TITLE
INSTITUTION
SPONS AGENCY

PUB. DATE

 NOTEAVAILABLE FROM
PUB TYPE

EDRS PRICE DESCRIPTORS

Spatial Encounters: Exercises in Spatial Awareness.

New Mexico Univ., Albuquerque.
Women's Educational Equity Act Program (ED), Washington, D.C.
[80]
356p.
WEEA Publishing Center, 1,982 Education Development Center, Inc., 55 Chapel Strpet, Newton, MA 02160 . Guides - Classroom Use - Materials (For Learner) (051) -- Guides - Classroom Use - Guides (For Teachers) (052)

MFOl Plus Postage. PC Not Available from EDRS. Elementary Secondary Education; Females; *Learning Activities; Perceptual Development; Sex Differences; *Spatial Ability; *Visualization; *Visual Measures; *V̛isual Perception

ABSTRACT
This series of activities on spatial relationships was designed to help users acquire the skills of spatial visualization and orientation and to improve their effectiveness in applying those skills. The series contains an introduction to spatial orientation with several self-directed activities to help improve that skill. It also contains seven sets of exercises that focus primárily on spatial visualization: memory of shapes, figure completion, rotation, spatial memory and rotation, hidden shapes, and cutout forms. Each set begins with fairly simple exercises and progresses to those that are more difficult. In addition, each set builds on the skills of the previous ones. The sets of exercises are appropriate for all age levels, with the exception of prekindergarten. The activities are self-contained and can be completed with or without the supervision of an instructor. Each set of activities contains an instruction sheet that gives the objective(s) of the set, examples of everyday applications, directions"for use, and suggestions for self-directed practice. Answers are given on the back of each exercise page for those who want immediate feedback and also on a separate solutions page that concludes each set of activities. Careers contingent upon the ability to perceive spatial relationships are listed and readings and games are suggesterl. (PN)

[^0]

Spatial Encounters'

Exercises in Spatial Äwareness

Director
Peggy J. Blackwell
Illustrator
Paul Lehrer
Behavioral Research Division
Institute for Applied Research Services
University of New Mexico
Albuquerque

Women's Educational Equity Act Program
U.S. Department of Education "
T.H. Bell, Secretary

Discrimination Prohibited: No person in the United States shall, on the grounds of race, color or national origin, be excluded from participation in, be denied the benefits of,. or be subjected to discrimination under any program or activity receiving Federal financial assistance, or be so treated on the basis of sex under most education programs or activities receiving Federal assistance.

The activity which is the subject of this report was produced under a grant from the U.S. Department of Education, under the auspices of the Women's Educational Equity Act. Opinions expressed herein do not necessarily reflect the position or policy of the Department, and no official endorsement should-be inferred.
$-$
Printed and distributed by WEEA Publishing Center, 1982. Education Development Center, Inc., 55 Chapel Street Newton, Massachusetts 02160

Project Staff

Peggy J. Blackwell, Project Director, As'sociate Profeşsor of Educational Foundations and Director, Behavioral Research Division, University of New Mexico.

Jennifer S. Johns, iroject Coordinator, Behaviordl Research Division, University of New Mexico. Paul Lehrer, Illustrator, University of New Mexico.

Earl Mark, Graduate Student in Architecture, University of New Mexico.
Marcia。Sutton, Graduate Student in Educational Foundations, University of New Mexico.
Karen Dunning, Graduate Student in Anthropology, University of New Mexico.

Acknowledgments

We express our apprecia:ion for their assistance and cooperation to Hilde Howden and Hollis Stout of Albuquerque Public Schools, to Arnold Rael of Bernalillo Public Schocls, and to Calvin White, of Gallup/McKinley County Indppendent School District. We would also like to thank the teachers and students from the following New Mexico schools: Gallup Middle School, Thoreau High School. Zuni Elementary School, Garfield Midcle School, Belen Junior and Senior High Schools, Placitas Elementary School, and Bernalillo Junior High School and Bernalillo High School.

6

Table of Contents

TRODUCTION 1
SCRIPTION OF ACTIVITIES 2
ATIAL ORIENTATION 3
MORY OF SHAPES 5
Directions 7
Answer Sheet 9
Solutions 75
GURE COMPLETION 77
Directions 79
Answer Sheet 81
Solutions 105
TATION 1 107
Directions 109
Answer Sheet 111
Solutions 147
TATION 2 149
Directions 151
Answer Sheet 153
Solutions 187
SPATIAL MEMORY \& ROTATION 189
Directions 191
Answer Sheet 193
Solutions 243
HIDDEN SHAPES 245
Directions 24;
Answer Sheet 249
Solutions 299
CUTOUT FORMS 301
Directions 303
Answer Sheet 305
Solutions 333
CAREERS 335
SUGGESTED "READINGS 336
GAMES 337

Introduction

men, as a consequence of socialization or gétics or both, have difficulty perceiving relaonships in and among three-dimensional objects. r example, some women find it difficult to unrstand a cross-sectional drawing, to drive a r in reverse, or to determine how a mechanical ject works by simply looking at it. Many women not automatically learn, at home or at school, e total concept of space, which includes direcon, distance, perspective, movement, and relaonships of objects to each other in space. ch of the 1 .lability to grasp spatial relationips is a consequence of limited sacial oppornities to develop such skills--for example, aying games requiring coordination, harddling ree-dimensional objects such as building mateals or toys with movable parts, or enrolling in chanical drawing courses. Women have consisntly shown a sex-differentiated lack $0 i$ what 2 is lled spatial visualization and spatiql orientagon. Most men acquire these skills and then fild on them both in the learning process and on e job.
atial visualization and spatial orientation are rms from psychology that coscribe the ability judge spatial relationships. Spatial visualitrion involves the ability to manipulate and tate mentally two- and three-dimensional obets. Spatial orientation involves the ability
to perceive the elements in a pattern, to compare patterns, to grasp changing orientation in space, and to determine the position of one's body in space. The spatial skills of visualization and. orientation are highly correlated with success in a number of technical and professional occujations that have traditionally been considered male domains.

Spatial ability is a part of the psychology of perception (the process of extracting meaningful information from sensory stimulation) and is intricately involved with learning and thinking. At the present time, instruction based on the skills of spatial visualization or orientation is not learned as well by females as by most. males. When information is presented in spatial terms, or when learning requires spatial skills, women often fear, do not understand, or have difficulty with the material.

Numerous research studies in psychology have concluded that males are superior to females in spatial perception, , but that this difference can be diminished, if not eliminated, through adequate training. In order to allow freedom of career choice, people of both sexes should have

- the opportunity to learn the perceptual skills necessary to enter the mathematics, engineering, science, and technical professions.

This series of activities on spatiai relationships was designed to help the user acquire the skills of spatial visualization and orientation and to improve her or his effectiveness in applying those skills. The series contains an introduction to spatial orjentation with several selfdirected activities to help improve that skill. It also contains seven sets of exercises that focus primarily on spatial visualization. Each set begins with fairly simple exercises and progresses'to those that are more difficult. In addition, each set builds on the skills of the previous ones. The user should begin with the basic exercises in each set, even if they seem fairly easy. It's a good idea not to skip any. This is one time where practice does help.

The sets of exercises are appropriate for all age levels, with the exception of prekindergarten. Young children can do many of the activities with the assistance of an adult. The younger a person is whens she or he begins to develop spatial abilities, the more likely it is that those abilities will remain an integral part of her or his perceptual ability.

The activities are self-contained and can be completed with or without the supervision of an instruçtor. Teachers should find them easy to adapt for classroom use. The activities should not be viewed as tests; they are designed to help users improve their spatial skills.

Each set of activities contains an instruction sheet that gives the objective(s) of the set, examples of everyday applications, directions for use, as well as suggestions for self-difected practice. Trying sqme of these structured activ-. ities is important; their incorporation into everyday activities will greatly increase spatial "skills and one's confidence in them.

Answers are given on the back of each exercise page for those who want immediate feedback and also on a separate solutions page that concludes each set of activities. There is a blank answer sheet that can, be removed so that answers can be marked on it, allowing the exercises to be completed several, times.

spatiac orientation

A specific type of spatial ability is called spatial orientation. This involves the ability to perceive patterns and to compare them with one another; to understand how elements are arranged within a visual pattern; not to be confused when objects change their positions in space; and to determine spatial location with respect to ose's body.

Spatial orientation is necessary for tasks that require a sense of direction. Map reading, finding one's way ${ }^{\text {in }}$ in an unfamiliar locale, and using or explaining perspective are good examples of such tasks.

To improve spatial orientation skills, you can do the following exercises.

Engage in any' general physical activity, such as playing Frisbee, volleyball, tennis, or pool. Other activities which may be useful include dancing and tumbling.

Try parallel parking and driving in reverse.
Play electronic games in which you have to understand patterns and how they are arranged or you. have to determine the spatial relationships with respect to your own body.

12.

Read and interpret topographical maps.
Practice with a bow and arrow. Mentally connect your arrow to the target.

As you drive in the country or ride a bicycle, envision the entire landscape. Don't just fol.low the painted lines or signs that go around a curve. Visualize where the curve has to go and what it will look like ahead.

Look farther ahead when walking and driving.
Move to music.
Use simple tumbling to learn where yoúr body. goes in space.

Read maps. Have someone listen as you outline a route on a standard city map. Then mentally follow that route, telling the direction of various turns (right or left; north or south) with respect to your original starting point.

Draw maps.
Play games using maps. Tell verbally how to get from one point to another point by the shortest route.

MEMORY OF SHAPES

ObJECTIVE

To form a visual image of an object and then to remember its shape.

DIRECTIONS

First, look through the activities. Notice that each page contains two drawings. Look at the drawing on the right-hand side of the page until you think you can remember, it -- see it in your mind. It is important to remember what the object looks like, rather than just remembering its name. Now, turn the page and select the object
-

APPLICATION

Visual menory is required often in everyday activities. Try to remember just where a store is on a street, or where you left something in a room. You may try to remember what a pair of slacks or a suit looked like after leaving a store o: 's a your favorite camping site looks, like, You mis also try to recall the pattern for knitting a sweater or the blueprint for building a cabinet.

Visual memory is required for careers such as engineering, geography, dentistry, forestry, city planning, industrial design, mathematics, landscape architecture, and quality control.
on the left-hand side of the page that you remember from the page before. Mark your answer on the sheet provided. Then you can check the answer on the baçk of the page to see that it is correct. Continue in this way until you have done all the exercises.

If you aniswer all the exercises correctly, go to the set of exercises on Figure Completion. But, if you miss some, and most people will, try the other types of activities suggested undêr "What Else Can You Do?" on the next page. Then work through the exercises again.

Another way of approaching the exercises is to work all the way through them before checking any of the answers. A separate solutions page is given at the end of the exercises for this purpose. ‘Completing all the activities before checking an answer is especially effective if you want to work. through the set several times.

Menary of ishares

WHAT ELSE CAN YOU DO?
Describe to somuone the neighborhood an which
you live. Try to "see" the details as you
talk. Don't use street names.
Look at a picture. Look away and see how much of it you can remember. Try to rerember exact placement of things.

Read a story and then close your eyes. Try to ${ }^{\circ}$, visualize what the characters look like, what the streets and houses and clothes look like.

Walk around your house "mentally." See the texture, the angles. Where ar the plants located?

Try to draw familiar objects from memory -your dog, car, bicycle, shoes, living room, etc.

Touch a three-dimensional form, either real or abstract, with your eyes closed and try to visualize"it.

Picture an object in your mind. Scan it, paying attention to all the details as you do so. Then zoom in on one small part -- picture it in detail in your mind.

Practice twenty questions. What twenty things can I visualize? Close your eyes and see them.

Practice visual "limbering up" exercises, Let the images flow freely. Allow daily time for relaxing, daydreaming.
 MEMORY OF SHAPES

ERIC

LOOK AT THE OBTECT IN THEBOX ON THE RIGHT. TURN THE PAGE. FIND THE SAME OBJECT IN THE BOX ON THE LEFT. CIRCLE THE CORRECT ANSIVER. THEN, LOOK AT THE OBJECT IN THE BOX ON THE RIGHT AGAIN. TURN THE PAGE AND FAND IT IN THE BOX ON THE LEFT. CONTINUE IN THIS WAY FOR'EACH EXERCISE.

\%

1. A

$\square \rightarrow+1$ \therefore

\qquad

26

ERIC

ERIC

$$
30
$$

ERIC

$$
1 \quad 5 \quad 5.0
$$

$$
0
$$

-

\div

,

ERIC

42

ERIC

?

34
\square

49

ERIC

57

$$
53
$$

63

(

69

*
71
is

$$
73_{60}
$$

ERIC

nic

ERIC

$\stackrel{\rightharpoonup}{3}$

81


```
#
```


ERİC
\qquad

MEFORT OF SHAPES

ERIC

obuectives

To draw conclusions from limited porceptual information. To create an image of the whole from a part.

APPLICATIUN

The completion of a figure from limited information is often required in everyday life. People who sew imagine what the entire garment will look like when only part of it is done. A completed landscape is visualized from only small plants. An automobile driver needs to distinguish elements on the 1:ad while traveling through fog, at night, or when the sun glare obscures images of pedestrians or vehicles.

Figure completion is particularly important to some careers. An archaeologist creates a design from pieces of pottery. A civil engineer creates a bridge and an artist "sees" a completed figure from only a few sketcher lines. Nther careers that require the skill of figure completion are paleontology, geology, radiology, and chemistry.

LIST YOUR OWN IDEAS FOR IMPROVING. YOUR FIGURE COMPLETION ABILITY.

Do line teasers.
Work mazes.
Take a piece of cansistruction paper and cut a/ shape out of it. Place the sheet of construction paper over a part of a photograph so that only a portion of the picture is showing through. Have someone try to guess what the picture is.

Take a look out of the window at a distant cylindrical object. The image probably will be obscure. Is it a telephone pole, a high voltage wire pole, a lamp post, or perhaps a flag pole?

Identify a cut of meat from a whole animal.
Try finger painting and visualize the finished work from the time you begin.

Cloud gaze -- visualize images in them.
Work with Tinkertoys. See the finished object from only a few connected pieces.
filure completion

EXAMPLE

LOOK AT THE DRAWING ON THE LEFT. THE DRAWING IS
NOT FINISHED. NOV LOOK AT THE FIGURES IN THE BOXES
ON THE ROUT ONE OF THEM IS THE COMPLETED
DRAWING OF THE FIGURE N. THE BOX ON THE LEFT: WHICH
ONE BIT? PRASE CIRCLE THE CORRECT ANSIVER.
THEN, TURN THE PAGE AND CONTINUE.

ERIC

1.

2

3.

ERIC
$=93$

A.

B.

C.

B.

4.

B.
C.

1. A
2. E
3. A

101

$$
, \quad \cdots \quad \geqslant
$$

$$
-4 . \quad A_{4}^{4}
$$

5. B
6. C

7.

8.

9
ERİC

A.

A.

B.

B.

4

B.

C.

C.

- C.

10.

II.

12.

148

A.

6.
10. B
\therefore 11. B
12. A

$\%$

110

\|.

$\%$
16. C
17. C
18. B
-
-
,
-

19. B
20. A
21. B

$$
t
$$

119

98

25.

26.

123

\cdots
25. C
26. A
27. B

125

28.

29.

127

- . 28. B

29. C
30. A

1 (4)
2:A (B) c
3 (A) в
4 (A) 8 C
5 A (B)
6 A B. (C)
7 A B (C)
8 (A) B
9. $A B$ (C)
. 10 A (B) C

11 A (B) C
12 (1)
13 (A) в
14 A (B) C
15 A B (C)
16. A B (C).

17 A B (C)
18 A (B) C
19 A B C
20 (A) B C

ERIC
21.A.(B) C

22 A (B) C
23. A B ()

24 A (B) C
25 A B (C)
26 (A) B C
27 A B C
28 A. (B) C
29. A B. (C) 30 (A) B:C

130

OBuECTIVES

To rotate an abstract image mentally, To imagine the rotation of a pictured object.

DIRECTIONS.

Look through the set of exercises, Notice that for those numbored 1 through 9 , each page has a drawing in a box on the lefthand side of the page. Study the shape of the figure inside the box. Now, look at the box on the right-hand side of the page.. The shape of the figure inside the two boxes is exactly the samer Can you turn Box B so that it looks like Box A? If so, answer. yes on the sheet provided, Remember that you are mentally rotating the entire box, dmage and all, rather than just the image itself.

APPLICATION'

The ability to rotate objects mentally is required in many sports. Imagine how a baseball must rotate through space to land in the catcher's mitt. Or imagine how it feels when jumping off the high dive to do two complete rotations before hitting the water, You may also need to picture the movements of the earth and sun in order to determine where to plant a shade tree to cool your house in summer, or to determine how to sketch a room or greenhouse for a southern exposure.

This type of mental rotation applies to careers such as auto mechanics, aircraft mechanics, plumbing, electrical work, and television repair. Craftspeople project a mental image of the desired final arrangement of mechanical components and then work towards it. The ability to mentally sotate objects is also required in careers such as construction, engineering, astronomy, and geology,

Exercises 10 through 27 ask you to rotate the box on the left-hand side of the page and to pick the box from the other four that will exactly match the rotated box.

If you answer all the exercises correctly, go to the set of exercises on Rotation 2. ; If some of your choices don't match the correct answers, you may want to try some of the additional" exercises given under "What Else Can Yoü Dof" on the next page. You may also want to copy the pages and cut out the box on the left and actually turn it to match the one on the right. As you do this, visualize the box turning. Close your eyes and thy to see it.

hotation 1

WHAT ELSE CAN YOU DO?

Draw a three-dimensional object from several angles.
Fit left and right shoes into a shoebox.
Make stick figures of geometric shapes and turn them in space. Observe how they look as they turn. Or use Tinkertoys.

Use a miter box to cut: angles on wood and fit the pieces together.

Look at'any exhibit or photograph of a crosssection of a piece of machinery, a car, a jogging shoe, etc. Have a friend who understands cross-sectional drawings show you some good examples. Draw some yourself of a very familiar object such as a table leg or pencil.

Once you have the skill of mentally rotating entire objects, you will want to practice mentally moving the components of individual objects within the space. For example, imagine moving the furniture in a room. The room itself does not tum, but pieces of furniture may shift places and positions.

When playing chess or checkers, mentally project several moves in advance to determine if a given strategy will be successful.

134

AHBUERSHEET
 ndarion 1

1. LOOK AT THE TVO PIGTURES BELOIV. CWN YOU TURN THE SECOND BOX (B) SO THAT IT LOOKS LIKE THE FIRST BOX? IS B A ROTATION OF A? CIRCLE YES or NO ON YOUR ANSIVER SHEET.

A.

B.

NaV, CONTINUE IN THE SAME IVAY...

2.

A.

B.

A.

B.

$$
\begin{array}{lllll}
& 147 & \ddots & & \\
& & \ddots & \ddots & 122
\end{array}
$$

A:
B.

$$
00
$$

151

153

154
129

155

157132

ON THE LEFT SIDE OF THE PAGE IS A BOX LABELED ID. ITHAS AN OBJELT IN IT ON THE RIGHT. ARE FOLR BOXES LABELPD \triangle B $C, 4$ Q PICK THE BOXTHAT NVLL' EXACTLY MATCH NUABER 10 IVHEN IT 5° RCIATED. NON DO THE SAME FOR NUMBER II.

10. D
11. 'D
Γ

PRCK THE BOXESTRAT WILL EXACLLY MATCH MUMECRS IZ AND 13 WHEN THEY ARE ROATED.

 WUHEER IS NHEN THY ARE ROTATED.

14. B
15. B

166

16. C

17: D
18. A
\qquad

169

175

25. A
26. A
27. C
\rightarrow

178
146

1 yes 8. (10)
(285) 110

3 (Yes) No
4 Yes (10)
5 (Yes No
14 A B C D
23 (A) B $C D$
6 (Yes) No
15 A (B) C
24.A.(B) $C D$

7 Ves No
16 A "B (C) D
25 (A) B C D
8 (Yes) No
17 A B C (D)
26 (A) B $\quad D$
9 (ves) No
18 (A) B C. D 27 A B (C)

173
147.

\qquad

181

OBJECTIVE

To imagine the rotation of an object about a point.

directions

These activities ask you to look at an object and to imagine it turning, As you mentally turn it, you must keep the details inside the object in the same place as they were in the original drawing. The center will remain in place as the rest of the drawing turns about it. It is similar to a windmill or the pinwheel heing held by the cartoon character on the left.

APPLICATION

The ability to rotate an objuct mentally about a point is required in abstract thinking, You must think of the center point as being fixed with space moving about it. Most examples of rotation about a point are those that occur in nature, rather than something you do yourself. The skill of visualizing the rotation of an object, however, is necessary for other types of visual thinking. In particular, this type of ability is required for careers using mathematics.

Look through the activities. Imagine the circle on the left turning. Will it look like the circle on the right after it has been turned? If so, answer yes on the sheet provided.

If you answer all the exercises correctly, go to the set of activities on Spatial Memory and Rotation. But, if some do not match, try copying the pages and cutting out the circle on the left. Turn it slowly until you think it matches the circle on the right. Then try to imagine the circle turning without actually doing, so.

Additional exercises are suggested under "What Else Can You Do?"

hHAT ELSE CAN YOU DO?

Use a compas's to draw circles.
Watch a dancer as he or she turns, Notice how they spot by keeping their eyes on one point.

Imagine a merry-go-round turning. Visualize yourself on it. As you spin, what happens to the rest of the merry-go-round?

Watch a bicycle wheel as it turns.
Draw your own examples;
Visualize the way the threids of a screw turn and the direction they must go.
4
Look at a set of gears. Visualize how each gear must turn in order for the total set to function. o

Play a game that has a target that spins, such as darts with a spinning board. Watch "o the board carefully. Try to visualize where part's of the target will be in relation to the center point.

184

1. LOOK AT THE TVO DRAIVINES BELOIV. IS B A ROTATION OF A? CIRCLE YES OR NO ON YOUR ANSIVER SHEET.

A.

B.

NOW, GO ON TO THE NEXT DRAIVING. CONTINUE TO MARK YES DN YOLR ANSIVER SHEET IF B IS A RDTATION OF A.

.

190
2. IS B AROTATION OFA?

A.

B.

3.

[^1]
$$
{ }^{r}
$$
193

ERIC
(1)
19.1

A. \cdot

B.

$$
163 \cdot 195
$$

ERIC

196

A.

B.

$165 \quad 197$
ERIC

```
es -- . \(\quad\)...
```

,

$$
\begin{aligned}
& \$ \\
& \text { : } \\
& 193 \\
& 1 \text {. * . } 166
\end{aligned}
$$

ERIC

$$
00
$$

$?$

202

0

206

- A.

\square

$$
\begin{aligned}
& j^{3} \\
& \text {.. } 6
\end{aligned}
$$

13.

- A.

ERIC

B.

213

\sim

-

217
$\left\lvert\, \begin{array}{ccc}218 & & \\ \cdots & \cdots & 186\end{array}\right.$

SOLUTIONS ROTATION 2

1 Yes No 8 Yes No

4 yes No
5. Yes No

6 Yes No
7 Yes NO
12 Yes "No
13 Yes No
14 Yes
No
15 Yes No

213

Obuective

To remember the shape of an object and its relationship to other objects when they are rotated in space.

APPLICATION

These exercises combine the ability to remember what an object looks like with the ability to mentally rotate that object in space. A simple example might be trying to locate one's car in a large shopping center after exiting from a different door than the door one entered. The assembly of an object often requires remembering and mentally rotacing parts in order to complete the final product.

Many occupations require this type of memory and rotation skill. Architects, engineers, plumbers, eleect "cians, and contractors must be able to manipulate and retain images of building components in order to work efficiently, The skill is also required in other careers such as astronomy, chemistry, anthropology, design, drafting,.. and art.

Glance through the exercises, Each exercise has a box with four objects in it, one in each comer. Study the objects in the box so you can remember what each one looks like and where it is located in relation to the other objects. When you can visualize the box with the objects in it, tum the page and select the box in which the objects have been rotated together. Remember, not only should the box contain the same objects, they should maintain the same positional relationship. Once you have selected the box, mark the answer on the sheet provided.

If you answer all the exercises correctly, go to the set of activities on Aidden Shapes. If some of your answers do not agree with the correct answers, you may want to do some of the additional activities suggested in "What Else Can You Do?"

You can also copy each exercise, Cut out the objects within each box and move each so you can match the set with the answer. Note that the objects do not rotate. As you do this, visualize how objects can move within the box while not changing their relationships to the other objects within the box.

WHAT ELSE CAN YOU DO?
Cut out objects from the exercises or draw your YOUR SPATIAL MEMORY AND ROTATION own. Attach them together with a string, so that each object itself will not turn. Move the objects together. As you do this visualize the objects moving within the box. .Now, remove the string and instead of rotating the set of objects rotate each one individually. Notice the difference in how the objects look from when you moved them with the string attached. You also can rotate the box as was done in Rotation 1. There are three types of rotation of the objects you can visualize: therotation of the objects together in the box; thersatation of each individual object in its corner; and the rotation of the box itself.

Study a photograph. Then try to visualize it. from memory. Next try to draw it as if it had been rotated so it was upside-down. Then draw it on its side.

Practice looking at a.set of keys. Attempt to determine which key will fit which lock.

Practice-visualizing what is behind you.
Create a sculpture using clay, Form a shape you see before you, rotating the shape in your mind as well as with clay. Forma shape you've seen in another room (remember and rotate). Create an imaginary shape.

Study a structure, such as a building, bridge, or fence. Attempt to make a model of it from toothpicks, Play-doh, blocks, or straws. Then mentally rotate the structure and construct the new model.

ANSIUER SHEET
sPatial memoryand rotation.

1	A	B	c		D	7	A	B	C	D
2	A	B			D	8	A	B	C	D
3	A	B		c	D	9	A	B	C	D
4	A	B		C	D	10	A	B	C.	D
- 5	A	B		C	D	11	A	B	C	D
6	A	B		C	D	12	A	B	C	D

LOOK AT THE OBTECTS IN THE BOX ON THE RIGHT. REMEMBER IVHAT EACH. ONE LOOKS LIKE AND IVHERE IT IS LOCATED IN RELATION TO THE OTHER OBJECTS. THE OBJECTS IVILL ALL BE ROTATED IVITHIN THE FOUR BOXES ON THE NEXT PAGE. IVHEN YOU THINK YOU CAN REMEMBER THE SHAPES AND WHERE THEYKE LOCATED, TURN THE PAGE AND CIRCLE THE ANSIVER FOR THE BOX IN WHICH ALL OF THE OBJECTS HAVE BEEN ROTATED TOGETHER, THAT IS IN IWHICH THE OBTECTS REMAIN IN THE SAME ORDER, BUT NOT IN THE SAME POSITION.

THEN, CONTINLE FOR
EACH NLMBERED BOX:

LOOK AT THE OBJECTS INTHE BOX ON THE RGHTT: REMEMBER IVHAT EACH ONE LOOKS LIKE AND WHERE IT IS LOCATED IN RELATION TO THE OTHER OBJECTS. THE OBJECTS VIL ALL BE ROTATED IVITHIN THE FOUR BOXES ON THE NEXT PAGE IVHEN YOU THINK YOU: CAN REMEMBER THE SHAPES AND INHERE THEY'RE LOCATED, TURN THE PAGE AND CIRCLE THE ANSIVER FOR THE BOX•IN WHICH ALL THE OBJECTS HAVE BEEN ROTATED TOGETHER.
s
NOV, CONTINUE FOR EACH NUMBERED BOX.

ERIC

201

231

202

A.

C.

D.

C

\qquad
\qquad

234 ${ }^{234}$

$207: 235$

边金家
hic

29	0_{236}

3

237
210
R,
RIC

6.

A.

C.

7. C

246

247

8. D

243

c
9. C

252

$231 \quad 253$

A.

c.

B.

D.

233

C

1

A.

C.

D.

237
ERIC 257

$\left.\begin{array}{l}\left.\begin{array}{l}\Delta \nabla \\ \Delta \Delta\end{array} \cdot \begin{array}{l}\nabla \Delta \\ \Delta \Delta\end{array}\right] \\ \hline \Delta \Delta \\ \nabla \Delta\end{array} \cdot \begin{array}{l}\nabla \nabla \\ \Delta \Delta\end{array}\right]$
2. A
$26 i$

1 A B (C) D
2 A B C D
3. A (C) D

4 (A) B $\therefore C$
5 A B C D
6 A B C D
7. A B (C)

8 A B C (D)
9 A B (C) D
10 A B (C) D :
$11 . A$ B C D
12 (A) B $\because C$
00

OBJECTIVE

To focus on an object or shape while ignoring irrel evant. background information.

DIRECTIONS

Look through the exercise., Notice that a shape is given in the lower left-hand corner of each page. That shape will be located inside one of the boxes on the page. The size and - position of the shape may not be the same as the drawing in the corner. The shape may be turned on its side or rotated a half-turn; it may also be larger or smaller than the drawing. You want to locate the shape inside the box and then mark that box as your answer on the answer sheet provided. In exercises 1 through 14 , the shapes will be relatively clear or easy to locate. In exercises 15 through 23 , the shapes will be hidden in the pattern and will be more difficult to find. The irrelevant information increases in these drawings, making the shape more difficult to 10 caté.

If you answer all the exercises correctly, go on to the final set on Cutout Forms: But, if some of your answers are not correct, you may want to copy the shapes, "cut them out, and try to locate them in the boxes by turning each shape and trying to match it to its corresponding shape in the box.

Additional activities are given under "What Else Can You Do?" on the next page.

HIDDEN SHAPES

WHAT ELSE CAN YOU DO?
Take two photographs of the same object so that in one photograph the depth of field includes a. clear view of all objects and in the other. only the foreground objects are in focus and the background objects are blurred. Compare the two photographs.

Practice by focusing your eyes on a whole scene outdoors, then, by focusing on selected parts of the scene. Then pick one object and try to see it in detail at the same time you are observing the entire scene.

Do simple weaving to create patterns of colors and shapes.

Draw your oun hidden picture and have someone attempt to focus on it.

Work mazes. Try to see the maze without tracing the pattern.

Look at intricate patterns in a geometric painting. Try to pick out the different shapes.

Obtain an introductory psychology textbook that has a section on embedded figures. Look at the examples and try to see the various figures.

Study systems. . Looks at parts in relation to the whole -- engines, radio, vacuum cleaners, sewing machines, etc.

ERIC
A.

LDOK AT THE SHAPES INSIDE THE BOXFS ON THE RIGHT. NOTICE THE SHAPE THE STUDENT ON THE LEFT IS HOLDING. THAT SHATE IS THE SAME. AS A SHAPE INSIDE ONE OF THE BOXES. WHILH BOX CONTAINS THE SAME SHAPE? GIRCLE THE CORRECT ANSIVER. NOV, CONTINLE TO DO THE SAME FOR EACH SHAPE GIVEN.

1. C

272
c

$$
\frac{D D}{d D}
$$

```
m
C
```

1

5.

n

250

1
-
A.

-
7.

263
ERIC
\qquad
\qquad

234

ERIC

B.

ERIC

ERIC
.

290
270

a

- .
1.1
\therefore
ir
5

292

θ
\downarrow
A.

B.

13.

i
c.

4.

ERIC
\qquad
$\cdots \cdot$

THE NEXT GROUP OF SHAPES IVILL BE MORE DIFFICLLTT TO PICK OUT BECAUSE THEY ARE HIDOEN DEEPER IN THE PATTERNS.

\ldots

299

15.

ERİC

$$
30 i
$$

ERIC

16.

ERIC

17.

c.

\cdots
$285 \quad 304$

ERIC

> e

ERİC
∇

-
-

$3 \cup 7 \quad$,

288

19.

28308

ERIC

ERIC

ERIC

315
296

23.

316

ERIC

1
-

1

317

SOLUTIONS HIDDEN SHAPES

ERIC

APPLICATION

Many' times we are faced with the task of assembling three-dimensional objects from pictures. For example, you might want to assemble an "easy-to-put-together one-hundred-piece" space toy the night before a birthday party. More often than not, unassembled household goods are less expensive. The instructions are given in drawing form and may be ambiguous. The besst way to cope with such a problem is to visualize the completed. object in three-dimensional space, going from the twodimensional drawing.

Architects and draftspersons need to be able to look at cross-sections of objects and visualize them from different angles. Carpenters must be able to construct fumiture, cabinets, and so on from two-dimensional drawings. Clothes designers have to visualize a new design and create it from flat pieces.

ObuECTIVE

To create a three-dimensional object from a twodimensional pattern.

directions

Glance through the exercises. The first exercise is an example of the types of activities in this set. Look at the figure in the box on the right-hand side of the page. Then look at the patterns on the left. One of those patterns could be cut out and folded up to look like the figure in the box. Try to do this visually ... imagine the pattern folding up. What would it look like? If it would match the object in the box, circle that answer on the sheet provided. Notice for this set of activities, the answers are drawn for you.

If you get all the exercises correct, you have completed the series of activities on. SPAITAL ENCOUNTERS.

But, if some of your answers do not match the correct ones, you may want to copy those pages, cut out the patterns and practice folding them up. Do this until " you can imagine the patterns folding up withouta actually doing so.

Additional activities are given under "What Else CansYou Do?" on the next page.

CUTOUT FORMA

WHAT ELSE CAN YOU DO?
Mako snowflakes by folding a pioco of papor

LIST YOUR OWN IDEAS TO IMPROVE YOUR ABILITY TO GO FROM TWO-DIMENSIONAL TO THREE-D!MENSIONAL SPACE and cutting dosigns out of it.

Assemble models of toys.
Play with Tinkertoys.
Find a book that contains directions for assembling simple wooden toys and construct one.

Draí a bird's-eye view of your, house or room.
Find a three-dimensional object such as a book, a hat, or a glass and draw a two-dimensional picture of it. Then cut it out and fold it up. Doos it look like the original?

Look at a photograph of an object such as a bridge, a kite, a boat, or an abstract shape. Reproduce it using straws, toothpicks, or match sticks. Clay or glue can be used as connectors.

Use Play-doh or blocks to construct a threedimensional object.

Assemble a simple mechanical system.
Create‘a collage.

322		
304		

ANSUIER SHEET
 CuTOUT FORNS

ERIC

310

ERIC

ERIC

ERİC

ERIC

319

ERIC

325
343

ERIC

ERIC

$$
332 \quad 3 \Xi u
$$

ERİC

SOUTTIONS
 curout forris

Careers

The ability to perceive spatial relationships is an important aspect of many careers. Among them are:

 computer Science onstruction ryogenics
ance entistry
rafting' river Training

Suggested Readings

Block, J. H. "Issues, Problems, and Pitfalls in Assessing Sex Differences: A Critical Review of The Psychology of Sex Differences." Merrill-Palmer Quarterly 22 (1976): 283-308.

Bloomer, C: M. Principles of Visual Perception. New York: Litton Educational Publishing, 1976.

Downs, R. M., and Stea, Di, eds. Image and Environment: Cognitive Mapping and Spatial Behavior. Chicago: Aldine Publishing Co., 1973.

Eliot, J., and Fralley, J. S. "Sex Differences in Young Children." Young Children 31 (1976): 487-98.

Fennema, E. H., and Sherman, J. A. "Sex-Related Differences in Mathematics Achievement and Related Factors: A Further Study." Journal of Research in Mathematics Education 9 (1978): 189-203.

Fennema; E., and Sherman, J. "Sex-Related Differences in Mathematics Achievement; Spatial Visualization and Affective Factors." American Educational Research Journal 14 (1977): 51-71.

Goleman, D. "Special Abilities of the Sexes: Do They Begin in the Brain?" Psychology Today 12 (1978): 48-59.

Maccoby, E. E., and Jacklin, C. N. The "Psychology of Sex Differences. Stanford: Stanford University Press, 1974.

McGee, M. G. "Human Spatial Abilities: Psychometric Studies and Environmental, Genetic, Hormonal, and Neurological Influences.: Psychological Bulletin 86 (1979): 889-99.

Neison, G. How to See Visual Adventures God Never Made: Boston: Little, Brown, 1977.

Pinker, S., and Kosslyn, S. M. "The Representation and Manipulation of Three-Dimensional Space in Mental Images." Journal of Mental Imagery 2^{\prime} (1978): 69-84.

Samue1s, M., and Samuels, N. Seeing with the - Mind's Eye:. The History, Technique and Use's of Visualization. New York: Random House,: 1975.

Sherman, J. A. "Problems of Sex Difference in Space Perception and Aspects of Intellectual Functioning." Psychological Review 4 (1967): 290-99.

Games

Animal Head Cubes. Teaching Resources, 100 Boylston Street, Boston,。 MA 02116.
de Nile, R. Put Your Mother on the Ceiling: Children's Imagination Games. New York: Viking Press, 1973.

Gerard, J., and Thrapp, R. Relationships. Enrich, Inc., 760 Kifer Road, Sunnyvale, CA $940 \overline{86}$.

Masters, R., and Houston, J. Mind Games. New York: Dell, 1972.
Mulac, M. E. Perceptual Games and Activities. New York: Harper \mathcal{G} Row, 1977.

Ort, E. You Can Think Better than You Think You Can. New York: Peter Wyden, 1973.

Relationshapes: Cuisenaire Company of America, Inc., 12 Church Street, New Rochelle, NY 10805.

3-D Puzzles: Pirate, Clown, Mermaid. Teaching Resources, 100 Boylston Street, Boston, MA 02116.

нu.S. government printing office : 1982-502-014
\rangle

$$
357.356
$$

[^0]: *

 Reproductions supplied by EDRS are the best that can be made

[^1]: 161

