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“ tion that is much more detailed and precise than its predecessors. But un-
fortunately, the increased detail and precision in stating models has not been
accompanied by correspondingly detailed and precise arguments analyzing and
support1no them. Consequently, the new, richly detailed models of cognitive
science often fail to meet the traditiornal criteria of scientific theories.
This report discusses what kinds of tools are available or can be fashioned
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that will help cognitive scientists build computational theories of cognition
that will meet some widely accepted standards that have so far proved difficult"
for such theories to meet. The prime tool of this discussion, actually a class’
of tools, is the competitive argument. ' : :




Competitive Argumentation in Computational Theories of Cognition

Kurt VanLchn and John Secly‘Brown
Cognitive and Instructional Sciences Group
Xerox PARC

and

James Greeno
Department of Psychology
University of Pittsburgh

During the past two decades. Artificial Intelligence and linguistics have had a major impact on
- the form of theories in cognitive psychology. Prior to about 1960, most theories in cognitive '
psychology considered information in relatively abstract terms, such as features, items and chunks.
'.Slarting in the 1960s, and increasing during the 1970s, an additional theme in psychological theory
has been to take into account the specific information that is present in the tasks that provide the
material for theoretical analyses. The difference can be seen, for instance, in psychological analyses
of problem solving that were developed in the 1950s, compared with analyses that have been
worked out in the 1970s. In the earlier analyses, problem solving was considered as selection of a
re&ponSc (solution) that initially had low probability. Factors in the situation- were examined for
their facilitating or inhibiting effect on selection of the needed response. In computational models,
specific task situations are represented, and programs are written that use the information in those
represcntations to simulate processes of actually constructing solutions 1o specific problems.

The capability of analyzing the details of processing specific information is clearly an advance.
For example, it cnables. psychological analyses of human behaviors that onc would label
- "understanding” that are much more detailed than those provided previously. However, there is a
well known danger (o such an approach. Analyses can become mired in their increased precision
and detail, with the result that it is extremely difficult to separate fundamental principles from their
supporting detail. Yet-explicit principles are needed in order to define or at least constrain the
classes of processes and structures that are postulated.

In particular, when such detailed analyses aspire to be empirical theories. they face difficulties
in achieving an adequate freatment of individual differences. In most analyses, there has been
considerable obscurity in the boundary between what is meant to be true of all subjects, and what is
meant to be true of a particular subject. To modify the knowledge base, rules, or other structures
in order to fit a model to an individual subject is often easy enough. but how to place well-defined
limitations on such changes is an open problem. Identifying the universal components of a model

.and the general principles that constrain the processes is a start toward assessing the “"degrees of
freedom” of theories that tailor their predictions with non-numeric parameters, such as sets of rules.
However, determining the tailorability of such models is at best vaguely understood. Yet it is
crucial. A model may have so much tailorability that it can be tuned to match almost any data,

”




Competitive argumentation in computational theories of cognition
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rendering it vacuous.

Our concerns are similar to a number of recent contentions that the methodology of Artificial
Intelligence (AI) and related fields is not productive for\Tonnulaung and defending theories of mind
(Dresher & Hornstein, 1976; Winograd. 1977; Fodor, 1978; Pylyshyn., 1980: Pylyshyn, forthcoming).

Unlike early criticism of Al (e.g.. Dreyfus, 1972) which centered on whether computers could ever
be intelligent, these critics concentrate on Al's supposed contributions to psychology. They note
that despite its potential. well supported cognitive theories based on Al technology have not ben\/)
forthcoming. We tend W agree with their conclusion, and offer a bricf analysis of why this is so.

Approaches: top down.~ bottom up, neurological

. Al has demonstrated that computer programs can behave with a certain degree of intclligence.
However, no consensus has emerged concerning necessary or sufficicnt design principles for creation
of intelligent programs, or even on the limitations imposed by the computational medium on 5

. intelligence. It currently 'Enppcars that ‘the goal of manifesting intelligence per se is not in itself

consjraining enough to force particular architectires or principles to be used.

[

The failure of Al to demonstrate the existence of “top, down™ constrajgls on cognitive theories,
principles inherent in the nature of cognition independent of the medium*of its implementation,
suggests searching "bottom up.” starting with concrete instances of intelligent human behavior.

" That is, given that the goal is to find out how human cognition works, it currently seems advisable

to ground the models/analyses in human data. In this chapter, we will consider only empirical
theories, or rather the problems of obtaining empirical theories, that maintain the advantages of an
Al-like treatment of task information while striving to meet scientific criteria for empirical theories.

The technology of Al adapts readily to a bottom up approach. There are programs that
simulate a subject’s behavior quite faithfully and in considerable detail (e.g.. even eye movements
during problem solving can be predicted. Newell & Simon, 1972). However, despite the addition of
empirical responsibility, the current methodology of employing simulation models is still weak in
scveral respects, There has: been virtually no attention to the tailorability (degrees of freedom) of
simulation models. There has been little argumentation for the individual principles and
components of the modcl' Since the entailments of each principle have not been separated from
the performance of the' model's simulation as a whole, one is asked to accept the model in toto with
no explanation of wh(x ‘it has the principles it does. Although questions of observational adequacy
havé been trcated, queltfons of descriptive and explanatory adequacy’ have been almost universally
ignored. Indeed. without the additional consideration of tailorability, mcasures of descriptive and
observational adequacy have little meaning.

Some have asserted that it is necessary to add a third kind of constraint by moving to the
periphery, where neurological data can be brought to bear on information processing theories.
Although this has yielded some exciting results (Marr, 1976; Marr & Nishihara, 1978), the findings
obtained thus far seem not to provide strong constraints on the hypotheses about processes such as
languagé comprehension or problem solving. : -
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' Competitive argumentation in computational theories of cognition

.

'Thc missing ingredient for scientific progress is not behavioral or neurological data, we
believe, but scientific reasoning 'that explicates the principles underlying successful models of
cognition and connccts them with the data. ‘The emphasis must be on the conncction; cxplication

" “alone is not sufficient. Efforts at explicating programs have increased in response to critics (e.g.,
Kaplan, 1981) who point out that a typical Al/Simulation "explanation” of intelligent bchavior is to
substitute one black box, a complex computer pr(;gram, for another, namely the human mind.
Extracting the principles behind the design of the computer program is a necessary first step. But
many other questions remain to be addressed: What is the relationship between the principles and ,
the behavior? Could the given cognition be simulated if the principles were violated or replaced by
somewhat different ones? Would sucl:n a change produce inconsistency, or a plausible but as yet
unobserved human behavior, or merety a minor perturbation in the predictions? Which alternatives,
if any, can now be rejected in favor of the chosen principles? This connection of explicit principles
to the data seems to us to be critical to progress in computational_'theories of cognition.

—-——
J

Nature and importance of arguments

Computer science has given psychology a new way of expressing models of cognition that is
much mdre detailed and precise than its predecessors. But unfortunately, the increased dctail .and
precision in stating models has not been accompanied by corrcspgndingly detailed and precise
arguments analyzing and supporting them. Consequently, the new, richly detailed models of

" cognitive science often fail to meet the traditional criteria of scientific theories. By support, we refer
to various traditional forms of scientific reasoning such as showing that specified empirical
phenomena provide positive or negative cvidence regarding hypotheses, showing that an assumption
is needed to maintain cmpirica{la content and falsifiability} or sh(;wing that an assumption has
consequences that are contradictory or at least implausible./ It is, of course, not new o desire that
cognitive theories have this kind of support. Nor is it a n¢w contribution to point out that current
theorizing based on computational models of cognition has been lax in providing such support
(Pylyshyn, 1980; Fodor, 1978). Perhaps what is new is discussing how such supporting
argumentation could be \developed for computational models of the mind.

The focus of this discussion is on the kinds of arguments that are applied to specified
theoretical principles. We're not going to advocate building a particular kind of theory, nor do we
wish to dispute over criteria for theories (e.g., falsifiability, tailorability). Instead, we discuss what
kinds of tools are available or can be fashioned that will help one build computational theories of
» cognition that will meet some widely accepted standards thatghave so far proved difficult for such
theories to meet. The prime tool, of this discussion, actually a class of tools, is the competitive
argument. Unlike famous technological tools of scientific advance, such as microscopes or Golgi
stains, which offered clearer views of tssue structure and other factual material, competitive
argument seéms 0 be a tool for analyzing and clanfying the theoretical 1ssacs implicit in a
computational model of a cognitive faculty. '

) There often is a great nced for such a clarifying instrument when the model under
development employs computations. The relationship between a principle and data must often be

Ve




. Competitive argumentation in computationaltheories of cognition

an indirect one and can take several forms. For instance, a principle might serve as a constraint on

a class of processes, perhaps by defining a processing language and an interpreter; the processes in
twm might have a mapping to observable behavior defined, for example, by some grain-size
assumptions. The indirectness of the relationship between principles and data provides additional
reasons for providing clecar and adequate supporting argumentation. With appropriate
argumentation, it is possible to show, among other things. that it is the principles that are
responsible for the computations’ empirical coverage and not some obscure or accidental details of
the particular computer implementation of the theory. Moreover, the arguments can show that the
principles have some force in that they are refutable,

Of course, the idea of argdmcntalion related to specific theoretical principles is not new, and
many examples could be listed showing how psychologists have considered principles in relation to
their supporting evidence, their testability and the plausibility of their conscquences. However,
argumentation regarding specific principles has been relatively rarc in computational theories. This
is ﬁanly because theorists have spent their major effort coming to grips with the precision and
subsequent detail of the computational medium and, of course, with the detils of fine-grained,
conceptual task analyses. ‘

We view argumentation regarding specific principles as a part of a natural progression. The
progression includes stages of task analysis, articulation of principles, and competitive
argumentation. In the third section of the chapter, we give an example of the evolution of one
particular theory through these stages. *

At the beginning of the study of a ‘task domain, a great deal of analysis is necessary before
even a crude simulation of behavior is possible. One must learn what details of the task to include
and which can be suppressed. Early examples such as Newell, Shaw and Simon’s (1963) model of
proving theorems in logic, Bobrow's (1968) model of solving algebra word problems, and Evans'
(1968) model of solving analogy problems (o name just a few examples) were valuable
contributions partly because they showed that their mechanisms were sufficient for producing correct
solutions for an interesting varicty of problems in their respective domains. In psychological studies
such as Newell and Simon's (1972) models of performance in cryptarithmetic, logic exercises and
chess, and Simon and Kotovsky's (1963) model of solving series completion problems, the
sufficiency criterion has been extended to require general similarity to performance by human
problem solvers. By and large. the first venturé into a task domain does not yield a precise
articulation of the principles that structurc competence in it. But it is important t0o emphasize just
how difficult it is to forge these first formalizations, and how much is leamed from them.
FJﬁhcnnore. the understanding of processes involved in performance provides an essential resource
for subsequent investigation of the task domain.

Such a subsequent investigation often aims at clarifying the general principles or components
that mastery of the task involves. Often there is a separation of highly specific task information
from more general information. Emst and Newell's (1969) discussion of the General Problem
Solver is a classic example. The general procedures of means-ends analysis were implemented as a
distinct program which was run in conjunction with representations of several different problem
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domains. Similar rcmarks apply to natural language un&crstanding systems, such as Winograd's
(1972) and Woods' (1972), that scparated a general syntactic parser from a task specific lexicon and
grammar, and a scmantic representation language from some task-specific information written in it
Hypotheses that identify some of the components of a theory as being relatively more general than
others provide a step in the direction of making a theory principled. in the sensc that we propose.

In our view, a significant strenglhening’] of computational theories can be achieved by
explicating their principles and the entailments of the principles. We believe that a substantial
advance is achieved if a theory can be developed beyond being a black box with a certain measured
adequacy. This involves laying bare the theory's principles and their cntailments, showing how each
principle, in the context of its interactions with the others, increascs empirical coverage, or reduces
tailorability. or improves the adequacy of the theory in some other way. With such developments,
the theorist provides explanations of why' the pamcular principles were chosen. The support
structure for cach principle is laid bare.

The intemal structure of the theory — the way the principles interact to entail empirical
coverage and wilorability — comes out best, we think, when the theory is compared with other
theories and with alternative versions of itself. That is, the key to supporting theories appears 1o be
compelitive argumentation. This style of support has succeeded in certain deep, non-computational
theories. We suggest that it can be adapted to the increased rigor and detail of computational
theories.

In practice, most competitive arguments have a certain "king of the mountain” form. Ome -

shows that a principle accounts for certain facts, and that certain variations or alternatives to the
principle, while not without empirical merit, are flawed in some way. That is, the aréumcnl shows
that its principle stands at the top of a mountain of evidence, then procecds to knock the
competitors down. The second section of this chapter illustrates the notion of such an argument
with an example.

Competitive arguments hold promise for establishing which pnnclples are cmcnal for analyzing
cognition. To show that some constraint is crucial is to show that it< cessaly in order for the
theory to'mect some criteria of adequacy. To show that it is suffigi#nr is not enough. Indeed, any
successful theory that uses some principle is a sufficiency argumewg for that principle. But when
there are two theories, one claiming that principle X is sufficient ‘and another claiming that a
different, mcompauble pnncnple Y. 1s sufficient, sufficiency itself is no longer persuasive. One must
somchow show that X is better than Y. Indeed. this sort of compctitive argumentation is the only
rcalistic alternative (0 necessity arguments.  Compentive argumenis form a sort of successive

approximation lo necessily.
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Argumentation in non-computational fields

Well reasoned, competitive argumentation occurs in non-computational ficlds. Linguistics is a
particularly good cxample. Throughout its history. linguistics has had a strong cmpirical tradition.
Prior to Chomsky, syntactic theories were rather shallow and almost taxonomic in character. The
central concern was to tune a grammar to cover all the sentences in a given corpus. Arguments
between alternative grammars could be evaluated by détermining which sentences in the corpus
could be analyzed by each. When Chomsky reshaped syntax by postulating abstract remote
structurcs, namely a base grammar and transformations. argumentation had to become much more
subtle. Since transformations interacted with each other and the base grammar in complex ways, it
was difficult to evaluate the empirical impact of alternative formulations of rules.

As Moravcsik has pointed out (Moravcsik. 1980). Chomskyan linguistics is virtually -akSne
among the social sciences in employing deep theories. Moravcsik labels theories "decp” (without
implying any depth in the normative sense) if they “refer to many layers of unobservables in their
explanations..., 'Shallow’ theories are those that try to stick as close to the observables as possible,
[and] aim mostly at correlations between observables... The history. of the natural sciences like
physics, chemistry, and biology is a clear record of the success story of ‘deep’ theories... When we
come to the social sciences, we encounter a strange anomaly. For while there is a lot of talk about
aiming to be ‘scientific,’ one finds in the social sciences a widespread and unargued-for predilection
for 'shallow’ theories of the mind.” (Moravcsik, 1980, pg. 28)

Computational theories of cognition are "deep” theories since much of the mechanism and
representation that they postulatc is quite unobservable. This depth is another reason that
argumentation has been rare in computational theories. The principles and components that
structure the theol's computation are remote from the data. The derivation of predictions from
them is often so lengthy and convoluted that only by executing the computation on the computer
can the theorist tell ‘what the current version of the theory predicts. To assign empirical
responsibility to a component of the remote structure is possible only in rare cases. The depth of
computational theories makes establishing the empirical necessity of their principles or architecture
extremely difficult, even given that their sufficiency has been demonstrated.

en argumentation is easy. In a sense, the data do the arguing
for you. Most experimental psygiGlogy is like this. The arguments are so direct that the only place
they can be criticized is at the pdttom, where the raw data is interprcted as findings. Experimental
design and data analysis tcciniques are therefore of paramount importance. The reasoning from
finding to theory is often shoit and impeccable. On the other hand, when theories arc deep in that
the derivation of predictions from remote structures is long and compidex, argumentation becomes
lengthy and intricate. However, the ecffort spent in forging them is often repaid when the
arguments last longer than the theory. Indeed, each argument is almost a micro-thcory. An
argument’s utility may often last far longer than the utility of the theory it supports. This utility
may take the form of a crucial fact, as discussed below.

When theories are “shallow

6 ju
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The transition from studying shallow theories to studying deep ones is sometimes accompanied
by somecthing like culture shock. The heightened toncern with intricate argumcntation from
apparcntly casual cmpirical obscrvations strikes some as totally unwarranted. Yet this concern can
be hi'ghly significant, since it can show where the theoretical connections are weakest. It is here that
~ theorics draw fire from their critics, and rightfully so, for there are many trails between surface
‘ findings and rcmote structures, and the first one ;raversed is not always the best

#

There is another orientation, that can block aééeptancc of argumentation. ’Cognitivc science
often cquates the merit of a theory with the complexity of the task domain that it addresses. This is
entirely appropriate when the theory consists solely of a task analysis. If the task domain is trivial,
an analysis of its information structure is often trivial, or at lcast less interesting than an analysis of
a complex task. As we suggested carlier, task analyses are and will continue to be an important first
step in cognitive studics. They have dominated the field since the 1950's and distinguish cognitive
psychology from its more task-information-free predecessors. Their dominance has made it almost
incvitable that the complexity of the theory's task domain has been strongly associated with the
theory's perceived ment, even if that theory gdes well beyond an analysis of its domain. Often, the
complexity of argumentation forces the research to be conducted in simple task ‘domains. Since the
task analysis is only a first step and a relatively one compared to ecliciting principles and
constructing supporting arguments, simple task "domains are a good choice for such research,
Moreover. the simplicity of the domain may allow discovery and sharpening of research tools, the
coghitive equivalent of the stains of ncuroanatomy or the restriction enzymes of microbiology. Such

Is, developed in a simple domain, can be used to illuminate a whole arca. Yet, choosing a
.Aimplc' domain mgkfg;\ it difficult to attract the attention of the cognitive science community, which
often equates simple tasks with trivial theories. Yet this attention 1s sorely nceded, not only to
encourage the investigators, but because compctttivé argumentation, even more so than other forms
of support, thrives on challenge. The enuirely appropriate habits of the early years of cognitive
science seem to be dampening the emergence of principled, well-argued theories. '

Crucial facts

Ultimately, every theory is abandoned. In the long term, it might scem that the effort spent
on carcfulqargumcnmtion is wasted since argumentation is sq thoroughly embedded in the theory's
framework. We do not believe this is the case. A long term effect of an argument 1s to raise the
prominence of a certain sct of observations, making them “crucial facts,” in the hinguistic jargon.
For example, a previously obscure class of sentences (the “promise-persuade” sentences) became
imgortaﬁt as supporting data for two transformations of early transformational grammars (Raising
and Equi-NP Deletion). A typical pair from this class 1s

Ronald promiscd Margarct to pay the bill.
Ronald persuaded Margaret to pay the bill.

Promise-persuade data have shaped every successor of transformational grammars. They have
become, like active/passive sentence pairs, crucial facts that any serious grammar must explain.
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Another example comes from behavioral theory in the domain of instrumental conditioning.
Hull (1934) formulated a hypothesis in which the strength of a tendgney to respond depends on a
global motivational factor. drive. and a factor dependjng on the organism’s cxperience, habit
strength. The habit strength of a response was assumed to depend both on the number of times the
response had occurred and becn followed by reinforcement, and on the amount of reinforcement
reccived. In an ingenious experiment, Tolman and Honzik (1930) placed rats in a maze and
permitted them to move about but provided no apparent rcmfonccmcm. Then food was placed in a
specific location. and the rats were given leaming trials. "The rats with exploratory experience
learned to go to the food more quickly than rats that had not reccived the experience. This
phenomenon of latent learning played an important role in the further devclopment of behavior
theory. 1

Commonly. crucial facts play the role of deciding among two important hypotheses. They
could almost be called “decisive™ facts for this reason. The two examples above were decisive.
Promise-persuade sentences demonstrate that there must be two distinct transformations operation in
roughly the same syntactic domain. Although the surface syntax is similar, advocating a single-
transformation approach, the ‘apparent differences in which noun phrase is the implicit subject of
the subordinate clause (i.e.. who pays the bill) shows that the more complex hypothesis of two
transformations is necessary. Similarly. the fact of latent learning played a decisive role. 1t showed
that the effects of experience may not be reflected directly in performance. The distinction between
learning and performance had to be made more complex. In Hull's theory, latent learning was

“accommodated by changing the assumption that habit strength grows %is a function of the amount of

reinforcement. In later versions of the theory (e.g.. 1952) Hull assumed that habit strength depends
only on the number of occurrences of the response that have been followed by reinforcement, and
not on the amount of reinforcement. To account for the affect of amount of reinforcement, Hull
assumed it acts as a motivational factor, called incentive, which influences performance rather than
learning. Hull was then able to account for latent learning by arguing that some small amount of
reinforcement probably wi®provided in the exploratory trials — e.g.. the rat likes going home to its
cage. so it takes removal from the maze as reinforcement for its last few moves. Since there was
reinforcement, there was learning. But the amount of reinforcement was small, so the incentive to
exhibit this learning was small. Hence, the rat's learning was not reflected in performance until
food was introduced. ’

Few, if any, crucial facts have emerged as yet in relation to C(;mpumuonal theories of
cognition. For example. SHRDLU's famous sentence “Pick up the big red block.” is not considered a
necessary part of a parser's repertoire, nor must a learner leamn to recognize an arch made of blocks,
despite the centrality of these examples in Winograd's and Winston's work. ‘The reason no old
examples scem worth accounting for in new theories is that no theoretgal issucs hinged on thenvin
the old theories. They were used for illustrauon, é?md nol to argue pnnciples. 3

Arguments and crucial focts ofien survive longer than theories. Theorists repeatedly appeal to
crucial facts, we believe, because they already know quite a few ways of accounting for these facts,
most of which are somechow flawed. ‘This makes them convenient tests for a new theorys Although
the counter-arguments will most often not lift directly over o the new theory, they will at least hint
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We suggest that Iong tenn progress may be exactly ‘the accretron of crucial facts, arguments,

- and possibly even techmques or types of arguments. Theories come and go. Wherein lies our

accumulated knowledge? Perhaps the knowledge that separates a "mature” field from a young one

is the empirical ramifications and other entatlments of its |deas-—-the arguments tonnecting them to

the facts and to each other. !

>

Compelence theories and Star dala 9

Recently, efforts have been 1ncreasmgly directed at forrnulatmg theones of what people can do
rather than what they did do in the given situation. In part, this follows from the realization that
the performance of subjects when confronted with a task is strongly determined by the requirements
of the task. To use Srmon s metaphor (Simon, 1981), studying the path of an. ant across the beach
tells one more about the beach than the ant. To learn something about general principles of

-cognition (the ant) it ns necessary to abstract detailed observations (the path). This introduces a

level of inference to that{ usually encountered- when - performance is used for’ mferences about
underlytng cognitive -processes and structures. Founding [hls new level, of course, involves

; ; v .
Another reason for emphasxzmg competence (can do) over performance (does do) is that it

allows side steppmg, to a certain degree, the difficult issue of allowmg some tuning of performance
parameters around individual differences wnthout introducing unlimited degrees of tailorability into

7

" -Assessing the underlying competence is no easy empirical task. The conclusions one draws
can be colored by subtle variations -in'.the task. =A illustrative case is the controversy over the

" development of competence in counting. Gelman’s classic "magic” experiments showed that the

eleménts of number competence aré present much earlier than strict Piagetian theory would predict ’

[l
L4

A 'successful style of argumentation has emerged .in service of competence theories. If one
defines a performance theory as a theory of what the:subject does do, and a competence theory as a
theory of what the subject can do, then clearly evidence about what the subjcct can’t do will be very
important for narrowing the range of behavior allowed by a competence theory. Such evidence s
called . star data. '

‘A star datum is a snm{ﬂate behavior that no human's behavior would ever match. It is
named after the linguistic cdhvenuon of starring sentences that are not in the language. How one
ascertains the non-exnstence ‘of a behavior may vary in different domains. Since by definition star
data are behaviors that are not found naturally. star data can not be obscrved in the same
(potentially). objective ways that ordinary data are observed. In parucular in many domains, a
subject can easily perform the behavior when asked to (e.g., utter Funoqsly sleep ideas green
colorless’ ') even though they would never do so naturally. In current lingujsticpractice, scntences
are starred according to the judgment of native speakers.- For Repair Theory (the theory that the

o 13 - \3
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‘forthcoming example is drawn from), expert diagnosticians were the judges of whether the model’s
behavior represented a star datum or plausible human behavior that just hadn't been observed yet.

Star data can be particularly useful in supporting claims about mental repmentatigqi One of
the - techniques that a thcorist can use to structure knowledge is to stipulate that it must be .
represented in a ceitain formalism, often called the representation language. A narrowly defined
lzfnguage reduces the ways that a piece of knowledge can be decomposed by forcing its -
decomposition to fit into the forms allowed by the representation language. This technique raises
formalisms from the status of mere notations to bearers of important theoretical claims. Star data
can be uscful in supporting such claims: If it tan-be shown that the theory would generate certain
star, data if it were not constrained by the given representation language, then one has a strong °
arm&mn’t-for the utility'.' if not the actual psychological'realit‘gg of that representation language. If
the representation language is/ewemely successful in constraining knowlnge structures, one‘might
even be inclined to propose it as a mental r?presentation (Fodor.~l9"15).,

\
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- ‘ : . Anexample of an argument <
In this scction, we give an example of an argument.’ However, arguing is impossible in
vaccuo, so several paragraphs must be spent in dcscnbmg the theory the argument is: taken from .
and the data that supports it. Like most arguments, this one depends strongly on assumptions of
the theory which themsclves have supporting arguments, This leads to rather involved, convoluted
reasoning — a characteristic of competmve argumentation exacerbated by the complcxmes ‘of

-protocol data.

‘ The argument presented here is taken from VanLehn (forthcoming). It concerns Repair
Theory (Brown & VanLehn, 1980). . Repair Theory examines certain cognitive aspects of procedural
skills. The basic idea of Repair Theory is that while following a procedure students will barge
through any trouble that they encounter by doing only asmall amount of superficial "patching"”.
That is, they make a minimal change to the procedure’s execution state in order to circumvent the
trouble and get back on the track. Sometimes they perform different repairs for the same trouble,

. - other times they use the same repair for periods of time, and sometimes they seem to abstract the
patch and make it a part of their procedure. Repair Theory is concerned with formalizing this
overall impression so that it can be tested. In doing so, it aims to articulate a formal representation
for knowledge about procedures — a mentalese for procedures (Fodor, 1975) — and an architecture
for interpreting that knowledge and for managing trouble during its interpretation.

The procedural skill taken for study is ordinary multi-column subtraction. The subjects are

elementary school students who are in the process of learning that procedure. The main advantage

of these choices, from -a psychological point of view, is that for these subjects, subtraction is a

virtually meanlngless procedure. Most elementary school‘ students have only a dim conception of

the underlying semantics of subtraction, which are rooted in the base-ten representation of numbers.

When compared to the procedures they use to operaté’ vending machines or play games, subtraction

is as dry, formal and disconnected from everyday interests as the nonsense syllables used in early
psychological “investigations- were different from real words. This’isolation is the bane of teachers

¢ ' but a boon to the cognitive theorist It allows one to study a skill formally without bringing in a
~ whole world's worth of associations. This isolation provides an elegant opportunity for building a
microscope into the mentalese of procedural knowledge and the architecture for interpreting it.

The data supporting the theories comes from the Buggy studies (Brown & Burton, 1978;

VanLehn, 1981). From the errors of thousands of students taking’ ordinary pencil and paper

subtraction tests, a hundred primitive bugs were inferred. Bugs are a formal device for notating

systematic errors in a compact way. - They are designed so that any of the observed systematic errors

" can be expressed by a set of one or more bugs. (Actually, bugs often do not combine linearly. The
co-occurrence of two or more bugs is called a "compound” bug.) This notation is precise in that it

describes not only what problems are answered incorrectly, but what the contents of thdse answers
were and what steps were followed in producing them. The technicalities of this form of data have |

been discussed in other papers K(‘Brown & Burton, 1978; Burton, 1981). The behavioral data that

\ support the arguments will be presented here as ideal protocols of the subject’s local problem

' solving. Fhis simplifies the exposition -considerably. ”

.
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A critical distinction m Repair Theory is between regular exccution and local problem solving.
Regular execution depends, of course, on what the represenlanon of procedures is. 1f procedures
are represented as pushdown automata, for instance, rcgular exccution is just following arcs, pushing
and popping the stack, testing arc conditions, exccuting primitive arc actions, and so forth. If the -
procedure is somehow flawed, perhaps because the student mislearned it or forgot part of it, then
regular exccution may get stuck: When a student exccuting a procedure reaches an jmpasse, the

- studept is unlikely to just halt, as a pushdown automaton docs when it can’t exccute any arcs

leaving its current state. lInstead, the student will do a small amount of problem solving, just

“enough to get unstuck and resume regular execution. These local problem solving strategies are

called repairs despite the fact that th'ey rarely succeed in rectifying the broken procedure, although
they do succeed in getting it past the impasse. Repairs are quite simple ‘tactics, such as skipping an
operation that can’t be performed or backing up in the procedure in order to take a different path.
Repairs do not in general r;sull in a-correct solution to the exercise the procedure is being applied
to, but msteaf/\esult in a buggy solution. The  theory explains the large variety of. observed
subtraction bugs as the result of a few flawed underlying’ subtraction procedures being subjected to

*. local probleth solving involving a surprisingly small set, of repairs, Local problem solving is

twofold: detecting impasses, called criticism, and getting around them, called repair. Some bugs
result from several instances of impasse/repair during the application of an underlying flawed
procedure to a problem. v

. There are strong constraints on criticism and repair. Both criticism and repair are very simple
and local. Two main types of criticism are detecting when an action’s precondition is violated (e.g.,
trying to decrement a zero) and detecting when regular execution halts because none of its methods
are applicable to the current situation. Repairs are also simple and local: e.g., skipping an operation
or backing up'in-the procedure. A basic principle of Repair Theory is ‘that any repair can be
dpplt"ed at any impasse, subject only to the condition that it succeed in getling the procedure past the

" impasse. The empirical impact of this principle is that the theory predicts that the set of all possible

bugs is exactly the set of all possible repairs applied 10 all possible impasses. To summarize: the
student’s observed behavior is a combination of regular execution and local problem solving, where
local problem solving consists of detecting an impasse and applying one of a set of repairs to it.

, Assumptions

Although' a g‘i’e“@t deal more can be said about Repair Theory and bugs, it is time to turn to

. the illustrative argument. It concerns the architecture/representation the theory .uses to model

human conceptions oif procedurcs. and in particular, the component of the architecture . which is
called the short term or working memory in production systems. This argument is part of a longer
argument that the representation’ should be an applicative language. The ‘principle at issue here is
how the model should represent focus of attention. As students solve a subuacuon problem, they
focus their attention on various digits or columns of digits at various times. This can be inferred
from the information that students read from the paper, or perhaps from eye-tracking studies. For
this chapter, it will be assumed that focus and focus shifting exist. The issue to discuss is how to

represent them. A leading contender will be a "you are here" register that stores the focus, that is,
- .

A Y -
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where on the paper the attention is being focussed. This register, in tandem with a “currently active

’ go#’ register, puts a clean division between focus of attention and control state. However, register-
based architectures will be shown to make focus too independent of control state. A different

architecturc, one that_unites focus and control, will be shown 1o fit the facts more closcly It's
named schema/mstancc for reasons that will become clear in a moment

We would like to-specak in an informal way of goals and subgoals, intending that these be
taken as referring to the procedural knowledge of subtraction 1§sclf. rather than cxPresnons_ in some
particular representation (e.g.. production systems, and-or graphs, etc.). In particular, we'll assume
that borrowing is a subgoal of the goal of processing a column, and that bofrowing has two
subgoals, namely borrowing-from and borrowing-into. Borrowing-into is pErfor'med by simply
adding ten to a certain digit in the top row, while the borrowing-from subgoal is realized either by
dccrementing a certain digit. or by invoking yet another subgoal, borrowing-across-zero. (This way
of borrowing is not the only one, but jt was the one taught to all our subjects.) These assumptions,
or at least some assumptions, are necessary to begin the discussions. They are, we believe, some of
the mildest assumptions on¢ can make and still have some ground to launch from. We've assumed
that focus exists and that a goal-structured control regime exists. One other assumption is needed
before the main argument can be presented. ‘We'll assume that a repair called Backup exists. This
repair is most casily described with an example of its operation.

The Backup repair in action

Figure 1 gives an idealized protocol. It illustrates a moderately common bug (Smaller From
Larger Instead of Borrow From Zero). In_a sample of 417 students with bugs, 5 students had this
bug (VanLehn. 1981). The (idealized) subject of figure 1 does not know all of the subtraction
procedure. In particylaf.‘ he does nof know about borrowing from zero. When he tackles the
problem 305-167. he begins by invoking a process-column goal. Since S is less than 7, he invokes a
borrow subgoal (episode a, see Figure 1), and immediately the first of borrowing's two subgoals,
namely borrowing-from (epiéodc b). At this point, he gets stuck since the digit to be borrowed
from is a zero, which can not be decremented in the natural number system. In the Repair
Theoretic terms, he has reached an impasse.

The theory describes several repair straiegies that, can be used at impasses to get unstuck. The
onc that interests us here is called the Backup repair. It gets past the decrement-zero ifnpasse by
"backing up.” in the problem solving sense. to the last goal which has some open alternatives. In
this case, there are four goals active: . Lot -

borrowing-from . ,
borrowing

processing a column

solving the subtraction problem

The borrowing-from goal has failed. The borrow goal has no alternatives: one always borrows-from
then borrows-into. The next most distant goal, namely column- -processing, has alternatives: one for
columns that need a borrow, one for columns that do not need a borrow. So Backup returns
_ control to the column-processing goal.
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2 305 Inthe units column, I can't take 7 from 5, so I'll
/ - 167  havetoborrow. , N

b. 305 To borrow, I first have tp decrement the next
- 167  column'stop digit. ButI can't take 1 from 0!

C. 305 So I'll go back to doi’ng the units column. [ still can’t
- 167  take7 from 5, so I'll take 5 from 7 instead. N

<

.2 ' - ]
- d ¥05° Inthe t}ns column, I can’t take 6 from 0, so I'll have to borrow.
-1 §7 I decrement 3 to 2 and add 10 to 0. That’s no problem. ‘

) .
e. 805 sixfrom10is4. That finishes the tens. The hundreds is
- 167 easy, there's no need to borrow, and 1 from 2 is 1.

Figure 1

An idealized protocol of a student with the bug
Smaller From Larger Instead of Borrow From Zero

: 1&
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Evidence for backing up occurs in episode ¢ of figure 1, where the subject says "So I'll go
back to doing the units column.” [n the units column he hits a second impasse, saying "I still can't
take 7 from 5,” whlch he repairs ("so I'll take 5 from 7 instead”). He finishes up thc rest of the
problem without difficulty.

The crucial fcature of the analysis above, for this argument, is that Backup caused a transition
from a goal (borrowing-from) located at the top digit in the tens column to a prior goal (processing
a column) located at the unifs column. Backup caused a shift in the focus of attention from one
‘location to another as well as from one goal to another. Moreover, it happcns that the location it
shifted back to was the onc that the proces-column goal was originally invoked on, even though
that column turned out to cause problems in that further processing of it led to a second impasse.
‘S0, it seems no accident that Backup shifted the location back to .the goal’s original site of
invocation. It is because Backup shifts both focus and control lhat it is the preeminent tool to be
used in the argurmnt that follows.

”
Overview .

e

The issue is how to represent focus. To keep the argument short, just two alternative
architectures will be discussed: register-based and schema/instance. As it turns out, just two facts
arc needed. One is the bug just described. The other will be introduced in a moment. The
argument is organized around these two facts.. Figure 2 is an outline of the argument.

It will be shown that the schema/instance architecture generates the first bug (LA in the
outline), but the simplest version of the register-based architecture, a single focus register, generates
a star bug instead (1.B.1). Parching its difficulties by making the Backup repair more complex leads
to problems with retaining the faksifiability of the theory (1.B.2). However, using several registers
instead of just one register allows the bug to be generated simply (1.B.3). So the conclusion to be
drawn from the first fact will be that the register. approach will be adequate only if there is more
than one focus register.

/

The second part of the argument introduces a new bug involving the Backup repair. Once
again, the schema/instance architecture predicts the fact correctly (II.LA). Two different
implementations of multiple registers fail (11.B.1 and 11.B.2) by generating star bugs. Smart Backup
would fix the problem but remains methodologically undesirable (IL.LB.3). Postulating various
complications to the goal structure of the procedure (11.B.4 and 11.B.5) allow the correct predictions
to be generated, but they have problems of their own. So the second part concludes that the
register-based alternative is inadequate even when various complex versions of it are introduced.

In overview, the argument is a nested argument-by-cases wherc all the cases except one are
climinated. To aid in following it, the cases will be labelled as they are in the outline of figure 2.

~
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I. . Fact 1; Smaller From Larger Instead of Borrow From Zero .
A.  The schema/instance architecture generates it
B. - Registers
L A single register architecture generates astarbug -~ ‘
2 "Smart” Backup is irrefutable. hence rejected on methodological grounds
3. Multiple register architecture allows generation of SFLIBFZ

Il.  Fact 2: Borrow Across Zero
A.  The schema/instance architecture generates it
B.  Registers ‘ oo :
One register per goal: can't generate the bug |
One gegister per object: can't generate the bug
"Smart” Backup is-irrefutable, hence rejected on methodological grounds
Duplicate borrow-from goals: cntails infinite procedure
Duplicate borrow goals: equivalent to schema/instance -

W

. Figure 2 ’ .
Outline of the argument.
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1.A Schema/instance generates the bug

The basic idea of a schema/instance architecture is that the location of a goal is very su-ongly
associated with the goal at the time it is first set. That is, when a goal like borrowing is invoked, it
is invoked at a certain column, or more generally at a certain physical location in the visual display
of the subtraction problem. “In a schema/instance architecture, this association between goal and
location, which is formed at invocation time, persists as long as the goal remains-relevant. That is,
the goal is a schema, which is instantiated by substituting specific locations, numbers or other data .
into it. Most modern computer languages, such as LISP, have a schema/instance architecture: a
function is instantiated by binding its arguments when it is called, and its arguments retain their
bindings as long as the function is on the stack.

’Ihe schema/instance architecture allows the bug of figure 1 to be generated quite naturally.
Suppose the process-column goal were strongly associated with its location, namely the units
- column, in some short term memory. ' Then Backup causes the resumption of the goal at the stored
location. Another way to think of this is that the interpreter is maintaining a short term "history
list” that temporarily stores the various invocations of goals with their locations. In regular
execution, -when the borrowing goal finishes, the process-column gdal is resumed ar the same Place
as it ed. That is, in the long-te}rn representation of the procedure, the process-column goal is a
schema with its location abstriacted out. It is bound to a location (instantiated) when it is invoked.
It is the instantiated goal that Backup rewms to, not the schematic ope.

_ This schema/instance distinction, which is at the heart of almost all modern programming

languages, entails the existencesof some kind of short-term memory to store the instintiations of
goals, and thus motivates this way of implementing the Backup repair. But there are of course
other ‘ways to account for focus shifting during Backup. Several will be examined and shown to
have’ fewer advantages than the schema/instance one.

-
LB.I A" singhe -register architeciure generates a star bug

Suppose that instead of using the schema instances to implement focus storage, the
architecture used a single register, a "you are here” pointer to some place in the problem array.
There would be no problem representing the subtraction procedure in such an architecture. In
order to shift focus left, for example, an cxphcn action in the procedure's representation would
change the contents of this register as the \grious goals wecre invoked.

Suppose first off that Backup is kcpt as simple as possible, and in pamcular that it doesn’t go
rooting around in the procedure n order to find out how to reset the register. Under this
parsimonious account of Backup the single register architecture causes trouble. Because the "you
are herc” register is simply Icft alone during backup, then a star bug is generated. 1t is illustrated in
figure 3. At episode b of figure 3, Backup resumes the process-column goal, but the you-are-here
register is not ‘restored to the units column. Instead, the tcns column is processed. The units
column is Jeft' with no answer despite the fact that its top digit has been incremented. In the
judgment of several cxpert diagnosticians, this behavior would never be observed among subtraction
students. It is a star bug. The theory should not predict its occurrence.

17
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a 4d‘2 o in the uﬁits column, I can’t take 6 from 2, so I'll
- 106  havetoborrow. First I'll add ten to the 2.

. « ~ -

b. 4d 2 I'm supposed to decrement the top zero, but I can’t!
- 106 So I guess I'll back up to processing the column.

C. 402 Processing it is easy: 0—0is 0.
- 1 06 .
0 . b

a 402 ’Ihehl‘mdredsvis'also easy. I'm done!
-106
30

Figure 3

\

|

| ,

’ An idealized "protocol” for a star bug
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1.B.2 A smart Backup repair makes the theory (oo tailorable /

To avoid the star bug, the Backup repair would have to employ an/ explicit action to restore
the register to the units column in episode ¢ of the protocol of figure 1. But how would it know to
do this? Backup would have to determine that the focus of attention should be shifted rightwards
by doing an analysis of the goal structure contained in the stored knowledge about the procedure.
It would see that in normal execution, a locative focus shifting function was executed between the
borrow-from goal and the processTolumn goal. For some reason, it decidas to execute the inverse
of this shift as it transfers control between the two goals.

Not orily does this implementation make unmotivated assumptions, but it grants Backup the
power to do static analyses of control structure. This.would give it significantly more power than the
other repair heuristics, which do simple, local things like skipping an operation. or executing it on
slightly different locations. It gives the local problem solver so much power that one could
“"explain” virtually any behavior by cramming the explanation into the black -boxes that are repair
heuristics. That is, allowing repairs to do static analyses gives the theory 100 much tailorability. It
is much better to make the heuristics as simple as possible by embedding them in just the right
architecture.

>
1.B.3  Muliiple register allow generation of the bug

Another way to implgmcnt Backup involves using a set of registers. The registers have some
designated semantics, such as "most recently r{:fcrenccd column” or "most recently referenced
digit.” That is, the registers could bc associated wl(h the type or visual shape of the locations
referenced (e.g.. as Smalltalk’s class variables are). Altemamcly they could be asspciated with the
schematic goals. (Some Fortran compilers implement a subroutine’s Jocal variables this way by
aiiocating their storage in the compiled code, generally right before the subroutine’s entry point.)
Process-column would have a register, borrow would have a different register, and so on.

Given this architecture, Ba‘ck“up is quite simple. Returning to process-column requires no
locative focus shifting on its part. Since the process-column register (or the column register, if that's
the semantics) was not changed by the call to borrow, it is still pointing at the units column when
Backup causcs control to return to process-column.  This multi-register implementation is
competitive with the schema/instantiation one as far as its explanatory power (i.c., Backup is simple
and local, and the architecturc has motivation independent of the Backup repair in that it is used
during’normal interpretation). Howevcr it fanls to account for certain empincal facts that will now
be exposed. ‘

o
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ILA  Another bug and schema/instance can generate it

The argument in this scction is similar to the one in the previous section, It takes advantage
of subtraction's recursive borrowing to exhibit Backup occurring in a context where there are two
invocations of the borrow goal actm at the same time. This means there are two potential
destinations for Backup. It will be shown that the schema/instance mechanism is necessary to make
the empirically corréct prediction. ‘

A common bug is one that forgets to change the zero when borrowing across ze@is leads
to answers like: '
2

|

3 ' .

alol2

-139 s ' ‘
l 173 L
(The small numbers stand for student’s scratch marks.) The 4 was decremented once due to the
' borrow originating in the units column, and then.again due to a borrow originating from the tens
column because the tens colurin was not changed during the first borrow as it should have been,

This bug is called Borrow Across Zero. It is a common bug. Of 417 students with bugs, 51 had
this bug (VanLehn, 1981). '

An important fact is seen in figure 4, The bug decrements the 1 to zero-during the first
borrow. Thus, when it comes to borrow a second time, it finds a zero where the one was, and
performs a recursive invocation of the borrow goal. This causes an atiempt to decrement in the
thousands columns, which is blank. An impase occurs.  The answer shown in the figure is
generated by asiuming the impasse is repajred with Backup. This sends control back to the most
recently invoked goal that has alternatives. At this point the active goals areo

4

borrow-from (the recursive invocation located at the thousands column)
borrow-from-zero  (at the hundreds cofumn '
borrow-from + (at the hundreds column

borrow (at the tens column)

process-column (at the tens column)

~ In this procedure, the borrow-from-zero goal has no alternatives (it should afways both write a nine
over the zero and borrow-from the next c?lumn., although here the write-nine step has been
forgotten). The borrow-from goal has alternatives because it has to chose between ordinary, non- -
zero borrowing and borrowing from zeros. Since borrow-from was the most recently invoked goal
that has alternatives left, Backup returns to it. Execution resumes by taking its other alternative, the ‘
one that was not taken the first time, Hence, an attempt is made to do an ordinary borrow-from, |
namely a decrement. Crucially, this happens in the hundreds column, which has a zero in the top,
which causes a new impasse, We see that it is the hundreds column that was returned to because
thé impasse was repaired by substituting an increment for the blocked decrerhent, causing the zero |
_in the hundreds column to be changed to a one. { |
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0 1
a 1 0‘2 Since I can't take 9 from 2, I'll borrow. The next column is 0, so
- 39  r'lidecrement the 1, then add 10 to the 2. Now I've got 12 take

- —_—

3 away 9, which is 3.

-+

* 0
b. Y02  Ssincel can't take ¥from 0, I'l borrow. The next digit is O,
- 39 butthereisn'ta digit after that!
3
N\
/ | .
0 - :
c A d2 I guess 1 could quit, but I'll go back to see if I can fix things up.
- 39 Maybe | made a mistake in skipping over that 0, so I'll go- /
3 back-there. ' : (
l e
A 4 (
d. Y02  Whenlgoback there, I'm still stuck because I can't take 1 froln. 0.
- 39  I'lljustadd instead.
3
¢ &10‘2 " Now I'm okay. I'll finish the borrow by adding 10 to the ten's - y
- 39 column, and 3 from 10 is 7. The hundreds is easy, | just bring

b
N
w

down the 1. Done!

Figure 4
An idealized protocol of a student with a version

of the bug Borrow Across Zero

-

21 2,;




. hundreds column. even though both the source and the destination of the backing up were borrow-
from goals. This shift is predicied by the schema/instance architecture. However, the empirical
adequacy of the register architecture is not as high.

ol .
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I1.B.]1 One register per goal can't generale the bug

Suppose each schcmatic gml has its own register. Borrow-from would have a register, and it
would be set to the top digit of thf® thousands column at the first impasse (cpisode b in figure 4).
Hence, if Backup returns to the first invocation of borrow-from, the register will remain set at the

. thousands column. Hence, Backup doesnt generate the observed bug of figure’ 4 In fact, it can't

generate it at all: the only register focused on the hundreds column is the one belonging to borrow-
from-zero. That goal has no open-alternatives, so Backup can't return to it Even if it did, it
wouldn’t generate the bug of figure 4. So one register per goal is an_ architecture thll is not
observationally adequate. o

I1.B.2 One register per object doesnt generale the bug

Assuming the registers are associated with object types fails for similar reasons. Both the
impasses (episodes b and d) involve the same type of visual object, a digit, and hence the
corresponding register would have to be reset cxphcltly by Backup in order to cause the observed

focus shift.

I1.B.3 Smart Backup makes the theory too (lailorable

But providing Backup with an ability to explicitly reset registers would once again require it
to do static analysis of control structure —— an increase in power that should not be granted to

repairs. \

I11.B.4 Duplicate borrow-from goals

.. One could object that we have made a tacit assumption that it is the same (schematic) borrow-
from that is called both times. If there were two schematic borrow-froms, one for an adjacent
borrow, and one for a borrow two columns away from the column originating the borrow, then they
could have separate registers. This would allow Backup to be trivial once more. However, this
argument entails either that one have a subtraction procedure of infinite sizé, or that there be some
limit on the number of columns away from the originating column that the procedure can handle
during borrowmg Both conclusions are implausible.

L <
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" ILB.5 “Duplicate borrow goals

But one could object that there is ariother way to salvagé the multiple register architecture.
Supposé that the schematic procedure is extended by duplicating borrow goals (plus registers) as
needed. The bug could be generated, but this amounts either t0-a disguised version of schemata

~ and instantiations, or an appeal to some powerful problem solver (whlch then has to be explained
lest the theory lapse into infinite tailorability). So, this altematwe is not really tenable either.

This rather lengthy argument concludes with the schema/instance architecture the only one
left standing. What this means is that representations that do not employ the schemata and
. instances, such as finite. state machines with registers or flow charts, can -be dropped from .
consideration. This puts us, roughly speaking, on the familiar ground‘of 'modern” representation
" languages for procedures, such as stack-based. languagés, certain varieties of production systems,

certain message passing Ianguages. and so on. o

The example :IIustmtes the main points . - ‘

“The preceding argument |Ilustraté several of the main points of this chapter. The structure of
the argument was to first establish a need, in this cas® for a data flow scheme, then to examine
several alternative aichitectures that meet the need. This pattern of establishing a need and
examlnmg alternatives is charactensnc of comipetitive argumentation.

The argument introduced a crucial fact: Whenever problem solvpg backs up to a prevxously
invoked goal. the goal is resumed with the same instantiating information that it had during its
original invocation. This was illustrated with two bugs (figures 1 and 4). We can vouch for the
truth of this observation in the local problem solving that accompanies subtraction performances,
and we expect it to remain uncontradicted by evidence from other domains. In Newell and Simon’s
classic échy of eye movements during the solution’ of cryptarithmetic puzzles, for example, there is
ample evidence that backing up restores not only the goal, but the focus of visual attention that was
current when the goal was last active (Newell & Simon, 1972, pp. 323-325).

. # The arguments turned mostly on limiting the tailorability of the theory and pn avoiding star
bugs. Since all the competing explanations for the crucial fact were able to account for it one way
or another, it was their entailments that decided their relative merits. Sometimes the machinations
necessary to. account for l.he facts would introduce so much power into the theory that it could
trivially account for any data; in these cases, the hypothesis was rejected as introducing so much
tailorability as to make the. theory irrefutable. In other cases, the hypothesis cntailed, the generation
of certain absurd behavjors: star bugs. Such generations were treated like the generation of false
prcdncuons despite the fact,that empirical claims about cxistence can never be proven false.

The emphasis on what people can and can’t do as ppposed to what they do do is apparent in t
the use of bugs rather than raw protocols as the data supporting the argument above. Bugs are an -
idealization of human behavior. They déscribe systematic errors and leave aside unsystematic errors
(i.e.’ slips in the sense of Norman, 1981) such as 7-5=3. Also, bugs isolate distinct behaviors:

. . ' N
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The bug Smaller From Larger Instead of Borrbw From Zero occurred five umes in our sample but
always in combination with various other bugs (VanLehn, 1981). It never occurred alone. There is
a layer- of inference involved in this idealization of the raw data that has not been presented here
- (VanLehn, 1981; Burton, 1981). In addition to these difficult sorts of idealization, there are simple
ones such as choosing not to collect timing data or sclf-report data from subjects as they solved -
problems. Although the objective of Repair Theory is in part to undetstand the processes involved
. in applymg procedures to, problems, it can be successfully approached, we lxcheve ‘within a
competence ‘theory framework. y

Lastly. the argument illustrates what we mean for a theory to have “depth.” This attribute
correlates with the length and complexlty of the theory's arguments. In Repanr Theory there are
multiple layers — protobols, bugs, mterpretcr state, and knowledge structures. -There are. precise
relationships between these layers. The format of the structures at each layer, as well as the nature
of the relationships between them, require supporting argumentation. to show not only that the
proposed architectures are sufficient to account for cenam crucial facts, but also that they are the °
leading edge of a convergence upon empmcal necessnty in that a careful drawing out of the
entailinents of competing proposals reveals that each of the competitors is flawed. '

¢

1

An example of the progression toward competitive -argggnentation

It was suggested earlier that cognitive science research is following a natural progression that
is entailed by its emphasis on precise and detailed use of task-specific information. That emphasis
necessitates an early phase where information latent in a new task domain is uncovered, often by
creating a rough computer simulation of the task behavior. These early formulations become
refined as important pnncnples and components are separated from the more task-idiosyncratic
information. These are put forward as a sufficient formulation of domain knowledge and skill.
From these first articulations of pnncnples, attention naturally turns to supporting the principles
and/or revising them. From competition among various analyses of_the task domain, a successive
approxunanon of what principles and components are necessary emerges. It was toward this later
stage that the bulk of this chapter was addressed. Yet, it seems appropriate to end by showing,
agaxn with an example, how thls phase of compentwe argumentation arises naturally from those that

mustpreoede 1t.

A domain that illustrates tlns natural progression is young children’s understanding of
pnnc:ples of number and quantity.’ Until recently, based largely on Piaget's (1955) seminal
investigations, most developmental psychologists accepted the conclusion. that significant conceptual
competence (in the sense of general ability) regarding number is not achieved until children are
about seven or eight years old. Yet children are able to count sets of objects well before they enter
school at four or five years old. On the standard view, children’s ability to count objects reflects a
procedural knowledge of a rote, mechanical nature, rather than understanding. Changing the
 definition of "number competence” to exclude counting, which develops too early and hence offers
a counterexample to classical stage theory, is exactly what Lakatos (1976) would call “monster
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counting.
Observations by Gelman and Gallistell (1978), and others, provnded evidence that significant
conccptual' competence underlies preschool children’s performance in counting tasks. One example
of such evidence is the observation that although many preschoolers. use idiosyncratic lists when
théy count, these lists are used consistently. For example, a child might count wuh the list, ’ one.

. two, three, six, ten.” The consistency of use of such lists is taken as ev1dence that children
- appreciate the need for a sct of symbols with stable order, and that while they can sometimes
acquire the wrong set, the pnncnple of stable ogder is part of their conceptual competence.,

barring." Just as L:?ws would predict, this caused considerable attention to be focused on

Another example involves performance in tasks where children count objects with an
additional constraint superimposed on the counting task. In a typical experiment, the child is asked
to count five objects arranged in a straight line, then the cxperimenter adds a constraint by saying,

. "Now count them again, but make this the one,” pointing to the second object in the line. Most
five year old children make completely appropriate adjustments of their counting procedures -in -
order to accommodate these constraints. Even children whose modified counting is not completely
appropriate still perform in ways that preserve some of the constraints of counting. Their
performance provides quite strong evidence that counting reflects a good understanding of number,

““and is not a rote, mechanical procedure, since they generate novel procedures that conform to sonie, -
but not all, of the principles of counting,

Given these results, it became untenable to bar counting from theories of the development of
cognitive competencies. One response has been to construct a computational model for the
development of number c_ompetency. This is where our example of the natural progression of
computational analyses of cognition begins. ~

An analysis of children’s counting was conducted by Greeno, Mary Riley, and Rochel Geiman
“(forthcoming).  First, a process model was formulated that simulates salient aspects of children's ;
performance on a variety of counting tasks. This was necessary just to come to grips with-the latent
information that the tasks required. Next, an analysis was developed in which the procedures in the
process model were derived from premises that correspond to certain- principles of counting. These
premises formalized and extended a particular decomposition of counting ‘competence’ proposed by
Gelman and Gallistel (1978). The steps of the derivation involved usc of planning rules for
inéluding procedural components in the counting procedure. The outcome of the analysis was a
« Planning net (VanLehn & Brown, 1980) that showed how the various components: of the counting
procedure are formally related to the counting principles. ‘The result of this phase of the research
was to articulate clearly the counting principles, indeed to formalize them as operable rules, and to
show that they were sufﬁclent lo generate the kinds of counting performances observed by Gelman
and others. .

From a clear articulation and a first demonstration of sufficiency, the research has begun to
focus on supporting thesc particular principles in various ways. To argue that the particnlar
decomposition of competence chosen is correct, we have been investigating how removing certain
principles from the set while adding constraints corresponding to the experimenter’s request to

25 C
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""Make that one be one” results in the derivation of procedures cbqespom‘iing to the various
counting performances observed under the stréssed conditions. If successful, this demonstration
could support the particular set of counting principles, and rule out others that are (hypothetically)
equally successful at generating counting procedure in unéonstrgi’ned situations. Thus begins a
phase of competitive argumentation, following on naturally after a first formulation of a principled,

detailed and precise analysis of counting competence.

This example ‘of natural progression also illustrates how experimental facts can become ‘crucial.

The fact that performances of children's counting degrade along the lines predicted by a certain set

of principles is used to decide between that set of principles rather than some others. It also

appears to preclude an explanation of counting as some indecomposable, "rote” procedure. Because

these experiments have been used to decide important theoretical issues, we expect them to remain
crucial facts. |

-4

‘ Conclusions ‘ , )
' ‘The development of models that simulate the processing of specific information in detail has

" required large investments of time in «developing tpols for model building as well as obtaining a

working understanding of the power and limitations of computational concepts and theoretical
methodology. Hence; many computational theories have lacked explicit principles, many have not

_ uscd data, and-virtually none have-the argumentative support that we have discussed in this chapter.

During the period of this early development, it has be¢n inevitable and perhaps even desirable that
computational theories should have been relatively unprincipled and unsupported. However, the
rapid initial growth in computational experience, understanding and tool building seems to be
leveling out now. We suggest that it is tithe to use that investment to initiate a parallel growth in
our uhdersganding of what constitutes principled computational theories of mind and what tools
would facilitate Qheir construction -and especially their support. ,

~ Some kind of defense of individual theoretical principles, whether competitive or not, seems
necessary to expedite scientific progress. If the support for a theory is not analyzed so that one can
see how the evidence bears on each part, then the theory must be accepted or rejected as a whole.
In contrast, afaumenuﬁon allows the theory to be revised ihcrementally. Indced, perhaps it is
because of the infrequent use of argumentation in cognitive science that its theories "have stood on
the toes of their predecessors, rather than’ theit shoulders” (Bobrow, 1973).

Competitive argumentation can have several advantages. In addition to its function of
showing the lack of support for some theoretical principles while favoring other principles, it adds
information at a more general level, enriching the understanding of the connection between facts

. and abstractions. A second potential advantage is that by making explicit the reasons for rejecting a

principle, when future development of the theory brings the chosen principle into conflict with
others or into conflict with new facts, one can sometimes dust off one of the fallen competitors and
paich its flaws, rather than scarcliing for a replacement from scratch. In this respect, an argument
functions like the "support” assertions that must be saved in ordgr to do dependency-directed
backtracking (Stallman & Sussman, 1977; deKleer & Doyle, 1981). In short, the criticism of

~
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* alternative explanations that a typical argument provides is value added to the demonstration of
empirical support for the chosen principle. Third, contrasting two alternative explanations sharpens
- both, making it easier to understand the positions involved by explicating the considerations that
mutually support them as well as those that distinguish them. Fourth, argumentation guards against
reinvention of the wheel, for if no argument can be found to split two proposals, one begins to
suspect that they are equivalent in all but name. Finally, there is the possibility that arguments will
outlive the theory they were crafted to support. They might survive not only as crucial fatts, but
also perhaps as argumentative techniques. Some of the most significant contributions to
mathematics have been innovative proof techniques, techniques that far outshown the theorems they
supported. Perhaps cognitive science will also evolve a repertoire of argumentative techniques.
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