotheses. The felicity
conditions listed carlier arc three of the 32, The goal stack hypothesis is another.

(5) A demonstration that the model generatés all and only the predictions allowed by the
hypotheses. Such a demonstration iS necessary to insure that the success or failure of the model's
predictions can be blamed on the theory’s hypotheses and not on the mo¢*l's implementation.
Ideally, 1 would prove, line-by-line, that the mode! satisfies the h}polhcscs This just isn't practical
for a program as complex as Sierra. However, what has been "done is 1o design Sierra for
transparcncy instead of efficiency. For instance, Sicrra uses several generate-and-lest loops where
the tests arc hypotheses of the theory. This s much less efficient than building the hypotheses into”
the gencrator.® But it lends ¢credente to the claim that the model generates cxaclly the predictions
allowed by the hypothescs.

+

(6) A set of arguments, one for each hypothesis, thal shows why the hypothesls should be in )
the theory, and wha! would happen if it were replaced by a competing hypothesis. This involves
showing how cach hypothesis, in the context of its interactions with the others, increases
observational adequacy, or teduces degrees of freedom. or improves the adequacy of the theory in
some other way. The objective is to analyze why these particular hypotheses produce an empirically
successful theory. This comes out best in competitive argumentation. Each of the 32 hypotheses of
the theory has survived a compelitive argument. .

The structure of the remainder of this document

The next chapter presents the model (component 1 in the list above) and discusses its
obscrvational adequacy (component 3). The remaining chapters present the hyPotheses of the
theory {component 4} and the arguments suppurung them {component 6). They are grouped into
three levels:

+ .
[y

1. The architecture level cstablishes the basic relations between lesson sequences and the acquired
skill. The acquired skill is sometimes calléd a core procedure because it cannot be directly
observed. The architecture level also establishes the, basic relations between the core
procedure and obscrvable behavior during problem solvmg Such behavior is sometimes
called the surface procedure despite the fact that it is occasionally rather non-procedural i
character. The felicity conditions and the hypotheses defining local problem solving are
defined in the architecture level. These hypotheses are expressed without using a formal
‘representation for core procedurcs. This allows the architecture level's hypotheses to be
defended at a relatively high level of detail using broad. gencral observations about the
character of learning and problem solving in this domain.

* It takes Sierra about 150 hours of Dorado time to process a single subtraction lesson sequence.

However, Sierra js a multiprocessor program that can be run unatiended at night using as many

‘Dorados as it can find on our local Ethernet. It sometimes takes only a few days (0 process a lesson

sequence, This style of rescarch would be infeasible without networks of fast Lisp machines, such

as the Dorado.
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, ' 2, The represeittaijon level defines a fonnal representation for core procedures,  The
. o representation }'c\[cf takes the Tarchitecture level a5 given. then uses the data to settie
represcotational iéa‘.lucs. From anolher viewpuint, the hypotheses of the representation act as
V° absolute constrainty’ on learning and problem solving (as vpposed o relative constraints).

Given a particular’ lesson sequence, these absolute constiaints determine a large space of
possible core prucédurcs that could be acquired from it

,:Hu

"The-bias lfovel csmbl)bhcs relative constraints on Jearning and problem solving. Whereas the
representation kvcl defines a space of possible core procedures, the bias level defines an
ordering re!mio;lr' over the core progcedures in the space and states that leamers choose core
procedures that aré maximal in this ordering.  The bias level takes both of the higher levels as
. e given, -

The three levels can be introduced by drawing analogics to several prominent traditions in cognitive
science.  The architecture ievel is like a Piagetian theory in its brgad-brush treatment of cugnition.
The representational fevel is like a Chomskyan theory of syntax in that it is concerned with the
structure of mentally held information, The bias level is like Newell and Simon’'s theory of human
problem solving in its attention to detailed individual behavior and its use of coumputer simulations.
Each level has its own objoctives, and cach uses the data in different ways.

These three levels contain mostly competitive argumentation, and their format refects this.

Zach chapter argues a single issue. The chapter begins by laying out the competing hypotheses. It

indicates which hypothesis is ultimately chosen for inclusion in the theory. The budy of the chapter

*  shows why the other hypothieses lead to a less adequate theory. The chapter ends with a summary

of the arguments and a formal statement of the adopted hypothesis. Chapler introductions and

“conclusions have been writtcfj so that they can be understood without reading the chapter's body.

As a further aid to browsing rcaders, cach level has a summary chapter thal synopsizes the

arguinents and hypotheses discussed in the level. ‘These summarics may be read without having
read the lebel itself. ‘

In addition to producing a six-component theory. the rescarch produced a few surpriscs.
Mentioning one of them is perhaps a fitting end for this introductory chapter,

Felicity conditions > a'ea'eologiml:“1 rationalizations

-

From the outset of this resezirch, it was clcar that learning depended strongly on the examples
used in instruction. 1t was also clear that learning could not depend solely on the cxamples. Some
other kind of information had to be involved. The issuc was, what jnformation was being provided
by the curriculum, and what information did the student already have? A highly plausible
hypothesis was that learncrs possessed tefeological rationalizations as prior knowledge. Teleological
rationalizations express the Iearner’s presupposition that procedures have purposes and hence that
the "right" gencralization of the cxamples to make is the one that leads to a protedure with
recognizable purposes for cach of jts parts. So, the learncr acquires only subprocedures whose
content ¢ 1 be rationalized vis 4 vis the lcarner's general notions of purposes for procedures. For
instance, a simple rationalization is onc that views a new step (subprocedure) as preparation for an

. already known step (Goldstein's “sctup step” schema, 1974)

This view was comfortabiy in line with the common view that @ procedure can be learned ouly
fo the extent that it s meaningful to the learner. Here, teleological rationalizations cxpressed the
mcaning that lcarners give procedures. The rationalizations may not impart the correct Semanties
(the semantics the teacher intended), so the procedure acquired may not be a correct one. Yet they

r
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do givé the procedure some kind of semantics.

The view that learning is necessarily meaningful seems now to be false for the present
domain. T was unable 1o detect any widcely held teleological rationalizations. Moreover, those that |
gucssee. might be held, perhaps scauered idiosyncratically in the population. did <not constrain
acquisiton cnough to cxplain the data.  On the other hand. certain felickty conditions were
discivored that were strong cnvugh 1 climinate many of the ambiguities that icleological
rationalizations werc Suppused to sctile.  Although 1 had guessed a few felicity conditions some
years ago. | was surpriscd to discover the show-work principle. and even more surprised to sec how

“ much constraint the felicity conditions placed on Iearning. Not only do the felicity conditions do as
much or more work than teleological rationalizatiuns, they appear to be held by all individuals,
while the st of teleolugical rationalizations would have to be subject to individual differences. To
top it off, the new felicity conditions arc much Simpler than teleological rationalizations. For
several rcasons. therefores teleological rationalizations have been excluded from the theory. It
currently seems that rationalization of subprocedures might be more in the mind of the obscrver
(mc) than in the student’s mind.

Omitting telcological rationalizations in favor of felicity conditions changes the overall
character of the Icarning theory. Teleological rationalizations could give the acquired procedure a
meaning, albeit a potentially incorrect meaning, by relating it to 3eneral teleological knowledge
abput procedures. The felicity conditions and the constraints on representation cssentially allow the
procedure 1o be built from primitives in apparent isolation from other knowledge. This result js
consonant with the widely held impression that mathematical procedures are ofien understood
syqtaclically (Resnick, 1982). It tends to refuic the also common view that procedures can only be
leﬂned if they have some meaning for the lcarner.
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Chapter 2
Sierra, the Model

‘This chapter concerns the model, a computer piogram named Sierra.  The term "model” is
used in a narrow way o Wican an antifick whose stnicuure and pesformance is shnilar, in certain
ways. 1o the cognition nnder study. Under this usage. "miodel” is nut synonyfnous with “thcory.”
The model is a thing; the cognition iS a thing, the theory asserts how the two things relate. In
physicS, a modecl is usually a systein of cquations, which the theory relates to the physical system
being studied. A physical theory might say, for instance. which variables in the model are
mcasurable. which cquations represent natural laws. and which cquations "represent boundary
conditions that are idiosyncratic to particular experiments. OF course, theories include much more
than just assertions. ‘This theory includes, for instance, a tacit sct of distinctions or ways of
analyzing the cognition. It includes an analysis of how the data and the model's performance relate.
It includes, of course. the hypotheses and the EOmpctitivc arguments that support them. Indeed,
cverything in this document is included in the theory. “This chapter, however, inerely describes the
model.

Al-based models are plagucd with a mcthodological problem that pccurs in mathematical
madels as well, although it is less severe there. A typical mathematical model has parameters whose
values arc chosen by the cxperimenter in such a way that the model's predictions {it the data as
closcly as possible. Certain parameters, often called fask paramcters, encode features of the
cxperimnental task (c.g., what kind of stimulus material is used). Other parainciers. called subject
paramcters, encode aspects of individual subjects’ cognition or performance. There are other kinds
of parameters as well.  The difference between the parameters lies in how they are used in fitting
the model’'s predictions to the data. Subject parameters may be given a different value for cach
subject. Task paramecters get a different value for cach cxperimental task, but that value IS not
permitied to vary across individual subjects. When Al'based models have been used for cognltive
simulations, there has ofien been considerable obscurity in the boundary between what is meant to
be true of all subjects, and what is mcant to be truc of a particular subject. Ofien, the same
knowledge base (rule sct or whatever) is ysed for both subjeet parameters and task parameters. Yet
it is critical that theorics, even jf they use non-numeric parameters. identify which of the model’s
components and principles arc universal, which are task specific, and which may be tailored to the
individual. But this is just the beginning of the probiem. Even if the kind of tailoring has been
clearly dclincated as universal, task, subjeet, or whatever, there remains a difficult issue of
determining how much influence the theorist can exert over the modul's predictions by
manipulating the parameters’ values. In a mathematical model. such power is often measured by
counting degrecs of freedom or performing a sensitivity analysis. For models whose "parameters”
arc knowledge bases or rule sets, there is, as yet. no cquivalent measure of tailorability. It is crucial,
however, that the taiforability of such models be better understood. A model whose fit to the data
depends on the cleverness of the theorist writing the rules doesn't really tell us much of interest.
Undcrstanding Sicrra’s tailorability and reducing it have been major concerns in developing this
theory. Reduced tailorability is as much a goal for the theory as observational adequacy. Many of
the hypotheses that arc preseoted in later chapiers are adopted just because they reduce the
tailorabillty of the model. .

In addition to describing the model, this chapter discusses ils observational adeQuacy and
tailorability in the context of one particular experiment, called the Southbay cxperiment, whercin
1147 subtraction Students were tested.  As Sicrra IS deseribed, its variou¢ parameters will be
illustrated by mentioning the values that they are given in tailpring the predictions to fit the .
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Southbay data. “The cffects of varying these values will also be discussed as a rough sensitivity
analysis of the model, The last section of the chapter assesses the vbservationdl adequacy of the
mudel with respect to the Sonthbay data. This secvion is the only place in the document where
observational adequacy will actudlly be measured, and for good reason. llaving produced the -
nambers. it will be argued wha Wicre are nu inagic thresholds for such measurements. One can't wll
from the numbers whether the theary is good or bad. Mcasuring observational adecauacy is only
uschil for comparing the theory 10 uther theorics. and in panicular, for comparing it © other
versions of itself.  That is, observational adequacy is uscful primarily as an empirical criwcrion for
compelitive argwnentation.  Although it is inteiesting 10 go through a full-fledged measurcment of
obscrvational adcquacy. onec is enough.  Thercafier. obsenational adequacy will be used only as
part of competitive argumentation,

This chapter presents the model, Sierra, in cnough detail that i can be duplicated. At onc
point, this document had a scparate chapter for this purpose, Howcver. it became so redundant
with this chapter that.the two were merged.  Mecting this objective sometimes involhes presenting
technical details that are theoretically irrclevant. but necessary for understanding how Sicrra works.
The reader may skim over these dctails.  For reading the remaining chapters, it suffices to grasp just
the broad outline of Sierra. In particular. only sections 2.1 and 2.2 are really necessary: the others
_can be skipped on a first reading.  What this chapter does sot do is to justify the model.

Motivating, justifying and explaining why the modcl is the way it is — these are proper functions
for compelitive argumecntation. Coglpctili\c argumentation is the province of the remaining
chapters.

2.1 Thetop level of Sicrra

Sicrra gencrates the theory's predictions about a certain class of expcnrncnts In order to
undcistand the way Sierra makes predictions, it helps to first understand the experiments.  The
cxpcnrncnts use the following procedure. For each school district. the experimenter ascertains what
textbooks are used in teaching the given skill and when it is scheduled to be taught. In the case of
the Soutt bay experiment, gubtraction was taught from the middic of the second grade to the end of
the fourta grade. Classrooms and testing dates arc sclected so as to sample this time span fairly
evenly Next, the experimenter meets with the participating teachers in order to brief them and to
give thefh blank test forms. such as the one in figure 2-1. Soon thereafter, the teachers hand out
the test sheets to their students, who work them alone with no time limit, The teacher collects the
test shects and mails them to the experimenter for analysis. An important point to notige is the
temporal relationship between the administration of the test and the episodes of lesson-lcarning.
Suppose that a certain curriculum has ten Iésson, call them L, Ly, L,, ... L. Sornc of the students
have taken only lesson L, at the time they are tested, while other students have taken only L, and
L,, and so forth. Although 2 few students have taken the whole [esson scquence at the time they
were tested, many data come from students who have traversed only a prefix of the lesson sequence.

This motivates the top-level design of Sicrra, which is skeiched in figure 2-2, Sierra's major
components are called the learner and the sofver. Sicrra’s learner is given a lesson, Ly and an initial”
knowledge state, KSy. (Actually, it is given formal representations of L; and KS The formal
represertations will bc discussed later.} The leamer produccs a ncw knowledge slalc. KS;. It may
produce more than onc knowledge state, but just onc is shown in the diagram for simplicity's sake.
. In order to generate predictions about students who have only taken L, KS, is given to Sierra's
solver along with (a formal representation of) a diagnostic test, . The solver produces a set of
solved tests, ST,. Each solved test in ST, represents a testable prediction about student hehavior.
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Subtraction Test
Namce Grade
K .'l‘cachcr ‘ . Pate
647 885 83 8305
- 45 - 205 - 44 - 3
50 562 - - 742 106
.23 - 3 - 136 . 70
. 716 1564 6591 - 311
- 5908 . 887 . 2697. - 214
_ . ‘ &, ~N
1813 -102 9007 . 4015
. 215 -+ -89 .6880 - - 607
702 2006 10012 8001
-108 - 42 - 214 - 43

Figure 2-1
One of the test forms used to collect the subtraction data.c .
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Figure 2-2
The top level of Sierra

Ed

Figure 2-2 shows that KS, is also glven to Sierra’s learner along with lesson L,. The learncr
produces KS,, which corresponds to the knowledge statg of students who have seen the first two
lessons of the scquence before being tested. KS, is passed to the solver and processed in the same
way that K8, was. This produccs predictions abom the performances of students who have taken
the first two Iessons. Similarly, predictions are produced for students at all other stages of training,
including students who have completed the lesson Ssequence.

The model’s predictions are the scts of solved tests, the ST, In principle, they could be
compared dircetly to observed test solutions, the ones maifled in by the teachers. For several
mundane reasons. this not practical. Several test formi§ are used in the schools in order o thwart
students who look at their neighbor’s paper. If the ST; were to be compared directly to the
obscrved test solutions, Sierra would have to be run many times, each with a different test form as
T. Also, direct comparison of test solutions would have to deal with the slips that students make. -
A single facts error (e.g., 7—5=3) would prevent an observed test solution from matching a
predicted test solution. Some model of slip-based "noise” would have to be applied in the
matching process. Even if such a slip model were quite rudimentary, it would have to be carefully
and objectively parameterized lest it cause Sierra 1o be unfairly evalvated. Debuggy is used to solve
these problems. Debuggy is equipped to deal with multiple test forms and with slip-based noise
(sec Burton, 1981). Its slip model, which was developed long before this theory, has been carefully
honed in the process of analyzing thousands of students’ work. Debuggy is used to analyze both

" predicted and observed test solutions. When Debuggy analyzes a solved test, it redescribes the test
solution as a set of bugs. Sometimes the set is a singleton, but often a test solution, even one
generated by the model, requires several bugs to accurately describe its answers. Given these bug
sets, matching is simple. A predicted test solution matches an observed test solution if Debuggy
converts both to the same set of bugs.

This way of comparing test solutions has an added benefit, It affords a natural definition of
partial matching: two test solutions partially match if the intersection of their bug sets is non-
empty. Partial matching is a uscful investigative tool. For instance, if the mode! generates a test
solution whose bug set is {A B}, and there is a test solution in the data whose bug set is {A B C3},
then partial matching allows onc to discover that the model is accounting for most of the student’s

¢ behavior, but the student has a bug C that the model does not generate. If the two solved tests
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were compared directly, they would not match at all (say), viclding the cxperimenter no clue as to
what is wrong. So comparing sohed tests via IDebuggy not only handles multiple test forms and
noise. it promotes a deeper understanding of the cmpirical qualities of the model.

Sierra has a natural intcrnal chronology. KS, is necessarity produced after KS,. Perhaps this '
chronology makes true temporal predictions. In the Southbay experiment, for instance. the testing
dates and the textbooks are known, so the \{ppmximatc locations of cach stwdent in the lesson D
sequence can be inferred. [t would be remarkable if an ST matched only the test solutions of
students between the lessons corresponding to 1, and L, ;. longitudinal data could even be
T o “predicied, provided that"the model isTcharZcd slightly*.  Given that a student's test solution

matched a solved test in ST,. one could predict that a fater test solution would have matched some
test in ST for j>i. In fact, one may be able to predict that the second test would have 10 match
certain tests of the ST, because only those test solutions are derived froin the knowledge state KSi
that the student seemed to have at the time of the first test.  Although Sicrra was not designed for
"it, Sierra can make predictions about the chronology of skill acquisition.

Even a cursory examination of the data reveals that such chrozological predictions would turn

out rather poorly. Partly. this i because the cxperiments didn't carefully assess chronological

- factors. Although the general locations of students in the curricula were recorded. there is no way
t0 know an individual’s case history in any detail. In the Southbay experiment, for instance, some
young students who had only taken the first few subtraction lessons could already subtract perfectly.
Serhaps they learned at home or with special tutoring from the teacher. Keeping careful track of
how much instruction students actually reccive Is. of course, a major problem in any longitudinal
study. ‘That is why I have concentfated on an a-chronological account ¢ skill acquisition.

Even if excellent longitudinal data were available. 1 doubt that Sierra's prediction of them
would be anywhere ncar the mark. DBasically, this theory attacks only half of sehool-house learning:
knowledge communication. Knowledge compilation is the other half. it deals with tuning
restructuring and other changes in the memory trace that occur with practice.  Knowledge
compilation undoubitedly affects the chronology of skill acquisition. Since Sierra doesn’t model
practice effects, it would be wild to take its chronology seriously as a reflection of the chronology of
human learning.

The model's empirical quelity is measured in an a-chronological way. All the ST; are simply
* . unioned. ‘This creates a large set of predicted solved tests — call u PST. Similarly, the observed
solved tests are collected together into a large set, call it OST, withs v* regards t0 when the students
were tested. The solved tests in both PST and QST are redescribed as bug sets using Debuggy.
Empirical quality is measured by their overlap:

OSTMPST  is the sct of confirmed predictions. 1t should be large. '
OST—PST s the set of observed behaviors that the model doesn’t account for. {t should be small.

PST—~OST s the setof predictions that are not confirmed by the data. Some of these predictions will
be absurd: star bugs. There should be very few of these. The rest are owfstanding
predictions, Further data may verify them. It doesn’t matter how large the set of
outstanding predictions is, as long as its members are all plausible predictions.

* Diagnostic testing undoubledly has some cffect on a student’s knowledge state. If the model were
uscd 10 make predictions about students who are tested twice, it would be advisable to route the
solver-modified KS, back up to the lcamg[.\ This is not done in the current version of Sicrra
because almost all of the data come from students who were tested just once. Some were lested
Iwice, but without inicrvéning inStruction.
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This overap-based measurc is traditionally called obscrvationgl adequacy. , It is the only empirical
measure that is usced in validating the present theory. '

This scetion describes the way that che main parts of the model — llqc learner. the solver, the
KS,. the i, and the ST, — hook together. l{almdesenbe—s—lhe——wa}qhal—lhu sheorys-observational ..
adeyuacy 1s assessed. Wuh these frameworks in hand. iU's time to plunge,into a detailed description
of toe model. The first section describes the formal representations for 1¢sSons and solved tests, the
I, and the ST, “The next few sections describe the knowledge rcprc'icn‘idimn the KS. Then the .
lcamcr is dcecn'bcd, with a slight pause of some gencral remarks about, induction. 'l‘hc solver is
deseribed next. but somewhat sketchily since it is substantially. the Samc the onc described in
Brown & Vanl.chn {i980). The last scetion reveals the obscrvational ach acy of the theory, vis-a-
vis the Southbay cxperiment. k
. !
2.2 The representation of obscrvables: lessons and diagnostic tests %

As mentioned, Sierra takes three inputs: (1) a lesson uequénce. L, (2;) 2 diagnostic test. T, and

(3) a student’s initial knowledge state, K8, Sierra’s output IS a Iargc sct |of solved. tests, the ST,
Although the theorist must guess what thc initial studeat knm}lcdgc state fs the other inputs and
outpuls represent observable quantities.  Sierra's accuracy as é model dcpcnds somcwhal on how
these obscrvable quantitics are formalized. This section discusses the representations used for the

obscrvables: lessons, tests, and solved tests.  The formal definitions arc tediously simple:

A Tesson sequence is a list of lessons.

A Jesson is a pair: it Is a list of examples followed by a list of exercises. [
An exampleis a sequence of problem states.

An exercise is a single problem state. !
A festis a list of exercises. |
A solved testis a list of examples. :
A problem state is a sct 0f symbol-position pairs, where a symbol's posntmn is represented
by the Cartesian coordinates of the symbol's lower left corner and its upper right corner.

.I
These definitions all depend on the representation of problem states, so it is worth a moment (o
exs Mnc that definition in detail. Problem state a (sce below) represents b, and ¢ represents d

a. [{HBAR (12 17 20 17}) b, 607 c. ((5 (12 10 14 12))
(- {12 17 14 19)) ~ 29 (m (14 16 16 12))
(6 (14 13 16 21)) (+ (16 10 18 12))
(0 (16 19 18 21)) ) 11 (18 10 20 12}))
(7 (18 19 20 21)) ﬁ
{2 (16 17 18 19)) d. 6x+1 |
(9 (18 17 20 19))) j

The formal representations, a and c, arc scts of pairs. Each pair rcprcsans an instance of a symbol
at a place. The first clement of the pair is the symbol, usually an alphanumeric character or a
special symbol like HBAR. which stands for a horizontal bar, The sccorﬂi clement of the pair is a
tuple of four Cartesian cdordinates that represent the symbol’s position. The details of representing
the symbol's position don’t matter. The point is only thai a problem étale is little more than a
picture of a picce of paper or a chalkboard. it is not an interpretation or parsing of the symbols.
For instance. the problem state docs not force the modcel 10 treat 50729 as two tows, or as three
columns, or as rows and columns at all. How the problem state is ;TFrscd Is determined by a

component of the student knowledge state, called the grammar. Grammdrs arc described in a later

section.
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Ti'ading Hundreds First

There are 304 birds at the Lincoln 200.

-----

How man;ﬁrﬂs are from other places?

. 304 —126'=1
Need more Trade 1 Trade 1 ten Subtract the gnes.
ones? Yes. hundred for  for 10 gnes. Subtract the tens.
But ng tens to 10 tens. Subtract the
frade. Need hundreds.
more tens. o g
210 21014 2 1014
304 304 304 BO4
-126 ~-126 ~1286 -126
178

304 - 126 =178 178 birds are from other places.

Subtract.

1. 401 2. 208 3. 300 4, 102 5. 406
—182 77 —151 -4 —-_28

6. 700 7. 608 8. 503 ‘9. 900 10. 80z
=513 - 39 - 304 - 28 - 9

11. 806 12, 500 13, 407 " 14, 904 18. 600
- 747 - 439 - 8 ~ 676 - 89

16. 100 17. 306 18 204 19. 600 20. 508
- 56 - 197 - 7 - 29 = 429

21, 402 - 16 22, 700 - 8 23. 900 - 101 ‘

Figure 2-3

. : A page from athird grade mathematics textbook.
(Bitter. G.G.. Greenes. C.I%., Sobel. M.A., Hill. SA.. Maleisky, EM., Shwfelt. G.. Schulman. L. &
Kaplan. J. VcGran-Hill Mathematics, New York: McGraw-Hill, 1981. Reproduced with permission.)
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How faithful arc these formal representations to real curricula and .real diagnostic tests?
Faithfulness of tests is casy to obtain. Rarlier, in figure 2-1. a copy of onc of the diagnostic tests
was presented. It can be quitc faithfully represented as & sequence of excreises (problem states).
Accurately representing a lesson is not so, simple,  Figure 2-3 is*a black-and-white rendering of a
page from a third gradc textbBvk. It is the first page of a twa-page lesson that introduces

borrowing across zero. The lesson leads.off by posing -a word—problems - Ie-is followed—by- an
example. 304—126. “Ihc cxamplc consists of four problem states. (In the texthook. the four
prodlem states are differcntiated by four lightly colored boxcs, which arc not reproduced here)
The rest of the page contains cxercises. However, the tcacher undoubtedly works the first few
cxercises on the chalkboard. In cffect. this converts the first few cxcrcises into cxamples, The
second page of the lesson conlainrs more cxcrcises and a few word problems,

Sicrra’s. lessons differ from regl lessons in several ways. In keeping with the hypothesis that
knowledge commuonication, in this domain, is inductive, Sicrra’s examples lack the English
commentary that the real cxafmplcs have. Its lessons alsu omit word problems, pictures and
analogics with concrete objects like coins or blocks. They have only examples and cxercises. Figure
2-4 summarizes the formal lesson corresponding (o the real lesson of figore 2-3. Figure 2-4a shows
the problem state sequence that represents the first cxample. On the assomptions that the teacher
would work this example on the board, the intermediate problem states that arce not pictored in the
textbook are shown in the formal version of the example.  Figure 2-4b summarizes the whole
lcsson. The formal lesson is considerably shorter than the real lesson: it has fewer cxamples
{(probably) and many fewer cxerciscs. Since Sicrra is Sfow, T have kept the lessons as short as
possible. This makes it more difficult to keep the lessons faithful to the real lessons. In a set of
cxamples and excreiscs. there might be idiosyncratic features that happens to be held by alt of them.
‘The difficulty is that the formal lesson might have different idivsyncracics than the real lesson.
Since Sicrra’s lezener is mildly sensitive to such idiosyncracics, this difference can’t be ignored. So
insuring the faithfulness of lessons is not trivial

9
2 2, 1 2
a. 304 b. £04 c. g4 d-ﬂf"
-128 -128 -128 -128
A
2 31 ) 3 3 2 36
4 4 2 W4 14
o. FWA f. 294 g. Z9y h. oK
-128 ~1286 -128 -128
8 78 178
9 11 %
2 14 174U §, J17
a. fRy b. FEX c. JBZ d. 804 e 304 f. 800
-128 -368 - 28 -358 -1686 - 44
178 468 679
Figure 24

A shows the first example of the lesson as a problem State sequence (omitting crossing-out artions).
B summarizes the three examples and three excreises that constitute the formal fesson.
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How an individual lesson is represented was just discussed. A curriculum is formalized as a
sequence of lessons. Some of tie tacit issues behind formalizing curricula are best discussed in the
context of specific cases. Two texthooks Were used by the gchovuls that participated in the Southbay
cxperiment: the 1975 cdition of Scott-Foresman's Mathematics Arvund Us. and the 1975 cdition of
tleath's Heath Flemeniary Maf&emancs. From these texthooks, three formal lessun seQuences were

-

cventually derived.  (This dcvclupmcnl is intcresting partly because ® is a clear case of tailoring a
parameter of the model.) Some cusricular features that at first seemed to be important turned out
not to be. In particular, both textbooks introduce muiticolumn subtraction using special nutational
devices that emphasize the columns and their names.  Scott-Foresian labels the digits, as in a
below. then switches to column labels, as in b, then finally to standard notation, as in ¢

a b 1ens [ unlts ¢
3tens 7ones - 37
- 5 ones 3 7 - 2
+ 5
1ens oncs

Heath starts with b, then switches 0 ¢ Gencrally, the textbooks would stick with their first
notation until the second lesson on borrowing. ‘Then they would shifi to the next notation, and
teach the last few lessons over again using the new notation. Sicrra’s first formal lesson scquences
copicd these notational excursions faithfully — lines, words and all. Tt was found that these cxtra
markings made no significant difference in Sierra’s predictions.  When thc extra markings were
omitted from the cxamples, the resulting core procedures gencrated the samc bugs. This finding
suggests that the extra markings arc included in the examples because they 'help students lcarn a
grammar for subtraction notation. Sierra is given a grammar instead of learning it {this is discussed
in the next section). $o it receives no benefit from the extra markings. The lesson sequences that
were ultimately arrived at usc only the standard notation {type ¢ above). This makes them shortcr‘
saving Sijcrra time.

There are @ few more minor differences between the real lesson sequences and. the formal
ones that will be discussed later. A major difference, perhaps the most important difference, will be
discussed next. Figure 2-5 shows the lesson sequences for Heath (H) and for Scoti-Foresman (SF).
Note that both H and SF involve a sSpecial lesson on regrouping. {In the McGraw Hill lesson of
figure 2-3, this subskill is called "trading" instcad of “regrouping.”) The regrouping lesson is L, in
H and L, in SF. The regrouping lesson does not teach how to answer subtraction problems per sc.
It teaches how to do” a subprocedure, regrouping, that is later incorporated into the subtraction
procedure. [t is possible that students may not understand that this regrouping lesson has anything
to do with subtraction. After all, students are being taught many other skills {cg., addition) as they
are taught subtraction, yct few develop subtractiop bugs by mistakenly incorporating lessons from
addition or other skills. Very littic is known about how students filter irrelevant lessons out of a
skill’s lesson sequence. But whatever this filter is, students may use it to filter out the regrouping
lesson as well as addition lessons. To test this, .a third lesson sequence was constructed by deleting
the regrouping lesson from H. This lesson sequence, HB, turned out to be quite productive. It
generatcd eight observed bugs that would not otherwise have been generated®.  So it scems that
some students take regrouping to be a part of subtraction and some don’t. Lesson sequerce HB is
included with the “other two in gencrating thc Southbay predictions.

* The observed bugs gencraicd by HB alonc are: Borrow-Don't-Decrement-Zero-Uniess-Bottom-

Smaller, Borrow-Across-Second-Zero,  Borrow-From-Onc-$3-Nine,  Borrow-From-Onc-Is-Ten,
Borrow-From-Zero, Borrow-From-Zero-Is<Ten,  Stops-Borrow-At-Muitiple-Zero, Forgct-Borrow-
Over-Blanks, and Smaller-From- Larger-Inswad-of-Borrow-Unlcss Bottom-Smallcr.
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MODEL
|
A a
" 8 11 8 12
L1 29 L2, 37 13.. g4 L, g2 Ls. 267
... =186 - 4 -44 -123
14 T 4-8 134 —— e
13 9 99 '
218 4712 2 314 7 W04 -
is. 4.37 L7. A8 s, 42 lo. Z2A Lw. pREK
- 8 ~161 - 88 ~-128 - 1229
431 197 474 178 . 78756
1
I.;- Solving two columns. L, Handling non-final partial columns.
L,. Handling pattial columns. L,.. Oneborrow in three columns.
Ly. Regrouping. Lg.' Two adjacent borrows (3 columns).
L,. Simple borrowing. Ly Borrowing from zero (3 columns).
Ls. Solving three columns without borrowing. g Borrowing from multiple zeros.
B a2
g 11 2 N ) : 4 13,
L1, #x L2, 34 L. 36 L4 K2 Ls. 29 _
- 4 - -39 - 15 :
29 31 14 14 ]
10 | ;6 99 /
214 1781 I 1,014 T MM '
Ls. ZA8 L7. BA76 Ls. |8 EEA Lo, BHEEBX
~-161 - 6593 +3366 - 129
197 7583 |’5446 7876
|
L. Regrouping. , L. Solving 3-columns, with one boriow.
L,. Borrowing in 3-digit problem. L;.  Adjacent borrows, in 4-column problem.
L,. Non-borrowing in 3-digit problem. I.;s. Borrowing from zero (4 columns). : .
L,. Borrowing in 4-digit problem. Lyg. Borrowing from multiple zero.
L. Non-borrowing in 4-digit problem. .
: Figure 2-5

(A) The H lesson sequence. (B) The ST lesson sequence.
Sample problems are shown above, topics are listed below.

Of the three inputs to the modei — the initial. knowledge state KS, the test T, and the lesson
sequence L, — the onc that has the most effect on the model’s predictions is the lesson sequence.
In fact, for the Southbay experiment, only three runs of Sierra were used, one for cach of H, SI-;
and HB. ‘The same KSy and T were used with cach min because they have very littie effect on the
ultimate output. ' '

'
1
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2.3 {'The representation of procedures . e .

: This section discusses the rcprcscnlatmn of student knowlcdgc I'hc particular repiesentation
to l;e described is the ninth in 2 serics of repres ‘ntations. which begdan with « homebrew version of
the! 0rs2 production system -language (Forgy & McDermott. 1978).  'I'he present knowledge

rcprcscﬁ‘tauon iSVery much the product of empirical honing, It is not a merc¢ notation. 1t expresses
cmpmcal iw/potheses of the theory.  This methodological stance dcscrvcs comment.

Every Al-based models of cognitien that 1 know of has some kind of knowledge
representation language. Various Kinds of production $ysiems arc common. for example. Often.
one reads that a theorist has revised a widely available language in-order to make it “better” for the
model under developments yet no theoretical clajms are attached to this inplicit assertion of
optimality. The knowledge representation language is being treated as a mere nuta‘liori that the

theorist may chanZe at will in order to make it more convenient o use P

Howeéver, one often Sces conjectures that the knowledge representation is more than a mere
notation (c.g., “We confess to a strong premonition that the actual organization of huinan programs
closely resembles the production system eorganization.” Newell & Simon. 1972, pg. 803). Fodor

" (1975) argues that such conjectures may be legitimale as scientific hypotheses about the mind. 1t is

“clear that the mind holds information (knowledge) and it is plausible that this infonnation is

structured in some way, Therefore, it makes scnse to ask what that structure is. One way to find
out what the structure of knowledge is (in Fodor's terms. to determine the mind's mentalese) is to
find constraints that structure a model’s knowledge representation in theoretically cfficacious ways.
Given that these constraints succeed for information in a model of the mind, their success may be
duc to the Ffact that they reflect constraints on information in the mind itself. This investigation’s
scarch for the optimal representation of procedural knowledge for the model is momatcd, in part,
by faith in Fodor's rescarch programme.

The catch is showing that the suceess of the model actually depends on the constraints. A
proposed constraint on mentalese is not convincingly supported if violating it still allows a suceessful
model to be constructed. The hard patt. therefore, is showing that the form of the knowledge
representation makes a difference in the model's predictions. This typically requires rather
complicated competitive arguments. 1 was surprised to find as many as [ did. Indeed, most of the
argumentation in fol{ov-ing chapters concerns the representation.

That's enough commentary. Let's move on to the knowledge representation itself. A student's
knowledge state is represented by a four-tuple:

1. aprocedure:  knowledge about appropriate problem sofving actions and their sequence

2. agrommar.  knowledge about the Syntax of a mathematical notation

3. patches: knowledge about past impasses and repairs

4. eritics. knowledge about “wrong” problem states 2nd problem solving actions

"I‘he most important of thesc is the procedure (sometimes called the core procedure). Procedurcs

and grammars will be, described in this section and two following it. Patches and critics are
components of fepair theory that won't be described in detail in this chapter.

A procedure is represented as an And-Or graph, ¢r 406 (Winston, 1977). Figure 2-6a
sketches an AOG for a version of subtraction that will be often used in this document for

‘Hllustrations.  A0G nodes are called goals, and links are called ndes. Rules are directed, and are

always drawn running downward. The goals just bencath a goal are called its subgoals.

s
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' START.

. ’ ) 1/5U8 g '. i
Bonnowfrnon noanowmm suB1COL SUB/REST
o B ra%m FIT mnén%m
- 1/BFZ  2/BF1 1/SHOW2 1/BORROW 2/BORROW 1/SHOW
6
Writd rit [Writd
, X/OVRWRT W/OVRWRT Goal: 1/SHOW2 (T A) Type: OR
1. {3 > (Wrile A (Read T))
# [erossOuy |Writeq Goal: BORROW (T B A) Type: AND
. 1. {3 > {1/BORROW T)
B : 2. }->(2/BORAOCWT B A)
Goal START (P} TYDe'OR Goal: 1/BO’RHOW{T) Type: OR
1. {J->(suBP) 1. { > (REGROUPT) )
Goat: SUB (P) Type: AND Goal: 2/BORAROW (T B A) Type: OR
1. LetT,Band A betop, bottomand answer of the 1. § -2 (Write A (Sub (Read T) (Read B)))
rightmast of problem P - TBA
ghtmost column of problem P--» (1/SUB T B A) Goal: REGROUP (T) Type: AND
Goal: 1/SUB (T B A) Type: OR 1. LetNT be the top digit of the felt-adjacent columnto T

t . 1. Regrouping problem format --» (REGROUP T) «-* (BORROW/FROM NT)
2. Thereisacolumntotheieftol T ->(MULTITBA) 2 (:-> (BORROW::-.TOT)

8. [)- (Write A{Sub (Read T) (Read B)) Gos B0RROW/NTO 1)

Type: OR
Goal; MULTI (T B A) Type: AND ) 1. {3 > (OVRWRTT {Concat (One) (Read 1))
1. {J->(SUBICOL TBA)
2. LetNT,NBand NA be the top, bottom and answer ~ 30al: BORROW/FROM (TD) Type: OR
of the left-adjacen! column to T 1. TDis zero --> (BFZ TD)

- (SUB/REST NT NB NA) 2. {3 --> {OVRWRT TD (Sub1 (Read TD))
Goal: SUB/REST (T B A) Type: OR Goal:BFEZ (TD) Type: AND
1. Thereisacolumntotheleftof T ->(MULTITBA) 1. 8-> {1/BFZ7D)
2 Bisblank > (SHOWT A) 2. - (2/BFZ D)
3. {3->(Write A {Sub (Read T) (Read B)))

. Goal: 1/BFZ {TD) Type: CR
Goal: SHOW (T B A) Type: AND . 1. {} ~> (REGROUP TD)

-1, s
Q-2>(1/sHOWTA) Goal:2/BFZ {TD) Type: OR
Goal: 1/SHOW (1 A) Type: OR . 1. {3 --> (OVRWRT TD (Sub1 (Read TD)))

1. {3->{write A (Read T))) Goal: OVAWRT {D N) Type: AND

Goal: SUB1COL (T B A) Type: OR : 1. {3 -> (X/OVRWRT D)

1. 8 Bsé’b.a,,k ;(. (SHJ.“E'%“‘,., 2. Let X be Ihe blank space over D - {W/OVRWRT X N)
2. T<B-->(BORROWTB A)

3. {3-->{Write A (Sub (Read T) (Read B))) Goal: X/OVAWRT (D) Type: OR

1. {}- (CrossOut D)

Goal: SHOW2 (T B/ Type: AND
1. - (1/SHOW2 T A) Goal: W/OVRWRT (X D) Type: OR .

1. > (WriteB X D)

Figure 2-6
ADG for a correct subtraction procedure acquired from the H lesson sequence.
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- There arc two types of goals: AND and OR. To cxccute an AND goal, all the subgoals arc

cxecuted. ‘To executerar OR goal. just onc of the subgoals is executed, AND goals are drawn with

. boxes around their labels,  Drawings of AOGs abbreviate goals whenever they appear more -than

once.  For ingtance. .OVRWRT is calied from several places in the AOG of figure 2-6a, but its

+  subgoals arc drawn only for onc of these occurrences.  Although abbreviation makes this A0G look
like a tree. it is rcz}lly a cyclic dirccted graph duc to the recusive calls of MULTI and REGROUP. .

AOG goals arc caflccl ﬁoii-pﬁ'm:‘n’vq if they have subgoals. and primitive if they don’t. Fo avoid
clutter, AOG drawings display only non-primitives goals and their subgoals. Only four kinds of .
primitive goals_arc allowed:

1. Primitive actions causc a change in the current problem state. The only primitive actions used

» in mathentatics arc oncs that write a given alphanumeric symbol at a gwven position (Write
and WriteB), or oncs that write spccial kinds of symbols {CrossOut puts a slash over a
symbol). These three primitive actions arc the only oncs used in the A0Gs for the Southbay
experiments. ’

2. Facts functions return a number without changing the problem state. The facts functions used

‘in the Southbay AGGs arc Add. Sub. Addl, Subil. Mult, Quotient, Remainder, One

* (which always returns 1), Zero (which returns 0), and Concat (which concatcnates two
" numbers, eg, {Concat 1 4) rcturns 14).

3. “Facts predicates return truc or false without changing the problem state. The Facts predicates
used in thc Southbay AOGS arc: LessThan?, €Equal?, and Divisible?.

4, 'Iﬂc primitive fanction, Read. rcturns thc symbol written at a given place.  Thus,
(LessThan? (Read T) {Read B)) is truc if the digit at the place denoted by T is less than
the digit at the place denoted by B.

Primitive goals arc. by definition, indecomposable — they have no subgoals. Since Sicrra’s learner
lcarns by composing goals from subgoals, all primitive goals arc necessarily a part of the initial
knowledge state. KS,. However, the initial knowledge state may contain non-primitives as well as
primitives. For instance, the initial procedare from which the procedure of figure 2-6 was lcarned
contains thc non-primitive goal OVRWRT, which crosses out a symbol and writes another symbol
over it )

AOG drawings, such as figurc 2-6a, do not indicate scveral kinds of information. To sce this
information in Sierra, onc merely ouchs a goal with the mouse {a pointing device) and the goal’s
complete definition is printed out. In this document, more cumbersome methods must be used to
display goal definitions. Figure 2-6b shows the definitions for the non-primitive goals in the AOG
of figure 2-6a. Goals have arguments, which have the semantics that a recursive procedure’s
arguments have in a computer language. For instance, SUB1COL has three arguments, T, B, and A,
A goal’s rules (i.c., the rules leading from it to its subgoals) atc listed in the definition. SUB1COL
has three rules, Each rule has a pattern and an action. Patterns 3.2 complex, so their description’
will be delayed for a moment. (In figure 2-6b, non+null pattemns are replaced by English glosses; a
nuifl pattcrn i$ always matches) An action is a form, in the Lisp scnse, which calls the rule’s
subgoal. The action may pass argumcnts to the subgoal, often by evaluating facts functions. For
instance, SUB1COL's third rulc has (Write A (Sub (Read T) {Read B))) as its action. This
, form calls the goal Write passing it the value of A as its first argument, and a numbet, roughly
A TZB, as its sccond argument. (Throughout this document, T, B and A will stand for the top
: {(minucnd), bottom {subtrahcend) and answer places in a column.) What this action docs is write the
difference of the top and bottom digits of a column in the column’s answer.

\I 2
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An OR goal’'s rules arce tested in left-to-right order. The first rule whose pattern matches is
executed. The learner adds nmew jules at the left. Hence. the left-toeright ordering convention
corresponds 0 a common conflict resulution strategy in production systems called ';reccncy in long
term memory” (McDermott & Forgy, 1978).  Because the patterns of OR rules test whether (o
execute a rule. they are called fest patieras. Although AND rule patterns have the same syntax as OR
rule pattems, they are not used to control which rules are executed. The order of execution of AND
rules is fixed: the rules are exceuted in left-to-right order.  AND rule patterns are used to retricve
information in the current problem state so that the information can be passed ® the ruie’s subgoal.
AND pule patterns are called felch patterns. e

The procedure of figure 2-6 will play a role in illustrations of later sections. It is one of the
procedures acquired by traversing the H lescon sequence. [t is worth a moment to ¢xplain what it
does informally. The root goal. START. and its subgoal. SUB. simply initializes coluinn traversal to
start with the units column. 1/SUB chooscs between three subgoals: MULTT is for multiple column
problems. REGROUP is for "regrouping” cxereises thal don't involve any subtraction at all. This
subgoal is lcft over from lcarning regrouping scparatcly flom multi-column subtraction (i.c., from
lesson 1.3). Normally, 1/SUB never calls it. ‘The third ﬁoal, Write, is for single column
subtraction problems. The “main loop™ of multi-column traversal is expressed by MULTI as a,tall
recursion. MULTI calls itsclf via its subgual SUB/REST. SUB1COL processes a column. It chooses
between three mcethods for doing so. If the bottem of the column is blank, it coples the top of the
column into the answer via the subgoal SHOW2. If the top digit of the column js less than the
bottom. it calls BORROW. Otherwise. it writes the difference of the two .digits in the answer.
BORROW has two subgoals: 1/BORROW calls REGROUP, and 2/BORROW just takes the difference in
the column and writes it in the answer. REGROUP is a conjunction of borrowing into the column
that originates thc borrow (BORROW/INTO) and bomowing from the adjacent column
(BORROW/FROM). In this procedurc, BORROW/FROM occurs before BORROW/ INTO. [t would be
cqually correct to reverse their order. but that is not the way that Heath teaches them.  Borrowing
into a digit is just adding ten to it. Borrowing from the next column is also casy wher its top digit
is non-zero; the digit is decremented. If the digit is zcro, it calls BFZ. BFZ regroups, which causes
the zero to be changed to ten, then it decrements the ten to ninc

2.4 ‘The representation of grammars

It is obvious that students who can solve mathematical problems must have some
understanding of the syntax of mathematical notation. The student’s knowledge of the notation's
syntax is called a grammar. Grammars are formalized as two-dimensional context-free grammars.
Figure 2-7 displays a grammar for subtraction notation. The grammar representation language has
not been subjected to the careful development that the procedure representation language has,
Consequently its conventions are, for the most pat, matters of convenience rather than theorctical
hypotheses. Nonctheless, it is worth going through the grammar representation just to show what
kinds of knowledge need to be represented and to note the few places where eritical hyporheses lie.
Grammars have two kinds of rules:

1.  Category redundancy rules have the form X ==> Y where the right side has just onc category.
_This mecans that cverything that is in category Y is also in category X. Thus. DIGIT ~-> §
means that all 5's arc digits. Several catcgory redundancy rules may be abbreviated as one
rule by uwsing commas in the right-hand side, eg., SIGN -~> +, - mcans that both + and
— are signs. ‘The last six rules of figure 2-7 arc catcgory redundancy rules.
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MODE, s
SIGNED/GRID ---> SIGN CGRID : HORIZ
CGRID ---> ACOL (ACOL)+ (ACOL) . HORIZ
ACOL ---> COL (DIGIT) i VEXT BARRED
coL ' ---> CELL (%DIGIT) ; VERT UNBARRED
XNUM ° --=> NUM (/NUM)+ /NUM ; VERT UNBARRED
NUM , ---> DIGIT (DIGIT)+ DIGIT ; HORIZ

4 -

DIGIT  ==-> ID/ELT, 2, 3, 4,5,6,7,8,89
ID/ELT ---> 0,1 -
SIGN --2 e, - : .
NUM ---> DIGIT . ! .
CELL «~=> DIGIT, XNUM :
PROBLEM ---> SIGNED/GRID

Figure 2-7 '

-

A grammar for multi-column addition or subtra-”tlon problcms

-]

2. Part-whole rules have the form X --> Y Z where the right side has two or more categories.
Parl-whole rules define aggregate catcgoties in terms of their pars. ¥ The mule X -<> Y Z
means that X can be composed of parts Y and Z. Whenever onc has 2 Y and a Z that are
situated in the appropriate geometric rclationstip, one has an X, Part-whole rules bear an
annolation. located after a semi-colon, that specifies whether the rule’s categories are arranged
in a horizontal, vertical or diagonal linc. For instance

SIGNED/GRID -->.8SIGN CGRID ; HORIZ . LN '
means that a signed grid is composed of a sign followcd horizontally by a cgnd {CGRID
stands for “columnpar grid").

. Therc are several biases aboul mathemaucal notation that have been built inte the grammar

formalism. The most important one is the distinction between a tuple and a list.” There are two
kinds of partwhole rules, called tuple ntles and list rules. Tuple rules are like ordinary context-free
rules in that a rule’s lefi-hand category has cxactly the parts mentioned on the right (ic,
SIGNED/GRID has exactly the parts SIGN and CGRID.) List rufes are for defining scquences of
arbitrary length. They have a special format. They have cxactly three categorics on the right side:
W =-> X Y+ Z means that X is the category of the first clement of the sequence, Z is the category of
the last clement, and Y is the catcgory of the middic clements. The plus sign is what differentiates
list rules from tuple rules. Both tuple and list rules mark opuonal categories by placing Lhcm in -
parentheses> For instance, the list fple . --

NUM ~-> DIGIT (DIGIT)+ DIGIT ; HORIZ

mcans that a number (@ NUM) js at feast two digits, with arbitrarily many digits in between. The
tuple rule .
ACOL --> COL (DIGIT) : VERT Y
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means that an answer-column (an ACOL) is a column (a COL) with an optional digit under it. There
are other, minor grammar-writing notations in addition to the tuple/list distinction and optionality.*

Q Some of these grammar-writing notations are more than just a convenicnce. They are
potentiat elements of a micro-thcory of mathematical syntax. For instance, list rules are included -
because the tripattite notion of begin-middle-end of a sequenee is hypothesized to be highly salient.
If Jist rules arc absent.”scquential categorics can still be cxpressed using only tuple rules. For
instance, a mulli-digit number can §c expressed by
NUM -=-> DIGIT {(NUM).

However, this expression loses the idea that the boundary clements of the sequence, the first and
last oncs, may be special.  Using tuple rules. there is no simple way to indicale, for instance, that
the first digit should be non-zcro. List rules bias the grammar to express sequences so that the first
and Jast clements are special.

Onc of the main functions of the grammar is to parse problem states (i.c., interpret them
syntactically). A parse tree is the grammar’s interpretation of a particular problem state. 1t dictates
whal groups of symbols are relevant in the current problem state. Figure 2-8 shows a problem state
and the parse”tree that results when it is parsed with the grammar of figure 2-7. ‘The 18 nodes of *
that parsc trec are cssentizlly the only objects that "cxist” in the problem state. 1t is worth a
moment o walk down this parse tree in order to get a feel for how the grammar "views”
subtraction problems. By the way, the grammar given in figure 2-7 is the one used in all Sietra's
subtraction runs. The whele problem is considered a SIGNED/GRID, which has two parts. The left
part is just a minus Sign, in this case, although the grammar permits "+” to fill this role as well.
The right part of the SIGNED/GRID is a CGRID. The grammar defines CGRIDs as list of ACOLs.
In this case, there are three ACOLS, namely the hundreds. tens and units columns. ACOL is short for
“answer column” because these are cxactly its parts: an answer place and a column. In each of
these ACOLs, the answer is a BLK (i.c,, blank, which is a dummy category that fills optional
constituents) and the column is a COL. A COL has a top part and a bottom part. The bottom can
be blank, as in the hundreds column., Usually it is a digit. The op part of a COL is a CELL,
CELLs arc usually just digits, as they arc in all three columns here. However, they can be the kind
of symbol groups that results from scratching out a number and wriling another number over i!j.el
{called XNUMs in the grammar),

. Notice that the grammar docs not define any aggregate objects corresponding to the rows nf
the¢ problem, Essentially, the grammar says that grouping the symbols into columps is relevant but
grouping them into rows is not. From this perspeclive, the grammar is a skill-specific ontology. It
defines the natural kind terms that aré relevant for the sKill.

* * To accommodate two-dimensionality, the usual interpretation of constituents for one dimensional
(string) grammars is modified slightly; the rectangular region occupied by a constituent may not
overlap another constituent's region, nor may a constituent’s region include symbols that are not
descendents of the congtituent. Certain notational devices violate these conventions. As il turns
out, these are general devices in mathematics, so ways of handling them have been built into the
grammar formalism (as opposed lo handling them in individual grammars). These are implemented
using special annotations on part-whole rules: Among the categories on the right side of a rule, /X
means that X must be crossed out. andz®X means that X must not be crossed out. ARer the semi-
colon, BARRED means that the calegories in a rule must be separated by vertical or horizontal. bars,
and UNBARRED means that the rule’s categories must not be scparated by bars.
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Figure 2-8
A problem state (at upper right) and its parse tree.
Parsc nodes are labelled by a unique serial number. followed by the categories of the node,
which arc separated by colons. For instance. node 18isa CELL,aDIGIT anda 5.

-

2.5 The representation of patterns

Gran.mars have an jntimate relationship with the patterns that appear on A0G rules. That is
why descibing rule patterns has been left untit now. A patiernn is a set of relations, whose
arguments are goal arguments and patiern variables. Patterns do not have logical connectives,
quantificrs. cquality relations, functions. or other complexitics. From a logical _;@ﬁdpoint, a pattern
i$ a pure conjunction of literals (a literal is a predicate or a negated predicate), and a pattern
variable is interpreted as a Skolem comstant. This simplicity is a result.of several importan®
constraints on learning that will be discussed: in later chapters. In order to illustrate patterns, a
version of SUB1COL which is slightly different than the SUB1COL of figure 2-6 will be used. Iis
definition. with an English rendition of-the. ruics, is shown in figure 2-9. The first paticrn tests
whether the bottom (subtrahend) of the column is blank, The second pattern tests whether the top
digit of a giver eolumn is less than the bottom digit. The third, null pattern is always true. Both
goal arguments and pattern variables appear in the patterns. AC is SUB1COL’s argument. C, T and
B are pattern variables. They are of three kinds of relations in patterns:

1. Categorical relations arc defined by the grammar. For cach category in the grammar, a
categorical relation is defined. In these patterns, (COL C) and (8LK B) are the only
categorical relations.

o

Facts predicates are relations that arc defined by the procedure. These were discussed carlier. It
thesc patierns, {LessThan? T B) is the only facts predicate.

3, Spatial relations arc relations that are built into the pattern formalism. There are just six of them?

(First? S x) . Object x is the first part of some sequential coject S.
(tast? S x) Object x is the last part of some scquential object S.
{Ordered? S x ¥) Object x comes before.y in some sequential object S.
(Adjacent? S x y) Object x is adjacent 1o ¥ in some Sequential object S.
(!Part x y) ., Object x is a part of object y.

{Tuple T x y ... z) Object Tis atuple composed of objects x, 7, Z ete.
Although the spatial relations are built in, th¢y depend on the grammar for their meaning. For.
instance, since the grammar defines COL to be avertical category, (Ordered? € T B) means
that T is abowe B. IFCOL were a horizontal category, it would meaf that T iSlef of B,
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Goal: SUBLCOL (AC) Type: OR

1. {(!Part AC C) IFAC has a part C,

{coL C) which is of catcgory COL,
. (1Part C B) with a part B

(BLK B) which is blank,
~~=> (SHOWZ2 AC) then call SHOW2 with AC as its arguinent,

2. {(1Part AC C) IFAC has apart C,
(!Part C T) whosc partsare T
(TPart C B} o and B. T - -
{(Ordered? C T B) where Tis above B,
{LessThan? T B); and the problem state has a number at location ¥
---> {(BORROW AC which is less than the number that S at location B,

then call BORROW with AC as ils argument.
3. {} '---> (DIFF AC) Otherwise, call DIFF with AC ag its argument.
: Figure 2-9

Definition for a vession of SUB1COL, a goal that eroccsses onc column.

Spatial relations, categorical relations and facts predicates arc the only relations that patterns
may have. There are many reasons for handling relations this way. but chicf among them is the so-
called primitives problem. Any lecarning theory that describes how knowledge is constructed from
smaller units is open 1o questioning about its set of primitives: what are the units that are assumed
to be present when learning begins? If the choice Of primitives is left for the theorist to decide, and
especially if the theory allows the set of primitives t0 vary across individuals, then it is usually
possible for the theorist to tailor the predictions of the theory 1o an unacceptable degree by
carefully sclecting the primitives. Under the approach taken here, the theorist can only vary KS,,
the initial knowledge state, in order to tailor the primitives for individual differences 01 for different
mathematical skills. KS, includes the grammar, the primitive facts functions and the primitive facts
predicates. The latter are somewhat uncontroversial. The only part of KS, worth tailoring is the ,
grammar. Only by modifying the grammar can the theorist manipulate the vocabulary of nattern .
relations. The vocabulary of primitive relations cannot he manipulated directly. This goes a long
way toward dealing with the primitives issue, as chapter 13 shows.

During the exccution of a procedure, patterns are matched against the parse tree of the
current problem state.  Howcver, they are matched differently depending on whether the pattern is
a test pattern or a fetch pattern. The patterns that were just used for illustration came from an OR
goal, syB1cOL. Therefore, they are Lest patterns. An OR rule is cxecuted only if ils test pattern is
true, where truth of a test pattern is defined t0 be exact malching: a pattern matches exactly if all of
its relations match. If no rule’s test pattern is truc, a Aaff inpasse occurs (impasses and repairs are
described in a later section). The patterns on AND rules (ie., fetch patierns) have the same syntax
as test patterns, but they are used diffcrently. When an AND rule is executed, the fetch pattern @s
matched o the parse tree, then the bindings of some of its patiern variables are passed 10 the rule’s
subgoal. The truth ¢~ fetch patterns isn’t particularly useful since fetch patterns don't cortrol the
course of execution. Fetch patterns are matched using closest matching: the matcher uses bindings
for the fetch pattern’s variables that maximizes the sct of rclations that match. If more than onc
such binding exists, an ambiguity impasse occurs. Other than the difference ,in how they are
matched, fetch patterns and test patterns have jdentical syntax and Semantics.
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16 An introduction to induction .

Sicrra’s learner has two components. One is basically an inductive generalization algorithm or
inducer. "The inducer builds a new subprocedure. given a lesson’s examples. The other component,
called the deletion unit, removes onc or more rules from the subpracedure that the inducer
constructs. The inducer is by far the more complex and important of the two componenls.
Although inducers are common in Al they are less common than interpreters and problem solvers
{which are the main components of Sierra’s solver). This scction reviews some bsic concepts .of

_induction.  In the following section, Sicrra’s lcarner will be described,

Induction has been defined as-the discovery of generalitics by rcasoning from particulars, or

" more succinctly, as generalization of cxamples.  As a specics of reasoning. induction has been

studied in many ficld under many names. Concept formation, learning by cxample and grammar
inference are just a few of its names. Dietterich and Michalski (1981) and Cohen and Fiegenbaum
(1983) review '~ literature on symbolic (Al) induction. Bicrman and Feldman (1972) and Fu and
Booth (1975) review the literature on pattérn induction and grammatical inference. Anderson, Kline
and Beasley (1979) review the literature on prototype formation from an Al perspective.  This

. section intreduces some of the basies of induction.

Winstons carly work in inductive lcarning is a classic iltustration of induction (Winston,
1975). It will be used throughout this document tu furnish simple illustrations of inductive .
principles. His program lcarns definitions (concepts) for terms that designate structures made of toy
blocks. It does so by cxamining scenes that have cxamples of the structure being fcarned. Figure
2-10 shows some scened used tu teach the concept "arch.,” When Winston's program compares
scenc @ with scenc b, it discovers that the block that is on top {the lintcl) can be cither a brick or a
wedge. 1t happens to have a concept, prism, which ingludes bricks and wedges. 1t induces that the
lintel is a prism. 1f it later saw an example with a"pyramid as the lintel. it would generalize still
further, since a pyramid is not a prism. The lcarner is biased. 1t is biased toward the most specific
gencralization that covers the examples. 1t won't gencralize unless it has to. Until it sces a pyramid
as the lintel, it will stick with prismaltic lintels.

An important distinction is the differcnce between positive and negative examples. A positive
examplc s an instance of the generalization being taught, and a negative cxample /5 nos an instance
of the gencralization being taught. In the archelearning illustration, scencs a and b are positive
cxamples, and scenes ¢ and d are negative examples. The teacher tells the Icarner which cxamples
arc positive and which are ncgative. Winston’s program made crucial usc of near misses, negative
examples that are almost instances of the target concept.  Scene ¢ is a near miss. The only thing
that prevents ¢ from being an arch is the fact that its legs arc touching. Scenc 4 is not a ncar miss.

Scene € is a ncar miss that raises an important issue. It was just mentioned that Winston's
program had a conscrvative bias with respect to positive cxamples. It only generalized if it had to.
With respect to negative ¢xamples, the program has the opposite bias. In ncar miss e, two relations
arc missing. The left leg is not supporting the lintcl, and ‘the right leg is also not suppOrting the
lintel. Winston's inducer decides that both these support relations are necessary parts of the
gencralization, A more conservative learner would decide that cither leftsleg support or right-leg
support was necessary, but it wouldn’t require that both be present for a steucture to be an arch, A
conscrvative learner would accept scenes fand g as arches, but Winston's program would not. For
the conservative learner to learn that both left-leg support and right-leg support were necessary, it
would have to be given both fand g as ncgative exemples. So, Winston's learner has two biascs:
conservative for positive examples, and liberal for near misses. It is important t0 understand what
the biases of an inducer are since they can be critical in making it learn like a human,
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non-arch non-arch
g . h
Figure 2-10

Some examples, negative examples and near misses of Winstonian arches,

The concepts of positive and negative examples, near miisses and bias have been introduced.
Another key concept is the ¢lass of all possible generalizations that the learner can induce. {n most
.cases, the class of all possible generalizations is determined by a representation language: any
expression that can be comstructed in the representation language is a possible generalization.
Usually, the class is infinitely large. The arch learner’s representation language is a certain kind of
semantic net language. It uses about a hundred primitive predicates, such as ( ISA x 'WEDGE) and
(SUPPORTS x y}. A critical feature of the language is that it does not have disjunction. It has no
way (o say, for instance. that the lintel is 2 brick or a wedge. Of course, the language could easily
have disjunctions added, allowing it {o say

(OR (ISA x 'BRICK)} (ISA x 'WEDGE))
or perhaps
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(ISA x (ANY-OF ‘'BRICK 'WEDGE)).

However. Winston chose not to allow disjunction in the language in order to constrain the class of
ali possible gencralizations, thereby controlling the inducer in an indirect way. This indircct
influence plays a tacit role in the treatment of scenes @ and b of figure 2-10.  Although the arch
learner is biased to take the most specific gencralization that covers the examples, it is not allowed
10 induce that the lintel is a brick or a wedge. The represcntation language forces it to gencralize
slightly beyond the cvidence and decide that the lintel is a prism.  Hence, it recognizes scenc b as
an arch, cven though it has never seen it before, because the lfintel is a prism. a trapezowdal prism.
If the language permitted disjunctions. the learner would not make the inductive leap from “brick
or wedge” to “prism” and hence would not recognize scene A ag an arch. In short, the constraints

on the class of ail possible gencralizations, which arc wswvally determined by the represeniation
language, exert a crucial control over the character of the inducer’s icarning. To reiterate: the two
mrajor determinants of induction arc the biases of the inducer and the constraints on jts possible
generalizations.

-

The idcas that have been introduced can be summarized as follows: The input to an inducer
is a sequence of examples: the output js a set of cxpressions in some representation language such
tha: (1) cach exprossion is consistenr with all the examples. and (2) the sct of expressions is maximal
respect to a certain partial order, called a bias {or a simplicity mctric. or weighting function). That
is. the output consists of the simplest expressions in the representation language that are consistent
oo e o - With,_2ll_the _examples,

The definition of consistency and bias varies with the task. For instance, suppose the task is
to induce grammars from strings. The examples arc strings, and the task is to induce cxpressions
(grammars} in some specified grammar-represcntation language. A grammar is consistent with a
string if the grammar parses it {or more formally, the string is in the language generated by the
grammar). A typical bias is to prefer simple grammars {c.g., fewest rules, or fewest non-terminal
categories). A bias based on counting rules or categories would be a total order, since any two
grammars can be compared. In gencral, biases are partial orders rather than total orders, For
instance, suppose the bias is to prefer grammar A over grammar B whenever A's rules are 2 strict
subsct of B's rules. This means that certain pairs of grammars will be incomparable: ncither may
be a subsct of the other. When the bias js a.partial order, morc than on¢ grammar may be

*  maximal. That is why the output of an inducer is defined to be a ser of cxpressions. not just a -~
single expression. A last comment is that bias is applied gffer consistency, so to speak, In cffect,
the inducer first finds all abstractions consistent with the cxamples, then it finds the maximal
clements of this set. ’

-

Negative examples and discrimination examiples

Negative cxamples are very importanf. The previous discussion of near misses indicated how
important they were for Winston's inductive learner. Another important yge of negative examples is
to recover from overgeneralizations. Suppose the target concept is more specific than the concept
that the Inducer has at the moment {c.g. the target is PRISM but the inducer has guessed BLOCK).
A negative example can be used ¢. force the inducer to make jts guess more specific (¢.g., showing
the inducer a negative example that is a block and not a prism). No positive example could force
the inducer to retreat from the overgencralization in this way (Gold, 1967). A critical issue for this
theory js whether instruction in mathematical skills uscs ncgative examples, and if so, how.
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Strictly speaking. a negative example of a mathematical procedure is 2 problem state scquence
that illustrates an incorrect way to solve the problem. In a tektbook, such a worked exercise might
be labelled, "This is a wrong way (o do subtraction problems, Do not.use this way.” I have ncver
scen such examples jn textbooks. However, negative examples do occur in classrooms under several
circumstances. When a teacher has the class solve a problem on the blackboard. incorrect problem
state sequences will sometimes be generated (or partially gencrated before the teacher stops the
student sulving the problen:). ‘These iucorrect solutions are negative examples. ‘They may cven
qualify as ncar misses. A similar situation occurs when studenis are doing scatwoik.  Studenis
having difficulty often ask for the teacher's help. The teacher may watch them solve a problem,
then point out where the student went wrong.  Such incorrect solutions also serve as negative
cxamples. So, negative cxamples are not abscnt in normal instruction. But they are not common,

and iy are-norosed in—any maothodical way.

There is another kind of cxample which functions as a negative cxample in certain ways,
although it is not. properly speaking, a negative example. Solving a problem that doesn’t require a
certain Subprocedure provides a negative example for induction of the subprocedure. 1 believe the
traditional “name among curricula wrilers for such cxamples is discrimination examples. A
discrimination cxample is onc that demonstrates when nof 10 use the subprocedure that is being
taught in the current Jesson. For instance, an cxample that duesn't borrow i a discrimination
¢xample when it dppears in the midst of a borrow lesson. Such an example can help the inducer
discnminate the conditions that determine when onc should borrow by providing negative instances
of borrowing {i.c.. problem staics when onc should rot borrow). With regards to the induction of
the test patiern that governs a new subprocedure, negalive instances act as negative cxamples. So a
discrimination cxample provides a negative instance of a certain subprocedure’s test pattern, but it is
not & negative example.

At first glance, it secms that some textbooks provide discrimination examples and some don't.
This is rather odd. If induction iS indeed what students do, and given that induction can proceed
more ¢fficicntly when negative instances are available, then it is amazing that some curricula omit
discrimination examples. A closer examination of the textbooks in question reveals that they
actvally do.have discrimination examples. Howcver, the discrimination ¢xamples for a certain
subprocedurc do not occur in the introductory lesson on the subprocedure. Instcad, ey are placed
later. Often they appear in review lessons. Another place they appear is in lessons of subscquent
subprocedures. For instance, discrimination €xamples for Simple, non-zero borrowing are provided
by the cxamples used to introduce borrowing from zero. In

59,
glol7
-238
369
subtracting the tens column always provides a negative instance for borrowing. By the (me the
solver gets to processing it, the tens column’s top digit has been changed to 9, so the column never
requires a borrow. This can be used by the inducer in inferring that T<B is the correct condition
for borrowing. So an ordinary positive example of borrowing-from-zero necessarily provides a
discrimination exampic for the subprocedure of borrowing. In certain cases, the same example can
be both a positive cxample and a discrimination example for a certain subprocedure. In short, it
appears that discrimination examples arc present, one way or another, although they may occur late
in the lesson scquence.

At the present time, Sicrra’s learner is not able to uwse discimination examples for a
subprocedure unless they occur in the lesson where the subprocedure is introduced. Conscguently,
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when a textbook’s content is formalized as a lesson sequence, discrimination cxamples are moved
forward in the sequence. For instance, example b in figure 2-4b is a discrimination cxampic that is
nol in the corresponding real lesson. It came from a review lesson that appears a hittle later in tie

_textbook.  Appendix 7 discusses how this te¢hnical limitation will be removed in later versions of
Sicrra.

2.1 The legrner

A typical inducer's task is completely specified by (1} the representation language. {2) the
definition of censistency. and (3) the definition of buas.  Sierra’s learner is atypical in that its
specification involves one further cunstraint: it may add af most one subprocedure per lesson. This

constraint is a fourth kind of constraint. It is essentially an upper bound on the rafe at whicli the
inducer may change its candidate generalizations.

As far as | know. Sierra’s learncr is the first Al inducer to use a rate constraint. Rale
constraints might be profitably exploited in other applications. such as the knowledge acquisition
phase of knowledge enginecring. In fact, a quick survey of the knowledge acquisition literature
reveals an amusing "hole.” There is a great deal of complaining about the so-called knowledge
acquisition bottleneck. It is hard to get human cxperts to formalize their cexpertise as c.g.,
production rules. One often heard solution is 10 have the system learn the knowledge on its own,
cg, by discovery or by analogy. However, few human experts acquired their knowledge this way.
Most of them didn't discover their knowledge or infer it, they learned it in school or from a mentor.

The "hole” in the knowledge acquisition research is that no one, to my knowledge, is trying to get
their expert system to learn like human experts fcarn. Such a System would take advantage of the
structure that its mentor places on the instruction. The present rescarch, in its explication of felicity
conditions, should be helpful in building such a knowledge acquisition system. Presumably, such a
system will be casier for human cxperts to educate than present systems. Because many cxperts are
expericneed teachers, they are more familiar with formatting their knowledge as lesson sequences
than as production rules. Felicity conditions might help solve the knowledge acquisition bottleneck.
Alas. this rescarch is not aimed at such practical {and potentially lucrative) goals. Its aims are
mercly scicntific.

Representation language, the first of the constraints on Sierra’s learner, has been defined
already. This section is devoted to defining the others. They are discussed in the following order:
consistency, subprocedure and bias. The actual algorithm used to implement the inducer is not
discussed here because any algorithm that meets the specifications would do just as well from the
standpoint of the theory.

The definition of consistency

A procedure is consistens with an cxample if and only if its solution to the example’s problem
is cxactly the same problem state Sequence as the cxample itself. This definition captures a
controversial felicity condition., Teachers guarantec that any procedurc that always produces a
correct problem state sequence will be acceptable. It matters less what students say or think; they
arc evaluated on what they do. Consequently, in order to succeed in sc¢hool, Students need only
induce a procedure that iS consistens with respect (o the problem state sequences of the tcachers’
cxamples. It's rational that students would take the simplest. most cfficient road to success. In fact,
they do. Induction from problem statc Sequences is just what students scem to do. The felicity
condition captures this whole complex: the teachers’ guarantee. the way the guarantec simplifies
lcamning, and the fact that students actually take advantage of the guarantee by using the simplified
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way to Icarn. This felicity econdition is labelled the induction hypothesis in chapter 3, where it is

formally defined. .

The definition of subprocedures

The maximwn amount of material that may be added to an AOG by the learner during a
lesson is called a subprocedure. In Lisp terms, a subprocedure is like onc clause frem a COND
statement; it's a new conditional branch that consists of a sequence of several steps, where each
step calls existing code. If procedures arc presented as augmented transition nets or ATNS (Woods,
1970; Winston. 1977), then a new subprocedure is a new arc and a pew Ievel that is called by the

new arc. (scc fgurc 2-11). In AOG terms. a subprocedure consist Of several components:

Write Po
SUB r O—=2F
AN Mot -
REGROUP
MULTI Write ~ Write ~ Pop
. BORROW SHOW yd
SHOW2 MULTI
CrossOut i '
OVRWRT O r 0 WriteB o—Fop
i Po
stow O Write o—2P
Write Po
sHowz O r o—>=
REGROUP Write Pop
BORROW O O O
OVRWRT OVRWRT p
REGROUP O o—2P
N BFZ 7
- . REGROUP o OVRWRT P
Figure 2-11

The procedure of figure 2-12b drawn as an ATN. where arcs run left to right.

‘The new subprocedure’s arcs are shown with double lines.
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1. ancw rule. called the adjoining rule, that is added 1o an existing OR goal. called the parent OR.
a new AND goal, called the new AND. “The adjoining rule calls it,

onc or more new OR goals, cafled the frivial ORs. The trivial ORs are called by the now AND's
rules. Each trivial OR has a singlc trivial (i.c., null pattern) rule that calls some cxisting AND goal.
Thesc existing AND goals are called the kids.

Figure 2-12 illustrate these components of u subprocédure by showing an A0G before and after a
subprocedure has been added. This subprocedure, by the way, is the one acquired from the lesson
of figure 2-4. teachcs how o borrow from zeros. 1t will be used throughout this scction as a
running example. The pre-lesson AOG (figure 2-12a) can borrow only from non-zero digits; the
post-lesson AOG (figure 2-12b) can borrow across zcros. BORROW/FROM is the subproceduce’s
parent OR. The adjoining rule connects BORROW/FROM to BFZ. The new AND is BFZ. The trivfil

ORs ar¢ 1/BFZ and 2/BFZ. The kids are REGROUP and OVRWRT.

The reason sWbproccdures have the particular structure that they do is the subject of lengthy
argumentation. which will be presented in following chapters. To summarize that argumentation, a
certain feliclty condition. one-disjunct-per-lesson, mandates that just one new choice be introduced
into the procedure’s structure. This choice is created by adding the adjoining rule to the parent OR,
This means that there is now a ncw way to achieve that goal. A choice has been added. ¥For
convenience, afl places where there could eventoally be choices, but so far there are none, are
marked structurally. Thus, the subgoals of the ncw AND are created as trivial ORs. ‘Trivial ORsS
provide a place for later subprocedures to attach. In fact, this subprocedure’s parent OR,
BORROW/FROM, was crcated as a trivial OR for REGROUP,. T

e

The definition of bias

" Given a lesson and a procedure, the learner first generates all possible subprocedures that
make the procedure consistent with the lesson’s examples, then it uses bigs 1o define the maximal
subprocedures, (Actually, the algorithm is more complex, but the effect is the same.) Bias is
defined by several ordering predicates. Each bias predicate will be stated and discussed in turn.
A>B will be used to indicate that the bias prefers procedure A over procedure B. -

Maximally general test patterns -
" If two subprocedures, A and B, are equal in every way except that A's adjoining
rule’s test pattern is a subset oF B's adjoining rule’s test pattern, then APB.

The adjoining rule of a subprocedure is an OR rule. so it’s pattern is a test patten. I controls when
the subprocedure will be executed. For instance. in figure 2-12, the adjoining rule connects
BORROW/FROM 1o BFZ. If its test patlern is true, BORROW/FROM calls BFZ: if jy is false,
BORROW/FROM calls a subgoal that simply subtracts one from BORROW/FROM's argument. For this
test paltern 10 be consisient with the examples, it should be true in all problem states where
BORROW/FROM is the current goal and the subprocedure is invoked by the teacher. Such problem
states are called positive instances. 1t should be false in problem states where BORROW/FROM is the
current goal and the teacher did not invoke the subprocedure. Such states are called negafive
instances. Given the fesson of figure 2-4, the positive instances are.states ¢ and & below. and
negative instances are states ¢ and 4

, 1 14

a. 304 b. 707 c¢. 824 d. 8zla
-128 - 28 -368 -358

8
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Figure 2-12
AOGs before () and afier (b) H's lesson on borrowing from zero.
The new subprocedure’s goals are shown in a targer font.
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. not false of the negative instances. Hence it is not consistent with the examples. Pattern 2 is true
. of both positive instunces and false of the negative ones. 1t i consistent. Morcover, since the only

. patiern 2 as a proper subset, and pattern 2 is consistent. Pattern 4 is not accepted by the bias. The

— Given two subprocedures. A and B, for possible addition to a procedure P, if A is fower

- MODEL 47

There are often millions of consistent test patterns. For illustration of how the bias affacts the
induction of this tcst pattern, however. we'll consider just these four patterns. not alt of which are

consistent (cach paitern is followed by its linglish translation): /|
L. 0 Always true,
2 {{0 TD}} BORROW/FROM's argument is a zero. .
3. {{rart! C TD)) BORROW/FROM's argument TD isin acolumn. AC, thatis
(Part?! AC C)) adjacent to the rightmost column in the problem, X.
(Part! G AC)) That is. BORROW/ F ROM’s argument TO is in the tens column.

{Part! G X))
(Adjacent? G AC X))
i (Last? G X)})

-

4. 1 {(0 TD) ' BORROW/ FROM’s argument TD is a zero, and
\ (Part) C TDY) itisinacolumn, AC, thatis ~ -—
v {Part! AC ' adjacent to the rightmost column in the problem, X.
" (Part! G aC})) That is, TD i$ a zero and it is in the tens column.

| (Part! G X))
- . -{Adjacent? G AC X))
L (Last? G X)})

Patterp 1, the trivial pattern, is true of both positive instances (indeed, it is always true). But it is

pattern that' could be a proper subset of it is {}, which is inconsistent, pattern 2 is maximally
general. It is accepted by the bias. Pattern 3 is true of the positive instances but it is not false of
one of the ncgative instances (c). Hence pattern 3 is inconsistent. When it is conjoined with
patterd 2, the result, pattern 4, is consistent. But it is not maximally gencral because it contains

bias prefers pattern 2 instcad. To put it intvitively, pattern 4 would represent students who believe
that they should only borrow-from-zero for zeros that are in the tens column. Such a belief would
appear in the students’ work as a bug. But no such bug has been observed. In order t0 account for
this fact and many othdrs, the theory adopts a bias toward maximally gencral test patterns. We
move On to the next bias predicate.

Lowest parent
than B in that there isa path from _P‘s root to A that passes through B, then A>B.

The best way to understand the lowest parent bias is to see an example. Figures 2-12b, 2-13¢ and
2-13d show three AOGs corresponding to adding different subprocedures to an initial AOG. The
initial AOG is shown in figure 2-12a. All threc procedures are consistent with the lesson’s examples.
However, subprocedure 2-13¢’s parenl, SUB1COL, is higher than subprocedure 2-12b’s parent,
BORROW/FROM. Subprocedure 2-13d’s parent, 1/SUB, is higher still. The lowest parent bias
prefers 2-12b, Essentially, 2-12b represeats the idea that the new subprocedure, BFZ, is a kind of
borrowing. 2-13c represents the idea that BFZ is a way 10 process columns (i.c., there are three
kinds of columns: easy, non-borrow columns; harder, borrowing columns; and super hard, borrow.
from-zero columns). 2-13d represents the idea that BFZ is a way to process a whole problem. (i.e.,
there are two kinds of problems: regular problems and probiems that require BFZ.)

o1
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, Figure 2-13
Subprocedures, in farge font, that are attached to higheT parents.
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There is a somewhat diffcrent perspective on the lowest parent bias: the lower the parent, the
more general the subprocedure. For instance, 2-12b and 2-13¢ can cope with four column borrow-

__  from zero problems, such as a below, .
’ a. 5072 b. 500 2
-1191 -1119 | : .
but 2-13d can not Because its subprocedurc is attached above MULTI, the loop across columns, ’ \

2-12b can borrow from multiple ceros, as in &, but neither 2-13¢ nor 2-13d can. So the lowest
parcnts bias is a bias toward incrcasing the applicability of the new subprocedure.

" This bias has a certain clegant relationship 10 thé test pattern bias. Note, first of all, that test
patierns and parent ORs are two aspects Of the same thing: The test pattern expresses exfernal /
conditions on when to call the new subprocedure, and the parent OR expresses infernal conditions —
on when 10 call it. i.c., what goal must be current in_order to call it. (In ordinary production /
systems, lest patterns and parent ORs would be syntactically indistinguishable because they would .
both be conditions in the lefi-hand side of a rule.} Given this duality, their respective biases ought
to be the same, and they are. The test pattern bias is toward maximizing the applicability of
subprocedure.  The lowest parent bias is also towards maximizing applicability. To put it a little |
differently, these w0 biases both say that students would prefer 10 risk errors of commission (i.c., :
exccuting the new subprocedure when it really shouldn't be exccuted) rather than risk errors of
omission. On lo the next bias predicate.

Maximally specific fetch patterns
“fftwo subprocedures, A and B, are identical except for their fetch patterns, andeach
fetch pattern on A’s new AND's rules is a superset or equat Lo the corresponding feteh
pattern in B, then A>B. -

L

This bias prefers the largest, my |, <ific patierns for fetch patterns. This makes sensc, given the -
role that fetch patterns play. The basie problem that a fetch pattern solves is deciding which of the

many visible objects (e.g.. which digit or which column) a subgoal should vse as its arguments. In

order to maximize the fetch pattern’s power to discriminate, the learner remembers everything about

the lesson’s examples that might prove uscful in feiching — it remembers maximally specific
_patterns. It does so in order that problem solving can approximate the lesson sitvation as closcly as
possible. If some idiosyncracy of the lesson's examples is stored, no harm is done. Although the
idiosyncratic relations won’t match during problem solving, fetch patierns are matched closely rather™

_ than exactly, so the fetch will-succeed anyway.

Besides inducing patterns, the learner builds actions for each of the new rules. This
sometimes involves inducing nests of functions. Functions are typically needed whenever the "
worked example introduces a aew number, a number that is not cqual to onc of ‘the numbers
visible in the current problem state. These new numbers are usuvally the result of some facts
function that is performed invisibly by the tcacher (or textbook). fn the first example of the lesson
(sce figure 2—4a), a 9 is introduced in problem state 4 Some possible candidates for the function
nest that generates the 9 follow (English presentations have been substituted for the pattern
variables that would normally appear as the arguments of Read);
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1. (QUOTE 9)

2. (Add (Read <ariginal top digit of hundreds>) (Read <bottom of units)))
3. (Subl (Add (Read <topoftcns>) (Read <original top of tcns>)))

4. (Subi (Read <top oftcnscolumnd)) s

Functidon nest 1 is a constant. {t turns ont to be a correct Runction nest. Function nest 2 will be
filtered out by the lesson's next positive example. 707~ 28 because 7+8%9. The third nest will
never be filtered ont by any example since the subpmccdurc is only called when the top of the tens
column is zero. However, this function nest is ruled out by the show-work principle. The show-
work principle is a felicity condition that states that cxamples of 2 new subprocedure are expected
by the stutlent to show all their work. ‘What this means; in practic®. is that facts functions won't be
nested by Sicrra's learher. To do $0. as in the third nest above. is to hide an intermediate result
instead of writing it down. Apparcntly, students don’t believe that the tcacher will do that. so they
never bother to consider nested facts functions.® The fourth function nest is logically equivalent to
the first.. It 100 is consistent with all the lesson’s examples. However. the wse of Sub1 instcad of
the constant 9 has a subtie cffect on local problem solving. which allows orc to detect which one
students prefer.  They prefer the constant.  The following bias expresses that preference and others
like it: . .

Smallest arity

IFtwo subprocedures, A and B, are jdentical except for a function nest, and the.arity of

A's nest is smaller than the arity of 3's nest, then AYB. where the arity of a function nest

is the sum of the number of argument places in its functions (i.e.. constants and nullary
functions count 0, unary functions count 1, binary functions count 2, cte. ).

This is a rather minor bias that has a clear intuitive interpretation. Supposc that cxecuting binary
facts functions requires greater use of cognitive resources than exccuting a uvnary facts function.
The bias then means that students préfer function Jnests which reduce their cognitive load during
execution. Thcrc are just two more bias Prcchcaies left to discuss. ’

Fewest kids
Iftwo Subpmcedures A and B, have the same parent OR, and A has fewer kids
than B, then A>B.

Lowest kids

If two subprocedures, A and B, have the same parent OR and the same aumber of ©
kid3, and each of A's kids is lower t!,]an or equal to the corresponding kid in B,

then A>B, where "lower”™ is defined as in the lowest Parent constraint.

These Iast two biases were discovered by trial and error. Although they are needed in order to
improve the theory’s predictions, I have, as yet, only a speculative interpretation for them, which ig
discussed in chapter 19, What makes these biases confusing is that they arc opposing biases.
Chapter 19 shows how the fewest-kids bias increases the generafity of the subprocedure while the
lowest-kids bias decreases it

* We can infer this by relaxing the show-work principle and seeing if the resulting predictions are
accurate. If the show-work princinle is refaxed slighly 50 that facts functions can be nested one
deep, then approximately 450.000 distinct function nests are induced for this lesson. Many of them
fead to star bugs,
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A summary of the learner’s operation

All the criteria for the learner have been defined. The representation language and
consistency were defined. Rate constraints were defined by defining subprocedures. The biases
were defined. Any algorithm that satisfy these specifications would serve as an inplcmentation for
Sierra’s learner®. Sierra's actual algorithm is not far from a brute force algorithin.  However, it uses
some tricks t0 reduce the computational resources required. For instance, it uscs a version space, 0
represent the set of all consistent test patterns {scc section 18.1 and Miichell, 1982).

It was mentigned carlicr that Sicrra’s lcarner has a second, minor component, called the
deletion unit, that deletes one or wnore rules from the subprocedureds) produced by the inducer.
The deletion unil's operatior: is quite simple.  Suppose the inducer has just produced a
subprocedure whose new AND has # rules. ‘The deletion vinit produces 2"—2 new subprocedures,
onc for cach non-trivial subset of the AND rules, If the new AND has two rules, ®1 and R2, then the
deletion unit produces two new Subprocedures. One has a new AND with just R1. The other has a
new AND with just R2. Chapter 7 discusses why deletion must be a part of the learnet. The botiom
line is that scveral observed bugs can't be generated without it.

2.8 Core procedure trees for the Southbay experinient

In order to illustratc the way the learner’s inducer works and to start the discussion of
observational adequacy. this section illustrates the inducer’s penurmarnce when given a particular
subtraction lesson sequence, the one called H in scction 2.2, Sierra’s inducer is onc-1o-many in that
it may produce more than one outpit procedure from a single input procedure and a lesson. This
comes out clearly in figure 2-14, which shows the core procedure tree for te learner. The core
procedure tree shows which procedures are derived irom which othcr procedures. The initial
procedure is at the top. 1t js called "le” because it can only do onc-column problems. The links in
the cure procedure tree are labelled with the lesson names, Thus, Tesson L produces procedure 2¢-
full. The remainder of this section is a "walk™ down the core procedure trec.

The first lesson, L,, teaches how to solve problems of the form NN—NN. The resulting
procedure, 2¢-full, can do two column problems, where both ¢olumns are "full” The new AND of
the subprocedure introduced by this Iesson is labelled MULTI in figure 2-6, which is the AOG from
the procedure labelled “ok” in the core procedure tree. Henceforth, the new AND’s names will be
indicated in square brackets so that the reader can follow along in figure 2-6, Lesson L, teaches
how to solve incomplete tens columns, producing a proc*dure called 2c that can do any two column
problem that does not require borrowing [SHOW].™ Lesson Ly introduces regrouping offline, so to
speak JREGROUP]. It vses cxamples that arc not subtraction problems. The subtraction procedure
that results from this lesson, 2c-regroup, can do both regrouping excreises and two-column
subtraction problems, but it cannot do two-column subtraction problems tha. require borrowing.
That capability is taught by lesson L,

3
& [

.

* There are interactions among the biascs, so they must be applied in the following order: lowest

parent, fewest Kids, lowest Kids, smallest arity, and maximally specific feich patterns. ‘The bias for

gaximuz:lly gencral test patterns must be applicd after the Jowest parent bias, but it is independent of
e others, . ;

9]
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le
L1
2e-ful
L2
2¢
L3
2c-regrovp
L4
2e-1bor 2e-1lbor-1eq
LS
3c-full Je-tul1-Blk 3e-ful1-P100
LG
. 3¢ 3c~B1k 3¢-P100
L7 |
dc-lbor 3c-1bor-B1k 3e-1bor-pP100
L8
) dc¢-2bor 3c-2bor-B1k 3c-2bor~P100
Lg .
3c-bf1z 3c-bfiid 3c-balz-B1k 3c-balid-Bik 3Je-balz~P100 3c-balid-P100
L10 )
A o ok-B1k
Figure 2~14

The core procedure tree of iesson sequence H, with lesson labels on the left.

Lesson L, integratés regrouping into the column-traversal algorithm [BORROW). Notice that
there are two output procedures, 2c-1bor and 2c-1bor-leq. Part of what lesson L, teaches is when to
borrow. It uses examples fikc 34—18 to show when to borrow (positive examples), and examples
like 34—13 to show when not to borrow (discrimination examples). However, lesson L, does not
include cxamples like 34— 14, where the units colurin’s digits are equal. Hence, the learner has no
way to tcll whether the test for borrowing should be T<B or T<B. Sicrra’s learncr thus produces
two procedures: procedure 2c-l1bor borrows when T<B, and procedurc 2¢c-lborleg borrows when
T<B. This constitutes a prediction that some studenms will borrow when T=B, as in 34~14. This
is a correct prediction. Th. ~orresponding bug, which is called N— N-Causes-Borrow, has been

" observed. .

Lesson L teaches how to solve three column problems [recursive call to MULTI). It
produces three procedures. Procedures 3c-full and 3cfull-Blk are almost identical. The only
difference is the test pattern that they use to tell when to recurse. For procedure 3c-full, the test is
whether the current column is the leftmest column in the problem; if it is not, then the procedure
recurses.  For 3cefull-Blk, the test is whether there are any unanswered columns lcfi. Both
procedures lead ultimately to correct subtraction procedures (the ones labelled ok and ok-BIk). The.
intermediate "BIK" procedures, however, generate star bugs. Certain repairs, which attempt to omit
answering a column, will cause these Blk procedures to go into an infinite loop trying to answer the
column that was left blank. This whole branch of Blk procedures shouldr't be generated. In a
moment, the underlying problem will be discussed. The third procedure output from lesson L,
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Jo-full-P100, passes arguments to the recursive call a littie strangely. Whereas both 3c-full and 3c-
ful-Bikx pass the righimost unanswered column through the recursion. Jc-full-P100 passes the
leftmost column (hence its suffix. P100. which abbreviates “passing the hundreds column®™). ‘This
unly works correctly for three-colhimn problems. Procedure 3c-full-P100 will get stuck if it is given
a fourcolumn problem. In fact, it and all its descendents are star procedures due to the strange
ways that they answer p‘rbblcms with four or more colunins. This branch of the core procedure tree
shouldn’t be generated.  In chapter 10 examines the problem underlying the 131k branch and the
MO0 branch. The blame is laid on a missing picce of common sense knowledge. The theory
should provide some schema for recognizing and building loops as iterations across "similar” objects
in a problem state. That is. the knewledge representation language should have. in addition to AND
goals and OR goals. a Foreach goal. Such a goal cxecutes its body once for cach object in a
sequence of objects. e.g.. cach column in a sequence of columns. The current lack of such a goal
forces the Icarner 10 build a recursion in order 1o traverse columns, and this causes the Blk and
P108 groups of star bugs. '

Lesson 1. teaches how to solve three column problems of the form NNN—N [SHOW2]. This x
lesson is a fabrication. At about this point in the Heath textbook. NNN—N probicms start
appearing in the practice cxercises. but there is no specific lesson on the subskill. Lesson 1.6 has
been included in the lesson sequence in order o get around the missing Forcach loop problem. If
column traversal were structured around a Foreach loop, then the lesson that teaches how lo solve
NN-N problems (lesson L.} would suffice 10 teach how to do a partial column that occurs
anywhere in the problem. Since there is no Foreach loop in the current knowledge representation
language. omitting L6 from the lesson sequence means that all the procedures generated from H
will be unable to solve NNN =N problems. in particular. all the procedures will manifest otie of
the two star bugs shown below when they are run through the solver:

79
*Skip-Interior-Botiom-Blank: 346 346 8 0l7
-~ 2 -~ 22 - 9

3 3X 323V 7 8X

79

*Quit-When-Second-Bottom-Blank: 346 345 @ 807
-~ 2 -~ 22 s 9

3X 323+ 8 X

(In this and following cxamples. X marks wrong answers and ¥ marks correct ones.) In particular,
the lcarner will be unable to gencrale a correct subtraction procedure. The proper way to avoid
these star bugs would be to study the Foreach probiem, then make the appropriate changes to the
representation language. 1 haven't donc that yet. In the interest of sceing what the theory would
gencrate if that were done. L was added to H. Lesson sequence SF does not have such a lesson.
All its predictions involve one of the wo star bugs above.

Lesson L, teaches how to solve three column problems when one of the columns (but only
onc) requires borrowing. This lesson refines the fetch patterns that determines where to do the
decrement during botrowing. Prior to L,. the fetch pattern would retumn both the left-adjacent
(tcns) column and the leftmost (hundredS) column for borrows that originate in the units column
(recall ihe discussion of the bug Always-Borrow-LeR in section 1.1). This less n modifies the fetch
pattern so that only the left-adjacent column is fetched. All the previous lessons have added new
subprocedures; lesson L, docs not. 1t only modifies cxisting material. Lesson Ly is similar. It
tcaches how to do problems with two adjacent borrows. 1t does not add a new subprocedure, but
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H

only adjusts spme fetch patterns. It prodices a proccdt;rc 3c-2bor {or 3e-2bor-Blk, or 3c-2bor-P100)
that can correctly solve any thrce column problem that does not involve borrowing from zero.

Lesson L tcaches how to borrow from zero [BFZ). 1t produces two procedurcs that are
identical except for their test patterns. The test for 3c-bflz (or 3c-bflz-BIK, cec.) is {06 X)}, which
causcs the proccdure o borrow from zero if the digit to be decremented is a zern. “The test patiern
for 3¢-bflid is {{ID/ELT X}}. which makes the procedure bosrow across zeros and ones. ID/ELT
is a categorical relation that is defined by the grammar (see figure 2-7) to be true of both kinds of
identity clements. Procedurc 3c-bflid corresponds to an observed bug, Borrow-Treat-One-As-Zero.
The rcason the learner produces two procedures is that the lesson IS missing a cructal example, one
where thc digit to be borrowed from is a onc (c.g., 314~9). Without this cxample. {lic lcarner can't
discrimiratc which of the two possible test patterns is right. By the way, this illustrates one of the
few ways that the grammar has been tailored in order to improve the theory’s predictions. i
ID/ELT were taken out of the grammar, then this bug could not bc gencrated. In general, Sicrra’s
predictions are not particularly sensitive to the grammar. If the grammar works, in that it provides
correct parses for all the problem states that the procedures produce, then the model generates
about the same Sct of predictions. The ID/ELT <asc is the cxeeption to this gencral finding.
Anyway, the learner finishes up by taking lesion Ly, which tcaches how to borrow across multiple
zeros.  This lesson has no cffeet Oon 3c-bflz, Since the proccdure can already do that

The ¢core procedure tree has two 2-way‘ branches and one 3-way branch. It could have as
many as 2x2x3=12 final procedures. In fact, there are just 2. The other branches are pruned
when the learner is unable to assimilate the next lesson. For instance, the branch for T<B as-the
test for borrowing (i.e, procedure 2¢c-1bor-leq) 15 terminated at lesson Ls because one of the '
examples in that lesson I8

985
-6285
360
The procedure expects the vnits cojumn to have a borrow, but the example does not have a borrow
there. The learner could install a2 new subpocedure that would avoid borrowing whenever T=B,
However, lesson L is already introducing a new subprocedure. The leasner cannot introduce two
subprocedures in one lesson becuuse that would viglate the one-disjunct-per-lesson felicity condition.
50 this branch of the core procedure tree is pruned. Intuitively, such pruning represents
remediation.

It might seem that the model is doing a very poor job of explaining where Student’s bugs
come from. It seems io explain only two bugs, N—N-Causes-Borrow and Borrow-Treat-One-As-
Zero. This is no great feat. Any inductive account of learning could explain these two bugs since
their “causes” lie in the absence Of certain crucial training examples. However, the real test of the
Tearner is not what bugs it produces directiv but what structures it assigns to the procedures that it
produces. A procedure’s structure has a direct affect on dcletion and local problem solving. By
exdmining the bugs produced Dy the selver, one can ascertain whether the procedure’s structures are
plavsible or not.
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2.9 The selver

Fach of the procedures output by the learner is given. once by one, to the solver. The solver
“1akes™ a diagnostic test by applying the procedure to solve cach problem on the test. The solver
has two parts. called the #fnferpretcr and the local problem solver. Yhe interpreter exccutes the
procedure. The local problem solver executes repairs whenever the interpreter’s execution is halted
by an impassc. To describe this in more detail: ' When the interpreter reaches an inpasse, the local
problem solver sclects one of a ser of repairs.  Applying the selected repair changes the internal
statc of the interpreter in such a way that when the interpreter resumes, it will no longer be stuck.

~The local problem solver may (or may not) create a patch, which will cause the same repair to be
chosen if cver that impasse occurs again.  Stable bugs are accounted for by creating and retaining

patches for long periods: bug migrations result from short-term patch retention. By systematically
varying the choice of repairs and the use of patches during repeated traversals of the test, the set of
all predictions that can be gencrated fren the given procedure can be collected.

This section describes how the interpreter and the local prOblcm solver work. For
illustrations. it uses the procedure whose AQG is skctchcd in figure 2-1%2. The procedure js cailed
3c-2bor in figure 2-14. 1t docsn't "know" how to borrow from zero. It can solve problems like a
or b but not oncs like ¢

a. 23 B. 451 ¢c. 507
-117 - 81 - 28

This section is constructed as a scenario that traces the execution of the AOG on problem ¢, The
AOG reaches an impasse when it trics to borrow from the zero. Local problem solving repairs the
interpreter’s state, allowing the interpreter to finish the problem. Depending on the repair selected
by the local problem solver. various bugs are gencrated.

By convention, AOG's arc staried by calling their root goal on the initial problem state. In this
casc, START is called with the whole subtraction problem as jts argument. START doesn't do
anything intcresting. It mercly calls SUB (if addition were part of this procedure’s competence,
START would have to decide whether to call SUB or ADD). SUB's purpose is to find the units
column and pass it to 1/SUB. 1/5UB’s job is (o decide whether the given problem is a regrouping
problem, a single-column subtraction problem or a multi-column subtraction problem. It finds that
there are several columns to be subtracted, so MULTI is called with the units column as its
argument.

MULTI is an AND goal that implements a loop across the columns of the subtraction-problem.
AND goals execute their rules in left-to-right order. MULTI executes jts first rule, which calls
SUB1COL and passes the units column as its argument. SUB1COL is an OR goal that chooses a
method for answering its column. OR rules are tested in left-to-right order. SUB1COL's first rule
tests for a blank in the bottom of the curreni column, which is the units column of 507-28. The
bottotn of %< column is 8, so the test fails, SUB1COL’s second rule tests whether the top digit of
the colurnn is less than the bottom digit.  Since 7¢8, the sccond rule s executed, and BORROW is
called. “URROW is an AND £oa. whose defindon is:

BORROW (T B A) Type: AND
1. {} =-~> {(1/BORROW T)
2, {} -~~> (2/BORROW T B A)
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As the first rule is cxecuted, 1/BORROW is passed the valuc of BORROW'S first argument, which
happens to be the passe node for the top digit of the units column (node 31 in figure 2-8). The
usugl cali-by-value semantics applics for argument passing. 1/BORROW gets T's vi'ue rather thao ils
intension (¢.g.. lazy cvaluation. or call-by-name). The issuc of passing intensions versus cxtensions
is a complex one, which is discussed in appendix 8.

1/BORROW is a trivial OR goal that calls REGROUP. REGROUP'S purpose is to "regroup” a
ten to become ten oncs. REGROUP is an AND goal that first calls BORROW/FROM and passes it the
top digit-place in the column that is icfi-adjacent 1o REGROUP'S argument BORROW/FROM is a
trivial OR goal, whosc definition is:

BORROW/FROM (TD) Type: OR . -
1. {} ---> (OVRWRT TD {Subl (Read TD)))

BORROW/FROM's argument, TD, is currently bound to the parsc node for the top digit of the tens
column (node 27 in figure 2-8). Since the rulc's pattern is null, it always matches. The action, like
all rule actions. is an cvaluable form, in the Lisp sense. It will attempt to call the subgoal OVRWRT,
passing it the valuc of TD and a number.  The number will be caleulated by the function nest
{Sub1 (Read TD)). In this casc, the function nest trics to subtract onc from the top digit of the
tens column, which is zero (the problem is 507—28). frying: o decrement zero violates a
precondition of Subl. Violating a precondition causes an impasse. Local problem solving is
initiated 1o find a way to change the statc of the interpreter in order to make it continue.

There are five kinds of impa&sés. Precondition violations. such as thc onc just discussed, are
one kind. For completeness, the other four are listed below, but will not be discussed further:

1. Halt: OR rules may only run rules that have {a) not been run before in aticmpling to satisfy
this invocation of the goal, and {(b) have truc test patterns. If there are no such rules, then a
halt impassc occurs. The interpreter can’t decide which rule to run, so it invokes local
problem solving.

2. Ambiguity: The feich patterns on AND rules are used to bind certain pattern variables
(nicknamed "output™ variables) whose values are then used in the rule's action. If a fetch
patiern matches ambiguously, so that there are two or more values for an output variable,
then an ambiguity impasse occurs. The interpreter can't decide which way to match the fetch
pattern, so it invokes local problem solving.

3. Infinite loop: 1If the interpreter detects an infinite loop {c.g., because the goal stack depth
cxceeds some very large threshold), then an infinitc loop impasse occurs.

4. Crazy notation: If the parser is unable to parse the current problem state, which means that

it Is not Syntactically well-formed with respect to the grammar, then an impasse Oocurs.

Returning to the scenario, figure 2-15 shows the interpreter's state as local problem solving begins.
The intcrpreter's state consists of a goal stack, and a mode bit called microstate. Microstate
indicates whether the interpreter is callin, (microstate = Push), or returning (microstaze = Pop).
The format of the interpreter's state is important because the Interpreter's state is where the local
problem solver docs its problem Solving. The gencral idea of local problem solving is that the local
problem solver can do anything it wants to the interpreter’s state as long as it leaves the state set 50
that the interpreter will continue. The local problem solver can not change the problem state (e,
wrilc symbols on thc page), it can only change the interpreter's state.
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Microstate = Push

(BORROW/FROM (CELL 27))

REGROUP (CELL 31)

1/90RR0w ECELL 31)

BORROW (CELL 31)(DIGIT 12)(BLK 34)
SUB1COL (CELL 31V(DIGIT 12)(BLK 34))
MULTI CELL 31} DIGIT 12} BLK 34
1/5U8 {CELL 31){DIGIT 12){BLK 34
{_?B {PROBLEM 53)

START {PROBLEM 63))

Figure 2-15
The interpreter’s state——microstate and the goal stack—at the time of the impasse.

Goal arguments are shown as the main category and the Serial number of the parse node (sce fig. 2-8).

Which changes the local problem solver chooscs is lefk open to individual variation so that the
model will capture the fact that different subjects repair the same impasse different ways. (fndeed,
the same subject may even repair the same impasse different ways at different times, an account for
bug migration.) However, unrestricted changes to the interpreter’s state gives the local problem
solver a great deal of power. It eould, for example, run the AOG in seme kind of simulation mode.
The model would thus be able to generate just about anything by hypothesizing the appropriate
local problem solving. In short, a tricky problem of repair theory is to constrain thie local problem
solver is such a way that the theory is refutable, but still empirically successful. The current verston
of repair theory postulates five operators. called repairs, that modify the interpreter state:

Noep

Backup

Quit

Refocus

Force

pops thc'srack. When the interpreler resumes, it will think the top goal has been
accomplished. Essentially, this repair makes the interpreter skip the stuck goal, turning it
into a null operation, or "no op” in computer jargon.

pops the stack to the highest (most recently called) OR then sets microstate to Push. This
will cause the interpreter t© choose a different OR rule to call. Put intuitively, the
“student” decides to back up to the last place that a choice was made in order to €0 the
other way instead.

pops the stack back to the root goal of the AOG, then sets microstate to Pop.
Intuitively, the “student” decides to give up on this problem and go on to the next test
item.

resets the arguments of the top goal in such a way that the precondition is no longer
violated. It does so by rematching the most recently used fetch pattern. This causes the
interpreter to execute the top goal with different arguments, “shifting its focus of
attention” to avoid the impasse, (Figure 2-16 shows Refocus applied two different ways
to the impasse currently under discussion.)

has different affects depending on the kind of impasse it repairs. If the impasse is a halt
impasse, where none of the rules have true test patterns, then the Force repair will pick
one of the rules and cause the interpreter to execute it. If the impasse is an ambiguity
impasse, where a fetch patlern matches several ways so that it is ambiguous which values
to pass as subgoal arguments, then the Force repair will pick one of the possible matches
and cause th¢ interpreter to use it
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Figure 2-16

(a} Refocus relaxes a relation that says that the column to borrow from should be adjacent to the
column borrowed into. This causes the decrement to b2 placed in the hundreds column. This
application of the repair gencrates a very common bug (42 occurrences in the Southbay data)
called DBorrow-Across-Zero.

(b} Refocus relaxes a relation that says that the ccll to borrow from should be the first {top} cell in
the column. This application of the repair generates a rare bug (1 occurrence in the Southbay
data} catled Borrow-From-RBottom-linstead-of-Zero.

Given these repairs, local problem solving is simple: it is just selection and application of a repair.
However, this simple regime can generate quitc complex bugs. Repairs ofter. cause secondary
impasses. Since they don’t actvally fix the underlying defect in the student procedure but rather
just get the interpreter running again in the most expedient way, they often leave the problem in a
state that will cause further impasses. Repairing those impasses may lead to tertiary impasses. In
principle, there could be an arbitrarily 10ng causal chain. In practice, one rarely sees chains longer
than six ‘impasse-repair occurrences. »

The above description of the local problem solver is a little simplified. There are a few
complications concerning the creation and use of patches. A pafch is an association of a repair and
impasse that the local problem solver creates in order to cache {save) the results of a particular
occurrence of local problem solving. Another complication whose discussion will be put off for
later concemns critics which block the selection of repairs under certain circumstances.

To return to the scenatio, suppose that the local problem solver chooses the Noop repair.
This causes the BORROW/FROM goal to return to REGROUP, having made no changes in the initial
problem state. REGROUP, which is an AND goal, goes on and exccutes its second rule which calls
BORROW/INTO passing it the parse node for the top digit in the units column. BORROW/INTO's
definition follows:

BORROW/INTO (TD) Type: OR
i. {3} ---> (OVRWRT TD (Concat (One) (Read TD)))

This OR goal merely “adds” ten to the given digit by concatenating a one to its leR, and has

OVRWRT write the "sum" over the digit In this case, calling 80RROW/INTO yields the problem -

state in figure 2-17b, Control returns to 8ORROW, popping BORROW/INTO, REGROUP and
1/BORROW on the way. BORROW executes its last rule, which takes the column difference for the
units column. Now the pfoblem appears as in figure 2-17c. BORROW is popped, and control
retums to MULTI. The procedure is done with the unijts column. [t still has the tens column and
the hundreds column left to do. These are processed wneventfully, with no impasses, so it is best to
stop the scenario here. Figure 2-17 shows the remaining problem staies between herc and the end
of the problem’s solution.
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Sequence of problem states, omitting crossing out actions. for Stops-Bosrow-At-Zero

This solution to the subtraction problem involved taking the NOop repair 1o the impasse. The
solution is characteristic of a common bug (64 occusrences in the Southbay data) called Stops-
Borrow:At-Zero. ‘Taking other repairs would produce other solutions 1o the exercise, some of which
will be bugs. Figure 2-16 illustrates two bugs gencrated by lakmg the Refocus repair instead of the
Noop repair on this exercise. )

When Sierra is given a diagnostic test and a procedure. it will generate solved tests
corresponding 10 all possible combinations Of repairs to the Impasses it encounters. This varying of
repairs to impasses is a prolific source of predictions. Figure 2-18 displays this by sketching the
impasse-repair tree for this procedure when it “takes" the diagnostic test shown in figure 2-1, The
solver reaches its first impasse on the test's 14th problem, 102—39, because the problem requires
borrowing from a zero. Each of the lefunost branches in the tree corresponds to a different way to
repair this impasse. The six nodes are Iabelled with the impasse: “Pve: Subl Zero?” identifies it as
a precondition violation impasse where Sub1’s error lest, Zero?, is true when Subl was called.
The ictter following the impasse identification is a code for the repair that was applied: Q for Quit,
B for Dackup, F for Force, N for Noop and R for Refocus. There are always at least five branches
for cach impasse because there are five repairs. ‘There may be more. because some Fepairs can
apply more than onc way. Notice that there are Iwo nodes labelled with R among the first gix
branches. " These correspond to two ways to apply the Refocus repair.  If a repair is not applicable
lo a certain impasse or the repair fails to fix the |mpassc when it is applied, then the corresponding
‘node has “F," for filtcred, as a prefix.

Some of the repairs lead to further impasses. When this happens. the node has a subtree to
its right (e.£.. the Backup repair to this impasse). On the other hand, if the test can be completed
without fusther local problem solving, the node is 2 leaf of the tree ané it has a pumber as its
prefix, The number is an index into the table beneath the tree.  For instance. solved test 1 has
cxactly the answers prodiced by the bug Borrow-Won't-Recurse. Solved test 2 gencrates exactly the
answers produced by a set of three bugs. (Actually, the "bugs" with exclamation points in their
names are called “coercions.” Sce appendix 2,) |

Sierra’s solver has a swilch that controls whether it will generate bug migrations or not. The
. above impasSe-repair trec was generaled by turning off bug migration. This causes the solver to use
patches so that whenever an impasse occurs that has occurred before on the test, the solver will
apply the same repair that it chose before.  If bug migration were left on, then the solver would
gencrate a huge number of solved tests. Essentially, cach occurrence of the original impasse (i.e.
the borrow-from-zero impasse in this casc) would yicld an impasse-repair tree. There are seven
borrow-from-zero columns on the diagnostic test. Hence, Sicrra would generate approximately 207
solved tests if bug .migration were left on. Most of these would be identical, probably, but still
Sicrra would have to generate them all, if observational adequacy were to be LhorOughly assessed.
Needless to say, this is not. what is done. For practical reasons, obscrvational adcquacy is assessed
only with respect to bugs,' not bug migrations,
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(a) Impasse-repair tree for the core procedure 3c-2bor.
(b} Debuggy’s analysis of each ofthe 20 predicted test solations,
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210 Obscrvational adequacy

In principle. the following simple procedure is used to test the observational adequacy of the

theory:
' .ﬁidministcr diagnostic tests to a large number of students.

Collect the test sheets and code the answers into machine-readabie form.

Analyze cach test solution with Debuggy. thus redeseyibing it as a set of bugs,

Call the sct of all test solutions (represented as bug sets) OST — ne obscrved test solutions.

Formalize the textbooks used by the students, producing several fesson sequences,

Formalize an initial state of knowledge, KS,,

Run Sierra’s learner over each fesson sequence. “This produces one core procedure tree per lesson
sequence.

Formalize a diagnostic test form.

Al o

0 oo

For cach procedure in cach core procedure tree. fun Sierra’s solver over the diagnostic test. This
produces one impasse-repair tree per core procedure.

10.  For cach leaf of cach impasse-repair tree (except the leaves representing filtered repairs), analyze
the leaf's solved test with Debuggy. This produces one bug set per solved test,

11, Call the set of all such bug sets PST — the predicted sotved tests.
12.  Calculate OSTNPST, OST—PST and PST ~ OST.
13.  Scparate the star bugs, if any, from PST — OST.

In practice, things arc more complex. Steps 5 and 6 involve tailoring. Trying different lesson
sequences led o the discovery that omitting the regrouping lesson causes the model to generate
sevefal new, valid predictions. In principle. the initial knowledge state, KSp should be a rich source
of variation since it i likely that not all students have the same initial understanding. In the
Southbay cxperiment, just one KSy was used. Two others were tried, briefly, but they produced
almost the same obscrvation adequacy as the chosen KSp*

The steps that involve Debuggy, steps 3 and 10, are actuelly quite a bit more complex than
described so far. In fact, most of the rest of this section will be concerned with the practical aspects
of using bug-based observational adequacy. First, the reality of step 3, analyzing the observed test
solutions, will be briefly described (VanLehn, 1981, covers it in detail). Then the reality of step 10,
analyzing the test solutions gencrated by Sicrra, will be described. Finally, the Southbay numbers
for OSTOPST, OST—PST and PST—OST will be presented.

g

* The observed bug Borrow-From-BotonrInsteadof-Zero can be gencrated by modifying the
grammar rule that defines COL. The vbserved bug Zero-Insicadof-Borrow can be gencrated by
modifying the primitive Sub function so that it implements max(Q, x~y) instead of |x~y]. These
are the only observed bugs that are gencrated by non-standard KS, (that I know of} and not by
the standard KS,,
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Analyzing the Southbay data

Not all students have bugs. Some students know the correct algorithm. QOthers migrate
among scveral bugs during the test. On one experiment, the students fell into five categories in
roughly the following proportions:

7 (10%)  Perfect score. No errors of'any kind. .
61  (468%) Knows the correctalgorithm; errors due to slips alone.
34 (26%) Has abugor aset of bugs {plus perhaps some slips as well).
t4 (10%) Intra-test bug migration (plus perhaps some bugs and slips).
it _ {8%) Errorscannot be analyzed. '
134 (100%) 1otal

These proportions vary with the grade level. The above proportions are for third graders tested late
in the year. In general, the oider the student population. the greater the proportion of students in
the slips category and the smaller the proportion in the bugs and bug-migration catcgories. In the
early third grade, for cxample, students in the bugs categorics constitute over 50% of the sample
instead of 26%. This shift is not surprising. In the carly grades. the students have not yet been
taught the whole algorithm. When given the diagnostic test, they will have to do local probiem
solving to answer most of its items. Hence, younger students are more likely to have bugs, and
older students are more likely to have only slips.

The figures just given come from a special experiment where students were given wo Lests on
consecutive days with no intervening insiruction (this experiment is called the Short-term study in
VanLehn. 1981). For each problem on one test, there was a very similar problem on the other test.
These matched-item tests were designed to provided siough redundaney that cases of bug migration
could be found. ‘fhie usual twenty-item test is too short for one o have confidence in bug
migration analyses, ' '

The two-test experiment allowed assessment of the short-term stability of students’ errors.
Various kinds of errors are expected to have differing kinds of short-term stability. Slips are
expected to vary widely over two tests given a short time apart. There may be no slips on one test
and several on another. If there are slips on bath tests, they are not expected to occur on the same
problems. Empasses on the other hand are expected to remain in evidence across tests. Because
impasses derive from the student’s core procedure, and it is assumed that core procedures are stable
in the short term, impasses should be stable ip the short term as welt.  An impasse may show up
differently on the two tests. il might manifest as a bug on one test and as a different bug or as
intra-test bug migration on the next test. What would be unexplained is a impasse that is present
on one test but absent on the other. These considerations prompt the following tabular summary of
the percentage of studerts eshibiting the various kinds of stability:

3  (4%) No errorson cither test.
32  (49%) Swuble correct procedure; changes due to slips alone.
3 {4%) Stsvle bugs: changes due to slips alone,
12 (18%) Stable impasses: changes due to repairs {often along with slips and stable bugs)
13 (19%) Appearing and disappeanng impasses (with slips and stable bugs).
4 - (8%) Errorscannol beanalyzed.
.67 (100%) total

The stability patterns of the students in the first four categories (73%) conform to expectations,
while the behavior of the students in the remaining two categories (25%) remain unexpldined,

L

d 66 _




3
! MoODEL 6

These swbility data show tha¥’the older view of crrors as duc to cither bugs {deterministic,
sepeatable errors) or slips (underdetermined, stochastic errors) is incomplete. On that view, bugs
were stable and only slips could acecunt for short-tcnn instabilities. The impasscs/repair notions
contribute substantially o our ability to understand short term instabilitics (in_addition to_their role

-*__l_ﬂas—an—explanaﬁmmquisiuon of bugs).

However. a significant proportion of the tests (8% of the static, one-test data, and 25% of the
stability data) cannot yet be analy/ed even with these advances. Most of these swudents are in the
unanalyzable category because the tests were Simply not long enough to give the analysts a large
cnough sample of their behavior. Without a large and variegated set of crrors, it is sometimes
impossible to disambiguate the various possible explanations for the student's errors. Such
ambiguous analyses are counted( in the category unanalyzable. In other cases. species of behavior
that have not yet been formdlized were apparent. Some students appeared to “punt” the test by
struggling through .the first’ part of it, then giving up and using some casily cxccuted buggy
procedure. There Scemed to be several cases of cheating by looking at a neighbor's paper. In short,
there will undoubtedly be some errors that have rather upinteresting causes and hence can properly ’
be left unanalyzed. My belicf is that we have not quite reached that level of urderstanding yet.
There probably remain some undiscovered, interesting mechanisms that may further our
understanding of errors as much as the impasse/repair process did.

The figures given above were derived by hand analysis of the matched-test data. This is
neceessaty because Dcebuggy cannot analyze bug migrations. It can only find bugs that are stable
across the whole test. Its analyses of the same data, and the “Southbay data, arc shown below:

Southbay Short-term
No errors 98  (10%) ‘14 (10%)
Errors due to'slips alone 198  (20%) 41 (31%)
Has a set of bugs 340 (34%) 35 (26%)
Errors cannot be analyzed 377 (36%) _A4 (33%)
total : 1013 (100%) 134 (100%)

Not:ce that about a third of the students could not be analyzed by Debuggy. The main reason that
s many students could not be diagnosed by Dcbuggy is that they were making too many slips
{VanLehn, 1281, discusses this issue in detail). However, there was also some bug migration among
the unanalyzabie students, as well as a non-trivial amount of truly puzzling behavio.. For Debuggy
to do better, it would have to have more redundant test items. Then it could locate slips in the way
that the human analysts did, by comparing 3 student’s performance on identical or nearly identical
problems. On the other hand, Débuggy is totally objeciive. Unlike me, it does not "hope” for the
occurrence of certain bugs that would confirm the predictions of the theory. In service of
objectivity. its opinions are used throughout this dncument as the definition of “bug occurrence.”
Also, subsequent references to the Southbay data will include the Shortterm data as well. -

Debuggy cannot invent new bugs. Its inventiveness is limited to creating new sefs of bugs.
Debuggy has a database of bugs that it combines.to form analyses. (Crealing a new Sct of bngs
may sound lrivial, but it is actually quite difficult since many bugs interact with each other in
complex ways. Sce Burton, 1982)) The method used tc discover pew bugs for the database is 1o
use Debuggy as a filter to rmove students whose behavior is adequately characterized by cxisting
bugs. This leaves the human analysts to concentrate on discovering 2ny systematicity that lurks in
what Dcbuggy considers unsystematic behavior. When even the barest hint of a new bug is
uncovered by the experts, it is formalized and incorpovated in Debuggy's Aatabasc. That way,
Debuggy will discover any subsequent oceurrences of the bug, even when it occurs with other bugs,
and cven when it interacts in non-linear, complex ways with those bugs. At the end of the
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Southbay cxperiment, the database had grown to 103 bugs. The “tests had been thoroughly
cxamincd by mysclf and two "other analysts. We were confident that few bugs, if any, lurked
undiscovered in the data. As will be scen shortly, our confidence was misplaced. Sicrra invented
some bugs that we did not think :Of. and six of them tumed out to be observed bugs!

E

Generating and analyzing the predicted test solutions

To generate the Southbay predictions, Sicrra’s learner traversed lesson scquenices H, SF and
HB. producing three corm procedure trees. in principle, all core procedurcs in all three core
procedure trees would -be submitted individually to Sterra’s soiver, along with the appropriate
deletion-gencrated core procedures. This would be 63 core procedures, for the trees just given.
However. many of the core procedures are quite similar. Othiers are known to be “star" core
procedurcs in that all the solved tests that they will generate will be marred by star bugs (e.g.. the
P100 branch of H's tree is a “star™ branch. As discussed in Section 2.8, it would be blocked by
adding a “Forcach™ loop to the knowicdge representation language). Running these redundant
and/or star corc pfocedures through ‘the solver would only g¢ferate more instances of zlready
generable bugs, not bugs that could not be.gel.)\eratcd some other way. Consequently, a sybset of
the 63 corc procedurcs was sclected and mun through the solver*. Thirty core procedures were
submitted to the Sierra's solver, gencrating 30 impasse-repair trees. The trees’ leaves yiclded 893
solved tests. The solved tests were analyzed by Dubugey.

The analysis of predicted test solutions has to be more stringent than analysis of observed test
solutions. Basically, a predicted test solution counts as analyzed only if Dcbuggy’s bug set for it
exactly matches its answers. Inexact analyses doesn’t make sensc, since Sierra does not make ships
nor did it do bug-migration (bug migration is turned off in the solver when generating the impasse-
repair trees). However, exact matching turned out 0 be too stringent a-criterion. In Debuggy’s

versions Of certain bugs, there is specizl code inserted to handle rare cases, such as the bug running .

off the eft edge of the problem while borrowing. 1n Sierra, such cases are handled automatically
by the usual local problem solving mechanism. However, the special case code in Dcbuggy's bugs
occasionally would not correspond to any of the various impasse-vepair ‘combinations that Sicrra
generated. The net effect is that none of Sierra's solved tests would exactly match the Debuggy’s
bug's performance. In almost all cases. the analysis was off by one problem. That is, Debuggy'’s
-analysis would match 19 out of 20 answers on a solved test, but the 20th problem’s answer would
not match cxactly (although the rightmost few digits would often be the same). Consequently, the
analyses werc divided into two classes: perfect and almost perfect. The latter class is the ofFby-one
anaiyses.

* The subsct included all the core procedures from the H core procedure tree, except the P10
branch and the Blk branch. From the SF core procedure tree, only the procedures that gre in a
diréct linc from the root to the "ok” procedure were run. From the HB core procedure tree, only
three procedures were run: 3¢-lbor, 3c-1bfz and 3c-1bfid.  All the deletion-gencrated procedures
from “H and HB were mun, except for those that arc genérated before three-column subtraction is
taught Since a Foreach 100p would change the early procedures’ structures, the procedures that
would be gencrated from them by deletion would be different as well. .
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Good Proc’s No L.oop Proc’s Al Proc’s
No crrors 2 {1%) 0 (0%) 2 {0%)
Perfect 209 (83%) 289 (46%) 498 (56%)
Almost perfect 28 (11%) 91 (14%) 119 {13%)
Analyzable ) 4 (2%) 145 (23%) 149 (17%)
Jonanalyzable _8 (3%) 111 _(17%) 125 (14%)
1otal 251  (10G4) 642  (.100%) 893  (100%)
Figure 2-19

The 893 solved tests generated by Sierra, categorized by how well Debuggy's analysis matched.

Al first, Debuggy’s database of bugs was insufficicnt to analyze very many of the solved tests.
Only 1% of the tests could be perfectly or almost verfectly anaiyzed. To solve this problem.
Debuggy's database was expanded from 103 bugs to 247 bugs. The 44 added bugs included Star
bugs as well as bugs that could plausibly be observed bugs. Any bug was added that would get
more of the solved tests analyzed. However. a point of diminishing returns was reached. Figure
2-19 shows the number of solved tests at the point where | stopped adding bugs to the database.
The solved tests are separated into wo groups corresponding {0 two groups of core procedures.
The "Good™ group (the lefi column of the figure) contains solved tests from core procedures that
“know" how to loop across columns. These would presumably be roughly the same when the
“Foreach” loop problem is fixed. The other group (middie column) comes from core procedure
. that suffer the effects Of not being able to process mulii-column problems. [ icnded to add few
bugs to the data base in the service of their analysis since I cxpect that they will not be with us
much long.>. The figures reflect this. Enough bugs were added 10 the data base t0 analyze 95% of
the “Good™ solved tests, but only 60% of the solved tested were analyzable from the other set of
solved tests. ‘

“

After the 44 bugs were added to Debugpy’s database to Sierra, the Southbay data was
reanalyzéd. Six of the 45 bugs turned up in the analyses*. Two of them even' occurred rather
frequently — seven times cach. This was quite a surprise.

Results

When Debuggy analyzed the 1147 obscrved test solutions that constitute the Southbay data it

fund bug sets for 375 of them. However, many of the solved tests received the same bug set. The .
cleven most comunon analyses are listed in figure 2-20. One can see that the frequency of
occurrence falls off rapidly. There are 134 distingt bug sets. Most of them (99) occur only ornce.
Appendix 2‘1ists all the observed bug sets. Debuggy found bug scts for 617 of the predicted est
solutions (including almost perfect as well as perfect matches). There were 119 distinct bug sets.
Appendix 4 lists them. With 134 bug sets in OST and 119 bug scts in P the observational
adequacy can (at lastt) be calculated:

* The bugs arc. Borrow-Across-Second-Zero (7 occurrences). Doesn’tBorrow-Except-Last (1
occurrence).  Only-Do-Units (1 occurrence). Smaller-From-Larger-Except-Last (3 occurrences),
Smaller-From-Larger-insteadof-Borrow-Unless Bottom-Smaller (7 occurrences), and Top-Instead-OFf-
Borrow-From-Zero (L occurrence).
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OSTNPST 11 bug scts
OST-PST 113 bug sets
PST~0O8T 118 bug sets, of which 33 contain star bugs.

Appendices 5 and 6 list the bug sets in cach of OSTNPST, OST-PST, and PST-OST.
Interestingly. the bug sets in OSFNPST happen to include several of the most common observed
bug sets. Of the eleyen most common bug sets (see figure 2-20), it includes bug sets 2, 3, 4, 5 and
8. :

Because a bug-based mcasurc of observational adequacy is being used, rather than one based
on ravr test soluiions, the Ngurcs above can be dissected to diseover why the observation adequacy is
the way it is. For instance, why is the most common bug set, {Smaller-From-Larger}, not in
OSTNPST? To answer such questions, ¢ach bug set in OST—PST is intersected with the bug sets
in PST—OST. This forms four new categorics, depending on whether the intersection is cmpty or
not:

non-empty cmpty

OST-PST 76 47
" PST-OST 68 40

This chart shows that 76 bug scts from OST—PST had at least onc bug ﬁenemtcd by the model

These 76 bug scts include the popular.bug set {Smaller-From-Larger} because it overtapped with

« the predicted bug set {Smaller-From-Larger *Only-Do-First&Last-Columns}. The second bug in

the predicted bug sct is a star bug. It is gencrated because there iS no Forcach loop in the

. representation language. When a Foreach loop is added, {Smaller-From-Larger} will be properly

predicted.  Using overlaps, one can find out what nceds to be done to improve obscrvational
adequacy. The overlaps ar¢ listed in appendices 5 and 6.

-

From the overlaps, onc can see that the main reason that OSTNPST is so small is that many
students have bugs in addition to the bugs gencrated by the model. For instance, there is a set of
bugs that the model does not generate that all involve mis-answering columns whose top digit is a
zero. The bugs in this class are (appendix 1 contains deseriptions of these bugs):

1

»
-y

occurs  bug

, L 103  (Smailer-From-Larger)
2. 34  (S:ops-Borrow-At-Zero)

. 13 (Borrow-Across-Zero)

. Y0  (Borrow-From-Zero)

. 10  {Borrow-No-Decrement)
(Stops-Borrow-At-Zero  Diff-0-N=N})

. { Always-Borrow-Left)
( Borrow-Across-Zero 1Touched-0-fs-Ten)

, ( Borrow- Across-Zero  Diff-0-N=N)
( Borrow-Across-Zero-Over-Zero  Borrow-Across-Zero-Over-Blank)
1 ( Stops-Bdrrow-At-Zero  Borrow-Once-Tiien-Smaller-From-Larger Diff-0-N =N}

! Figure 2-28
The eleven most common bug sets, with the number of times each occurred

3
4
5
6.
7
8.
9
H

DD DD

0.
1

.
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Diff-0-N=0
Diff-0—~N=N
0—N=N-Aficr-Borrow
0—N=0-After-Borrow

0— N=N-Except-After-Borrow
0—N=0-Except-Afier-lorrow

Suppose the model were able tw generate these bugs in such a way that they could occur in .oy bug
sct th 't the model currently generates. This is not so implausible; a story for huw that might have
happe 1wed will be presented. If any of the above 0—N bugs could occur in the bug sets of FsT,
then OSTNPST would riple in size, becoming 43 bug scts large. The point is that small increases
in the productivity of the model with respeet to primitive bugs can translate into big gains when
counting bug scts. This effect can be scen clearly with the aid of a toy example, S. “posc that
there were only ten primitive observed bugs, and that the model gencrates just two of them.
Supposc further that that all 45 pairs of these ten bugs eecur as bug sets. Only one of 1the observed
bug scts will be in OSTNPST. If the model generated three or four bugs instead of wwo, the
figures would change, but not rapidly:

2 bugs 3 bugs 4 bugs

1 3 6 OSTNPST
i6 21 24 OST - PST with non-emply intersections
28 21 15 QST —PST with emply intersections

If the model is gencrating less than half of the observed primitive bugs, then counting bug scis
makes it much worse. (Conversely, if it generates more than half the primitive bugs, counting
bug scts makes it look much betier.) This suggests measuring observational adequacy with respect
to primitive bugs, rather than bug sels. '

Let OB be the union over al! the bug. scts in OST. OB is a set of 76 bugs. Let PB be the
union over PST. PB contains 49 bugs. Then:

ORriPB 25 bugs
OB-PB S1bugs .
PB-OB 24 bugs, of which 7 are star bu

Appendix 3 lists these bugs. Figure 2-21 displays the figures as a Venn diagram. Esscntially, these
figures say that haif of the theory’s predictions are confirmed. On the ather hand, there is much
work left to do, because two-thirds of the observed bugs are not yet accounted for,

,
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Figure 2-21
Venn diagram showing relationships and sizes of the sets of predicted, observed and star bugs.

211 Acomparison with other geherative theories of bugs

‘The numbers presented here are difficult to understand without some point of reference. Two
such points are provided by eatlier gcherative theories of subtraction bugs. An early version of
repair theory is documented in Brown and Vanlehn (1980). Its empircal adequacy can be
comparcd with the present theory's. Clearly, this theory will do better since it inciudes the ideas of
its predecessor. Another generative theory of subtraction bugs was developed by Richard Young
and Tim O'Shea (1981). They constgucted a production system for subtraction such that deleting
certain Of its rules (or adding certain other rules, in some cases) would gencrate observed bugs.
They showed that these mu.ations of the production system couid generate many of the bugs
described in the original Buggy report (Brown & Burton, 1978). It is important 10 note that many
of the 76 currently known subtraction bugs werc not yet observed back then. One can assume that
their model would generate more bugs than the ones reported in (Young & O’Shea, 1981). Section
10.3 discusses their approach in somce detail.

A chart comparing the results of the three theories is presented as figure 2-22. Observed bugs
tha* no theory gencrates are not listed, nor are bugs that have not been observed. {N.B., the figures

- in Brown & VanLehn (1980) count bugs diffcrently than they, way they are counted here. That

repori counts combinations of bugs with coercions as distinct bugs — see the note on coercions in
arrzadix 2) The chart shows that the present theory generates more bugs, which is not surprising
since it embeds many of the earlier theotries’ ideas. What is perhaps a little surprising is that there
are a few bugs that they gencrate and it does not. These bugs deserve a closer look.
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Y&Q B&V Cur.  Occurs Bug /é

Always-Borrow-Left

Blank-Instead-of Borrow
Borrow-Across-Sccond-Zero

Borrow-Across-7ero
Borrow-Don’t-Decrement-Unless- Bottom-Smaller
Borrow-From-One-1s-Nine -
Borrow-From-One-1s-T'en

Borrow-From-Zero

Borrow-From-All-“ero

Borrow-From-Zero-Is-Ten

Borrow-No-Decrement

Borrow-No-Decrement- Except-last
Borrow-Treat-One-As-Zero

Can’t-Subtract

Doesn't-Borrow-Except-Last

DifFf0~-N=0

Diff-0—~N=N

Diff N—N=N

Diff-N—-0=0

Don't-Decrement-Zero

Forget- Borrow-Over-Blanks
N—=N-Causes-Borrow

Only-Do-Units

Quit-When-Bottom-Blank

Stutter-Subtract

Smaller-From-Larger
Smaller-From-Larger-Except-Last
Smaller-From-Larger-Instead-of- Borrow-F rom-Zero
Smaller-From-Larger-Instcadof-Borrow-Unless-Bottom-Smaller
Stops-Borrow-At-Multiple-Zero
Stops-Borrow-At-Zero

Top-lInstead-of Borrow-From-ZEro
Zero-Insteadof-Borrow

totals
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Figure 2-22
Comparison of observed bugs gencrated by three theories:
Y&OQ = Youngand O*Shea; B&V = Brown & VanlLehn; Cur.= current theory

Early repair theory generates a bug called Stutter-Subtract that the present theory does not
generate:

Stutter-Subtract: 346 346 897
- 2 =222 - 67

123X 123V 230%

This bug does not know how to handle one-digit columns. It impasses when it tries to do such a
column. Early repair theory used a repair called Refocus Right to fix the impasse. ft would cause
the column difference operations to use the nearest digit in the bottom row instead of the blank.
Thus, the second column in the first problem is answered with 4-2,
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The present theory has a non-directional Refocus repair. 1t finds the Fetch patiern responsibic
for the current focus of attention and rematches the pattern. It finds the closest match that will get
the procedure past the impasse. In this case, there is no such match duc to the way the grammar
structures the subtraction problem. To obtain the cquivalent of Refocus Right would require a
grammar that vicws the problem ag three multidigit rows instcad of 2 list of three-place columns.
Such a grammar would probably generate Stutter-Subtract. but might generate some star bugs as
well.

The point behind the Stutter-Subiract story is that carly repair thcory had some notational
knowledge embedded in its repairs. 1t had scveral Refoes repairs. and they were specialized for the
grid-like notation of subtraction. In the present theory, all knowledge about notation is embedded
in the grammar. The Refocus repair is general. It doesn’t know about any particular notation. In
the carly theory. it was stated that the repairs were specializations of weak. general-purpose methods.
They were tailored for subtraction. In the present theory, the repairs actually are gencral-purpose
methods, not specializations.

Young and O’Shea’s model generates a class of bugs that they call "pattern crrors.” At that
time. four bugs were included in this class,

Diff-0—-N=N If the top of a column is 0, write the bottom as the answer.
DiffF0—~N=0 Ifthe top of a column is 0, write zcro as the answer.
Diff-N-0=0 If the bottom of a column is G, write the zero as the answer.
DifFN=N=N Ifthe top and bottom arc cqual write onc of them as the answer.

Young'and O’Shea derive all four bugs the same way. Each bug is represented by a production
rule, and the rule is simply added to the preduction system that models the student’s behavior. Put
differently, they derive the bugs formally by stipulating them, then cxplain the stipulation
informally. Their explanations are:

The zero-pattern errors arc also easily accounted for, since particular pattern-sensitive rules fit
naturally into the framework of the cxisting production system. For cxampie, from his carlier
work on addition, the child may well have learned two ruies sensitive to zero, NZN and ZNN
[two rules that mean N+0=N and 0xN=N). Included in a production system for
subtraction, the first, NZN, will do no harm, but rule ZNN will give risc to crrors of the
"0—N=N" type, Similar rules would account for the other zero-patiern crrors. If the child
remembers from addition just that zero is a special casc, and that if a zero is prescnt then one
copies down as the answer one of the numbers given. then he may well have rules such as
NZZ or ZNZ {the rules for the bugs Diff N—-0=0 and Diff-0—N=0].... Rulc NNN {the rule
for the bug DiffFN—N= NJ covers the cases wherc a child asked for the difference between a
digit and itself writes down that same digit. It is clcarly another instance of a "pattern” rule.
{Young & O'Shea, 1981, pg. 163).

The informal cxplanations, especially the one for Diff-0—N=N, are plausible. To treat them fully,
one would have (o explain why only the zero rules are transferred from additions, and not the other
addition rules.

The point is that one can have a8 much cmpirical adequacy as onc wishes if the theory is not
required Lo cxplain its stipulations in a rigorous, formal manner. The present theory could generate
the same paitern bugs as Young and O'Shea’s modcl simply by adding the appropriate rules to the
AO®s and reiterating their informal derivation (or tell any gther story that scems right intuitively).
This would not be an cxplanation of the bugs. but only a restatement of the data embroidered by
intcresting speculation. This approach does not yicld a theery with cxplanatory value. In short,
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there js a tradeoff between empirical adequacy and cxplanatory adequacy. If the model is too casily
tailored, then it is the theorist and not the theory that is doing the cxplaining. The theory per se
has little cxplanatory value. So tailorability, and explanatory adequacy in general, arc key issucs in
cvaluating the adequacy of the theory.
Yo,

Hillelimbing

It would bc foolish 10 claim that the present theory is wonderfud because half of its
predictions about the Southbay experiment were confirmed. It would be cqually foolish to assert
that the theory js in desperate need of improvement because it modcels only two-thirds of the bugs
in the Southbay sampic. The observational adequacy figures arc mcaningless in isolation. As an
absolute mcasurc of theoretical quality, obscrvational adequacy is nearly uscless. However, it is
cxcclient as a reldtive measure of theorctical quality. Onc takes two theories and compares their
‘observational adequacy over the same data, taking carc to study their tailorability as well.

Observational adequacy is particularly uscful in comparing a new virsion of the theory to an
older version. This allows one to determine whether the new version improves the empirical quality
or hurts it. Indced, this is how the present theory arrived at its current form. To put it in the
language of heuristic scarch (which some claim is a good mctaphor for scientific discovery),
observation adequacy has been used to hillelimb:  to find a maximum in the space of possible
theorics. The claim, thercfore, is not that the theory's current degrec of observational adequacy is
good or bad in an absolute scnse, but rather that it js the best that any theory can do, given the
same data and thc same objectives. ' .

There is a well known problem with hillelimbing. One can get trapped at a local maximum
that is not a global maximum. A cominon solution 1o this problem is to begin with a gross
representation of the landscapce so that the search can find the general lay of the land and thercby
determine approximately where the global maxima will be. This done, hillclimbing can be done at
the original level of detail, but remaining in the limited area where any local maxima are likely to
be global maxima as well. The same strategy has been used in this research (or at least, onc can
reconstruct the actual research history this way). There are threc levels of hypotheses (which are
also the three levels of organization of the following chapters). The most general level, the
architecture level, is a2 gross representation of the cognitive landscape. It addresses general issues,
such as whether learning js basically inductive or not. Hillelimbing in the architectural level yiclds
several hypotheses that define the theory in a non-detailed way. The next lower level of detail is
the representation level. It scarches through a thicket of knowledge representations issues, c.g.
whether procedures shoujd be hicrarchical or not. The third level, the bias ievel, is the last stage of
hillelimbing. 1t finds hypotheses about inductive biascs that will optimize the fit between the
model's predictions and the data. Because the arguments for hypotheses are structured into gross,
medium and fine levels of detail, one can be somewhat assured that the hillchmbing impiicit in this
strategy has brought the theory to a giobal maximum.

. or It bears reiterating that cmpirical quality is not the only mecasure of theoretical validity. It
must be balanced against ¢xplanatory adequacy — does the theory rcally cxplain the phenomena or
does it just recapitulate them, perhaps because they have been tailored into the model's parameter
settings? This theory is quitc strong in the explanatory department. The model takes only three
inputs, and these inputs arc such that the theorist has fittle ability o tailor the predictions to the
data. This implies that the predictions arc determined by the structure of the model, which ig in
turn determined oy the hypotheses of the theory. So, the competitive argumentation that fills the
remaining chapters can be constricd as @ hillclimbing adventure where the measure of progress js a
combination of increasing observational adequacy and decreasing tailorability,
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Chapter 3
Getting Started

The methodological goal of this rescarch is to provide competitive arguments for supporting
cach hypothesis. But when cvery hypothesis necds a motivation, and a motivation nceds other
hypotheses, lhcn getting started is difficult.  Some hypotheses must be given support that does not
chpcnd on any other hypotheses. These initial hypotheses are often called, somewhat unfairly,
assumptions. This chapter states the theory's assumptions. which are two: students learn inductively,
and what they lcarn are procedures. The chapter trys to make these two hypotheses appear
plausible in various ways. Later chapters will be able to use these irfitial hypotheses as the
foundations for competitive argumentation; here, there is no such foundation, so hands must be
waved,

3.1 Teleology or program? ————

The first assumption is that student’s knowledge about procedures is schematic but not
teleological or prototypical. To define thesc terms, “schematic,” "teleological.™ and “'prototypical,”
several other terms must be introduced. (Figure 3-1 is a road map for the.terms that will be
introduced.)  Computer programmers gcnerally describc a procedure in three ways:

4 Program: A program is a schematic description of actions. It must be instantiated, by giving
it inputs, before it becomes a complete description of a chronological sequence of actions,

P Action seguences: One can describe a particular instance of a program as a chronofogical
sequence of actions (or as a sequence of problem states. For the present discussion we'll use
action scquences. rescrving problem state sequences to serve the same purpose later). that is,
cxecuting a program produces an action sequence. - In principle, onc could describe a
procedure {N.B.. the term “procedure” is being used temporarily (0 mean some very abstract,
neutral idea about systcmatic actions) as a possibly infinite sct of action sequences. This is
analogous to specifying a mathematical function as a set of tuples (e.g.. n! as {<0,1>, <1,D>,
2,0, <36, <424, ..}). Action sequences are not usually used this way. Their most
common use in progiamming practice is in reporting times where a program did something
uncxpected (ie., bug reports).

b Specifications: Specifications say what a program ought 10 do. Often they are informally
presented in documents that circulate among the programmers and market researchers ost a
product development team. Sometimes specifications are written in a formal lanuguage $0
that one can prove that a certain program meels them.

There are names for the processes of transforming information about the p..cedure from one level
to another. Programming is the transformation of a specification into a program. Execufion
interpretation and running are names for the transformation of a program into an action sequence.
There are also names for Static, structural representations of these transformations. A frace is a
structural representation of the relationship between a program and a particular execution of it A
procedural net (Sacerdotl, 1977), a derivation (Carbonell, 1983b) and a planning ner (VanLehn &
Brown, 1980} arc all formal rcpresentations of the rclationship between a specification and a
program. Actuaily, these three terms arc just a few of the formalisms being used in a rapidly

* cvolving arca of investigation. Rich (1981) has concentrated almost exclusively on developing
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Specifications

Teleology Programming

Program

Trace Executing

Action Sequence

Figure 3-1
Three levels of description for a “procedure.” Namies for thé processes of converting from higher levels
to lower levels are one the right. Names for conversion structures are on the left.

a formalism describing the rclationship between a specification and a program. In his
representation systems, both the specification and the program are plans — the surface plan
(program) is just a structural refinement of the other. Rather than sceming to commit t¢ one or
another of these various formalisms, the neutral term "teleology™ will be used. Thus, the teleology
of a certain program is information relating the progranl and its parts to their intended purposes
(i.e. to the specification),

Since “teleclogy” is a new term. it is worth a moment to sketch its meaning. The teleology of
a procedure relates the surface structure (program) of the procedure to its goals and other design
considerations. ‘The teleology might include, for instance, a goal-subgoal hicrarchy. - It might
indicate which goals serve multiple purposes, and what thosc purposes are. It might indicate which
goals are crucially ordered, and which goals can be exccuted in parallel. I the program has
iterations or recursions, it indicates the relationship between the goals of the iteration body (or -
recursion step) and ‘the goal of the iteration (recursion) as a whole. In general, the procedure’s
tcleology explicates the design behind the procedure,

It is an empirical question which level of description — action sequences, traces, program,
teleology or specification — most closely corresponds to the knowledge that student’s acquire. It is
possible that students could simply memerize the examples that they have scen. In this case, their
knowledge of the procedure would be appropriately represented by a set of action sequences. One
might call them “prototypes” for the procedure (c.f theories of narural kind terms based on
prototypes. e.g. Roach & Mervis, 1975). However, it is a fact that stdent’s knowledge of
mathematical procedures is productive, in the sensc that they can solve problems that they have
never seen solved. As discussed in section 1.2, accounting for this productivity is problematic when
knowledge is represented as scts of action sequences. It will be assumed that student’s knowledge is
not prototypical. In fact, the only two levels of description that seem at all plausibie are programs
and teleologies, Finding cmpirical differences between them is Subtle, but not impossible.

Consider, for instance, a procedure for making gravy, A novice cook often knows only the
surface structure {program) of the gravy recipe — which ingredients t0 add in which order, The
expert cook will realize that the order is crucial in some cases, but arbitrary in others. The expert
also knows the purposes of various parts of the recipe, For instance. the expert undersiands a
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certain sequence of sieps as making a flour-based thickener. Knowing the goal. the expert can
substitute 2 cornstarch-based thickener for the flour-based onc. More gencrafly, knowing the
tclcology of a procedure allows its tiser to adapt the procedure to special circumstances (c.g.
running out of flour). It also allows the user to debug the procedure  For instance, if the gravy
comes owt lumpy, the cxpeirt cook can infer that somcthing went wrong with the thickener.
Knowing which sieps of the recipe make the thickencer, the cook can discover that the bug is that
the flour-fat mixture (the roux) wasn’t cooked long cnough. The purpose of cooking the roux is o
cmuisify the flour. Since the sauce was lumpy, this pumpose wasn't achicved. By knowing the
purposes of the parts of the procedure, people are able to debug. cxiend, optimize, and adapt their
procedures.  Thesc added capabilitics, bevond merely following (cxecuuing) a procedure, can be
used to test for a teicological understanding.

Do students acquire the ieleology of mathematical procedures?

Gelman and her colleagsues (Gelman & Gallistell, 1978; Greeno, Riley & Gelman,
forthcoming) used tests based on debugging and extending procedures in order to dJetermine
whether children possess the tcleology for counting (young children don’t, older children do).
Adapting their techniques, I tested five adults for possession of tcleology for addition and
subtraction. All subjects were competent at arithmetic.  Nonc were computer programmers. The
subjects were given ninc tasks. Each task added some cxira constraint o the ordinary procedure,
thercby forcing the subject to redesign part of the procedure in order to bring it back into
conformance with its goals. A simple task. for example, was adding left to right. A morc complex
lask was inventing the equal additions method of borrowing (i.e., the borrow of 53— 26 is performed
by adding one fo the 2 rather than decrementing the 5). The results were equivocal. Onc subject
was unable 10 do any of the tasks. The rest were able 10 do some but not all of the tasks, The
experiment served only 1o eliminate the extremes: Adults don’t scem to possess a complete, easily
used telcology, but npeither are they totally incapable of constructing it (or perhaps recalling it).
Further cxperiments of this kind may provide more definitive results. In particular, it would be
intcresting to find out if adults were constructing the tclcology of the procedurc. or whether they
already knew it. At any rate, it’s clear that not all adults possess operative teleology for their
arithmetic procedures, and moreover, some adults seem to possess only surface structures (programs)
for accomplishing a task. .

Adults found the tefeology test so difficult that 1 was unwilling to subject young children to it.
However, there is some indirect evidence that students acquire very little teleclogy. It concerns the
way students react to impasses (i.e., getting stuck while cxecuting a procedure). Consider the
decrement-zero impasse discussed in section 29. A hypothetical student hasn't yet learned how to
borrow from zero although borrowing from non-zero numbers is quite familiar. Given the problem

‘604

the student starts to borrow, attempts to decrement the zero, and reaches an impasse. If the student
undearstands the teleology of borrowing, then the student understands that borrowing from the
hundreds would be an appropriate way to fix the impasse. The purpose of borrowing is to increase
a certain place’s valuc whilc maintaining the valuc of the whole number. Here, the tens place needs
to be increased so that it can be decremented. Borrowing will serve this purpose. In shost, the
teleology of non-zero borrowing allows it to be easily extended to cover bofrowing from zero.
Although somc students may react to the decrementozero impasse this way, tnany do not. They use
local problem solving instcad, as discussed in section 2.9. Because students do not make
icleologically appropriate responses to impasses, it appears that they did not acquire much teleology
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(or if they do. they are unwilling to use it — in which case it's a moot point whether they have it or
not), .

Mathematicat procedurcs are perhaps a linde different than other human procedure in that
thetr teleology is quite complex. “I'he complexity is due partly to the fact that the procedures
manipulate a representation (¢.g.. base-10¢ numerals) rather than the objects of interest themsclves
(c.g. numbers). A procedure for making gravy docs not have this problem. Couoks don't
manipulatc representations of flour and -vater. they manipulate the rea) stuff. An added complexity
in arithmetic procedure is way their Icleologics merge loops to accomplish several goals at once
{Vani.chn & Brown, 1980). The telcology of luops is su compicx that only recently has At made
much progress on analyzing it (Waters, 1978; Rich, 1981). in other task domains than lcarning
mahematical procedures. more students might show cvidence of teleological knowledge. In the
present domaia. it is safe to assume that studenis knowledge is more like a program than a
telcology.  That is, the knowledge is schematic rather than teleologic (or prototypical).

*

3.2 What kind of Icasning goes on in £ic classroom?

The sccond assumption made by the theory iS ‘that students acquire their procedures by
induction: thcy gencralize from cxamples. This scctivn trys to make that assumption seem
plausible. First, it snows that inductive lcarning is consistent with the gross features of the students’
classrcom expericnces. Then. it presents several other ways that procedures could be learned, and
casts a little doubt on each of them.

No onc knows precisely what goes on in clementary school.  Unlike college classes,
clementary school classes are not just lectures and recitations. For much of the day, the child fives
in the school classroom. Many activities that go on there have littie to do with leaming. Schools
are like business offices in this respect. Despite the fact that both schools and offices have ostensive
purposes, it is impossiblec to precisely describe all the activities going on inside their walls.
However, the gross features of classroom setting arc uncontroversial.

In clementary school, math is taught once a day for a littie less than an hour. usually in the
morning when children are least restless. The most common instructional activity is searwork; the
students work excreises in their seats, occasionally asking the teacher for help. Figure 3-2 shows
how onc study of math classes divides instru.tion ttme. 1t excludes non-instructional activities such
as collccting homework. dividing into groups, and dealing with disc’ linary problems. The largest
proportion of instructional time is spent in seatwork.

Activity Grade 2 . Grade S

scatwork 8L% 70%

discussion, recital 30% 20%

lecture, demonstration 10% B%

games _5% __5%

total 100% 100%
Figure 3-2

Gross proportions of time spent in various instructional activities,
Adapted from Ramos-4 data reported in (McDonald & Elias, 1975).




76 ‘ GEI'TING STARTED

[y

-

Most teachers follow the lesson plans of the textbook rather closely. ‘The contents of the
teacher's textbook can be taken as a rough approximation to the material that the teacher actually
presents.  Judging from the textbooks. the calculational procedures that | am calling “mathematical
skills” are only a fraction of the mathematical curriculum. Morcover, they are not taught in a nice
compart unit as one¢ might expect from -college cusricula, The lessons that introduce the
comporents of a procedure are scattered over several years. In the Scott‘Foresman textbook, for
instance, the first lessons on the multicolumn subtraction procedure occur midway through second
grade. The various subprocedures, such as traversing columns and borrowing, are introduced in six
chapters scattered through the last haif of the second grade, the third grade, and the first half of the
fourth grade. A chapter typically has on¢ or two lessons that introduces a new subskill, several
lessons reviewing previously taught subskills, and a chapter test. During the two years that the
subtraction procedure is actively taught (it is reviewed for many years thereafier), the students
cover about 600 pages of text. At most 90 pages directly address the subtraction procedure. These #
90 pages include not only the lessons introducing new subskills, but also review lessons and tests. f
Page counts can be translated into a rough measure of the time spent learning subtraction. 1f one
puts the school year at about 175 days of usable instruction, and math occupies an hour a day, then
it works out that the subtraction procedure 1s taught in about 50 hours. These are just rough
estimates, of course. The main points are that the subtraction procedure does not consume much
instructional time. that most of that time is spent on review, and that the skill in introduced
gradually over a long period. The same comments apply to other calculation skills. Algebra
equation solving is introduced in the fifth grade, in the Scott-Foresman textbook series mentioned
above. By the time the student takes high school algebra, most of linear equation solving has
aircady been pre§ented.‘

An inductive account of skill acquisition requires that the curriculum provides examples in
appropriate quantities and varieties. Textbooks and teachers provide some worked examples of
mathe¢matical procedures, but not all that many. A typical borrow lesson in a textbook might print
two worked cxamples and 25 exercises. The teacher will undoubtedly work through several of the
exercises on the blackboard with the class and leave syme of them on the chalkboard while the
students do their seatwork. So a lesson might have a half dozen or a dozen examples for the
students to generalize from. The example set is not as small as one or two, but it is not hundreds
cither. One queStion that a computational theory can address, in detail, is whether this moderate
number of examples has sufficient information for induction to succeed. To the first order,
however, it seems that the instruction in use today has enough examples with enough variety to
make an inductive account of learning plausivle,

pa—

-

* it is important to consider the whole curriculum when grounding a learning model on textbook
lessons. In particular, 1t is easy to mistake a review lesson for an introductory lesson. Neves (1981)
built an Al program, ALEX, that learned how to solve simple algebra equations by induction. Neves
tested ALEX using examples abstracted from a high school algebra textbook. The first algebra lesson
that Newes used to test ALEX is probably a review lesson. It presents three operators for solving
lincar equations, all on one page. Onc of these operators is taught as early as the fifth grade in the
Scott-Foresman series. Neves has ALEX learn these three operators from scratch. as if this lesson
were introducing them for the first time. I believe this is a mistake that caused Neves to make
ALEX too powerful to be plausible as a model for the initial acquisition of procedures (sec sect. 4.3).
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Specifications

Discovery
Recipe atural Land. P:'o cam Analoay Famifiar
Understanding g Program

Induction

Action Sequence

Figure 3-3
Ways 10 acquire a program level of description.

The gross Features 05 classroom life scem consistent with an inductive account of learning.
But they are also consistent with just about any other account of learning because classrooms are a
rich, almost chaotic environment. Since the assumption of inductive learning will soon be used in
important ways. it is worth casting some doubt on the competing accounts. In order t0 Organize
them somewhat, we'll again use the tripartite distinction between specifications, programs and
actions sequences. If the goal is to construct a description of the procedure at a program
(schematic) level, there are four possible routes (see fgure >-3)

1.  From specification to program: A kind of learning by doing or discovery.
2. _From examples (action sequences) to programs: induction.

3.  Fromsome other schematic description, either
(@)  another familiar program: learning by analogy, or
(b) anatural language presentation of the program.

Each of the four routes has a certain degree of plausibility with respect to the gross features of
classroom life. Discovery learning would take place while the students solve problems alone,
cogitating over their mistakes. There is ample opportunity to do this in a class where 55% of the
time is spent doing seatwork. Inductive learning requires examples, which the teacher and the text
supply.  Analogic learning requires the juxtaposition of familiar procedures with the target
procedures. Modern instruction does some of this by drawing analogies t0 monetary, transactions or
games involving other concrete numerals (e.g., Dienes blocks, Moptessori rods, abacci, etc.).
Learning by understanding natural language presentations of procedures has some support in that
recipe-like presentations of procedures are occasionally used in textbooks and (presumably)
classrooms. So all four routes have a certain degree of plavsibility.

The next three scctions will take three of these four accounts of Iearning in turn, leaving
induction aside. and show why each is not a plausible acconnt of the way mathematical procedures
are acquired. In the process. severai of the pertinent Al studies of procedure acquisition will b
mentioned (for a comprehensive review, see Cohen & Feigenbaum, 1983). By the way, the
following remarks should not be construed as claims that inductive instruction is the only effective
Xind. Indeed, it may be that other Kinds of instruction are so effective that the few students who
actually utilize the instruction don't have bugs, and hence there would be no sign of their learning
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the bug data (I doubt this very much). It may be that inductivz instruction is not neasly as good as
some other method in that decreasing the curricular emphasis on exarnples would improve studeats’
learning. The point is that this is not a theory about what learning should occur, it is onIy a theory
about what learning does occur

3.3 Learning hy discovery

In discovery learning. students icarn on their own by solving problems. The teacher has littie
direct invohement, except perhaps to suggest projects or problems for the students to tackl® or to
answer an occasional question. The key assumption of discovery leariag is that the stude .ts can
solve problems initially. They may only be able to solve simple protrems. They may solve them
by trial and error, making maay counterproductive moves in the piocesscs. Discovery learning
requires at least this much inidal competence of its participants. By solving problems on their own,
students discover ways to avoid counterproductive moves and ways to solve problems that they
couldnt solve inidally. N

Superficially, it appears that discovery learning iS common in current mathematical education.
A typical lesson has exerciscs that are just a little bit harder than the ones in the preceding lesson.
Such a gradual increase in thetlevel of difficulty seems just right for encouraging a discovery learner
to acquire the new subskill that the lesson teaches, One can imagine, for example, a lessen that
teaches carrying with exercises such as a:

a. 3°6 b. 3 5 ’
g +2 8 + 2 1

. Exercise a lS‘JuSt a little harder than b, a problem type that the hypothetical discovery learner has
presumably mastered already. The learner would attack q first generating ¢. She would recognize
that the answer of ¢ isn't a proper number. so she would fix it, vielding 4

c. 3 6 d. 3 8 “
+2 8 + 2 8
5 13 6 13
» 6 3

This results in a procedure with two passes: one pass adds the columns, the second pass converts
the answer to the canonical form for numbers. Analyzing this solution and others like it may
eventually 1ad the learner to discover that the two passes can be merged into one. This merger
would generate the normal add-with-carry procedure. So, it seems that discovery learning is quite
compatible with the kinds of instruction that today’s students receive. However, when one Jooks a
little closer, this ilusion disappears.

The key requirement of discovery learning is that students know enough about the task that
they can solve it initially. albeit in an ineffi~"mt way. This requirement is not a peculiarity of
people, but an apparently necessary pait of -*. _aformation processing. All Al discovery learners*
have béen equipped with substantial initial domain knowledge. For instance, LEX is a program that

* Except Lenat’s AM program, which uses a representation in which relevant task domain
information was unusally dense {Lenat & Brown, 1983). By "Al discovery learners,” I mean
programs for planning (c.g., Sacerdot, 1977, Green & Barstow., 1973; Stefik, 1980), strategy
acquisition (e.g., Hayes-Roth & McDermott, 1976} operalization (c.g., Mostow, 1981), learnitg by
doing (e.g.. Anderson, 1980; 1982; Anzai, 1979) and learning by debugging (c.g., Sussman, 1976).
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discovers how . ~flicienlly solve simple integrals (Michell ct. al. 1983). However, its initial
knowledge of th. domain contains a complete set of icgal mathemnatical transformations (e.g..
integration by parts). This much knowledge is quite 4 bit more than any begirning calculus student
has. Another well-known discovery learner is Sussinan’s IACKER prograin (Sussman. 1976). It
learns procedures for stacking toy blocks. However, its initial state of knowledge contains a
“physics” for the blocks world {c.g.. two blocks cannot occupy the same place). This knowledge is
cssential for detecting when the partially lcarned procedure has bugs. Without it, HACKER wouid
not know to revise its procedures. 1t would not lcarn. Similar comments apply to almost all other
Al discovery 'eamers. To put it in terms used before, discovery leamers must have a specification
of the procedure (in some form). ‘From that they can derive a program for “the procedure.

As noted earlier, students of mathematical procedures seem not to possess the teleology of
their procedures. H¥*wever, without at Ieast the specifi cations for a procedurc, they cannot perform
discovery learning. For instance, " most young students do not undérstand the “base-10 number
system well enough o see that the answer in problem ¢ above is not a legal number. They lack the
kind of knowledge that HACKER used to detect when its procedure had a bug. Without this kind of
knowledge, there is no way students can dlscover the carrying subskill on their own.

in the arithmetic domain, the essential problcm is that the specificatinns for procedures must
be couched in terms of prescrving relationships between numbers, but the procedures manipulate
base-10 numerais. More gencrally, all mathematical calculations manipulate symbols and not what
the symbols stand for. Since the symbols do not ne¢cessarily obey constraints that prescrve their
semantics, the student must know not (o violate these constraints. The symbols will not themselves
prevent a student fiom creating buggy procciures in the way Lhat HACKER'S blocks prcvcnt it from
crealing buggy procedures. ® .

v

s
Many educators and cognitive scientists have, tried to find ways to teach mathematical notation

thzt wilt enable mathematical calculations to be learned by discovery. A typical technique involves
substituting physical objects for the symbols of the notation. Constraints on the notation are tumed
in*o physical constraints on the objects. For instance. I once tricd to use tiis technique to get
young children to discovel carrylng The basic idea was {0 make the principles of the base-10
sysremn extremely salient by using an appropriate physical representation for numbers. A two digit
number was represented by two egg cartons that were trimmed to hold just nine cggs. If the
student tried to put more than nine eggs in the uiils carton, they would roll off the table and break.
The idea was to convert a tacit constraint of the base-10 system, that theé maximum place-value
holder was nine, into an extremely salient physical constraint. ‘Betse + Summers and I tried to coax
eight beginning arithmetic students to synthesice carrying  Not one.would do it. After they were
shown the procedure, they would perform it with no trouble (ic., they learned it by induction).
Since the constrairiis defining the task were salient, their failure can only be attributed to an
inability (or perhaps unwillingness) to do the kind of problem solving that discovery lcarning
requires. 1 hasten to add that this cxperiment should not be taken as definitive. Young subjects
present difficult methodological problems By changing the instructions or the cxperimental
atcrials, one can vastly alter the apparent competence of the subjects (c.f. Klahr and Robinson’s
study of the Tower of Hanoi, 1981, or Gelman and G'aellstrcl's "thagic” experiments, 1978). Resnick
and others have reported more methodical cxperiments of this, kind where some students were able
to discover carrying, borrowing and similar Subprocedures (Resnick, 1982). Nonetheless, the general
consensie. is that it is. difficult and time consyming to teach encugh about the semantics of Lhe
notatio,. that swdcms@can learn calculations by iscovery. It seems safc to assume that fitde or no’

- discovery leaming occurs in the typical classroom.
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3.4 ieaming by analogy

Lecarning by analogy is she mapping of knowledge from one doriain over to the target
domain, where it is applicd to solve problems. Winston (1979) showed that learning procedures by
analogy could be formalized. He constracted a program that could leam to solve Ohm’s law
problems by drawing an analogy to hydraulies (sce also Brown, 1977; Carbonell, 1983a; 1983b).
Analogies arg heavily used in the carly grades to teach base-10 numeration. Students are ofen
drilled on the mapping between written numerals and and various concrete representations of
numbers. such as collections of coins, Diennes blocks, Montessori rods and so forth. This is a
mapping between two kinds of numerals, and not two procedures. Later, this inter-numeral
mapping is appealed to in teaching carrying and borrowing. For example. a known procedure for
making change — trading a dime for ten pennies — is mapped into the borrowing procedure®of
vritten subtraction. Since this ¥:nd of teaching iS quite common in the primary grades, it seems
quite plausible that lcarning by analogy should be a prominent framework for learning procedures.

Presumably. once an analogy has transferred some knowledge, it is still available for yse later
to transfer more knowledge about the procedure. In some crses, this predicts significant <rudent
competence. For instance, if the students learned siiaple borrowing via the analogy, then it’s quite
plausible that when confronted with more complex bofrowing problems, such as

‘ " 807
- 238

(assummg Lhe scudent hasn't yet been taught how to solve such borrow across zero problemsy, the
student could solve the problem in the conerete domain by tradinz a dol.ar for nine dimes ar - ten
pennies, then map Back into the written domain, thus producing the correct solution. Indeed, the
analogies used in instruction: may have been designed so that these productive ﬂxaensmns of the
base analogy are encouraged. -

But this is @ much more productive understanding of borrowing than most siidents achieve.
As discussed in the preceding chapter. when certain students discover that it is impossible to
decrement the zero, they will do local problem solving — repairing their execution state, These
students do not use analogies to” familiar procedures (e.g,, making change). _ If the students had
learned their procedures via analogy. one would have to make agd hoc stipulations to expfain why
they no fonger used that analogy after they had learned the procedure. 1¢'s more plausible that they
simply didn’t utilize the analogy in the first place. Simnilar comments apply to the analogies
between arithmetic and algebra. They would predict more algebraic competer:ce than one typically
finds. Looscly speaking, learning by analogy is tos good. It predicts that students would "repair”
impasses by construeting a correct &Xtension to their current procedure. That is, they would debug
instcad of repair. Since some studeats do apparently have repair-generated bugs, another
explanation-would be nceded for how these students acquired their-procedures. A¢ the very least,
analogy cannot be the only kind of learning going on, if it happens much at all.

Carbonell (1983) makes a telling argument about analogies betwesn procedures. His ARIES
piugram was unable to form analogies batween certain procedurcs when al} it had was the program
(schematic) representafions.  However, Carbonell found that analogies could be forged when the
procedures were described teleologically (ie., in Cacbonell’s terminology,, the analogy is between
derivarions of procedures). Suppose one stretches Carbonnell’s results a little and claims that
knowing the teleology (derivation) of procedvres is necessary for proccdural analogy, at least for
mathematical procedures. (Carbennelt claims only sufficiency, if thal) Since most math students
are ignorant of the teleology of their pioccdures (section 3.1), one can conclude that students did
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not acquire their procedures via analogy.

Analogies are hard t0 make

How is it that teachers can present material that is specifically designed 10 encourage icarning
procedures by analogy, and yet their students show few signs of doing so?  Winston’s rescarch
(Winston, 1979) viclds a speetfative answer.  {t indicates that the most coinputation intensive part of
analogy can be uiscovering how best 10 maltch the parts of the two sidvs of the analogy. To solve
clectrical problems given hydraplic knowledge, on: must snatch voltage. electrical current and
resistance to one cach of prcssulf;&, waler current and pipe size. There are & possible matchings, and
only onc maiching is correct. ; The number of possiblc maichings rises exponcatially with the
number of parts. For a similay analogy, a best match had to be selected from 11! or 40 million
possible matches. The matchipg problem of analogy is a version of a well known NP-complcte
problem: finding thc maximal common subgraph of two digraphs (Hayes-Roth & McDermott,
1978). Hence, it is doubtful that a faster solution thun an exponcntial ons exists.

If computational complexity can be equated with cognitive difficulty, Winston’s work would
predict that students would fipd it Jifficult to draw an analogy unless either it was a very simple
one or they were given somg help in finding the matching. Resnick (1982) has produced some
experimental evidence supporting this prediction in the domain 0f mathematical instruction.
Resnick intcrviewed students lwho were taught addidon and subtraction in school, using the us., !
analogics between concrete and written numerats. It was discovered that some students had
mastered both the numeral ape'ogy and the arithmetic procedures in the concrete domain, and yet
they could not make a conngction between the concrete procedures and the written ones. Resnick
wenl on 1o demonstrate that students could easily make the mapping between the wo procedures
provided that the steps of the two procedurcs were explicitly paired. That is, the student was
walked through the concrete procedure in parallel with the written one. A step jn one was
immediately followed by the corresponding step(s) in the other. If we assume the conjecture from
above, that combinatonal  explcsions in mapping cquates with difficully for humans making
analogies, and we assume that "paris” of procedures roughly correspond 1o sieps, then Resnick’s
finding makes perfect sense. The proccdures are currently presented in scheol in a non-parallel
mode. This forces students to solve the maiching problem. and raost scem uvnable 10 do so.
Conscquently, the analogy do¢s little good. Only when the instruction helps the students make the
malching, as it did in Resnick cxperiment, does the analogy actuaily succeed in transferring
knowledge about one, procedure to the other. Jn short, analogy could become a major learning
technique, but current instructional practices must be changed 1o do so.

~

_. —— _Example-exercise analogies

There is anecdotal evidence that analogy is very common, bul it is analogy of a very different
kind In tutoring, [ have waiched students flip through the textbook o locae a worked problem
that is similaf to the one they are currenty trying 10 solve. They then dravv a mapping of some
kind between the worked problem and their problem that cnables them 10 solve their problem.
Anderson et, al. report the same behavior for students solving geometry problems (1981). Although
the usage could be diputed, Anderson ct. al. call this kind ¢f exampl¢-exercise mapping an analogy.
1t differs ffom the kind of analogy discussed earlier. The abstraction that is common 10 the two
problem solutions is exactly the surface structure {program) of the procedure. In the analogy
between making change and borrowing, the common. abstraction lay much deeper, somewhere in
the teieology of the procedure. To put it differently, the example-excreise analogy maps two action
scquences of a procedure together, thus illustrating the procedurc’s program. The other analogy
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maps two distinct procedures together in order to illustratc a common teleology.

The former mapping, between two instances of a schematic object, is ncarly identical to the
central operation of lcarning by examples. In botl. cases, the most specific common gencralization
of the two instances is calculated. Winston also points out the equivalence of gencralization and
analogy in such circumstances {Winston, 1676). Although 1 havc not investigated example-cxercise
analogy n detadd, 1 expect it to behave almost indistinguishably from lcarning by generalizing
cxamples.

To *ummarize. onc form of analogy (if it could be called that} is indistinguishable from
induction. “he other form of analogy secms necessarily to involve the teleology of procedures.
Since swideats show little evidence of teleology, it is safe 10 assume that analogic learning is not
comnon in ciassrooms, perhaps beause current insiructional practices aren't encouraging it in quite
the right way.

3.5 Learning by being told

One framework for acquiring a procedure involves following a sci of natural language
instructions until the procedure is committed to memory. This framework for cxplaining learning is
called Jearning by being told. 1t views the central problem of learning as one of natural language
understanding. The key assumption is that the text describes the procedure in enough detail that all
the stndents nced to do is understand the language, then they will be able to perform the
procedure.

Manuals of procedures are ubiquitous in adult life. Examples arc cookbooks, user guides,
repair shop manuals and office procedure manuals. In using proce  re manuals, adults sometimes
learn the procedures described therein, and cease 10 use the manuae. So learning by being told is
probably quite common among adults. The content of procedure manuals can be taken as a model
for how good a natural Ianguage description has to be if it 15 10 be cffective in teaching the
procedure.

Open any arithmetic text. and one immediately sees that it is not much like a cookbook or an
auto repair manual. There is very little texi. The books arc mostly exercises and worked cxamples.
The reason is obvicus: since students in the primary grades arc just begmmng 1o read, they could
make litle use of an elaborale written _procedure. — —~— =~ —

— —~Badre (1972) built an Al program that reads the prosc and cxamples of a fourth grade
arithmetic textbook in order to learn procedures for multicolumn addition and subtraction. Badre
sought in vain for simple, concise staternents of arithmetic protedures that he could use as input to
his natural language understanding program. He comments:

During the preliminary work of problem definition, we looked for 4 textbook that would
expiain arithmetic operations as a clearly stated set of rules. The extensive efforts in this
. search led to the following, somewhat sufprising result: nowadays, young Ametican
grade-school chiidren are never told how to perform addition or subtraction in & general
way. They are supposed to infet the general algorithms from examples. Thus actnal
texts are usually composed of a series of short illustrated “stories.’” Each story describes
an example of the exccution of the addition or the subtraction aigorithins. (Dadre, 1972,

pp. 12

Despite the fact that Badre's progratn “reads” the textbook's "slorics” in order 10 obizin a
description of the examples, the role of rcading in its learning is minimal. The heart of the
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program is gencralization of cxamples. In particular. the program cmploys only a few heuristics
that usc the book's prose to-*disambiguate cheices left open by gencralization.

The preceding paragraphs discussed primary school students learning arithinctic.  Algebra
lcarncrs are secondary school students. Many can read well cnough (o use provedure manuals, In
sccondary schootl algebra texts, one sometimes finds “recipes™ for solving equations and the like, but
they are often too terse and ambiguous to serve as morce than a simple reminder.  Their level of
detail suggests that such written procedures are used as summiaries and not as the primary
cxposition. The fact that most of them are placed at the end of their chapters suggests that the
textbook writers also sce them as playfhg a secondary. summarizing role. If | may add anccdotal
support frorm cxpericnces as an algebra tutor. 1 have observed that students who flip through the
textbook “looking for help in solving a problem virwally always refer to a worked example rather
than a recipe. This is consistent with the view that recipes play an integrative or summarizing role.
They lack the detail to serve cither as the main cxposition of the procedure or cven as a reference
when additional details are sought. ' )

3.6 Summary and formalization

This chapter presented two hypotheses. The theory needs them in order to get started in
arguing competitively. Since there are no independently motivated hypotheses that can be used in
arguing for these two. they can only be justificd by making them scem plausible. They are. in this

" special sense, assumptions -~ hypotheses without proser suppoft, but oncs that the theory bears
allegiance to.

Onc hypothesis is that the knowledge that students acquire is schematic (at the level of a
program) rather than telcologic (at the level of a specification for a program) or prototypical (at the
level of a set of problem staie sequences). All ttree descriptive fevels are logically sufficient to
describe a procedure, However, the behavior of students secms best to fit the hypothesis that their
descriptions of procedures are schematic.  The argument against prototypical knowledge is that
students’ problem-solving ability is much more productive, in the sense that they can solve problems
that they have never scen before, than_an account of procedural knowledge that is based on

___ _ prototypes (i.e., memorized cxanples) would predict. On the other hand, if students possessed the

tcleology of their procedures, most impasses could be "repaired” by deriving a correct procedure
(i.e., students would debug instead of repair). At least some students, the ones with bugs, must be
ilacking such telcologlcal knowledge. Also, (here is experimental evideace that some adults have no
tclcology for their arithmetic procedures. They cither never learned it or they forgot it in such a
way that the schematic level {(program) was rctained while the telcology was forgotten. All in all, it
is more parsimonious to assume that swudents learn just the schematic level descriptions for their
procedures. This implies that student’s knowledge can be formalized by something like Lisp
procedure or production systems. It is not necessary to use more powerful formalisms such as
planniny ts (VanLehn & Brown, 1980), planning calculi (Rich, 1981) or procedural nets
(Sacerdow, 1977)

The second assumption is that students learn inductively. They generalize examples. Thicre
are several less plausible ways that procedures could be lcammed: (1) Learning-by-being-told
explsins procedure acguisition as the conversion of an external natural language information source,
e.g., from a procedural manual, into an internal comprchension of the procedure. It is implausible
In this domain because young students don’t rcad well and older stidents’ textbooks are not
procedure manuals. {2) Learning-by-analogy is used in current mathematical curricula, but in ways
that would produce an overly teleological un?-rstanding of the procedural skills. If students really
understood the analogics, they wouidn't devclop the bugs that they do. (3) Discovery learning
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requires that students have cnough initial knowledge of the task that they can muddle through to a
solution. Discovery learning describes how students develop solution procedutes from their initial,
trial-and-error problem solving. However, mathematical tasks have difficult specifications that make
it unlikely that a student would blunder inio a correct solution of, e.g. a subtraction problem. Even
when these specifications are made salient, there is some experimental evidence indicating that the
initial trial-and-crror problem solving is tco hard for many students. Besides, if students did use
discovery learning, their knowledge of the procedures would be overdy teleological. Of the various
ways to learn procedures, only induction seems both to fit the facts of classtoom life and 10 account
fo. the schematic (program) level of knowledge that students appear to acquire,

Formalizing the hyvpotheses--using—constrainis on undefined functions

Two functions, named Learn and Cycie, will be used to formalize the theory. The
functions will not be defined. Instead. they will gradually acquire meaning as the hypotheses of the
theory are stated in term of them. In the next chapter, for instance, Learn will be defined in terms
of three new undefined functions, and some constraints wilt be added concerning how the three
fuhctions interact. In effect, these new functions and constraints will be a partial definition of
Learn.” Later chiapters will introduce further constraints. When all constraints have een made,
there will still be many ways to define the various functions. Sierra provides one definition for
cach. The intention |s that any other definition would do as well as Sicrra does at predicting the
data,

To put it a litde differcntly, the endeaver in the following chapters is to accumulate a set of
semi-formal specifications for Sicrra. As new empirical facts come to light, new -specifications must

be imposed on Sicrra in order that its performance corresponds to the new facts. To put it baldly,
the endeaver is to uncover a releofogy for Sierra. Chapter 2 presented Sicrra at the schematic
(program) level. The remaining chapters build up its teleology. The structure of interlocking
competitive arguments is exactly a telcology for Sierra, except that it stops short of the actual code
itsclf. It is a teleology for a class of Sierra-equivalents.

The following is a list of the nomenclature, with comments on their intending meanings.

Lol A sequence of lessons. >
L A variable designating a fesson.
p A variable designating the student's procedure.

(Exampies L) A function that retarns the examples contained in its argument, which is a lesson.
(Exercise L} A function that returns the exercises contained in its argument, which is a lessors,

(Learn P L} An undefined ﬁinction that returns a set of procedures. Its first argument, P,isa
procedure, and its second argument, L, is a lesson. It represents the various ways
that its input procedure can be augmenied to assimilate the lesson, '

S A variable designating the current runtime state.
(Internal S)' A function that returns the internal (exccution, or interpreter) state.

(External §) A function that returns the external (problem) state. The current state is a
composite of the internal and external state,

(Cycle P §) An undefined function that inputs a procedure and a runtime state and outputs a
set of possible the next states. It represents one ¢ycle in the
interpretation/cxecution of the procedure.
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Defining inductive lcarning is casy if onc can usc a consistency constraint s.ch as the following onc:
If L is a lesson, and g is a generalization induced from it, then g wrust be consisient with all the
cxamples in /.. In the case of procedures, a prucedure g is consistent with an example if its solution
v the cxample's exercise problem is the same problem state scquence as the example’s problem
stalc sequence. That is, consistency means a student procedure solves the lesson's example exercises
using the same writing actions that the teacher did. Given a fesson sequence, L,./...L . the sct of
vbservable procedurcs is obtained by chaining. That is, procedure P, is fearnable when it is induced
from procedure P, ; durirg lesson £, and P, is consistent with lesson L, and P, is lcarnable. “This
recursive defi muon defines the sct of lcamablc procedures to mcludc ones thal arc intermediate
procedures as well as the procedures that the learners have when they reach the end of the lesson
sequence.  Although it might appear a little complicated, there is nothing special going on.  This is
an ordinary way to formalize incremental induction. The formal hypotheses are:

Incremenial Learning
Given a lesson sequence L,...L, and aninitial procedure P

Procedure P isacore proccdurc if and only if
1)) P=P, or
(Z)P € (Learn L, P} and P, iscorcprocedure.

Induction
IFP,€ (Learn L, P, ) then for cach cxample problem x in (Examples L)),

the problem state sequence that is 2 ’s solution to x is equal to the problem state
sequence that is the solution to x used in the cxample.

These hypotheses express the second aSSumpllon presented in this chapter, that learning is inductive
“in this domain. The first assumption is not as casy to formalize. There is no standard way to
formally distinguish beiween a schematic procedure (program) and a tcleologically described
procedure (a tcleology). The best that can be done is to appezl to the intuitive notion of an
runtime state {notated S). 1t changes during problem solving while another information structure,
the procedure (notated P) does not change. Later on, this inability to express the assumption
formally won’t matter becausc a formal represcntation for procedurcs will have been defined. The
following principle, as well as the notation defined above, is aimed at providing a foundation for lhe
dcfinition of the knowledge representation and its usc in problem solving.

Predictions

IFSp is the initial state such that (Externat Sy) isa test exercise, then the set of
predicted probiem state sequence for studctits with procedure P js cxactly the sst
{<(Extarnal S;)..(External S )> | Vi S; € (Cycle P S;_4)}.

This constraint puts the teeth into the whole theory. It connects obscrvable, testable predictions
with the predicted procedurcs. It defines the solution of a problem to be a sequance of runtime
states 5. Since Cycle is non-detcrministic in that it can output more than onc runtime state, many
solution sequences arc possible for the same procedure P and the same test problem (External
Sp). Note that only the sequence of problem states, the projection of the S; via External, is
vbservable. It is just barely worth mentioning that this formalization ducks the minor issues of
initial and final internal states.




Chapter 4
The Disjunction Problem

i

o

This chapter argues that a key problem which any inducer faces is controlling disjunction. If
the class of ali generalizations is specificd in such a way that disjunctions are unconstrained, then an
inducer will be unable to identify which gencralization it is being taughe even if it is given an
infinite number of positive and negative examples. It is only when the inducer is given ail possible
examples that it can succeed. This is physically impossible in most interesting domains. Any
physically reglized inducer that can learn successfully must be performing induction under some set
of constraints on disjunctions. In the previous chapter, it was asstmed that students learn
mathematical pracedures inductively. Since they don't require infinitcly many examples to do so,
there must be constraints on the way disjunctions are induced. The task of this chapter is to find
out what those constraints are.

Research on machine induction has discovered several methods that solve the digunction .
problem and thus enable mechanical inducers to succeed in finité“lime. For instance, two classic,
methods are to bar disjunciions from generalizations or to bias the inducer against generalizations
that use disjunctions. These methods. or any methods that solve the disjunction problem, could be
the one used by people. It is an empirical question which method people actually use. It will be
shown that the method used by students in this domain is the one-disjunct-per-lesson felicity
condition, which was mcntioned in chapter 1. Before arguing in defense of the felicity condition,

the disunction problem will be introduced and several solutions will be discussed.

4.1 Anintroductivn to the disjunction problem

By "digunction," 1 mean the following: Suppose that g and g are two generalizations from
the class of all possible generalizations They each have an extension, where a generaljzation®s
extension is the set of all possible examples {instances) consistent with the generalization. The
gencralization is a generalization of each object in its extension and no other objects. A
generalization’s extension is usuvally an infinile set. Let x and x* be the extensions of g and g,
respectively. The disjunction of g and g’ is any generalization whose extension is the union of x
and X'

1t is often the case that a representatior. language is used to define the class of 2il possible
generalizations. If so, disjunction usually corresponds to certain operators Or constructions in the
representation Ianguage. Disjunction ‘akes two or more generafizations and produces a néw one
such that the extcnsion of the new generalization is exactly the union of the extensions of the old
generalizations. For instance, the disjunction of two predicates, e.g., (WEDGE x) and (BRICK x),
is their lorizal disjunction, (WEDGE x) V (BR.CK x). The disjunction of two context-free
grammars is a grammar whose rule set is the concatenation of their two rule sets {assuming all non-
terminals except the root bave distinct names).

*
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No Yes

A B —_— A

Figure 4-1
Disjunction of two flow charts.

The disjunction of two procedures A and B is their concatenation plus the new top-level
stalement. "If such-and-such is true then call A else call B." To see this in a little more detail,
suppose that procedures are represented as flow charts (see figure 4-1). Each flow chart has 2
designated node, labeled Enter. To disjoin two flow charts, a conditional branch is placed
between the two Enter nodes of the two flow charts. This forms a single. new flow chart. The
test {predicate) inside the conditional branch couid be arbitrary (i.c., a random true-faise generator)
or jt could be something specific. It doesn’t matter as long as the extension of the new flow chart is
the union of the extensions of the two old flow chants. The extension of a flow chart could be
considered to be the set of all action sequences (or equivalently. as the set of all problem state
sequences. Denotational semantics provides a more general and rigorous treatment of extensions of
procedures. See Stoy, 1977). -

If the two flow charts were very similar, then the same effect could be achieved by merging
them. For instance, suppose the two flow charts were identical except for one conditional branch’s
test {see figure 4-2). In one flow chart, the test is P; in the other flow chart, the test is Q. Given
this similarity, the disunction is a flow chart w'th (OR P Q) as s test. Disjunction in the
procedural domain has a rather broad interpretatior . Jt can introduce new control siructure or just
modify internal tests and actions.
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———
Enter
Enter
A :
B H
No Yes :
A
: : Y
0 : Mo es Enter
P ; AVB
leteensttsnasussnssnnnne UV BV, 5
Figure 4-2

Internal disjunction of two flow charts.

The disjunction problem

Induction’s trouble occurs when the class of all possible generalizations admits free
disjunction. That is, the disjunciion of g with £’ is in the class whenever £ and g are. When this is
the case, induction acquires some strange properties that make it seem uanlikely as a form of liuman
learning.

Free use of disjunction allows induction to gencrate absurdly specific generafizations. One
such absurdity is the trivially specific generalization: a disjunction whose disjuncts are exactly the
positive examples that the learner received. Thus, if the inducer received positive examples ¢ b and
¢, then the disjunction (OR a b ¢) is the trivially specific generalization. It has three disjuncts,
namely the three examples {or rather. complete descriptions of each example). The trivially specific
generalization is not really a generalization at all. Its extension is just {@ & ¢}. The inducer didn't
really generalize, it just remembered. Clearly. this is not the only kind of knowledge acquisition
that people do. especially students of mathematical skilis. There must be some constraints on

e
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induction that people have. For instance, they could be biased against trivially spcciﬁo;
- generalizations. This would take «are of une problem. but there 1s another problem that is much -
worse. It is the heart of the digjunction problem.

When disjunctions are unconstrained. the inducer has to ": given the complete extension of
the gencralization being taught before it can reliably discrimifate that gencralization from the
others. To see this, first assume that for cacn pussibie cxample, there is a generalization in the class
of all possible gencratizations whose extension is that cxample and only that example. (If this
assumplion is not true, then we can reformulate the example space inlo 4 space o1 equivalence
classes such that the examples in a class cannot be distinguished by generalizations.) For instance, a
grammar consisting only of the rule §—a is such a generalization, where S is the root category and
a is a string of terminals. This grammar's cxtension is the singleton set {a}. Using such singletol
generalizations and disjunction, amy finite set of examples can be described by some generalization.
To get the generalization for {a, b}, onc finds the generalizations for {a} and for {b}, then takes
their disjunction. Since all sets of examples correspund lo generalizations. the inddeer can't tell
which generalization is correct until it is told exactly what the target generalization's extension is.
This means it must be shown alf possible examples. and told which are positive examples and which
are negative examples. For grammar induction the learn¢r must be shown all possible finite strings.
There arc an infinite number of them, so this is an impossible task. {In fact, for grammar
induetion, it is easy to prove that there are infinitely many grammars consistent with any finite set

of strings.) C

The only way for the inducer to Icam withopt receiving infinitely many examples is to bias
the lcarner of 10 constrain the use of disjunction in the representation language. Goodman (1955)
calls this the old riddle of induction: 10 lcam anything at all. you cither have to L. biased or
partially blind. By hypothesis, students do learn inductively, So it is only a queston of whether
they arc biased, partially blind, or have some other way of solving the disjunction problem.

Prior solutions to the digiunction problem

Research in induction has used five major techniques for solving the disjunction problem.
These will be reviewed briefly (se¢c Cohen & Feigenbaum, 1983, for details). One technigue has
been mentioned already: disjunction-free induction. Winston’s arch-learner was of this type (see
section 2.6).  Digunctive generalizations are simply banned from the class of possible
generalizations.  This technique is the only onc of the four that solves the problem by putting
constraints on generalizations. {The remainder of this subsection is somewhat technical and ¢an be
” skipped.) . .

The second “technique” is based on a celebrated theorem of Gold (1967)._-As it tumns out, the
technique is totally impractical in most cases because it requires that the inducer receive infinitely
many examples. Gold's work dealt specificaily with indueing grammars, but the resulls are more
general. He proved three impbrtant theorems: (1) If a certain bruie foree inducer rectives only
positive examples, then it cannot learn the target generalization, except when the class of all possible
gencralizations is extremely restricted. (2) If the inducer receives both positive and negative
examples, then it will eventually eonverge on the correct target generalization. (3} This brute force
inducer is equivalent to ali other inducers with respect to the thecorems' results. Recenlly, certain
psycholinguists have taken these resuits to mean that it will suffice to explain how language is
learned if it can be shown that babies receive negative examples (sec Pinker, 1979, for a review of
this position). If they do, then they bave afl the information they need to induce their language,
and moreover. it is pointless to inquire what kind of induction algorithm they might be using since
all such algorithms are, in a certain sense. equivalent. This position chooses 1o ignore the fact that
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Gold’s sccond theorem requires that the inducer receive all possible examples, cach bearing an
indication of whether it is a positive example or a negative example. For any intercsting
formulation of inductive learning. this makes the example scquence be infinitely long. In
concentrating on whether babijes receive negative examples. the position ignores the physical
impossibility of an infinite example sequence. Perhaps the infinite sct of examples is taken as an
idealization of a very large sel. the set of all sentences that a baby hears while it is Jearning a
language. However. the completeness of the example sct is used crucially in the proof of Gold's
theorems. It is casy to produce counterexamples to the theorem when the condition of
compleleness is violated. ‘To put it differently. ali that Gold really showed is ihat his brute force
inducer converges on the correct generalization if and only if the example sct is complete. The
negauve examples issue is a red herring. Given a finite example set, the brute force inducer may

fail even if it docs have negative cxamples. The only way to account for learning is to either (1)
postulate strong restrictions on the class of all possible generahmuo:lS, as Winston did, or (2} to
postulate a bias. as the rcmaining three techniques do.

The third technique uses abiasing measure based on extensions. For eonvenience in Stating
the bias, it allows only one top-level disjunction in its generalizations. That is. a generalization kas
the form (OR ¢, c,.. c,) where the disjuncts ¢, are disjunction-frec gencralizations. This is not a
constraint on the class of possibie generalizations. It does not decrease the expressive power of the
class. It only puts the generalization in a form that makes it convenient to apply the bias measure,
Bias is decided by comparing the coverage of individual disjuncts c;- Given an cxample sequence,
the coverage of ac, is the set of examples in that sequence that it ls consistent with. The coverage
of ac is the |nter~=eclmn of its extension and the example sequence. Coverage i used to formalize
btases Various biases have been used reflecting varying assumptions about the induction task
under study. Brown (1972) uses a bias that favors a generalization that has one c; with as large a
coverage as possible. along with an arbitrary number of c; with small coverages. Hls induction task
involves hypothesis formation over noisy data. The c; wnh the largest coverage is the hypothesis.
The other c, cover the noise data. In other appllcauo:ls, the learner is biased t0 expect muitiple
hypothesss of aboul the same coverage (e.g., Vere, 1978; 1975; Hayes-Roth& McDermott, 1976). In
this case. the bias is 1o take as few ¢, as possible, each with the largest coverage possible. This bias

Rl

implements one interpretation of - Qccam’s razor. —

The fourth technique is stochastic. The example set given lo the learner has redundant
cxamples, That is. an example may occur many times. The inducer’s bias is bascd on finding a
generalization that best fits the given example distribution. Generalizations are equipped with
probabilities that are used to predict the example distribution. In particular, probabilities are
assigned (o disjuncts. Given a disjunctive concept, (R c; c,), a probability P is assigned to ¢
while 1— P is assigned 1o cy- The inducer's bias depends on a certain computation that calculates
the likelthood of an example given a generalization that has probabilities assigned to its disjuncts.
Then, for each generalization that the inducer constructs, probabilities are assigned to its dispuncts in
such a way that the likelihood of the example distribution i maximized. The inducer then chooses
the generalization that yields the maximal likelihuod value, Thus, the inducer’s bias is to choose
generalizations that best predict the distribution of examples. A generalization’s likelthood will
depend on how many disjunctions the generalization has and ,where they occur, In general, the
more disjunctions, the easier it is to fit the generalization to the examples, and hence the higher the
likelihood value. A compensating bias is needed, otherwise the inducer will tend to generate
trivially specific gencralizations. Horning (1969) assigns prior probabilities to the gencralizations in
such a way that generalizations with more disjunctions (i.c., more degrees of freedom) have less
prior probability.
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A fifth major technique for solving the disjunction problem is to rate generalizations with
some complexity measure (e.g.. count the number of symbols needed to express it, as in Chomsky,
1975). "The inducer is biased to chovse the simplest generalization. This technique v.yill ofien tend
to overgencralize, especially if there are few or no negative examples. For instance, a grammar
inducer will tend to chose a grammar for the universal language (i.e.. all possible firice strings) since
universal grammars are often quite simple. Feldman (1972) balanced the complexity of the
grammar itself against a second complexity measure, one based on the complexity of the derivation
of the example strings from the grammar. For instance, opne might measure a derivation’s
complexity by counting the number of parse nodes in the string’s parse tree. Another technique is
to balance the complexity-based bias, which tends to overgeneralize. :ainst the liketihood-based
bias, which tends to undergeneralize. .

In addition to these five major techniques, there are many heuristic induction algorithms, It is
often difficult to tell what their biases are. Conscquently, they may have limited interest for
theoretical psychologists. A heuristic inducer has been built for algebra equation solving, a domain
presently under ,consideration. Neves' program, ALEX, indyces procedurces for solving algebra
cquations (Neves, 1981). ALEX'S biascs are woven into an algorithm for generalizing examples.
ALEX will be discussed later as a representative for the ciass of heuristic approaches.

Competing hypotheses considered in this chapter

With this background in hand. it is time to consider how pcople solve the disjunction
problem. Not all of the alternatives discussed above will be consideréd for this theory. The
com’pgli\ﬁon will be between the following five hypotheses:

1" *No disjunctions: Disjunctions are not induced. Instead, they are there already, implicitly, in the
set of primitive eoncepts that learmers have when instruction begins, This solution to the
disjunction problem is used by Winston (1975), Mitchell (1982}, and others,

2. Domain-specific heuristics: Neves' At EX program-will be-diseussed-as-anexampiv of Icaraing by

using ad hoc, domain specifie biases.

3. » Minimal disjuncts: The learner is biased to take generalizations with the fawest disjuncts possible,
This is the essence of the solution used by Iba (1979). Michalski (1969, 1975). and ot:hers.

4. Exactly one disjunct per lesson: Given that the sequence of examples is partitioned into lessons,
the learner acquires one new disjunct (Ssubprocedure} per lesson, .

5. At most one disjunct per lesson: Given tﬁl the sequence of examples s partitioned into lessons,
the learner acquires at most one new disjunct (subprocedure} per lesson. That is, if the lesson
doesn’t require that the procedure be given a new disjunction, none will be installed,

The last aliernative I' :d above is the one adopted by the theory. The first two compelitors fall
because they require .nplausibly strong assumptions about the students’ states of knowledge prior to
instruetion. The fousth solution, introducing exactly one disjunetion per Iesson, makes bad
predictions.  The third solution, minimizing disjuncts, is empirically indistinguishable from the fifth
solution, the one taken by the theory. However, the minimal-disjuncts hypothesis does_not explain
why lessons help instrtiction. ft predicts. instead, that students would do just as well without the
partitioning that lessons give the example sequence. They would learn identically from a sequence
of examples chopped into hour-long slices at arbitrary places. Hence, the minimal-disjuncts
hypothesis is rejected on grounds of explanatory adequacy: It does not explain why lesson structure
has been found $o universally helpful In education.
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4.2 Barring &is}unctio:: from proccdures

On on¢ view. an inductive learning theory must cither restrict the usc of disjunction in the
rcprcscnt.lutm linguage or bias the inducer against making disjunctive gencralizations. The former
position is @ little simpler. Despite the fact that it hasn’t a prayer of explaining skill acquisition, it
will be considered first because it provides an casy introduction to the tacit issues involved in
controlling disjunctions.

By analogy with Winston's arch Jearner, it is easy to' imagine a disjunction-free representation
language for procedures. I~1gurc 4-3 shows a Winstonian représentation for a worked subtraction
problem. The representation is a semantic net. The three nodes labeled a, b, and ¢ are the three
visible writing actions of the example solution. The lecarner recogGizes themr as instances of the
DIFF primitive. where DIFF is an action that takes the column difference and wntes it in the
column’s answer place. Each of the three actions ISA DIFF. The representation uscs an AT link to
record which column the DIFF was taken in. The NEXT link- represents the temporal sequence of
the actions. The LEFT link represents the relative positions’of the columns.

-

One-Part-ls T ISA
@

576
—123

Column .

Figure 4-3
A worked subtraction excrcisc {on the left} represented as a semantic net.
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Winston uses a special comstruction for representing groups of seralar objects. In this
example, the actons @ b and ¢ are represented o a group, This ts mdicated by the fact that they
are parts {via three One-Part-1s Links) of the GROUP pude. which s labeled g The group has a
typical member, labeled s, which ISA DIFF.  Winston uses greup nodes for nteratine block
structures, such as a column of arburarily many blocks,  Here 4 group aode 15 being used to
represent o fuop, a group of arbttrandy many column processing actions, Needless (o say, more nct
structure than that shown in the figure would be necessary to do an adejuate Job of_representing
subtracton’s main loup. Howesver, this sunple diagiam gis¢s epough detal w wlow appreaation of
the fundamental problem with this disjunction-barning  approach,

The fundamental problem becomes apparent when d sccond subtractivn problem is shown to
the learner.  Figure 4-4 illustrates the s orhed exervise and the semantic net for the generalszation
that the teamer should produce. To induce the wrrect subtractiun procedure tas mamny students do,

( Group )}

One-Paﬂ-ls/r ISA

Typical-

ISA Member

M
1

O Left O . Leht O

3 /

ISA ISA ISA ISA

/

Column

Figure 4-4
A worked subtraction exercise represented as o semanue net stiow ing Jdisjurctive column action,

ERIC
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so this is onc criterion for adequacy). the learner has w recogni.e that the third action s not a
DIFF. but another primitive action called SHOW. The SHOW uction stmply copies the top digit of a
colunin Into the answer. Given that the third acuon is not a DIFF, the typical member of the
group (loop) cannot be a DIFF. It has to be the disjunction of DIFF and SHOW. which is
represented hy the node SUB1COL. Ihis kind of generalization s just what the Wmstons arch-
learner dues to induce that the hintel could be any PRISM. Prior to instruction. 1t thinks lintels were
BRICKS. 1t s shown an arch with a WEDGE tmeel. I induces that hatels could be any kind of
PRISM.

However, there are major differences between the blocks world domain and the domain of
writlen calculations. {t is plausible that a child right anow enough intuitive sohd geometry o have
a concept PRISM which disjoins BRICK. WEDGE. and a few other sohds. However, w 1s rather
implausible that a child has a concept SUBICOL that disjein: exactly the actions DIFF and SHOW.
My intuison is that the closest a child would come to such a “naturally occurnng™ disjunction
would be a concept call it DO1COL, that disjoins four actions: DIFF, SHOW. taking the column
sum, and wnting the bottom digit of the column as the answer. 10 would take an expenenced
subtracuon student to know that only BIFF and SHOW are members 0f subtraction’s lovp. and that
the other actions arc not.  Whithout this cxperience. a student could only induce that any 001COL is
vkay as a column processing action. This would generate bugs. The following problera [llustrates
the snisconception that any pQ1COL is okay as a column opcration:

1
ol Ll
oir
[ )

OIFF was used for the units column. the column sym was used for the tens, and the solver wrote
the bottom digit as the answer for the hundreds column. Debuggy cannot diagnose non-
deterounistic bugs such as this one. hence no such bug occurs 1n ;. database. Nonetheless, it
seems & plausible prediction. Ho' or, the dispunction-barring approach predicts that all students
will have this bug., which is clearly false. The language cannot rcpresent the correct procedure
unless 1t has SUB1COL. It can't form SUB1COL with a condition because disiunction is banned.
This approach can only fit the facts if SUBICOL 15 known by students before they take subtraction
lessons. That 15 an absurd assumptivn. Barming disjunctions from the representation language fails,

It fails because it tends to overgeneralize. This is just what one would expect. [t was shown
earlier that when induction 15 allowed to Bcnerate arbitrarily many disjunctions, it undergeneralizes,
yielding c.g. trivially spcafic generalizations.  When induction is atlowed to generate no
disjunctions. it tends to overgencralize. Describing human learning requires finding a middle way
between free disjunction and dis uncuon barring. One way is to provide the learner with a set of
“prefabricated” disjunctions, as Winston did. This is a nativist approach. However, such nativism
is implausible for the calculation domain, 1t is absurd to assume .. SUB1COL Is innale, or even
that it is leamned prior te fortnal instruction jn matheinatics,

4.3 Neves' ALEX learner

Neves' program. ALEX, induces procedures for solving algebra eauations (Neves. 1981),
ALEX's biases are woven into an algorithm for generalizing an example. “The algorithm has rules
such a> "all number constants ate generalized by delcting the proposition which staes which
particular number the node js and just leaves the 1sa tag that says the node 15 a number, " tibid, pg.
48). A tantalizing pice of the algorithm is “1f the number of 4 term is 1n the condition then the
sign of that term is atso put 1n. There is no good rationale for this other than u works. The 1dea
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that the sin s impottant probably deselops earhes on o the texthook.” (bad, pg, 48). I Newes®
canpucture s right, then the student has aequired a constramt oo generalization, an esoling instance
of Tearnung how to learn better. Neves™ use of domaim speaific constpants i the Jdeady ponsinnate
domam of algebia logically entanls that some kind of constramt acquisiten must have oceurred.
Entortnately, he doesn’t smsestigate the matter.

Alby dearns sery quickly  fuocan acquire workably genctat knowledge of an atgebraic
transtormation from a single example.  ihe textbook Neves used o teadh a1y algebra was a high
schood teathaook, but the lessons e chose concerned material that i often taught in prmars school.
it 15 quite hkely that the fessons are actually review dessoms. The lessens go throuzh the matenal
sery quickly, much o quickly for Sierra, 1 fact,  ALEN has such finely tuned blases for algebra
mduction that 11 15 able o recoser correct algebrawe transfonnatwns cven from these abbreviated
review lessons. Thes leads 1o the congecture that ALls mught make o good moedel fur how people
refearn mutengl they used to know. Perhaps all they retain s inductim buases,  They use these to
recoser the procedure, whenever neccssary. and forget the procedure itsell,

4.4 FEaactly one disjunct per lesson

A basic idea of step theory is to comvert a difficult induction problem. wmduchion with
Jdisjunctions, inlu o sencs of simple, disjunction-free induction problems.  [he ¢asiest way (0 make
this notion precise 15 1o sopulate that there 15 exactly onc disjunct avquited 1 cach Iesson, From
the teachers point of view, the sequence of examples 15 partitioned into lessons so that cach lesson
cxemplifics onc, and only one, new subprocedure (digunct). From the learner's puint of view, cach
Icsson’s ¢xamples are to be assimilated svia dispunction-frec inductton.  Howeser. students have short
attention spans and schouls have schedules, A subprocedure might be oo complicated to complete
in the hour that is aloted to s lesson. So, 1t may be that some subprocedures must be taught in
several lessans, 1n contradiction to the hypothesis.  Thi possibitity can be swiftly cnecked by
cxamining the Jessons sequences used in textbooks.

In most textbooks. there are lessons that are clearly intended to gencralize a subprocedure
taught carber, rather than introduce a new onc.  lFFor cxample, iloughton Miffiin’s 1981 text
mntroduces borrowing on two-column problems, such as a:

5 4 5 414
a. 80 b. 762 c. 857 d. 6 612

-23 -4286 -2623 -2367

27 316 3904 186

The next lesson uses examples. svch as b, where a | borrowing 15 from the tens column nto the
ones. Thurd lesson uses problems like ¢, where borro..Png is in the left two columns. The fourth
tesson teaches adjacent borrowing, as in & Other textbouks use similar lesson sequence. McGraw-
1hil's 1981 teatbouk series omits the b lesson.  Scoti-lFuresman 1975 senies compresses b and ¢ into
onc lesson.

Unger the hypothesis that there is exactly one ncw subprocedure per lesson, each of these
lessons would start up a new borrowing subprocedure. Thus, the four lessuns abuve would generate
four borrcwing procedures, once for cach kind of problem. [n parucular, there would be distinet
borrowing procedures for the units column and for the tens column. This would have several
implications. When borruwing from zero is taught, it 1 always taught with three-column problems
such as &
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79 N 79 79
e. 8lo's £, 8'0's g 8'0's

-217 -217 -297

588 8 8

This kessun would leave the borrowing procedure for the tens column totdlly unaffected. When the
tens column is reached. the problem state is us showna £ No barrowing 15 needed.  Indeed. tens
column borruv.ing s never needed when there 15 a borrow-from-/eiu theneeforth, 1M /) vnginating
in the umts coiumn {sce problem gl Cuusequeatly. the tens-column burrowing procedures dare
never imoked duning the BI'Z Jesson.  Fhere is no reason to modify them. [eaving them alone
mukes « prediction that students will unpasse if given problems that require borrowing from cero 1n
the tens column. as h does:

79 7
h. glols 4 i. 8lo's 4
-2171% -21714
5883 5283

Since the tens column be tow doesn’t know how 1o BFZ, it wil! attempt to decrement the zero in the
hundreds. violating a precondition. and reaching an impasse. Repaining this impasse would lead to
bugs that have never been observed. Problem ¢ shows the work of vne such unobserved bug. 1
find such bugs implausible, but they are not star bugs.

However, na cusriculum that 1 have seen teaches BrZ for the tens column in an explicit lesson.
This means that sy student wili learn the correct procedure. They will all have bugs such as 1. This
is clearly a false prediction since many students eventually master subtracion. These studenis must
have learned subtraction in ways not described by the theory (a situation that Occam’s razor
counsels us 10 avoid) or the original hypothesis that each lesson must start a new subprocadure is
wrong.

To sum up: if there must be a new subprocedure per lesson, then there must be several
distinct borrow subprocedures since several lessons are used in teaching simple borrowing. The
correct algorithm requires that each be amended .0 handle borrowing from zero. Yet only one BFZ
lesson occurs. Therefore, studenis should not be able to learn the correct procedure. Yet many do,
s¢ the hypothesis must be wrong,

4.5 Minimal-disjuncts vs. one-disjunet-per-lesson
This section discusses two solutions to the disjunction problem and contrass them.

Always introducing 2 new subprocedure with a lesson has been shown to be empirically
inadequate. A somewhat more complicated hypothesis is that the learner starts a new subprocedure
for a lesson only if a new subprocedure is needed  If the lesson’s worked exymple exercises can be
handled by generalizing previously acquired material. then o new subprocedure is not added. This
is the solution 1o the disjunction problem adopted by step theory. It 1s a felicity condition called
one-disjunct-per-lesson.

Earlier it was shown that barring disjunclions from the representation language forced
overgeneralization. This suggests a bias: allow disjunctions in the representation, but don’t use a
disjunction unless it is absolutely necessary. That is. the inducer prefers generalizations that have
the minimal pumber of disjuncis.  This will be called the mimimal-dispuncts bras. This bias is a
commeon technique in induction. The familiar arch-learning domain will be used to 1Hustrate it.
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Iba (1979) used a mmimal-disjunction bias o solve the arch learming problem wathoat prior
knowledge of PRESM, lle begins the induction by giving the learner two posiine examples, the
arch with the BRICK Imtel and the arch with the WEDGE hintel, Sinee the induwer duesn’t know the
PRISM concept. 1t induces that the hntel can be any kind of block, 1t overgencralizes.  1ba then
gnes the inducer 1 negdtive example, 4 {pseudo-yarch with o pyramid as the htel,  'his negative
example is matched by the current aich concept. This means that the current arch 1 too general.
I shouldn't mach g negatine example,  Making the concept mue general won't help of course,
Ihe only pussible response is W form a dijunction.  In this case, an appropenite drsjunction would
be 1o descrnibe the lintel as {OR *BRICK "WEDGE ). T'his ifiustrates what 1t means for an inducer
to make the jewest diguncts pussible,  The learner only anserts a disjunction when ot has to. This
mimmal-digjuncts bias 15 one soluuon t0 the disjunciion problem.

The main difference between the mimmal-disjuncts bias and one-disjunct-per-lesson s that the
mimmual-disjuncis bids would detect the beginning of a new subprocedure even if it were 1n the
middle of anuther subprocedure’s lesson.  That is, one-disjunct-per-lesson 15 o rostriction on the
minma;-dispenction hypothesis.  Anything that one-dispjunct-per-lesson can induce can also be
induced by the mimmal-disjunction bias, bul not conversely. Hence, a critical case to look for is
one where a subprocedure begins in the middle of another subprucedure’s lesson. This would argue
conclusively in favor of the minimal-disjuncts bias,

Leading zero suppression ’

__I know of just one case where it could be argucd that ¢ disjunction must be started in the
-  middle of a lesson. However, the evidence is rather unclear. 1t concerns leading 2cro suppression.
Mastery of subtraction requires that the student suppress zetus in the answer if the seros would be
the lefimost digits. The answer 10 58-50C is 8 not 08. This subskill 15 never given a lesson of its
own in any of the textbooks that I've examined, Occasionally, the examples demonstrating another
subskill {c.g.. borrowing} will suppress a4 leading zero.  But there are no lessons devoted solely to
teaching the circumstances under which 7eros should be feft off the answer, Yot many students
succeed in learning leading zero suppression. This would seem a rather clear picce of cvideuce
against onc-disjunct-per-lesson. However, the leading sero story 1s actually quite complex. Only the
main points can be covered here.

If the minimal-disjunc’s bias is to explain the acquisition of leading zero suppression, the
textbooks would have 1o have a wide vanety of leading-zero examples. The following examples
sllustrate the kind of variety needed;

4 0 4
a. 67 b. 762 c, 157 d. 5'6 7
-83 -7386 - 83 -482
— 4 16 94 95
» 09 4

e, 768 £, 1loly g. 56'2

-756 - 99 -547

3 8 5

Under the minimal-disjuncts bias, it doesn’t much matter where these examples occur, but they do
have to occur somewhere. However, I have yet to sce an example suppressing more than ony zero
used in any subtraction lesson.  1xamples of multipic sero suppression. such as e, f o7 g ao not
appear  Despite their absence, some students acquire a complete understanding of leading zero
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suppression.  Subtraction is the only columnar computation that generates answers with leading
teros. addition and multiplication dc not. I.ong division often has subtraction problems that have
multiple leading 2eros. but only as a subproblem to the waole division problem.  Perhaps these
sene as examples for fearning suppression of multiple leading seros. Hoacver. many ~tudents are
suppressing leading scros before instrucuoa in long division begins. They must have Icarned the
skill some other way. In short, the evidence from the 1esson data 18 nc' entirely clear. Tt doesn™t
clearly support the mimmal-disjuncis bias s.nce thar hypothesis would have just as much trouble as
onc-diunct-per-lesson in accouniing for the acquisition of leading rero suppression.

Explaming why there are lessons

The strongest support for one-disjunct-per-lesson 15 that it explains why curnicula are
constructed they way they are. One-disjunct per-1ss0n wses the lessun buundarses but the mimimal-
diyunction bias does not. A minimal-disjunction learner would Iearn cqually well If the partitioning
imposed by lessons were removed. leaving a contintous stream of examples and exercises. To the
minimal-disjunction lcarner. lesson structure i irrclevant,

If lesson structure were irrclevant. then textbooks could be more simply laid out as a
continuous stream of examples. exeraises and other matenal. The teacher would use the dally math
hour to get as far as possible through it. There would be no lesson boundanes. This 15 not how
curreni (or past) textbooks are structured.  Yet why have teachers adopted this lesson-structure
format so universally? 1t can hardly be an accident or a fad. Teachers are dedicated and innovative
cnough that they would ha.e dispensed with the straight jacket uf lessons structure (f they found it
incffective.  To put it differently. if one accepts the nearly universal use of lessons as a natural
phenomenon worth explsining. then one-disjunct-per-lesson explains it but the mimmal-disjuncts
bias does not, The vne-disjunct-per-lesson hypothesrs has greater explanatory adequacy thun the
minimal-disjuncts hypothesis.

The minimal-disjuncts bas predicts that students would learn equally well from a “scrambled”
lesson sequence. To form a scrambled lesson sequence, all the examples in an existing lesson
sequence are randomly ordered then chopped up into hour-long lessons.® Thus, the lesson

_ boundaries fall a1 arbitrary points, The mim nal-disjuncts bias predicts that the bugs that students

acguire from a scrambled lesson sequence would be the same as the bugs they acquire from the
unscrambled lesson sequence. This empincal prediction needs checking. 1If it is false. as | am sure
it is, then the minimal-disjuncts bias can be rejected on empirical as well as explanatory grounds.

In short, we've arrived via a circuitous route at the felicity conditions thesis. It hold that
tcacher-student communication 15 a conversation of sorts that 15 governed by tacit conventions. The
conventions facilitate learning. Perhaps it would be fun to close this discussion with a little
speculation.

* Randomly ordering the cxamples would intr~2uce a confounding effect. Examples from late
lessons could appear before any of the examples of the preceding lesson.  For mstance. the subskill
of borroving-froni-zero could be cxemplified before borrowing-from-non-zero.  Here is a
scrambling without the confound. Suppose that the examples in the first lesson of the original
sequence are labelled 1.1, 1.2, 1.3. etz. “The examples of the second lesson are 2.1, 2.2, 2.3, etc. The
other lessons’ exampies are simlarly labelled. The scrambled lesson sequence is; 1.1, 2.1. 3.1, 4.1,
etc. for the first lesson: then 1.2, 2.2, 3.2, 4.2, ctc. for the second lesson, and so on. ‘The scrambled
lesson sequence introduces all of the procedures in the first lesson. then reviews it in each of the
folloxing lessons If the mimmal-disjuncts bias holds. this scrambled Iessun sequence should yield
the same bugs as the unscrambled Jesson sequence.
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Suppuse vne gocs a step frither than the fehoy condimons thesis and congectures that the
feliemy conditrons that exist are those that eptmize the information Gensmission, o solve the
learner’s dijunction problem, the teacher’s ptunal strategy would be 0 pumt w2 node m the

Clearly, this 15 impuossible,  So the teacher says the next best thiug, “Ihyoin sewme node with the
following subprocedure.....” The Jeamer has to ligure out which aode to dispein because the teacher
can’t pennt to it But the learner knows now that some disjuncion s necessiry and that the
cxamples followimg the teachers command will deternine (s contents {this 15 the evactly-one-
digunct-per-tesson hypothests that was discussed i section 4.4), 110 were nat for the exigenaes of
schuol schedubng, this would be perhaps the uvptinal Jnformation that felty conditions could
wansmit, However, lessons have 1o be about an hour long, s means that voly seme of the
lesson boundanes will correspond o the teacher’'s command o start 4 new disjunciion ‘The other
lessons wull finssh up the previous lessun,  In short, the optimal feasibie fthiaty condiien for
information transmission could well be the one-digunct-per-lesson bias,

4.6 Formal hypotheses

The basic solution o the disuncuon problem that peuple use has been uncwvered.  What
remains 1s 1o cxpress that hypothesis clearly and preasely.  ‘Three functions, namcd Disjoin,
Induce and Practice, will be used to formahie one-disjunct-per-lesson,  The funcaoens will not
be defined. Instead, they will gradually acquire meaming as the constraints of step theory are stated
in ierm of them, The previously undefined function Learn will be defined in terms of them, Fhe
following 1 a hst of the nomenclature, some of it duphcated from the previvus chapter, with
comments on their intending meanings.

{Exampies L) A function that returns the worked examples contained m its argumant,
which is a lesson

(Exercise L) A function that returns the peactice exercises contamed in s argument,
which is a lesson.

{Induce P X5) An undefined function that returns a set of procedures. Its first argument,
P. 15 a procedure, and ils second argument, XS, 15 a sequence of cxamples,
It represents the various ways thal its input procedure can be gencralized to
cover the examples. {f there 15 no way lo generahze the input procedure to
cover the cxamples, Induce rewrns the null set.

{(Praciice P XS)  An undefined function that returns a set of procedurcs.  [ts first argument,
P, i5 a procedure, and its sccond argument, X5, 18 a sequence of cxercise
problems. The output procedures correspond to the vaiious ways that fic
input proceduic can be generaltzed in order to solve the given problems.

{Disjoin P X5} An undefined function that returns a sct of procedures, lts first argument,
P, 15 a procedure, and its second argument, XS. iS a sequence of examples.
It represents the insertion of a2 new subprocedure {disjunct) into the given
procedure,  Since therr arc somelimes several ways o do this, it returns
scveral different prosedures.

With these new terms in hand. the felicity condition can be formally stated, P and L stand for a
procedure and a lesson:

31043




100 ASICNCTION

One-dispunci-per-lesson

lLet
(Learn P L) =
If {(Induce P (Examples L})={} then (Learnl P L)
else (Learn2 P L).

where

{Learnl P L)} =
{ P" | 3P such that P € (Induce P (Examples L))
and P” € (Practice P° (Exercises L)) }.

and

(Learn2 P L) =
{ P" ] 3P such that P* € (Disjoin P {Examples L))
and P” € (Learnl P' L) }.

Morenver. (Induce P XS) and (Practice P XS) donotintroduce inlo P any new
disjunctions or any new disjuncts on old disjunctions. and (Disjoin P XS) insertsinto P
exactly one new disjunction or one new disjunct on an old disjunction.

The function Learn produces e set of procedures that can be acquired from a given lesson and a
given initial procedure. If the procedure can be generalized without adding disjunctions, then no
disjunction is introduced (the Learn1 case). If there is no such generalization, then a disjunction is
introduced and the resulling procedure is generalized (the Learn2 case). Learn only introduces a
disjunction if it has to. Learn is defined in terms of the three main undefined functions. Hence,
it is just as undefined as they are. In fact, the last two clauses use the term "disjunction,” which
has not been formally defined. However, enovsh examples of disjunctions have been given that it
should be clear what is meant even without a formal definition. The formal defintion must await
definition of the representation language used for procedures.
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Chapter 5
The Invisible Objects Problem

I'he diygunction problem s perhaps the most lanous problem m anduction. A less well
known but cgually uriical probiem voncerns what could be called viable objects,  An invisible
cohjout 1y semedung that 15 not present noan example gien to the inducer, but 1> nonetheless
relesant to the geacralization bemng nduced.  In the domain of mathemativad caleulations, invisible
vbjects are usually numbers,  For msta e, suppose the learner sees the teacher write 5 in a;

a. 4 7 b. 60
-12 -23

5 6

Consider two gencralizations that explan the 5. The § «» the difference of the digits in the units
column, 7=2, or 1t 15 a more complcated oromnation of sisible digits: (4+2)—-1. The lauer
requires an nvsible object. 6, the result of 442 laample b s consistent with the second
gencralizatton but not with the first.  [ts invisible objgect is 8.

The arch learning task provides another illustravion of the nvisible obyects problem, One
charactenstic of an arch 1s that 1t has a gap right n the muddle of it. The gap must be between the
two legs, directly under the hntel, and direcily on the suppurting surface.  As Winston points out
(1975). onc way to represent a gap is to use an invstble brck. Given this representational
construct, an arch can be represented as

(AND (ISA LINTEL 'PRISM)
(ISA LEG1 'BRICK)
(ISA LEG2 'BRICK)
(ISA GAP 'BRICK)
(INVISIBLE GAP)
(SUPPORTS LEGE LINTEL)
(SUPPORTS GAP LINTEL)
(SUPPORTS LEG2 LINTEL) ...)

The representatton uses ( INVISIBLE GAP) to indicate that the varable GAP 15 bound differently
than the other vanables whan the patterr 1s matched, GAP can be bound only 10 "invisible bricks”
while the uther vanabies can be buund only to visible bricks. As it wens out, Winston does not use
myvisible object varables. His representation requires alf vanables to be bound o visible objects.
The relauonship (NOT (TOUCHING LEG1 LEG2)) 1s used to cxpress the gap between the arch’s
legs.

-

Although an cxplicit device, suc?] as INVISIBLE, can be used to specify whether the objects
bound to a vanable are visible or not. a moere cummon representation cuns ention 15 W use functions
to designate 1nvisible objecis and varwables 1o designale sisible ones.  For nstance. the arch’s gap
could be expressed using a distance function;

(> (DISTANCE/BETWEEN LEG! LEGZ) 0}

The output of the distance function 15 an nsvisible object, a number.  The arch-concept states a
constraint on this myvisible object, that ¢ be greater than sero,  Function, wan be used wherever
vartables can be used.  Under this comvention, the only difference between what a variable can
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designate and what & function can designate is that the wvariable’s referent must be a visible object
{c.f. Hempel's definition of confirmation, 1946). The syntactic distinctivn between function and
variable replaces INVISIBLE as a way to control imvisibility.  Using functions o control invisibility
is only a syntactic device. Any neary function can be comeried to an {n+1kary rclation, thereby
allowing & variable to be bound to its vutput.  Sunilarly. an (n+ 1)-ary relation can be converted to
an n-afy. set'valued Finction.  In principle. the representation has total freedom to controf
invisibility. - Instead of INVISIBLE, 1t uses syntax. The net cffect is the same.

The nvisible object problem

induction’s troubles with insisibility come when the representation allows an expression to be
cxpanded arbitrarily by adding constructivns that designate invisible vbyects. Gien an ¢xample, the
‘earner can't see what nyisible objects might be invohved 1n the target generalizatton.  The leatner
may make some educated guesses abou? which imvisible objects are relevant, perhaps. then see f
they play the same roles in the sccond example os they did in the first.  Because the representation
allows so many choices. the leamer’s problem of finding the relevant invisible objects 1s very hard
{indeed, it will be shown later to be unsolvable). For instance, if Winston allowed mnvisible bricks,
then they could be lying around anywhere. The learner would hase no way to know if there were
just one invisible brick. the gap. or dozens lymg about all jumbled up. Similarly, 1f Winston
allowed distance functions and the usual anthmetic functions. then the learner couldn’t dincriminate
between

(> (DISTANCE/BETWEEN LEG1 LEG2) 0)

and )
kS

(> (ADD {DISTANCE/BETHEEN LEG1 LEGZ;
0) DISTANCE/BETWEEN LEG1 LEGZ))

The ADD function introduces a secend invistble ohject, which 15 disunct from the one introduced by
DISTANCE/BETWEEN. The learner has no way 0 know whether or not this new invisible object 1s
worthy of description.

A better illustration of the invisibie objects problem is prov.ded by Langley's BACoN3 program
{Langley. 1979). It induces physical laws given tables of idealized experimental data,  For instance,
it can induce the gencral law for idcal gases when it is given "ecxpeniments” such as this onc:

(AND  (MOLES 1.0)
( TEMPERATURE 300.0)
(PRESSURE 300000.0)
(VOLUME 0.008320))

This formal representation describes the experiment 1n the same way that Winston's representation
described a seune in the blocks world (this is not the representation that BACON3 uses. by the way).
The cxpression above says that there is one mole of gas at a certain fempeiature and pressure,
occupying a certain volume. The godi of BACON3 is to find a description, that 1s a gencralization of
the expenments that it is given. For this serics of experiments, the generdlization that it induces is.
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(AND  (MOLES N)
(TEMPERATURE T)
(PRESSURE P)
(YOLUME V)
(CONSTANT
(QUOTIENT
(TIMES P V)
(TIMES N T))))

That ts. PV/NT s a constant. This s one way 1o express the adeal s law, whech v more widely
known as pV=nRT1. where R=8.32. In the representation above, notice that the last clause is a
composition of functuns that tudes the mtermediste 1esults PY and NT. ‘These intermediate results
do noi appear in the “scene” deseribed carlier. This 1s what makes BACONTS Job hard.  BACONI's
methud for solving this induction problem 15, very roughly speaking. to guess useful myisible objects
descniptors and enter their values 1n the swenes. It might start by formung ll binary function on the
vistble ubjects e.g. NT. P+V. N/N. PP, P/T, ctc. Sifce none of these yield values (imvistble objects)
that are constant across all the scenas, it trys further composiions, Ni/7PV. NT+V, NTPV ete. AL
this level. it succeeds. since PV/NT turns out o be the same value. 8.32, in all the scenes.
Essen .ally, BACON3 furms the simplest polynomual that is consistent with the suenes, where “simple”
ts defined computauonally by the way that BACON3 vrganizes is search,  Roughly speaking, it
prefers the polynomial with the fewest mtennedicte terms (invisible object desigrators). It solves
the invisible ubgect problem by choosing a gencralization with 2 summal number of invisible vbject
designators.

Four potential solutions to the invisibility problem will be discussed:

1. Banntug mvisibility.  The knowledge representation language for mathematical procedures is
defined s that no constructions designate mvisible objects. This 1s the approach taken by
Winston's (NOT (TOUCHING LEG1 LEG2)) solution,

-

2. Unbiased tnductton: Enough examples are provided to the learner that all invisible object
designators ¢xcept the appropriate ones are cventually climinated.

3 Minimal invisibthity: The learner 1s biased o chouvse generalizations with the fewest invisible
object designators {(e.g.. the fewest funcaons, 1f funcuions are what designate meisible objects).
This 15 roughly what BACON3 docs, (See alse Brown's work on inducirg kinship relations, 1472;
1973)

4. Show work: First, the target concept 1s taught in such a way that all objects that would
normatly be invisibi> arc somchow muade viwble. Then, the learner 15 ye-taught the target
concepl, this ttme with the invisible objects invisible.  The learner’s wask during the second
lessun 15 only 10 discover which of the wsible object designators that it already knows iS now
being used to designate an invisible object.

This chopter will take cach hypothesis in order. The show-work hypothesis will be, shown 1o
engender the best empirical and explanatory adequacy.,
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5.1 Barring invisible objects

The simplest way to handle the invisible objects problem is to bar nvisible objeut designators
from the representatton language.  But this will not work for the dumain of mathematical
procedures.  Constructions for designating invisible objects are needed so that one can represent
procedures such as long column addition.  long column addition selves problems such as

3
4
5

6

The ordinary student solves this without jotting down intermediate resulis. The student keeps a
running sum mentadly.  This requires sume construction 1IN the representation language that can
designate inuisible objects. namely the intermediate sums.  Therefore, invisible objects cannot be
barred from the representation language.

5.2 Unbiased induction with lats of cxamples

It is not hard to sce that the invisible ubject problem is just as unsolvable as the disjunction
problem. It is unsolvable in the sense that adding more cxamplcs doesn’t narrow the set of
consistent gencralizations dewn to a singleton set, In some domains. one can ¢ven prove that it is
unsolvable. Polynomial induction (¢.g.. BACON3) is a classic case that is particularly relevant to the
domains addressed by this theory. Given a set of numbers pairs, { ..<x;. yp..}e the task is to
induce a pulynomial function such that fix )=y, for all .. Such functions arc gencralizations of the
set of example pairs. This induction task allows insisible objects in the representation. They are
the iglcrmedutc results of the polynomials. A relational representation of the polynemial function
y=x+1 is

(AND (PAIR X Y)
(TIMES Z X X)
(INVISIBLE 2)
(PLUS ¥ Z '1))

Here 7 is used to designate xz. the intermediate result of x2+ 1. Since it does not appear in the
example pair. it must be marked INVISIBLE.

If intermediate rcsults (i.c.. invisible numbers) were barred from generalizations (ie.,
polynomial functions), then the problem of inducing polynomials from sets of pairs would be trivial,
When invisible numbers arc allowed. it is unsolvable. That is, given any finite set of pairs. there are
infinitely many potynomial functions that generalize them. Proof. IF there arc # pairs, then there is
always an n-/ degree polynomial that fits them. An n degree polynomial could fit the # pairs plus
another pair, chosen randumly. Since there are an infimite number of pussible extra pairs, there are
an infinite number of n degree polynemials thar will fit the » pairs. QED.

To pick an illustration closer to home. consider inducing the function nest that provides the
answer Lo the tens columns in two column subtraciion problems, such as
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a. 72 b. 74 c. 38
-41 =21 =12
356 53 2 4

looking at @ and b an inducer might form the following generalizations:

L Ay = T—By
2. A“} = 1}‘*"31

where the subscripts indicate the column. and T, B and A stand for the top. botton) and answer.
‘The first generalization is the currect vne. The second generalization s that the ten’s answer is the
sum of the units columny’ digits.  This second generalization. although consistent with cxamples g
and b, is inconsistent with «. Many such accidental generalizations cqy be eliminated by gning lots
of examples. Huwever, generalization 3 cannot be ehmunated. It will be true of any subtraction
problem. This shows that there are some absurd generalizations, generalizations that students would
nesve. moke. that would survne induction even vver an infinite aumber of examples. Students must
be applymg other constrants tv the induction process (0 climunate this generalization, and many
others like it

5.3 Minimal number of invisible object designators

A close consideration of long column additivn supports the idea that Students might be biased
tu use as few imvisible ubjects as pussible. Students are introduced to long column addition with
Given an example such as

3
4
H
8

there are many way$ to gencrate 8 from 3, 4 and 1. Fach requires variocus intermediate results.
Some possibilities are:

concept Number of intermediate results
444 0 .

3+4+1 1

4x3-3-1 2

42 - 32+ 3

Most of these potcntial generalizations will be eliminated by other examples. However. there will
always be many lefl, as shown in the preceding section. Unbiased tnduction will not tell the learner
which generalization o learn. In particular. some students kearn long column additon correctly, so
they must be using some bias to chouse amung the many generalizations that are consistent with the
cxamples. If the learner is biased tu pick the generalization with the fewest imtermediate results, the
correct algorithm will be acquired.

There are many explanations one could give for why a learner might have such a bias. The
generalizations with the fewest inmvisible objects are also the ones with the fewest number fact
functions. 11 could be that the students are biased 1o choose short calculations because such
calculations are the casiest ones to perform. On the other hand, the Students could alsu be biased
to reduce their short-term memuory lvad. the generalizations with the fewest invisible objects are also
the procedures requiting the Jeast use of short-term memory. TheSe explanations are plausible.
Jnfortunately, their predictions are ind.stinguishable from expressing the bias as a bias against
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invisible vbjects. The learning data provides no way to spht them. Until other data are collected, it
is a moot point whether the measure being mimmmized is fact function load. memory load, or
invisible obiects.

An experiment vuth the minimal-something bias

Sierra was onginally implemented to have the bias just discussed. On the first example of a
lesson, 1t would find all the fact function paths between the visible numbers of the example (subject
to an ad hoc upper bound on path length). Each example after the first would remove paths that
were inconsistent with 1ts visible numbers. At the end of the lesson, Sierra would find and keep all
the minimal length paiths. These paths werc (a) consistent with all the examples, and (5) of minimal
length. [hesc paths were the generalizations that Sierra generated as its predictions for what human
lcarners would choose. Sierra was ablc to learn correct subtraction and many subtraction bugs using
this tias. lronically, long column addition, the procedure that provided the original motivation for
inducing invisible objects, also proved to be its undoing.

Sierra’s problem with long ¢olumn addition was in forming the recursive loop that would
allow 1t to solve probiems with arbitrarily long columns. Given two-digit additions problems, it
would form one action, Toughly (Write A (Add 7 8)})). Given the next lesson, with triple-digit
problems. Sierra would form a second subprocedure, yielding a nex procedure that could be
roughly expressed as

{If <triple-digit)
then (Write A (Add T (Add M B)))
olse (Write A (Add T B)))

where T, M and B refer to the top, middle and bottom digits of a triple-digit column. The clue that
something 15 wrong is that Sierra did not use its knowledge of two-digit addition to help it learn
three-digit addition. There is not use of the two-digit addition embedded in the triple-digit
addition. Sierra developed the triple-digit funcuon nest from scratch, However, because ils bias
was lenient about invisible objects, it had no difficulty inducing the nested Add functions. Given
the next lesson, with four-digit columns, Sierra again added a new subprocedure, yiclding a
procedure that could be roughly expressed as

{1f <four-digit>

then (Write A (Add T (Add TM (Add BM B))))
elself <triple~digit>

then (Write A (Add T (Add M B)))

else (Write A (Add T B))

Sierra might have formed a recursion at this point, but it did not. Hence. the procedure it learned
15 unable do a five-digit column. But a human learner would. | expect, be able 1o solve a five-digit
column after this much witelage {1 have no data on long column addition). The reason Sierra did
not form the loop 15 that 1t couldn't recognize the three-digit problem hiding in the midst of the
four-digit problem. Parsing of problems pays special attention to buundaries. The boundary-bias
must be presen. 1n order fur Sierra to gencrate several key subtraction bugs (sce the discussion of
Always-Borrow-Left. section 1.1). 1 think it would recognize the recursion given slightly longer
columns, but this 1s difficult to test (the sot of pussible paths gets tou big for the computer’s address
space when the paths are long). Since Sierra did not find the recursion until after four digit
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problems were presented. w became crucial tw find out where in the lesson sequence human
students are first expected tu fonn the recursion, ot three-digit, four-digit ur five-digit problems? if
Sierra was o guud model of wman learning. then human students would need longer probleins than
four-digit ones t learn the louvp. A second grade teatbuok was purdhased ‘sometiing that should
have been donc long before).  This led to the discovery of the show-work prnciple.

54 Show work

In almost all cases. textbooks do not require the student o du imvisible ohject induction.
Instead. wheneser the txt needs to introduce & subskill that has o mentally held auermediaie Fesult,
it uses two lessuns. The first introduces the subskill using special. ad hoe nolations o indicate the
intermediate results,  Figures 5-1 and 3-2 shuw some examples. Since the intermediate recults are
wntlen out m the fint lesson, the students necd guess no invisible vbjects n order to acquire the
subskill. The learning of this lesson may proceed as if invsible ubject designaters were banned
from the representation language.

The second lesson teaches the subskill again. without writing the ittermediate results. The
second lessun is almost always headed by the key phrase. "Here 15 a shorter way 0 X" where X is
the name of the skill. The students are bemng instructed that they will be duing exactly the same
work (1., the same path of fact funcuons). They are left with the relatively sumple problem of
figuring out how the new material relates to the material they learned just the day before.  This
kind uf learning might be called optinuzanon learming. 11 1s similar to induction.  Indeed. { believe
Sierra ¢ould be easily modified to handle opumization learming.  Howeser. subtraction curricula
have no opumization lessons. (They would if teachers taught students 1o suppress scratch marks,
v . most do not these days.) Without instances of optiumization learning. the bug data wall not help
in discovening what is the right way to formulate such learning. Optimization learning remains a
topic for Ruture investigation,

These considerations motivate the following hypothesis:

Show-work
In worked cxamples of a lesson. all objects mentioned by the new subprocedure arc
visible, unless the lesson is marked as an optimization lesson,

This hyputhesis 15 not & formal as others, although its intended meaning is clear. Later, its formal
impact will be builk into the knowledge representation language.  Essenually. functions will be
prohibited in certam arcas of the representation and strongly ltmited in others. The dctails, which
depend on the representation’s syntax, are deferred until scction 15.1.

The show work hypothesis is quite clearly a fehecity condition. Neither the teacher nor the
student must obey it.  Yet when they do, 1t is casier to transmit information.  In Sierra, the
combtnatorics of cellecting function nests can be almost entirely avoided.  Presumably, human
learners may also find learning casier.

Aruitoxt provided by Eic:
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3+2| +4 = 3+2| +4 =
+4 = S1+4=119
i
3 3
3 2 3 2
+ | 2 + 4 + |2 + 4
P 2 —
+ 4 + 4
Figure 5-1
Three fonmats for column addition obeying the show work principle.
Exercises appear unsolved on the left, solved on the right,
112




units

INVISIBLE QRIECTS

+120
138

units

Nl -

Other exercise formats obeying the show work principle.
Exercises appear in normal format on el in show-work format on right.
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5.5 Insvisible objects, disjunctions, and Oceam's Razor

Occam'’s Razor is usually given a twofold interpretation. Webster's dictionary says Occam’s
Razor “is interpreted as requiring that the simplest of competing theeries be preferred tv the more
complex or that cxplanations of unknown phenomena be suught first in terms of known quantities.”
If "simplest” means fowest disjunctions. then step theory claims that learneis obey the first dictum
of Occam’s Razor. ‘This was discussed in the preceding chapter. This chapter conld be construed as
showing that learners also obey the sceund dictum. For instance, if the learner secks to explain
where the teacher 8ot the 6 from in the cxample

m]m L=

then QOccam’s Razor advises explaining it as 9-3. a function of known (i.c., visible) entitics rather
than some unknown {invisible) entity. 2.g.. the sum of numbers less than three. the student’s age,
the phase of the moon, etc. As Occam’s Razor suggests, the invisible objects problem is a general
problem. one that concerns almost any inductive account of knowledge acquisition. 1t's imporiance
is highlighted by the apparent fact tha' teachers and learners have a special convention for solving
it, the show-work felicity condition.

The invisible object problem and the disjunction problem are similar in many respects. Both
can be solved trivially by barring their respoctive representational devices, This is not an optiun in
this domain because mathematics procedures use both disjunctions and imvisible objects. Both the
invisible object problem and the disjunction problem are unsclvable by unbiased induction. If the
class of all possible generalizations allows {ree use of them, then there are infinitely many
gencralizations consistent with any finite ser of examples. Hence. both the disjunction problem and
the invisible object problem require biased induction. In both cases, an empirically plauvsible bias is
based on minimizing the yses of the respective devices (i.e., nduction prefers generalizations with
the fewest disjuncts and the fewest invisible object designztors). However. these biases do not
explain why lessons have the format that they do have. Better hypothescs arc based on the idea of
felicity conditions. conventions “that make learning casier. The felicity condition hypotheses not
only fit the facts., they also explain lesson formats as conventions for facilitating knowledga
communication. They have the same observational adequacy as ihe minimization-based hypotheses,
but they have more explanatory adeguacy. They actually tell es something about why that
mammoth cognitive-culture artifact — our educational system — has the properties that it does
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Chapter 6
Local Problem Solving,

In the preceding chapters. the focus w2 on explaining learming. It was found that inductive
learning could cxplain the gross features of student learning. provided that two felwily conditons
were included in the explanation.  Howover, there are two distinet but symbiotc fou of empincal
curiousity to this imvestigation. Finding out huw studenis learn is one. the other is finding out what
cau.>¢ them to have bugs. In this chapter and the next the emphasis will be on explaining bugs.
This chapter will introduce some bugs and bug migrations that will be referred to throughout this
document.

. Given the show work felicity condition and thu one-disjunct-per-lesson feliity condition.
inductive learning will converge. Given sufficient examples, an inducer will construct 2 large set of
procedures. All the procedures will, by definition, be consistent with all the instructional examples.
However, most will be buggy procedures instcad ¢f correct procedures.  One cause iS
overgencralization. An example of overgeneralization wdas described 1n section 2.7, Sierra’s learner
was given cxamples illustrating how to borrow from zero (henceforth. BYZ will be used to
abbreviate “borrow from 2cro”). However. the learner overgencralized the condition for cxectting
the BFZ subprocedure, generating a bug that performs the BFZ subprocedure both for zero and for
onc {i.c. for identity clements). 'This is just onc example of how icarming can generate bugs.

This chapter argues that learning, and overgencralization in particular, is a very powerful bug
generator. 1t can. in principle, generate any conceivable bug. 1t is almost irrefutable.  Constraints
must be placed upon it if it is to have any explanatory value. But certain bugs arc very difficult o
generale if such constraints are placed on learning. In order to mdke explanatory, vonstrained
learning empirically adequate, these bugs must be gencrated by another mechanism. ‘The proposed
generative source is local problem solving. To put it differenty, this chapter begins by contrasung
two posilions:

1. an unconstrained learning theory, and
2. aconstrained learning theory plus local problem solving.

Both can generate many bugs. However, when lcarning is used alone. it must be given s0 much
flexibility that it can no longer cxplain why certain bugs arc observed and not others. It has less
explanatory adequacy.

6.1 Explaining bugs with overgencralization

A simple learning framework bascs cxplanations on overgeneralization. 1t explains errors as
resulting from correct induction from snpoverished sets of examples. For mstance. the bug Duff-
0—~N=N, whose work appears in a
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4
a. 60 b. X c. 65'0
-186 -3¢ - 186
4% X 33

is cxplained as an uvergeneralization of the correct rule N—9=N. The lcarner has scen cxamples
such as & but not cxamples such as ¢. Hence. the learner induces that N=0=0-N=N, which is
perfectly consistent with the instruction received sv far. The overgencialization framework is simple
because 1t does not postulate "mislearning” as a spurce of errors. Instcad, all lcarned concepts are
consistent with the cxamples. Bugs arise only from overgeneralization, possibly in the context of
incomplete instruction.

Simple overgeneralization is surprismgly powerful. The theorist can explain very diverse bugs
by using 1. it can cven be used 10 vxplain bug migration, as Derck Siceman has pointed out
(Slceman. submetted for publication).  Before his suggestion is cxamined. an introduction to bug
migration is in order.

Bug migration

Bugs arc not usually stable. 1t :s uncommon for a student to have exactly the same bugs on
two tests, cven if those tests arc given only a day apart (sec section 2.10). For instance, a student
might have bugs A and B on Monday, but or Wednesday, the student has bugs A and C instead.
Bug A was stable, but bug B was replaced by bug C. This is a kind of infer-test bug instability.
Inter-test bug instability 1s the «.orm rather than the exception. Only 4% of the bugs remained stable
in onc swdy (Vanlehn, 1981). Bunderson (1981) reports no stable bugs at all

There is also infra-test instability. The bugs appear and disappcar over the course of one
testing se< .n. A studenl may have bugs A and B on the first third of the test, bugs A and C on
the second third, then just bug A on the last third.

Onc interesting kind of data is patterns of bug instability. and in particular, which bugs
alternate with cach other, as B and C did in the preccding illustrations. Many of the observed
alterations will be spurious. B just happens to disappear at about the same time that C appears.
They may have no interesting relationship to cach other.  However, some of the observed
alticrnations scem highly significant. Not only do the bugs involved scem related intuitively, but the
same groups of alternating bugs appear much more frequently than chance would predict.  These
significant alternations arc termed bug nugrations. A set of bugs that migrate into ¢ach other is
cailed a bug mugranon class. Thus B migrates with C in the inter-test cxample above, hence {B, C}
15 a bug migration class. In the intra-test example, B alternated with C, but both bugs were absent
on the last third of the test. 1t is quite common for bugs to migrate with a correct version of the
procedurc. To design™te this, a null is used in the bug migration class; {B, C, &}.

As n the diagnosis of bugs. the diagnosis of bug migration requires carcful analytical methods
in vrder tw guard against false positives: mistaken claims that a certain bug or bug migration class
exists when in fact the cause of the observed behavior is just a chance alignment of unintentional
errors (shps).  Although the analytical methodology for bugs is quite highly developed, the
cquivalent technologicial development for bug migration has just begun.
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Explaining bug migrations with overgeneralization

To return 10 Sleeman’s point:  certain cases of bug migration may be caused by
esergeneralization. Ty cxplain an observed bug migration class. {8, C}. one pustulates that the
student las a gencralized bug such that the ways to instantiate that generalized bug include the
observed bugs b and C.  For instance. cartier we saw that overgeacralization yields a rule:

Ifthere is a zero in the columa. write the other digit in the answer.
which led ultimately to the bug DifFf0~N=N. A further gencralization is the rule:
Ifthere is & zero in the column, write one of the digits in the answers.

Thus rule predicts an observed bug migration. The bug migration class contains two bugs. The first
bug. Diff-0—N=0, splves problems as in a

a. 60 b. 60
-18 -18
4 0 46

1t answers 0— N columns with zero.  This bug results from instantiating the gencral pule by always
taking the column's top digit for the answer. The second bug, Diff-0- N=N, whose work appears
in & results from instantiating the general rule another way. by always taking the column’s bottom
digit. The bug migration class is {DifF0— N=0, Diff-0— N=Nj. This bug migration is rather
common. Figure 6-1 shows onc student who exhibits it. On the first test, which was taken on a
Monday, the student has two bugs Diff-0—N=0 and Borrow-Across-Zero. The later bug doesn’t
concern us here. (It affects problems o, », 7 and &) In all 0— N columns except one, the student
answers with 0. In the exception column, preblem o, the student did 0—N=N. This is a rather
skewed cxample of intra-test bug migravon. On the second test, taken two days “ater, the student
still had the bug Borrow-Across-Zero, but now the student migrates freely between Diff-0—-N=0
(problems ¢, i n, p. 5 £ and u) and Diff-0—N=N (problems A m, ¢ and g). No instruction in
subtraction was given between the two tests. The bug migratton is apparently a product of some
carlier expericnce.  Owergeneralizatlon pffers one explanation.

The same generalized rale predicts a bug migration that involves exercises where there is a
z7¢ro in the bottom of a column. For N~0 columns. cither the top or the bottom digit is written as
the answer. Thi migration is between Diff-N—0=N and DiffN—-0=0. The first instantiation,
N-0=N, is correct. So this actually predicts an intermittent bug. ic.. the bug migration class is
{DifFN-0=0, @}. This bug migration has also becn observed.

It scems that Slecman’s idca has some merit. Overgeneralization provides reasonable
cxplanations for certain bug migrations as well as for the existence of certain bugs. The next
section pushes farther,
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7

a 645 b 885 ¢ g3 4 8305 o 50
45 205 - 44 - 3 23
602 680 39 8302 30
5) 3 0, 01415,
F 562 g 742 1 106 i 716 ] 1864
. 3 . 136 . 70 - 598 887
559 606 106 208 677
5 1418 0 0, 0
884 m 3™ o 1813 o 702 p 9007
2697 . 214 . 215 - 39 6880
3844 107 1608 33 3007
0 6 0 7
404% + 702 s 2008 10072 u 800l
607 108 .42 214 . 43
4008 504 2004 10008 7008
?l
a 645 b 885 ¢ g3 4 8305 50
45 205 .44 . 3 . 23
602 680 390 8302 30
5 k] ) 1] 1415
Fosg2 ¢ 742 1 106 i 776 | Y364
3 . 136 . 70 . 598 . 887
559 606 176 208 1677
5143 0 0 0
2591 m 379 . 1873 o io2 » 9007
.2697 214 . 215 . 39 6880
3844 . 117 1608 033 3007
0 0 7
4075 + 702 s 2006 t 10072 u 800Y
. 607 - 108 . 42 214 . 43
4608 504 2004 10008 7008
\ Figure 6-1

118

Solution to two identical tests by student 1 of classroom 34.
First testis aberve the line, second test is below the line,
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6.2 Stretching osergencralization to accoent for certain bugs

Overgeneralization 15 a very powerful concept that can generate many bugs. Qn the other
hand. the collection of ubserved bugs 1s very diverse. It 1s not clear whether the disersity of the
bugs will gefeat the gencrane power of overgencralization.  So far, »vergencrddization has been
applicd m Jumited ways.  The flostrations applied it o classes of pumbers (Le. borrow from zero
was overgeneralized 1o borrow! from identiy elementsy and e locations (... zeto in *he top digit
betame scro anywhere in the chlumn). This section leads off by discussng 4 bug mugration ¢lass
that requires wergenerahization (o acl i new ways.  The bug migrabien class has three bugs:

{Borrow-Across-Zero,
Stops-Borrow-At-Zero,
Smaller-IFrom-Larger- Instead-of-Borrow-From-Zero}

These bugs are cach fuirly important bugs in that they often occur 1n competitihe arguments later in
this ducument, They will be presented in some detal.  An overgencralization-based explanation
will be given fur cach. The first bug's explanation is fairly smooth. The second is a little rougher.
By the last one, overgencralization will have been streiched to the breaking point.

The first bug in the class is Borrow-Across-Zero. This bug also cannot borrow from zeros.
When 1t encounters a BFZ situation, it locates @ ncarby non-sero digit in the top row and
decrements that instead.  Figure 6-2 gives a problem state sequence iltustrating &, The bug does its
relocated decrement between states @ and 6. It docs the rest of the problem correctly. The rather
cunous arrangement of decremented digits i the hundreds ¢olumn 15 the halimark of this bug,

To account for this bug with overgencralization is not too hard. One postulates that the
student has only scen non-zero borrowing. That 1s. the student has seen 52~ 19 and 511-99, but
not 501 - 99. The student has induced that the "the digit o decrement is the closest top-row digit
JBat 15 non-cero” This locative description is consistent with all the cxamples the student has
received. 1t scems a little bit strange that the overgencralization should mention sero despite the
fact that the student has never scen a BFZ exeraise.  To justify ity inclusion 1n the descnption, one
would have 1o postulate that zero 1s so salient o the learner that its presence or absence is always
recorded in generalizations.  This is perhaps not implausible.

-

. 3 3 3
4 4 17 4 17 F " 1017 1017
ab07 b FO7 ¢ Fo4 d Eo e. BOF T ';,w g %Hi
28 - 28 - 28 - 28 - 28 - 28 .. -_28
9 9 9 389
Figarc 6-2

Problem state seQuence for the bug Borrow-Across-Zero.
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17 17 4 17 4 1017 4 1017 4 1017
a507 b 607 ¢ 60X d Fo0Fx o FBT . BFFX g BEA
- 28 - 28 - 28 - 28 - 28 - 28 - 28

9 9 9 89 389
Figure 6-3

Problem state sequence for the bug Stops-Borrow-At-Zero.

The next bug in the bug migration class is Stops-Borrow-At-Zero (this bug was mentioned
carlicr, 1n section 2.9%.  When Stops-Borrow-At-Zero borrows from zero, it doesnt _overwrite the
sere, but skips the decrement opliadion entirely,  Figure 6-3 shows a probiem state sequence for
this bug, ‘The skipped borrow-from is evident at problem state 6, 'The bug has already done the
sccond step of borrowing, borrow-into. The rest of the solution 1s corrcct,  The mussing decrement
is its only flaw. The missing decrement can be accounted for with overgeneralization by postulating
that the student believes that “decrementing zero is null stuff.” Perhaps the student justifics this by
thinking, "If ! have no apples and you try o take one, nothing happens.” This generalized
decrement operation accounts for Stops-Borrow-At-Zero.

A more difficult fact to explain is that these bugs migrale with Borrow-Across-Zero, In Fact,
the migration between Borrow-Across-Zero and Stops-Borrow-At-Zero is one of the irost common
bug migrations observed. To account for the migration, a gencralization must be found that unifies
the two generalizations: '

1. Decrement the left adjacent, top-row digit. where decrementing zero is null stuff.

2. The digit to decrement is the first non-zero, top-row digit.

It would be simple just to disjoin these two generalizations. The Student would believe that
borrowing-from is cither a nell-stuff decrement or a decrement (0 a ncarby digit. However,
inducing disjunctive concepts is ruled out by the one-disjunct-per-lesson hypothesis. Hence, the
disjuined concept must be present before instruction begins. A fairly exotic concept meaning
"decrement zer0 is null sff or nearby stuff" would have to be available during the induction of
borrowing. perhaps by being in fhe base of primitive concepts.

The last bug n the bug migration class is Smaller-From-Larger-Instead-of-Borrow-From-Zero.
Like the other bugs. it solves simple borrowing exercises correctly, but deviates from the correct
algorithm when it is asked to borrow from zero. When a column requires a BFZ, the bug simply
takes the absolute difference in that column, avoiding borrowing of any kind. {Figure 6-4 shows a
problem state sequence.) The obvious cxplanation is that the student perceives BFZ as some kind
of difficulty and avoids it by taking the absolute difference instead of borrowing. This makes sense
if the student has not yet been taught BFZ and knows only how to do simple borrows. Note that
this intuitively appealing explanation uses a problem solving framework., It postulates that the
student detects problem situations and invents a way (0 avoid them. It falls outside the kinds of
overgencralizauon-based cxplanations that are currently being sought for this bug migration class,

4 410 4 10 410
a. 607 b. 07 ¢ K07 d B&7 e. B&7 f w7
- 28 - 28 - 28 - 28 - 28 - 28
1 | | 81 481

Figure 6~4
Problem state sequence for the bug Smaller-From-Larger-Instead-of-Borrow-From-Zero,
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To explan this bug as overgeneralization would be very difficult. One would have o
postulate a way of viewing the burrow subprocedure as a whole since it is the whole subprocedure
that 15 replaced by absolute difference.  Prestimably. sueh o vicwpoint could be founded. but the
theorctical costs of postulating such & large “primitive” would be high.  Worse yet. this bug is in
the same bug migration class as the other bugs mentioned above. The new “large primitive™ would
somchow have tuo generalize them as well.

The explanatory adequacy of overgeneralization

Essenttally, these vyvergeneralization “accounts™ are just building the observed bugs into the
set of primitives that are assumed to be present before learning begins. A wide range of primitive
coneepts has been needed su Far, just to capture three bugs. This would not be so bad if the
prumtis Cs that gencrated bugs were somehow a natural class in that the class includes all concepts
of a certan kind. But if all concepts that are “similar™ to the ones nceded so far (whatever that
means) were allowed into the set of primitives, then the theory would overgencrate wildly. This
abanduns any chance of empirical adequacy. The opposite course is to drop the constraint that the
sct of primiives be somchow a natwral class, and instead allow the theorist o dictate which
primitnes are in the sel. This would improve the empirical adequacy, but it sacrifices explanatory
adequacy. That 15, the theory answers the question “why ducs this bug cxist?™ by saying “because
this prirtive concept exists,” but it has no answer for the follow-up question, "Why does that
pnmitive exist?™  Such & theory doesn’t explain the bugs, it only relabels them. It lacks explanatory
adequacy.

6.3 Impassc-repair independence

The esscntial mechanisms of local problem solving are twofold. Problematic situations (called
impasses) are detected, then they afe sulved or avurded {called repairing the impasscs). At once one
15 struck by the apparent .rrcfutability of this framework. If the theorist is allowed to postulate
anything as an impasse and a repair. then the theonst is allowed, in essence, lo insert arbitrary
condition-action rules into tae procedure, The condition is the impasse and the action is the repair.
It is clear that any conceivable bug could be generated this way, by inserting the appropriate
condition-action rule gua impassc-rcpair combination.  Such & framework would have no
cxplanatory value. IF onc asked it why a certain bug exisied. it would answer only “because a
certain impasse-repair combination happens o exist.”

The stipulation of an impasse and a repair would have some explanatory force if one could
provide independent evidence for the impasse and for the repair. That is, stipulating an impasse I
and a repair Ry to explan a certain bug would be believable if one could also exhibit a second bug
generated by repairing the impasse Ij with another repair. Ry.  This would be independent
cvidence for the stipulated impasse 1. Similarly. 4 good explanauon requires independent evidence
for the repair. such as 4 bug that results from using the sanie remair to a different impasse. called it
I5. That is, to explain the original bug, one needs to produce tee arrangement of evidence shown

in this tabie:
Il ]2
Ry Bug  Bug
Rz Bug"

The original bug to be explained is Bug. Bug’ justifics the stipulated repair and Bug” justifies
the stipulated impasse.  Actually, if he goal is 1o asccrtain whether the locafl/,problc_‘_m solving

{ \‘\
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framework 1 correct, ther it seems that requiring the existence of a fourth bug. the combination of
I, with R; 15 necessary.  I'he essence of problem solving is that amy svlunon that works is acceptable,
If therc arc several possible means to an end. and 1If problem solving is truly the activity going on,
then cach means will eventually be applicd by someone to achicve the goal (all other things being
cqual). In this casc. tne goal {ond) is to be in a non-impasse state. Hence. the ba,e notion of
prublem solving predicts that all repairs will be applied. by somcone at sume tune. W each impasse.
If a ceriuir impasse-repair combination prediets a star bug. then the theory should provide an
explanauon for why that repair was not a reasonable choice fur solving the problem presented by
the impasse.  IF it could not then one would begin to suspect that the framework wasn’t really
problem solving but sumething ¢lse instead. In shert. the independence of impasses and repairs is a
crucial, defining principle of local problem solving. The set of predieicd bugs 1s exactly the set of
all repairs applied to all impasses. Any exceptions must be explained by the theory. Put
diffcrently, Bugs = Impasses X Repairss where X stands for the Cartesian product of two scts.

A Cartesian product bug pattern

The bug daia have many instances of the kind of Canesian product pattern that local protlem
solvung predicts.  Tlus will be illustraicd with the three bugs mentioned carlicr. paired with three
new bugs. The rest of this section presents this paticin. 1t and others like st are prime evidence for
the local problem solving framework. This Cartesian product pattern has (w0 umpasses and three
repairs:

decrement zero larger from smaller
Noop Stops-Bomrow-At-Zero Blank-Iastead-of- Borrow
Refocus Borrow- Across-Zero Smaller-From-Larger
Backup Smaller-From-Larger-Instead Doesn't-Borrow
of-Borrow-From-Zero

Bugs from the same impasse are in the same column. Repairs label the rows of the bugs they
generate.  The bugs will be discussed row by row.

3 1
Stops-Bomow-At-Zero: 345 3 4l 21017
-102 -129 -189
2439 216+ 48 X
Blank-Instead-of-Borrow: 3456 3456 207
-102 -129 -169
243y 22 X 1 X

Correctly answered problems are marked with v, and incorrectly answered problems with X. The
first bug. Stops-Borrow-At-Zero. 15 generated by assuming that the student has not been taught how
to borrow from zero. When the student trics to use simple borrowing on BFZ problems, such as
the third problem. an attempt is made le decrement the zero. The student t..ngnizes that zero
cannot be deeremented. An impasse occurs. The student has detected a Jocal problem that needs
lo be solved before any morc of the procedure can be executed. The repair, called Nuop
(proneunced “no op”). simply causes the student to skip the stuck decrement actien (i.c., it turns
the action into a "nuil operation” or “no-op” in computer jargon). This leads to Stops-Borrow-Al-
Zero shown above (sce figure 63 for a problem state sequence illustrating ils solution).
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The second bug is ° .nk-Instead-of-Borrow.  Superficially, it looks very different from Stops-
Borrow-Al-7ero. It doesnt do any borrowing. but instead leaves unanswered just those columns
that require borrowing. The explanation for this bug assumes that the student hasn't learned how
to borrow yel. When the student attempts to tak: a larger number from a smatler one. an impasse
occurs. presumably because the student knows that “you can't take a big numbecr froin « stnall one,”
The repair to this impasse is the Noop repair. It causes the column difference action to be skipped.
This explains why borrow columns have blank answers. In gencral, the Noop repair causes actions
that are “stuck” to be skipped. It is perhaps the casiest of all pussible repatrs. It 1s a quite straight-
forward solution to the problem of being unable to exccute an action.

0
3 1
Boriow ACross-2ero: 346 3 4l 2lol7
~-102 ~129 - 69
243 216V 48X
Stnaller- From-Larger: 346 346 207
-162 -129 -169
243 v 224X 162X

Borrow-Across-Zero is generaled by applying the Refocus repair to the decrement-zero
impasse. The basic idea of the Refocus repair is to shift the external focus of attention, in this case,
where to perform the decrement operation. Refocus shifts focus in a way that maintains some
faithfulness to the procedure’s description. As before, the assumpuons are that the student knows
that zero can't be decremented buy does not know how to borrow from zero. The procedure that
the student is following presumably describes the place to decrement as the top digit in the column
just left of the column currently being processed. Refocus relaxes that description somewhat,
shifting focus to the top digit in some column leR of the current column. Any column that will
allow the decrement operation to Succeced iS a potential candidate. In this case, only the hundreds
column qualifies, so jt is chosen. (Figure 62 gives the problem state sequence of the bug's
solution.)

Smaller- From-Larger answers columns that require borrowing with a number that is the
absolute difference of the two numbers. There are several ways o explain this bug. Here, the
assumpiion is that the student reaches an impasse because he must process a column where the
bottom digit is 0o large, and he understands that one can’t take a larger digit from a Smaller one.
The Refocus repair relaxes the descriptisn of the arguments to the column difference operation, It
relaxes the constraint on relative vertical positions. The operation i$ performed as if the column
were inverted.  This allows it to answer the column, thus coping with the impasse.

2
Smaler-From-Larger-Insteadol- 346 3 4% 3los
Borrow-From- Zefo: -102 ~129 -187
243 Y 216 v 142X
Doesn'tBorrow: 346 346 207
-102 ~129 -169
243V - X X

These two bugs illustrate the Backup repair. Backup is perhaps onc of the most difficult
repairs to present, zlthough it underlyingly quite simple. The essence of the Backup repair is
retreating in order o take another alternative path. Backup resets the exccution State of the
inlerpreter back 10 a previous decision point in Such a way that when inlerpretaion conlinues, it
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will choose a different alternative than the one that led to the impasse that Backup repaired. In
most cases. using Backup causes a sccondary impasse. This is just what happens with Smaller
From-l.arger-Instead-of-Borrow-From-Zero. As with the other bugs. the student reaches an impasse
try1ag to decrement the zero in the tens column. The Backup repair gete past the decrement:zero
impassec by “backing up.” in the problem solving sense. to the last decsion which has some
alternatives open.  After the repair, the student tries to¢ process the units column in the ordinary
wday. Immediately he hits a sccond impasse, since he knows that one can't take a larger number
from a smaller one. This sccond impasse is repaired by Refocus. yielding absolute difference as the
answer 1n the umits column. The student finishes up the rest of the problem without difficulty,
The demvation of this bug is a little complicated. One should perhaps just try to get a rough sense
of it now. Later, it will be presented in detail.

The bug Doesn't-Borrow is simple.  Whenever it encounters a column thal requires
borrowing, it gives up on doing the rest of the problem, and goes on to the next problem on the
test. 1f there 1s one, The bug is gencrated by applying the Backup repair to the impasse of being
unable to take a column difference. At this point in the procedure, the most recent decision is not
the decision sbout borrowing. because the student doesn't know about borrowing yel. Insicad, the
most recent decision involies whether to do the problem at all. The Backup repair retreats to this
decision, and takes the open aliernative: the student gives up on this problem. and goes on to the
next,

The repair-impasse independence principle makes predictions

A crucial fact about the repair process comes out clearly in the Cartesian product pattern. It
is the mdependence of repairs and impasses. Every rcpair is applicable to every impasse. In
principle. a bug will be found for cach pairing of an applicable repair with an impasse.

Of course, seme repairs are much more popular than others, and some impasses are more
common than others. Combining an_unpopular repair with an uncommon core procedure may
predict a bug that has not yet been o&cncd. In fact, several bugs have been predicted by repair-
impasse independence, then observed later.  When the original model for repair theory was first
tested. in Scptember 1979, it predicted 16 bugs that had not yet been observed. When its
predictions were test against newly collected data in December 1979, 6 of the predicted bugs were
discovered (Brown & Vanlehn, 1980). Since then. another of the original model's predicted bugs
has been discovered cven though few new data have been acquired in the interim. So, one of the
chicf advantages of the 1mpasse-repair independence principle is that it makes predictions that can
be used to focus cmpirical investigations and to test the theory.

k
Repair-impasse independence vs" bug occurrence statistics

It is not the case thaftrepairs and impasses are statistically independent.  Although rare bugs
resull from usind uncommon repairs to uncommon impasses, it is not always the case that
combining a common fepair and 2 common impasse results in a2 common bug. The frequencies of
the six bugs discussed above show this cffect:
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deerement zero larger from smaller
Noop 64 Stops-Borrow-At-Zero 1 Blank-Tnstcad-of* Borrow
Refocus 44 Borrow-Across: Zero 115 Smalles-From-l.arger
Backup 5 SmallerFromelasger-Insicad | ¢ Doesn'-Borrow
of-Borrow-From-Zero

These figures show the number of students in a sample of 1147 who had the specified bug (sce
appendix 3).  In tus sample. the two impasses are cqually common. 110 students had the
decrement zero impasse. and 116 students had the larger-from-smaller impasse. However, there is a
strong skew In repawr preferences. The Noop and Refocus repairs were equally popular for the
decrement-zero impasse. but the Refocus repair was strongly preferred by students who rcan't
borrow. This shows that a smmple assumption of statistical independence is quite unwarranted.
Repair-impasse independence does not mean statistical independence.

However, there are scveral problems with bug frequency data, If these can be solved,
statistical independence may be found. The main problem is that most bugs are rather uncommon,
owcurring less than a hdlf dozen times even in large samples (see appendix 3). This makes statistical
mnference:. unrchable. A more subtle difficulty is that many bugs have multiple causes. Multiple
derisations make bugs more common than simple frequency models would predict.  For instance,
Smaller-From-Larger 1s common because it has at least two derivations — one as the application of
the Refocus repair and another as overgenerahzauon. The overgeneralization accouut is simply that
the learner chooses absolute difference as the gencralization of examples such as

5
nt'4
On thiy account, students belicve that 5~2=2-5=3 despite the fact that they have never secn

examples of the latter case, 2—5=3. Given this concept of column difference, the students solve
borrow columns, c.g., the units column of

42
-1
33

without reaching an impasse. Thus. Smaller-From-Larger has a derivation as induction from an
impoverished sct of examples. Accounting for bug frequencics would have to take such multiple
derivations into account.

Summary

The main purposes of repair-impasse indepen.ience are (1) to capture an important trend in
the data, the Cartesian product pattern. and {2) to give a rigorous expression of the basic notion of
local problem solving as multiple means to the same end. and (3) to rescue the theory from the
wrefutability of allowing the theorist to postulate arbitrary, non-independent impasse-repair palrs.
To the cxtent that the pattern holds across the data, the local problem solving framework is
vindicated. The local problem solving explanation loses its force if independence has too many
exceptions. To put it differently, the principle sets the default to independence. Any time a
particular rcpair-impass¢ combination lcads to a star bug. the thcory must cxplain why.
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6.4 Dynamic s, static local problem solving

In the Al literature. the basic idea of detecting problems in a procedure and fixing thein is
not ncw. Sussman’s HACKIR program had two kinds of problem detection and rectification systems
{Susstnan. 1976). Onc .cted dynamically, that is. dunng the cxecution of the procedure. It would
detect problems such as trying to place a physical object in a space occupied by another object.
The second system acted statically: it would examine the prucedure as a goal-subgoal hierarchy,
looking for pattems of conflicting goals. [t cuuld thus detect some problems without ever running
the precedure, The same choice exists for local problem solving in thes domain, impasses can be
detected and repaired dynamically or statically. To put it intuitively. the issuc ts nhen the locaf
problem solving process is carried out by the student. It could be that the lucal prublem solving
process is something hke forgetting or mislearning. 1t coutd happen while the student is sleeping.
or valching the teacher, or cxplaining the procedure to a friend. All that onc can sce in the
Cartesian product patiern is the result of repair. and not whes it happened. This section s a
competilive argument between two approaches. The two hypotheses are (LPS will be use to
abbreviate "local problem solver™):

L. .Jynamic LPS: impasses are detected during the execution of the procedure. Repairs arc
made to the current State; the procedure itself 1s not modificd.

2, Stauc LPS: impasses are detected by analyzing the structure of the procedure without
exccuting il. Repairs are made by changing the procedure’s structure.

Really. there is hardly any cuntroversy (that 1s why the argument has not been given a chapter of its
own). The evidence is clearly on the sige of dynamic LPS,

Bug migration and siable long-term bugs

Intuitively, bug migration is a strong argument for the dynamic local problem solving
h- sothesis. But as it turns out, the static LPS hypothesis can do just as well at predicting bug
migration although it must be accompanied by a simple {and 2d hoc) ancillary assumption.

As discussed earlier in this chapter, bug migration is the phenomenon of a student switching
am-ng two of more bugs during a short period of ume with no intersening instruction.  The bugs
tie student switches among are called a bug migration class. The theory aims to predict which sets
of bugs will occur as bug migration classes. With regard to local problem solving, the basic idea is
that the bugs in a bug migration class result {rom apphing different repawurs 1o the same wnpasse.
That is, the student appears lo have the same procedure throughout the period of .bservation, but
chooses to repair its impasses differently at different times. This basic idea is independent of
whether local problem solving takes places statically or dynamically. Figure 6-5 presents an example
of bug migration among several of the bugs discussed earlier. It illustrates how several bugs can
occur on the same test by application of different repairs to the same impasse.
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7
647 885 83 8305
- 45 -205 -44 - 3
602 680 39 830
4 5 3 0
50 582 742 106
~23 - 3 ~136 - 70
7 559 606 36
6 10l 01415 514 131 2 101
XY6 1584 5581 S
~-598 ~ 887 ~2697 -214
118 677 3894 97
101 010 816 3100
1813 182 9807 41845
-~ 215 ~- 39 ~6880 - 607
1598 73 2227 3408
6 0 1 0 0010 O 010
Y92 RV06 1e0 2 8091
504 1064 808 8068
Figure -5

Solution to a test by student 22 of classroom 34
showing intra-test bug migration,
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Figure £~5 is an exact reproduction of a test taken by student 22 of class 34, She misses only
six prublems. namely the ones that require borrowing from zero. The first two problems she misses
{the sccund and third problems un the fourth row} arc answered as if she had the bug Stops-
Borrow-At-Zero. That 1s. she gets stuck when she attempts to decrement a zero, and uses the Noop
regair in order to skap the decrement operation. The next two protlems she misses (the first two
problems on the last row) arc answered as if she had the bug Borrow-Across:Zcro. She hils the
same 1mpasse. but repairs by relocabing the decrement lefiward using the Refocus repair. On the
third problem of the last row, she uses two repairs within the same problem. For the borrow
onginating in the tens column, she uses backup to retreat from the deerement-zero impasse.  She
winds up writing 2 zcro as the apswer in the tens column (as if she had the bug Zero-Instead-of*
Bortov-From-Zero). In the hundreds column. she takes the same Refocus repair that she used on
the preceding two problems. On the last problem, she uses the Noop rcpair for both borrows.

Patches present a problem for the dynamic LPS hypothesis

The student of figure 6-5 is typical in that her repairs occur in runs. The first two repairs are
onc kind. the next two arc another, and $o on. This observaiion suggests that therc can be a
temporary association of an impassc with a repair. Thesc pairs are called patches. Apparcntly, the
first time the student of figure 65 hit the impasse, she searched for an applicable repair and not
only used it. but created a patch to remember that she uscd it. On the next problem, she again
encounters the impasse. but instead of scarching for a new repair, she just retrieves the patch, and
uses its reparr. She completes the next problem without encountering the impasse, which is
apparently cnough to cause her to forget her patch. since the next time she hits the impasse, she
repairs it @ new way. Either the patch was forgotten during the non-impasse problem. or she chose
to ignore it and try a different repair. The latter pussibility is supported by her behavior at the end
of the test, where she is applying different repaics for cach impasse even when the impasses occur in
the same problem. In shott, there seems to be some flexibility in whether patches are ignored, ard
perhaps also in how long they are retained.

Inter-test bug migration exhjbits a more cxtensive use of patches. Inter-test bug migration is
detected by testing students twice a short time apart (say, two days) with no intersening instruction,
The student has a consistent bug on each test, but not the same bug. The bugs are related in that
they can be generated by different repairs to the same impasse. Iy appears that the studeni has
retained the procedure between the two tests, but the patch that was used on the first test was not
retained. Instead. a new repair was selected. stored in a patch, and used consistently throughout the
second test.

Bugs do not always migrate. Some bugs are held for months or years. Apparently, patches
can be stored for long periods of time.

Bug migration was predicted in advance of its observation (Brown & VanLelin, 1980}, 1t {ulls
oul a5 4 natural consequence of viewing the repair process as modifying the execution (short term)
siate of the processor that interprots the stored procedure. The dynamic LPS hypothesis naturally
predicts bug migration, What it has trouble with is explaining the repetition of the saiae repair to
the samec impasse, a phenomena referred to above as creating, storing and reusing a patch.  The
dynamic [,PS hypothesis could explain this as a chance sclection of the same repair over and over
again. However, it is much more plausible to add an ancillary hypothesis that some kind of patch
creation and Storage cxists. The patch hypothesis is difficult to verify since there is no way to tell
whether or not a student has a patch (they could just have chosen the same repair twice). The only
argument for their existence is intuitive plausibility. Nonetheless. enuountenng seventh graders with
bugs that are acquired in the third grade is, for me, a fairly compelling demonstration that patches
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exist, even if they aren't a proper part ¢f the model.

The static 1. PS hypothesis’ account for bug nigration

So far, bug migration has been discussed in terms of the dynamic LPS hypothesis. However,
the static 1.PS hypothesis can generate the same predictions. The forte of static 1.PS is making
permdanent changes in the pruccdure. 1t cxamncs the procedures’s structure in order to find (or
predict) impasses and install patches. This is all done without exccuting the procedure. The
installation of a patch inte the procedure naturally predicts stabie, long-term bugs. Bug migration is
morc problematic.  To predict bug migration, ¢nc must assume that it is possible to have stochastic
pathes: a random variable governs which action the patch will take. The various bugs in a bug
migration class result from the patch switching at random among various sub-patches built by the
local problem soiver. This is somewhat implausible, perhaps.

However, the bare fact is that bug migration and long-term bugs both exists, and that
dynamic and static both predict one naturally. but require a supplementary hypothesis o account
for the other. The dynamic LPS hypothess requires palch abstraction and storage; the static LPS
hypothesis requires stochastic patches. So there is really no decisive argument here. We must look
a little deeper.

Impasses and repairs need dynamic information

The preceding argument tried to relate the model’s chronology. the sequence of derivational
events, 10 real lime, Such performance arguments are often quite slippery. Memory can always be
usea to shuttie hypothetical cognitive events forwards in time in order to satisfy the exigencics of
the observations. Indeed, the argument above ended inconclusively, Laying time aside, the main
difference between static ILPS and dynamic LPS hypotheses is the kind of information available to
the local problem solver. A dynamic local problem solver has the current state {i.c. active goals, a
partially worked exercise). The static local problem solver has the procedure’s calling structure
{gual-subgoal hicrarchy). Thc static local problem solver can perhaps examine all the failure modes
of a primitive operator, such as decrément, and decide what 0 do for cach one, However, there are
intricate ways that a procedure can fail during exccution, For the static local problem solver to find
them, it would have to simulate running the procedure, and hence it would become, in effect, a
dynamic local problem solver.

As an example, consider the bug Borrow-Across-Zero. Under the static LPS hypothesis, this
bug is generaled by assuming that tie student has never learned how to borrow from zero, and that
the static LPS has built into the procedure a patch so that when decrement fails by trying to
decrement a zero, the focus of attention is shified lef to a nearby, non-zero digit, which is
decremerted instead of the zero, Figure 6-6a shows Borrow-Across-Zero solving a problem. Notice
that when it borrows in order tg answer the tens column, it must decrement the hundreds column a
sccond time (problem state ). This creates a rather unusual combination of scratch marks. The
very first time this student could have seen such scratch marks is the first time the student solved a
BFZ problem. Until the studnt actually tackles the first BFZ problem. static local problem solving
would have no reason (0 suspect such a strange double-decrement situation might arise,
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Figure 6-6

{(A) Problem state sequence for Borrow-Across-Zero.
(B) Problein state sequence for the bug set (Borrow-Across-Zero Touched-Zero-As-Ten).

Some students have a variant of the bug which indicates that, for them. double decrementing
is an unusual enough action that it warrants repair. An attempl 10 decrement an already
decremented  digit causes an impasse. Figure 6-6b shows the bug set (Borrow-Across-Zero
ITouched-Zero-1s-Ten). Just after problem state d, it attempts to decrement the hundreds column a
second time. However. the student did not do the decrement. taking an impasse instead. The
Noop repair was applied, causing the decrement to be skipped. The student then did the second
part of borrowing. the addition of ten lo the tens column (State ). and finished the problem
correctly. This shows that double-decrementing can cause local problem solving. IF the static LPS
hypothesis is to account for this. it must assume that the LPS is very smart. The LPS has to plan
ahead o realize that decrements might stack up in some unusual situations, and prepare a repair for
this case. This is entirely implausible.

The preceding example showed that impass detection required dynamic (runtime) information.
There is a similar argument that shows that repairs also need dynamic information. The argument
involves the Backup repair. It can be shown (sec section ] of appendix 9) that Backup is most
simply formuilated as a modification of the execution state rather than a modification to the
structure of the procedure. The argument rests on the Fact that in certain Situations where Backup
has been obsered, there are two instantiations of a certain goal, and Backup only goes to one of
them. Static Backup can't discriminate among several dynamic instantiations of the same goal, but
dynamic Backup can. Although a complex patch could be constructed by static 1acal problem
solving, it would essentially have to do exactly what a dynamic Backup would do anyway. So a
dynamic version of Backup s the simplest. most natural way to handle these special casss of local
problem solving.

Sumniary

The information that iS available statically is just not sufficient to explain the kinds of local
problem solving that occur. Iocal problem solving makes essential use of information that is
naturally available at runtime. To generate the information staticafly would require such powerful
simulation capabilities of the static local problem solver it would bc come essentially equivalent to a
dynamic local problem solver. So the static LPS approach is just not workable,

*
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0.5 Formal hypotheses

The main ideas of local problem solving are impasses. repairs, their independence, and their
embedding in the dynamic. runtime environment. To express these formally, a description of how
procedures are 2x>cuted is needed. That is, the gross architecture of a procedural interpreter will be
used to formalize the theory. Chapter 3 began the formalization by postulating an undefined
function, Cycle, that maps a runtime stale into the next runtime state. 1t is used v describe the
observable actions of the student when the student applies a procedure to a runtime state.  Chaining
applications of Cycle generates the procedure’s solution o an exercise problem. In order to
formalize local problem solving, Cycie will be defined in terms of several new. undefined
functions. The nomenclature that will be used is:

p A variable designa.ing the student’s procedure.

) A variable designating the current runtime state.

{Internal $§) A function that returns the internal (exccutton, or interpteter) rus.time state
S.

(External S) A function that returns the external {problem) runtime state of S. The

runtime state is a composite of the internal and external state.

(Cycle P §) A function that inputs a procedure and a runtime state and oulpuls a set
of next states. It represents one cycle in the interpretation/execution of
the procedure,

(Interpret P S) An undefined function that expresses what the procedure does without

local problem solving. it represents the "normal” interpretation of the
procedure. It inputs a procedure and a runtime state and outputs the
next runtime state. It represents one cycle of the interpreter. It will be
defined later by the procedural representation language.

{Repair S} An undefined function that takes a runtime state and returns a set of
runtime states corresponding to various repairs.

{Impasse 8} An undefined predicate on states. It is true of a runtime state if the
combination of execution and problem state constitutes an impasse.

The basic technique used to formalize local prcblem solving is the same as the one used to
formalize learning. In this case, two undefined functions ate used; Repair and Impasse. The
predictions of the theory will be made in terms of theni. Various constraints (hypotlicses) will be
piaced upon them. The actual functions used in Sierra are just one way of instantiating the two
functions in obedience to the constraints. In particular, Repair 1s formalized by a set of five
tepairs; Noop, Backup, Refocus. Force and Quit. The formalization of Impasse is similar. A set
of impasse conditions is defined. For instance, precondition violations are one kind of impasse
condition. Impasse conditions are to Impasse as repaits arc lo Repair,

Given the nomenclature, the basic anchitecture of the combined interpreter and local problem
solver is defined by the following hypothesis:
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Local problem solving
Let
{Cycle P S) =
if ~{Impasse S) then {{Interpret P S)}
else {(Interpret P S') | S'€ (Repair S) and ~(Impasse S') }.

This hypothesis defines the Cycle functien in terms of the three undefined functions, Repair,
Impasse, and Intarpret. Interpret is the normal interpretation of the procedure. If the
current state is not an impasse, then Interpret is what Cycle does. If there is an impasse, then
a repair is inserted before the Interpret. Because more than one repair is possible, there may be
more than one successor state. Hence, Cycle returns a set of states.

There are several facit features that are built into the definition of Cycle. Although it is
redundant, it is useful to break these out as separate hypotheses. This makes it casier to refer to the
concepts later,

Dynamic LPS
The tocal problem solver reads and changes the dynamic {execution time) state, but it does not

change the procedure’s siructure,

Repair-impasse independence
Any repair ¢an be applied to any impasse,

Filter-trigger symmetry )
An impasse condition triggers local problem solving if and only if it also acts as a filter on repairs.

The first two hypotheses have already been discussed. The last one refiects the idea that repairs
actually fix impasses. That is, Impasse must be true after the Repair function is done. It turns
out l.hat,éﬁme repairs change the state in such a way that the new <tate is an impasse, perhaps of a
different kind than before. That is, the repair doesn’t really fix the problem; the interpreter is still
stuck. Such repairs ate filtered. To put it differently, if a certain impasse condition is sufficient to
cause repairs (trigger local problem solving). then it is also effective in fitering repairs. All this
follows from the basic notion that !gcal problem solving really is a form of problem solving.
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Chapter 7
Deletion

Two sources of bugs have been identified so far.  QOne is Overgeneralization, or rather correct
sduction from impoverished sets of examples (ser scction 6.1). The other source uscs Jocal
problem solving to repair impasses. which are caus.a uwitimately by incomplete leaming (see section
6.3). In a scnse, these two explanations fall under the broad headings of learning and invention.
This chapter shows that a third source of bugs exists. something akin lo forgerting. It perturbs the
structure of a learned (core) procedure. For historical reasons. the new source of bugs is called
deletion. This chapter discusses the reasons why the theory needs deletion. It presents a certain
group of bugs and discusses three explanations for them:

1. The bugs result from local problem solving applied to procedures generated
by partially completed learning.

2. The bugs result from of overgeneralization.
3. The bugs result from deletion of part ofa learned procedure.

It is shown that ncither of the first two explanations for the bugs work. This justifies introducing a
new formal mechanism, deletion, inio the theory.

7.1 Local preblem solving will not generate certain bugs

Many bugs can be accounted for by inconplete learning followed by local problem solving.
The basic idea is that the student is tested on skills that either have not been taught vet, or haven't
been mastered. This often leads to impasses and repairs and, in turn, to bugs. However, this
account will not work for certain bugs. For handy reference, these bugs will be called the dejetion
bugs. Explaining them is the target of «this chapter.

The deletion bugs are pest understood |n contrast to bugs generated by local problem solving.
The following bug can be generaied by incomplete learning and repair:

3 2

Stops-Borrow-At-Zero: 3456 3 4lp 3lply 3 017
-102 ~129 -19%¢@ - )
243 216 148X 308X

. 'The procedure behind this bug does not know how 1o borrow across zeros. It borrows correctly

from non-zero digits, as shown in the second problem. On the third problem, it attempts to
decrement the zero, hits an impasse, and repairs by skipping the decrement operation entirely (the
Noop repair)  The point is that this bug has a complete, flawless knowledge of borrowing from
non-zero digits. but it doesn't know anything about borrowing from zero. Precisely at one of the
lesson boundaries in the subtraction curriculum, its understanding stops. Now compare this
knowledge state with the onc implicated by the following bug:
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3 2 2
Don't-Decrement-Zero: 346 34 - alely algly

102 ~-129 ~169 - 9
2423 216 v 148X 2108 X

This bug also misses just BFZ problems ("BFZ" abbreviates "boirow from zero"). Indeed, it gets
the samec .nswer on the third problem as the previous bug. Stops-Borrow-At-Zero. However, it
solves BFZ problems in a very different way. Notice the fourth problem. ‘fhe borrow 1n the units
column caused some. but not all. of the BFZ subprocedure to be exccuted. The following problem
statc sequence shows the initial problem solving:

2 2 2 2
a, 307 b. o7 c. 3loly d. aloly
- 9 - 9 - 9 - 9
8

Most of the BFZ subprocedure is there. What is missing is its last action. decrementing the ten in
the ten’s column to nine, which should occur between states b and ¢. Because the bug dves some of
the BFZ subprocedure. it is.likely that subjects with this bug have been taught borrowing across
zero. But it is also ciear that they did not acquire all of the subprocedure. or clse forgot part of it.
If the subtraction curriculum was constructed so that teachers first taught vne half of borrowing
across zero and some weeks later taught the other half, then one would be tempted to account for
this bug with incomplete learning. But BFZ is, in fact. always taught as a whole. So some_other
formal technigue is implicated in th.s bug’s generation. Don't-Decrement-Zero is onc of the
deletion bugs. Several others are detailed in chapter 10.

The case has been made that incomplete traversal of the curriculum will not generate a
procedure that is appropriate for explaining this bug Anothcer way to make the same point is to
note that repair could, in principle, generate the bug by using a Noop or Backup repair that would
cause the tenscolumn decrement to be skipped. ' Howcever, in order to have a repair, one must have
an impasse. In this case, the impasse needs to'be just before the decrement (i.c., between states b
and ¢ above). However, there is no apparcnt reason for an impasse there. The decrement is merely
subtracting one from len — an casy. unproblematic opcration. No impasse condition that T know
of will cause an impasse there. Without an imoasse, there is no way to use Noop or other repairs
to generate the bug. Again, the conclusion is that some other mechanism must be utilized to derive
this bug.

7.2 Overgeneralization should not generate the deletion bugs

Overgeneralization can generate Doiw't-Decrement-Zero, but only at the cost of losing
explanatory adequacy. The trick 1o an overgeneralization-based derivation is to induce that the
decrement action in question is optional. Onc assumcs that the student has rcx:cwod examples
teaching BFZ. The examples will, of course, have the decrement action.  For some reason, the
student induces that this decrement is optional, cven though all the examples happcncd to have jt.
On a test, the student instantiates the generalized subprocedure by choosing not 3o make the
optional decrement. This generates the bug. The other deletion bugs can be gcncralci with similar
optlionality-based inductions.  Optionality is a plausible primitive concept for a procedural
representation language to have, so there is nothing wrong a priori with this cexplanation.

The problem is with the nature of optionality. Inducing an optional fragment of a
subprocedure is inducing a disjunction. The procedure acquires a choice about whcﬁmr or not to
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execute the action. Thus. inducing a disjunction inside the subprocedure yiolates the one-disjuncts
per-lesson hypothesis. To put it differently. it is a felicity condition that the teacher will show the
student when a disjunction is needed. But all the examples used a d~crement. none omitted it.
The student has no evidence that a disjunction is needed. It is a direct violation of the felicity
condition to put one in. To admit this violation just lo genecrale a few bugs wrecks an otherwise
cxplanatory framework.

Fl

7.3 The problems of defining a deletion operator

It has been shown that the two bug-generating pathways that the theory currently provides are
ineffective in generating the deletion bugs. This motivates including a new operator in the theory,
On the basis of the bug Don't-Decrement- Zero, it seems that some kind of deleton operator will do
the yob. something that removes an action such as decrement from a scquence of actions in a
subprocedure.

It is not easy to formalize deletion in an empirically adequate way. Richard Young and Tim
OrShea used 2 model based on deleting production rules to generate some of the most common
bugs (Youny, & O'Shea. 1981). including most of the deletion bugs. However. their approach could
also generate star bugs. Given their production system. which has 22 rules. there are 22 possible
rile deletions. However. only 7 of the possible 22 rule deletions generate bugs. Deleting certain of
the other rules generates star bugs. 1In general, totally free. unconstrained deletion overgencrates
wildly. One fix is to allow the theorist o specify which rules may or may not be deleted. This just
transforms the question of why do only certain bugs exist, into the question of why do certain rules
get deleted and not others. 1t doesn't explain very much. So the recal problem with defetion is lo
put just the right constraints on it 50 that no star bugs are predicted and yet the deletion bugs are
generated. Chapter 10 gives this tricky issue 2 full discussion.

For now. deletion will be formalized using an undefined function. Delete. which mutates
procedures. It is interposed between the output of Learn and the input to Cycle. To capture
this formally, the following hypothesis is used:

Deletion
IF P is a core procedure. then all P' € {Delete P) are core procedures as well,

The function Delete is set-valued to capture the fact that there is oRen more than one possible
deletion that can be made to a procedure, As with the other main undefined functions in the
theory. Delete will be defined by acquiring more constraints upon its behavior.
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Chapter 8
Summary: Architecture Level

The preceding five chapters laid out the general architecture of the model and defended the
main principles of the theory. This chapter summarizes both, makes a few comments, and
introdnices some of tne issves discussed in following chapters.

8.1 The architecture of the model

The expositionat strategy of this document is (0 start with an architecture composed of
undefined functions. then 10 add constraints that gradvally definc the functions. At the top level,
the architecture consists of three undefined functions, Learn, Delete and Cycle. Learn takes a
lesson and a procedure as inputs; it returns a sct of procedures. Learn represcns the various ways
that its input procedure can be augmented in order to assimilate the lesson. Delete takes a
procedure as input; it returns a set of procedures as ouipu . where each procedure is the result of
deicting some part of the input procedure. In a later chapter, it will be shown that it simply deletes
a ntle from the And-Or graph that represents the procedure. The need of a delction operator that
is distinct from learning is argued for in chapter 7. The third undefined function, Cycle,
represents one cycle in the interpretation/execution of a given procedure. Its inputs are a procedure
and a "runtime state.” A runtime state is a composite whose parts are an extcrnal state (te, a
problem state) and an internal state (i.e., the interpreter’s statc). A runtime state represents the kind
of informa.ion that can change while the procedure is running. The access function {External
S) returns the external state of a given runtime state, S. Similarly, (Internal S) returns the
" interpreter’s state of the . The function Cycie computes the "next” runtime state. It takes a
procedure and a runtime Staic, and it returns a et of runtime states. It returns a set because
interpretation of the proc.dure is sometimes non-deterministic. Several states are possible “next”
states. Given these functions, the top level of the model is defined by the following hypotheses:

Incremental Learning

Given a lesson sequence L,...L, and an initial procedure P
Procedure P;is a core procedure if

(1) P=P, or

(2)P € (Learn L; P,,)and P, is core procedure.

Deletion
If P isa core procedure, then ail P’ € (Delete P) are core procedures as well.

Predictions

If S is the initial state such that {External S} is atest exercise, then the set of predicted
problem state sequence for students with core procedure P is exactly the set

{<{External So)..w.(Exter'na_l 5,0 | Vi §; € (Cycle P S,)}.

Thesc hypotheses say that the basic aréhitccture has two simple cycles. One cycle acquires a
procedure, and the other cycle executes a procedure to solve a problem. The acquisitional cycle is
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called the fearner in Sierra. It runs once for cach lesson: First it exccutes Learn on a lesson,
producing a set of procedurcs, then it executes Delete, which augments the set. The resulting set
of core procedures is fed back as input procedures for the next cycle of the learner. The other cycle
is called the soiver in Sierra. It executes a core procedure to solve some problems. It includes both
nurmal execution and local problem solving. Roughly speaking, the solver-cycle happens once for
each action of the procedure. The grain of the ¢y~le cannot be stated more precisely until the
procedure representation language becomes more defined. The relationship between the learner
and the solver are discussed further in section 2.1.

Observable predictions consist of problem state sequences. Each predicted student vehavior is
a set of problem state sequences, one sequence per test problem. {In particular, the solver generates
intra-test bug migrations as well as stable bugs.) These whole-lest sequences could be compared
dircctly to student behavior. However, given the numbers of students, core procedures, and repairs
involved, such a direct comparison would be an awcsome task. .\ much simpler test of the theory is
used. It is described in section 2.1.

8.2 Hypotheses and their support

The preceding formalisms serve basically as a framework on which mose substantive
hypotheses are hung. As mentioned, the expository tactic is to begin with undefined functions and
slowly define them. Most of the preceding chapters was concerned with defining Learn and
Cycle. This section presents each of the remaining "substantive™ hypotheses.

Induction
ffP € (Learn L, P, ;) then for each example problem x in (Examples L), the problem

state sequence that is £'s solution to x is equal to the problem state sequence that is the
solution to x usad in the example.

This hypothesis says that mathematical skill acquisition is inductive in character. The
arguments supporting it are in chapter 3. Inductive learning is the only learning framework of
those discussed that is consistent with the gross features of classroom learning. The induction
hypothesis is framed carcfully to work with the deletion hypothesis, which was stated above.
Although both Learn and Delete produce core procedures, the core procedures that Delete
produces do not generalize the lessons' examples. In a rough sense, the sequence of actions
produced by a deleted procedure is the same as the sequence of actions from the undeleted
procedure excepl that a few of the actions are removed. Delete-produced core procedures are not
consistent with the lessons, but Learn-produced ones are.

Show-work .
In worked examples of a lesson, all objects mentioned by the new subprocedure are visible,
unless the lesson is marked as an optimization lesson.

This hypothesis expresses a key felicity condition. Students act as’lf they believe that the
teacher will always "show all the work" while doing example exercises. For the portion of the
procedure that intryduces the new subprocedure, the teacher is expected to write down intermediate
results that are normally held mentally. For instance, the first lesson on carrying has examples like
this one:
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The units column ¢um, 12, appears explicitly rather than being h<.d mentally as it will be when
carrying is cventually mastered. Such mastery is taught in separate lessons that show how to avoid
some of the writing by holding interrediate results mentally. These lesson are specially marked.
The theory’s term for them iS opiimization lessons. Sierra doesn’t handle optimization lessons,
rostly because optimization lessons are not used in teaching subtraction and the other skills that
data are available on. The show-work hypothesis is one solution to the invisible objects problem of
inductive learning (see chapter 5). Other solutions have the same ernpirical adequacy as show-work,
but they have less explanatory adequacy. They do not explain why teachers almost always show
their work, nor do they explain why there are two kinds of lessons.

In order to formalize the next felicity condition, it is convenient to use three new undefined
functions. The formerly undefined function Learn will be defined in terms of them. The three
new functions are listed below, with informal explanations. Two Simple helping functions are
defined as well.

(Induce P XS) represents disjunction-free induction. The first argument, P, is a procedure,
The second, X8, is a set of worked example exercises. The function returns a
set of procedures. Each procedure is a generalization of P that will solve all
the exercises the same way that they are solved in the examples. Induce is
not permitted to introduce disjunctions. 1f the procedure cannot be
generalized to cover the examples, perhaps because a disjunction is needed,
then Induce returns the null set.

(Disjoin P X§)  represents the introduction of a disjunction (e.g., conditional branch) into P,
the procedure that is its first argument. The second argument, XS, is a set of
examples. Disjoin returns a set of procedures. Each procedure has had
one disjunction introduced into it. The disjunction is chosen in such a way
that Induce can gencralize the procedure to cover all the examples in XS. 1F
there is no way to introduce a Single disjunct that will allow all the examples
to be covered, then Disjoin returns the null set

(Practice P XS} represents another kind of disjunction-free generalization. onc driven by
solving a set of practice exercises, XS. Practice returns a set of procedures,
each one a generalization of its input procedure P.

(Examples L) This access function returiis the sequence of worked cxamples of the lesson L.

(Exercises L)  This access function returns the sequence of practice exercises of the lesson L.

" Given these functions, the renaining felicity condition can be simply stated:
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One-disjunct-perlesson

Let
(Learn P L)} =
If (Induce P (Examples L))#{} then (Learnl P L)
eise {LearnZ P L).

where
{Learnl P L) =
{P {3 P’ such that P° € (Induce P (Examples L))
and P” € (Practice P’ (Exercises L}) }.
and
{Lea 2 P L) =

{ P | 3 P such that P' € (Disjoin P (Examples L))
and P” € (Learnl P’ L) }.
Moreover, { Induce P XS8) and {Practice P X$) do not introduce into P any new
disjunctions or any new disjuncts on old disjunctions.and (Disjoin P XS) insertsinto P
exactly one new disjunction or one new disjunct on an old disjunction.

The Ffirst part of the hypothesis says, essentially, that Learn performs the functions Disjoin,
Induce and Practice. in that order. However, Disjoin is skipped if nt is unnccessary for the
particular lesson. The last two clauses of the hypothesis express a key idea: Students learn at most
onc subprocedure {disjunct) per lesson. Put differently, the students act as if they believe that the
teacher has designed the fesson sequence in such a way that introduction of a new disjunct
{subprocedures) always falls on a iesson boundary. Some subprocedures {disjuncts) may take
several lessons to learn, but no lesson introduces more than one. The arguments for the hypothesis
is in chapter 4.

This felicity condition is one solution to the disjunction problem of inductive learning.
Although onc of the competing hypotheses to it is just as empirically adequate as it, one-disjunct-
per-lesson has the added value that it cxplains why lessons are so often used and why they are
helpfu! when they are used. The other approach would work cqually well with a homogencous
sequence of examples rather than the partitioned sequence, defined by the Iesson boundaries, that is
actually used. Since the other approach ignores lessons, it can’t explain why the lesson convention
has been universally adopted as a helpful educational framework. Since the Felicity condition does
explain the wvse of lessons, it has greater explamatory adeguacy.

In order to state the remaining hypothescs, three more undefined functhions will be introduced.
They will be used to define Cyc1ae, thereby allowing the architecture of the local problem solver to
be cleanly expressed.

(Interprat P S} represents onc cycle of the normat interpretation (execution) of the procedure
P. The second argument, S, is a runtime state, Interpret rcturns the next
runtime state. Interpret is defined by the representation larguage used
for procedures,

{Impasse 3) is a predicate that is truc when the runtime state S is an impasse. It is
considered to be implemented vy a set of impasse conditions. If any impasse
condition is true, then Impasse is true, Impasse represents the problem
detection component of local problem solving.

(Rapair 8) represents the other half of local problem solving, repair. ft is considered to
be implemented by a set of repairs, such as Noop and Backup. Repair
returns a st of runtime states. Each state results from the action of onc of
the rcpairs on the input state S,
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Witk these functions, it is simple to state the main hypothesis governing local problem solving.

Local problem solvirng
Let
(Cycie P S§) =
if ~(Impasse S) then {(Iaterpret P S)}
else {(Interpret P S’) | S'€ (Repair S) and~(Impasse §')}

The usual cycle 15 simply to exccute the function Inverpret once. However, if Impasse is true,
then an exccution of Repair is inserted before the Interpret. Repair outpuls a set of states.
Some of these are filtered: if Impasse is true of a state, then that state is not passed to
Interpret. Usually, several of Repair's outpul states are left after filtering. Hence, the
exccution cycle becomes non-determimistic at this point. Several ideas behind this hypothesis are so
important that it is best to break them out separately, as “corollaries” of the main hypothesis, so
that they -~an be easily referenced later.

Repairimpasse independence
Any repair can be auplied to any impasse.

Filter-trigger symmetry ]
An impasse condition triggers local problem solving if and only if it also acts as a filter on
repairs.

These two corollaries emphasize that local problem solving really is psoblem solving, where
the problem is being stuck. The problem is not solved until the procedure is unstuck (filter-trigger
symimetry). Moreover, it doesn’t matter how one gets unstuck as long as one succeeds (repair-
imy asse independence). The arguments for local problem solving are presented in chapter 6. 1t is
shown that the theory could do without it and still generate some bugs, but in doing so it would
lose much of its ability to explain those bugs. Essentially, it would have to build certain observed
bugs explicitly into the set of primitives that are assumed to be present before iearning begins.
Thus, it offers no explanation for why these bugs occur and not others. Another "corollary” of the
local problem solving hypethesis is

Dynamic LPS _ ) )
The local problem solver reads and changes {a¢ dynamic (runtime) state, but it does not change
the procedure’s structure.

This says that impasses and repairs effect the runtime state rather than the procedure’s
structure. The kind of information that impasses and repairs need is available at runtime but not
statically. The arguments for this hypothesis are in scction 6.4.

Ther: is another key feature of local problem solving that needs mentioning despite the fact
that I have no defense to give for it. It is difficult to state formally. although the basic idea is clear.
The repairs that have been discovered so far are extremely simple local changes to the interpreter's
statc. Also, impasse conditions are unsophisticated, local checks. The local problem solver does not
scem to do any large computations, nor does it lovk ahcad to see the consequences of its actions or
the interpreter’s actions. The local problem solver doesn’t really go looking for trouble, but when it
encounters som: it just barges through it expending as little work as possible. To summarize this
general impression, it is convenient to name the hypothesis:

Locality
The repairs and impasse conditions are local,
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This doesn't really constrain the model s0 much as cxpress an orienfation or direction in the
ongoing cndeavor of making local problem solving more precise.

8.3 Commentary on the arguments and inherent problems

The arguments presented in the preceding chapters have nothing o do with the way the
principles were actually discovered. The tales of the principles’ discoveries deserve to be told Jate at
might over a couple of beers, if at all. The supporting arguments were constructed more recently.
A main task of their constnuction was the discovery and unasrstanding of the problems that the
principies solve. This was sometimes a nontrivial task. For instance, it was plain to see what
happened when the shuw-work hypothesis was turned off in Sierra: the model overgenerated wildly.
But it was not clear whether this was a problem with the particular knowledge representation being
wed or whether the explosion was due to a more general problem. i appears now to be a general
problem, labelled the invisible objects problem. 1t seems to be a problem that affects any inductive
acceunt of learning. despite the fact that it has slipped by unnoticed in virtually all AT work on
inductive learning. For lack of a better word, such general problems will be labelled inkerent
problems. because they scem inherent in any study of the domain.

Three kinds of inherent problems occurred in the preceding chapters. One inherent problem
was figuring out how much of the classrooin experience could be ignored. There isn’t inuch to say
about this problem. Onec takes a broad look at the phenomena and their context, makes a guess,
and constructs a theory. In this case, it is fairly ¢lear that induction is a reascnable guess. For skills
other than mathematics, it may be much less clear which frameworks will yield sugcessful theorics.

A sccond kind of inherent problem involves what one could loosely call laws of information.
The problems scem to be inherent to any thinker, mechanical or human, that performs the given
nformation processing task. In this case, two inherent problems with induction were encountered:
the disjunction problem and the invisible objects problem. Such informational problems are
extremely subtle. They are subtle in two ways. First, it is hard to discover that the problems are
there and what their cxact nature is. For instance, the disjunction problem, which is well known to
philosuphers, has not been generaily acknowledged by Al researchers until recently. Some linguists
still tend to misunderstand it as a problem concerning the preselice or absence of negative examples
(scc section 4.1). Information is apparently very slippery stuff. One can get buried in the
formalisms used o express and manipulate it, so buried that a whole learning machine can be
constructed without ever realizing that one has somehow solved an informational problem or even
that the problem was there at ail

The second subtlety with informational problems comes out clearly in the arguments of
chapters 4 and 5, Certain solutions to the disjunction problem and the invisible objects problem are
often cxtremely difficult to differentiate on cmpirical grounds. For instance, it is difficult to
differentiate the hypothesis that icamers introduce the minimal number of disjuncts from the
hypothesis that they introduce at ~ost one disjunct per lesson. To split these hypotheses is not
possible with the current lesson seyuences since the hypotheses make identical predictions using
them. Empirical tests that could differentiate the hypotheses would require difficult and morally
questivnable educational experiments. The subtlety of splitting hypotheses about how people solve
informational problems makes sense in the context of the c¢ollective experience with computer
programming. It is an axiom of programming that there are many ways to solve an information
processing problem. Some may perform very similarly despite significant underlying differences.
By analogy. t' ere must be many pussible solutions tu human information processing problems. it
will not always be simpic to tell which one(s) people use.
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The third kind of inhcrent problem is relatively straightforward. There are certain patterns in
the data that stick .t like scre thumbs. The problem is to account for them. Three major paticrns
were discussed in the preceding chapters: overgencralization bugs (section 6.1}, Cartesian product
bugs (section 6.3) and deletion bugs (section 7.1). Each has an intuitively compelling explanation.
In these cases, the cxplanations arc based on overgeneralization, invention and forgelting,
respectively.  However, closer examination reveals that the phenomena can be accounted for by
other means. In fact, any one of the three mechanism -- overgencralization, imvention, and
forgetting ~- can account for all three patierns. However. in doing so, they take on an
uncenstrained, stretched aspect. Stretching the mechanisms to cover phenomena for which they are
ill-suited leads to a lack of cxplanatory adcquacy.

In short. solving even the simplest inherent problems in the theory requires appealing to
explanatory adcquacy. This was quile a surprise o me. Before the arguments were carefully
worked out, 1 had expected empirical evidence to resolve most of the arguments. In fact, it does do
most of the work, but it seems always to fall a little short of eliminating the last one or two
compelilors.

8.4 Preview of Part 2

Part 2, the representation level, consists of chapters 9 to 16. It tackles the problems of
knowledge rcpresentation, although details of the syntax of the knowledge representation are
delayed until the next level. The representational level addresses issues concemed with capabilitics
and cxpressive power. 1t addresses questions such as: showd procedures be finite state automata,
stack automata. or somcthing more cxotic? Should patterns have the full descriplive power of a
first-order logic? How much flexibility should there be in storing and restoring focus of attention?
What about "short-term memory” for numbers?

The organization of the exposition divides represcntational issues along fairly traditional
compuler science lines. The first two chapters discuss conirol flow and dgia flow. The terms are
taken from Rich and Shrobe (1976}, who adopted these concepis in order to analyze programs from
a language-independent position. (A more common use of the erm "data flow,” as in data flow
computer languages (Dennis, 1974). has different connotations than the oncs intended here)) The
tack taken in these Iwo chaplers is to find out what constraints should be placed on the
representation’s ability 1o express control flow and data flcw, and indecd, whether they should be
separated at all. Chapter 13 concerns how procedures should nferface with the external world. The
external world of a compuicr program is usually an operating system, and the interface to it is
notoriously ad hoc. For the procedures of mathematical calculation, the external world is a writing
surface. such as a picce of paper. The interface 15 concerned with how that resource is addressed,
read and written. For instance, how is the paper searched to locate information fitting a partial
specification? To answer this question, the interface chapter describes the paiterns that can be used
for specifications and the kind of searches that can take place.

The modularity hypothesis and argumeniation

Representational gquestions such as the ones above are cxtrcmely. general. They can be
construed to cut across many task domains (c.g., the issuc of working memory). Onec way to argue
these issues is to refer 10 results from all over psychology. Thus, results from digit span
experiments would be uscd to justify a particular choice of working memory. c.g. a buffer with
742 cells. This style of argumentation was pursucd by Newell and Simon in their work on human
problem solving (1972). 1 doubt that 1 could improve on that magnificent accomplishment.
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However. the underlying premise of that style of argumentation is that it is valid to use resulls
from all sorts of tasks to argue for a particular information processing task. In particular, the
assumption is that the mind is like a gencral-purpose computer. the mind uscs the same architecture
to perform a huge variety of tasks by loading itself with different programs. This premise has
recently come under heavy fire in cognitive science.

Fodor, Chomsky and others of the MIT school of cognitive science have argucd that it makes
Just as much sense to assume that the mind is modular (Fodor, 1983). Their ¢laim is that mental
architectures are specialized for the processing that they do. DBy analogy with programs, the
modulanty hypothesis is plausible. Computer science has found that there are some things that the
vonNeuman architecture (the one used by most computers) 1s poor at. such as certain kinds of
paltern recognition.  Yel other architectures have been devised that do such tasks rapidly with
simple programs. If the modularity hypothesis is true, then tho style of argumentation used by
Newell and Simon is no longer valid. To be trustworthy, an argument can use data only from the
task. at hand. This is exactly what the arguments of the next level do.

Registers and stacks

One of the earliest and most fundamental thanges in computer programming languages was
the move from register-oriented languages to stack-oriented languages. In register-oriented
languages. one represents programs as flow charts or their equivalent. The main structure for
regulating control flow is the conditional branch. Data flow is implemented as changes to the
contents of various registers. Stack-oriented languages added the idca of a subroutine. something
that could be called from Scveral places and when it was finished, control would return to the caller
of the subroutine. While the register-oriented languages need only a single pointer to keep track of
the control state of the program, stack-oriented languages need a last-in-first-out stack so that the
interpreter can tell not only where control is now (the top of the stack). but where it 15 to return to
when the current subroutine gets done (the next pointer on the Stack). and so on. The shift of
compulter science to stack-orientation also augmented the representation of data flow. A new data
flow facility was to place data on the stack, as temporary nformation associated with a particular
invocation of a subroutine. In particular, subroutines could be called recursively w h parameters
(arguments).

The fundamental distinction between register-orientation and stack-orientation has lapsed into
historical obscurity in computer science, but surprisingly. psychology seems to be somewhat slow in
making the transition. When a psychologist represents a process, it is frequently a fiow chart, a
finite state machine or a Markov process that is employed. Even authors of production systems,
who are often compuler scientists as well as psychologists, sometimes give that knowledge
representation a register orientation: working memory looks like a buffer, not a staek, and
productions are often not grouped into subroutines. For some reason, when psychologists think of
temporary memory, whether for control or data, they think of global resources, such a registers.
This tradition shows signs of changing. More recent production system architectures, such as
Anderson’s ACTF (1982), use goal stacks, subroutines, argument passing, etc.

There are well known mathematical results concerning the relative power of finite state
aulomata, register autloméata and push down automata. Some Of these results have been applied to
mental processes such as language comprehension (se¢ Berwick {1982) for a review). However, |
find myself rather unconvinced by such arguments. As Berwick and others have pointed out, these
arguments must make many assumptions {o get off the ground, and not all of them are explivitly
mentioned, much less defended,
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The project of these chapters is to argue for a modern representation of core procedures based
on a rich structure of motivated assertions: the hypotheses of the architccture level. The discussions
in the architecture level did not make strong assumptions about the reprcsentation language because
they dealt with the facts at a mediumrhigh level of detail. The arguments in the representational
level show what must be assumed of the representation language in order to Push the structure of
the architecture down to a low enQugh level that precise predictions can be made, and made
successfully. That is, they show what aspects of the knowledge representation are crucial to the
theory.




Chapter 9
Control Flow

The vbjcutive of this chapier is to show that the control structure is recursive, The argument
starts with o mimunum of assumptions sbout control.  Instead. the hypotheses on local problem
solving and subprocedure acquisition from carlier chapters will be used. However, it is necessary to
speak 10 an informal way of goals and subgoals. with the intention that these be taken as referring
to the procedural knowledge of subtraction itself. rather than expressions in some particular
representation (€.8.. production systems. And-Or graphs. etc.). In particular, it will be assumed that
burrowing s 4 subgoal of the goal of processing a column. and that borrowing has two Subgoals,
named borrowing-into and burrowing-from. Borrowing-into is performed by simply adding ten 0 a
coernan digit in the top row, while the borrowing-from subgoal i$ realized cither by decrementing a
certawn digit, or by invoking yet another subgoal. borrowing-from-zero. These assumptions, or at
least some assumptions. are necessaly 10 begin the discussions. They are some of the mildest
assumptions one can make and Still have some ground t0 launch from.

Three control regimes are considered in this chapter:

1. Finte state automata: The internal. execution state for the core procedure iS limited o a
single "you are here” pointer. 1t indicates which state (or goal. or rule, or other construct In
the procedural representauon) is currently exccuting. The procedwie may or may not be
structured hierarchically. However, if it is, it may not have sclf-embedding subprocedures, i.e.,
subprocedures that call themselves recursively ecither directly or via other Subprocedures.

4

Push down automata: The internal, execution state for the procedure contains a last-in, first-
out goal stack. The stack stores the currently exccuting goal’s state by pushing. It resets the
control state to a saved goal by popping. The procedure’s structure may have recursive
subprocedures.

3. Coroutes: Coroutines are ‘ndependent parallel processes, cach roughly equivalent to a push
down automaton. They arc taken as a representative of the clags of higher-order control
structures. ’

The third alternative isn't considered as seriously as the others. The main competition is between
finite statc and push down automata,

Formal auiomata resulls

there are formal results concerning the expressive power of these control regimes. 1t can be
proved that there are cértain tasks that can be accomplished by procedures writien for push down
automata, and vet no procedure written for a finite state antomata can perform the ‘tasks in their
full generality. These formal results are irrelevant here for several reasons: {1) The procedures for
mathematical skdls can be casily expressed for finite state automata. (2) The formal expressability
arguments turn on the fact that a push down autumaton's Stack can be infnitely large. A push
down automaton with a finite upper bound on its stack length is equivalent in power to a finite
state automata. An infinite stack is physically impossible to implement on material information
processors. mcluding brains and digital computers. There are no true push down auto pata in the
material world.
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These trite observations show the impolency of expressability arguments for erpirical theories
{(but not for mathematical ones). The psychologically inleresting issues concern | - closely the
automata’s architectures approximate the structure of the mind's information. 7o put it differenty,
the question is which control structure hest fits the obsersed procedure. where "fit” is evaluated by
seeing whether the rontrol structure cnables the irvwcdure’s representation to be simple while

capwuring the cmpirical cvidence.

‘This chapter offers two kinds of arguments. One concerns local problem solving and the
other concerns learning.  Both argements show that a stack-based architecture simplifies their
respective components. the local problem solver and the learner, while capturing the cmpincal facls
in 2 patural way, The arguments concerning the lwal problem solver are rather complex. Despite
the fact that they are some of the sirongest and most elegant arguments in the whole document,
they are also the longest so they have been moved to an appendix (appendix 10, sections 1 and 2},
Ouoly a synopsis will be presented here.

9,1 Chronological, Dependency-directed and Hierarehical backup

Control structure is not casily dadueed by observing sequences of writing actions. Too much
mnternal computation can go on invisibly between obsened actions for one to draw strong mferences
abeut control flow. What is needed is an ¢vent which can be assumned or proven to in some sense
be the result of an clementary. indivisible control operation, The instances of this event in the data
would shed light on the basic structures of controf flow. Such a tool is found in a particular repair
called the Backup repair. It bears this name since the inwition behind it is the same as the one
behind a famous strategy in probicm solving: backing up to the last point where a decision was
made in order lo try onc of the other alternatives, This repair is crucial to the argument, so it is
worth a moment te intreduce it

Figure 91 is an idealized protocol. of a subject who has the bug Smaller-From-Larger-
Instcad-of-Borrow-From-Zero. The (idealized) subject does not know about borrowing from zero.
When he wackles the problem 305-167. he begins by comparing the two digits in the units column.
Since 5 is less than 7, he makes a decision to borrow (episode « in the figure). a decision that he
will later come back to, He begins to tackle the first of borrowing’s two subgoais. namely
borrowing-from (episode ), Al this point. he gets stuck since the digit to be borrowed from is a
zero and he knows that it is impossible to subtract a onc from a zero. He’s reached an impasse.
The Backup repair gets past the decrement-zero impasse by “backing up.” in the problem solving
sense. o the last decision which has some alternatives open.  The backing up oceurs in episode ¢,
where the subject says, "So I'll go back to doing the units column.”  He takes one of the open
alternatives, namely to process the units column in a normal. non-borrowing way. Doing so, he hils
a second impasse. saying, "1 still can’t take 7 from 5" which he repairs (so Ii take 5 from 7
instead™). He finishes up the rest of the problem without difficulty. His behavior is that of
Smaller-From-larger-Instead-of-Borrow-From-Zero.
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a 305 In the units column, | can’t take 7 from 5, so I'll
-167 have to borrow.

b. 305 To borrow, | first have to decrement the next
- 167 ~~'ymn’s top digit. But i can't take " from 0!

e. 305  Sol'llgoback to doing the units column. 1 still can't
-167 take 7 from 35, so I'll take 5 from 7 instead.

d. ‘ 3'05 In the tens column, I can’t take 6 from 0, so I'll have to borrow.
- 167 I decrement 3 to 2 and add 10 to 0. That's no problem.

2
2
€ 3‘ 05 Six from 10is4. That finishes the tens. The hundreds is
- 167 easy, there’s no need to borrow, and 1 from 2 is 1.
142

Figure 9-1
Pseudo-protocol of a student performing the bug
Smaller-From-lLarger-Instead-of-Borrow- From-Zero.
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From the pscudo-protcol, il is clear that the Backup repair sends control back o some
previous decision point so that a different alternative can be pursued. The /Zritical question is, what
determines the decision point that Backup will return to? There are thiree well known backup
regimes used in Al )

1. Chronolugical Backup: The decision that i returned to is the, onc made most recently,
regardless of what part of the procedure made the decision

[

Dependency-directed Rackup: A special data structure is used to,record which actions depend
on which ather actions. When it is necessary to back up. the dépcndcncics are traced to find
an action that doesn’t depend on any other action (an "fsumpliOn" in the jargon of
Dependepcy-directed  backtracking).  That decision is the jone rcturned to.

3. Hherarchical Rackup., To support Hierarchical Backup, the pjucedure representation Janguage
must be hictarchical in that it supports the potion of goals with subgoals. and the interpreter
must employ a goal stack. In order to find a decision to réturn to. Backup searches the goal
stack starting from the current goal. popping up from goé to supergoal. The first (lowest)
gual that can “try a different method” is the one returned fo. Such a goal must have subgoals
that function as alternative ways of achieving the ggal. and moreover. some of these
alwernative methods/subgoals must not have been tried Py the current invocation of the goal
When Backup finds such a goal on the stack. it resets, the interpreter’s stack in such a way
that when th& interpreter resumes, it will calt one of ilfe goal's untried subgoals. (In Al, this
15 not usually thought of as a form of Backup. It, is sometimes referred to by the Lisp
primitives used lo implement it, eg.. THROW in /Maclisp, and RETFROM in Interlisp.)

The key difference among these backup regimes is, intui}l\rely speaking, which decision points the
interpreter "remembers.,” These establish which decision points the Backup repair can return to. In
Caronological and Dependency dicected backtracking., the interpreter “remembers™ all decision
potnts.  {n Hicrarchical backup, it forgets a dccision!,point as soon as the corresponding goal 15
popped. The critical case to check is whether students cever back up to decision points whose
correspunding goals would be popped if goal stack$ werc in use. IFf they don't return to such
"pupped” decision points, then Hicrarchical Backup is the best model of their repair regime. On_
the other hand. if students do return to “popped” decisions. then either Chronological or
Dependency-direcied Backup is the better modgl.  Evidence is presented in appendix 10 that
students never back up lo popped decision points. By “never,” I mean that returning to popped
decision puints generates star bugs. This evidence vindicates Hierarchical backup, and shows that
(1) procedures’ static structure has a goal-subgoal hicrarchy, and (2) a goal stack is used by the
interpreter in cxccuting the procedure. In shprt, push down automata arc better models of control
structure than finite state automata. /

/

f

;
9.2 Onc-disjunct-per-lesson entails recursfve control structurc

There is a second argument for /rccursi\rc control regime. It shows that recursive control
structure is necessary for the one-disjuptct-per-lesson hypothesis to be true, That is, if the language
van’l use recunion, then the one-disjunct-per-lesson hypothesis cannot be imposed without causing
the theory to luse empirical adequagy. The argunent involves lcarning a certain way lo borrow
across Zcro, one that borrows centér-recursively. In fact, it is the most widely taught BFZ (i.c.,
borrow from zero) method. It has been used throughout this document for examples. It is
exemplified in the following problem state Sequence:
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2 29 29 29 29
3lo 5 30 5 3lo g slols alols 3'ols
-129 -129 -129 -129 ~129 -~129
6 176

The zero has ten added to it, then the three is decremented, then the newly ercated ten is
deeremented.

The claim is that the only way to learn this way of borrowing in a non-recurSive language
violates the one-disjunct-per-lesson hypothesis. To make the argument concrete, a particular non-
recursive language. namely flow charts, is used. Figure 9-2a shows borrowing from a core
procedure that oniy knows how to borrow from non-zero digits. Figure 9-2¢ shows borrowing after
borrowing across zero, in the fashion above, has been leamned. Clearly, there are two branches to
icarn.  One moves control leftward across a row of zeros, and the other moves back across them
until the column originating the botrow is found (i.c., the Home? predicate is true of the column
B). ‘There are many other ways thai borrowing could be implemented, but if recursive control is
not available, they would all have to have two loops — one for traversing columns leftward, and
one for traversing columns rightward.

Y Y Y

I (AddTen B) 1 ! (AddTen B) | | (AddTen B) ¥K—

| Be(NexiLettB) | : B+ (NexiLe#t B) | | Be(NextLe#tB) |
Cagm 2 Cgeore ¥
| (Add'g'enB)_l

Be(NextLeft B

[ (Decre:‘nenl B) J

B+ (NextRight B
L ( e)-:l ight B) | J
| (DecrementB!_l I (Decre:-nenl B) J( | {Decre:'nenl B) %—
| B+ (NextRight B) | { B« (NextRight B) | | B+(NextRight B} |
(Home? B) =2
a b. C.
Figure 9-2

A non-recuisive representation of borrowing from zero.
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Disjunction-free learning sanctions the acquisition of at most one branch, and this must be
one that adjoins (he newly leamed subprocedure to the older material. A formal definition of
branches and ad unction depends on the syntax of the Janguage. but the essence of it should be
clear by examinng the difference betwsen figures 9-2a and 9-2b. Funclionally. the difference is
that the core procedure of figure 9-2b has leamed how 1o boirow from one zero.  Syntactically,
there is une bronch, and it is an adjoining branch because one arm of the branch skirts the new
material. Thc ssence of adjunction is that one arm of the new conditional replicates the old
procedures control pathway.

"t should be clear that the transition from 9-2a to 9-2¢ requires adding two disjunctions and
thus violates the one-disjunct-per-lesson hypothesis. It is less clear. but equally true, that going
from 9-2b to 9-2¢ requires adding two disjunctions {plus deleting some material as well). Two
disyunctions must be introduced at exactly the lesson where the procedure goes from an ability (o
borrow across stme finite number of zeros, o an ability to borrow across an arbitrary number of
zeros. 5o, the fimte state architecture forces the leamer to violate the one-disjunct-per-lesson
hypothesis,

Yet, if the language allowed recursion, then the BFZ goal could be represented as in figure
9-3b. with a recursive call (o uself (the heavy box labelled “Borrow™). ‘This representation allows
the transition from non-zero borfowing (9-3a) to borrowing-from-zero (9-3b) to obey the one-
disjunct-pei-lesson hypothesis. In short. the language must have a recursive control structure s¢ that
a cerin acquisitional transition obeys the onc-disjunct-per-lesson hypothesis.

v

Borrow

[tacorens) | _; L | (AddiTenB) |

| Be(NextLeftB) | _': b | Be(NextLeftB) |

(Zero? B)
I

| (Borrow) |

i ﬁ : .
|_(Decrement B) | ] | (Decre{nent B) {é——
[ B« (NextRight B) | § [B-vextRightB) |

Figure 9-3
A recursive representation of borrow’ - g from zero.
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9.3 Morc powceful control structures

There arc more powerful control regimes than stack-based ones. However, they introduce
extra flexibility into the way control can be expressed. This extra flexibility is not only unnecessary,
but it can cause the theory to make spurious. absurd predictions. As an example of the trouble
mure powerful control regimes cause. consider a simple control regime. Coroutines are a control
structure that allows independeni processes. cach with their own stack.  This control Structure
increases the cxpressneness of the language, which allows acquisition to generate absurd core
procedurcs. To demonstrate this point, consider the lcarning of simpic borrowing. The
instructional sequence has a probiem state scquence such as:

3 3 3
45 45 46 4lp
-29 -29 -29 -29
6 16

Given that corputines are allowed, one way to constiue the first two actions, the new ones, is that
they arc a ncw coroutme. It happens that the example has this coroutine exccuting before the old
ene, but the learner need not take that as necessary. The wore procedure could execule the
coroutines interlcaved, as in

3 ’ 3
46 alg 4l 41p
-29 -29 -29 ~29
6 6 16

That is, the fisst action of the new coroutine occurs, then the first action of the old ¢rroutine. Next,
the new coroutine resumes, and the borrow-from action occurs. Lastly, the old coroutine resumes,
and answers the tgns column. There arc other ways that the interleaving could happen. If the old
coloutine finishes before the new one, then the problem is answered incorrecdy, because the
borrow'from happens after the answer is written down:

. 3
4lp 4lp alp Alp
-28 -298 -28 -29
6 26 26

These are all ways of executing the same core procedure, one that was learned from an entirely
correct sequence of actions. This core procedure seems an absurd prediction 1o make, a star bug.
in short, the use of a more powerful control regime allows acquisition to gencrate core procedures
that 1t should not. Restiicting the conirol regime to be a stack improves the empirical adequacy of
the thecory by blocking the star bug.

9.4 Summary and formalization

Two arguments have been presented showing that a goal stack is necessarily a part of the
execution state and that procedures should employ .+ goal hierarchy, A third argument made the
casc that it was inadvisable to have a more flexible control structure than a simple stack-based one.
The conclusion is that procedures should be represented with a recursive control structurc and that
the interpreter should use a goal stack.
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There "a many formal languages for representing procedures that have such a control
structure.  Lisp 5 one. Certain varictics of productions systems also use recursive control.
Unfortunately. 1 know of no way w0 fornally specify a recursive control structure without aiso
providing a fairly detailed specification of the language. For casy reference later, the basic idea will
be recorded as an informal hypothesis, then a formal cxpression of it will be developed.

Recursive control structure

Procedures have the power of push down automata in that the representation of
procedures permits goals 1o call themsceives recursively, and the interpreter employs a
goal stack.

There are several reasons for going beyond this informal expression and providing a formal
description of the control structure. First, a formal description adds clarity not only to the
description of the procedural representation but also to the other components of the model, such as
repairs and deletlon, which manipulate procedures and exccution stales. A second reason for the
extra wock of formalization is to bring up some tacit issues that arc inhercnt in a recursive control
regime. ‘There are two such tacit issues. Onc concerns how the interpreter should choose which
subgoal of a goal to run. The other concerns how the interpreter should decide when a goal is
salisfied and may thus be popped from the goal stack.

To begin. a vocabulary is needed to speak of the static structure of procedures. For the
purposc of control structure, only a few Llerms arc nceded:

goal: A procedure has tokens (names) called goals.

rule; The subgoals of a goal are represented as a set of rules
"under” that goal,

applicability conditions:  The condition under which a subgoal may be exccuted are
separated from it and used as the applicability condition of
the corresponding rule,

action: The other half of a rule is the name of the subgoal. In
keeping with production system terntinology, this is called the
rule’s action {cr sometimes its subgoal).

When necessary for illustrations, the following syntax will be used:

Goal: Borrow-from
1. T=0inu, ~urrentcolumn = BFZ
* 2. T#0in the current column = Decremer.*

The goal is named Borrow-from. It has two rules. The rule numbers arc used only as labels. Each
rule has an applicability condition to the left of the arrow and an action {goal name in this case) to
the right. Nc¢ ing important depends on this syntax.

A goal with no rules under it is called a primitive goal. Primitive goals arc al the grain-size
boundary of the procedural representation. They represent actions, such as moving the hand to
write a digil. that arc bencath the grain size of the model. In order to deal with them, the
interpreter is equipped with a special operation, Eval, that may be applied to a primitive goal and
the current runtime state. Such a call will change the external (problem) state, but it wilf not
change the internal (cxecution) state. Managing the cxccution state is the interpreter’s job, with
<oric help from the local problem solver. of course.
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Given the notion of godls. the internal (execution) slate of the interpreter can be defined. It
cannul simply be a stack uf goals. 1t tust have 4 little more information. The extra information is
needed Lo exccute conjunctive goals, such as Burrow. which perform several ryles before popping.
The extra infonnation indicates which of the goal's rules have already been exccuted. This prevents
the conyuncbive god from deciding to run the same rule over and over again. The casicst way o
add this cxtra information to the exccution state is to stipulate that the stack holds pairs consisting
of (1} a goal. and (2) the subset of the goal’s rules that have already been run. When a goal is first
pushed ontu the stack. the set of executed rules will. of course, be empty. ‘There is nothing special
guing on here.  Any recursive language's interpreter would have to have some such information
{(..f, thc refractunness princple for conflict resolution in production systems, MclDermott and
Forgy, 1978).

There 1s one other kind of extra information that must be a part of the execution state. It is
not a part of the stack. At mimmum. only a single bit is necded. Basically. it remembers whether
the iterpreter’s last action was a push or a pop. The rcason this extra bit of control state is needed
15 that the Backup repdir is impossible to implement without it. Backup pops the stack back to an
OR goal (OR guals will be formally introduced in the next chapter). Normally, when control pops
back tw an OR, that goal immediately pops. Since OR goals only execute one rule, and a rule was
Just exccuted. the OR goal is dome and should be popped. However. Backup needs to reset the
exccution state so that the OR will be resumed. The idea behind Backup is to take some alternate
rule to the one that led to the impasse that it just repaired. The problem is how to tell the
interpreler not to pop the OR but instzad to pick another rule and execute it. Backup cannot
change the sct of tried rules associated with the goal. These must be left alone so that Backup will
not causc the interpreter to take the impasse-causing rule over again. Since the stack will not
suffice for Backup to communicate with the interpreter. a new bit of exccutlon state is nceded. This
bit will be called microstate.

Formally, defining the interpreter means defining the function Interpret. In section 6.5,
Interpret was introduced as an undefined function whose input is a runtime State and the core
procedure. Its output 1s the next runtime state. Given the concepts introduced so far, it is easy to
define Interpret. Some nomenclature is needed:

(Goal-T0S S) The goal on the top of the stack in the runtime state S.

(ExecutedRules-TOS S) The set of exccuted rules on the top of the stack of the runtime state S.

(Microstate §) The microstate of the runtime state S.

{(Push § G RS) Changes the runtime state S by pushing the goal G and the rule set RS
onto the stack. Also. it changes the microstate of S to Push.

(Pop S) Pop’s the runtime state’s stack and sets its microstate to Pop.

(Eval G §) Evaluates the goal G, which must he primitive. This changes only the

external component (i.c.. problem state) of runtime state S.

These are defined functions that access and change the runtime state in sin sle ways. However, two
aew funcuons are nceded which will remain undefined until the next chapter:

(PickRule §) Given the current runtime state S, PickRule chooses one of the top
goal’s rules as the next rule to execute and returns it. Typically,
PickRule tests the applicability conditions of the rules of G that have
not yet been executed. 1t finds the rules whose conditions are true in
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the current state. These are the applicable rules for the current
instantiation of the goal. Ifscveral rules arc applicable, PickRule
applics criteria, called conflict resolution strategies, 10 chose which of
the applicable rules to return. 1ixe next chapter specifics the conflict
reselution strategics, thus defining the function.

(ExitSoal? §) This predicate is truc when the runtime state S is such that the current
goal should be poppced.

The definition of Interpret is shown in figure 9-4. There arc two basic cases: (1) If micreate
is Push. then the current goal has just been started up. If it is a primitive goal, then the interpreter
Jjust executes ;. otherwise, a rule is chosen and exccuted. (2) If microstate is Pop, then the current
goal has just had onc of its rules cxecuted. The choice is between resuming it by choosing a rule
and cxccuting it, or cxiting the goal by popping the stack.

Local problem solving and the execution state

As diecussed (n scction 6.5, the local problem solver and the interpreter take turns cxamining
the runtime state and modifying it. Although it is premature to venture a complete definition of
how repairs and impasse conditions arc implemented, it is interesting to skeich a few of them.

Therc is an impasse condition that checks the preconditions of goals. Preconditions need to
be checked just before a goal is cxecuted. This is casily done using microstate. Fxpressed
informally, the impasse condition is a three-part conjunction:

1. (Microstate S)=Push, and
2. there exists a precondition C for (Goa1-T0OS S), and
3. Cisfalsein§S.

Another impasse conditien detects when the interpreter would halt because no rules apply. It's
expression is also a conjunction with three conjuncls:

If (Microstate S)=Push then
If (Goal-TOS S) is primitive then
1. {Eval (Goal-TUS S8} §)
2. (Pop S)
else (ExscuteRule S (PickRule 5))
elsg
1¥ (ExitGoal? S) then (Pnp S)
else (ExecuteRule S (PickRule S}).

where

{ExecuteRuie S R) =
1. Add R to (ExecutadRules-TOS S)
2. {(Push S (ActionOf R) {})

Figurc 9-4
Definitionof Interpret.
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.  (Goal-TOS S} isnota primidve goal, and
2. cither (Microstate S)=Pushor (ExitGoal? S)=false, and
3. (PickRule $) returns no rule,

The jdea here is that the halt impasse cundition first checks to sce if PickRule will be called by
the interpreter. If so, it calls PickRule itself to see if it is able to find a rule that is applicable. If
nol. then the procedure is stuck, the impasse condition iS true. and a halt impasse occurs.

Repairs are equally simple to cxpress. The Noop repair is virtuaily trivial. It simply calls
(Pop S). This simulates a return from the current goal. The Backup repair is only a little more
complex. 1t calls (Pop S} until (Goal-T0S S) is a disjunctive goal that has some unexecuted
rules. Then it sets microstate to Push. Since microstate is Push, the interpreter will wind up calling
PickRule and cxecuting another of the ~oal’s rules. If Backup left microstate at Pop. then the
interpreter would call ExitGoal? and probably wind up popping the stack that Backup so
carclully adjusted. Microstate, or something like it, is crucial to expressing diec Backup repair.
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Chapter 10
Goal Types

‘I'he previous chapter dealt with control flow from a broad perspective. 1t contrasted three
contrul regimes — fimite state. recursive. and coroutine — that permeate the whole of the procedure
representation language.  There is another perspective on control flow, a more narrowly focused
vnc. but onc that is equally familiar to people designing of learning compuler programming
languages. what contrul cunstructions does the language allow? For instance. docs the language
support any of these:

if-then-clse

Casc or SelectQ

COND

AND

OR

While or Until loops

PROG or BEGIN..END Blocks
“"For ifrom1toN do..."

“For cach xin theset § do...." |
"Find x in the sct S such that ..."

The equivalent of such questions can be mcaningfully asked of the language used to represent
human procedures. Given that “goal” is the term used for a 8roup of related subgoals. the question
asks what goal types or goal schemata exist. For a procedure lcarning theory. postulating a goal
type of the representation language means thae the students have a prior expeciation that a certain
pattern of control will be common. If the learning theory postulates a bias (simplicity metric) of a
proccdure inducer. then hypothesizing a goal type amounts o paramelerizing the bias so that the
inducer tends to view examples as having a certain pattern of control. the one expressed by the goal
type, rather than construing the examples as exhibiting other flows of control, Later, in the Bias
level of this document, several inductive biases will be posiulated. So the issue of goal types is an
important onc for step theory.

The same comments apply to repair theory. Both local problem solving and deletion are
affected by the goal-subgoal hicrarchics of the core procedures that they operate on.  Since goal
types can affect those structures, the existence and identity of goal types can impact repair theory.

There is. however. an inherent methodological difficulty in determining which goeal types exist.
Most goal types are redundant in that their pattern of control can be expressed without them, albeit
less concisely. In fact, a single goal type syffices (o express ali the others.  As proof, onc can offer
production systems. A typical production system uscs just onc goal type. For instance, a goal like
the following onc acts like a PROG (in Lisp) or a BEGIN'-END block (in Algol):

Goal: Regroup (T}
1. {}= (Borrow-into T)
2. {} = (Borrow-from (Top-of-next-column T))

{In this cxample and the ones following it, a few inconscquential conventions have becn adopted.
Each geal has its subgoals listed as production rules beneath it, numbered for convenicnce only.
The conditions governing when a rule can be executed are in braces on the leRt of the arrow. The
rule's action is on the leR. Arguments, such a5 T above, arc treated as in Lisp or Algol. Ruyles are
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tested in order; the first one whose conditions are true is run, except rules’ that have been run
alrcady under the current invocation of the goal may not be run again. This convention
correspunds to two common conflict resolution strategies for production systems, recency and
refroctoriness (McDennott & Forgy, 1978). Nothing in the following argument depends on the
adoption of these conventions.) The goal above acts likc a PROG because it executes both subgoals,
Borrow-into and Borrow-from, and it dues so in a fixed scquence. Other well-known gual types can
also be emulated by production systems. A goal like:

Goal: BorrowFrom (T}
1.  {{(Zero? T)} = (BorrowFromZero T)
2. {(Not{Zero? T)) (Not (CrossedOut? 1))} = {Decrement T)

acts like an if-then-clse in that it only excecutes one of its subgoals depending on whether T is zero
or not. The following goal acts like a loop:

Goal: Mutlti (C)
1.  {} = (SublColC)
2. {(Exists? (NextColumn C))} = (Multi (NextColumn C))

ft does the "loop body,” the subgoal SublCol, then tests for termination. It calls iself tail-
recursively if it is not donc yet. In short, a single goal type suffices to cxpress many kinds of
control.

All production systems that [ know of use just onc goal type. Exactly which goal type is used
is differcnt in different production systems since in production systems, the goal type’s behavior
depends on the production system's conflict resolution strategics (McDermott & Forgy, 1978, review
a varicty of conflict resolution strategics). Nonetheless, the principle of homogeneous goal types is
so widely adhered to that it could even be taken as the defining characteristic of production systems.

Over the ycars, many procedurcs have been expressed in production systems. In some scnse,
this cunstitutes proof that the homogencous goal type principle cannot be refuted on grounds of
inexpressiveness. It dues not limit the language so much that it becomes impossible to express some
procedures.  Consequently, any challenge to the homogencous goal type principle will have to be
made on more subtle grounds. As it turns out, the distinctions that will be used in this chapter are
vanishingly subtle. For instance, it was mentioned that goal types affect inductive biases. Actually,
they only affect the elegance of such biases. IF the interpreter can distinguish different control
flows, then so can the biases, although they might have to simulate execution of the procedure in
order to do so. If students arc biased towards forming loops, say, but the language doesn't have a
loop goal type, then the theorist can write a bias that captures the students’ predilections by, e.g.,
having the bias check for tail-recursive calling paths in the goal-subgoal hierarchy. This would
make it an ugly, complicated bias, but it would capture the students’ cognition. In short. the only
way the cxistence of goal types will show up is in the parsimony of the theory. This is the
methodological problem mentioned carlier.  The goal type issuc will be secitled only by weak
parsiraony-based arguments,

This chapter considers three hypotheses about goal types. The first one is the homogeneous
guai type principle. The second js the goal type principle that is used in the current version of the
theory. ‘The third is the goal type principle that was used in an carly version of repair theory
(Brown & Vanl.chn, 1980).
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1. And. A goal is popped when all ipplicable subgodls have been tried. A subgoal is applicable
if. e.g. the conditions on the left side of its rule are true.

2. And-Or: Goals have a binary type. If a goal’s type is AND. all applicable subgoals are
executed before the goal is popped. IF it is OR. the goal pops as soon a4 one subgoal is
execuled.

3. Satisfaction eonditions: Goals have a condition whieh is tested after each subgoal is executed.
If 1he condition 15 true, the goal is popped. Metaphorically spcaking. the goal keeps trying
different subgoals until it is satisfied.p \

As It turns out, support for a fourth hypothesis has been recently discovered. The hypothesis
extends the And-Or hypothesis by adding a third goal type. a loop across clements in a set, c.g&.,
"Forcach x in the set § do ...." FEwidence for n was discovered when Sierra traversed the Heath
lesson sequence.  This traversal, and the resulting core prowedure tree. were discussed in section 2.8,
Two branches of the core procedure tree (with suffixes P100 and 81k in figure 2-14), led to star
bugs. The root of these mispredictions is the following: 1t appears that students can solve multi-
column problems after sccing examples with at most two columns. But Sierra doesn't form the
mulu-colunin loop {actually. a tail recursion) unul it is given three-column examples. For Sierra to
form the loop on two-column cxamples would require biasing the leamer in favor of loops. This is
most casily done by Biving the knowledge representation language a foop goal type. Although |1
won't recount more details here. it appears that the P100 star bugs would be avoided if (1) the
procedure language had a Foreach goal type. and (2) Sierra's learner was biased towards it
Unfortunately. it requires much work to install this And-Or-Foreach hypothesis in Sicrra, and |
have not done so yet. Until that is done. there is no way to know whether the new hypothests has
some unfortunate side-cffect that would cancel or outweigh its apparent benefits. Conseguently,
only the threc hypotheses listed above will be given active consideration in this chapter.

There are two parts to the arguments of this chapter. The first part sliows that the And-Or
hypothesss is betier than the And hypothesis. There are three separate arguments for this point,
none of which is particularly convincing on its own. However. the Fact that all of them point to the
same conclusion provides support for the adoption of the And-Or hypothesis over its homogencous
cousin. The second pait of the chapler is a competition between And-Or goal types and salisfaction
condibons. {t will be shown that satisfaction conditions provide better empirical coverage with
respect to deletion, but they require unmotivated assumplions about learning. This argument is
quitec complex, so most of it has beecn moved to an appendix. Only a synopsis is presented in thls

chapter.

10.1  Assimilation is incompatible with thc And hypothecis

Onc problem with the And hypothesis is duc to the cumbersome way that disjunctive goals
must be expressed. To express the fact that two subgoals are mutually exclusive, one must put
mutually exclusive applicability conditions on them. For example. to express the Fact that l.hCl;c are
two mutually exclusive ways lo pracess a column, depending on whether it’s a two-digit column or a
one-digit column, onc would write!

Goal; process-column (C):
1. (blank? (bottom C)) = (bring-down-top C)
2. (not (blank? (bottom C)) = (take-difference C)

Both rules must have applicability conditions in order that they be mutually exclusive. On the
problem
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the first rule must be prevented from applying to the units column, so its applicability condition is
necessary.  The second rule’s applicability condition is necessary to prevent 1t from applying to the
ten’s column.  Because the And hypotitesis trics Lo exccute aff subgoals. one can only get mutual
cxclusion by using mutally exclusive applicability conditions.

This mplies that asimilating a new altemative method of accomplishing a goal may involve
rewniting the applicability conditions of the existing subgoals. If the applicability conditions are not
changed. then the new subgoal will not tum out o be mutually exclusive of the old subgoal. For
cxample, 10 assimilate a new method of processing columns, say one that handles columns whose
top and bottum digits are cqual (i.e., the rule N—N=10). onc would have to modify the above geal
10 become:

Goal: process-column (C):
L. (= (top C)bottom C)) = (write-zerosin-answer C)
2. (blank? (bottom C}) = (bring-down-top C)
3. (and {(not (blank? (bowtom C))
{not {= {1op C)(bottom C)) = (take-difference C)

Adding the new subgoal forced the applicability conditions of one of the existing subgoals to be
changed (the undcrlined material was added). The cssential point here is that the And hypothesis
forces mutually exclusive alternatives to be highly interdependent.  This lack of modularity forces
leanung to modify existing material even though that material’s function has not changed. There
are somec potential drawbacks to this.

Mathematical skill acquisition is clearly incremental. New components of a skill are slowly
added. Knowledge accrues, rather than springing full grown from some catalytic experience. Such
plodding, slow-growing learming is often called assimilation to differentiate it from learning that
takes the form of a radical restructuring of the student’s knowledge. However. the hypotheses that
have been accepted so far do not rule out such radical restructurings. In particular, the one-
disjunct per-lesson hypothesis rules out adding extra disjuncts but it says nothing about augmenting
existing disjuncts, ¢.g.. by adding conjuncts to applicability conditions, as ir. the example above. To
capturc the apparent quality of mathematical skill acquisition, the following hypothcms was used n
an ecarlicr version of the theory (VanLehn, 1983)r

Assimilation
Disjoin only adds a new disjunct (subprocedure). ft does not modify the existing
knowledge structure in any other way.

This hypothesis says that subprocedure acquisition is an additive action. Learning doesn’t
change the old structure, it only adds a new chunk {(disjunct, subprocedure). This hypothesis is yot
another felicity condiion on learming.  {t amounts to a guarantee to the students that what they
leamed carher will remain valid and useful. To put it differently, the curriculum is arranged to be
efficient. 1t doesn’t teach a concept or a skill unless it will remain uscful, possibly as the basis for
further development of concepts or skills. As with the other felicity conditions, evidence in its favor
1s that current lesson sequences are constructed so that the correct prucedure can be leamed without
violaung the felicity condition. That, plus its inherent plausibility, arc the the only known suppoit.
This 15 not sufficient, to my mind. so the assimilation nypothesis is not included in the current
theory. Yet, if it were in the theory, as intuition dictales it should be. it would have entailments for
the goal type controversy. The assimilation conjecture is incompatible with the And hypothesis. As
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we just saw. the And hypothesis forces too much of an existing core procedure to be changed in
order 1o assimilatc a new subproccedure. In shurt o the extent that onc accepts the assimilation
conjecture. on¢ must also reject the And hypothess.

102 The And-Or hypothesis simplifies the Backup repair

There is @ minor advantage 16 the And-Qr hypothesis.  Using both AND 8oals and OR goals
simplifies the Backup repair. The function of the repair is 1o pop the goal stack back 1o the first
goal that has some alternatives Ieft to try. When goals arc typed. it is trivial to tell whether a goal
has any alternatives left. i it is an AND goal, by definition it does not. If it is an OR goal, then
only one of its alternatives has been tried (because it normally pops afier rying one subgoal). so all
the rest must be open. Backup’s scarch becomes trivial: pop thz stack back to the first OR goal.
That this simplicity falls out of the And-Or exit convention is weak, evidence that the binary
disinction is somchow a natural onc for the procedural representation language io make.

10.3  Rule deletion nceds the And-or distinctions

It was shown in chapler 7 that a certain group of bugs. labelled the deletion bugs, scem to
require some Kind of delction operator in order for the theory to generate them. To generate them
with incompleie learning and/or local problem solving would necessitate expanding the power of
those mechanisms 10 an unacceptable degree.

This chapter picks up the deletion story and considers how deletion can be formalized. The
first step is to show that simply deleting rules will suffice to gencrate the deletion bugs. The next
step will be to show that not all rules should be subject 1o delction. If certain rules are deleted,
then star bugs are generated. To avoid such absurd predictions, some constraints must be placed on
the rule deleton operator. This js where the goal type controversy comes in. It can be shown that
the rules that should not be deleted are exactly the ones under disjunctive goals. Once again, the
distinction between AND goals and OR goals arises naturally. If the representation uscs a binary
type to distinguish the two goal types, then the deletion operator becomes Irivially simple.  Without
it, the operalor must examine the applicability conditions of rules 10 infer which goals are
disjunctive ones. The fact that a simple stalement of the deletion operator falls out under the And-
Or hypothesis is more couverging evidence that it is the right one for the knowledge representation
to employ.

In order to discuss how o gencrale the deletion bugs. it helps to have a concrete expression of a
subtraction proceduic so that deletion may act upon it. Figure 10-1 shows a particular subtraction
procedure, and gives a brief explanation of it. The procedure is expressed in a rule-oriented syntax.
. Since the issuc of goal types is still under discussion, and the applicability conditions depend on the

exit convention in use, the cxpression of figure 10-1 uses an informal representation for
applicability conditions in order to stay ncutral.

Given this particular procedure for subtraction. some general points about deletion can be
made. For illustration, suPpose that deletion is formalized as deleting a rule. any rule. Since there
arc 18 rules in the procedure, there are 18 possible deletions. (This is not Quile 4 straw man, by the
way, since it can be taken as one formulation of Young and O'Shea’s approach (1981} to generating
bugs.) The first point to make is that rule deletion does iadecd gencrate the sct of deletion bugs.
Deleting rule 11 generates the following deletion bug:
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Goal: Sub (P}
1. P is amulti-column problem = (Multi (Rightmost-column P))
2. P is asingle-column problem = (DI (Righunost-column P))

Goal: Multi (C)
3. true = (SublCol C)
4, true => (Sub-rest (Next-column C))

Goal: Sub-rest {C)

5. Cisnot the lefunost column = (Multi C)

6.  Cis the leftnost column. and its bottum is blank = (Show C)
7. Cis the leftmost column, and its bottum is not blank = (Diff C)

Goal: SublCoi (C)

8  T<BinC = (Borrow C)

9, the bottom of C is blank = (Show C)

10 Cis normal: T2 B and its bottom is not blank = (Diff C)

Goal: Borrow {C)

11.  tue = (Borrow-from (Next-column C))
12.  true = (AddI10C)

13, wue = (DIff C)

Goal: Borrow-from (C)
14.  T=0inC=> (BFZC)
15. T#0in C = (Decrement-top C)

Goal: BFZ (C)

16.  wue = (Borrow-from {Next-column C)}
17.  true = (Add10C)

1§. wue => (Decrement-top C)

The Sub goal simply chooses between trvial, one-column processing and the usual multiple-column
procedure. The two goals, Multi and Sub-rest, express a loop across columns as a tail recursion.
Next-column is a function that takes 2 column and returns the npext column to the left  If the
column C that 15 given to Sub-rest is the lefunost column, Sub-rest answers it with either rule 5 or
rule 6, thus terminating the recursion. Show and Diff are primitives. Show writes the top digit of a
column as its answer. DIff takes the column difference. Columns other than the lefunost column
are answered by SublCol. SublCol is the main column processing goal. 1f the top digit of the
column is less than the bottom digit (i.e., T<B in the shorthand used throughout this document},
then SublCol calls borrowing (rule 8). If the colunn has a blank instead of a bottom digit, then it
simply wnies the top digit as the answer (rule 9). Otherwise, it does the usual take-difference
operation. The Borrow goal first borrows from the next colunin to the left, then adds ten to the
column onginating the borrow. AddiQ is a primitive that adds ten to the top digit of the column its
given. Borrow winds up by taking the difference in the onginal column. There are two ways to
achieve the Borrow-from goal. 1f the column’s top digit is non-zerc (rule 15), then the procedure
simply decrements it by one (Decrement-top is a primitive). 1f the column’s top digit is zero, then
Borrow-from calls BFZ. The goal BFZ first borrows from the next digit to the left (i.e., if the
borrow ongmated in the units, this would be a borrow from the hundreds column), then adds ten to
the current column. Since the top digit was zero, this means the top digit will become a ten, The
next rule, 18, decrements this ten to a nine. This finishes the BFZ.

Figure 10-1
A subtraction procedure. presented in an informal rule-orented syntax, with explanation,

»
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Borrow-No-Decrement: 345 3 4l 3lol7
-102 -129 - 89
2434 226X 348X

This bug does only the borrow-into half of borrowing. 1t omits the borrow-from half. It is a
deletion bug because its familiarity with borrowing makes it likely that the students with this bug
have been taught simple borrowing. However, part of borrowing apparently did not sink in or it
was forgotten. Another deletion bug results from deleting rule 186.

3 9
Borrow-From-Zeto: 345 3 415 aloly
-102 -129 -189

243 216V 238X

This bug only dees part of borrowing across zero. [t changes the zero 10 ten then to nine, but does
not continue borrowing to the left. Because it does do part of borrowing across zero. it is likely that
subjects with this bug have been taught borrowing across zero. [t is also clear that they did not
acquire all of the subprocedure. or else they forgot part of it. IF the subtraction curriculum was
such that teachers first taught one half of borrowing across zero. and some weeks later taught the
other half. then one would be tempted to account for this bug with incomplete learning. But
borrowing from zero is, in fact, always taughi as a whole. So some other formal technique,
deletion, is implicated in this core procedr-e’s generation.

A third deletion bug is generated by deleting rule 18. It scems to forget to do the second
decrement in the bOrrow across zero:

3 2 2
Don't Decrement-Zets: 346 3 4lp 3loly 3lo!7
~102 ~129 -169 - 9

243V 216 178 X 2108 X

This shows up rather clearly in the last problem. The zero has had a ten added to it, but it has not
been decremented as it should be to complete the borrow from 7ero. Consequently, the answer in
the tens column is a two digit number. (This sometimes triggers a second impasse.) A more
detailed description of Don't-Decrement-Zero appears in section 7.1.

There are other deletion bugs, but these three suffice to show that rule deletion is a
productive addition 10 the theory. T’ ese three bugs will be used as a yardstick to measure the
empirical adequacy of the various kinds of deletion that will be discussed.

Unconstrained rule deletion overgenerales

The problem with unconstrained rule deletion is that it overgenerates. About half the rule
deletions generate star bugs. Such star bugs must be blocked if the theory is to have any empirical
worth at all. The issue is how to constrain rule deletion. A birds-eye view of the issue is provided
by figure 10-2, which lists each ruie along with what its deletion results in (roughly). Some
deletions cause star bugs, some cause observed bugs. and some cause bugs that have not 3.1 been
observed but are plausible predictions for future observations.
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Goal: Sub
1. predicted bug: only docs single column problems.
2. siarbug: can 't do single column problems but does others perfectly.

Goal: Multi
3. predicted bug: only does the lefunost column.
L4 star bug when BIFZ exists: dues units column only, but perfectly, even if BFZ is required.
predicted bug 1f Borrow not yet learned: docs units column only, taking absolute difference.

Goal: Sub-rest

5, predicted bug: only does leftmostcolumn.

6. predicted bug: forgets leftmost column when it has a blank bottom.

7. starbug: leavesleftimost column unanswered unless it has a blank bottom.

Goal: SubiCol

8. various observed bugs: c.g.. Smailer-From-Larger, Zero-Instead- of-Borrow.
9.  warious observed bugs: c.g.. Quit-When-DBottom-Blank. Stutter-Subtract.
10,  starbug: does borrow columns but leaves ordinary columns unanswered.

Goal: Borrow
11.  observed bug: Borrow-No-Decrement.
12.  astarbug. Blank-With-Borrow-From, and various obscrved bugs,
e.g., Smaller-From-Larger-With-Borrow.
13.  starbug: does scratch marks for borrowing, but leaves the column unanswered.

Goal: Borrow-from
14.  various ohserved bugs: c.g., Stops-Borrow-At-Zero.
15.  starbug: ncver does the lefimost decrement of borrow, including BFZs.

Goal. BFZ

16. obscrved bug: Borrow-From-Zero.

17. & sterbug. Blank-With-Borrow-Across-Zero, and various gbserved bugs
e.g., Borrow-Across-Zero.

18. observed bug: Don't-Decrement-Zero.

Figure 10-2
Results from cach rule deletion of the subtraction procedure, indicating which gencrate star bugs,

inspection of figure 13-2 reveals that the deletions that generate star bugs fall into two basic
groups. Half of the giar deletions are rules bencath disjunctive goals {(declctions of rules 2. 7, 10 and
15}, or rather gnzls that function as OR goals even though they would not be marked as such under
the And exit convention. The remaining star bugs {rules 4. 12, 13 and 17) have the characteristic
that they know how to bermrow from zero. indicating soine sophistication in subtraction, but they
nionctheless lcave certain columns unanswered. The juxtaposition of such sophistication in
borrowing with missing knowledge about answering columns makes these bugs highly uulikely. In
the next section. these stai bugs will be discussed. In this section. attention will be focused on
blocking the star bugs of the first group

Deleting any of rules 2, 7, 10 or 15 gencrates 2 star bug. These rules are all teneath
disjunctive goals. Deletion of the Sisters of these rules (i.c.. rules 1, 5, 8, 9, or 14) generate bugs,
some of which are observed, but they arc all bugs that would be gencrated by incomplete traversal
of the lesson scquence. Deletion under a disjunctive goal hurts the theory's empirical adequacy if it
affects it a1 all. To drive thjs point home. consider the Borrow-from goal. 1t has two rules.
Delcting the second one, rule 15, hurts the theory. Rule 15 does borrowing from non-zero digits.
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ft decrements the digit by one. If rule 15 is deleted. a star bug occurs. Some of the star bug's
work is illustrated below:

9
*Only -Borrow-FromeZero: 346 3 215 2 0l7
-102 -1 .9 ~169
143+ 226X 138X

This star bug misses all problems requiring borrowing because it ncver performs a decrement
dospite the fact that it sho, s some sophistication in borrowing across Zero in that it changes zeros to
nine. The juxtapusition of this competency in borrowing across zero with missing knowledge about
the simple case makes the bug highly unlikely.

The other pule of the goal Borrow-from, rule 14, does borrowing for zeros. [t simply calls the
BFZ goal. If rule 14 is deleted. the procedure acts just like BFZ had never been taught In
particular, the deletion would generate the bug Stops-Borrow-At-Zero, which has been used as a
prime cxample of the combination of incomplete learning and local problem solving (see section
2.9). Blocking the deletion of rule 15 is good because it prevents gencration of a star bug,.
Blocking delction of rule 14 doesn't hurt because its bugs have akernative derivations. The point is
this: If all rule deletions bencath Borrow-from are banned. the theory's predictions are improved.

The results of figure 10-2 clearly indicate that rule deletion should not apply to rules beneath
goals. such as Borrow-from. that are disjunctive in nature. Only rules beneath conjunctive goals
should be subject to deletion.  Although the results of figure 10-2 are. of conrse, sensitive to the
particular structure yscd in the procedure of figure 10-1. the restriction on mle deletion has been
tested on Sicrra with other procedures and found to hold up just as well. Although the restriction
still allows some star bugs to be generated, it blocks the generation of many others. Hence, there is
strong cvidence that decletion should be constrained to delete only rules beneath goals that are
conjunctive in nature, :

Conclusions

Once again, the distinction between AND goals and QR goals has arisen from trying to fit an
operator around the empirical evidence. The deletion Operator needs the And-Or distinction. just as
the Backup repair did. It secms that nature is trying to tell us something. The And-Or distinction
scems a fundamentally importart distinction. and as such‘should be given a clear expression in the
representation language. rather than lurking in the rule’s applicability conditions in the form of
mutually cxclusive predicates. On this basis, the Ard hypothesis will be eliminated from further
consideration. Goals will have at least a binary type, AND versus OR, and rule deletion will be
 limited to rules that arncar beneath AND goals.

104  Satisfaction Conditions

Conjunctive rule deletion gencrates all the deletion bugs and it avoids generating half of the
star bugs of figurc 10-2. However, it still allows the other half of the star bugs to be generated.
These star bugs will be examined in dctail in order 10 molivate a way of blocking their deletion.

The main loop of subtraction, which traverses columns, has the following goal structure when
it is translated into the And-Or exit conventiva from the neutral representation of figure 10-1:
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Goal: Multi (C) Type: AND
3. {SublColC)
4. (Sub-rest {(Next-column C)

Goal: Sub-rest {C) Type: OR
5. Cisnotthe lefimostcolumn = (Mulu C)
6. C'sbottum is blank = (Show C)
7. tue => (1:TC)

+

The apphcability conditions of the rules have been adjusted. The conditions for the AND rules have
been omitted.  The conditions for the OR goal. Sub-rest. have been adjusted to reflect the fact that
they are tested in order and only one is executed. For instance. if the column C is the lefimost
column. then rule 5 will not b. applicable. and control moves on (o test rule 6. 1f that rule applics,
the primitive Show answers wie column. then control returns to Sub-rest. Since the goal is marked
as an Ok goal. and one rule has been exccuted, no more rules are tested. In particular. the default
rule. 7, will not be tested. Instead, the Sub-rest goal is popped.

The Multi geal is an AND goal. s0 either of its subgonals can be deleted. Deleting rule 4
creates a bug that only does the units column. Intuitively. only doing one column would be the
mark of a student who has not yet been taught how to do multiple columns. Since doing muitiple
columns is always taught before borrowing, it would be highly unlikely for a student to know all »
about borrowing and yet do only the units column. To put it more formally, if all of BFZ were
present when rule 4 Is deleted. the procedure would generate a star bug:

3 29
Only-Do-Units: 346 3 45 3lpl7
~102 -129 -189
3 X 6 X 8 X

If borrowing were not yot learned and rule 4 were deleted, then reasonable bugs would be
generated. For instance, one reasonable, but as yet unobscrved, buggy procedure docs only the
units column but it simply takes the absolute difference there instead of borrowing. 1t would be the
bug set {Only-Do-Umts Smaller-From-Larger}. In short. there is nothing wrong with the dejetion
of rule 4 per se, but it can create a .rocedure that mixcs competence with incompetence in an
unlikely manner.

Another star bug of figure 10-2 occurs when rule 13 is deleted from Borrow, given the
following ‘ersion of column processing and borrowing:

Goat: SublCol (C) Type: OR
8. T<BinC = (Borrow ()
9. the boitom of C isblank = {Show C)
10. true => {Diff C) '

Goal: Borrow (C) Type: AND
11. (Borrow-from (Next-column C))
12. {Add10 C)
13. (DifFC)

il

Deleting rule 13 generates a procedure that sets up to take the column difference after a borrow,
but forgels to actually take it. This leads to the following star bug:
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3 29
*Blank-With-Borrow: 346 3 415 3 0!7
-102 -129 ~188

243+ 21 X 13 X

What makes this bug so unlikely is that it leaves a blank in the answer despite the fact that it shows
a sophisticated knowledge of borrowing.

It is possible to put explicit constraints on conjunctive rule deletion in order 10 block the
deletions that generate the star bugs. However, there is another way to prevent overgeneration that
will be shown lo have some advantages. The basic idea is 10 make the operator inapplicable by
changing the types of the two goals in question so that they are not AND goals. This would make
the deletion operator inapplicable. That is, one changes the knowledge representation rather than
the operator.

The proposed change is to adopt a new goal type. The hypoti.esis is to generalize the binary
AND/OR type lo become safisfaction conditions. The basic idea of an AND goal is to pop when ail
subgoals have beer exccuted, while an OR goal pops when one subgoal has been executed, The
idea of satisfaction conditions is to have a goal pop when its sausfaction condition is frue. Subgoals
of a‘goal are executed until either the goai’s satisfaction condition becomes true, or all the

“applicable subgoals have been tried. (Note that this is not an iteration construct — an “until” foop

- since a rule can only be exccuted once.} AND goals become goals with FALSE satisfaction
conditions: Since subgoals are executed until the satisfaction condition becomes true (which it

" never does for the AND) or all the subgoals have been tried, giving a goal FALSE as its satisfaction

condition means that it will always exccute all its subgoals. Conversely, OR goals are given the
satisfaction condition TRUE: The goal exits after just one subgoal is executed.

With this construction in the knowledge representavon language, one is free to represent
borrowing in the following way:

Goal: Subl1Col (C) Satisfaction condition: C's answer is non-blank:
8. I<Bin C = (Borrow C)
9. the bottom of C isblank = (Show C)
10. true = (Diff C)

Goal: Borrow (C) Satisfaction condition: false
., 11. (Borrow-from (Next-column C))
12, (Add1( O)

The AND gual. Borrow, now consists of two subgoals. After they arc both executed, control returns
to SublCol. Because SublCol’s satisfaction condition is not yet wrue — the column’s answer is still
blank — another subgoal is tried. Diff is chosen and exccuted, which fills in the column answer,
Now the satisfaction condition i triue, so the goal pops.

Given this encoding of borrowing, the conjunctive rule deletion operator does exactly the
right thing when applied 10 Borrow. In particular, since rule 13 is no longer present, it is no longer
possible to generaie the star bug, *Blank-With-Borrow-From by deleting it. Rule 13 has been
merged, so to speak, with rule 10. Since rule 10 is under a non-AND goal, SublCol, it is protected
from deletion.

Similarly. the star bug associated with column traversal can be avoided by restructuring the
loop across columns. The two goals, Multi and Sub-rest, arc replaced by a single goal:
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Goal: SubAll (C) Satisfaction condition: C is the leftmost column.
5. true = (SublCol C)
6, true = {SubAll (Next-column C))

Th. goal first processes the given column by calling the main cqlumn proc2ssing goal, Subl1Cul.
Then 1t checks the sausfaction condition.  If the column is the problem’s 1eftmost column. th. goa!
pups. Otherwise. it calls iiself recursisely. By using a sausfaction conditiun formulation. generation
of the star bug 15 avoided. The AND goal, Multi, has been chiminated along with its rule 3, the rule
whose dceletion caused the star bug.

Fhese two iflustrabions indicate thai augmenting the representation with satisfaction conditions
creates an empirically adequate treatment of deletion. Satisfaction conditions were used for several
years in Sierra (Brown & Vanl.chn, 1980; Vanl.chn, 1983). However. as the {15t versions of Sierra’s
learner were implemented, a fatal flaw was discovered. In essence, if the . arner was constructed so
that 1t would put satisfaction.conditions on SublCol and SubAll it would also put satisfaction
conditions on oiher goals. which, unfortunately, would block the generaiion of certain deletion bugs.
This burts the empirical adequacy of the theory. Various ad hoc constraints can be imposed to
“fix" the flaw, but they, in turn, cause further empirical difficultics, ‘The whole story is quite
complex, so it has been relegated to appendix 16

. Vown there, a simpler solution is to abandon satisfaction conditions entirely. Instead, @n
exphct constraint 15 added to the deletion operator; It may only delete rules from the most recently
acquired AND goal. To sec how this works, consider the star bug mentioned earlier, Only-Do-Units.
This bug 15 an unreasonable prediction precisely because it exhibits perfect knowledge of borrowing,
but has. apparently. “forgotten” that all columns nced answering. To generate this star bug, a
certain rule of the goal Multi (See above} must be deleted. 1t cannot be deleted afier borrowing-
from-zero is learned, because that is preciseiy what the new constraint blocks.  3ut tF+ deletion
won't survive if it occurs before borrow:from-zero is learned. To see this, suppose it were deleted
before then, The learner would try to use the damaged procsa.oce 1o parse the sorrow-fron.-zero
examples. Even the simplest borrow-from-zerv cxamples have at least two columns that require
answers.  Because of the rule deletion, the learner is unable io match the actions of the examples
that answer the nonunits columns. Of course, the Jearner is also unab'e to match the new borrow-
from-zero subprocedure, which is the topic of the lesson. 1o assimilate the example, the learner
would have to adjoin fwe disjuncts to the procedurc — one to handle the extra answer actions, and
one (o handle the new subprocedure. Adding two disjuncts is prohibited by one-disjunct-per-lesson.
In short, the damaged procedure cannot be augmented with the borrow-from-zero subprocedure,
The case presented in this illustration is a typical one. Rule deletions that occur carly in the lesson
sequence generally will not survive long. A damaged procedure will be asked to take a lesson that
assumes it has a subprocedure that it doesn't have, and normal. onc-disjunct-per-lesson learning viill
not let this procedure pass. (In real classrooms, what probably happens is that students who have
such damaged core procedures are discovered and remediated.} Hence. the only way to
inappropnately juxtapose incompelency with competency is to delete rules from subprocedure well
aiter they are acquired. This way of gencrating star bugs is exactly what the new constraint blocks.
Only the AND niles of newly acquired subprocedures may be deleted.

105  Summary, formal hypotheses and conflict resolution

The goal type issuc has proved to be a subtle one. The alternative exit conventions are fairdy
clear cut:
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1. AND: A goal is popped when all subgoals have been tried.

2. AND/OR: Goals have a binary type. If the goal's type is AND, all applicable subgoals are
executed before the goal is popped. If it is OR, the goal pops as soon as onc subgoal is
execuied.

3. Sausfaction conditions. Goals have a condition which is tested after cach sutgoal is exceuted.
If the condition is true. the goal is popped. Metaphoncally speaking, the goal keeps trying
different subgoals until it is satisfied.

Howeser, the arguments between them were weak, What cvidence there is indicates that the And-
Or exit convention is the best. A bricf review of the arguments follows.

There were three argu  ..ots against the Anc b othesis. Two were based on parsimony. In
order to have a simple cxpression of the Backup repair and conjunctive rule deletion, goals should
be marked with a binary type to differentiate AND goals from OR goals, Under the And hypothesis,
it is sull possible to cxpress the operators. but they must analyze the applicability conditions on
rules in order to distinguish AND goals from OR goals. The third arguiment against the And
hypothesis relies on intuition. Intuition. but little else, supports a conjectured felicity condition
called the asstulation conjecture. It states that new knowledge structures can be acquired without
changing the old ones. except in certain narrowly prescribed ways. Since the And hypothesis uses
mutually exclusive applicability conditions to express disjunctive goals. it forces old appiicability
conditions to be adjusted when a new one is added. The And hypothesis forces learning to violate
the assimilation conjecture.

Satisfaction conditions are a generalization of the And-Or convention. Under the And-Or
convention, a goal pops after either one or all of its subgoals are executed. With satisfaction
conditions, a goal may pop after any number of its subgoals have been cxecuted. where the number
of subgoals executed is governed by a condition. The extra degrecs of freedom in expressive power
can be used to control th. predictions. Indeed, an attempt 0 do this was made by using satisfaction
conditions to control the deletion operator. If satisfaction conditions were based on just the right
goals. the theory avoided gencrating several pesky star bugs. Howeser, it turned out to be difficult
to account for the acquisition of satisfacti.n conditions on just these goals and not the others. The
satifaction conditions approach is weakencd because learning cannot explain their existence. This
leaves the And-Or hypothesis the only one standing,

Formnal hypotheses
The main results of this chapter arc summarized in the following three hypotheses:

And-Or
Goals bear a binary type. If G is the current goal in runtime state S, then
(ExitGoal? S)istrueif

1. G is an AND goal and ali its rules have been exccuted, or

2. Gisan OR goal and at Icast one of its rules have been executed.

AND rule deletion , ,
(Delete P) returns asct of procedures P such that P is P with one or more AND rules deleted.

Most recent nule deletion

(Delete P) returns asct of procedures P’ such that P’ is P with onc or iiore rales deleted from
the most recently acquirad subprocedure.

163




GoAl TYPES 163

These hypothescs define two previously undefined functions, Detete and ExitGoal?. The latter
was used in the definition of the interpreter in section 9.4. It controls whether a goal is popped,
given that the stack has just popped back to it.

Conflict resolution .

The other undefined function used in the interpreter is PickRule. s definition is simple to
motivate. However. 1t depends on the And-Or distinction, which is why its definition has been
deferred until now.

The function PickRutle decides which of the eurrent goal's rules the interpreter should run
next. This choice is governed by conventions that are called conflict resolution straregies in the
production system literature (McDermott & Forgy, 1978). Two conventons are necded just o get
the interpreter o work at all: ’

1.  Ifarule has already been executed for this instance of the goal, then it may not be executed again.
2. Ifthe applicability condition of a rule is false, it may not be run,

These iwo conventions were discussed in scction 24. However. they do not always setile the
question of which rule to pick. There are often several unexecuted, applicable rules for the current
goal. More conventions arc needed. It is convenient to discuss conventions for AND goals
separately from the conventions for OR goals

AND goal conflict  resolution

The problem with AND rules is expressing their sequential order. One way to get AND rules
to run in sequence is to use the applicability conditions. In a production system. one can force
rules to be executed in sequence by having cach rule add a token to the working memory
(execution state} that will trigger its successor rule and only its successor rule. This will not work
here because the only tnternal state is the stack and the microstate bit. There is no buffer to add
tokens to. On the other hand, the applicability condition could sense the external state (i.e» what
the problem looks like). This would suffice for sequenual ordering in many cases. However, it
would 1nteract with rule deletion in such a way that scveral of the deleton bugs could not be
generated. 1 won't go through the details here. The point is that applicabllity conditions cannot be
used to express the sequential order of AND rules. Some explicit convention is needed. About the
simples: one possible is to Fepresent AND rules in an ordered list. and 10 execute the rules in the
order that they appear in the AND goal’s list. It is the one that will be adopted.

OR goal conflict resolution strategies

The tearner must induce the applicability conditions of OR rules. In particular, a new
subprucedure will have a new OR rule that calls it. This OR rule is calied the adjoining rule because
it attaches the new subprocedure to the existing procedural structure. In order o induce the
applicabihity condition of the adjoining rule. it is extremely helpful for the learner to be presented
with negative instances of it. A negalive instance of an applicability condition is a problem state
where the applicability condition is false. Teachers and textbooks do not usually show negative
instances to the students explicitly (i.c. in discrimination examples). However, the learner can
recover negative instances from the kinds of examples they do get, under certain circumstances.
Suppose the new subprocedure is a sister of some goal G, That is, G and the new subprocedure
are both subgoals of the same OR goal. Given a worked example. the learner can discover whether
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G has been exccuted and f s0, what the problem state was at the time is was invoked. Call this
problem state S. Since G and the new subprocedure are OR-sisters, the new subprocedure could
have been picked 1o run at S, but the teacher did not do so. DBecause the new subprocedure was
not run at S, its adjoining rule’s applicability condition must have been false. Therefore, S is a
negative instance for it. S is just what induction needs.

However. there is a subtle flaw in the inference just given. The choice of rule depends both
on applicability condiions and on conflict resolution strategies. The learner cannot be sure that the
adpoiming tule’s apphicability condition is false at $ unless the learner knows that the adjoining rule
would be favured over the others in cases where they were both true. The only way to guaranice
this is to adopt a conflict resolution strategy that is based on the time of acquisition. That is, when
two rules are buth applicable, the rule that was learned most recently is chosen. This convention,
called "recently in long-term memory” when used in production systems, guarantces that the
adjoining rule would have been chosen if it had been applicable:  Since it wasn’t chosen, it must
not have been applicable. Therefore S is a valid negative instance for the inductien of the adjoining
rule’s applicability condition.

in short, there is really no choice about conflict resolution strategics. given that goals are
typed. The conflict resolution strategies can be summed up with the following hypothesis:

Conflict resolution

l. A rule may be cxecuted only if its applicability condition is true and it has not yet
been exccuted for this instance of the current goal.

2. In the representation of the procedures, the rules of AND goals are lincarly ordered.
If the current goal is an AND goal, and theTe are scveral uncxecuted, applicable
rules, then choose the first onc in the goai’s order.

3. Ifthe current goal is an QR goal, and there are several unexccuted, applicable rules,
then choose the rule that was acquired most recently.

Clauses 2 and 3 imply that AND goals and oR goals have similar syntax. They both have ordered
lists of rules. Morcover, the interpreler always picks the first unexccuted rule, for AND goals. and
the first uncxecuted rule whose applicability condition is true, for gr goals. The major difference is
what happens after the respective rules are executed. OR goals immediately pop. AND goals do not.
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Chapter 11
Data Flow

This chapier discusses how the prucedsre represcntativn tanguage should represent data flow.
in general. data flow tn a procedur. 1s the set of mechanisms and comventions for the storage and
trarsmission of data, such as numbers of other symbols, (N.B,. | am using “data flow™ n the sense
of Rich and Shrube (1976) rather than the more common usage of 1ennis {1974) and other authors
who discuss data flow languages.) In the kinds of procedures that cencern this theory, the data flow
issue hinges mostly on how the language should rcpresent focus of visual attention.  As students
soh¢ subltraction problems. they scem to focus their visual attention on arious digits of columns of
digits at vanous umes. This can be inferred from eye tracking studies (Newell & Simon, 1972:
Buswell, 1926). Jt can also be inferred from the information that students read from the paper.
The issue this chapter discusses is how to represent the fact that focus of attention is held
unchanged For periods of time as well as being shifted. To put it in shghtly inaccurate terms, the
issues concern the short-term storage of visual Focus, Four positions will be contrasted:

1.  No data flow: The hypothesis is that procedures do not use data flow. In particular, there is
no internal storage of focus of attention. Instead, the places where the procedure reads and
writes on the page are described by static descriptions. For instar.ee, instead of describing the
place to write an answer digit as “the answer position in the currenf column.” it would be
described as “just to the left of the leftmost digit in the answer row.” This description does
nol usc the notion of a current focus of attention. Jt describes locations statically.

o

Globally bound data flow (registers): A leading contender for storing and transmitting focus of
attention is to use registers that store either the position on the paper that is currently being
examined, or a focus of attention that was once current and is being saved for some reason.
By “register,” 1 will mean a globafly bound data storage resource. The current contents of a
globally bound register is determined solely by chronology. 1ts contents is the value most
recently set into the register.

3. Locally bound data flow (schema-instance): To describe this hypothesis, the notion of an
instantiation of a goal is needed. When a goal is called, it is pushed onlo the goal stack along
with a little extra informaton. This extra information is labelled an instanttation of the goal.
If a goal is called recursively. there will be two instantiations of it on the stack, The basic
idea of the schema-instance data flow hypothesis is that data can be stored with each
instanuation of a goal. The goal is viewed as a schema with certam open paramelers, called
arguments. Instantiatin, a goal fills in the values of those open paramelers, an operation
calicd binding the arguments. This way of stiucturing data flow is called focal binding in
recursive programming languages, such as lisp. In object-oriented languages, such as
Smallalk, the same idea is used a little differently. in order o include object-oriented
languages in the purview of this hypothesis, the hypothesis’ name is schema-instance instead
of the less general name, local binding.

4. Apphicanve data flow: The schema-instance data flow hypothesis allows different instantiations
of a goal to have different foci of attention stored with them. However, it is possible for an
instantiation of a goal to change its stored focus and even to ¢hange the stored foct of other
goals’ instantiations. The applicative data flow hypothesis outlaws such changes. Once an
mstantiation’s arguments are bound, they can never be changed. Applicative data flow is used
by applicative languages, such as purc Prolog or the lambda caleulus.

1*4“4_
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The basic issue behind these various options concerns how independent data flow should be from
control flow. The discussion starts with the weakest. most inflexible Rypothesis: The no-data-flow
hypothesis is that data flow is congruent with the statéc structure of the procedure. Thus, focus of
attention doesn't depend on which instantiation of the goal is exccuting. but only on the name of
the goal that is exccuting. This turns out to be too inflexible. It can’t express certain bugs.

The next strongest hypothesis is the applicative hypothesis. It assumes that data flow is
congruent with the dynamic structure of the procedure. If there is a stack, the focus of attention
changes when. and only when. the stack is pushed or popped. This turns out to be the best of the
four alternative hypotheses,

The global binding hypothesis allows data flow and control flow to be totally independent.
The procedure is allowed to change the focus of a. _ntion without changing the flow of control, and
vice versa. It is shcwn that this independenve 1 ads to problems in the theory. In particular,
certain shifts in control necessitate a shift in data flow. In such cascs, mainly concerning popping
the stack. the independence of control and data flow must be curtailed: data flow must parallel
control flow then. Such cases motivates the schema-instance hypothesis,

The schemarinstance hypothesis is halfway between the total independence of control flow
and data flow, and the total isomorphism of the two that is stipulated by the applicative hypothesis.
Under the schema-instance hypothesis, when control flow changes, data flow changes. If there is a
stack, focus automatically shifts when the stack changes because the top of the stack is what holds
the current focus of attention. However, data flow may also be changed when control flow does not
change. This extra degree of freedom is never used in any of the procedures implicated by the
data. To explain this, a constraint is added: when the stack does not change, focus of attention does
not change.  The result is the applicative data flow hypothesis, that data flow can change when,
and only when, control flow changes.

111 The hypothesis that there is no data flow

It may be that there is no need to have an explicit represcntation for data flow. Maybe it will
suffice just to have a push-dawn automaton, not an ATN with its registers. This would put a burden
on the procedure’s interface with the problem state. In order to traverse columns in subtraction,
instead of passing the current column in a register, the patierns (or whatever implements the
interface} would have to descnibe the focus of attention as the rightmost unanswered column. Since
there is a visual marker for wiere focus of attention needs to be. namely the boundary between
answered and unanswered columns, this technique will succeed.

Howcver. there are bugs which leave answers blank. These cannot be represented by using
the boundary beiween answered and unanswered columns. For inse. ». , one observed bug skips
columns which require borrowing:

Rlank-insiead-of-Borrow: 3456 3456 207
=102 -1289 -1689
243 Y 27 X 1 X

The dersation of this bug assumes that the student hasn't learned how to borrow yet. When the
student attempts to take a larger number from a smaller one, an impasse occurs. The repair to this
impasse is the Noop repair. {t causcs the column difference action to be skipped. If the procedure
is using the boundary between answered and unanswered columns to determine the focus of
attention, then after the Noop repair. the procedure will return to focus on the column that it just
finished. 1t won't shifk 1ts attention to the next column left, as the bug does. Instead. the procedure

?"‘,J
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will go into an infinite loop cxamining the same column over and over again.. This is clearly a star
bug. Not only dues the no-data-flow hypothesis prevent the generation of an observed bug, it
causes a star bug to be generated.

Moving beyond the subtraction skilt, one finds that there are procedures that clearly need
svme kind of “current focus pointer” in order 1o traverse Jists without the aid of visual markers.
Fur example. children can add Wong columns of digits. This seems to require sonie kind of register
ur a counter ur something that indexes down the digits in a column. To represent the traversal with
4 pure push down automaten. one would have to have distinct states for cach digit in order to have
distinct patterns ty fetch that digit. If the push-down automaton were finite, then there would be
some fimite hmit on the number of digits he student could add. This seems totally unlike human
mathematical skill,

There 15 another argument against the position that procedures do not maintain some kind of
current focus pointer. 1t is a reductio ad abzurdum argument. Consider taking a subtraction lest,
Under the no-data-flow hypothesis, the patterns in the procedure are used to distinguish the column
being worked on from the others by taking advantage of the fyct that the columns to the right are
answered. However, something must also specify the subiraction problem being worked on. To do
s0, the prucedure’s patterns might use the fact that the exercise problem js the one that has only
sulved excrcises before it and unsolved exercises after it, Going one step further, the patterps must
specify which piece of paper is the test paper. Clearly, the patterns are being burdencd with quite a
bit of descripion. The no-data-flow hypothesis entails that patterns mention things that are
irrelevant to subtraction. It makes silly predictions. 1t might predict that a student would believe
that a subtraction problem can only be done on a chalkboard or in a textbook, since that is the only
place the student sccs examples being done. It seems that there has to be some current focus
pointer somewhere in order to have the procedure retain any degree of modularity at all.

112 Focus is net globally bound

The previous section showed that the procedure is somehow storing and maintaining a current
focus of attenttun. This section compares two way$ to do this: globally bound variables (registers)
and locally bound varables. In the interest of factoring the hypotheses of the theory as
independently as possible, it will not be assumed that the control structure is recursive. This makes
the nomenclature more awkward, but gives the resulting conclusions a little more generality, One
other assumpiion s needed before the main argument can be presented. It will be assumed that the
Backup repair exists. The defense of this assumption is in section 1 of appendix 9. Some important
features of this repair are most easily described with an example of its operation.

Figure 11-1 gives an idealized protocol. 1t fllustrates a moderately common bug (Smaller-
From-Larger-Instead-of-Borrow-From-Zero). In the Southbay sample of 375 students with bugs,
five students had this bug. The (idealized) subject of figure 11-1 does not know all of the
subtraction procedure. In particular, he does not know about borrowing from zero. When he
tackies the problem 305-167. he begins by invoking a SubiCol goal. Since 5 is less than 7, he
invokes & Borrow subgodl {episode a in the figure). and immediately the Arst of borrowing’s two
subguals, namely Borrowing-from (episode b). At this poinl, he gets stuck since the digit 1o be
borruwed from 1s a cero, which cannot be decremented in the natural numhber system. He is at an
mpasse. Several fepaits can be used at fmpasses to gel unstuck. The one that interests us here is
called the Backup reparr. [t gets past the decrement-zero impasse by “backing up.” in the problem
solving sense, to the last goal which has some open alictiatives. In this case, there are five active
goals:
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In the units column, I can't take 7 from 5, so I'li
have to borrow.

To borrow, I first have to decrement the next
column’s top digit. But I can't take 1 from 0!

So I'll go back to doing the units column. Istill can’t
take 7 from 5, so I'll take 5 from 7 instead.

2

In the tens column, I can’t take 6 from 0, so I'll have to borrow.
I decrement 3 to 2 and add 10 t0 0. That’s no problem.

Six from 10 is 4. That finishes the tens. The hu ndr;ds is
easy, there's no need to borrow, and 1 from 2is 1.

Figure 11-1
Pseudo-protocol of a student perfonning the bug
Smaller-From-Larger-Instead-of-Borrow-From-Zeso.




DAaTA FLOW 171

Borrow-from: a goal that normally just decrcments a digit
Borrow: a goal that processes columns that require borrowing
SublCol: the main column processing goal

Multi: a goal that traverses across multiple columns

Sub: the top-level goal for solving & subtraction problem

bl ol

The Borrow-from goal has failed. The Borrow goal has no alternatives: one always borrows-from
then borrows-nte  The next most distant goal, SublCol. has alternatives: onc alternative for
columns that need a borrow, and one for columns that do not need a borrow. Since SublCol has
open dlternattves, Backup rcturns control to it. ‘The evidence for backing up occurs in episode ¢
where the subject says "So I'll go back w doing the units column.” In thc units column he hits a
sccond impasse. saying "I still can't take 7 from 5" which he repairs ("so I'll take 5 from 7
instead”}. Hc finishes up the rest of the problem without dll‘f'cully

The crucial feature of the analysis above, for this argumcnt. is that Bﬁckup caused a transition
from a goal (Borrow-from) located at the top digit in the fens column Lo a goal (SublCal) located at
the unus column. Backup caused a shift in the focus of attention from onc location to anothcr.
Moreover, it happens that the location it shifted back to was the one that the SublCol gosl was
onginally instantiaced on, even though that column turned out to cause problems in that further
processing of it led to a second impasse.. So, it scems no accident that Backup shifted the location
back to SublCol's original site of invocation. Backup shifts both focus and control.

Incidentally, [ expect this focus-shifting property of Backup lo remain uncontradicted by
evidence from other domains. In Newell and Simon’s study of eye movements during the solution
of cryptarithmetic puzzles, for example, there is ample evidence that backing up (popping a goal in
therr system) restores not only the goal. but the focus of visual attention that was current when the
goal was last active (Newell & Simon, 1972, pp. 323-325).

With the empirical evidence on the table, the basic argument is simple to state: If focus is
bound 1o instantiations of goals, then backing up to a goal automatically restores focus of attention.
The schema-instance hypothesis captures the facts quite nicely. The global binding hypothesis runs
into trouble. If focus 15 globally bound (e.g.. in a register), then the Backup repair would have to
be formulated so that it explicitly resets fo-us as it sends control back 1o a geal. But how would
Backup know what to reset the focus register to? By hypothesis, the only "memory” for focus is the
focus register, Hence, Backup would have to {1} analyze the procs Jre’s structure to figure out how
the current focus was calculated, then {2) run these calculations oackwards in order to obtain the
value that is to be set ingo the focus register. Clearly, this makes Backup a very powerful repair.
Not only can it do static’ analysis of control structure, but it can simulate a procedure running
bacawards! It 18 much more powerful than the other repairs, which do simple things like skipping a
stuck action. Backup is so powerful that it can potentially model any conceivable student behavior.
This would makes the theory irrefutable, not to mention implausible. In shoit, if focus is locally
bound, Backup is simple; If focus is globally bound, Backup is powcrful and implausible,

There are various ways that the giobal binding hypothesis can be patched up. One can
provide multiple focus registers, for instance. As it turns oul, there are excellent arguments against
such augmentauons to the global binding hypothesis. The arguments are rather complex, although
guite elegant at times. They have been relegated to an appendix (see section 3 of appendix 9). At
any rate, none of the versions of the global binding hypothesis have the empirical and explanatory
adequacy that the schema-instance hypothesis has. So the global binding hypothesis will be
rejected.

175




172 DaTa FLow

What this mcans is that representations that do not employ the schemata and instances, such
as finite state machines vr flo. charts with registers. can be dropped from consideration. This puts
us, roughly speaking. on the familiar 2round of “modern” representation languages for procedures, .
such as stack-basced languages. certain varieties of production systems, certain message passing
languages, and so on.

11.3  The applicative hypothesis

The deletion operator (chapter 7). regardless of how it is formalized exactly, is a valuable ool
fur examining data flow. Having an operator that mutates the knowledge representation allows ope
to infer the structure of the representation. An important use of this tool is to uncover one of the
tacit constraints on data flow.

A prominent fact about bugs is that none of them require deletion of focus shifting functions.
For cxamplz, if one knows about borrowing-from. one knows to borrow from a column to the jeft,
No bug has been observed that forgets lo move over before borrowing-from. This fact deserves
explanation.

In all the illustrations so far, focus shifting has been erftbedded in rule actions {right hand
sides). This is no accident. Suppose onc did not zmbed them, but made them Scparate actions, as
in

Goal: Borrow {C) Type: AND
1. (Borrow-into C}
2, (C + {Next-column C))
3. {Borrow-from C)

The “«*“ represents a variable setting operation {i.e.. a SETQ). A star bug is gencrated by dcleting
rule 2. This star bug wouvld borrew from the column that originates the borrow:

14 g 16
*Borrow- From-Self: 3465 3 4l 2lol7
-102 -129 -169

243+ 225 X 137X

In order to avoid such star buge, focus shifting functions must be embedded. A constraint upon the
knowledge representation is nceded. About the Strongest constraint one can impose is to stipulate
that the language be applicative. That is, data flows by binding variables rather than by assignment.
There are no side effects. a goal cannot change the values™f another goal's variables, nor even it's
own variables. The only way that information can flow "sideways"” is by making obscrvable changes
to the externa! state, that is, by wriling on the exercise problem.

The applicative hypothesis is extremely strong, forcing data to flow only vertically. The
procedure can pass information down from goal to Subgoal through binding the subgoal's
arguments.  information flows upward from subgoal to goal by returning resultss No
counterexainples to the applicative hypothesis have been found so far.

Applicative data flow enables context-free subprocedure acquisition

The applicative hypothesis has a profound effect on learning. It makes learning
subprocedures context-free. That is. learning a hierarchical proceduic becomes roughly equivalent
to inducing a context-free grammar. The basic idca is that the applicative hypothesis, together with

174




DATA FLow 173

the recursive countrol hypothesis (chapter 9), force data flow and control flow to exactly parallel cach
other. Tu put it in terms of gramman. the data flov. subcaregorizes the goals. This, in turn, makes
it much easier to induce the goal hierarchy from 2xamules.

Inducing a procedure’s calling hicrarchy (i.c.. goal-subgoal hicrarchy) from ecxamples has
proved to be « wugh problem in Al. Neves (1981) used hierarchical examples to get his procedure
learncr to build hicrarchy. However. subtraction teachers do not always use such examples. Badre
(1972) recovers hierarchy by assuming examples are accompanied by a written commentary. Fach
instance of the same goal is assumed to be accompanied by the same verb {e.g.. "borrow"). This is
a somewhat better approximation to the kind of input that students actually receive, but again it
rests on delicate and often violated assumptions. Anzai (1979) uses various kinds of production
compounding (chunking) to build hierarchy. However. 10 account for which of many hierarchies
would be learned. Anczai used dumain-specific features. such as the pyramids characteristic of
subgoal states in the Tower Of Hano:r puczle. The applicative hypothesis eracks the problem by
structuning the language in such a way that hierarchy can be learned via a contextfree grammar
induction algorithm.

114  Summary and Fformalization

The arguments in this chapter have been somewhat complicated although the eonclusion
reached 15 4 rather simple one. First, it was shown that procedures need 10 maintain some notion of
a current focus of attention. Roughly speaking, the focus of attention i$ a pointer to a region of the
current prublem state where some reading or writing actions are 20ing on. To maintain the current
focus of attention. some way to store and transmit focus over time is needed. This Ffacility was
labelled “data flow.” Various ways 1o construct it were contrasted.

The simplest facility is based on using registers (globally bound variables} as repositories for
the current focus of attention. This allews control flow and data flow to be completely
independent. However, this independence led to the downfall of this approach. The Backup repair
can be assumed to be a minimally simple way to change control, yet empirical evidence shows that
whenever it shifts control, it also shifts focus of attention in certain ways. If control flow and data
flow are as independent as the register hypothesis has them, then there is no way to explain
Backup's tandem shifts of control and focus. IF the two flows are independent, why doesn’t Backup
shift just one and not the other?

The schema-instance hypothesis revises the register hypothesis in a straightforward way by
stipulating that focus s somechow stored 10 close association with the instantiations of goals. Hence,
whenever a goal is resumed. as by the Backup repair, then its stored focus of attention becomes
currenl. In a sense. this hypothesis is a diyect response o the difficulties of the register hypothesis.
It stipulates that whenever control pops. focus of attention is restored too.

The applicative hypothesis goes one step further. It stipulates the converse: whenever control
does not pop/(or push}). then focus of attention does not change. That is, the only way to change
focus 15 1o push or pop goal instantiations. There is no way to change an instantiation’s stored focus
once that instanttation has been made. The currently executing instantiation can't even change its
own focus. This extremely strong hypothesis is motivated by an apparent lack of certain kinds of
bugs. I focus could be changed without changing control. then it vught to be possible for students
to forget to do such & charge. That is, the rule describing the change could be deleted. Yet no
such deletions have been found. Indeed, when such deletions are carried out, they result in stac
bugs. Heme, 10 explain the way deletion appears to work. data flow must be applicative. This
conclusion is captured in the following hypothesis:
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Applicative data fiow

Pata flow is applicative. The data flow (focus of attention) of a procedure changes if and
only if the contro! flow alsp changes. When control resumes an instantiation of goal, the
focus of attention that was current when the goal was instantiated becomes the eurrent
focus of attention.

The imract of this hypothesis on the emerging representaticn of proccduses is fairly simple. Goals
are equipped with arguments. An argument is a local variable that can be used in the rules that
decfine the goal's subgoals. When a rule calls a goal, it provides vatues for each of the arguments of
the goal that it is calling. For instance, in the goal Borrow:

Goal: Borrow (C) Type: AND
1. {(Borrow-into C)
2. {Borrow-from (Next-column C))
3. (DiffC)

the argument of Borrow is C. When rule 2 calls the goal Borrow-from, it provides a binding for
Borrow-from’s argument by evaluating the focus shifting function Next-column. (The next chapter
shows that functions are not a good way to represent the shifting of focus; patterns are betler.) The
other niles simply pass the current focus of atiention, held in C, to the goals that they call.

Passing intension versus passing extensions

Computer science bhas invented several ways to pass arguments. The most common is call-by-
value. Others are call-by-name, call-for-result, call-by-reference and lazy cvaluation. The basic
dimension of variation is how mueh of the "meaning” is passed along with the valuz or datum.
From a logician's viewpoint, the issue is whet'.er the objects being passed via arguments are
intensions or extensions. The most contmon convention is to pass extensions — call-by-value. Lazy
evaluati n is perbaps the closest approximation in computer programming Lo passing inlensions.

The intension-extension dimension is a valid issue for the theory to cxamine. Certainly the
theory has to take a stand on it if its model is going to be impiemented on a computer. The issue
is essentially whether focus of attention is a specific geographic region in the problem state or a
description of a region in the problem state. One might represent an extensional focus of attention
by a rectangle in Cartesian coordinates. Intensional focus migh. be represented by a concalenation
of all the patterns that have been used to generate it. Unforturately, the issue of extensional versus
intensional focus is a very difficult one, with some empirical evidence on both sides. The position
taken by the theory is to represent focus using parse nodes (see section 2.4), which are halfwa,
between extensions and intensions. Appendix 8 discusses this complex issue,
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Chapter 1 2
Searching the Current Problem State

In the next chapler. the problem of how 10 represent student’s understanding of the problem
states will be discussed. It will be shown that students impose a structure on their view of the
curreat problem state. ‘Thetr understanding is a sort of a task-specific ontology that delermines
what objects "exist” in the sense that they are relevant to the task. The task-specific ontology also
determines the spatial relationships that “exist” between these objeets. Regardless of how the
students struct¥re their +iew of the problem state, the students must occasionally scarch that
structure in order to locate informativn needed during problem solving. This ¢hapte- discusses the
scarcn 1ssue, which cuts across all the various task-specific ontologies and representations thereof.

The previous chapter showed that procedurss maintain a visual focus of attention. [t also
discussed a certain kind of focus shifting caused by popping goals. However, there are other kinds
of focus sfting. For iastance, the studgnts wrile symbols :n vanous lucations, presumably shiftine
focus between each writing action. Suth focus shifling requires a procedure-directed movement
through the visual-manipulative space. That is, the procedure must scarch.

The search problem is to equip tie procedure with facilitics that allow it to search the problem
state {or rather the student's structured version of the problem state). The essence of the scarch
problem is how much of the seaich task to represent explicidy in the procedure, and how much to
represent below the grain size of the representation as some Kind of primitivc or underlying facility.
That 15, the search problem concerns where to place the boundary between the cognitive skill under
study. mathematical problem solving, and the perceptual and motor skills that necessarily
accompany the exercise Of maihemat’™~al ~Lill, Three hypotheses will be considered:

1. Search loops: The procedure employs explicit search loops in order f. aecess and manipulate
the symbols in thc probler. state.

2. Path expressions: The procedure describes a path from the current focus of attention to the
desired object. A mechanism that is beneath the giain size boundary actually moves the focus
of attention along the path in order 10 access the desired object. *

3. Paltern maiching: The procedure doesn’t need to express anything about how to find a
desired symbol.  Instead, it merely d>scribes what 1t wanis. The description is called a
pattern. A mechanism called the pattem matchel, which is below the grain size boundary,
takes care of actually finding the described symbols,

It will be shown that the evidence i5 clearly on the sicle of the third hypothesis.

o

12.t  Search loops

One way 0 f{ind symbols is for the procedure o contain Search loop. A scarch loop moves
the focus of visual avention across the problem Stale, stopping when il reaches the location where
the procedure *vill read or write a symbol. For instance, tv find the lefimost colu:un, the pocedure
would loop lefiward actoss symbols until it fincs a colwan {= - ertical group of digit symbols) that
hes lots of blank space to the left of it
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To implement a loop requires at least onc disjunction; the conditional that says whether to
stop vt to o unce more around the loop. According tw the one-disjunct-per-lesson hypothesis, each
such drsjunction must be the topic of its own lesson. In itself, this is not bad. 1t could well be that
scarch loops are taught in a scrics Of lessons.

Consider a simple search .hat walks down a string of algebraic symbols looking for, say, a
vdnable, This would require a loop {expressed recursively) across the symbols of the string. The
joop weuld be similar in form to the one used in subtraction to walk across the ¢olumns of a
prublem. Given unc-disjunct-per-lesson learning, the acquisition of the search loop would mimic
acquis.tion ©f the melti-column loop:

I, The first lesson concerns the simplest case, where the desired vartable is the first element of
the string.

a2

The second lesson has the variable as the sccond elem _at of the cxample string, indicating that
it is not the string’s initial element but a variable that 1s being sought.

3. The third lesson closes the loop with examples where the variable is anywhere in the string,

Onc could imagine a pariicularly thorough algebra teacher following this curriculum once.
However, the representation forces such a three-lessun unit to be presented for.tacn new search!
Clearly. students ¢an learn searches without this kind of teaching.

The cnucial difference between the multi-column loop and the search loop is exactly ..t the
rmulti-column loop requires mutation of the problem state at each SLep and thercfore is not really a
search loop 'To maintain <¢ prediction that the multi-column loop refuires several lessons, but the
scarch loop does nol, a representational construction is needed that distinguishes the two. The
representation needs a special construction to perform searches.

122 Pattern matehing ﬁ‘
In a production system or a Planner-like language, the usual v/ay to access an object is to
specify the relations that would be true of it. A typical description might be

(AND
{?X ISA PLACE)
(?x IN 1COL)
{(NOT {?X IS/BLANK)))

This description is used to find a aon-blank place in the given column, Traditionally, prefixes are
used to distinguish search variables such as ?X from goal arguments, such as 1COL, which are
bound prior «o the search. The critical point is that patterns nced not specify how to conduct the
search 10 locate the described object. They only describe what the search is looking for, The
intcrpreter includes a mechanism called the pattern mratcher which actually conducts the scarch,

Essentially, the argument is that since searck loops are not taught explicitly in class, some
general search mochanism must be in place before instruction begins. Therefore. only the
descriptions that drive the search nced be learned in class and not the search loops themselves,

Although patterns and paitern malching are the solution that the theofy uses for the scarch
problem, it is worth mentioning a special search construction that was once used by Sierra. It
possesses many interesting gualities, but turned oul rather poorly compared o patterns and patte;
matching.
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12.3  Function nests s representations of paths

he basic idea of Sierra’s old representatiun was to describe a path between the current focus
uf attention nd the desired new focus of attention. “This path was expressed as a nest of functions.
Fur cxample. if the current fucus 15 a column that requires borrowing, then the Borrow-from goal
necds to be called un the top digit of the next column to the left. To shift focus. the following
function nest was used:

(Topbigit (LeftAdjacentColumn Col})

TIhrs descnbes a path. It moves first to the column that is just left of the current focus of attention
{represented by the vanable Col).  Then it focuses in on the top digit of that column.

What makes this representation interesting 1§ that it could acquire new descriptive functions in
the same wdy that new subprocedures .are acqured. The basic idea is to define functions using the
S4mME AND OR structure that procedures’ control structure uses. The crux of the representation was a
cunstructivn called an wntersection funcrion.  An intersection function is expressed as a functional
AND goal. Thus, LeftAdjacentColumn i expressed using the following intersection 1+ tion:

Goal: LeftAdjacentColumn {Col) Type: AND, Function?: true
1. {Columns)
2. (Left Col)
3. {(Adjacent Col)

This function ntersects the sets returned by the three subfunciions, Columns, Left and
Adjacent, Functions must be sei-valued in order 1o make this work. Thus, a function such as
(Left Col) returns all places that are (o the left of the given column. The resuli of the
intersection function above would be the intersections of all columns. all places to the left of the
g.ven column, aad all places adjacent to the given column. This means that it returns a singleton
set consisting of the left-adacent column.

intersection functions can have the same syntax as goals. Hence, learning new interscction
functions would be similar. if not identical, to learning new subprocedures. Moreover, rule deletion
would be identical 15 "forgetting” part of a.term’s definition. The whole concepl seems quite
tractable. 1In fact, Sierra used this representation for quite a long lime, as representations go. A
complete learner was built for it. That is where the fatal flaw was found.

There are 100 many paths betweer any two poinis

By the time the later lessons of subtraction aire encountered, a number of intersection
functions such as LeftAdjacentColumn have been learned, The richaess of this set altows long
and sil!y nests of functions o be induced for descriptions. For example, the usual borrow-from

place,

(TopDigit (LeftAdjacentColumn Col))

could also be described by any of the following nests:
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1. (TopDigit
(ColumnDfDigft
(LeftadjaceniDigit
(BottomDigit Col))))
2. (RightAdjacentDigit
(TopDigit
(LeftAdjacentColumn
(LeftAdjacentColumn Col))))
3. (AboveadjacentDigit
(BottomBigit
(LeftAdjacentColumn Col)))

As these nests illustrate. there are many paths o get from one place 1o another. Path induction will
find ul pussible paths from the current focus of attenuon to the place where attention is next to be
focused. When non-cyclic paths are removed, there are still far too many paths. Esven when
mtnimal length paths are the only paths induced, there are many paths. Moreover, all the paths are
roughly cquivalent in that procedures with different paths are obsenaticnally indistinguishable.

To avoid this redundancy, one really wants to merge those paths. Onc wanls to describe the
network instead of all the paths traversing it. That 15 exactly what patterns do. If a paitern consists
of a set of relations among ariables, the velations can be viewed as labelled edges for a directed
graph with the variables serving as the graph nodes. Thus, patterns express the whole network of
relationshups between currept and suecessor foci, while a function nest expresses only one path
through the network. The reason that path induction gencrates su many silly. redundant expressions
is that 1t generates all pussible paths between two nodes in the n work. Clearly, learning is better
representcd as inducing the network itself. Thus, it need not che  between alternative and neaily
equivalent paths,

Paths and relaxation

The discussion above is aimed mostly at cstablishing a different perspective on patierns rather
than criticizing the path framework. The damning problems with paths have to dc with the fact
that they are hard to "relax." A pattern can be relaxed by deleting one or more of its relations,
allowing it to match in more Situations than it used to. However, it Jocsn’t work to delete one
function from a function nest. Such deletions generally generate nonscasical paths.

Relaxation is used in several ways. It is used by the Refocus repair in oider to find a new
argument for a stuck action that is “similar” to the argument value that causes the impasse.
Relaxation 15 also used in learning go gencralize descriptions in certain situations. Chapter 18
discusses these issucs. Suffice it to 5ay that paths are a poor representation for locative descriptions
whenever those descriptions must be revised. As long as the descriptions never change, which is not
the case herc, then path representations work finc.

124  Summary and fonnalization hd

It is often the case that procedures much search th. problem state to find information. If this
search were represented explicitly in the procedure, then it v ould occasionally take the form of a
search loop. Such loops would require at least one disjunction in order to terminate the loop wlien
the desired information is found. However, the one-disjunct-per-fesson hypothesis entails that each
time sych a loop is learac” 't would have to be learncd in a short sequence of lessons. In many
cascs, such lessons arc not found in today's curri.ufa. Hence, 10 maintain the truth of onc-disjunct:
per-lesson Jearning, a facility for doing search hat is beneatli the grain-size boundary must be

Q 18{:
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added to the representation. A hypothesis to capture this conclusions is:

Pattern
Procedures have patterns which are matehed against the current problem state.

There are many issues ntroduced by the addition of patterns to the representation. Chapter 13
discusses what the set uf relations should be for patierns and how the student’s understanding of the
problemn siate. which is what patterns match against. should be represented.  Chapter 14 discusses
the cxnressive power that patterns should be given. They must have at least relations, such as
(LeftOf x y) or {Column X} in order to describe the kinds of information that search secks.
However, 1t is So far an open qucestion whether they have logical constructions such as quantificrs,
disjunctions and so on. Chapter 17 shows that procedures need two Kinds of patterns.  Test patterns
arc used for the applicability condiions of rules. Fefcs patierns are used for the focus shifting that
occurs when a rule calls a subgoal. Chapters 18 and 19 discuss how patterns arc acquired.
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Chapter 13
Ontology

This chapter discusses how to represent a student’s ''nderstanding of the current problem
state, or rather. that portion of the current problem state that the student considers relevant to the
problem solvung task. It is assumed that the student knows or believes that only certain kinds of
objects and relations are relevant to learning and problem solving in the given task. That is, it is
assumced that the student has a task-specific ontology which says what kinds of objects and relations
exist in a given probicm state when that state is viewed in a task-oriented way. This ontology is
specific to the task the procedure solves becaus2 the kinds of objects and relations that are relevant
vartes with the task. The relevant objects for subtraction are different than those for algebra, for tic
tac we, or for drawing cartouns, even though all these tasks are carried out on puper. Indeed, the
task-specific ontology may even vary across subjects performing the same task. This variability is
the cssential problem. It will be shown that the choice of objects and relarions used in an inductive
learning model has a direct effect un the output of the learner. But the onwlogy is task-specific, so
the theonst must provide it, at least «n part. The theonst can control the predictions of the model
by controfling the objects and relations used to represent the student’s task-specific ontology. If the
theorist is allowed total freedom in choosing the model’s objects and relations, then the empirical
adequacy of the theory may depend more gn the cleverness of the theorist than on the principles of
the theory. The theory may have litue explanatory value.

To summarize, thers are two horns lo the dilemma: Since the student's task-specific ontology
varies across tasks (and perhaps acruss students as well). the theory must leave its formal expression
as an open paramete! in the model. Some tailoring must be allowed. On the other horn, if the
ontology parameler i$ too unconstrained, the theory may be vacuous. The problem is to provide
some way to constrain the representation of task-specific ontologies. This chapter discusses three
selutions to that problem:

L. Problem state spaces: The thedry places no constraints on the represciiation of task-specific
ontologies. For cach task {or possibly cach student). the theorist provides a problem state
" data structure, some functions and relations for accessing it, and some state change operaters,

rd

Aggregate olject definitions: Under this approach, the theory asserts that all studerds have tl 2
sam¢ conception of two-dimensional space for all mathematical symbol manipulation tasks.
That spatial conception iS based on a few fundamental concepts, including adjacency.
sequence and the compass points: horizontal, vertical and the two diagonals. The variation in
ontologies across tasks and individuals is confined to aggregate objects. That s, different tasks
will group the symbols differently. Subtraction cares about columns but algebra doesn’t.
Different students might group symbols differentdy. Some algebra students group "24-3x”
such that "2+ 3" is an aggregaie object. Although grouping Strategies may vary. the set of
basic spatial relations and the set of state change operators are both constant. A subtraction
problem is a horizontal sequence of coluffins; an algebraic expression (e.g., "-—2+3x2+y") is
a horizontal sequence of signed terms. The model uses exactly the same spatial relations to
describe both cases  Essentially, the snatial relations are a fixed. universal set.  The objects
vary across tasks and individuals. The set of state changg operators is also a fixed, *niversal
set. To atlor the ontoiogy paramecter of the model, the theorist provides only a set of
aggregate object definitions.
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3. Granmvnars. This approach takes the same stand on the universal character of spatial relations
and statc change operators as the object definition approach. However, it expresses that
hypothesis differently.  The cssental difference is that aggregate objects can be defined in
terms of other aggregate objects. In particular, an objeci is defined by a set of grammar rules
thaet may mention other objects. The formalism for grammar rules embeds the fundamental
spatial relations. adjacency, scquence and the compass points. The grammar also establishes a
part-whule hierarchy of aggregate vbjects. This hicrarchy is lacking from the object definition
approaclt. 1o tailor the ontology parameter of the model, the theorist provides a grammar.

All three approaches were implemented in Sierra at various times, They arc only a small sample of
the many ways that ontologics can be represented. More research is needed in thic :rucial area.
For the domain of mathematical symbol manipulation skills, it will be shown that the grammar
appruach yiclds the best theony. Howewver, it is not yet clear whether 1his general approach will
work in other domains. 1 would hesitate to say that a grammar is the right way to represent a
nuclear power plami uperator’s task specific ontology. Clearly the plant operator’s ontology would
nut be a simple twu-dimensional grammar of the kind used in this theory. Perhaps it would be
more hke the device topologies used in de Kleer's work on causal models of physical devices
{(dc Kleer, 1979, dec Kleer & Brown, 1981). This will be a critical issuc when the acquisition of
procedural skills 1s studied in other domains than symbol manipulation.

13.1  Problem statec Spaces

Onc approach to representing the subject’s task-specific ontology is to use a high-level,
structural description of the problem staie. For instance, the problem state might be formalized as
operator-precedence Lrees for algebra or as matrices for arithmetic. One must also provide a set of
descriptive termis for the procedure for use in accessing parts of the problem state data structure or
in testing its properties. Examples of such descriptive terms arc a function that retrieves the ‘eft
side of a given cquation, or a predicate that is true of two columns when they arc adjacent to each
other.

This approach s cssentially a projection of Newell and Simon’s problem space approach onto
the problem state dimemsion (Newelt & Sumon, 1972), Problem spaces comtain information that
doesn’t directly represent the current state of the visible problem. A problem space for chess
contains information about the previous moves in the game, for instance, The problem state space
appruach 1s Just a restnction of the problem space approach. It includes only imformation .bout the
prublem state. That is, it represents the subject’s internal representation of the curpent external state
of the problem.

A fundamental tenet of the problem space approach used by Newel' and Simon is that
problem spaces vary across individuals amd tasks. The problem state space thercfore is left as a
model parameter that can be tailored by the theorist to fit individual subjects, This is its Achilles
heel. For scveral years while repair theory was being developed. Sierra’s solver used problem state
spaces. The solver’s performance was relatively insensitive to variations in the problem state space.
Houwever, when the lcarner was developed, it showed cnormous sensitivity to the problem state
space. Many 1mportant details of the s.udent procedures induced by the learner were controlled
sulely by the problem state space. Since the learner was bacicaliy an inducer, slight shifts in how
probicns were descnibed were lified by gemeralizatioa into the acquired procedure.  Since the
probicm stale space has to be fitted by the theonst to the data, the theorist can tailor th~ lcarner’s
vulpul to be just aboul anythirg. This gives the theory a great deal of tailorability. Indeed, it can
be argued that it gives it two much.
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The generation of Always-Borrow-lLeft depends on the problem siaie space

The problem state space has cnough tailorability that it even affects the generation of a
premier bug of induction: Always-Bonow-Left. This subtraction bug is a particularly clear cxample
of how induction ear generate bugs as well as correct procedures. 1ts geaeration assuines that the
student has learned only part of the lesson sequence for subtractton. In particular, # assumes that
the stu-dent has just been introduced to borrowing. In all textbooks that I know of. the lesson that
introduces borrowing uses only two column problems, such as a
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Multicolumn probiems. such as b, are not used. Consequently, the student has insufficicnt
snformation for unambiguously inducing where to place borrow’s decrement. The correct placement
15 in the left-adjacent column, as in 5. However. w0 culumn problems are also consistent with
degsementing in the leftmost column, as in ¢, Given only two column cxamples, inductiva can't
discrimmate between the two placements. The bug Always-Borrow-Left results from the leamer
taking tlie leftmost generalization, rather than the left-adjacent gencralization, which is the correct
one. Always-Borrow-Left produces the kind of solutions shown in ¢. The bug occurred six times in
the Southbay sample of 375 students with bugs. 1ts existence is prime evidence that induction plays
an important role in procedure acquisition.

The problem state space has total control over whether ¢r not Always-Borrow-Left is
generated  If the problem state space does not include "leftmost column” as one of the descriptive
terms, then Always-Borrow-Left is not induced. To cover the data. the problem state space has to
have "leftmost colman” in it. Yet if the problem state Space has all plausible descriptive terms in it,
then induction will generate star bugs. For instance, if “tens column” is a desceiptive term in the
problem state space. then two-column worked examples will gencrate a star bug that coutd be called
*Always-Borrow-From-Tens-Column, Its work js shown in o and e
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The star bug decrements the top digit in the tens column even when that column has already been
answered. 48 in ¢, or is in the process of getting answered, as in d The model should not generate
*Always-Borrow-From-Tens-Column, Therefure, the problem state space should not include the
descriptive term “tens column.”

fhese examples demonstrate that the empirical adequacy of the the theory is highly sensitive
to the problem state space. If the theorist tailors the problem state Space, then many bugs and star
bugs are not explained, they are merely represented by the presence or absence of descriptive terms.
Adjusting the problem state space to include “lefimost column” and exclude “tens colemn’ doesn't
explain why one and not the other is a salient descriptor 1o students Tailorability reduces the
explanatory value of the theory,
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Problem state spaces reduce the forecasting ability of the theory

‘There 15 a second reason that a tailorable problem state space decreases theoretical adequacy.
Wiien the theory is applied to a new task domain, it has to be given a new problem stale space.
Suppuse that data have not been collected for Uus Lask domain, With nuthing tw tailor the problem
state space 1o, the theorist must rely on inteitwn 1n formulating the problem state space.  Since
there is nu reason tu believe in the theorist's guess fur a problem state space, there is no reason 10
believe the theory’s predictions, which depend directly on the problem state space. ‘The predictions
mercly reflect the theonst's intuitions.  Hence, the theory is uscless for applications that wish to use
it instead of extensive data collection prujects. As an example of such an application, suppose
someone had just invented some paper-and-pencil tools for calculation and a curriculum to teach
people how 1o use them (e.g.. a new way 1o sohve fraction addition problems). This theory would
be nearly useless for assessing the quality of that curriculum given that the pioblem state space had
10 be guessed. Tailorability reduces the forecasting ability of the theory.

132  Aggregate object definitions: fixed sptial relations

During the period that Sierra used problem state spaces, the set of notational terms was
adjusted i ordar to maximize the empirical adequacy of the learner’s predictions. The resulting set
of primines had several regularities. For instance, there were several clusters of primitives that
expressed the idea of a seqitence of objects. A horizontal scquence of columns was represented by
a cluster of primitives consisting of

lefimost column

left adjacent column

column A is lefi of column B
rightmost column

right adjacent ¢column

There were several of these sequence clusters. It seemed that a powerful underlying concept,
sequence. was not being caplured by the representation in its most general form. The next
hypothesis, the aggregate objcct definition hypothesis, aims lo rectify this.

The basic idea behind the aggregate object definition approach is to split off general spatial
notions from task-specific notions. The concepts that vary across tasks and subjects are mostly
concerned with aggregation ¥ symbols into groups. This part of the problem state space has to be
left open for the the theorist to adjust. Everything else can be fixed. In particular, spatial relations
are represented by the following set of predicates on objects:

Topological
{Adjacent? x y) x is adjacent lo y
(Insige? x y) X is inside y

Sequence
(Last? S x) X is tin fast element of sequence §
{First? S x) x is the first clement of sequence S
(Middie? 5 x) x 15 neither the first nor last element of §

{Ordered? S x y) xisbefore y in the sequence §

Compass points
(LeftOf? x y)
(Above? x y)
(Superscript? x y)
(Subscript? x y)

is to the left of y

is above y

is chagonall_vr up’ and right of y
is diagonally down and right of y

oM oM X
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There are comentions for ordering scquences. The first clement of a horizontal sequence is th.
lefimost cles.ent, and the first clement of a vertical sequence is the top clement

The spatial ;o lafions are a fixed set, provided by the model. To complete the representation
of a student’s task-specific ontulogy, the theorist provides a sct of type and part relations for cach
dggregate obyect and its parts.  For instance. the theorist could define an algebraic cquation as an
aggregate object by defimng one type relation and three part relations:

{Equation? Q) true if Q is an cquation

{Lhs x Q) x is the expression on the left of the cquation Q
(Sign x Q} x is the sign (usually =) between the cquation’s halves
{Lhs x Q) x is the cxpression on the left of the cquation Q

As argued i chapler 12, patterns are used for all interface operations between the precedure and
the prublem state space. In parts. ular, they are used as the applicability conditions for rules and for
shufting the focus of attention when a rule calls a goal. Patterns contain both spatial relations and
the relations prosvided by the theorist o define aggregate objects. The following pattern might be
used 0 test if an algebraic cquation-solving problem has bee¢n completed:

{Equation? LQ)
(Equation? Q)
(Last? S LQ)
(Middie? S Q)
(Above? Q LQ)
(Lhs x LQ)
(Variable? x)
(Rhs y LQ)
(Expression? y)

This pattern descnbes two equations. LQ and Q. They are vertically aligned in some Scquence S,
and LQ 15 last in the sequence. The left side of LQ is a variable, and the right side is an algebraic
cxpression.  This pattern would mateh b but not ar

a. 2x+5 = 9 b. 2xr5 = 9
2x = 9-5 2x = g-§

2x = 4

x = 472

Both prublcm states have a svertical sequence of cquations, but the pattern doesn’l match problem
state J since 1 wertieal sequence of equations does not end with an cquation that has a single
varable as the left hand side.

The pont of fixing the spatal relations is to remove a degree of freedom from the
reproseitation of task-specific. ontologies. The only (reedom left is the aggregate object definitions.
In a sunse. the theory has been augmented with a micro-theory of two-d‘mensional space. This
micro-theory increases the explanatony valugc of the. theory as a whole. For instance, one of the
prinuiples of the micro-theory 1s that whenever there is a sequence, the first and last elements of the
sequence are salient 10 the student. IF the inducer sees a problem state where x is the first clement
of the scquence S, then (First? X S) will always be induced as a part of the description of x. In
particular. 1f x 15 the leftmost column in a sequence of columns. the induced description of x will
mclude the constraint that it is the lefumost column. This explains why Always-Borrow-Lefl is a
bug. The column 1t borrows from is a lefumost column. Induclion is for.ed to predict the bpe
given a trairing set of two-column borrow examples. The micro-theory explains the bug from the
general pnnciple that people always notice the boundary points of lincar arfangements of objeris.

0
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133 Grammars

With the addition of 4 micro-theory of space and a symbol-fevel grain size, the tailorability of
the model 1s drastically reduced. The way that the model is adapted to represent varying
conceptions of notational syntax 1S himited to defining new kinds of aggregate objects and their
associated part relations.  The set of primstive spatial relations and primitive writing operations
remains the same.

This section discusses several hypotheses about the meamng of pattern relations based on this
representabion of task-specific ontolugies.  in particular, what are the untime implications of the
spatial relations and the relations that define aggregate objects? From the perspective of building a
wompuler mudel, the issue 1S how to define the meaning of the relations that are used in patlerns,
{f the pattern has (Column x) in i, how does the pattern maicher enforce this constraint on the
bindings of the pattern variable x? That is, what is the relationship Detween pattern relations and
the current problem state?

The myopia problem

The most straightforward relationship between patterns and problem states is simply to
provide cach term with some geometric definition. For examiple, the spatial predicate,
(Adjacent? x y) might be defined to mean that there is nothing but blank paper between x and
y. DBy this definition, the 3 and the x are adjacent in both @ and &

3 X

a. 3 X = 3] b — = —
4 8

Not only are the 3 and the x separated only by blank space, but they are the same distance apari.
By any local defimiion of Adjacent?, the 3 and the x are adjacent in both ¢ and 6. This strange

interpretation of b is not onc that subjects make.

This myopic behavior was discovered in an early version of Sierra. At first ! thought it was
an. instance of the old "how near is ncar” problem that has plagued Al for at least a decade
(Denofky, 1976), How close do two symbols have to be to be adjacent? To my knuwledge, no ope
has solved the "how near 15 near” problem, if indeed “solving™ it makes any sense in the abstract.
There are a collection of hacks for getting around i, mainly involving fudge factors and
manipulations of the grain size of the coordinate system. However, as various increasingly desperate
hacks were applied to fix Sierra’s myopia, it became ¢lear that the approach of using local geometric
definiticns for terms was just too local to be workable,

The robustness problem

Anvuther approach is to maintamn locality of a sort by using definitions that scarch for maximal
conditions within a ncighborhood. For instance, (Adjacent? x y} could be defined as "there is
no obgect which is closer to X than y, and closer to y than x.” In other words, x z2nd y are the
closest objects to cach other. This would correctly rule out adjacency for 3« in
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3 X

4 8

since the the closest object to the 3 is the cquals sign. not the x. These sort of locally maximal
definitions are an improvement over absolute definitions, but even they have problems.

For one thing, they require special cases for symbols that aren't roughly circular in shape, as
the digits and letters are. A fraction bar is one such symbol. One wants 3 and x to be adjacent in
the following fraction:

3 x
-z

However. the bar is the closest symbol to the 3, not the x. Bars have 0 be made an exception to
the rule in order to get the 3 and the x to be adjacent.

A second problem is a lack of robustness. A little sloppiness in the placement of symbols
changes the truth values of predicates defined with locally maximal definitions. For instance, i the
first line of

The 3 and the x aze not adjacent because the y on the second line is too close.

Adjacency is the foundation of symbol groups in mathematical notation. 1t plays the role of
string adjacency in text parsing or temporal adjacency in speech understanding. If adjacency can't
be well defined. then the chances of an adequate definitions for other notational terms is poor
indeed.

The local ambiguily prob;’gm

There is a second kind of problem with local definition of relations. 1t invcives local
ambiguity. A local ambiguity occurs when there are sevcral intefpreiations for a certain subset of
the problem state, vet all but one interpretation fail to fit into an intefpretation of the whole
problem state. That is, there is ambiguity when only a part of the scene is considered, but the
ambiguity .asappears when the whole scene is considered. Take, as an examnple, the string “2 4 3x.”
One intefpretation is that "2+ 3" is an expression. While locally correct, this interpretation cannot
be extended to include the x (assuming a correct syntax for algebraic notions). To sce why filtering
local ambiguitics is important, suppose the procedure wants to extend the expression by appending
"+5" to its right end. It uses some pattern to fetch the current expression. If the page bears
“24 3x"™ it 15 possible that the pattern matcher will return 243" as the expression. Appending
“+4 5" to this will causc x to be overwritten. This is not a mistake that people makc. Clearly, the
definitions of pattern matching must be modified so that such local ambiguities will not be

refurneu.

One solution to the local ambiguity problem is to have each term’s definition check the
context of its group of symbols as part of determining whether it is true of them. For instance, an
algebraic expression with two terms could be defined as:
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(BinaryExpr x y) =
(Term? aY A
(Term? y} A
(Adjacent? x y) A
(LeftOf? x y) A
(Vz (= z y) V ~{Adjacent? z x) V ~(Left0Of? z x)}] A
[Vz (= z x) V ~(Adjacent? y 2} V ~(LeftOf? y z)]

The intent 1s for this refation 0 match "2+3x" but not "2+3,” 'Ttus definition uses universal
quantfiers te check that there s nothing just left or just right of the ev~ression. Thus, it rules out
"2+ 3" because it sees the "x” just to the left of it

Actually, the Zefinition is a little too strong, It must allow certain symbols au its sides, such as
equal signs, for instance. So cach disjunction would need to be extended with literals such as

...V (Equatl (Read z) '=) V (Equal {Read z) '|)

In fact, whenever a new notational symbol is iearned, all definitions, such as this one, for agzregate
objects that can be located adjacent to the new symbol must have their definitions updated. For
instance, when “#" is learned, then the defimtion above would have to be extended. This would
make 1t difficult, perhaps, to formulate a plausible theory for incremental learning of notation,

Actually, using context-sensitive definitions sould probably not work in general. Consider the
string "2 +3|5—-8]". The extended definition for BinaryExpr given carlier allows "|" on ils side.
So it correctly calls "5-8" an expression. However, it also callsge2 +3" an expression. In order to
discriminate between the two, it needs to look further than one symbol away. *

Whether or not this approach of using look-ahead in local definitions of terms will solve the
lucal ambiguity problem in general amounts to asking whether every mathematical notation has an
I_R(k) grammar (or equivalently. whether it is a deterministic language). It has been shown that all
precedence iafiguages are deterministic languages (Floyd, 1963). The class of precedence languages
takes in the sort of linear mathematical expressions used in comnuler languages. However, it is
uncertan whether #w -dunensional mathematical notation i a precedence language or even a
deterministic language. In short, there is reason *o doubt whether the local definition approach will
always be sufficiently powerful to express all mathematical notation. Of course, I>arning definitions
with many symbols of look-ahcad may grossly complicate a theory of their acquisition.

Using grammars 1o solve problems with myopia und local ambiguity

"

When relations are defined using only local geometric knowledge, relations such as “term
and “expression” ha  no relationship to each other except perhaps for co-occurrence in some
patterns in the proce  re. Consequently. there is no way to prune objects which satisfy their local
definition but fail tc participate in a global parse of the image. If notational objects are defined by
a prammar. the definitons of objects refer to other objects by name. This provides information
linking the objects together. ft can be used to solve problems of myopia and local ambiguity during
pattern muaiching.

The basic idea i$ that relations can have Fairly sloppy, individual definitions if the definitions
are used in concert, A relation in a pattern matches a form in the problem state only if that form
parlicipates in a global parse of the problem state. The granumar as a whole acls as a filter on
possible instantiations of the relations. Hence, the local parse of “2+ 3" as an algebraic expression
in “2 +3x" is ruled out because it does not fit into a global parse of the whole problem state, Thus,
the grammar is used to filter cut local ambiguities. Similarly, grammars solve the rayopia problem
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of pattern matching. In

3 x = B -
y = 2

the 3 and the y are not adjacent because there is no global interpretation of the problem state that
groups thuse two symbols together as a unit. A local definition of Adjacent? might suggest that
they are adjacent, but the glubal interpretation would filter this suggestion out before the pattern
matcher can !r'nistakcnly retrieve it

A technical dewil: maximal parses

To insist that the problem state have a complete parse is a little too strong, The current
problem state may not have a complete parse. This is often the case in the midst of problem
solving. En route from "2+3x" to "2+3x+5", the problem state is "3+ 3x+", which is not a well-
formed algebraic expression. Since it hasn’t a complete parse. pattern matching would not be
permitted to access any part of it  So the complete-parse restriction is a tad too strong.

One stipulation that works is to specify that objects must participate in a maximal parse. A
parse 18 maximal if the group it covers is not a proper subsct of any other parse’s cover. Since
"2+ 3" is a proper subset of "2 +3x", it is not a maximal parse of the problem stute "2-+3x+".
Hence it is not accessible to matching. There are stipulations other than this one that werk, but
they seem to produce exactly the same filtering as the maximal parse stipulation. At any rate, some
kind of global cuherency is necessary as a filier on matching, although currently the details of what
that coherency is don’t seem to be too important,

A

134  Summary and formal hypotheses

The arguments in this chapter concern how to restrict the ontology parameter of the model.
The model uses a set of relations and state change operators to represent the way students structure
their views of the current problem state. In most cognitive modeling efforis (e.2., Newell & Simon,
1972), this paramete. is left tajlorabie. Depending on the task and the subject’s perception of it, the
theorist constructs a different representation of the problem state, along with the pattern relations
that are used to access it. This approach, dubbed the problem state space approach, gives a greal
deal of tailorability to the model. -

It was argued that the degree of tailorability was too high. The argument wmed on the fact
that the present theory is an inductive learning theory. (N.B.. Neweli ind Sitnon’s theory of human
problem solving (1972) is not a learning .. ury. so ils predictions may be less sensitive to the
tailoring of the problem space.} Subtle changes in the relations that described the problem state or
the operators that changed it are lifted up by induction and placed into the procedure. Hence, the
theorist may control the output of the learner by tailoring the problem stawe space. This reduces the
theory's ability to cxplain why some procedures are acquired and others are not.

The ontology pararneter cannot be completely fixed sinoe subjects’ perceptions of the task
really are different across tasks and individuals. However. certan parts of their understanding do
not change much, given that the domain is limited to mathcmatical symbol manipulation tasks.
These less variable kinds of knowledge can be fixed by the theory. The basic idea is that the
subject’s notions of two-dimensional space do not change much across tasks or from one individual
to another. However, the way that symbols are groupcd inte aggregate objects does vary, The
theory can fix the spatial relations, but it necds w lcave the specification of aggregate objects open
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to tailoring.

I'wo ways to capture this basic idea were diszussed. One s to aliow thi theorist to define
aggregate object relations, using Lisp or sume other convenent fanguage.  The reletions act locally,
revog Mg 1nstances of themselves i the problem state. For instance, {Column x})  nught be true
of sertrally adjacent pairs of digits,  This way of defimng relations turned out to have severe
problems,  Notwns such as adpacency don't really depend muoch up the local geometric relations
between twoe symvels. bul rather on the problem state as a whole. This gestalt aspect of spatial
knuwledge furves the represeniaiion to use the defimbons of objects and spatial relabions in concert
to filier out interpretations that people would not make of the problem state.

To make this couperatine filtering pussible, objects are defined by a grammar. The grammar
uses the fundamentat spatial relatons as part of defimttonal formalism.  This way of defining
aggregaie objects is expressed by the following three hypotheses:

Spatial relations

The following 3 relations arc the Spatial relations:

(First? § x) Object x is the first part of some sequential object S.
(Last? S x) Object x is the last part of some sequential object S.
(Ordered? S x y)  Qbject x comes before y in some sequentiai object S.
(Adjacent? S x y) Object x 15 adjacent to y in some sequential object S.
('Part x w) Object x is a part of object y.

Grammars ra
Aggregation of sy mbols into groups is defined by a spatial grammar based on the notions
of scquence. part-whole and the compass points: horizental, vertical and the two
diag%n.ils. For cach aggregate object defined by the grammar, a new categorical rélation
is defined. -

Relations
I'he relations available to patterns are the spatial relations, the categorical relations
defined by the grammar, and the usual arithmetic .« dicates.

The relationship between the grammar and the pattern relations is imptemented by calegorical
relabons. When a new object 15 defined by the grammar, a new categoncal relation becomes
avallable for used by the patterns. For instance. the grammar might define @ multidigit number
with the following 1wo rules:

NUM ---> DIGIT
NUM ---> DIGIT (DIGIT)+ DIGIT : HORIZONTAL

(The formalism for grammar rules has not heen motivated yet, It is discussed in section 15.2. ftis
based on some ordinary context free grammar conventions. parcntheses mean « categesy s optional,
and + means a category may be repeated arbitranly many times.) The first rule says that a number
can be just a single wgit. The second rule says that & number can be two or more digits in a
honizontal scquence. Whenever a rule has more than onc category on the right side, it must be
aonotatcd with one of the compass points: honzontal, vertical, superscript or SubscripL.

The grammar's definitions cause pattern relations to become defined. In this illustration, the
rules cause a categorical relation. NUM, g be defined for patterns. (NUM x) 15 truc of the form
*23." Mulu-category rules cstablish partwhole relations, When 23" is parsed by the second
rule above, {(!Part x y) 15 truc when x is the 2 and y ts the NUM object, 23. Similarly, the other
spabal relations depend on the grammar for thetr meaming. (Ordered? S x y) is trne when S s
the number, x is the 2, and y is the 3.
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The categorical relaton NUM is not true of the 2 alone in the form 23. Onc of the main
purpos¢es of using a graminar to represcnt aggregate objccts is o filter out such local parses. This
was argucd for in section 13.3. It is captured by the following hypothesis:

Global maiching
The set of objects in a problem state that patterns can /atch against is imited to those
tha: participale in a maximal parse of the problem state as determined by the grammar.

This hypothesis is responsible for kecping "2+3" from being treated as an expression when the
whule problem sate is "2+3x" It can be implemented many ways.  3Sierra woplements it by
parsing the problem state botiom-up using the grammar. This viclds a set of parse trces. Each
parse tree covers some set of symbols in the problem state. The parse trees that do not cover a*.
maximal set of symbols are deleted.  ‘Those that remain contamn. a parse podes. &l the possible
objects that patterns may match against.

Representing state-changes

The preceding discussion centered on how students view a staue. unchanging scenc: the
current problem state. 11 was assumed that students hasve an ontology that says what kinds of
aggregale objeets and relations are relevant 10 the task at hand. The wsk-specific ontology
structures how studenlts view a single problem state. By symmetry. there ought to be a simular task-
specific knowledge source that structures their view of changes in the problem state. 1 think that
there is such knowledge. but I admit to being quite v.itfused on the subject At the crux of state
changes lies the notorious frame problem of Al. how does onc handle the fact that only a httle bit
of a problem statc changes at time. so almost all references into 1t may remain unchanged. A
central concern is whether foci of cllention should refer cxlensionpally or intcnsionally, These
difficult issues arc discussed in appendix 8.
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Chapter 14
Pattern Power

Chapter 12 showed that the mterface between procedures and problem states should use
patterns and pattern matchimg.  lHowever, this leaves many assues unresolved.  An important
unresolved 1zsue concerns how much desoriptive power patterns may have. s 1ssuc basically asks
what kinds of logical constructiwons arc used 1n paticens, of cquivalently. what the representation
language for patterns is.

14.1  Viewing patterns as logics

A convenient and natural way 10 discuss the power of patiern langoages is 1o ¢qualte them
with logics. A paltern corresponds o a proposition. What the patteen matches against corresponds
to a model, in the logician’s sense of the word "mudel.” Maldhung a pattern is equivalent to
satisfying the corresponding piuposition tn the medel.  Although this 15 a standard way to look at
patterns. an example might be helpful to bring 1t into sharper focus. A Iypical patiern fiom a
production system or Planner-like language is:

{(?X 1sA PLACE) (X IN I1COL) (NOT (?X IS/BLANK)}))

Pattern variables are indicated by a "' precfix; vanables that are bound before the pattern is
matched are indicated with a 1" prefix, What tus pattern means 1s "give me a place X that's inside
the given COL and not blank. Fhe cquivalent i a first~order logic would be

Ix (Place x) A {(In x COL) A ~(Blank x)

The quanufier is existentially bound because the pattern should fail to match only if there are no
blaak places in COL. It should fail in a null (empty) model, for example. If x were universally
bound, the proposition would be true¢ in the null model

The order of the logic

There are a number of constraints illustrated by the exainple. First, the log ¢ must be at least
first order. A propositional (variabla-less) lugic hasn’t the expressive power necuvl 1o mention
several notational objects at once. Both x and COL have to be mentioned in the preceding example.
The need to mention several objects at once 15 entwicd by the necd to shift focus in the procedure.
Since focus was shown to be necessary for mathematieal procedures (section 11.1), the patiern logic
must be at least frst order.

There are many higher-order logics. Since they include first-order iogic, parsimony counsels
considering them only if first-order logics prove to have inadequate expressive power. S far, the
expressive power of fisst-order logics has been sufficient to allow formulation of an empirically
adequate theory.
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Clausal form 4

Having established the order of the padtern logic, nne can ask whether ull the descriptive
puwer uf fint-order logic s necessary. A convenient way to do tivs is 1o cxamine, in turn, cach:
lugieal connectise, quantifier and syntacte dovice. This approach s cumpﬁicalcd by the redundancy
of Arst-order Jogie,  Almost any expresse nousing a ginen constfuction ¢an be converted to a
lugically cquasalent expression that dues nut use the construction.  To convert an examination of
connectives and uther desices intu an examination of descriptive power, we need to climinate this
redundancy.

An casy way 0 climinate redundancy is 10 use a normal {or canonical) form. The normal
furm that makes this discussion cicarest 1s clausal forn (see any textbook on mathematical logic, c.g.,
Yasuhara, 1971). Ay propusition n a standard {irst-order logic can be converted to clausal form in
four steps:

1.  Remove implications; e.g.,
~¥x3y (P x y) A [Vz (Rxy z) D (Q y 2)]
becomes ~Yx3y (P x y} A [Vz ~(R x y 2} V (Q y 2)]

2. Push necgations down to literals; e¢.g.
~¥x3y (P x y) A [Vz ~(R x y 2} V (Q ¥y 2)]
becomes 3xVy ~(P x y) V [3z2 (R x y z) A ~(Q y 2)]

3. Skolemize. That 15, comvert existenually bound yanables into Skolem (anonymous} funcdons.
The arguments of the Skolem function arc any universally bound variables whose scope
includes the existential quantifier.  Nullary Skolem functions are expressed as Skolem
(anonymous) constants; c.g.,

IxVy ~(P x y) V [32 (Rxy 2) A ~(Qy 2)]
becomes ~(P a y) V [(Ray (f y)) A ~(Qy (f yh)
whete ¢ is a Skolem constant and f is a Skolem function.

4,  Convert to product-of-sums form. that is, a conjunction of literals or disjunctions; e.g.,
~(P ay} VI(Ray (fy) A~(Qy (fy))] becomes
[~(Pay)V(Ray (fynN] AIL[~(Pay)V ~Qy(fy)]

While this version of clausal form is nut quite 2 normal form {order within disjunctions and
conjunctions has not been stipulated), it yields a short check list of constructions:

1. predicates
2. conjunctions
3. Skolem constants {wide scope cxistential quantificrs)

constants
functions
negation

variables (universal quantifiers)
Skolem functions (narrow scope existential quantifiers)
disjunctions

Lo Sk

This list is the topic of the chapter. The discussion centers on which of these expressive facilities
the pattern fanguage should have. 1t will be shown that the first three are necessary, the next three
arc optional. and the last three should be prohibired.
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14.2 Predicates, conjunctions znd Shalen constants

The first three constructs are fundanental to patterns.  All three are needed fo express cven
the simple pattern mentwned eardiwer. The pattern and 1ty equinidlent clausal forin expression are:

{(?X 1SA PLACE) (?X IN !COL) (NOT (?X IS/BLANK)))}

(Place a) A (In a COL) A (NonBlank &)

The predicates and conjunctions are obvious.  The pattern variable, 7. has been converted to a
Skolem constant. 2 It will be assuraed that predicates. comuactions and Skolem constants are &
part of the paltern represeatation Janguage.

143 Constants, negations and functions

in the Plannei-style pattern.

{(?X ISA PLACE) (?X IN !COL) (NOT (?X IS/BLANK)))

the variable 'COL is bound outside the pattern. Wheit the pattern iS converted to clausal form.

{Place a) A {(In a COL) /A (NonBlank a)

it is converted to a quasi-constant. COL. COL behaves like a constant with respect to pattern
matching in that the matcher doesn't try to assign a binding to it. it behaves ke a variable in that
its value {i.c.. the binding assizned to it outside the pattern). not its name, is what i$ used by the
patletn matcher. in grder to interface patterns with the data flow machinery that manipulates focus
of attention. COL-like quasi-constants are nceded ir patierns.

For regular constants. such as numbers. it 1S a moot point whether they are in the pattern
language. The expressive puwer of numeric constants can be had by adding primitive arithmetic
relations to the language. Thus, to climinate (Equal x '5). onc employs (Five x). So far, no
empirical consequences have been discovered that could disuriminate patterns with constants from
patterns without them. As it turns out. Sierra’s implementation of the grammar automatically
genetales such “constant™ relations. naming them with the symbols themselves: {5 x) means
{(Five x) and (+ x) means that x is a plus sign. These are used instead of constants in patterns.

Functions arc similar te constants. By manipulation of the set of predicates. one ¢an climinate
these devices, To climinate functions. one uses relations: (P y (F x)) becomes (P y w} A (F w x).
This rariability can be used to express the show-work principle as a constraint on the syntax of
patterns. The issuc is discussed in detail in section 15.1. However. some basic ideas will be briefly
presented here. The show-work principle says that if a subprocedure is to be learned, any
intermediate results of its computations must be written down in on the page or chalkboard in the
worked exercises that teach it.  This has implications for the use of arithmetic functions because
they produce "invisible objects.” namely numbers that are not usually present in the problem state.
One use of patterns is in the applicability conditions of rules. They are used to test whether a rule
may be run by the interpreter in the current problem state. 17 anthme.ic functions are vsed there,
then the value that the arithmetic function produces is never written down. It js caleulated as part
of matching the pattern, but it is never passed funhcr‘ This use uf functions can't be learned when
learning obeys the show-work principle. Henee. anthmetic functions can be omitted from patterns
that serve as applicability conditions
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Likc constants and functions. ncgation can olso be clinunated by modifying the sct of pattern
relivons,  In clausai form. negations only appear on literals.  Conscquently, negation can be
eluninated by doubling the set of pattern relavons. the negation of cach patiern relation 1s added if
iv doesn’t already exist. 'To ehmunate (Not (> T B) ). une uses cither (Not> T BY or (< T B).
Su the issuc of whether o permil negatiuns and functions in the pattern logik s muot with respect
to expressiveness. ‘The consention that Sierra uscs 15 o allow negations gn anthmete reletions only,
[he set of spatial and categorical relations (see section 13.4) 1 designed in such o way that negauon
is not nceded for them.

144  Disjunctions are needed for variables and Skolem fuzctions

Disjunictions, vanables and Skolem functions are closely related.  Clearly. of the logic forbids
variables funiversal quanufiers) then there will be no Skvlem funcaons texistentials inside the scope
of universal quantifiers). Somewhat less obyvious 1s that furbidding disjunctions guts sariables of
their expressive power.

In practice. 08t universally quantified expressions have the form Vx{PDR). The P
expression defines a domain of quantification 0 be sume subset of the vbyects of the problem state,
The R expression asserts something about the objects 1n that subset. Consider. for example, an
expression that might be useful in algebra:

Ix3y {LikeTermsP x y) A
[Vz (Between? x z y) D ~(LikelermsP x 2z)]

This asserts that x and y are like terms. and that everything between x and y is not a like term t0
them. ‘Ttus expression right be used . find the closest term y that can be combined with x. The
unnersally quantfied sub-expression has the typical form Yx(P3R). 1t says that nonc of the
objects between X and y are like terms to x.  If x were the first term of

2p2 + 3r + 5p% + 6p2

2

then y would be iatched to 5p° instecad of sz. When the expression is represented in clausal

form. it becomes

(LikeTermsP a b) A
[~(Between? a z b} V ~(LikeTermsP & z)]

where @ and b are Skolem constants. and z is a Skolem variable. The point is that the implication
has become a disjunction. If the clausal Zorm forbids disjunction. then the usual ¥Yx{PDR)
expressions cannot be used. The only ones that can be used have a pure conjunction or a single
literal as the interior. Such expressions would assort sumething OF every object in the problem state,
This is rather uscless for patiern matching since it doesn’t discriminate among sarious objects. it
says something about the problem state as a whole, but not about how 1o tell the desired objects
from the others. 1t is difficult to believe that variables (universal quantifiers) would ever be used in
patterns if they could not employ digjunction. In short, if there is no disjunction. then there’s no
nced for variables (universal quantifiers) and hence no need for Skolem functions (nariow scope
existential quantifiers).
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145  Disjunctions in pattemns

Chapler 4 showed that inductinve learming of diyunetuons s impossible unless some constraint
ts pliced on the occurrence of disjunctt 'ns 0 goncraiizations, 10 was shuwn that the vbsersed
procedures could be induced of anduction was vonstrained either @ choose the mipimal number of
disjui.ctions of tu learn at most onc disjunction per lesson. The latter pusibon was shuwn to explan
the almust universal ase of lessons as an instructional aid,  As such. 1t was preferred in the theory
on grounds of explanatory adequacy.  Thus, and other arguments, mottvaled the awceptance of the
vne-dispunct-per-lesson hypothests.  The hypothess apphies to patterns gs well as control structure,
of course. Isjunctions in petterns are not mtroduced during ordinary inductinve learning of a
subprocedure.  Instead. cach disjunction 15 the subjuwi of a lesson itself.

This asscertion has an immediate entuiment. disjunctine  notational concepts must be
rersresented in such a way that they can be used in any pattern. Tu sec this. suppose that “column’
is a disjunctive notational concep-  Iis is not su aimplausible smce there are two kinds of
subtraction columns:

65
-3

The tens column has onc digiti the umts column has two. Suppose further that “column® is not
represented in a way that allows it 10 be shared amung patterns. Tu descrbe “leftmost column®
reqguires the notion of “column.” which is disjunctine, so “leftimust column” is disjunctive. Since
lecarning a disjunclive pattern regaires a lesson of ity own, “lefimost column” would require a
special lesson. To describe “left-adjacent column®” would require another lesson.  Every patiern
employing the notion of “column® would have o disjunction. and one-disjunct-per-lesson entails that
cach such disjunction must have s own losson,  Clearly. this 1s not Liow notational knowledge is
acquired. Instead, the concept “solumn” 1s taught once as a notational term. Afterwards, any
pattern that employs the nolion of columns just uses the term's name, eg. 2s 2 predicate
(COLUMN x). So. disjunclive notatiunal concepts must be represented in a way that allows them to
be shared among patterns.

To pwt it differently. lcarning notation invols es lcarning the definitions of terms: unce a term
ke “culumn” js defined. a token standing for 1t may occur in any pattern. Dispenctions therefore
occur only in the definitions of notativnal terms. and not in patterns. But what knowledge base has
these term definitions? Clearly, this argument has provided independen' motivation for the
grammar. it is a repository for definitions of notational terms. Earlier, in section 13.3. we inferred
IS existence as a solution to the myopia. rubustness and Jocal ambiguity provlems of pattern
malching. Here its existence has been suppoited as an cntailment of onc-disjunct-per-lesson.  This
convergence I1s a weak, but gratifying argument in support of banring disjunctions from patterns.
Although 1t is logically void {because it 15 an abduction not & deduction). it scems to indicate that
we are on the right track, To'reiterale the basic idea, a pattern can't say “its cither two vertically
aligned digits or a digit over a blank.” It can only say “its a column™ and thc grammar defincs
“column®™ with the disjunctive descniption “a column is two vertically aligned digits or a digil over a
blank.”

This application of onc-disjunct-per-iesson makes cmpirical predictions. As an example,
Consider thc predicate LikeTermsP. This predicalc could be defined as
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(LikeTermP x y) =
(Term x) A
(Term y) A
(Yw (Factor w x) 2
({(Number w) V 3z (Factor z y) A {IsomorphicP z w)]] A
(VYw (Factor wy) 2D
[((Number w) V 3z {Factor z x) A (IsomorphicP z w)]]

Thes supulates that x and y be terms that have identical Ffactors, except for numerical factors.
Hence. 3x2y is a hke term to 25!33(2 but not to 3x2. LikeTermsP must be defined using
unnersal quantifiers and disjunctions, There is no way to cxpress it without at least one
disjuntion.  Cunsequently, if a student docsn't know the definition of LikeTermsP beforce being
shuwn huw to combine terms, it is predicted that the student won't inducc the correct patterns for
that transformation. To do su, the student would have to induce disjunctions in patterns, and that
s ruled out by the one-disjunct-per-lesson learning principle.

Remarkably, cvery algebra text that I have cxamined has a short lesson teaching
LikeTermsP befure the first Iesson on combining like terms.  This supports the prediction that
non-piumitive predicates with disjunctive definitions arc taught in their own lesson.

Another way io learn aqggregate objects

Although many notational objects in algebra are introduced with explicit lessons, this is not
gernerally the case for arithmetic notational objects. In particular. the notational term “column™ is
nol introduced in ils own lesson. Instead, it appears that "column” is taught by using a special
device. In section 15.2, it is shown that lines. such as the bar used in subtraction problems, do not
obey the same grammatical conventions as other symbols. Instcad, they arc apparently ysed to
mark the boundarics of forms. (This idea was suggested 10 me by Jim Greeno.) Thus, the bar of
sublraction marks the boundary between the answer row and the rest of the problem. Cairying this
idea unc step further. lines mignt be used 0 feach new notational concepts. When subtraction
problems arc first introduced, all the textbooks that 1 have seen use lines 10 mark columns.
Examples arc

tens | units lens | uwits
3 7 3 7
- 1 s) - b
2 1 2 312

The vertical and horizontal lines indicate how to parse the problem state. In particular, they
indicate that there are two columns. The columns are even named. Given cnough drawings like
this and the convention that lines mark boundaries, the learner can learn the aggregate object term
"column” without an explicit lesson devoted to the subject. Although not inuch is known yet about
how new notational terms are acquired for the student’s gramiunar, it seems that the basic position of
applying onc-disjunct-per-lesson learning to grammar acquisition js Quite plausible.
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146  Summary and formal hypothescs

The issuc discussed in this chapter is how much expressine power to give (o patterns. 1L s
shown that the only really eritical question i whether dispunctons gie allowed in patterns. I they
are banned. then pniversal qQuantification and narrow supe existental quantification are no longer
uschil. so they can be dropped.

Whether 10 have disfunctions in patterns 1§ a tricky isue. It is clear that disjunetion cannot
be completely omitted from the interface because some notativnel concepts must employ it
However. inductive learming of disyunctive concepls 1s an unposible task unless iduction is strongly
biased or constrained 1n sume othei way. he proposed solution is & ofold. nutational disjunctions
are learned with special devices. such as an exphcit lesson, that tells the mductive learner how o
formulate the disjunction.  This & a simple apphcation of the une-dijunci-per-lesson hypothesis.
The sccond half of the splution 15 to note that it only makcs sense o Jcquire a disjunctive concept
as part of the definition of 2 new notational terin {aggregate object). Doing so makes the concept
available for other patterns. and not just the pattern at hand.

Puting these two haives together implies that disjunctions, and by implication, universal
quantifications as well. occur only in the defimtons of nutattonal terms.  Nutational terms are
defined in the grammar, Although the descriptions 1in 2 grammar may be complex. patterns arce
simple. In particular, since patterns lack disjunction and wniversal quantification, they are reduced
to simple conjunctions of relations. By suppressing the logikal connective A, a patlern can be
represented cven more sunply as a set uf patteen relations.  The argu=nents of the pattern relations
are cither pattern variables (1.e.. Skolem constants) or gudl arguments. A pattern relation can also
be inclosed in a negation. That is all the lozical machinery that is nceded. Patterns can be just that
simple. These considerations arc captured in the following hypothesis:

Conyunctive patierns

Disjunctions, universal quantifiers and narrow -scope existential quantificts are banned
from patterns. Semantically. a pattern 1s a congunction of pussibly negated predicates on
existentially quantified variables. functions ang constants.

This hypothesis allows functions and constants in palteens since it was shown that their inclusion or
exclusion 1s basically a syntactic natter. The 1ssue will be dealt with (bricfly) in the next chapter.
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Chapter 15
Syntax of the Representation Languages

Almost all the major aspects of the knowledge representation language luve been discussed.
Only onc major feature remains to be discussed. Chapter 17 will show that tost patterns
{applicability conditions) should be distinct from ferch patterns (ficus stufung patterns). s
distinction will be assumed herein 50 that this chapter may complete the discussion of the
representation language by defining its syntax. That is. the syntax of goals. rules and gratamar rules
will be fixed. Even at this seemingly inconsequential level of detail. there are a few problems
whose solutions impaet the theory’s predictions.  Fur instance. 1t makes a di¥ercnce whether
grammars are represented as first-order logics or as coateat-free graminars. However, the unpact of
such competing alternatives is minor compared to the Kinds of represertation issues that have
already been discussed. Most of this chapter will simply describe the choices taken by the theory;
there will be lttle discussion of the alternatives. Some readers may wish 1o skip this chapter.

15.1  Syntax of the procedure sepresentation language

Chapter 10 argued that goals have a binary type to distinguish AND goals from OR goals.
There are three traditionai syntaxes for binary-typed goal structures: CrGs {cuntext-free grammars),
ATNs (Augmented Transition Nets). and A0Gs (And-Or Graphs). The issue here 15 essentially a
topological one. There is no difference in the expressive power of the rcpresentations. Trivial
algorithms cxist to translate an cxpression in gne (ic., any AOG. any CFG, or any ATN) into an
cquivalent expression in the other. Where the three representations differ is their effect on
operations that manipulate them as structures.  Their shape affects how cleganily and
parsimoniously cach operation can be formalized. Clearly, it docsn’t effect whether or not the
operation ¢an be formalized. If the operation can be defined for any of them. one can translate
expressions in the others into the tractable representation, perform the operation. then translate the
result back into the original sepresentation. So it is only the clegance of the theory that is at stake
here.

CFGs are not compatible with trivial ORs

In a CFG, OR goals are represented by non-terminals and AND goals are represented by the
right sides of rules (sce figure 15-1a). In an ATN, AND goals are represented by levels, and OR goals
are represented by states (see figure 15-1b). Both CFGs and ATNs naturally generate “trivial” goals.
A trivial goal has just one subgoal. CFGs generate trivial AND goals corresponding to rules with just
one category on the right side (e.g, A — B). ATNs have trivial OR goals whenever a state has just
one arc leaving i (e.g.. the first state of the ATN of figure 15-1b). Trivial ORs are a convenience in
subprocedure acquisition.  To acquire a new Subprocedure in an ATN. onc simply adds a new arc.
For instance, figure 15-ic¢ shows the ATN of 15-1b with a new subprocedure. E, added to it
Because of the implicit trivial OR at the first state, the new subproceduse could be added without
making any structural changes to the old ATN. When the representation uses trivial OR goals, the
assimilation conjecture (section 10.1) can be interpreted in a quite literal fashion. acquiring a new
subprocedure changes none of the ofd goal structure.

bt
-
o




SYNEAX 199
(OR
a. A - B = (AND B)
A - CD (AND C D))

(AND

B I C .
b. A I { ; & {OR B)
b / (OR C D))

B ~r—1 c \ AND
¢ A Ek__/ 1 = (OR B E)
& N\ 5 / (OR C DY)

F ~I1 G AND
. e [} Al 1] ( (OR F)
(OR G))

L
in

Figure 15-1
A CFG and several ATNS, with their logical equivalents.

Trivial ORs are worth having In order o alluw subprocedure assimilation to be simple and
clegant. To get them requires a httle oxtra work, Whenever a new subprocedure’s AND has more
wian one subgoal. the new subgoals are placed inside trivial ors. If the new subprocedure E of
figure 15-1c had ubgoals, as in figure 15-1d. they would be placed in trivial ORs. This means that
all the disjunctions that the leamer could possibly use are already in the goal structure; to add a
subprocedure, the leamner just adds a new disjunct to some exisung disjunctions. Automatic
addition of trivial ORs is natural in the ATN syntax. It can be stipulated for the ACG framework.
For CI'Gs. stipulation won't work. Adding the exrra rules that are necded for the trivial Ors also
introduces trivial ANDs. These trivial ANDs clutter up the goal structure. making the Backup repair
and other structure-sensitive operations go awry. So the hoice of three syntaxes is narrowed lo
two: ATNS and AOQGS

ATNs will not let AND nules shift focus

In an AOG, both AND goals and OR goals have arguments. In an ATN, only the AND goals
have arguments. They are called registers. Each AT lovel {= AND goal) hag its own locally bound
registers. The applicative hypothesis entails that fucus shifing occur only in the actions of the OR
rules {arcs} since these are what call ATN levels. In an A0G. both AND rules and OR rules may shift
focus. It will be shown that it is better to use focus shifting on AND rules only. Since this is just
the opposite of the ATN convention, it entails that AOGs are 2 better synlax tham ATN.
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before after
R1 R1
OR13 OR13

R3 R2
R2

R4 RS
OF;M OR15
R6 | i R7
Figure 15-2

An AOG fragment before and after a new subprocedure's acquisition.

In the ATN syntax, when a new subprocedure is acquired. a new arc and (in general) a new
level are added to the ATN. The new level needs to be given registers. The adjoining arc needs to
be given a focus shifting function. For instance, suppuse the learncr acquired the ATN of figures
15-1c and 15-1d given the ATN of figure 15-1b. The learner would have to provide registers for
level E and a focus shifting function for the are of 15~1c that calls it. In addition, the learner has to
induce the focus shifting functions for each of the actions of the new level, namely arcs F and G.
The simplest way to provide a focus shifting function for the adjoining arc (arc E) is to make it a
“null focus shift,” that is, simply pass the registers of the calling level {level A) down lo the called
level {level E). This entails that all levels would have exactly the same register contents — focus
would never be shified, except just before a primitive action. This simple way of deciding the
adjuming arc’s focus will not aliow even a correct subprocedure to be acquired. 1t's unworkable.

Another simple tactic is to assign to the adjoining arc the focus shifting function that would
have been given to the first arc of the new level {arc F in figure 15-1d). That is, the focus that is
appropriate for the first action is made the focus of the entire level. Although the details won't be
psesented here, this tactic will not work either, For instance, it won’t allow the main column loop
of subtraction to be acquired,

Two simple methods have failed to assign the adjoining arc a focus shifting function. Some
complicated method appears necessary. However, a simpler path is to abandon ATNs and let only
the AND rules bear the focus shifting function. OR rules will just pass the focus of the caller to the
callee. Figure 15-2 illustrates the acquisition of a now subprocedure under these conventions. The
adjoining rule, R3. receives no focus shifing function. It just passes OR13's arguments to the new
AND, AND14. On the other hand, rules R4 and RS are assigned rocus shifting functions. Under the
AIN syntax, R6. and R7 would reccive the focus shifing functions that R4 and RS receive in the
AOG syntax, but the ATN syntax also requires that R3 have a focus shifting function. The
problematic focus shift of R3 is avoided if the AOG syntax is used,
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No applicability conditions on AND rules

Tt has been shown that subprocedure adjunction is simplest if (1) the procedure includes
trivial ORs, and (2, only AND rules have focus sinfting functions, To these conventions, one can add
the obscrvation that AND rules have no use for applaabtiliy conditions.  All rules of an AND goal
will be executed m order.  If 1t is Jearned that the first subgoa! off (AND A B} is optional, the
structural modification will be:

(AND (OR A) (OR B)) — (AND (OR A Noop) (OR B)})

where Noop iS an actior. that makes no change an the problem state.  The point is that trivial GRs
mean that all knowledge about applicability can be captured on Ok rules. There is no variability in
the sequence or apphcability of the AND rufes. Hence. applicability conditions can be omitted on
AND rules.

Facts functions on OR rules only

For some actions, facts functions are required. For instance. when simple borrowing is first
acqu.red, the borrow-from action is to (1} fetch the next columu’s top digit, and (2) subtract one
from it. The focus shift (1) must be on an AND rule, Borrow's first rule in fact. The issue is
whether to put the facts function (2) in the samc place. If it is un the AND rule, then both the
fucus and the decremented number will be passed to the trivial OR that 15 between Borrow’s first
rulec and the action that writes the new number down. When BFZ (i.c.. borrow from zero) is
acquired. it will be adjoined bencath this trivial CR. It will be passed the ORS arguments 10 yse as
its arguments. With respect to the focus poruon of the trivial ORs arguments, this makes good
sense. However. it makes little sense t pass the decremented value of the top digit. In fact, that
value won't even be defincd since a zero would have to be decremented to obtain it Clearly the
facts function Subl must be beneath the trivial OR if BFZ is to be acquired. That is, Borrow and
its trivial OR must have the following syntax:

BORROW (COL) Type: AND
1. <a fetch pattern that binds T to the top.digit of the next column to the leRR of COL>
= (0R13 T)
2. ...

OR13 (TD) Type: AND
1. true => {OverWrite TD (Sub1l (Read TD}))

The fetch is on the AND's rule 1, but the facts fenction 1 on the OR rule.

This example prompts the general constraint that whenever a new subprocedure has an action
involving a facts Renction, the function nest is separated from the fetch pattern and placed on the
rule of the trivia!l OR corresponding to the action.

This convention makes it simple to statc the show-work principle. all invisible object
descriptions are represented by Rsnctions, such as the facts functions. These are located on a special
placc on OR rules. namely the argument positions of the subgoals. With this convention, the show:
work principle amounts to (1} prolubiting functions 1 patterns and (2} limiting Renctions nests Lo
containing at most one function that produces an invisibic object (i.c., (Subl (Read T)} is okay
but (Subl (Subl (Reao T})) is not). This mcans that patlern Syntax is very simple: it is a
conjunction of relations whose arguments are all variables and goal arguments. Relations such as
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(Equal? X (Subl Y}) are banned. This syntactiv convention catails that selations that might be
most rationally written with a Read function, c.g. (LussThan? (Read T) (Read B)), arc betler
written directly in terms of variables as is (LessThan? T B). With this definition of the facts
predicates, the prohibition against functions in patterns can be made total.

Summary

The conclusion is that the procedurc representation lenguage should be an AOG language
subject 1o the following restrictions:

Trivial ORs: Every AND goal and every primitive goal is a subgoal of some
OR, cven if that OR has only one subgoal.

OR rules don't fetch: OR rules do not have feteh patterns. “Their only use for
patierns is as applicability conditions — determining whether or not to run,

AND rules don't test: AND rules do not have applicability conditions, Their
patterns are used for shifting the focus of attention.

AND rules don’t have Jacts functions: Functions which create invisible
objects are contained in the actions 0f OR rules only.

Patterns have no functions: Neither test pattesns nor feteh patterns have
functions. A patiern is represented as a set of relations on variables.

These conventions mean that AOGS ean use a simple syntax for rules: arule has 4 parts;

1.  The name of the goal it’s under (the goal).
2. The name of the goal it calls (the action’s subgoal).

3. Alist of functions and/or variables that provide asguments for the subgoal (the
action's argumenls).

4. A pattern. This is interpreted as a fetch pattern for AND rules and a test patiern
(applicability condition) for OR rules.

Patterns arc simply sets of relations. However, for conienicncc. the non-grammatical facls
predicates (c.8.. LessThan?) may be negated. Spatial and categerical relations are designed 1n
siich a way that negation is not needed for them.

15.2  Syntax of the grammar represcntation language

The student’s notational knowledge is a;5umed to be a context-free grammar. Although it was
implied in chapter 13 that the grammar should have the descriptive power of first-order logics, CFGs
do not have quite that much power. In particular, CFGs have difficulty fcpresenting notational
terms that would be casily represented if the representational fanguage had universal quantifiers. So
far, 1 know of only one such term: LikeTermsP (see 14.4). 1t cannot be represented in a CFG, or
at least in the CFC lamguage that Sierra uses. Nonctheless, CrGs have many computational
advantages that outweigh this minor lack of cxpressiveness.

<0y




SYNTAX 203

Expressing the umversal spatial relations

A main purpuse of the grammar representation language 1s to embed the spatial relations that
are held to be task- and Subject-independent.  ‘lhere arc four spatial ideas:

Part-whole  Aggregate objects have parts.
Adjacency One object is next to another and no object is between them.

Sequence Aggregate objects arc sumetimes sequences. 1n which case the spatal relations
Firse, Last. Before and After are well defined among the elements of the Sequence.

IDirection For mathematics. the compass points — horizontal, vertical, superscript and
subscript — are the important directions,

In general, the simplest ¢FG languages employ vnly part-whoele and adjacency. Therule A — B C
means that B and C are parts of A and that they are adjacent. Whenever such a rule occurs m the
grammar, the categorical relation (A x) 15 defined. Mureover, when the rule 15 vsed to parse some
objects, call them 4 b and ¢ then the following relations are automatically true:

{(!Part a b) Object b is apart of a.
{(tPart a c) Object c is a part of object a.
(Adjacent? a b ¢) Object b is adjacent to object c.
(Adjacent? a ¢ b) Object ¢ is adjacent to object b,

To add the idea of Sequence to the grammar language is casy. The standard artifice of a Kleene
pius is used, but in a restricted  ntext. 1F an aggregale objects is a sequence, it is defined by a rule
whose right side has three elements:

EXPR = TERM (SIGNED-TERM)+ SIGNED-TERM

This rule means that an alrebra expression (EXPR) 15 a list whose first element is a term. The last
clement is a signed term (i.c., a term with + or -~ ahead of it). It may have zero or more
mtermediate elements. The parentheses mean that the middle element is optional, the Kleene plus
means that it can be iterated, The only place a Kieene plus may occur is on the middle element of
a three-category right-hand side. This implements the notion of sequence. 1t also implements the
notion that the endpoints of sequences arc special. They can be a different category from the
intener elements of the sequence. As we sec above, the lead element of an algebraic expression
may or may not have a sign as its first symbol. but the remaiming elements of the expression must
have signs.

Whenever some symbols are parsed by a rule such as the one above, certain relations
automatically are true of them. For instance. '© g 15 parsed as an EXPR with b and ¢ as its parts,
then the foilowing relations would be true:

(First? a b) Object b is the first element of sequence a.
(Last? a ¢) Object cis the last element of sequence a.
{Ordered? a b ¢) Object b eomes before c in Sequence a,
(tPart a b) Object b is apart of a.

(1Part a c) Object ¢ is a part of object a.

(Adjacent? a b ¢) Object b is adjacent to object ¢.

{Adjacent? a ¢ b) Object ¢ is adjacent to object b,
That 15, the normal part-whole and adjacency relabons have been joined by the spatial relations for
sequence,
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Category redundancy rules

In order to get the parse tree to maich the part-whole relations, rules that have just one
category on the right, eg.. A — B. arc treated specially. ‘These rules cssentiatly express a
categoncal redundancy, A — B says that B is an A, Thus, NUMBER — DIGIT mecans that a digit
15 a kind uf number. Such rules are called category redundancy rules. They are parsed differently.
1f “5" 15 parsed as a number, then the digit 5 is not a part of the number 3, it is the number 5,
This consention s needed in order o allow the icamer 0 use the part-whole relations to reducc the
complexity of pattern maiching and pattern induction. Without it, matching and induction would
be much slower, by several orders of magnitude (see section 18.1).

Boxes and the compass points

To represent the geomctric information in two-dimensional forms, some definitions are
needed. The rectangle that an object fits into is called a box. A box has four properties — left,
nght, tup, and bottom — whose valucs are Cartesian coordinates in the planc of the ‘mage. X:Left
will mean the location of the left edge of the box of X. Given this nomenclatire, the way the
rammar fepresents geometric relationships can be defined.  The grammar rules have a modifier
that specifics onc of the compass points as the direction that their constituents run:

X =---> Y7 , HORIZ means Y:Right = Z:Leh, and
Y:Top = Z:Top, and
Y:Bottom = Z:Bottom

X ===> Y I . VERT means Y: Bottom = Z:Top. and
Y:Left = Z:Lef, and
Y:Right = Z:Right

X --~> Y 1 ; SUPERSCRIPT mcans Y:Right = Z:Left, and either
%(Y:Top + Y:Bottom) = Z:Botiotn or
Y:Top = %(Z:Top + Z:Bottom)

X =---> Y 1 ; SUBSCRIPT  means Y:Right = Z:Left, and cither
%(Y:Top + Y:Bottom) = Z:Top or
Y:Bottom = %(Z:Top + Z:Bottom)

As these definitions indicate, adjacency is defined as two constituents having boxes that share a
boundary, they abut, Thus, Y and Z are horizontally adjacent if Y:Right=Z:Left. The relationship
of a bux to its constituents’ boxes is onc of containment. In the above rules, the box assigned to X
must properly contain those assigned to Y and Z, and furthermore. no other boxes than those of Y
and Z may overlap X's box. For cxample, the parse of a rational cquation depends on a gross
vertical cxpansion of the box assigned to the equality sign:

3 X

4 8

‘The box for the cqual sign contains only =" and blank space.
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In the case of the rules for supersctipts and subscripts, o dispunction is necded to handle cases
wheee either the basc or the exponent is much iarger than the other:

i

L3 + x J Base:Top = %(Exponent:Top + Exponent: Bottom)
Fr1 1
ryw
L3 + x g oY . _ 1z .

2 »{Base. Top + Basc:Botiom) = Exponent :Boltom

Special notational devices: bars, crossouts

Besides the com, 1ss points, there are two Jther rule modifiers. These deal with lines of
various kinds. rather than alphanumernic symbools. Mathcmalivs seems o use yertf®al and horizontal
bars not as constitucuts of objects, but as markers for boundaries. {This idea was originally
suggested to me by Jim Greeno.) It solves many problems. For instance the bar of multicolumn
arithmetic columns can’t be considered a constituent of the problem because 1t would block one
from using columns as constituents. ‘That is, i the problem

687
=230
267

there arc three columns. but all of them intersect the same bar. I the bar is treated as a symbol in
the same_way that the digits are, then it would have to be shared in some way by all three columns.
This is impossible in the context-free grammar formalism. The way the current grammar language
handles this is to proivide a rule modificr that spectics that the boundaries between the constituents
paired by the rule be darkened. A rule for subiraction columns would be

ACOL  ---> C(COL (DIGIT} : VERT BARRED
coL =-=> DIGIT (DIGIT) ; VERT UNBARRED

The first rule describes the column as a COL above 2n oplional answer digit, separated by a bar.
The second rule cescribes COL as a digit above an optional digit, and these must not have a bar
between them.

A second rule modifier is necded o handle the scratch marks that students use o cross out
symbols. The slash or X put over a symbol is not the same sori of constituent as regular
alphanumeric symbols, It overlaps other symbols. No other mathematical symbols overlap. The
grammar language provides a special annotation o indicate whether a constituent must be crossed
out or not crossed out. For instance, to accommodate the stack of crossed-out numbers that can
occur when borowing across zero, the grammar might use the mles

XNUM  =--> HNUM (/NUM)+ /NUM : VERT UNBARRED
coL --=> CELL (%DIGIT) ; VERT UNBARRED
CELL  ---> DIGIT
CELL  -==> XNUM

The first rule defines an XNUM as a number with some crossed-oul numbers bencath. The */"
means that the constituent must be erossed out. /NUM js a number with a slash or an X through it.
A COL is defined as either a digit or an XNUM on top of an optional digit The "%" indicates that
the digit may not be crossed out

203




Chapter 16
Summary: Representation level

The representation level, chapters 9 through 15, diseusses what Xinds uf constraints should be
put on the way student knowledge is represented in the mudel. These hyputheses define a formal
knowledge represcatation language. More importantly, they place cumstraints on the kinds of
learming and problem solving that the model can do. ‘They affect the predictions madz by the
model.  They are chosen o make the models predictions fit the data.  The constrainls on
representation are empirical hypotheses.  Unlihe muost Al rosearch vn representabion languages, the
am is not to define a language that gllows cxpressiun of subtle epistenulogival distinctions of a
fanguage that promotes mental hygrene among the knuwledge engineers that yse 1t. The aim is
quitc differcnt. Tt is to define a language that is true. ‘The question s, what s it true of? Two
answers, the "mentalese” interpretation and the “relevance” interpretation, scem plausible to me.

The menialese interpretation

Qne view 18 Lal information in the mind has its 9w n structure, the mind's mendalese (Fodor,
1975). On this view. the represcntation language is true of the subjects’ mentalese in the same sense
that a lcarning model is true of the subjects” learning. Learming s an interndl information process:
mentalese is an internal information structure. Neither learning nor mentalese can be directly
observed, although their cffects can be. The constructions cf the representat on language, c.g.
grammars, goal stacks and the like, arc taken as describing mentally held information structures.
Hypotheses about the representation language are wue or false 10 the same way that hypotheses tn
physics are truc or false. This interpretation of the hypotheses 1s simple. traditional and clegant.
However, 1 find it a little hard to squarc with introspections on my own cogmition. The other
interpretation, based on relevance, 1s onlologically verbose byt more intuitively acceptable.

The relevance interpreitation

A procedure is a way of describing a systematic sequence of actions that change the state of
the problem. Defined this way, two issucs immediately become apparent. Onc issue concemns the
nature of the interface between the procedure and the environment:  What is the vocabulary of
manipulative actions thai the procedure can employ and what 15 the vocabulary of descriptions of
the environment that the procedure uses in guiding its choices? This issue. the interface ssue, asks
about the range of primitive, individual input/output actons the procedure crniploys. The second
issuc addresses the procedure’s internal. runtime state. What kinds of actions can the procedure
make to change the internal state? How does the procedure view or structure the internal state?

Presumably, people have much more information than they actually use as they cxccute their
procedures, This holds for both interface information and internai sate information. Pcople can
sce much more on a page that bears an arithmetic problem than they ceem relevant o its soution.
Similarly, they remember much more about what they have already done 10 solving 1t than they
they deem relevant. A subject might remember that the last subtraction fact was very hard to
remember or that the tens column’s borrow was interrupted in vrder 1o watch 4an airplanc fly by,
The real internal state of a human procedure is just as rich in wrelevant detai as the real written
problem.
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Onc mterpretarion of the hypotheses governing the represcntalion language is that they
descnibe what kinds of wnformabiun people deéem refe vt to learnmg and problem solving,  On this
relevance-based view. when the theory user non-overlapping aggregated objects, 1t is not cliiming
that people cap’t see vverlappiag aggregalcs. When it Jarms that there is a simple goal stack rather
than the spaghett stack that coroutings use, 1t > nut Jlming that people cannot do corvutines. In
both cases, the ctaim 18 only that when propie | orn antuneue, they act as if they belicved that only
non-coroutine procedurcs are relevant and only non-owvctlapping aggregate objects arc relevant, The
hyputheses are wonstrants on learming, although they gare expressed as constraints on the kind of
information structure that are lcarned.

There is nothing inconsistent with holding both the mentalese and the relevance
wterpretsions of the representation language. It could weli be that the structure of mentalese
causes only certain information to be relesant. Bocould also be that relevancy cawses procedural
information in the mmd to take on a certamn structure,  The best way (o find out what is really
going on 15 1o push the empirical examinaton of the representation language as far as possible. The
hope 1s that when a great deal 15 known about the kinds of knowledge structures that oplimize the
fit of vanious cognitive models to empirical evidence, then the answer to such interpretations will be
obyious,

Preview

This chapter summarizes the representation fesel in \wo ways.  First, it traverses the main
prnuiples of the representation, briefly mentioning thar supporing arguments.  Second, 1t updates
the formal model that was presented in chapter 7, the summar, 10 the architectural level. It will be
shown that almost all of the model 15 entailed by the hypotheses that define the representation. In
particular, 1t is shown that only five issues remain W be discussed in the following ievel, the bias
level,

16.1  The interface issue

It was just mentioned that the central issues of representation are the interface issue and the
internal state issuc, The interface issuc will be summarized first.

The interface issuc divides into sub-issues. One concerns the descriptive vocabulary used by
the procedure to format its access and manipulations of the problem state,  Speaking
metaphorically. the issue is how does the procedure understand the problem space. In particular,
what kimds of objects does 3t think can exist? What is its private ontology? A common technique
used by Al learning models for specifying an untology over problem states is lo equip the
procedure with an explicit set of pnmitive relations, This is not such a good practice since the set
must be specified differently for different tasks. A subtraction procedure views its problem states
differently than an algebra cquation-solving procedure does. Thus, the set must be tailored by the
theorists for each task, and possibly for cach subject.

A less tailorable alternative is to fix the relations that are relevant in all tasks in the domain
and vary only the task-dependent ones. Taking (his tack. chapter 13 found that the constant
relations were spatial ones: verucal. horizontal, part-whule, adjacency, order, and boundary poinLs,
The task-dependent, relations ail concerned aggregate objects — objects like columns or equations
that are groups of{)l.hcr aggregate objects or individual characters. These cunsiderations motivate
the following hypotheses:
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Spatial relations
The following 3 relations are the spatial refations:

(First? S x) Obiect x is the first part of some sequential object S.
Last? S x) Object x is the Iost part of some sequential object S.
§0rde red? S x y)  Objact x comes before y insome sequential object S.
(Adjacent? A x y) Object x is adjacent 1o y in some aggregate object A,
(!Part x A) Obicct x is a part of aggregate object A,

Grommars

Aggregation of symbols into groups is defined by a spatial grammar based on the notions
of sequence, part-whiole and the compass points: horizontal, vertical and the two
diagonals. For cach aggregate object defined by the grammar, a new catcgorical relation
is defined.

Relations
The relations available to patterns are thie spatial relatiqns, the categorical relations
defined by the grammar, and the usual arithmetic predicates.

The grammar expresses the student’s ontology. or rather, that part of the student's ontology that the
student considers relevant to the task. The procedure’s patterns are couched in terms of the
aggregate objects defined by the grammar (via the categorical relations). the spatial relations, and a
few arithmetic predicates. such as LessThan? and Equalf,

The problem state is viewed as a gestalt. A problem state usually has many locally w.1l-
defined aggregate objects that dont fit into a globally coherent parse. When a procedire
manipulates a problem state. it docsn't use those. 1t uses only the aggregate objects that participzte
in global parse. A grammar is used in preference to a set of local definitions for aggregate objec!s
because it allows the theory to capture this gestalt use of notational knowledge with a simp.e
hypothesis:

Global matching
_The set of objects in a problem state that patterns can match against is limited to those
that participate in a maximal parse of the problem state as determined by the grammar.,

The grammar serves two purposes: It defines the ontology of the problem space, and it filters out
aggregate objects that are ipcoherent in a gestalt view of the problem.

Given a problem state, the grammar determines the set of objects, aggregate objects and
relationships that the procedure “considers” potentially relevant. However, the procedure peeds
some mcchanism t0 access this field. In particular, it need to search this field in order to find
appropriate objects to shift its attention to. The search problem is another important interface issue,
Chapter 12 argued that searcn is a skill that is not acquired in the same way that the subtraction
procedure is acquired. In particular, there are no lessons that teach search loops. The conclusion is
that the search skill is in place before subtraction is taught. This means that procedurcs nced only
convey to this preexisting facility what it is that needs to be found. The search facility will find it if
it is a part of the problem state. The descriptions are called patterns, and the scarch skill is called
pattern matching. The hypothesis that captures the theory’s chosen solution to the search problem
15 .

Pattern
Procedures have patterns which are matched against the current problem state.
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Having patterns creates the problem of specifying how much descriptive power they may have.
This 1s a ¥ .d mterface prublem — the pattern power problem. Chapter 14 invemuries the stock of
descriptive devices used in finst-order logies. [t shows that the une-disjunct-per-lessun hypothesis
entails that patterns should nol have digunctions iz them.  Instead. disjunctine descriptions should
be nained and mserted into the grammar. Similarly. uanversal quanifiers should be banished 1o the
grammar along with cxistential quantifiers when they are wsed mside the scope of universal
quantfiers. This solution to the pattern puwer problum means the glammar has a new function: it
15 the repository of disjunctive and unnersally quantified nutational Jdescriptions.  The arguments
mouvated the following hypothesis:

Conjunctive patterns

Disjunctions. nniversal quantifiers and narrow-scope cxistential quantifiers are banned
frum patterns. Scmantically. a pattern 1$ a conjunctivn of possibly negated predicates on
cxistentially quantified variables, constants and functions.

Arguments in section 15.1 showed that an clcgant cquivalent to the show-work principle is
available: functions and constants were banished frum patterns and put instead in a Special place on
rules. The rule actions may have functions and constants, but patterns are simply relations on
pattern variables,

16.2  The infernal state issue

The internal state issuc concernS how the procedure keeps track of what it is doing, in
paiticular. where it is currently working and what it i» intending 1o do. More accurately, one can
divide the nternal state into information that refers to regions in the problem state (focus of
attention) and information that has no cexternal refevent {c.g.. goals). These kinds of information
correspond roughly to data flow and control flow, respectinely. They can be considered to be two
halves of the internal state question.

Several arguments were presented in chapter 9 that show that control flow i best modelled as
a goal stack. A stack-based. recursive control structure cnables the learner to acquire center
recursive subprocedures, Such as borrowing from ¢eru, without violaung the vne-disjunct-per-lesson
hypothesis. 1t also allows the Backup repair to be defined as popping the goal stack. Stack
pupping yiclds several observed bugs and avoids some Siar bugs that are genecrated by other Kinds
of Backup (e.g., chronological Backup). The arguments motivate the following hypothesis:

Recursive control structure

* Procedures have the power of push down automata in that the representation of
procedures permits goals tocall themselves recursively, and the interpreter employs a
goal stack.

The second issue concerns how the procedure keeps track of its focus of visual attention. Once
again, the Backup repair is involved in a crucial argument, It is shown that Backup restores not
only the control (goal) component of the execution state, but 1t restores the focus of attention, as
well.  This indicates that focus is locally bound. Goals are instantiated with the current focus of
attention, When the stack pops to resume a goal (even if 1t is popped by a repair), the goal’s
original focus of attention becomes current once again. Morcover, 1t 15 shown Jhat once focus is
nstantiated for a goal, it is shifted onty when the goal calls a subgoal. The gual’s focus cannot be
reset (i.e,, there is no SETQ for focus). These two aspects together mean that the procedure is
applicative;




210 SUMMARY: REPRISENTATION LEVEL

Applicative data flow

Data flow is applicative. "The data flow (fucus of attention) of a procedure changes tf and
only if the control flow alzo changes. When control iesumes an mnstantiation of goal. the
focus of attention that was cun'cnl when the gual was instantiaied becomes the current
focus of attention,

In short. the procedure moves both kinds of internal state tugether.  Although one. focus of
attention, refers to the cxternal world and the other does aut, buth are stured together on a stack,

Given that the procedure keeps goals on a stack, there needs to be sume comvention for when
to pop the stack. That is. an exit convention is needed t indicaie when a goal s satinfied and may
be popped. The arguments concerning this issue are a little weak. but there are sevefal and they afl
puint to the same concluston. An clegant and simple model results when goals are grven 4 binary
type. (There is preliminary evidence for a third goal type. a Foreach loop. byt it has not yet been
incorporated into the model and tested.) AND goals excoute ali their rules, OR goals cxecute just
one’

And-Or
Goals bear a binary type. If G is the current goal in runtime staie S, then
(ExitGoal? S}iswueif

1. Gisan AND goal and all its ruleshave been executed. or

2 G.sanOR goal and at least one of its rules have been exccuted.

The central debate over exit conventions concerned the deletion operator, Ultimately, it was shown
that the best formulation of the deletion operator was:

AMD rule delerion )
(Delete P) returns asetof procedures P’ such that cach P’ is P with onc or more AND
rules deleted from the most recently acquired subprocedure.

Most recent rule delction \ ,
(Delete P) rcturns asctof procedures P’ such that cach P’ is P with one or more rules
deleted from the most recently acquired subprocedure.

Since this formulation derends crucially on the AND/OR type difference. it supports the And-Or
hypothesis. .

When the syntax of the procedure is considered (in chagter 13), the And-Or types play a
central role. The type of a goal determines not only when a goal is exited but also how its rule’s
patterns are interpreted. The patterns of an AND goal's rules arc interpreted as feich patterns. They
are used to shift the focus of atiention. The patterns of OX goals are used as applicability
conditions. An applicability condition must be true if the nule is cligible for exccutiun. In the next
level, chapters 17 to 20, it is shown that these two kinds of patterns are subject to quite different
learning biases. They are quite different not only in function byt in content and acquisiton. This
distinctiveness reflects on the original ANDsOR distinction, adding a Jjttle more support to the
principle.

This completes the synopsis of the hypotheses introduced by the representational level. The
remainder of this chapter spins out their implications for the formal model.  First the Jearner is
considered, then the interpreter and the local problem solver.

<l
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The learner

-
[=2}
L)

At the archutectural level, the fearner was specified i terms of three undefined functions:
Disjoin. Induce and Practice. These functions had to be specificd informally since the
formalism representations for procedures had not yet been defined,  The representation level has
specified the needed representation language. The thrie functions can now be defined. Huwever, it
turny out that the constraints imposed by the represcntation are nut quite puwerful envugh for a
complete defininon,  ‘The learner vvergenerates. pruducing millions of procedures for cach lesson.
Fortunately, 1t 15 not hard to sce where the missing vonstraints go.  This subscction explains the
definition of the learning maodel, showing where the missing hypotheses go.  The neat level, the bias
level, distusses what thuse bypotheses sheald be, Furmally, three new undcfined functivns will be
used (o indicate where the m.ssing hyputheses go.  The old undefined functions. Bis join. Induce
and Practice. will be given definitions in tenns of the new undefined Functivns, The nformal
definitions of the old functions that werc gnen n the architectural level are repeated below:

(Induce P XS5) represents disjunction-frec inductivn. The first argument, P, is a procedure.
The second. XS, is a sct of worked example excrcises. Induce returns a set
of procedures. Each procedure is a generalization of P that will solve all
the exercises the same way that they are solved in the worked examples.
Induce is not permitted to introduce disjuncts. {f the procedure cannot be

- generalized (o cover the cxamples. perhaps because a disjunction is needed,
then Induce retums the null set
(Disjoin P XS) represents the introduction of a disjunct (e.g., conditional branch} into P,

the procedure that 1s 1ts first argument. The second argument, XS, is a set
of worked example cxercises. Disjoin returns a set of procedures. Each
procedure has had one disjunct introduced into it. The disjunct is chosen in
such a way that Induce can gencralize the procedure to cover all the
examples in XS,

(Pracf@&)«-" represents another kind of disjuncuon-free generalization, one dnven by
solving a set of practice exercises, XS. Practice returns a sct of
procedures. Each procedure 1s a generalization of its input procedure P.

(Delete P) represenis deletion. Parts of the input procedure P are deleted. Delete
retums a set of procedure resulting from wvarious deletions.

The representation makes a distinction between control struciure (goal hierarchy) and data flow
structure (goal arguments, rule patterns and rule actions). The simplest way to deal with these two
structurally dissimtlar kinds of informiation 5 ‘0 assign therr acquistion to different Function.
Disjoin will be in charge of adding the new goal structure, Induce and Practice will add
everything else. That is, Bisjoin grafts .« skeletal version of the new subprocedure onto the old
procedure. The skeleton has goals and rules, but the goals lack arguments. the rules lack patterns,
and the rule’s actions lack arguments. Only the goal topology 1s fixed by Disjoin. Induce and
Practice flesh out the skeletons found by Disjoin. They du pattern induction and function
induction in order to add patterns and action #fgurents to the new subprocedure. The reason for
dividing the labor this way is that patterr and function induction are disjunction- free inductions.
The only disjunct introduced by a lesson is in the goal structure. It 1s at the parent OR, the place
where the new subprocedurc adjoins the old procedure. Finding and adding that disjunct is
Disjoin's job. 1t requircs a very different kind of algorithm than disjunction-free induction. With
these introductory comments said, cach of the previously undefined funcuons will be defined.

215
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Disjotn

In Sierra. Disjoin is implemented by a context-free parsing algorithm. Given an cxample,
Disjoin parses it using the old procedure as if it were a context-frec grammar, and using the
exainple’s problem state sequence as if it were a string of primiuve actions. It can do this because
{1} the procedure representation language is recursive, {2) goals have only two types. AND and OR,
and (3) data tlow is applicative. These properties are, of course, main results of the representation
level  Because they are true of procedures, procedures can be used fike context-free gramn)ars'to
parse examples. When Disjoin parses ap example, it will not be able to parse it completely using
the olé procedure. The example uses the new subprocedure, which the old procedure does not
have However. by guessing all possible skeletal subprocedures before it parses, Disjoin can
figure out which of the possible skeletons will allow the example to be parsed. Let
{Skeletons P X} be a function that returns all skeletons that allow P lo parse the example X,
The next step is to apply Skeletons to all the examples and then take the intersection of the
resulting set of skeletons. Let

{SkeletonIntersection P X3) = ﬂ {Skeletons P X)
XEXS

SkeletonIntersection retumns every skeletal subprocedure such that adjoining the
subprocedure to the old procedure would create a procedure that is consistent with all the examples
in X5. Secction 191 shows that Disjoin cannot be defined solely as SkeletonIntersect ¥on.
This would cause it to output skeletons that Iead to star bugs. Apparently, students have some
biases concerning the choice of control structures for their new subprocedures. Hypotheses are
needed to capturc these biases. Let InduceSkeleton bc an undefined function to capture the
control structure biases of students, In effect, it returns some subset of the skeletons returned by
SkeletonIntersection. Given InduceSkeleton, the definition for Disjoin is

{(Disjoin P XS} =
{Adjoin P (InduceSkeleton P XS}))

Disjoin outputs a set of new procedures, Each output procedure ;s a copy of P with a new
skeletal subprocedure attached to it. Adjoin is a trivial function that attaches a set of skeletal
subprocedures to P, producing a set of procedures Each one of these new procedures will be
submitted individually to Induce.

Induce

Figure 16-1 shows a typical subprocedure, Rules 1 through 7 are new. They were built by
Disjoin. Rules 8 and 9 are part of the old procedure. The new AND goal and the three trivial
OR goals arc new. The parent OR is old, as are the three goals labelled Kidl, Kid2 and Kid3.
Induce’s job is to flesh out the new goals and the new niles by giving them arguments and
pauerns. More specifically, it has four tasks, most of which are simple bookkecping:

3 )

el
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8
Parent OR
N
New AND
4
2 3

Trivial OR1  Trivial OR2 Trivial OR3

6 7

I Kid2 I

Figure 16-1
A skeletal subprocedure. Rule 1 is the adjoining cule. Goals bear generic names.,

Test patterns: New OR rules need to be given test patterns. For the trivial OR rules, such as
rules 5, 6 and 7 in figure 16-1, the test pattern is the null pattern, {} (recall that {} always
matches, therefore it is always true). Inducing the test pattern for the adjoining rule (e.g., rule
1 in figure 16~1) is a difficult task. Let InduceTest be a new undefined function that
calculates a test pattern for the adjoining rule. 1ts definition will be discussed in a moment.

Fetch patterns: New AND rules.{e.g., rules 2, 3 and 4 in figure .16~1) must have their fetch
patterns induced. This is another difficult induction problem. Let InduceFetch be a tew
undefined function that solves it. Its definition will be discussed in a2 moment

Arguments: The new goals and the new rule’s actions both need lo be assigned arguments.
Most of the tme, this is ecasy. Since OR rules don't shifi focus {see section 15.1). the
arguments of the parent OR can be copied and used both for the adjoining rule's action
arguments and for the new AND goal’s ar uments. Smmilarly. the arguments of the Kids can
be copied and used both as the arguments of the trivial OR goals and as the arguments of the
trivial OR rule's actions. The only arguments left are the action argumnents for the new AND
rules (e.g. rules 2, 3 and 4 in figure 16-1). InduceFetch deiernines these automatically:
A fetch pattern represents focus shifting. ‘I'he new shifted focus is bound to certain of the
patterns variables. These variables arc used as action arguments of AND rules. So, finding
arguments for each of the goals and actions is generally just a matter of bookkeeping. There
IS an extra twist, however. under eircumstances that are explained in the next paragraph.

Functions: If any of the Kid goals is a wriling action, as is often the case, then it will require
the OR rule that calls it to pass it a number or aother symbol to write. Unless this symbol is a
dircct copy of a visible one. it must be caleulated by a nest of funetions. This nest is placed
in the OR rule’s action argument. Inducing what this function nest could be is non-trivial, so
it o will be assigned an undefined place holding function. InduceFunction.

_17
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Out of all these boukkeeping operations, three cntical tasks cmerge. (1) test pattern induction,
{2) fetch pattern mnduction, and (3} funcuon indaction. This makes some mtuitive sense. When one
lcarns a subprucedure, one first needs lo discover when it is applicable (iest pattern induction). For
cath xtion i the subprocedure, vne needs to discover where the action should be located (fetch
pattern induction) and what new numbers it needs, if any (function induction). These three criiical
tasks have beon furmalized as three undefined functions, InduceTest. Inducefetch, and
Inducefunction. Decfining these functions is the business of the next level, the bias level,

Practice

The function Practice is just like Induce cxcept that it has fewer opportunitics to do
tnduction. It mus. use whatever the procedure has for test patterns, fetch paiterns and functions in
order W answer the practice problems. However, it may, in some cases, be able to narrow the space
of patterns or function a little due to special characteristics of the practice problems, In general,
Practice makes iittle differer.ce in the model's predictions. so no more will be said of it.

Delate

The Delete function is simple lo define given the AOG representation. It inputs a procedure
constructed by Disjoin, Induce and Practice. It outpuis a sct of procedures. Each of the
ottpul procedures has had the rules of its new AND replaced by a pruper, non-cmpty subset of
those rules. Given a new AND with two rules. Delete outpuls two procedures {(deleting all the
new AND's rules is pointless; it mercly “takes back™ the lesson. yiclding no new predictions). Given
a new AND with three rules. Delete outputs six procedures.

Summary

Defining the representation language aflowed subprocedure induction to be almost completely
defined. The above discussion sketches o formal treatment of subprocedure induction. {1 has been
informal in places because a good deal of the subprocedure induction is tedious bookkeeping. Four
new undefined functions were introduced:

InduceSkeleton
InduceTest
Inducgfetch
Inducefunctions

As the names indicate. cach function is an inducer. It outputs only generabizations that are
consisient widh the examples. However. 1t will soon be shown that pure induction is. in cach case.
too onconstrained.  The fuitions gencrate generalizations that pevple are never observed to
aquire. To get the model's predictions to malch human icarning ias predicates govermng each
function need lo be defined. That is all that s left to do. The hypotheses defining the
represeniation are so powcetful that they almost completely define the learming algonthins that the
learncr mMus! use,

164  Theselver

The previous section partially defined the learner. This does the equivalent exercise for the
sobver,  The architectural level defined the model’s vyerall problein solsing behavior in terms of
three undefined funcuions, whose informal definitions, repeated from chapter 8, are:
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(Interpret PS) represents onc cycle of the nonnal interpretation (cxccution) of the
procedure P. The second argument, S, is a runtime state: a composite of the
internal {interpreter} state and the exiernal {problem) state. Interpret
returns the next runtime state. Interpret is defined by the representation
language used for procedures.

{Impasse 5) is a predicale that is truc when the muntime state S is an impasse. It is
implemented by a set of impasse conditions. If any impasse condition is
true, then Impasse is truc. Impasse represents the problem: detection
component of local problem solving.

{Repair 5) represents the other half of local problem solving, problem rectification or
repair. It is implemented by a set of repairs, such as Noop and Backup.
Repair returns a sey of states, Each state results from the action of one of
the repairs on the input state S.

The aim of this section is to define these functions. It turns out that their definition will be
incomplete. Two undefined functions are nceded. These in turn become the target of the next
level's investigation,

*a

Runtime state

The functions use a runtime state, Now that the representation language has been defined,
the runtime state can be formalized. As stated in the architecture level, the runtime state is a pair:
an internal (execution) state and an external state. The external state is just a probiem state. The
internal state has two components, as stack and a single bit of global state, called microstate.
Microstate is used o0 remember whether the interpreter’s last manipulation of the stack was a push
or a pop. Microstate is needed for formalizing the Backup repair. Backup pops the stack, which
automatically sets the microstate to Pop. But Backup needs to have the interpreter resume the goal
that Backup left on the top of the stack rather than pop it. To cause this to happen, it resets
microstate to Push. This fools the interpreter, causing it to interpret the top goal as if it had just
been pushed onto the stack. If microstate were not available, Backup would be less simple to
formalize,

The other component of the internal state is the goal stack. The stack needs to have more
than just goals in it. Each element of the stack {a stack frame) needs to be three components:
Goal The name of the goal. _
8indings Variab'»-value pairs that represent the bindings of the goal’s arguments.
ExecutsdRulaes  The goal's rules that have already been execuied.
The need for 8indings follows immediately from the principle that data flow is applicative. The
set of executed rules is needed so that AND goals may work properly. If the interpreter doesn't
know which AND rules have alrcady been cxecuted, it will just execute the first AND rule over and
over. For AND goals to have their intended meaning. ExecutedRules must be a part of the

goal’s state. In production systems, the samc affect is achieved by the refractoriness conflict
resolution principles (McDermott & Forgy. 1978).
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Interpret

The Interpret function cxecules the procedure on the runtime state that it is given. It
changes the state in ways directed by the procedure. It doesn't do much, only one "cycle” of
meeipretanon,  Solving a subtraction problems requires hundreds of calls to Interpret. Given
the hyputheses on representation, Interpret can be aimost completely defined. [t can't be totally
specified bovause pattern matching hasn't been completely defined. Two undefined functions, Test
and Fetch. will be used 10 represent how Lest patterns are maltched and how fetch pallerns are
maiched:

(Test S P} Given a runtime state S and a pattern P, Test returns truc or falsc.

(Fetch S P) Given a runtime state S and a pattern P, Fe tch returns a set of binding sets for
P’s variables.

Each assignment of values to variables is a binding sel. Fetch returns a sct of binding sets because
the pattern may malch scveral ways. Or iv may not match at all, in which case the sct that Fatch
returns would be empty. The local problem solver, which runs between cach cycle of Interpret,
chetks for these anomalous matches and repairs them. The bias level discusses exactly what kinds
of matches the local problem solver treats as anomalous. The bias level also defines exactly what
the matching functions Test and Fetch actually do.

Given the two matching functions, there are many ways 10 define Interpret. One will be
sketched in order 1o give a feel for some of the issues involved. This version of Interpret does
either 2 Push or a Pop whenever it is called. That is, the cycle size is sct at Single pushes and pops.
Finer cycle sizes are possible. For instance, each binding of a goal argument could count as a cycle
of the interpreter. Although I've wied many cycle sizes for Interpret, none scem to have any
advantages over the others.

Figure 16~2 gives the code for this version of Interpret and the minor functions that it
cmploys. Interprat has two basic cases: (1) If microstate is Push, then the current goal has just
been started up. If it 15 a primitive goal, then the interpreier just exccutes jt; otherwise, a rule is
chosca and cxecuted. (2} IF microstate is Pop. then the current goal has just had onc of its rules

.cexecuted. The choice is between resuming it, by choosing a rule and executing it, or exiting the
goal by popping the stack.

The exit conver.tions of the interpreter are implemented by ExitGoal?. If the top goal is an
AND, 1t 1s popped only when all its rules have been executed. If the top goal is an OR, it's done as
soon as any of s rules are executed,

The conflict resolution strategies of the interpreter are imolemented by PickRule. It makes
critical use ¢/ the order of a goal's rules. AND rules are in the order thal the learncr saw them
being execuied ty the worked examples. The first rule on the goal's list is the first rule executed.
Because the AOG language represents all control choice as OR goals, the patterns of AND rules are
not used as applicability conditions. In pariicular, PickRule just takes the next uncxecuted rule
on the AND's list without d0ing any pattern maiching. For OR rules, PickRule tests for
applicability using the undefined matching function Test. If more than one uncxecuted OR rule is
applicable, then PickRule rcturns the first one on the OR’s rule list. The order of rules is used to
represent the chronology of their acquisition. The most recently acquired rule is first. To
summarize. the conflict resolution strategics are. (1) For AND rules, pick the first unexceutzd rule.
(2} For OR rules, pick the first (i.e. most recently acquired) uncxecuted rule that has a truc
applicability condition.
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whers

B

{Microstate S)
{Goal-TOS S)
{Bindings-TOS S)
{ExecutedRules. TOS 8)
{Pop S)

{PushS G RS B)

{EvalGealG B §)

{EvalFormF B S5)

(Pattern R)
(Achion R)
{ActionGoal A)
{ActionArgs A)
{GoalArgs G)
{Car %)

ERIC

Aruitoxt provided by Eic:

2,
alse (ExecuteRule S {PickRule S))
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A If (Microstate S) = Push then
If (Goal-TOS S)is primitive then

(EvalGoal (Goal-TOS S) B 8)
{Pop S)

If (ExitGoal? S) then (Pop S) else
{ExecuteRule S (PickRule S)).

{ExnGoal? §) =

Either
{Goal-TOS S) s an AND goal, and
all of its rules are in {ExecutedRules.-TOS §),
Or (Goal-TOS S)is an OR goal, and
{ExecutedRules-TOS S)is not emply.

{PickRule 8) =
Return the first rule R of {(Goal-TOS S) such that
R s not in {ExeculedRules-TOS S) and
ether (Goal-TOS S) is an AND goal or {Test S {Pattern R)).

{(ExeculeRuie SR) =
1 Add R to {ExecuiedRules-TOS S)
2 1f{Goal- TOS S)is an OR goal,

then {InstantrateAction S {Acton R) (Bindings-TOS S)
else {InstantialeAclion S {Action R) {Car {Fetch S (Pattern R)))).

{Inslantiates<chon SAB) =
1 {Push S {ActionGoal A} {3 {})
2 Foreachform F in {/clionArgs A)

as each variable V in {(GoalArgs (Goal-TOS 8))
do Bind V to {EvalForm F B S) and add the binthng into {Bindings-TOS 8).

Returns the current selting of the microstate bil in the runtime state S.
Returns the goal en Ihe top of the stack.

Returns the bindings of the goal on the lop of the atack in S.

Relurns the sel of executed rules on the top of the stackin S.

Pops the stack of runlime state S,

Pushes onto the stack of S a new stack Irame consisting of G as the goal, RS as the set of
executed rules, and B as the set of bindings.

Executes a onmilwe goal Gin the runtime state S using bindings B. Primitive goals, e.g.,
Write, change Ihe external {problem}) siate bul do not change the inlernal state.

Executes a form {1 & , a variable, a constant or a function)n the current slate wilh the
bindings B, and returns its value For variables, il simply looks up the variable's binding in B.
Conslants are simply returned. wilh Iheir QUOTE stripped off. Funclions, such as the
arithmelic facls funclions, make no changes to S of any kind.

Returns the pattern of Lhe rule R.

Returns the aclion of Ihe rule R.

Returns the goal called by the action A.

Returns the hst of forms that are The arguments of the action A.
Returns the st of variables Ihat are the argumeants ol the goat G.
Retur:s the firsl element of a list X.

Tigure 16-2

(A) Main corde for Interpret.  (B) Primitive and utility functions.
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Focus shifting is accomplished Y matching fetch patierns. Since AND rule's patterns are used
as fetch palterns, the function ExecuteRule calls Fetch for AND rules but not for OR rules.
Calling Fetch augments the current bindings with the bindings of the pattern vanables. (N.B., The
interpreter assumes the local problem sohver will cah any mismatches, so it just uses the first
clement of the sel of binding sets returned by Fetch) When the action’s goal is instantiated by
InstantiateAction, die goal arguments are bound to the values of certain fetch pattern
variables. This accomplishes focus shifting.

The point is only that the interpreter can be almuot completely defined, excepting only the
functions Test and Fetch. and that its definition is rather simple. The A0OG language is not very
complex, and neither s its interpreter.

Local froblem Solving

The local problem solver is formalized by a predicate. Impasse, and a funcdon, Repair.
Both are driven by sets. Impasse uscs a set of impasse conditions. Repair uses a set of repairs.
These two sets are constant paramoters of the model. Although the exact membership of both sets
is still open for investigation, their value, whatever it is, may not be varied across tasks or subjects.
To do so would give so much tailorability to the model that the theory would be difficult to refute.
Holding the sets constant represents the assertion that local problem solving is a widely kaown,
1ask-independent skill. It concerns proceduses per se, and not just procedures for solving particular
kinds of tasks. Task-independence entails that impasse conditions and repairs mention only aspects
of the execution state. For instance, the Noop repair simply pops the stack. it executes (Pop §).
The Backup repair also uses only the execution state. lts implementalion is:

1. (PopS)
2. If (Goal-TOS S}isan AND, then go to 1.
3. Set(Micrustate S) to Push.

This pops the stack to the fir. OR goal, then resets the execulion state so that it will be entcred.

The impasse conditions also mention only the execution state. For instance. the following
impasse condition is true if PickRule would fail: .

if

1. (ExitGoal? 8) = false, and

2. (Goal-TOS §)is an OR goal, and

3. Thereis no rule R in the rules of (Goal-TQS 8) such that
Ré€(ExecutedRules-TOS S) and (Test S (Pattern R)y=true,

then impasse.

This condition checks for halt impasses — times when the interpreter would have to halt because no
rule applies. Another impasse condition checks for mismatching fetch patterns:

(Goal-TOS S)is a non-primitive AND goal, and

R is the first of its rules that is not in (ExecutedRules-TOS S), and
4.  (Fetch § (Pattem R)}is not a singleton set,
then impasse,

if
1. (ExitGoal? 8) = false, and
2.
3

This impasse condition checks whether the next call 0 Interpret will call Fetch, then ¥ checks
whether the pattern will mismatch (i.e.. whether it will fail to match at all, or more commonly,
whether it matches ambiguously). If so, an ambiguity imp,tsse is signallcd. The ambiguity impasse
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will play an important role in the Bias level

Al present, the model uses only five impasse conditions. Two have just been discussed.
Another checks for infinite loops. A fourth causes an mmpasse when the current problem state is
not syntactically well formed. The fifth impasse condition checks for precondition violations. In a
sense. the precondition impasse condition 15 special since it must Lonsull non-execulion Sstale
information. It must look up the primitives’ preconditions. Techmically, this vislates the principle
thal 1impasse conditions refer only to the execution state. However, precondilivns are inevitable in
any model that has primitives (and all computrtional models do). Just a5 the acuons of a primitive
uperalor are beneath the grain size of the model. the impasses of the pritnitive are also beneath the
grain size. Preconditions represent internal impasses that have been lified up to the grain size
boundary. For instance, the facts function Sub 15 a primitive with a precondition. Suppose it were
represented as a non-primitive procedure that, say. uses finger counting to calculate differences. ft
might reach an impasse calculating 5-7 when it tries to tick off a finger and finds there are no
more fingers to tick off. The precondition at the Sub-sized grain 15 a lifting of this impasse to a
higher level. In short, preconditions are as inevitable as primitives. Hence, an impasse condition
that refers to them is also inevitable.

The basic point is that defining the exccution state allows defining the repairs and the impasse
conditions. These in turn define the local problem solver.

165  Preview of the bias level

The hypotheses on representation have taken us a long way. They not only defined the
representauon language, they defined almost all of the learner, the interpreter. and the local
problem solver. The only issues left to discuss concem the six undefined functions mentioned
above:

InduceSkeleton
InduceTest
InduceFetch
InduceFunctions
Test

Fetch

The first four express the biases of the learner. The representational hypotheses defined all possible
patterns and skeletons consistent with a lesson's examples; the bias functions filter out the choices
thar human learners are never otserved to choose, As will be seen in the next seclion, these biases
arc relative rather than abselute. They compare fwo choices and say which is betier. The
representational hypotheses are absolute. In a sense, they say of a single choice whether or not it is
good. Because the biases are relative, they cannot be built into the representation language.
Representation languages can express only absolute constraints.

The other two undefined functions, Test and Fetch. concern pattern matching. There are
many ways that patterns can oe matched against the problem state. For instance, they can be
matched 1o maximize the nu.nber of matched relations, or they can be matched to maximize the
numher of bound nattern variables. The matching issues are intimately related © the learner’s bias
for pattern inductions. The bias principles express how the learner views the worked problem, and
uie malching principles express how this view,Jint is applied to exercise problems. They are duals.
They form two ends of an “informational conduit™ between cxamples and exercises. The next level
discusses both ssues together, despite the fact that its name. the bias level. refers 10 just one.
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Chapter 17
Two Patterns or One

AL this point in the development of the representation, it has been shown that patterns
represent the interface between the procedure and the current problem state. There are two jobs
that patterns are used for: (1) shifiing the focus of attention. and (2) testing applicability conditions
in order to decide which rule 1o take. It would be parsimonious if the same patterns could be used
both for testing and fetching. "This is what produ tion systems do. The pattern on the condition
side of a production rule tests whether the rule is applicable. and it binds variables for use in the
activns of the other side of the rule. However, it turns out that the data force the theory away from
the parsimony of singic-pattern mles. Two Kinds are needed: fetch patterns and fest patterns. This
chapler discusses why both Kinds are nceded. The distinction between fetch and test patterns was
assumed in the chapter on representational syntax; now it is time to fulfill the promise and show
that the distinction is well motivated.

This chapter also introduces some important bug data that set the cmpirical stage for the
arguments of the following two chapters. In particular. the bugs indicate some general trends for
several key issues:  Firet, the cvidence indicates that induction should be bjased so that feteh
patterns are fairly specific. Second. it indicates that impasses occur when matching fails duc to
overspecifie fatch patterns. Third, it indicates that induction should be biased so that test patterns
are fairly general, The best way to understand these Beneral trends is to cxamine the evidence
itsclf. It concerns a group of bugs that will be called, for handy reference, the fetch bugs.

17.1 The feteh bugs

The fetch bugs that will be discussed here are clcarly a product of tncomplele learning, In
particular, it scems that students were tested just after they were introduced 10 borrowing.
Introdurtory borrowing is always cxemplified using two-column problems, such as a4

4 4 4
a 513 b 513 7 c. 7 513

-19 -192 -219

36 365 836

There is no logical rcason against using multicolumn problems, such as & and ¢ but in the
textbooks that ['ve scen. they arc never used in the initial borrowing lessons.

‘The general story for the fetch bugs goes like this: Suppose students abstract a highly specific
feteh pattern to describe where borrow’s decrement goes. When they are given multicolumn
problems. suchk as & or ¢ their overly specific fewch patterns may not mateh.  This triggers an
impass¢. leading via various repairs to cazh of the feich bugs. In order to verify this story. cach of
the fetch bugs will be discussed in detail.  The tellale Cartesian product pattern of impasses and
repairs will be uncovered. However, in order 1o make the cxposition casier to follow, it will be
couched 1n terms of ferch patterns, impasses and repairs, just as if the point under discussion had
alrcady been decided.  Afier the evidence is ¢xposed. oppos ng hypotheses will be cvaluated.
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4
Borrow-No-IDecrement- a. 7 613 b, 53 7
xcept-Last: -219 -192
' 544X 345+

When this bug's Reich pattern 18 induced from two-column borrow oroblems, the learner abstracts
the fuct that the column that 1s berruwed frum is adjacent to the column that is borrowed into. The
Icarner also abstracts that the borrow-from column is the leftmost column. “This dual description is
overspeaafic. It s true of borrow-from columns only on two-column problems. That is what
ulumately leads to the bug. To make the discussion concrete, suppose that the fetch pattern
contains the fragment

{... (Adjacent? G BFC BIC)
{First? G BFC) R

where G 1s the vanable for the problem grid, BFC is the column to borrow from, and BIC is the
column to borrow into. The first relation means that the borrow-from column is adjacent to the
borrow -int¢ column, The second relation means that the borrow-from column is the leftimost
column m the problem, Adjacent? and First? are always trie when borrow problems are two-
column problems. That is why they are present in the fetch pattern. The learner apparently chose
a highly specific generalization of the two-column Lraining examples.

On a three-column problem, such as a. the pattern fails to match. There is no column which
is both adjacent and leftimost. This failure causes an impasse. The above bug. Borrow-No*
Decrement-Except-Last, is generated by repairing the impasse with Noop. Hence, the bug just skips
the decrement if the pattern doesn't match. On a threecolumn problem with the borrow
originating in the tens column, as in &, the pattern matches just fine. The hundreds column is both
leftmost and adjacent to the borrow-into column. The maich is exact, se no impasse occurs. The
decrement happens as it should., So far, the fetch bug story is born out by the bug ewidence,

6
Always-Borrow-Lefy: a. 7 613 b.
-219 -
444 X 3454

13
9

-

This bug is .erived the same way as the onc just discussed, except that the impasse is repaired
differently. [nstead of a Noop repair, the local problem solver uses anotker repair, called the Force
repair (becauses it forces the interpreter to choose when there is ambiguity). The Force repair finds
the closest match for the fetch pattern. When there are several closest matches, then the repair
chooses one of them. In the case of problem a, there are two closest matches for the fetch pattern,
One match binds the hundreds column to BFC, the column borrowed from. This binding satisfies
First? bul leaves Adjacent? false. The other closest match binds the tens column to BFC.
This makes Adjacent? truc and leaves First? false. When Force takes the first maich, then the
bug Always-Borrow-l.efi is generated. {f it rakes the second malch, then the correet borrowsfrom
placcment is generated.

Two points are crucial for this bug and Borrow-No-Decrement-Except-Last: (1) The ferch
pattern is too specific; it has both Adjacent? and First?. (2) Impasses sometimes occur
whenever fetch patterns fail 1o mateh exacdy.

Twe other fetch bugs differ from the two just described only in the kind of fetch patterns
they have. The new bugs’ feten patterns test the nurnertcal relationships of the digits in the borrow-
from column. In two-column borrowing problems. the tens column has the property that TOB
{where T and B stand for the top and botlom digits of the cglumn, as always). The following
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pattern fragment is always true for the tens column of two-column borrowing problems:

{... (Adjacent? G BFC BIC)
('Part BFC T)
(!Part BFC 8)
(First? BFC T)
(Last? BFC 8)
(LessThan? B T)
(ot {LessThan? T 8))
{Not (Equal? T 8)) R

The fast three relations are the ones that matter. They specify BT, B<T, and B#1. This pattern
will fail to match exactly on problems that require two adjacent borrows, such as

2
3
-1
1

Tre tens column falsifies one or morc of the last three relations of the fragment Jwbove. Hence, the
fetch pattern will fail to match for the borrow-from for the first, units-column borrow. This failure
causes an impasse. The impasse leads ultimately to the following bug:

1

44 8
Borrow- Don't-Decrement- a. 667 b. &&l7 c. 697
Unless-Botiom-Smaller: ~-198 -169 -168

369 X 409X 439 v

This bug resulis from taking the Noop repair to the impasse. it skips the decrement unless the
column is T>B. That is, it impasses when the borrow-from column is not exactly like the tens
column of two-column borrowing p