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Abstract

A simple procedure for managing the
perfect and zero response problem encountered
in converting test scores into measures is
presented. It allows the test user to choose
among two or three reasonable finite
representations of these boundary scores to

suit the particular situation at hand. A
convenient approximation is given which is
accurate in all but highly asymmetric
situations.
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The problem.

Those who actually use latent trait models in their research

and in the solution of practical educational' problems are

inevitabIy confronted with the conundrum of perfect scores. This

is particularly so in situations involving Mastery Learning and

Mastery Testing where the goal of, say, an 80 per cent pass rate

guarantees that many students will achieve the maximum possible

test score. For the sake of completeness, and as an essential toy

the reporting of every individual's performance, a finite measure

is needed to represent these perfect scorers.

That no such finite measure can be estimated from the

interaction of a perfect scorer with a test was noted by Wright

and Stone,

"All we can do in those situations is to observe
that the person who scored all incorrect or all
correct is substantially below or above the
operating level of the test they have taken. If

we wish to estimate a fiaite measure for such a
person, then we will have to find a-test for them

which is more appropriate.to their level of

ability."
(Wright & Stone, 1979, p.6)

Whilst the application of of a more appropriate test is obviously

preferred in such a situation, it is often inconvenient.
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A solution

One alternative is to introduce the assumption that perfect

scores can be represented by some distribution of measures over

the latent trait and to rationalise a scaled score from this

distribution. This, however, undoes one of the major advantages

of latent trait measurement - the "sample-free" calibration of

items and "test-free" measurement of persons (Wright & Masters,

1981, p.5).

Is there any other way to establish a reasonable estimate of

how far a perfect scorer might be above the operating level of.

the test? We can answer this in a probabaliStic sense. Consider

an L item test with a maximum score of mi for each item, and let

M = E mi

be the perfect score. Then, assuming local independence, the

probability of a perfect score, QM , is

QM = Pr(r= ) = E Pr(x =m1 )
1 ,

where xi indicates the score on each item, and r is the score on

the test. Thus, given any measure b one can always calculate the

probability that a person with that measure b will-scOre M. An

example of the probability curve generated by this equation is

shown in Figure 1. The assumption being made is that the perfect

scorers would fit on our latent trait if they were given more

difficult items (ie. that it was reasonable to give them this

sort of test in the first place).
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Insert Figure 1 about here

)

This approach does not tell us where the measures that might

go with perfect scores actually are on the latent trait, but it

does provide us with information which we can use to represent

the occurence of perfect scores in a reasonable fashion. To this

end several points on the probability curve are worth noting:

k
A

...the ability at which the score characteristc

curves for a perfect score_M and for a one, less

than perfect score M-1 intersect

hs ...the minimum ability at which a person is more

likely to score M than anything else

b.9 ...the ability at which a person is likely to make a

score other than M only 10% of the time

b45...the ability at which a person is likely to make a

score other than M only 5% of the time.

These values can help us to address the perfect score problem.

There would seem to be no circumstances under which a perfect

scorer would be assigned a value below bx, for below that value a

score of M-1 is more likely. Of course the highest posible

ability that could be given to a perfect scorer is infinity, but

a more realistic maximum value might be indicated by the point at

which a less than perfect score, would be observed with

probability 0.10 or 0.05: thus h4 or blimight be reasonable

maximum values. A median estimate is provided by b4 : this is
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the lowest point at which a person is more likely to score M than

to make any other score. In the absence of further information

about the requirements of the specific testing,situation, it

would. seem that this median value, b,5 , might be the best choice.'

Application to the Partial Credit Model

The Partial Credit model (Wright & Masters, 1982, p.43) states

that for 'an m1+1 category item, the probability of a person who

scored r, with scaled score b, , getting x on item i, with step

values , d12

Prix

, is

exp 22(br-du ).
1=0

E exp E (b, -d11 )

k=0 1=0

0

where (4 -(39 ) =
1 .0

x.- 0,1,2,

For a test with L items, the maximum score M is m
1.1

Now, for each interesting probability level Q, we want to find

the ability level bM for which

that is

Q = 11 Pr(x1 =m,) = n P
1=1 mim

I

L

=n

Ti

expE(bm )

11-0

1.1 n

expE(bm-
,
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Since the solution of this equation is not explicit, we solve

it by iteration: first take logarithms

L

EL(b m 4-d .) - Elog exp (bM
11

-d ) - logQ = 0

1z1 JLO 1:1 - k:0

which simplifies to

L m,

b - D - Elog exp I (bm -d. ) -- logQ =' 0

101 kr0 1r0

L I

where D = I

The derivative of this equation with respect to bM is

M -E%kPMik
(Wright & Masters, 1982, p.87) J.

1:1 WO

Thus if b; is an initial apProximation to bM, we may use

Newton's method to find a better approximation, bM

rail n
bM = bM

L

Mb'M - D -Elogrdexp)2(bm-d4 ) logQ

14.70 1=0
1=1

M 2aLkPtiik
I r. 1 WO

where P;ik is Pm" evaluated at b,"A .

A very good approximation to bM is given by

b.° = loglog(1/Q) + 1/(M-1).
11-.1f
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To see why this approximation is reasonable, consider the case of

an L item dichotomous test (ie., M=L) with all items of difficulty

0.

The probability of a persom with ability bL getting each item

right is ( 1 + exp(-b ) )4 so

= ( 1 + exp( -bL)

which from exp(x) = 1 + x

is approximately

( exp( exp(-b ) )

so that-

L(exp( ) = log(1/Q)

or bL = logL - loglog(1/Q).

But 131..1 = log(L-1)

so logL = 131.0+ log(L/(L-1))

= 1/(L-1).

Substituting this in the equatio above gives the approximation

b1.0 -loglog(1/Q) + 1/(L -1).

The introduction of bLl relaxes the requirement that all items be of

difficulty 0. Since the two b's cancel the difficulty level of the

test, all that is required is that the items be of similar difficulty.

The-crossover ability bx is the ability at which

.Pr(r=t0 = pr(r=M-1).
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Now Pr(r=t1) = I[71, (Pb Ifni

n expl (b-dij
1.1

L mi

I1 I exp (b -d1 )
I..1 kro

and Pr(r=t4-1) =E( Pb )

1=1 it,

L
L L

n exP (b-d 11
) ( n inexp(b-d ))

1=1 1 0 1=1r,

mi
exp(E(b-d 11 ))

.11.10 1=0

Equating these two

-L

11 exp(bx -d ) texp(b x
) .

Ir., iv

We divide to get

SO

1 = E(exp(b )1
1=1

L`

= exp(-bx)E(exp(-dlm ) )-
1

1=1

bx = log( E exp(d )

1=1

In particular, when all items are dicho'tomous and of zero

difficulty

= log L

PAGE 9
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Some examples

(i) For the L=30 example of Figure 1 :

b9 = 2.20

bx = 2.30

b.5 = 2.63 b° = 2.68

= 4.55 14 = 4.56

b.95= 5.27 bl= 5.28

This shows that the approximation works for the circumstances

from which it was d rived.

(ii) For a group of tems from a blind persons' activity

scale (Schulz et al. 1982),

with step difficulti

Items 1 , 2 3 4 .., 5 6 7

Stepl -6.37 -2.91 -0.85 -2.47 -0.47 3.35 4.05

Step2 / -0.01 2.5 1.58 - F0.47

' 8 9 16

-1.36 1.11.-0.20

1.99 - 2.80

The maximium score for these 16 steps is 116. These step difficulty
\

values give the following boundary abilities

b
15

= 4.06

bx = _4.30

b.5 = 4.59 b. 4.49

= 6.54 b.: = 6.38\b.

b.95 = 7.26 b.:5 = 7.10
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(iii) An example of items with differing difficulty spreads

20 items uniformly spread over

-3.9 to 3.7 -'1.9 to 1.9

b 4.60 3.48

xl 4.81 3.59

5.11 3.92
.,/

b.°5 5.02 3.90

pie approximation suffers a little with greater spread.

I ,

(iv) An example that is highly asymmetric

19,items spread uniformly from -3.9 to -0.3

and one item at 3.9
1\

b19 = 2:,77

bx = 3.98

b,5 = 4.04

= 3.19

In this asymmetric case the approximation is poor. g

Zero scores

The analysis'above can be applied to zero scores with a

slight adjustment:

Newton's method becomes
L

Dog t exp i bn -d IJft0
n ;1

1 1

.11 :: 0

b = b
0 0 L

pn
0 I k

- logQ

the approximation go is

b: = bi + loglog(1 /Q) - 1/(M-1)

the cross-over point is

-12
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bx = -log(faexp(-di,) )

which, for the case where all items are dichotomous anc-have the

samedifficulty beComes

bx = 1-log L .

The case of zero and perfect items

The same method can be applied to manage the perfect and zero

items which occasionally arise during item calibratiOn. The

-
resultant,di-fficulty values would be interpreted in the same way

asliie ability values above.

Conclusion

Although there can be no substitute\for the aquisition of

further information regarding perfect scorers, it is often.

impractical to do so. The procedure described above uses the

already-known f tures of the test (ie. item difficulties) to

provide a readily interpreted measure for a perfect scorer. When
\

this'is applief3,to the Partial Credit model an iterative solution

is required, however an approximation is available,which gives

excellent results. Generalization to zero scores and perfect and

zero items is direct.

,
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Figure 1. Score.Characteristic Curves for a test of

items following the simple logistic model

have zero difficulty.

10 dichotIomouS
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