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Abstracf'

A simple procedure for managing the
perfect -and zero response problem encountered
in converting test scores into measures is
presented. ‘It ;allows the tést user to -choose
among two or three reasonable finite
representations of these boundary scores to
suit the particular situation at hand. A
convenient approximation is' given which is
. accurate in all but highly asymmetric

situations. o ' '

!
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The problem.

-

Those who actually use latent trait models in their research
and in the solution of practical edpcational"problems are
inevitabi§.confronted with the conunarum of perféct scores. This
is particularly so in situations involving Mas&ery Learning and
. Mastery Testing where the gqal‘of, say, an 80 per cent pass,rbfe
guarantees that many students will achieve the maximum possible

test score. For the sake of completeness,'and as andeséential to

/

-

- the reporting of every individual's performance, a finite measure

is needed to represent these perfect scorers.

That no such finite‘meaéure can be estimated from the
\\ .
intéraction of a perfect scorer with a test was noted by Wright
and Stone,

"aAll we can do in those situations is to observe
that the person who scored all incorrect or all
correct is substantially below or above the
operating level of the test they have taken. If
we wish to estimate a fiaite measure for such a
person, then we will have to find a-test for them
which is more appropriate . to their level of
ability." - T
o (Wright & Stone, 1979, p.6) -

Whilst the application of of a more appropriate'test'is obviously

' . . cy . | .
preferred in such a situation, 1t 1s often inconvenient.

A
v

TR



. PAGE 4

A solution

‘One alternat1ve is to rntroduce the assumptlon that perfect
scores can be ‘represented by some d1str1but1on of measures over
the latent trait and to rationalise a scaled score from this
dlstr1but1on. This, however, undoes one of the major advantages
of latent trait measurement - phe "sample-free" calibration of
items and “test-free“'measurement,of persons (Wright & Masters,

1981, p.5).

Is there any other way to establish a reasonable estimate of
how far a perfect scorer might be above the operating level of .
the test? We can answveér this in a_probabaliétic sense. Consider
an L item test with a maximum sceré/bf’m._for each item} and let

L
M = >m
i1

1

be the perfect score. Then,'assuming local independence, the

) probability’ of a perfect ‘score, Q, , is
Q, = Prir=M) = T Pr(x,=m ),

‘where x, indicates the score on each item, and r'is the score on

the teet., Thusn given any measure b ocemcen alwéyé"ééiéﬁi£¥é”£ﬁe ‘
probability that a person with thatAmeesure b will-s§core M. An
exampie of the probability curve generated by this equation is
"shown in Figure 1. The 1ssumpt10n being made is that the perfect
scorers would fit on our 1atent trait 1f they were g1ven more
d1ff1cu1t items (ie. that it was reasonable to g1ve them this

sort of test in the first place). R o |
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This- approach does notréeii us where the measures that miéht
go with‘perfect scores actually are on the latent trait; but it -
does provide- usfwith~information which we can use to represent-?:
the occurence of perfect scores in a reasonable fashion. To this
end several points on the probability curve are worth noring-

k‘ ...the ability at which the score characteristc

| curves for a perfect_score,M and for a one less

than perfect score M—l intersect /

.bs ...the minimum ability at which a person is more
11ke1y to score M than anythinq else -

b, .;.the ability at which a person is likely to make a
score other than M only 10% of the time -

bgs...the ability at which a person is likely to hake a

score other than M only 5% of the time.

These ralﬁes can help us to address the perfect score problemn.
There would seem to be‘no.circﬁmstances under which a perfecf
scorer wouid be assigned a value beiow by, for below that value a

 score of M-1 is'more likely. Of course the highest possible |
ability that could be given to a berfect scorer is infinity, but
a more realistic max1mum value might be indicated by the point at
which a less than perfect score: -would be observed with
probabiliey 0.10 or 0. 05 thus b, or b,smight be reasonable
maximum values. A median estimate is provided by b5 :ithis is

\..

\

"




"PAGE 6
the lowest point at which a person is more likely_tb-store M than
to make any other score. In the absence of further information
about the requ1rements of the spec1f1c test1ng sltuatlon, it

would,seem that this median value, b, ,‘mlght be the best ch01ce.

Application to the Partial Credit Model

The Partial Credit model (Wright & Masters, 1982,“p.43) states
that for 'an m, +1 category item, the probability of a person who
scored r, with scaled score b, , gettlng Xx on item i, w1th step i

values 4,y , GQia + eee dm“ is _ - . '1. .

0
where 2 (b -d, ) = 0 .
. ]=0 4 § .

. ' . . L
For a test with L items, the maximum score M 1s % m .
: N | A .

Now, for each interesting probability level Q, we want to find

the ability level b, for which

L , Lo
e =N Pr{x, <M ) = A Puim

that is_
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- Since the solution of this equation is not explicit, we solve
it by iteration: first take logafithms

. \
s

L:l m |_ ' ‘m K
Zz:(bm—dll ) - Zlog 2exp En(bm—d” ) - logQ
= iz 1 - e

= 0 ,
b=1]=0 k=0 -
/
which simplifies to
- my K
Mb, - D - 2109 .:Zexplg,o(pm—dil ) - logQ ="0 ,
N =1 so ) . .

where T a, .

nﬂr

B

The derivative of this equation with respect to by is

kp,, (Wright & Masters, 1982, p.87) /.

/.
/

/

Thus if b,'.',' is an initial approximation to by, we may use

o33

’éME

Newton's method to find a better approximation, by

ne _ no_ __________l_:_1 ___________________________
bM = bM Lo
M- Zikp:uk -~ \
j=1ds0 -
'
/|
where _P;u is P, éifaluated at b, .

Mi K

A very good approximation to b, is. given by

by = b'u_j:_;—. loglog(l/Q) + 1/(M“1.)'»

[

N\
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To see .why this apbroximation is reasonable, consider the case of
an L item dichotomous test (ie..M=L) with all items of difficulty
0. |
The probab111ty of a person. with ab111ty b, getting each item

‘right is ( 1+ exp(-b ) )' so
Q =(1+exp(-b) )"

vhich from exp(x) = 1 + X

is approximately

-L

( exp( exp(-b ) ) )

so that- ” ' | . /o ,
1og(1/0Q) | |

n

L(exp( ~b 1))

or b, = logL - loglog(1/Q).
But ~ . .b,), = log(L-1)
= b,_,+ log(L/(L-1))

- so logl

n

b_,+ 1/(L-1).
substituting this in the equation above gives the appﬁoximatiod

b ~ b_, -loglog(l/Q) + 1/(L-1).
R .ll.' v ‘ . .
The introduction of b, relaxes the reQuiremenf that all items be of

Kd1ff1cu1ty 0 S1nce ‘the two b's cancel the difficulty level of the

test, all that is requ1;ed is that the items be of s1m11ar d1ff1cu1ty.

The -crossover ability b, is the ability at which
‘ / . .. - .

" Pr(r=M) = Pr(r=M-1).
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Pr(r=yM) = II'Ll Py,
=1

"Now
L m
I exp’)f (b-d, )
I=1 =
L m k i
M3 exps(b-d, )
121 k=0 =0
\
L _ 7
and Pr(r=M-1) Z( Pmc.....,,ﬂ, Pblml) ) , o
. #l ' !
L M|;1 L L v
M exp Y(b-d,, ) (X Mexp(b-djm)) L
I=1 g0 '='l;} ‘l
I T T A
v exp( Y. (b-d,, )) :
11 k=0 - j=0
Equati_hg these tvo . _
o
ll exp(b d m,) =Z Y. exp(b,-@;n ) .
- =Rt
We divide to get
‘ L
1 = Z exp(b -d o))
»-, P N ,
- ' [ = exp( -b )Z(exp(-d )"
=1 : .

Lo

SO

. ’ L
b, log( ), exp(d._m'));<

i=1

f

In particular, when all items are di\chdi\:omous .and of zero

gifficulty
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Some examples

(i) For the L=)0 example of Figure 1 :

. by .= 2.20
b, = 2.30
b,= 2.63 b, = 2.68
b, = 4.55 by = 4.56

= 5.27 b= 5,28

b'95 ,
This shows that the approximation works for the circumstances

from which it was derived.

(ii) For a group of items from a blind persons' activity
scale (Schulz et al.), 1982{,\_ ‘

. with step difficulties: -

\

ltems 1 .2 3| 4. 5 6 |7 '8 9 10
Stepl -0.37 -2.91 -0.85 -2.47 =0.47 3.35 [4.05 -1.36 1.11 -0.20
Step? [ 0o '2.§5 1.58 = - 047 1.9 - 2.80

y
A ]

"The maximium score fbf tthe 16 steps is JG. These step difficulty

values give the following\?oﬁndary abilities

\ Y
b, = 4.06 | \ -
bx = _.4:. 30 ' .\x\ - |
by, = 4.59 by = 4.49
b, = 6.54 bg = 6.38
by, = 7.26 b= 7.10

11




. PAGE 11
(iii) An example of items with. differing difficulty spreads
) ,
20 items uniformly spread over

-3.9 to 3.7 ~-l. 9 to 1. 9

b, 4.60 3.48

b, | 4.81 3.59

b, 5.11 3.92 N
b® 5.02 3.90

/
The approximation suffers a little with greater spread.
i .
(1v) an example that is highly asymmetric

\' 19 items spread un1formly from -3.9 to -0 3

and one item at 3.9
l\ \ i

S —
. . N \

b, = 2.77 /
b, = 3.98 o
b, = 4.04 /
b= 3.19

In this asymmetric.Case the approximation is poor. g

~ Zero scores

The analysis’ above can be applied to zero scores with a

slight adjustment: ' | : %
H Newton's method becomes \; .\\\
L m . . "‘,..,\\
Zlog exp E(b -4,, )| - 1ogQ ' , .
n41 n P=1 k=0 N .
0 by - """'I";' """"""""""" '
ZkPOIK
=1 k=0
/ the approxlmatlon b is - \

b, = b, + loglog(l/Q) - 1/(M-1) ,

fhe cross-over point is

-12
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i

b* - —log(jz:exp( d,1 )

which, for the case where all items are dichotomous and-have the-

‘ | oll, B il

same;d1ff1culty becomes.'° , o -

b = ;log L

X . S

! - . e
i f . i

|

The case gf'zero and perfect items[

\

The same method can be applied to ﬂanage the perfect and zero
1tems which occaS1onally arise dur1ng 1tem callbratlon. The
resultant/d ff1cul Ly values would be 1nterpreted in the same way

as/fhe ab111ty values above. S : - -\‘\’

”ConclusiOnf . s A . Loy
. . “v k -

Although there can be no substltute\for the aqu1s1taon of ...

N

further 1nformat10n regard1ng perfect scorers, it is often
1mpract1cal to: do 'S0.-- The procedure descrlbed above - uses the
already- known fe tures of the test (1e. 1tem d1ff1cult1es) to
.prov1de a read* y 1nterpreted measure for a perfect scorer. When

th1s is appl1e to the Part1al Cred1t model an 1terat1ve solutlon

7z .

is requirgdfﬁhowever an approx1matlon is avallable wh1ch gives

excellent results. Generallzatlon to zero scores and perfect and‘

. P -/\-
zero items is direct. \3\\\\\ o

B
\\_ : B "\'4"' .
S~ T

-
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. Figure 1. Score Characteristic Curves for a test of 10 dicho’t\pmous'
\\"‘item.s following the'é.imple logistic model where all ‘items

| have zero diffiléult;\y. .
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