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ABSTRACT

The primary task in solving a physics problem is to select ways

of viewing the problem in terms of physical systems whose

behavior is described by physical laws. The physical s5/stems

are, in general, only approximate models of the real-world

systems. As models of real-world systems are made more accurate,

the equations involved quickly become unmanageable; furthermore,

certain special cases of physics problems which frequently occur

can be solved using greatly simplified equations. Success in

solving physics problems therefore depends crucially on selection

of physical systems which satisfactorily model the real-world

systems and which possess tractable mathematical models.

Selection of the physical systems used as models is generally

based on qualitative features (including ranges of numerical

magnitudes) of the real-world systems. Many problems are best

solved by considering the same real-world system from multiple

viewpoints and relating the viewpoints to each other, often by

identification of their components.

1.0 INTRODUCTION

Every real-world problem presents the problem solver .with

potentially unlimited complexity. Given a problem (say, "A car

is acted upon by a force; what is its acceleration?") , it is

always possible to identify some factors which have been left out

of any given analysis of the problem. For example, some energy

is consumed by rotational kinetic energy of rotating parts of the

car; there are many sources of friction; some of the force may



Page 3

be expended in deforming the car rather than accelerating it;

and so forth. The problem solver cannot possibly take all the

applicable factors into account. At the same time, it is not

possible to determine a priori which factors will have to be

considered in a problem of this type; that will depend on the

goals of the analysis, the accuracy required, and the magnitudes

of certain quantities. The student in an elementary physics

course will surely be justified in ignoring all of the

complicating factors and simply applying Newton's law, f = ma.

On the other hand, an automotive engineer day wish to insure that

for forces of certain magnitudes the deformation of the car will

absorb enough energy to protect the passengers from injurious

acceleration in the event of a collision.

The nature of a physics problem is determined not only by

the statement of the problem itself, but also by the implied

physical context in which the stated problem occurs. In some

cases, a single problem statement can be made into radically

different problems (in terms of the physical principles

considered in analyzing each problem) simply by changing the

numbers in the problem statement. Consider the following (DJ,

p. 67):

A rifle with a muzzle velocity of 1500 ft/s shoots a

bullet at a target 150 ft away. How high above the

target must the rifle be aimed so that the bullet will

hit the target?

This problem, as stated, can be solved mentally in a few seconds
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t by an expert in physics. The expert assumes that the motion of

the bullet will be nearly linear, calculates the time of its

travel (0.1 second; clearly, the two numbers were intended to

cancel easily) , and finally calculates the vertical distance the

bullet will fall during that time (1/2*g*t**2, or 0.16 ft);

aiming that far above the target will cancel the fall. This

solution is very accurate for this problem (the error compared to

the next more complicated model is about one part per million).

However, this solution depends on assumptions about the context

of the problem -- assumptions which are reasonable for this

problem, but not for the whole class of similar problems. These

assumptions include absence of air friction, nearly linear motion

(so that the time of travel can be calculated independently of

the amount of fall) , a flat earth, and uniform gravity. Some of

these assumptions can be invalidated merely by changing the

numbers in the problem; Figures 1-3 illustrate the resulting

sequence of problems. If we put the target farther away, the

assumption of nearly linear motion will become untenable, and the

"rifle bullet problem" will be converted to a "cannonball

problem"; however, the assumptions of flat earth and uniform

gravitation may be retained. The "cannonball problem" is harder

to solve, requiring about half a page of trigonometric equations.

If we put the target still farther away, and give the bullet

sufficient speed to reach the target, the "cannonball problem"

will be converted to an "ICBM problem". Now, we must take into

account the curvature of the earth and the fact that gravity will

change in both magnitude and direction as the bullet travels

along an elliptical path. This more complex solution still
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ignores air friction, Coriolis forces due to the rotation of the

earth, gravitation from the moon, and so forth. If these factors

are to be taken into account, it will not be possible to solve

the problem in closed form; instead, it will be necessary to

numerically integrate a complex set of differential equations.

.
Figure 1: Rifle Bullet Problem (Nearly Linear Motion)

Figure 2: Cannonball Problem (Nearly Parabolic Motion)

ah
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Figure 3: ICBM Problem (Nearly Elliptical Motion)

2.0 EXPERTISE IN SOLVING PHYSICS PROBLEMS

As discussed above, every real-world problem presents the

problem solver with potentially unlimited complexity. However,

the ability to analyze such problems with sufficient accuracy in

real time with limited computational resources is essential to

the survival of intelligent organisms in a hostile environment

(e.g., students taking an hour exam). The problem solver who

knows many physical principles cannot adopt a deductive strategy

of applying all the physical laws that are applicable to a given

problem. As we have seen, vastly many laws are applicable to

every problem; moreover, these laws demand data which are

difficult or impossible to obtain. [To analyze Coriolis forces

on a bullet, it would be necessaiy to know the latitude of the

gun and the direction to the target.] At the same time, the
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problem solver must be able to apply all the laws which1

significantly affect the solution of the problem, or the answer

will be wrong. (Failure to consider all the applicable laws is a

frequent cause of error in both novice and expert problem

solving.] Finally, since there are multiple ways of solving a

given problem, some of which are much easier than others, the

problem solver must select the easiest method of analysis which

will adequately solve the given problem. (The "rifle bullet

problem" can be solved using the "ICBM problem" method, but the

latter is orders of magnitude more difficult and produces

essentially the same answer.]

Solving a physics problem is significantly different from

proving a mathematical theorem. In mathematics, knowing only a

few facts about mathematical entities (say, that X and Y are

integers and X > Y) allows one to make true deductions about

those entities independent of the context in which they occur

(e.g., X+1 > Y+1). In physics, however, knowing a few facts

(e.g., that a body of mass m is acted on by a force f) does not

permit us to make deductions from those facts independent of

context (e.g., to deduce that the acceleration of the body is

given by the equation f = ma) . The reason for this is that

Newton's law, which we write so simply as f = ma, actually

relates the acceleration of the body relative to an inertial

reference frame to the vector sum of all the forces on the body.

In order to find the acceleration of the body using the law

f = ma, we must verify that there are no other forces on the body

(which is unprovable and, in any actual instance, untrue) or
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assume that the other forces are insignificant; likewise, we

must verify or assume that the reference frame is inertial. The

laws of physics, being universal, bind the whole universe

together and relate every object to every other object. In order

to solve any physics problem, we must treat physical systems as

nearly decomposable systems [2], ignoring all but a few of these

connections. Any application of a physical law thus carries with

it a set of implicit ceteris paribus assumptions; whether these

assumptions are justified by careful thought and experiment or

overlooked in ignorance, they are nonetheless part of the

physical law.* Thus, it is clear that it is not possible to

solve physics problems by deductive methods in which the laws of

physics are stated as theorems unless the system is restricted to

operation in a microworld in which the ceteris paribus

assumptions of all the laws the system uses are simultaneously

satisfied.**

What the problem solver needs is Expertise, which we will

define as "the ability to design and execute an effective method

of analysis for a given problem." We consider an effective

method to be one which will adequately solve the problem at a

reasonable computational cost. [Reasonable cost is not merely

desirable, but a central issue; intelligence, like politics, is

the art of the possible.] The expert will often have redundant

methods for solving the same kinds of problems with varying

degrees of accuracy and at different costs; thus, the method to

be chosen for solving a particular problem will depend partly on

the accuracy required of the solution. The central point of our
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definition of expertise is that problem solving is fundamentally

a design problem. The equations which appear in the solution of

a physics problem are consequences of the design of a method of

analysis for that problem, rather than the primary components of

the analysis. Novices (and many experts) tend to give the

equations primary status, and novices often solve problems using

an "equation-driven search", working backward from the desired

unknown through equations which relate it to known quantities

The history of physics provides many examples of such

assumptions. Newton's laws, for example, were thought for many

years to be unqualified truths before their implicit ceteris

paribus assumptions (e.g., speeds much less than the speed of

light) were discovered. We still teach and use Newton's laws,

but now state the assumptions explicitly.

* * It is possible to write a deductive system which will

emulate the problem solving methods we are proposing. However,

rather than having theorems which state laws of physics as

universal truths, such a system would have theorems stating how

the problem solver ought to approach problems of particular

types. The semantics of such a logical system would specify what

"mental states" of the problem solver were possible (rather than

what states of the universe are possible) , and would not

guarantee that the problem solver would not make mistakes (i.e.,

derive answers which do not conform to physical reality) or

derive different answers by approaching a given problem in

different ways.
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(3]. However, while this method can solve easy textbook

problems, it cannot solve many real-world problems and more

difficult textbook problems. As in other areas of design, there

exist standard designs to be used for certain frequently

occurring problems; the easy textbook problems serve to teach

standard designs along with examples of problems for which these

designs are appropriate. More complex problems, however, require

creative design of new methods of analysis.

Larkin, McDermott, Simon, and Simon. (3) have reviewed

differences between expert and novice humans in solving problems.

While novices tend to work backwards using an equation-driven

search, experts tend to work forwards from given data (sometimes

calculating intermediate results) to a solution, with little or

no backtracking. Larkin, McDermott, Simon, and Simon propose

that an expert is able to recognize a large number of patterns

(on the order of the 50,000 chess patterns which a chess master

is believed to recognize) which guide the interpretation and

solution of a problem. We share this view; in the sections

below, we discuss its implications for an expert program for

solving physics problems, and contrast this view with the

deductive approach to problem solving.

2.1 Representation

There is no single, "fundamental" level of representation in

physics; physics problems range from the level of quarks to

particles to atoms to molecules to objects to planets to suns to

galaxies to the universe as a whole. For some problems, it is
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,necessary to collect several objects into a single system which

is considered as a whole (e.g., the Jugglo problem [t] is best

solved by considering a juggler and the balls he is juggling as a

single system) . In other cases, it is necessary to decompose a

single object into components; sometimes the decomposition

needed is a "gedanken" one which is chosen to fit a particular

problem, rather than being a "natural" decomposition of the

object (as in the chain problem to be discussed later).

Multiple representations of the same .kind of object are

often needed; indeed, many physics books begin with a chapter on

vectors and decomposition of vectors into components.

Specialized representations are important because certain

representations possess invariants which greatly simplify

analysis.* Selection of representations and conversion between

representations is thus an important component of problem

solving; it is something which experts do fluently but novices

do poorly [5].

Many problems require that a single object be viewed in

Imagine working a problem involving a swinging pendulum in

spherical coordinates with arbitrary zero point and arbitrary

or.ientation of the axes of the coordinate system. As the

pendulum swung, each of the three coordinates would change

according to a complex nonlinear function. However, if we choose

two-dimensional polar coordinates in the plane of the pendulum

and with a zero point at the pivot of the pendulum, only a single

coordinate (the angle of the pendulum) changes.

14:
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multiple ways. Consider the following problem:

What force applied to the brake pedal is required to

stop a 5000 lb car going 55 mph in 5 seconds?

This problem requires two views of the car. In the first view,

we trivialize the car and view it as a point mass, and compute

the force needed to stop a 5000 lb mass going 55 mph in 5

seconds. In the second view, we expand the car to view its

braking system, a complex collection of leVers, hydraulic

systems, and friction brakes. Sussman and.-Steele [5] have found

that multiple views of electronic circuits are essential to

analysis of complex circuitry and have implemented a program for

circuit analysis using multiple views (which they call SLICES).

2.2 Reasoning

The expert problem solver possesses a rich set of specialist

methods for solving partic-ular types of problems which frequently

occur. These methods are often redundant (e.g., the sequence of

rifle problem, cannonball problem, and ICBM problem methods) , and

they may be mutually "contradictory" in the sense that they give

different answers to the same problem. In some cases the

differences will be small, but in others they will be

significant, and some methods will be judged clearly "wrong" for

such problems.
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The expert's methods must be considered Knowledge rather

than universal truths in the sense of physical laws or

mathematical theorens. First, the expert's methods operate at a

particular level of abstraction, and often are not deductively

related to other levels. For example, the law which states that

a metal bar expands linearly with increasing temperature was

formulated and is used without reference to the underlying atomic

level at which the phenomenon can be further explained. Second,

the expert's methods are approximate and limited in scope.

Thermal expansion is not really linear, but-nearly linear over a

range of temperature.* Finally, an expert's method always

involves a separation of a phenomenon from most of its context,

and thus always carries with it ceteris paribus assumptions that

such a separation is legitimate.

If a problem solver has a large number of redundant methods,

how can the appropriate methods (and only those) be invoked?

Clearly, it is inappropriate to use the most complex analysis

method to verify that the answer will be in a range for which an

easier method could have been used; error measures, which are in

fact the precise solution minus the approximate solution, won't

work either. Thus, the method to be used must be chosen on

Experts often do not know the boundaries of applicability of

their methods. They will use appropriate methods for the

problems with which they are familiar; however, if given an

unusual problem, they may use inappropriate methods without

realizing it ([6], p. 208).
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iqualitative grounds, which will include ranges of numerical

values. (Scientific terms sometimes specify such ranges, e.g.

"sub-micron particle".) In some cases, applicability of methods

may be explicitly ruled out (e a "don't try to differentiate a

noisy time function") . Rather than having a small number of

universal laws, the expert will have a large number of specialist

methods, each applicable in a limited area and governed by a

large set of preconditions for applicability. In this sense,

expert knowledge is "additive": a new method can be added to the

existing set without causing much trouble, because its large set

of preconditions keeps it from interacting with much existing

knowledge.* A large set of problem solving methods based on

Newtonian mechanics can survive the addition of relativistic

physics simply by enclosing the whole set of Newtonian methods in

a set of extra preconditions. Since there will be redundant

methods for solving special cases more easily than more general

methods do, and since both the specialist method and the general

method will be applicable to the same problem, there must be a

mechanism for choosing one (and only one) of the methods.

Choosing a problem solving method is similar to parsing sentences

in the sense that local ambiguity must be resolved in such a way

that the local interpretations fit together into a global

interpretation.

In mathematical theorem proving, knowledge is not additive:

a single axiom, such as _Euclid's fifth postulate, can have

far-reaching consequences.
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In many cases, the choice of a problem solving method is

'implied by the choice of views to be used for objects. For

example, when we choose to view an accelerating car as a point

mass, we are implicitly saying that other effects (e.g.,

deformation of the car) will be ignored and enabling methods

which are specialized to deal with point masses. Making a view

thus constitutes a decision that for the given context and

analysis goals, an object can be viewed in a certain way, which

will have the effect of decomposing the object from much of its

environment. It is at this decision point that the ceteris

paribus conditions are tested; once the view has been made,

these conditions will be assumed implicitly to hold. If in fact

some of the preconditions for the selected.view turn out to be

violated after the view has been created, even the expert analyst

may not notice the violation, and the resulting analysis may be

fallacious. (This phenomenon is a serious flaw in existing

methods of nuclear reactor safety analysis.)

In summary, the approach we are proposing can be contrasted

with the way deductive problem solvers have typically been

written as follows. Deductive systems have employed deep chains

of reasoning from relatively few principles (physical laws stated

as theorems); the principles consider a relatively narrow

context (have few preconditions) ; search is used as the method

of bringing together related principles (through unification).

Our approach emphasizes relatively shallow chains of reasoning,

employing a large number of specialist principles; the

principles conceptually consider a large context (have many
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,preconditions); search for contradiction in the sense of

resolution is not possible or meaningful; the principles to be

applied are selected by recognition of special cases.

3.0 WHAT'S IN A PHYSICS PROBLEM?

Textbook physics problems vary tremendously in difficulty.

A body of mass 2 kg is acted on by a force of 6

newtons. Find the acceleration.

This problem ([8], p. 39), appearing at the end of the chapter

in which Newton's law f = ma is introduced, can be solved

entirely at a syntactic level with little understanding of

underlying principles or of the assumptions involved (e.g., lack

of other forces such as friction) . A slightly harder problem

type involves two equations rather than a single one (e.g., the

above problem with the question "How far does it move in 5

seconds?"); these can be solved by an equation-driven search,

still "close" to the syntactic level.

At the opposite extreme are problems like ([9], p. 85):

If the polar ice caps were to melt, what would happen

to the earth's period of rotation?

This problem is difficult in several respects. It is minimally

specified in terms of real-world objects which are not "close" to

the physical system models required; a great deal of world

knowledge must be brought 0 by* the problem solver; the problem

is not nicely bounded in terms of the phenomena which may have to

1 7
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,be considered. The main difficulty with such a problem is

deciding how to "set it up", i.e., how to design the analysis

method. Clearly, no "search" method could hope to find a

deductive path through known equations to solve such a problem.

These problems illustrate the wide variation in difficulty

of physics problems. A number of textbook problems can be solved

(by humans or programs) at the syntactic level, or at the

syntactic level with a little search, particularly if the problem

domain is narrow. Of course, it is easiest to write programs to

solve such problems, and such problems have served as a

legitimate starting point for problem solving research; however,

solving such problems still leaves us far from the goal of

solving "real" physics problems, i.e., problems of the types

faced by practicing engineers and physicists. The real challenge

is to write a program which can solve all the problems in [1] or

[9]; this is a difficult challenge indeed. Some of the features

which make problems difficult, and which should be attacked by

problem solving programs, are listed below.

1. English and pictorial input. Many problem solvers have

started with the "simulated output of a parser" or

"simulated diagram". However, it is difficult to design

a "neutral" intermediate language; care is needed to

insure that the simulated parser" does not

inadvertently contain a "simulated physicist".
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2. Significant geometry. Most existing programs have used

trivial geometry. Howe'rer, selection and manipulation

of geometric models is a central part of physics problem

solving. Physics texts are full of diagrams;

engineering students score significantly higher than

average on tests of visual/spatial ability [17].

3. Many possible views of objects. If an object always

plays the same role in problems, the problem of choosing

the proper view(s) for that- object is trivialized;

choosing proper views is the central problem.

4. Minimally specified problems which require assumptions

and use of world knowledge for their solution.

4.0 PROBLEM SOLVING USING MULTIPLE VIEWS

The notion of modeling a real-world system by a physical

system whose behavior is governed by physical laws is related to

the notion of isomorphism in mathematics; Hofstadter [10]

mentions this relation frequently. However, our notion of models

is looser than the notion of isomorphism (because the modeling is

only approximate) and more complex (because different kinds of

objects and more complex relationships are modeled). Figure 4

illustrates a simple model in which the combination of two

oranges and two oranges in the real world is modeled by the

addition of 2 and 2 in the analysis model.
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Analysis Model:

Figure 4: Two Oranges and Two Oranges Makes Four Oranges

This diagram looks very much like the diagrams given for

"isomorphism" in mathematics texts. (The bottom layer looks much

like the networks of CONSTRAINTS [5] and THINGLAB [11].) The

isomorphism consists of two things: a mapping between objects in

one set and those in the other set (in this case, counting of

oranges) and a correspondence between the operations (combination

corresponds to addition) . Our orange model, however, is really

more complex than an isomorphism. One set of objects is

non-mathematical (the oranges); use of this model presumes that

there is a way of counting oranges which is satisfactory for our

purposes (e.g., how would we treat rotten oranges, tiny oranges,

plastic oranges, etc.?). There are also restrictions on the

operation: the combination must not smash the oranges, or take

so long that they rot, etc. Even this very simple model has its

20
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ceteris paribus conditions. Thus, we see that the count of

oranges is not an intrinsic property of the oranges, but a view

of them (other views are possible, e.g., weight, volume in

bushels, etc.): likewise, the addition operator is a view of the

combination process in terms of the views of the.oranges.

An isomorphism is specified by two items, the mapping

between objects and the operator correspondence. In our models,

we will have to keep additional information about the

correspondences. A physical law typically relates different

kinds of objects using a different view for each; there are

often mutual restrictions among the objects ("you can't add

apples and oranges") , and other restrictions which apply to the

model as a whole. Thus, to use Newton's law f = ma to model a

car which is being accelerated by a rocket engine, we view the

rocket engine as a force, view the rocket engine and car as a

composite object which we then view as a point mass, view the

car's environment as an inertial reference frame, view the car as

a location relative to the reference frame, and relate the second

derivative of the location to the force and point mass using the

equation f = ma. Most existing problem solvers (including ISAAC

(12,13,14]) have been much too quick to say an object or relation

is its view and replace it with a variable or equation which has

lost its roots; this limits the extensibility of such systems

when, for example, we wish to examine the behavior of the helium

balloon inside the accelerating car. Failure to remember the

basis of an analysis model also makes it prone to error. The

constraint networks of (5] and (11] are fine pieces of work, but
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the networks do not represent their limits of applicability. If,

for example, a constraint network were set up to represent the

"rifle bullet problem" analysis, and the numbers were changed to

those of the "cannonball problem", both of these constraint

network systems would blissfully calculate wrong answers. An

intelligent constraint network should continually check itself

and take corrective action if its bounds of applicability are

exceeded. Human experts often check intermediate results for

"reasonableness" during problem solving (6].

The use of multiple views in problem solving is nicely

illustrated by the following problem (El], p. 295):

A flexible chain of weight W hangs between two fixed

points, A and B, at the same level. Find (a) the

vector force exerted by the chain on each end point and

(b) the tension in the chain at the lowest point.

This problem appears at the end of the chapter "Equilibrium of

Rigid Bodies"; nowhere does the chapter consider flexible

objects. No equations involving chains have been given.

However, the problem caa be solved using multiple views of the

chain as a rigid body; this encourages the student to broaden

her definition of rigid body (i.e., a body of invariant

geometry) . The resulting analysis is illustrated in Figure 5.

Given Problem:

22
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View 2: Tangent Force at End of Chain
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w2f

View 3: Two Halves of Chain, Tangent Force at Bottom

- - - - - - -

16 a. wit m. . am an. 011. =1,111. 110.m MD MI

Figure 5: Multiple Views Used in Solving Chain Problem

First, the chain as a whole can be viewed as a rigid body

supported at its ends; this is a special case which immediately

implies that the vertical force at each support is W/2. Next, we

can view one end of the chain; since the chain exerts a force

along its tangent and since the vertical component is known, both

the total force and the horizontal component can be found.

Finally, we view the chain as two rigid bodies attached at the

bottom; this is another special case which shows that the

tension at the bottom of the chain equals the horizontal

component at the top. The problem solver has created the

equations needed by taking -multiple "gedanken" views of the
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esystem and relating these views by identification of their

components. The ability to design an analysis method in this

manner is the key to truly expert problem solving.

5.0 CURRENT WORK

We are currently implementing a physics problem solver in

accordance with the principles outlined here. We have

implemented a representation language (GIRL) and a language to

access these representations (GLISP) .[151.. The goal of these

systems is to allow the specification of a precise internal

representation formalism while allowing efficient but informal

access to the representations from within LISP programs. For

example, one can create a lever object with a statement such as

(A LEVER WITH LENGTH = '(10 FT)).

If we wish to view the length of the lever in meters, this can be

done with the statement

(VIEW THE LENGTH OF THE LEVER WITH UNIT = 'M).

We hope that this English-like programming will allow us to

experiment with different representations without requiring large

changes to the programs which access the representations. The

analysis models used in solving a problem will be represented

explicitly by our system rather than being lost as equations are

wr'itten.

As we have described it, the process of solving physics

problems is more akin to medical diagnosis [16] than it is to

theorem proving: we wish to diagnose any of a large number of

possible problem syndromes, and prescribe a specific set of
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4ana1ysis methods for each. We plan to use a hierarchical

rule-based system (which may also be profitably viewed as a

discrimination network or as a generalized parser) to recognize

problem types. We believe that if these techniques prove

successful in physics, they will be useful in a wide variety of

problem domains.
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