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Abstract

Three models have been proposed concerni-Ag the relationship between the

principle of commutativity and the development of addition strategies which

disregard addend order. It has been proposed that the discovery (model 1) or

assumption (model 2) of cammutativity is a necessary condition for the

invention of such advanced addftion strategies. A third model suggests that

children may invent labor saving/addition strategies without/appreciating the

cammutativity principle. This study tested the three models by evaluating 36

kindergarteners on two types of cammutativity tasks. Both tasks involved

predicting whether commuted and noncammuted pairs of problems would produce

the Flme or different answers. O'er two sessions, addition strategies were

also determined.* Commutativity was not naturilly assumed by children (as

proposed by model 2), but appeared to be discovered. However, contrary to

model 1 and consistent with model 3, an understanding of cammutativity %as not

evident in all those who invented labor saving addition strategies.
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The Eevelopaent of the Cammutativity Principle

and Addition Strategies in Ybung Children

Surprisingly little research existafon the development and use of basic

mathematical principlessuch as the cammutativity of addition (the order in

which terms are added does not affect the sum) (Gelman & Starkey, 1979; Suydam

& Weaver, 1975). Some evidence indicates that children appreciate the

commutativity principle quite early (Baroody, Berent, & Packman, 1982;

Baroody, Ginsburg, & Mxman, in press; Ginsburg, 1982). This study examined

children just beginning school for evidence of (a) an implicit knowledge of

cammutativity and (b) a developmental relationship between this principle and

informal addition strategies.

Children appear to invent increasingly sophisticated and economical

counting strategies to compute addition (e.g., Carpenter & Moser, 1982; Groen

& Resnick, 1977; Ilg & Ames, 1951; and Resnick & Ford, 1981; Starkey & Gelman,

1982). Though it requires more mental effort, some tnformal mental addition

strategies almys deal with the first addend first (Baroody, in prebs). For

example, counting-all starting with the first addend (CAF), the most basic

mental addition strategy, involves enumerating the first addend and

continuing this count as the second addend is enumerated (e.g., 2 + 4: "1, 2;

3[1], 4[2],5[3], 6[4]--6"). Nbte that the second stage requires NTO

simultaneous counts (four steps in the case of 2 + 4), which is cognitively

,t
demanding. Moreover, the load on working memory increases as the length

(numbers of steps) of this double count increases. A somewhat more

sophisticated strategy has occasionally been observed (cf. Filson, 1982).

Counting-on fram the first addend ((OF) involves starting with the cardinal

value of the first addend and counting fram there as the second addend is
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enumerated (e.g., 2 + 4:, "2; 3 [11,, 4[2], 5[3], 6[4]--6"). Note that, while

the COE' strategy reduces the total count, the number of steps in the

cognitively demanding double count is the same as in-the CAF procedure (again

four steps in the case of 2 + 4).

Nbre sophisticated informal addition strategies dispense with the larger

addend first. In a recent case study, Baroody (in press) discovered that

Felicia, a preschooler, would resort to a counting-all starting-with the

larger addend (CAL) strategy (e.g.,- 2 + 4: "1, 2, 3, 4; 5[1], 6[2]--6"). The

most advanced informal strategy is counting-on startingmdth the larger addend

((OL) (e.g., 2 + 4: "4; 5[1], 8[2]-6"). Note that both the CAL and the COL

procedure reduce the double count to a minimum (two steps in the case of 2 +

4). Thus, in order to save mental labor, it behooves the child to disregard

the order of the addends and almmys start with the larger addend. Does the

invention of the cognitively more economical CAL or COL strategy also imply an

appreciation of commutativity (cf. Groen & Resnick, 1977; Resnick & Ford,

1981)?

Three models have been proposed concerning the relationship between

commutativity and the development of more economical addition strategies.

According to the first (Resnick, 1983), the discovery of commutativity allows

children to invent more economical addition strategies. For example,'a child

might compute various pairs or problems such as 5 + 1 and 1 + 5 by counting-on

from the first addend (5 + 1: "5; 6[1]--6" and 1 + 5: "1; 2[1], 3[2], 4[3],

5[4], 6[51-6") and notice that the sums are the same. Since one problem can

be substituted for the other to get the sum (the comutativity principle) and

since it is easier to start with the larger addend, the child adopts a more

econceical COL approach. That is, the child almmys begins mith the cardinal

value of the larger addend (e.g., 1 + 5: "5; 6[1]-69. In the second view--a
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variation of the first--children just naturally assume 1.,at addition is

commutative. The assumption of commutativity may also eventually result in

children inventing counting-on from the larger addend (Resnick, 1983). There

is a third and dramatically different possibility. According to this model,

the development of more economical addition algorithms is not necessarily

related to an appreciation of commutativity: In other words, the child simply

searches for ways to save cognitive effort, and starting with the larger

addend accomplishes this end (cf. Resnick & Neches, in press). This labor

saving maneuver works because addition just happens to be commutative. For

instance, a child might use a COL strategy to solve 5 + 1 and 1 + 5, but not

realize that these problems will produce the same answer.

This study collected data on kinderprteners' understanding of

commutativity aid, their addition strategies over several sessions in oreler to

accomplish two objectives. The first aim of the study was to determine

whether commutativity is assumed or discovered by young children. The second

objective of the study was to determine the relationship between commutativity

and the development of the more economical CAL and COL addition

strategies--i.e., to test the three models described above.

Method

Subjects

A total of 36 children (15 boys and 21 girls) ranging in age from 5 years

4 months to 6 9 (O = 5 11) participated in the study. An additional

five children from the subject pool were not included in the data analyses

because a response bias was evident, the child was inattentive, or sums were

produced automatically and an informal strategy could not be determined. The

participants were drawn from three kindergarten classes in two mdddle- to
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upper-class suburban schools. All children participating had the permission

of a parent or guardian.

Design

Airing a familiarization session, both experimenters played math games

with small groups of subjects. The addition task ("Car Race" game) was

introduced at this time to ensure familiarity with the written addition format

used in the study--including addition involving zero. If a child had no

organized addition strategy, s/he was shown a counting-all with concrete

supports procedure. Half the addition trials were administered in the first

experimental session, several days later; the other half were administered in

the second experimental session, one week after the first. During these

experimental sessions, a counting-all procedure with blocks was retaught as

necessary. An understanding of commutativity was gauged in two mys. Half

the trials of commutativity task I were presented during experimental sessicn

1; half during experimental session 2. Individual subjects received the

addition task and conmutativity task in the same order across both sessions.

The order of the tasks as well as the experimenters were counterbaianced.

There were no significant order or tester effects. Commutativity task 2 was

administered during experimental session 3, which followed session 2 by

several days. This task was administered last in order not to bias the

results of commutativity task 1. The design is sannarized in Table I.

Insert Table 1 about here

Measures

Commutativity Task #1. ale cammutativity task took the form of a "Quiak

Look" game. Pairs of horizontal addition problems were typed in large print
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(.4 am high) on separate 3 x 5 cards. The second problem of a pair was typed

245 am below the first. Four types of problem pairs were used: (1) commuted'

pairs (12 trials; correct answer: "same"), (2) identical problems (4 tries;

correct answer: "same"), (3) problems with the same sum as N + 0' prnblems.(2

trials; correct answer: "same"), and (4) problems with different sums (12

trials; correct answer: "different"). The noncammuted trials were included

to prevent or defect a response bias or inattentive responding. The 30 trials

and the session they were presented are delineated in Table I. DUring each

session, trials were presented in randam order.

The child was given the following instructions. mWe're going to play the

'Quick Look' gume. I'll show you a card with two adding problems on them like

this one [example trial: 2 + 1 & 2 + 8]. I'll only show you the card for a

short timeso you will only have a qdick look. Now you won't have enough

time to figure out the answersjust try to see if the adding problems would

give the same answer. Brow about 2 + 1 and 2 + 8? Do you think they would add

up to the same or different answers?" Before beginning the task, children

were shown a second practice trial [1 + 0 and 1 + 1], which the experimenter,

if necessary, helped answer. The experimenter then showed the child a

stimulus card, read the problems, and asked if the problems would add up to

the same or different answers (the order of "same" and "different" was

counterbalanced). The total exposure time of each stimulus card was about 4

seconds. Children %ere encouraged to respond quickly without computing the

problems. If a child did insist on computing (counting) to determine the

answer for a commuted pair, the trial was scored as incorrect. A child\las

scored as consistently correct on the commuted trials if s/he was correct on

10 to 12 of the trials (1)4.02, Sign test) (if a response bias could be

discounted), inconsistent if correct on 3 to 9 trials, and consistently
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incorrect if correct on 0 to 2 trials. -A subject was scored as consistently

correct on identicaliXrials if s/he was correct on all 4 trials and

inconsistent if correct on 3 trials (no subject got less than 3 identical

trials ,porrect). A child was scored as consistently correct on same sum as N

+ 0 trials if s/he got both trials correct, inconsistent if one trial wms

correct, and consistently incorrect if incorrect on both trials. (The results

indicated a systematic--though usually incorrect basis--rather than a random

approach for responding to these same sum as N + 0 trials.) Finally, a

participant was scored as consistently correct on different 511141irials if s/he

got 11 or all 12 trials correct. Only one child wms inconsistent on these

different sum trials (7 correct).

Comnutativity Task #2. An undarstanding of commutativity was also gauged

in a brief, structured interview (task.2). A child was presented with a

proclem (usually 6 + 4), asked to figure it out, and then asked if a second

problem would add up to, for example, ten--the same thing--or sanething

different. A second commuted problem (e.g., 4 + 6) was then written down, and

the child's reaction wms recorded. As a check, same subjects were given a

second commuted pair and/or a pair with different sums. A child was scored as

correct on task 2 if s/he responded automatically with "the same" to the

commuted trial(s); incorrect if s/he said "different" or resorted to

computing; and other if s/he hesitated more than several,seconds before

responding or wms inconsistent in responding to the commuted trial(s).

Overall Scoring for Canmtativity. In addition to the scores for each

task, performance across both commutativity task NW determined by the

following criteria.

(a) Overall, "success" was defined as being consistently correct on

task 1 and being automatically correct on task 2.
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(b) Mixed successm was defined (1) as being cOnsistently correct on

task 1, but hesitant/inconsistent or incorrect on task 2 or (2) as

being automatically correct on task 2 but inconsistent or

consistently incorrect on task 1.

(c) 'An "unsuccessful"
Commutativity performance was defined as being

-inconsistent or consistently incorrect on task 1 and hesitant/

inconsistent or inCorrect on task 2.

, Addition Task. The children't addition strategies. Were assessed in the

context of the "Car Race" game. A subject was presented addition problems

typed horizontally in large print on a 4 x 6 card. The sum indicated how many

spaces the subject or experimenter could advance their race cars around a

track. A total of 12 smaller adtlnd first (SAF) problems and ri larger addend

first (LAF) problems were presented over two sessions in random order (see

Table 1). Scoring focused on the SAF problems, since only this type of

problem permits differentiation between strategies which deal with the first

'addend first or those which start with the larger addend. If a child had no

orgnnized stritegy for adding, s/he wus taught to count-all with concrete

supports. Other strategies noted were spontaneous counting-all with concrete

supports, counting-all mentally starting with the first addend (e.g., 2 + 3:

"1, 2; 3[1], 4[2], 5[3],--5") (CAF); counting-all mentally starting with the

larger addend (e.g., 2 + 3: "1, 2, 3; 4[1], 5[2]-5") (CAL); counting-on

mentally from the first addend (e.g., 2 + 3: "2; 3[1], 4[2], 5[31 -5") (COF);

and counting-on mentally from the larger addend (e.g., 2 + 3: "3; 4[1],

5[2]--5"). Each subject was scored on the predominate and most advanced

strategy (when used more than once) for the SAF problems for each session (93%

interrater agreement for 12 or 33% of the subjects) and across sessions.
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The results indicated that the commutativity principle is not simply

assumed by children, but abstracted from their addition experience. °Wily

-' about half of the subjects were successful on;each of the commuiativity tasks.

Ch task 1, specifically? lg (50%) vex% conSistently.correct, 4 (11%) were
A

'inconsistent, and 14 (39%) were consistently inceirrect (see Table 2). In

contrast, nearly all (33 or 92%) of the children were consistently correct on

the identity trials. Chly one subject was not consistently correct on the

different sum pairs. Because this subject mas inconsistent across all types

of trials, his data are excluded from further analyses. With the 'exception of

this one subject, then, responses were discriminate and hence a response bias

or carelessness could be discounted. Chly five subjects (14%) got both same

sum as N 0 trials correct. However, this can be explained by the factithat

the N + 0 rule ("adding zero leaves a number unéhanged") and/or recall of the

basic doubles involved (1 + 1 and 2 + 2) %ere not sufficiently automatic for

most subjects to make a quick and accurate comparison of the sums in these

trials. Un task 2, 18 (51%) were automatically correct, 3 (9%) were

hesitant/inconsistent, and 14 (4.03) were incorrect or counted. Overall, only

14 (40%) of the kindergarteners were successful on both commutativity tasks, 8

(23%) had mdxed success, and 13 (37%) were unsuccessful on both tasks (see

Table 3).

Insert Tables 2 and 3 about here

Nbreover, among the ten subjects that had to be retaught the counting-all

procedure during the experimental session(s), none %ere successful on both
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commutativity tasks. Five had mdxed success, and five were unsuccrsful on

both taskS:- Thus'it seems that, among children just learning an acidition

strategy, commutativity is either only tentatively understood or not

appreciated at all. '

Finally, of the eight children,having mixed success, four were

successful" on commutativity task 1, blt not on task 2. The behavior of two

of these subjects on task 1 as %ell as on task 2 suggested that the

cammutativity principle was not yet firmly established (see Table 3, footnotes

b & d). The other four having mdxed succeis %ere unsuccessful on

commutativity task 1, but successful on task 2. Behavioral evidence suggests

that, for SOM. of these children,,comNting the sums for a few inverted

prolAems may have been sufficient exRprience to abstract the commutativity

-.,

principle (See Table 3, footnotes'a & e). 'Kate (S #25), for InStance, clearly

abstracted the principle during the course of tlfe study. She was presented 2

+ 4 & 4 + 2 as her first trial of cammdtativity task_l. After a pause, she

indicated that they would give the sare
answers.'-Ch trial #2 (5 + 3 & 3 + 5),

she responded to the experimenter's question wah: "I can't 'tell." Atter a

pause (in which she probably counted), she responded,"The same." cri the third -

trial (4 + 6 & 6 + 4), she -ccntrented, "That's the one [type of 'problem] I got

so much trbuble over. The same? Later she also paused for 8 + 2 and 2 + 8.

When task #1 was readministered a week later, Kate responded quickly, to the,,

commuted trials. In the follow-up interview, she explained that, yes, 4 + 6

would produce the same ans%er as 6 + 4 because, "I figured it out when I

counted when we played the other game."

The Relationship Between the Development of Commutativity and CAL or COL

What role, if any, then does the abstracted principle of cammutativity

play in the invention of more economical count strategies for addition? If
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strategies which start with the larger addend (CAL and COL) are invented as a

result of or imply an understanding of commutativity (Model 1) (Groen &

Resnick, 1977; Resnick, 1983; Resnick & Ford, 1981), all subjects who use

these strategies should appreciate cammutativity. If the invention of CAL and

COL strategies are simply labor saving tnaneuvers (Model 3), some subjects who

used these more advanced strategies will not be successful on eamMutativity

tasks. While most (6 or 55%) of 11 subjects whose predominant addition

strategy (by session 2) was CAL or COL were successful on both commutativity

tasks, three (27%Y had mdxed success, and two (18%) %ere unsuccessful on both

(see Table 4). For example, Meg (S #04) relied primarily on CAF strategy

during session 1, but by session 2 relied exclusively on a COL procedure.

Yet, she did not appearS to appreciate commutativity. In session 1, she was

inconsistent on the cammutativity task "(correct on 3 of 6 trials). For the

5 + 3 & 3 + 5 trial, specifically, she responded to the experimenter's

question with: "I don't know?" Asked what she thought, she indicated that

the answers would be different. .DUring session 2, she was still inconsistent

on cammutativity task 1. She answered "the same" on only tm of six

trials--on one of which (3 + 2 & 2 + 3) she appeared to have computed the

answers. hn the follow-up interview, she mentally counted to produce the

answer to 6 +-4. Asked if 4 + 6 would produce "10--the same or different

answer"--she thought for about 60 seconds, appeared to compute the sum, and

finally responded, "The same." In brief, Meg's invention of a COL strategy

did not seem to require or tmply an appreciation of'eammutativity. While the

principle of commutativity mdght well play a role in the invention of more
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economical strategies for same children, such inventions can occur solely for

the reason of cognitive economy.

Insert Table 4 about here

Clearly, though, children who invert addend order during addition but who

do not appreciate cammutativity do not have a %ell developed understanding of

addition (Resnick, 1982). Mathematically, addition is the union of two

interchangeable sets -i.e., a binary operation in which cammutativity is

assumed (Weaver, 1982) (see Figure 1). However, young children appear to

treat addition as a unary operation (Weaver, 1982)--i.e., they define addition

in terms of "action schemes" or changes of state (cf. Baroody & Ginsburg, in

press). For instance, young children tend to interpret 3 + 2 as "three and

two more" (a unary conception) rather than "combining the cardinality three

and cardinality two" (a binary conception). More importantly, young children

appear to (implicitly) hold contradictory notions about the effects of addend

order. It appears that, initially, children assume that addition is not

commutative. In other words, problems with the same, but inverted addends are

psychologically different problems for the young child. For example, while 3

+ 2 is interpreted as "three and two more," 2 + 3 as is viewed "two and three

more." Since the child cannot foresee the outcomes of these "different"
.01

'problems, the child naturally assumes that the sums will be different. A

child is especially likely to invoke this "misconception" when inverted pairs

are juxtaposed as in cammutativity tasks 1 & 2. Thus, initially at least,

children may assume that addend order makes a difference in the definition of

the problem and thus in the sum. On the other hand, some children also appear

to have a primdtive notion of commutativity ("proto-commutativity") or what
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might be termed an "order indifferent adding scheme": the order in which

addends are dealt with does not make a difference in terms of the correctness

of the sum (Baroody, Ginsburg, & Waxman, in press). This is manifested in the

variety of ways young children organize concrete objects for counting-all

(e.g., not always representing the first addend first, or not always starting

the answer count with the first set of objects, etc.) (cf. Carpenter & Moser,

1982). This protoconcept or order indifferent adding scheme may also permit

the child tNisregard addend order during mental addition (to recast problems

so that the larger value is always supplemented by the smaller). ha effect,

it permits the child--for computational purposes--to treat 2 4- 3 as though it

were 3 and 2 more. Thus invention of CAL or COL to minimize mental

computational effort implies or requires only protocommutativity (an order

indifferent adding scheme).
1 These logically inconsistent views about the

role of order can be resolved by positing "commutativity" and focusing on the

outcome of addition. For instance, the child can adopt the view that it does

not matter whether you start with two blocks and add three (more) or start

with three blocks and add two (more) because the result is the same: five.

In this way, the child's psychological meaning of addition better approaches

the mathematician's definition of addition.2

Insert Figure I about here
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Footnotes

'This account of the invention of CAL or COL via "protocammutativity" is

analogous to a computer program described by Resnick and Neches (in

press). The camputer program starts with a counting-all procedure and,

via a set of self-modifying,
econamy-directed processes, converts to a

COL procedure. This program does not assume cammutativity but does

assume an order indifferent counting scheme--that the order in which the

elements of a set are enumerated does not matter (Gelman & Callistel,

1978).

2According to Weaver (1982), the principle of commutativity describes a

property of binary addition--(e.g., combining the cardinality 2 and the

cardinality 3 to form a single set: the cardinality 5). The assertion

that, for instance, the sum of two and three more equal that of three and

two more still involves a unary interpretation of addition. Because it

does not describe the property of an operation, Weaver calls such an

assertion "pseudocommutativity."
While such statements as 2 + 3 = 5 and

3 + 2 = 5 are mathematically equivalent, psychologically they imply

different meanings even for adults (cf. Eaput,.1979). It is unclear when

(or if) most children also acquire a binary conception of addition and

hence an appreciation of cammutativity in a mathematical sense.
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Table 1: Summary of the Experimental Design and Tasks' Trials

Familiarization Session: Subjects shown a counting-all with- blocks procedure for

addition and instructed on interpreting written symbols

such as "+" and "0."

Session 1 (several days after the familiarization session)1:

Commutativity Task 1: Trials 1-152 Addition Task: Trials 1-122'3

2

3

4

5

6

8

+ 4

+ 6

+ 6

+ 3

+ 2

+ 2

4

6

6

3

2

2

+ 2

+ 3

+ 4

+ 5

+ 6

+ 8

2

2

2

3

3

4

+ 3

+ 5

+ 7

+ 4

+ 7

+ 6

3 + 3 3 + 3 4 + 2

6 + 1 6 + 1 6 + 2

1 + 1 2 + 0 8 + 2

0 + 2 10 ,+ 10 5 + 3

2 + 2 5 + 2 6 + 3

2 + 5 2 + 10 -5 + 4

3 + 1 0 + 1

3 + 5 3 + 0

7 + 2 3 + 2

2
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Table 1 continued

Session 2 (one week after session 1)3:

Commutativity Task: Trials 16-302 Addition Ta'sk: Trials 13-2423

2 + 5 5 + 2 2 + 4

2 + 7 7 + 2 2 + 6

3 + 2 2 + 3 2 + 8

3 + 4 4 + 3 3 + 5

5 + 4 4 + 5 3 + 6

7 + 3 3 + 7 4 + 5

1 + 8 1 + 8 3 + 2

4 + 4 4 + 4 5 + 2.

4 + 0 2 + 2 7 + 2

2 +'8 10 + 8 4 + 3

4 + 2 0 + 2 7 + 3

4 + 5 .1 + 5 6 + 4

5 4 5 + 2

5 + 5 1 + 5

6 + 3 1 + 1

Note 1: Commutativity task 1 and the addition task were presented to individual

subjects in sessions 1 and 2 in the same order.

Note 2: Trials were presented in random order.

,Note 3: A counting-all strategy with blocks was retaught as necessary.
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Table 2: Summary of the Subjects' Performance.on Commutativity Task 1

Tri 1 type

Consistently

correct Inconsistent

Consistently

incorrect Total

Commuted

(12 trials)

18 (50%) 4 (11%) 14 (39%) 36 (100%)

Identity

(4 trials)

33 (92%) 3 (8%) 0 (0%) 36 (100%)

Same as N + 0

(2 trials)

5 (14%) 27 (75%) 36 (100%)

Different sum

(12 trials)

35 (97%) 1 (3%) 0 (0%) 36 (100%)



Table 3: Level of Success on Commutativity Tasks 1 and 2

Commutativity Task 2

Automatically

indicated com- Indicated that

muted trial(s) Hesitated or commuted trial(s)

would produce responded In- would produce a

the same ans- consfstently different sum or

wer as com- to commuted counted to de-

uted trial(s) trlal(s) termine res onse Total

,CommutatIvlty

Task I

Consistently Ale

correct

B2b,c
B2d (6%) 18

Inconsistent CO (0%) C2 (6%) 3

A.

Consistently
B3f (9%)

incorrect
ci c10 (29%) 14

Total 18 14 35 (100%)

2 6 24



Table 3 continued

A: Overall commutativity performance scored as "successful."

8: "Mixed success."

C: "Unsuccessful performance."

a S #12 counted once during session 1 to determine her response tO a commuted trial of task 1.

Thereafter, she responded automatically Co all commuted trial's.

S #30 was correct on only ja of 12 task 1 trials and appeared unsure about a third commuted

pair. He then responded inconsistently on task 2, indicating that 4 + 6 would produce a'dif-

ferent sum than 6 + 4 and that 4 4.-3 would produce the same sum as 3 + 4.

S #35 hesitated before responding to task 2. He may have computed the sum V) the commuted

problems, though counting behavior was not apparent.

S #23 resorted V) counting on commuted trials for bath tasks l and 2.

During session I of task 1, S #25 initially indicated that.she could not tell if commuted

pairs would produce the same or different answers. She was scored as incorrect on three

trials because of the long pauses she took--presumably to compute the sums of the problems.

She then responded automatically to the remaining commuted trials.

During session 1, S #10 was incorrect on all commuted trials of task 1. During session 2,

she again responded incorrectly to the commuted trials. However, she adopted a questioning

tone ("Different answer?") with only the commuted trials. Later, during session 3, she ap-

peared to appreciate commutativity.

2:3 26
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Tabl; 4: Overall Commutativity Performance of Those Who Used "Invented" (CAL or

'COL) Addition'Strategies

4

Performance on Commutativity Tasks I and 2

hItcessful Mixed Success Unsuccessful Total

4 Predominant CAL 4a

Addition

Strategy-by

Session 2 COL

c
6

Total 6 (55%) 3 (27%) 2 (18%) 1 1

a Includes S. #36 who swithced from using CAF in session 1 to CAL in session 2.

For both'sessions, S #36 was *administered the addition and then the commuta-

tivity task (A/C).

Includes S #23 (C/A) who counted on the first trial Of commutativity task :

and again on commutativity task 2 to determine his response.

Includes S #18 (A/C) who switched from usinb CAF exclusively in session 1

to using CAF and CAL in session 2.

Includes S p3 (C/A) who counted onde during session of commutativity task 1

to determine her.response.

Includes S #10 (C/A) who was consistently incorrect on commutativity task 1

but adopted a questioning tone during the second session ant S #35 who was

hesitant on commutativity:task.2:\

Includes S #04 (C/A) who switched from using CAF in session 1 to COL in

session 2.
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.Figure"Caption

Figure 1: The development of addition and commutativity concepts.
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Early Concepts (coacrete)

Early additiory supplementing the first set (unary concepti-on).

Noncommutativity: different addend orders imply different problems

and (because the outcomes cannot be forseen) diffei.ent sums

(e.g., 3 + 2 represents "three and two more" and 2 + 3 repre-

sents "two and three more").

Early additionl: supplementing the larger set with a smaller amount

(unary conception).

Protocommutativity: the order in which addends are dealt with does

not affect the'correctness of the outcome (e.g., 2 + 3 may be

recast as "three and two more" to facilitate computation--even

though 2 + 3 and 3 + 2 may not be equivalent problems--i.e.,

equivalent in outcome).

Functional concepts (semi-abstract)

"Addition": supplementing a set (unary conception).

"Commutativity": while different addend orders imply different

processes, the order does not affect the value of the outcome

(e.g., 2 + 3 and 3 + 2-are psychologically different problems,

but have identical sums).

I

Mathematical conception (abstract)

Addition i the union of (interchangeable) sets (binary conception).

Commutativity: the order of combining two cerdinal values (e.g.,

the cardinality 3 and the cardinality 2) does not affect the

totality ,(the cardinality 6).


