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B1As AND INFORMATION OF BAYESIAN ADAPTIVE TESTING ]

< ‘ z : . ‘
. : N . .- . . o

Since test scores are typically used to differentiate gmong persops, one

highly desirable property of a test would be that it measure equally well at all :
. points. Another consideration is that it measure each person precisely. Thus,

an "ideal” test would have a high, horizontal information funetion. Unfbrtu- _
nately, this ideal cannot normally be achieved in ‘a fixed-length conventional

test that draws its items from a much larger fixed pool of test items. Ordinar- ' i
ily, some trade offs must be made. Relatively high information at a point can :
be achieved by "peaking” the test, that is, constructing it of the most discrim=
inating items in a narrow range of difficulty. A relatively flat but low infor-
. mation function can be achieved by selecting equidiscriminating items having a _

wide range of item difF¥iculty values. The only way to approximate a high, flat
information function is to administer to each person the subset of “items that
provides the most information at his/her level of ability, 6. The problem with

[N

this is obvious: 6 is unknown before the test is administered.

An adaptive .test. can select items during the course of'testing in such a

. way as to attempt to maximize the information obtained for each examinee. This

- may be done either’ by simple branching=-administering a more difficult item af-
ter a correct answer .and an easier item after an incorrect answer--or by more
elaborate techniques. Owen's (1969, 1975) Bayesian adaptive testing strategy
estimates & after each item response, then selects the unused test item that is,
in one sense, the most "informative” at the current estimated ability level. ’ -
The result is that different persons take different sets of test items; each set

f test items spans a range of difficulty levels approximately tailored to pro-

de maximal information about the individual examinee. -

The information function of the test scores derived from any adaptive test-
ing procedure should be (1)} flatter than that of a peaked test of the‘same
length and constructed from the same item pool and (2) higher than that of a
rectangular test of tHe same length drawn from the same item pool. The height
of the adaptive test's information function will be determined in large part by
the discriminations and guessing parameters of the constituent items of the item.
pool as well as by test length. The flatness of the information curve (and to
some extent its height) will depend largely on the range of item difficulties in
the pool and on the effectiveness of the adaptive ifem selection procedure. .

Urry (1971) conducted monte carlo simulations ‘of Owen's (1969, 1975) se-
quential procedure using three different simulated item banks: two banks of -
"jdeal” item parameters and one bank of items with the same parameters as the
VSAT (Lord, 1968). Urry's item Bank A had 20 equidiscriminating items (a = 1.6)
4t each of five equally spaced levels on the ability continuumj his Item , Bank B ,
employed five items of the same ‘(a = 1.6) discriminations at each of 20 ability ‘
levels; and Item Bank C employed the parameters actually‘occurring in the VSAT. ..
Banks ‘A and B required an average of just over 11 items to test termination.
Bank C required an average of 27.5 items to termination. The other noteworthy
result of Urry's (1971) simulation studies was the magnitude of the fidelity
coefficients. JFor simulated examinees drawn randomly from a normal (0,1) popu-
- lation, the observed correlations of .936 (Item Bank.A) and .919 (Item Bank B) _—
.are quite high in view of the relatively short test lengths involved. - .
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- item pool resulted in virtually identical

0

. “

. [ 2] I
Jensema (1972) simulated Owen's (1969, 1975) approach to Bayesian testing
using the actual item responses of 100 live examinees to 58 mathematics items ,
drawn from four conventional pre-college tests taken at full lengfth by the .exam—
inees. From a record of their item—-by-item actual test performance, a computer
program ‘constructed artificial protocols of their responses to the items that

would have been administered by Bayesian sequential tests under two different
conditions: with and without differential prior information about qxaminees’

abilities. Parallel to these two “real data" simulations, Jensema carrjed out
monte carlo simulations of the Bayesian procedure. These simulations used 100
simulated examinees and items with logistic ogive parameters identical to the 58
real items. , Item scores were generated as a stochastic function of ability,8 ,
and the parameters of each item. The adaptive tests were terminated ip each
instance when the posterior variance of the Bayesiam ability estimate fell below
.0625 or when 30 items had been administered, whichever occurred first.

In the real-data simulation, mean test length was about 27 items, with or
without differemtial initial ability estimates. The Bayesian estimates corre~
lated about .86 with scores on a weighted composite of the four conventional
tests from which the item bank was selected. Jensema did not report a correla-
tion of ability with test length or with precision of estimate, but he did ob-
serve that the posterior variance criterion terminated the testing only in:the’
upper portions of the distribution of estimated ability. Jensema interpreted.

 these results to imply that the item pool was unsatisfactory for adaptive test=-

ing in the lower ability levels due to the low discriminations of the items in
that region of the difficulty continium. s monte carlo results using tlie same -

qéan test lengths and in correlations
of .92 between estimated ability and true ability. He concluded, in part, fhat
a satisfactory item pool for adaptive testing needs to employ very highly dis- "
criminating items uniformly distributed on the difficulty continuum.' Another
conclusion he reached--this one on the basis of monte carlo simulation with ide-
al item banks--was that for most purposes littlé was to be gained by the use of .
prior information about examinees to determine a variable initial 6 estimate.
Jensema found that using differential prior information resulted in an average
savings of only one test item.

In another monte carlo study of Owen's BayesMan strategy, Jensema (1974)
examined the effects of item parameters and Bayesian test length on test reli-
ability. He showed that reliability is directly related to the posterior vari-
ance of the Bayesian ability estimate; hence, using a specific value of that
posterior variance as a termination criterion determines the reliability of the
test. 'Jensema showed that the average number of items required to attain that
reliability varies as a function of the item parameters. With items uniformly-
distributed on difficulty, the higher the item discrimination, the shorter the
test.

McBride (1977; McBride & Weiss, 1976). also studied characteristics of the
ability estimates resulting from Owen's (1969, 1975) strategy. These monte
carlo simulations involved (1) an ideal item pool with variable test length; (2)
the effects of guessing and item discrimination in a perfect item pool; (3) the
effects of fixed test length; and (4) the effects of ability level and item pool
configuration. In the first three studies, the performance of the adaptive test
wasyevaluated on overall indices including the overall bias and mean absolute

A
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| error of the ability estimates, the correlation of ability estimates with true '
| ‘ ability estimates (fidelity), and correlations of true and estimated ability . -
( . ‘levels with errors and test length.
|

The fourth study evaluated the performance of this testing strategy in aq
item pool with no correlation between difficulty and discrimination parameters, ‘o
. and ysing items with high negative and high, positive correlations between these
; parameters. In contrast to the other studies, characteristics of the ability
: estimates were examined as a function of true 6; jepenﬂent‘variables included
. bias and information conditional on Contrasting with the first three studr
ies, which showed little overall mear bias and information, Study 4 showed se-
vere bias in the conditional 6 estimates for all three item pool configurations. 4
Estimates of 6 were unbiased only for five 6 values between 6 = 1.0 to -1.0; for
low 8 values, 6§ was overestimated and high 8 values were underestimated. 1In ’
addition, the information curves for the three item pool configurationg were not
high and flat as would be expected, at least when the ideal;item pool was used
in'which difficulty and discrimination parameters were uncorrelated.
’ :
Gorman (1980) also examined the bias and information of scores produced by
.Owen's Bayesian.testing procedure. - These analyses were based on two "ideal"”
item pools with discriminations of a = .8 and 1.6, in which 101’ items were rec=
tangularly distributed in difficulty, and both true and estimated item parame= .
ters were used. Gorman also studied the effect of applying a correction for
regression (propbsed by Urry, 1977) to ability estimates from ( en's testing
procedure, designed to reduce bias in the estimates. His results show substan-
tial bias in the uncorrected 6 estimates, with positive bias for 6 levels below
zero, negative bias for 6 levels above zero, and higher levels of bias for the
Y+ less discriminating items. His data also show that Urry's' correction was not
entirely successful in eliminating the bias, since the corrected 6 estimates for
6 levels atove zero resulted in positive bias. Since Gorman's study used an
ideal, but finite, item pool, however, his results:-may be partially item pool .
dependent. In addition, Gorman's study did not attempt to determine the cause ’
of the bias in the 6 estimates but simply examined one possible approadh to re- !
ducing it.

~ Purpose y

| . ' The present study was designed to further investigate the nature of the '
bias and the information characteristics of Owen's Bayesian adaptive testing

.strategy and to examine possible causes of the bias. Factors investigated in-

cluded (1) the effects of item discrimipation, (2) the effects of fixed vs.

|
w
t i variable test length, and (3) the effect of an accurate prior 6 estimate.
h . . Me thod '
‘ ) vDesign
* Monte carlo simulation of Owen's adaptive test was used. Unlike some pre-

vious simulation studies, but similar to Studies 1 to 3 in McBride (1977), the
present studies did not use a prestructured.item pool. Rather, the tests were
simulated using a perfect and infinite item pool having any difficulty parame=
ters required by the item selection process, with restrictions only on the item

ot .
- . ’
.




‘discriminations and pseudo-guessing parameters, c. By thus simulating an infi-

,}nite item pool, the results of the simulation studies should reveal, within the |,

. Examinees

limits of sampling error, the inherent properties.of the Bayesian adaptive test,
unafffected by the idioByncrasies of a typical finite item pool.

Similarly, following the procedures of Study 4 in McBride (197.7) in order
to permit accurate description of the properties of the tesfting method' as “they
vary with trait level,’ the simulated examinees (simulees) were not drawn random-
ly from a spe¢ified distribution; rather, a large number of examinees were simu-
lated.at each/of a number of trait levels throughout the noimally encountered
range.

-

‘For the purposes of monte carlo simulation, an examinee i was characterized
by a numerical value, which is the actual trait level 6. In.each of the eight
data géts generated, there were 3,100 simulees, with 100 at each of 31 6 levels
equally spaced in the interval =3.0 t0°'3.0. This range of the trait would in-
clude 99.99% of a population normally distributed on 8, with mean O and variance
1. ° .

Test Ttems E \

- 4

For each separate item administration, an item was computer generated with
the pséudo-guessing (c) parameter held constant at .20, simulating a fivehalter-
native, multiple-choice item. The item discrimination, a, was constant for each
data set, with - a = .80, 1.60, or 2. 40 between data sets. -

Following McBride (1977) the difficulty (b) parameter for each simulated
item administration was determined by the current e (the prior mean Mm__1 of the

estimated distribution of 64 before administering the mth itep) and by the con=
stant {tem parameters ag and bg; according to the formula
g

1 1+ @+ 8cg)“é o ‘
bg = M1 T 17T log[— 2 ' . . [11

g

Equation 1 gives the item difficulty value having.maxinal information when 6; =
Mpo1s and:ag and cgy are fixed (Birnbaum, 1968, p. 464). Since, in general,ei is
unknown and the best available estimate is M _ —-1» the item difficulty chosen is
the one that is the most informative, given the current' estimate of 9 at any -
point in the adaptive test.

>

Item Responses

The dichotomous (0,1 score of any similee on any item is a probabilisti
function of its status 6; on the trait 8, the item difficulty bg, and the p

‘eters a, and c,. The probability Pé(ei) of a correct response (ug = 1) under

g g .
the logistic model item characteristic curve is
PL(O = ¢ + (1-c )/ 1. - } .2
@) cg ¥ (-e ) /4l + exp[ 1,788(61 bg)] . | - '[ ]
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| In order to simulate item responses, -each time an item administration took -

place the quantity P'(B ) .was compared with a. pseudo-random number rgi generat-,
ed. from a distriBution unifeorm in the interval [O,Ll]. A score of ug = 1 was
assigned whenever P! (Bi) equaled or exeeeded rgi; ogherwise, a score of 0 was

assigned. . o .
C. Dependent Variables . ' _ ) - ., __
. ‘ : . , , ’ Y
- ‘ For the simulated test of each individﬁalwi, the followjing were- recorded: <

k, the number of items administered;
Mk' the posterior mean after k items (i.e., 6), and

Vi the posterior variance after k items. (i.e., the variance of B) ,

T These‘values were averaged at each level of 6 across the 100 simulees at that
level, resulting in 91' the mean of the 6 estimates at_each level of © (i =1, s

2, ooy 31), and oz(ei), the variance of § at each’ 6 1eve1. Bias was determined

at each of the 6 levels by

s

Bias = (0, - 6.) - | ‘ (3]

Information was computed from the formula

-

I(Gi)A=.g;i/s2(éi) ‘ - o ,‘ ' _ [4]

i

Independent Variables E
?
[)
7 Eight data sets were analyzed for three levels of item discrimination. The
’ . characteristics of the three studies and the data sets are summarized iﬂ'Table -

1. - , . » .

where 6! is'the first derivate of the polynomial regression of 6 on 6.

.

- : e

T o Stud1¥1' Accurate prior 6 estimate. This study was intended to provide
' "pest case” data in order to serve as a4 benchmark against which other studies
could be evaluated. The' "best case” for the Bayesian adaptive test ought to be
. - one involving a "perfect” item pool and accurate prior knowledge -about examine
o, _ ees' trait levels. Accurate prior knowledge means "that each examinee's trait
level was known beforehand and was used as the mean of the Bayés prior distribu- .
' tions Under these conditions the only limitatiohs on the information .and.accu- - .

racy of estimate of Owen's procedure are those imposed . by the test ‘length, and
| by the discriminations and guessing parameters of the simulated test items,
| Holding those variableg constant, any idipsyncrasies in the behavior of the test ¢ ‘z_
-

scores must be due to the trait 1eve1 estimation and item difficulty" selection .
| procedure. : . . e
| S Two separate ‘and independent test administrations were simulated for each v
y of the 3,100 simulees: in Data Set 1, all item discriminations were .80, and in
| Data Set 2, a = 1.60. * For each simulee, the Bayes initial prior distribution e,
o - . ) P :
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< o . Table 1 .
"Summary of the Independent Variables
, in tihe Three Studies -

——

- Termination
X Prior Criterion
Study and : Distribution Posterior No. of P
. . Data Set a’ Mean Variance Variance~  Items n !
] . —
*  Study' I . . ’
: S .80 8y 1 - 29
: 2 1.60° 85 1 - 20
-Study I1I . o ’ : ' -
-3 v - .. .80 4] 1 o= 20
4. +1.6Q -0 1 - . 20
5 2.40 0 I ~- 20, . =
Study III . . N :
6 .80 0 1 CoW100 30 - , .
7 .60 0 ~ 1 - 10 7 30
8 L2640 0 1 .10 ' 30 o

-

. , B} .
was normal with mean 8. and variance 1. 0. Thus, at the outset of testing, the

initial estimate of each simulee's traiv level was accurate. The adaptive'test
was allowed ‘to run its normal course, re-estimating 64 after every item-response

and selecting the next item accordingly, until 20 itens had been. administered.

-Study II: Constant_grior 6 estimate with fixed test lengt h. Study II rep-
licated the 20-item fixed test lemgth and constant a %alues of .80 and 1.60 from
Study 1; to examinee. effects with more highly discriminating items, Data Set 5

- used & = 2,40 for all items, while Data Sets 3 ‘and. 4 used items wifh a = .80 and

1.60 as in Study I. In contrast to Study I, the three-data sets of StudyII used
the same initial normal prior distributiom (mean = 0, variance = 1.0) for all
simulees, regardless of actual trait level. In this study, then, a more typical
use of the Bayesian adaptive .testing strategy was simulated i.e., the applica-.
tion to indivjduals for whom no prior & eetimates were available prior to test-
ing; consequently, a group prior ¢ distribution was used to select the first -
item to- be administered. As in Study I, a fixed-length test of 20 items was
administered to edach simulee. '

> v

Study,III' Constant ﬁrior 6 estimate with variable test length. In Study *
III, .as in Study II, the same initial normal (0 1) prior distribution vas as-.
sumed for all simulees( The diffeérence between the studies was in the ‘test ter-
mination criterion. - In Study’ [14, testing vas terminated for each simulee when-

‘ever the poaterior variance Vi1 fell below .10. This value corresponds to ‘the

"standard error of estimatb"'cﬂtterig of .3162 specified by Urry (19745 to
achieve a fidelity coefficient exceeding .95 in a normal (0,1) populetion of
examinees. A maximum-‘test length of 30 itens was impoeed so that if the poste-

- rior variance-criterion had not’ been reached within 30 items, testing was termi-

nated. As for Study II, three levels of item.dilcrinination-~e - .80, 1.60, and
2.40-~were studied in Date Sets .6, 7 and 8, respectively. Y

. .o , i .
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Results

Accurate Prior & Estimate ’ | : L '

Bias of the ability estimates for the two data sets of Study I are shown' in
Figure 1 (numerical values-of bias and information for Data Sets 1 and 2 are in 4
Appendix TablefA). As Figure l-shows, there was virtually no bias in the abili;) ’
ty estimates for Data Set 2 (a = 1.6), with a small amount of bias alternating
between positive bias and negative bias for Data Set 1 (a = .8). The maximum s
amount of bias observed in the data was at 6 = +3, where mean bias was -.10, a
similar degree of bias was observed at 8 =.-1.8. _ . ’

\
\
\

k3 . .4

Figure 1
Bias ‘as a Function of @ for Data Sets 1 and 2 ..
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Figure 2 s:\\d'information curves for Data Sets 1 and.2. As the results . %
- show, the information for Data Set 1 was relatively flat throughout the 6 fange. ;g
The maximum information was observed at 6 = =,5, with minimum infdormation at 6 =
+.2. Information ranged between.7 and 11, with only minor variations across the
ability range. The information for Data Set 2 was relatively flat, but not as .y
flat as that for Data Set 1. There was a spike at 6 = .8 with a secondary pyak R

‘at 8 = -3, 8, and overall more variability between € levels than for Data Set 1.

In general,,there is a slight concave trend to the information values fQr Data >
Set 2, with the exception-of the spike at 9 = 8. However, the general rend is
a relatively flat information ‘function for both data sets. . . > )
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Constant Prior ¢ Estimate with Fixed Test Length ke
3 - g = 7, _

ol . , o
< ' ’ Figure 3 shows the bias 1in the- 6 estim#teé for the data sets of,Study II at
A each .of the three levels of item discrimination (Wimerical values of bias and
. infoemation are in Appendix Table.B). For ‘all three data sets there is a nega-  ~
' . A tive slqpe ‘to the bias curve with fow & values being overestimated and higher ©
) values belmg underestimated. In addition, there are some substantial differ-

ences in the bias curves for the three levels of discrimination. Data Set 3 (g
= .8). achieved the highest levels of bias of all three data sets. Very, severe
" ¢bias was, observed for negatrive 6 levels and geviere bias in the opposite direc-
tion for positive 6 levels. When item discriminations were increased in Data
S&t 4, there was only a'slight drop in the positive bias for low 6 levels and a
more substantial drop in negative bias for the 6 levels above the mean. In- t
creasing- the item discriminations to 2.4 in Data Set’ 5 resulted in virtdally no.
change in bias for low 6 level but a further decrease in bias for the positive 6
levels with the range of unbiased ability estimates varying from approximately ¢ .
- ‘ " i
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Figure 3,
Bias as\a Function of ¢ for Data Sets 3, 4, and 5

o——o Data Set 3{(a- 8)
- #—— Data Set 4 (a-16)
o——o Date Stt 5(a=24).
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‘ As these results. show, the effect of increasing )
- Ldtem disc;imination is td -reduce bias somewhat, primarily for high 8 levels.
. For low 6 levels ( < =2. 0) substantial levels of bias (.20 or more) were ob-
- served for the highly discriminating items of Data Set 5.

, Figure 4 shows test information curves' for the three data sets of Study 2.
1 As Figure 4 shows, with the low discriminating items (a = ,8) of Data Set 3,
test information i¢ relatively flat for 6 levels above about 6 = -1.5, with a
decrease in information below that level.
* the results for, Data Set 4 show the infprmation curve peaking with relatively
lower information levels for 6 > 1.6 and 6 < -1. 5, and a greater asymmetry in
curye. Finally, when the items of Data Set 5 (a = 2.4) were .
used, the information curve becomes® even more peaked and more variable, with
high levels of information generally in the range of 6 = +] to'-1, and with in-
formation dggpping off extremely quickly beyond that range.
‘ s

the information

As item discrimination is increased,
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-1, there is little difference in information when item discriminations are in-
For 6 levels below -1.8, levels of information

creased from a = 1.6 to a = 2.4.
are not increased by4inqpeasaeg item discriminations.

) Figure 5 :
Bias as a Function of 6 for Data Sets 6, 7, and 8 ! .
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Constant Prior 6 Estimate With Variable Test Lergth - ..

Figure 5 shows bias functions for the three data sets of Study III (numeri-
cal values for bias and information are in Appendix Tables C, 4, and E). As the
results show, least bias for low 6 levels was observed for Da;a Setw (a = .8),)
while the high 6 levels obtained the highest degree of bias for that data set.
As item discriminations irdcreaged, bias for low 6 levels ‘fncreased, while bias
for the high 6 levels decreased. Extremely high levels oflbias were observed .
for Data Set 7 (a = 1.6) and Data Set 8 (a = 2.4) for & levels less than 6 = -2.

.Figure é\shows test information functions for the variable-length condi-
tions of Data Sets 6 through 8. The information function that most approximated
the horizontal and equiprecise ideal was achieved by Data Set 6 (a = .8), which
obtained relatively constant levels of information for 6 values greater than'D =
~-1.5. As item discriminatfoh was increased, the level of information obtained
for low © levels decreaséd, while the level of information obtaihed for high 6
levels remained ‘similar. The result of increasing item discrimination was a

.general. increase in peakedness and asymmetry of the test information functions.

a
-

, tigure )
Information as a Function of 6 for Data Sets 6, 7, and 8
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Figuré\( shows the mean number of items administered for eucﬁ;%f'the 6 lev-
els for the ddta sets of Study III (numerfcal valuesna: in Appendix Tables C
D, and E). ?f _expectedy; more items were needed in’ Ddta Set 6, which ha Lowe
item disgrim nations, than in Dfta Sets 7 and 8. iThe résults show that ) Dgpu
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Set 6, 30 items was generally not sufficient, on the average, for the adaptive
test to achieve the specified level of posterior variance (.10) for most test
lengths. The results also show that test length required was an increasing ’
function of 6 for Data Sets 7 and 8. While, on the average, the posterior vari-
ance termination criterion of .10 was achieved with about 8.5 items for low 8
values in Data Set 7, twice the number of items (17.0) were necessary to achieve
the same posterior variance termination criterion (on the average) for 6 = +3.
The same trend was observed for the more highly discriminating items of Data Set

8.
\ .
' Figure 7 )
. Mean Number of Items Administered as a Function of 6 . t
. s QJ for Data Sets 6, 7, and 8 " :
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L) Discussion and Conclusions. L

This study used a "perfect” item pool in order to evaluate the performance
of Owen's Bayesian adaptive testing strategy under ideal conditions. The re-
sults show that in terms of achieving statistically unbiased measurement and
measurements of equal precision throughout the range of ability, Owen's adaptive
testing strategy achieves these desirable goalk only under the é€xtremely unreal-

L - N
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istic condition of an accurate prior ability estimate. Of course, in a realis-
tic testing situation, the examinee's ability is not known beforehand; other-
wise, testing would not be necessary. Thus,The data of Study 1 serve only as
an unrealistic baseline condition to which results of other more’ realistic test-
ing conditions can be compared. Even under the unrealistic.conditions of Study

1, however, there was a tendency for increasing item discrimination to result in

increasing variability in levels of informatic. as a function of 6.

Studies II and III evaluated Owen's Bayesian testing strategy under the
more realistic testing conditions of a constant prior 6 estimate, with both fix-
ed and variable test length. The results of Studies 2 and 3 show that this

adaptive testing strategy does not achieve unbiased measurement or measurements

of equal precision when a constant prior 6 estimate is used for all examinees,
regardless .of whether test length is fixed or variable. The results show an
interaction of the termination criterion with the performance of the adaptive
testing strategy, both ia terms of bias and information.

When a constant test length is used, increasing item discrimination results
in decreased bias, with a more substantial decrease in bias for high 6 levels.
When variable termination is used, increasing item discrimination results in
only slightly decreased bias for high 6 levels, but in increased bias for low 6
levels, with extremely high levels of bias- for very low 6 levels. In terms of
information, the flattest information curves were observed for both termination
criteria with the least discririnating items. As item discrimination was in-
creased, in both cases the information curve became more peaked and asymmetric,
with a greater degree of asymmetry, observed for the variable-length testing con-
dition. Results also showed that different mean numbers of items were necessary
to ‘achieve a fixed posterior variance termination criterion at different levels
of 9. With moderately and highly discriminating items (a = 1.6 and a = 2.4),
twice the number of items were necessary, on the average, for high 8 levels to
reach a posterior variance termination criterion of .10 than for low 6 levels.

Because this study used a perfect item pool in which items of a specified
discrimination were available at any level of difficulty, the results observed
in these studies cannot be attsibuted to deficiencies in the i®™em pool, as might
be the case for the results reported by Gorman,(1980). Rather, these results
are attributable to the effect of the constant prior 6 estimate, as is shown by
the comparison-of results between Studies II and III and those of Study I. Al-
though the effect of Urry's (1977) correction for regression was. not explicitly
examined in these studies, it is unlikely that it would have the desired effects
under both' the fixed-length and variable-length test condition, since, as indi-
cated, there was interaction of observed bias with the termination 9riterion.

Althoughca major purpose of adaptive testing is to provide measurements
with equal precision/information at all levels of the ability continuum (Weiss,
1982), results of these analyses show that under the realistic conditions of a
constant prior 6 estimate, Owen's Bayesian adaptive testing strategy does not
achieve this desirable goal. Since the test information curves utilize some of
the same data from which the bias curves were computed, the results for informa*-
tion are in a sense a consequence of the bias in the 6 estimidtes. The data from
these three studies show that the bias results from use of a constant prior 6
estimate. Further research will be necessary to determine whether and to what

L3
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degree the use of variable prior 6 estimates will affect the performance of
Owen's adaptive testing strategy in terms of reducing the bias and, consequent-
ly, improving the equiprecision of its ability estimates.
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: %Ppendix: Suppiementary Tables

-

AN

Table A

1
<

Mean and Variance of 6§, Bias and Information, as a Function of 6

for the Data Sets of Study I

Data Set 1

Data Set 2
. Infor- . Infor-
8 Mean Variance Bias, mation Mean Variance Bias mation
-3.0 -3.040 .124 -.04 7.669 -3.002 .044 .00 22.253
-2.8 =2.778 .125 .02 7.656 -2.836 .037 =-.04 26.509
-2.6:+ =2.564 .148 .04 6. 504 =2.604 .046 .00 21.359
=2.4 -2,406 .102 -.01 9.489 -2.412 .047 -.01 20.939
=2.2 -2.182 . .137 .02 J.101 ¢ 217 .045 -.02 21.905
=2.0 =1.960 .142 « 04 6.83% -2,020 .052 -.02 18.985
-1.8 -1.881 .139 -.08 7.061 -1.804 .045 «00  21.972
-1.6 -1.543 .128 .06 7.698 -1.620 .048 -.02 20.629
-1. -1.410 .116 -.01 * 8,523 "=1.433 .041 =03 24.184
-1.2 -1.160 .124 .04 7.934 -1.226" .053 -.03 18.734
-1.0 -.989 .142 .01 7.003 -1.019 .043 =02 23.121
-8 -.870 .129 -.07 7.726 =772 .055 .03 18.099
-6 =597 .111 .00 8.996 =617 .058 =02 17.184
=4 -.435 .093 -.04 " 10.754 -.448 .048 -.05 20.788
=2 -.208 .135 -.01 7.417 =197 .051 .00 19.587
0.0 =010 .110 =01 . 9.027 -.052 .048 -.05 20.833 .
o2 -«190 .168 -.01 5. 966 .136 .043 -.06 23.279
o4 «379 .133 =02 7.536 «364 .045 ~.03 22,266
.6 «557 .118 -.04 8.491 «570 .045 =03 22,287
.8 .754 .126 -.05 7.946 .801 .047 .00 21.357
1.0 1.054 .123 .05~ 8.130 .987 .031 =01 32.407
1.2 1.226 .105 .03 9.509 1.166 .048 -.03 20.945
1.4 1.333 " .141 =07 7.067 1.379 .057 =-.02 17.651
1.6 - 1,672 121 .07 8,217 1.570 .049 =.03 20.547
1.8 1.805 .154 .01 6.438 1.796 .056 .00  17.990
2.0 2.003 .108 ' .00 9.884 < 1.972 .049 ~.03 20.572
2.2 2.168 .103 -.03 9.563 2,213 .042 .01 24.013
2.4 2.353 .128,  =.05 7,665 2,390 .057 -.01 17.703
2.6 2.614 .135 .01 7.237 2,585 .043 " ‘=01 23.476
2.8 2.809 .123 .01 7.906 2,774 .050 =03 20.198
3.0 2.891 .108 ~.11 8.958 ©3.007. .046 .01 21.961

»
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. C Table B o .
Mean and Variance of 8, Bias and Information, as a Function of @ 3
for the Data Sets of Study II . )

- —— -

Data Set 3 Data Set & Data Set 5
8 Infor- ] Infor- , 8 . _ Infor-
0 Mean+ Variance Bias mation Mean Variance Bias wmation Mean Variance Bias mation
-3.0 . =2.166 .103 .83 2.645 -2.308 .16l .69 « 945 "=2.229 .189 .77 . 389
-2.8 -2.084 .193 .72 1.634 -2.169 .162 .63 1.273 -2.097 .228 .70 . 544
-2. 6 -2.017 .209 »58 1.716 ~2.048 .155 -« .55 1.710 -2.077 .163 .52 1.130
-2.4 ~1.896 .133 «50 3.018 -1.957 .215 A 1.521 -1.992 .114 .41 2.204
-3.2 .~/ =1.696 %161 .50 2,755, =1.958 .071 224 5. 505 -1.871 «141 .33 2.296
-2.0 -1.621 .l44 .38 3.364 " ~-1.770 .121 .23 3.765 -1.834 .062 .17 6.442
-1.8 - -1.463 .103 .34 5.,083. -1.582 .080 .22 6. 502 -1.588 .104 .21 4,585
-1.6 -1.304 .%91 .30 2.936 -1.488 '.062 .11 9.410 -1.486 .062 .11 8. 940
-l.4 -1..118 .188 .28 3.167  =1.335 .045 .07 14.322. -1.332 .055 .07 11. 459
-1.2 -1.008 .143 .19 4.386 -1.128 .084 .07 8.364 -1.147 .043 .05 16.359
-1.0 . =-.846 .137 .15 4,789 =972 .040 <03 18.923 ~ -.987".018 .01 42,925
-. 8 ‘=697 .104 .10 6.554 -.723 .049 .08 16.465 -.781 .024 .02 34.863
-6 -.567 .I46 .03 4,819 -.593 .058 .01 14.682 -579 .033 .02 27.112
-4 -.350 .125 .05 5.775 -.432 .,065 -.03 13.704 -.414 .035 -.01 27.021
-2 . =215 .157 -, 02 4,689 -, 201 .046 .00 20.085 -.193 .025 .01 39.563
0.0 -.014 .115 -, 01 6.491 . ,-.052 .048 -.05 19.805 - -.009 .033 -.01 31.035°
o2 «188 .160 -.01 4,705 .155 .040 ~-.04 24,265 .192 .020 =.01 52,523
4 .380.. .133 -.02 5.675 «355 .051 -.05 .19.288 404 .026 <00 41.064
o6 917 .152 -.08 4.952 . <544 .038 -.06 26.043 .612 .028 .01 38. 412
.8 .715 .143 -.09 5.220 .775 .049 -.02 20.172 .803 .022 .00 48.816
1.0 .866 .147 -.13 5.008 .942 ,038 -. 06 25.792. .974 .023 -,03 46.216
1.2 "~ «959 .117 -.24 ;6.169 ~ 1,132 .050 -.07 19.294 1.214 .030 _ .01 34.756
1.4 1.197 .11 -.20 6. 339 1.350 -.059 -.05 15.974 1.396 . .031 .00 32.690 .
1.6 1.393 .160 . =21 4,260 1.538 .074 =06 12.345 1.591 .030 -.0Ll 32,517
1.8 1.548 .108 -.25 " 6.075: 1.728 .054 -.07 .16.266 1.763 .030 - -.04° 30.984
2.0 1.650° .174 -.35 - '3.605° 1.898 .056 -.10 14.950- 1.951 .031° =-,05 28.261
2.2 1.873 " .123 =-.33 4,840 2.130 ..046 -.07 17.189 2.164 .026 =-.04 31.384
2.4 1.978 .179 -.42 3.132 *©  2.265 .050 -.1% 14.785 2.362 .027 -.04 27.781
2.6 2.144 ,130 =.46 4.028 2.466 .045 -.13 15.191 - 2.538 .029 -.06 23.429
2.8 2,292 .178 -.51 2.721 2.583 .058 -.22 10.766 2.709 .027 -.09 22.413
3.0 2.386 .133 =-.6l 3. 335 2.737 .045 -.26 .'12.500 2.847 .031 -.15 17.049
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Table C
Mean and Variance of '8, Bias, Information, o ’ L.
and- Mean #nd Standard Deviation of Number of . '
Items Administered as a Function of 6
' for Data Set 6

8 ‘ Infor- No., of Items -
R 9 Mean Variance Bias mation Mean S.D.

-3,0 =2.422 ,115 .58 . 3.375 28.67 1.04 :
-2.8 =2,314 ,131 .49 3,281 28,91 1.02 S
-2.6 -2.166 - .138 .43 3,414 29,41 .85 -

'=2.4 =2,038 .10l .36  5.064 ~29.67 .75

-2,2 -1.89% .109 .31 50052 29,77 " .6l :

-200 -10707 0103 029 5.712 29.91 ‘ 032 L 1 ‘
-1.543 .13l «26 4,765 29,97 _ .22

-1.450 .084 .15 = 7.833 29,97 .30
-1,297 .073 .10 9,445 29,98 . .20 ) .

. =1,076 .093 .12 7.726  30.00 0,00 . ’
"0876 0069 012 10. 794 30000 0000

.
-~

f 1 1 11

Pt s b s Dt
L J

onvsO®

-8 =717 .079 .08 9.723 30.00 0.00
-6 =488 ,080 .11  9.856 30-00 0,00 2
-4 =338 .117 .06 6.886 30,00 .0.00 o2
-2 - 167 0100 ) +03 8.195 30.00 0.00 ‘ . .
0.0 -018 .,091 -.02 9,120 30.00 0.00 ) o b
o2 196 .126 . .00 6.642 30.00 0.00 ’
o4 .380 .099 -.02  8.489 30.00 0.00 . "~
o6 540 .08 ~.06 9,773 30.00 0.00 -
.8 .728 .080 =-.07 10.462 30,00 0.00 '
1.0 922 .103 -,08 8,057 30.00 0.00
102 1.055 0090 -014 90 105 30.00 . .0.00
1.4 . 1.261 119 =14 6.770  30.00 0.00 ’
1.6 1.438 ,100 =-.,16 . 7.885 30.00 0.00 - .
l.8 °~ 1,578 .101 =22 ' 7,605 30.00 0.00 : . : ot
2,0 1.749 .118 =25 = 6.312, 30.00 0.00
2.2 1.929 .092 =-,27 7.810 30.00 0.00
2.4 20149 0093 -025 7.414 30.00 0.00
2.6 2,271 .087 -,33 7.563° 30.00 +0.00 .
‘2.8 2.466 .100 -.33 6.242 30,00 0.00 . :
3.0 20 639 124 -.-36 4,744 30.00 0.00 . -




Mean and Variance of 8, Bias, Information,

- 1',9...

Table D’

."

&
/~

and Mean and " Standard Deviation ‘of Number of

»

Itelms Administered as a Functiom of 8

.for Data Set 7

. “

8 Infor- No. of Items
8 Mean Variance Bias ’ mation Mean S.D. -, {
w~d
-3.0 =1.742 °.221 1.26 .001 8.37 .90
-2.8 =1.675 .233. 1.12 .035 8.49 .85 .
2.6 =1.752 .150 .85 - .237 8.41 .76 . . -
-2.4 =-1.762 * .152 .64  .523 8,527 .82 "
-2.2 =-1.661 108 .54 1.263 8.65 37
-2.0- ~-1.488 .205 = .51 .992 . 8.96° .86
-1.8 =!.478 .139. .32 1,997, 9.30 *.91
-1.2. -1.333 * .139 .29 2.565 9.45 .75
-1. -1.241 .110 .16 3.978 9.8 ~ .77.
-1.2  =-1.108 .107 .09  4.846 10.03.- .77
-~1.0 ' =955 .103. ..04 -*5.801 10.15 .77
-.8 -.760 ..082 .04 8.202 10.62° .81 ‘
-6 -.596 " .085 .00 8.731 .10.74 _ .77 -
- -.402 .077 .00 "™0.451 . 11.16 .88 -
-2 -213 .060 -=.01 14,320 11.56 .03
0.0 -.028 .099 -.03 9.135 - 11.81 “.96
.2 .195 .071 .00 13.23% 11.91 ‘.98
b .354 .085 ~.05 11.342 12.28  .%4 -
.6 .459 .08l -.05 12.068 12.60° .80
.8 .762  .084. - =04 11.661 12.76 .83
140 .930 .110 .-.0N 8.820 12.91 ~.88
1.2 1.153 .046 =.05 -20.645 12.98 .68.
1.4 1.303 .071 " =10 12.934 13.36 -.83
1.6 1.504 .076 =.10 11.534 13.65 .91
1.8 1.638 .078 =-.16 10.582 .]3.86 !.0C
2.0 - 1.827 .101 =-.17  7.580 14,47 .92 !
2.2 1.994 .080 ~-.21 8.730 14.58 ' .93 .
2.4 2.210 .089 -.19 7.024 - 15.13 .82
2.6 2.407 .109 =-.19  5.022 15.51 .86
2.8 2.490 .055 =.31 ' 8.490 15.72  -.65
3.0 2.675 .063 -.33 6.121 i6.17 .87
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Mean -and Variance of 8, Bias, Information,
and Mean and Standard Deviation of Number of
Items Administered as a Function of 6 .

~

s

-~ Table E ~~

for Data Set 8

-
»

Y

A ——— —
< P-—.-—---.—-

-

. ;] . Infor- No. of Items
o™ | Mean Variance Bias mation Mean - S.D.
=3.0 Z:-d.ass .216 1.51  .417  5.33 .57
gt -1.473  .230 1.33.  .117  5.31 .54
-2.6 -1.466 .183 1.13 . ¢007  5.29 .55
2.4 =1.432  .284° .97 .026  5.31 .54
-2.2 _-1.528 .178  .67- 232 .5.22 - .50
220 '-1.439 .185 .56 .503% 5.55 .58
y-1.8  -1.35% .193 .45 . 844 5.446 .59
-1.6 =-1.345 .113° .26 - 2.168  5.50 .56
“l.4  =1.227° .11p: .17 2,964 . 5.67 .55
~1,2 =1.056 .10 14 73.973 591 .45
-1.0 -.886 .13 .11 3.771 6.15 .62
-8, =768~ .091 .03  6.780 6.39 .69

-, 6 - 615 .095 -.01 7.%19 6.50 G757
-4 =409 .090 % -.01 ' 8.725 6,95 .86
-2 =240 . .087 =.04 9.841 7.28 .78
0.0 -.048 =078 =05 11.742 7.43 .67
.2 .157« .084 =.04 11.463 7.61 .61

.4 . .368, .079, =-.03 12.6l1 7.93 .65
/6 .548 - .070 -.05 14.501 - 8.01 .68
.8 .794 - .08 =01 12.427 8.27 .83
1.0 _ .956 .070 =.04 ‘l14.400\ _8,25 .73
1.2 1.111  .071 =.09 ~ 13,83 8,48 .77
1.4 1.299 .071 -.10 13,272 _ 8578 .88

- 1.6 1.519° ,064 =-.08 13.892 ° 9.23 .86
1.8 1.708 .085 =.09  9.693  9.56 .72

2.0 1.859 .100, ~.14 7.482, 9.83° .72%
2.2 2,099 .071 =-.10  9.35% 10.26 .74

204 2,224 .069 ~-.18  8.312 10.61 .82 ,

2.6  2.393 .059 -.21 8.126 11.10 .89

" 2.8 2.517 .060 + =.28+ 6.40& 11.44 ~ ,80

3.0 2,605 .047 =39 "T6.204 11.75 .61 ..
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