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Abstract

Three models have been proposed concermniig the relationship between the
principle of comutativity and the development of addition strategies which
disregard addend 01_‘der:. It has been proposed that the discovery (model 1) or

assumption (model 2) of commtativity is a necessary condition for the

invention of such advanced addition strategies. A third model suggests that
children may invent labor saving“ addition strategies without/ appreciating the
commutativity principle. This study tested the three models by evaluating 36
kindergarteners on two types of commutativity tasks. Both tasks involved
predicting whether commuted and noncommuted pair‘s of problems would produce
the sime or different eanswers. Over two sessions, addition strategies were
also determined. Commutativity was not naturlly assumed by children (as
proposed by model 2), but appearéd to be discovered. However, contrary to
model 1 and consistent with model 3, an understanding of commutativity was not

evident in all those who invented labor saving addition strategies.
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The Devel:)p'nent of the Conmutativity Principle

and Addition Stfategies in Young Children

Surprisingly little research exists<on the development and use of basic

ke

mathematical principles such as the commutativity of addition (the order in

which temms afe added does not affect the sum) (Gelman & Starkey, 1979; Suydam
& Weaver, 1975). Some evidence indicates that children appreciate the
camytativity principle quite early (Baroody, Berent, & Packman, 1982;
Baroody, Ginsburg, & Waxman, in press; Ginsburg, 1982). This ‘study examined
children just beginning school for evidence of (a) an implicit knowledge of
comrutativity and (b) a developmental relationship between this principle and
informal addition strategies. |
Children appear to invent increasingly sophisticated and economical
conting strategies to campute addition (e.g., Carpenter & Moser, 1982; Groen
& Resnick, 1977; Ilg & Ames, 1951; and Resnick & Ford, 1981; Starkey & Gelman,
1982). Though it requires more mental effort, some informal mental addition
strategies always deal with the first addend first (Baroody; in press). For
exanple, counting-all starting witn the first addend (CAF), the most basic
mental addition strategy, involves enumerating the first addend and
continuing this count as the second addend is enunerated (e.g., 2 + 4: "I, 2;
3[1], 4[21, 5(3], 6[4]--6"). Note that the second stage requires two
simul taneous counts (four steps in the case of 2 + 4), which is cognitively
"“’dananding. Moreover, the load on v_:orking memory increases as the length
(nutbers of steps) of this double count incresses. A somewhat more
sophisticated strategy has occasionally been observed (cf. Fuson, 1982).

Counting-on fran the first addend (CQOF) involves starting with the cardinal

value of the first addend and counting from there as the second addend is
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emwmerated (e.g., 2 + 4:' "2; 3 (1}, .4[2], 5{(3], 6[{4]--6"). Note that, while
the OOF strategy reduces the total count, the number of steps in thé
cognitively derrlaﬁ({ing double mmt is the same as in the CAF procedure (again
four steps in the case of 2 + 4). |

More sophlstlcated informal addition strategies dispense with the larger
addend first. In a recent case study, Baroody (in press) discovered that
Fehcla, a preschooler, would resort to a counting-all starting with ‘the
larger addend (CAL) strategy (e.g., 2 + 4: "1, 2, 3, 4; 5[11, 6[2]—-6"). Theﬂ
most advanced informal strategy is counting-on starting with the larger addend
(QOL) (e.g., 2 + 4: "4; 5(1], 6[2]--6"). Note‘ that bothhthe CAL and the COOL
procedure reduce the double count to a minimum (two steps in the case of 2 + |
4). “'Ihus, in order to save mental labor, it behooves the child to disregard
the order of the addends and always-start with the larger addend. Does the
invention of the cogﬁitively more econamical CAL or COL strategy also imply an
appreciation of commutativity (cf. Groen & Resnick, 1977; Resnick & Ford,
1981)?

Three models have been proposed concerning the relationship between
camutativity and the de\fglopment of more economical addition strategies.
According to the first (Resnick, 1983), the discovery of commutativity allows
children to invent more econamical addition strategies. For example, ‘a child
might compute various pairs oi problems such as 5+1and 1 +5 by comting—on
from the first addend (5 + 1: "5; 6[1]--6" and 1 +5: "1; 2[1], 3[2], 4[3],
5{4], 6[_5_]——6") and notice that the sums are the same. Since one pr@lem can
pe substituted for the other to get the sum (the commutativity principle) and
since it is easier to start with the larger addend, the child adopts a more
economical OOL approach. That is, the child always begins with the cardinal

value of the larger addend (e.g., 1 + 5: "5; 6[1]'—'—6"). In the second view--a
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variation of the first--chi.ldren qut naturally assume ‘that addition is
conmutative. The assumption of conﬁutativify may also eventually result in
children inventing counting-on from the larger addend (Resnick, 1983). There
is a third and dramatically different possibility. According to this model,

the development of more economical addition algorithms is not necessarily

related to an appreciation of commmutativity. In other words, the child sin;ly
searches for ways to save cognitive effort, and starting with the larger
addend accorplishes this end (cf. Resnick & Necheé, in press). This labor
saving maneuver Works bt;cause addition just happens to be comutative. For
instance, a child might use a O0L strategy to solve 5 + 1 and 1 + 5, but not
realize that these problems will prodcuce ‘the same answer. |

This study collected data on kindergerteners' understanding of
comnutatiVEty arf® their addition strategies over several sessions in orcer to
accarplish two objectives. The first aim of the study was to determine .
whether comrutativvity is assuncd or discovered by young children. The second
objective of the study was to determine the relationship between comutativity
and the development of the more economical CAL and QOL addition

strategies--i.e., to test the three models described above.

Method

Subjects

A total of 36 children (15 boys and 21 girls) ranging in age from 5 years
- 4 months to 6 - 9 (M = 5 - 11) participated in the study. An sdditional
five children from the subject pool were not included in the data analyses
because a response bias was evident, the child was inattentive, or sums were

produced automatically and an informal strategy could not be determined. The

participants were drawn from three kindergarten classes in two middle- to
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upper-class suburban schools. All children participating had the permission
of a parent or guardian. | |
Design
During a familiarization session, both experimenters played math games

with small groups of subjects. The addition task ("Car Race" game) was

introduced at this time to ensure familiarity with the written addition format

used in the study--including addition involving zero. If a child had no
organized addition strategy, s/he was shown a counting-all with concrete
supports procedure. Half the addition trials were administered in the first
experimerﬁal session, several days later; the other half were adninistered in
the second experimental session, one week after the first. During these
experinkntal sessions, a counting-all procedure with blocks was rétaught as
necessary. lAn understanding of comutativity was gauged in two ways. Half
the trials of cammutativity task 1 were presented during experimental sessicn
1; half during experimental session 2. Individual subjects received the J '
addition task and conmtativity task in the same order across both sessions.
The order of the tasks as well as the experimenters wére counterbalanced.
There were no significant order or tester effects. Commutativity task 2 was
administered during experimental session 3, which followed session 2 by
several days. This task was administered last in order not to bias the

results of conmmutativity task 1. The design is sumarized in Table 1.

Measures

Commutativity Task #1. One commutativity task took the form of a "Quicdk

Look" game. Pairs of horizontal addition problems were typed in large print
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(4 an high) on separate 3 x 5 cards. The second problem of a pair was typed
2.5 am below the first. Four types of problem pairs were used: (1) commt;ed ‘
pairs (12 trials; correct ans;/ver: "same"), (2) identical problems (4 trials;
correct anéwer: "same"), (3) problems with the same sun as N + 0 problems (2
trials; correct answer: "same"), and (4) problerﬁs with differeni suns (12
trials; correct answer: ndifferent"). The noncommted trials were included
to prevent or detect a response bias or inattentive responding. The 50 trials
and the session they were presented are delineated in Table 1. During each
session, trials were presented in random order.

The child was given the following instructions. "We're going to play the
'Quick Look' game. I'll show you a card with two adding problems on them like
this one [exanple trial: 2 + 1 & 2 + 8]. I1'l1 only show you the card for a
short time--so you will only have a qi‘iick look. Now you won't have enough
time to figure out the answers--just try to see if the adding problems would
give the same answer. How about 2 +1 and 2 + 82 Do you think they would add.
up to the same or different answers?" Before beginning the task, children
were shown a second practice trial [1 + 0 and 1 + 1], which the experimenter,
if necessary, helped answer. The experimenter then showed the child a
stimulus card, read the problems, and asked if the problems would add up to -
the same or different answers (the order of "same" and "different" was
counterbalanced). The total exposure time of eacﬁ stimulus card was about 4
seconds. Children were encouraged to respond quickly without computing the
problems. If a child did insist on computing (counting) to determine t{_r\le
answer for a commuted pair, the trial was scored as incorrect. A child was

scored as consistently correct on the comuted trials if s/he was correct on

10 to 12 of the trials (p<.02, Sign test) (if a response bias could be

discounted), inconsistent if correct on 3 to 9 trials, and consistently
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incorrect if correct on 0 to 2 trials. ‘A subject was scored as c;onsistently

<

correct on identical trials if s/he was correct on all 4 trials and

4

inconsistent if correct on 3 trials (no subject got less than 3 identical

trials gorrect). A child was scored as consistently correct on same sum as N

+ 0 trials if s/he got both trials correct, inconsistent if one trial was

correct, and consistently incorrect if incorrect on both trials. (The results

indicated a systematic--though usually incorrect basis--rather than a random

approach for responding to these same sum as N + 0 trials.). Finally, a

participant was scored as consistently correct on different sum trials if s/he
got 11 or all 12 trials correct. Only one child was inconsistent on these
different sum trials (7 correct).

Conmutativity Task #2. An uncerstanding of commutativity was also gauged

, in a brief, structured interview (task-2). A chi 1d was presented with a
proclem (usually 6 + 4), asked to figure it out, and then asked if a second
problem would add up to, for exanple, ten—;'the same 1hing'--01' samething
di fferent‘: A second comuted problem (e.g., 4 + 6) was then written down, and
the child's reaction was recorded. As a check, some subjects were given a
second commuted pair and/pr a pair with different sums. A child was scored as
correct on task 2 if s/he responded automatically with "the same" to the
camuted trial(s); incorrect if s/he said "different" or resorted to
computing; and other if s/he hesitated more than several, seconds before
responding or was inconsistent in responding to the commuted trial(s).

Overall Scoring for Commtativity. In addition to the scores for each

task, performance across both commutativity task was determined by the
following criteria.

(a) Overall, "success" was defined as being consistently correct on

task 1 and being autamatically correct on task 2.
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. (b)‘ "Mixed success™ was defined (1) as being c'onsistenltly correct on
fask 1, but hesitaht/inconsis-tent.or incérrect on task 2‘) or (2) as
being automatically éorrec\t on task 2' but inconsistent or
) consistently'incorrect on task 1. ) . .

(c) “An "unsuccessful" commtativity performance was ‘defined as being

inconsistent or consistent“ly incorrect on task 1 and hesitant/

inconsistent or incorrect on task 2. -

Addition Task. The children'é addition strategies were "assesseq in the

context of the "Car Race" game A subject was pi‘esénted addition problems
typed hori.‘zontally in large print on a 4 x 6 card. The sum indicated how many
spaces the subject or experimenter could advance their race cars around a |
track. A total of 12 smaller adi2nd first (SAF) problems and ) larger addend
first (LAF) problems were presented over two sessions in random order (see
Table 1). Scoring focused on the SAF prdblems; since only this type of
problem permits differentiation between strategies which deal with the first
"addend first or those which start with the larger addend. If a child had no
organized strategy ‘for adding, s/he was taught to count-all with concrete
suppor"cs. Other strategies noted were spontaneeus counting-all with concrete
supports, cdmting—all mentally starting with the first addend (e.g., 2 + 3:
"1, 2; 3(131, 4121, 5031,--5") (CAF); counting-all mentally starting with the

larger addenq (e.g., 2 +3: "1, 2, g; 4[1], 5[_2_]--5") (CAL); counting-on

mentally from the first addend (e.g., 2 + 3: "2; 3[1], 4(2], 5(3)--5") ((DF);
and counting-on mentally from the larger addend (e.g., 2 + 3: "3; 4[1],
5{2]--5"). Each subject was scored on the predominate and most advanced
str'ategy (when used more than once) for the SAF probleins for each session (93%

interrater agreemerit for 12 or 33% of the subjects) and across sessions.
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- ‘ | Results and‘DiscussionJ 7(. . - 7o ‘
’L‘hep;)evelopnent of Conmutativity A b [ Y x ’
The results mdicated that the camutativity prmciple is not smply T .
. assuned by chi ldren, but abstracted from their addition experience Only : i:"

about half of the subjects were successful on}each of the carmutatlv1ty tasks.

" n task 1, specifically, 16 (50%) were; consistently correct, 4 (ll%) were

'mconsistent, and 14 (39%) were consistently incorrect (see Table 2). In hs

. ./ contrast, nearly all (33 or 92%) of the cluldren were consistently correct on
the identity trials. Only one subject was not consistently correct on the

.. different sum pdirs. Because this subject was inconsistent across all types

of trials, his data are excluded from further analyses. With the ‘exception of
this one subject, then, hresponses were discriminate and hence a response bias
or carelessness could be discounted. Only five subjects (14%) got both same
sun as N 4+ 0 trials correct. However, this can be explained by the fact: that'
the N + 0 -rule ("adding zero leaves a number unchanged") and/or recall oi‘ the
“basic doubles involved (1 + 1 and 2 + 2) were not sufficiently automatic for
most subjects to make a quick and‘accurate comparison of the sums in these
trials. On task 2, 18 (51%) were automatically correct, 3 (9%) were
hesitant/inconsistent,'and 14 (40%) were incorrect or counted. Overall, only
14 (40%) of the kindergarteners were successful on both comutativity tasks, 8
(23%) had mixed success, and 13 (37%) were unsuccessful on both tasks (see

Table 3).

__—_____.-....______—___—______—_____—____________

Moreover, smong the ten subjects that had to be retaught the counting-all

proccdure during the experimental session(s), none were successful on both

ERIC S
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commtatlwty tasks. Five had mixed success, and five ‘were unsuccﬁssfu.l on
both tasks.~ Thus it seems that, among children just learning an addltlon

s,fréteg;, commutativity is either only tentatively understood or not

<

3

appreciated at all. '’

-

[’ .
Finally, of the eight children having mixed success, four were

nsuccessful™ on camutativity task 1, bat not on task 2. The behavior of two
- of these subjects on éask 1 as well' as on task 2 suggested that the g

. conmutativity principle was not yet firmly established (sec Table 3, footnotes
b & d). The other four having mixed success were unsuccessful on
ccmmtatlw ty task 1, but éuccessful on task 2. Behavioral evidence suggests
that, for some'of these children,. coni)utmg the sums for a few inverted
problems may have been sufficient exp;rience to abstract the comutativity
principle (see ;able 3, footnotes'a & e). 'Ka‘te (S #25), for instance, clearly
abstx:;xcted the principle during the course of the study. She was presented 2
+4 &4+ 2 as her first trial of conmutativity task 1. vAfter a pause, she
indicated that théy would give the same answers. " On trial #2 (5 + 3 & 3 +5),
she I:esponded to ’the experimenter's quest'i‘on wi th: "i ‘can't tell." After a
pa{xse (in which she probably counted), she" respoglded,"The’ same." On the third
trial (4 + 6 & 6 + 4), she commented, "That's the one [type of .proti)lem] I got

s0 much trouble over. The same" Later she also pa'uséfd for 8 + 2 and 2 + 8.

When task #1 was readministered a week later, Kate responded qu1ckly to the
camuted trials. In the follow-up interview, she explained that, yes, 4 + 6
would produce the same answer as 6 + 4 because, "] figured it out when 1
counted when we played the other game.' ‘ L

The Relationship Between the Development of Commutativi ty and CAL or (I)L .

what role, if any, then does the abstracted principle of camutativity

play in the invention of more economical count strategies for addition? If

ERIC 1z S
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strategies which start with the larger addend (CAL and OOL) are invented as a
result of or imply an understending of conmufativity (Nbael 1) (Groen &
Resnick, 1977; Resnick, 1983; Resnick & Ford, 1981), all subjects who use
these strategies should appreciate commtativity. If the invention of CAL and
QOL strategies are sinply labor saving maneuvers (Model 3), some subjects who
used these more advanced strategies will not be successful on com;iutativi ty
tasks. While most (6 or 55%) of 11 subjects whose predariinant addifion

strategy (by session 2) was CAL or OOL were successful on both conmutaiivi ty

tasks, three (27%J had mixed success, and two (18%) were unsuccessful on both
(see Table 4). For exanple, Meg (S #04) relied primarily on CAF strategy
during session 1, but by session 2 relied exclusively on a COL procedure.

Yet, she did not appear to appreciate commtativity. In session 1, sﬁe was
inconsistent on the commmtativity task 1.(correct on 3 of 6 trials). For the
5+3 &3+ 5 trial, specifically, she responded to the experimenter's |
question with:. "] don't know?" Asked what she thought, she indicated that
_the answers would be different. -During session 2, she was still incbnsistent

on commtativity task 1. She answered "the same" on only two of six

»
trials--on one of which (3 + 2 & 2 + 3) she appeared to have computed the
answers. In the follow-up interview, she mentally counted to produce the
answer to 6 +4. Askéd if4 +6 would produce "10--the same or different l
.- answer"--she thought for about 60 seconds, appeared to campute the sum, and

finally Fesponded, "The same." In brief, Meg's invention of a (OL strategy
did not seem to require or imply an appreciation of ‘commutativity. While the

principle of commtativity might well play a role in the invention of more
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econamical strategies for some children, such ‘inventions can occur solely for

the reason of cognitive economy.

Clearly, though, children who invert addend order during addition but who

do not appreciate commtativity do not have a well developed understanding of
nddition (Resnick, 1982). Mathematically, addition is the union of two
interchangeable sets--i.e., a binary operation in which commutativity is
assumed (Weaver, 1982) (see aFigure 1). However, young children appear to
treat addition as a unary op;;:-ation (Weaver, 1982)--i.e., they define addition
in terms of "action schemes" or changes of state (cf. Baroody & Ginsburg, in
press). For instance, young children tend to interpret 3 + 2 as "three and
two nore" (a unary conception) ra.ther +han "combining the cardinality three

and cardinality two" (a binary conception). DMore inportantly, young children

appear to (inplicitly) hold contradictory notions about the effects of addend

order. It appears that, initially, children assume that addition is not [\
comutative. In other words, problems with the same, but inverted addends are

psychologically different problems for the young child. For example, while 3

+ 2 is interpreted as "three and two n;ore," 2 + 3 as is viewed "two and three

more." Since the child cannot forésee the outcomes of these "diflferent"

‘problems, the child naturally assumes that the sums will be different. A
child is especially likely to invoke this "miscoriception" when inverted pairs
are j@taposed as in conmutativity tasks 1 & 2. Thus, initially at least,
children may assume that addend order makes a difference in the definition of
the px:oblem and thus in the sun. On the other hand, some chi ldren also appear

to have a primitive notion of commtativity ("proto-conmutat ivi.y") or What
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might be termed an "order indi fferent adding scheme": the order in which
addends are dealt with does not make a di fference in terms of the correctness
of the sum (Baroody, Ginsburg, & Waxman, in press). This is manifested in the -
variety of ways young children organize concrete objects for counting-all

(e.g., not always representing the first addend first, or not always starting

the answer count with the first set of objects, etc.) (cf. Carpenter & Moser,

1982). ThisA protoconcept or order indi fferent adding scheme may also permit
ihe child to\disregard addend order during mental addition (to recast problems
so that the larger value is always supplemented by the smaller). In effect,A
it permits the child--for computational purposes--to treat 2 + 3 as though it
were 3 and 2 more. Thus invention of CAL or COL to minimize mental
camputational effort inplies or requirea enly protocommutativity (an order
indifferent adding scheme).1 These logically inconsistent views about the
role of order can be resolved by positing "commutativity" and focu'sing on the
outcome of addition. For instance, the child can adopt the view that it does
not matter whether you start with two blocks and add three (more) or start

with three blocks and add two (more) because the result _1_s the same: five.

In this way, the child's psychological meaning of addition better approaches

the mathematician's definition of addition.2
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Footnotes *

1'lhis account of the invention of CAL or OOL via "protocommuiativity" is
analogous to a computer program described by Resnick and Neches (in
press). The émputer program starts with a count ing-all procedure and,
via a set of self-modifying, economy-directed processes, converts to a

OOL procedure. This program does not assume camutativi ty but does

assume an order indifferent counting scheme--that the order in which the
elements of a set are enumerated does not matter (Gelman & Gallistel,
1978).

2According to Weaver (1982), the principle of commutativity describes‘a

property of binary addition--(e.g., combining the cardinality 2 and the

cardinality 3 to form a single set: the cardinality 5). The assertion
that, for instance, the sum of two and three more equal that of three and
two more still involves a unary interpretation of addition. Because it
does not describe the property of an 'operation, Weaver calls such an
assertion "pseuc'locanmtativity." While such stata;lents as 2 + 3 =5 and
3 + 2 =5 are mathematically equivalent, psychologically they imply

different meanings even for adults (cf. Kaput, 1979). It is'unclear when

(or if) most children also acquire a binary conception of addition and

hence an appreciation of commtativity in a mathematical sense.
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Table 1: Summary of the Experimental Design and Tasks' Trials

Familiarization Session:

Subjects shown a counting-all with blocks procedure for
addition and instructed on interpreting written symbols

such as "+ and "0."

Session | (several days after the familiarization sessiOn)l:

Commutativity Task 1: Trials 1-15 Addition Task: Trials 1-12%23

2 + 4 L + 2 2 +3
3+6  6+3 245
h+6  6+4 2+ 7
5+3 3+5 3+ 4
6 + 2 2 +6 3+ 7
8 +2 2 + 8 L + 6
3 +3 3+3 L + 2
6 + 1 6 + 1 6 + 2
] + 1 2 +0 8 +2
0+ 2 0.+ 10 5+ 3

- 2 +2 5+ 2 6 +3

| 2 +5 2+10 .5+ 4
3+ 1 0+ 1
"3+ 5 3+0
7 +2 3+ 2
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Table 1 continued ‘
~Session 2 (one week after session l)]r
Commutativity Task: Trials 16-307 Addition Task: Trials 13-24%73

2 +5 5+ 2 2+ 4
2 +7 7+ 2 2+6
3+2 2+ 3 2 +8
3+ 4 L + 3 3+5
S+ 4 L +5 3+6
7+3 3+ 7 4 +5
1 +8 1 +8 3+2
4 + 4 4L + 4 5+ 2

- h+o 2 +2 7+2

© 2+8 10 + 8 L+ 3
4 + 2 0+ 2 7+3
4 +5 "'} + 5 6 + 4
5+ 4 5+ 2
5+5 1+5
6 +3 1 +1

Note 1: Commutativity task | and the addition task were presented to individual
) subjects in sessions | and 2 in the same order.
Note 2: Trials were presented in random order.

Note 3: A counting-all strategy with blocks was retaught as necessary.
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Table 2: Summary of the Subjects' Performance on Commutativity Task |

\ Consistently - Consistently "
Triél type correct Inconsistent incorrect Totél
Commuted 18 (50%) L (11%) 14 (39%) 36 (100%)

(12 trials)

ldentity ' 33 (92%) 3 (8%) 0 (0%) 36 (100%)
(4 trials) '

Same as-N+0 5 (14%) by 27 (75%) 36 (100%)
(2 trials)
Different sum 35 (97%) 1 (3%) 0 (0%) 36 (100%)

(12 trials)




Table 3: Level of Success on Commutativlty Tasks 1 and 2

Automatically
Indicated com-
muted trial(s)
would. produce
the same ans-

wer as com-

Commutativity Task 2

Hes!tated or
responded In-
consfstently

to commuted

" Indicated that

commuted trial(s)
would produce a
different sum or

counted to de-

puted trial(s) trial(s) termine response Total
Consistently Alﬂa» (40%) sz,c (67) 82d (67) 18
‘,Commutatlvlty ' : 5 “ c c ’
ncon tent e a
e sts 1 G 0 GA 3
f°“5'“e:“y B3 () “© G- ‘0 9% 14
Total 18 3 TR 35 (1002)

24
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Table 3 contlnued | .

P

A: Overall commutativity performance scored as ''successful.”
" B: '"Mixed success.'

C: "Unsuccessful performance."

S #12 counted once during session 1 to determine her response to a commuted trial of task 1.

Thereafter, she responded automatically fo all commuted trials,

S #30 was correct on only 10 of 12 task | trials and appeared unsure about a third commuted . '. ,
pair. He then responded Inconsistently on task 2, Indicating that 4 + 6 would produce a dlf-

ferent sum ‘than 6 + 4 and that 4 +- 3 would produce the same sum as 3 + L,

S #35 hesitated before responding to task 2. He may have computed the sum to the commuted

problems, though counting behavior was not apparent. u ’ J

o

S #23 resorted to counting on commuted trlals for both tasks } and 2.

€ puring session 1 of task 1, S #25 initlally Indicated that she could not tell if commuted
pairs would produce the same or different answers. She was scored as Incorrect on three

trials because of the long pauses she took--presumably to compute the sums of the problems,

3

uo1l IPPY ﬁue A3 A j3eINUNO)D

She then responded automatically to the remaining commuted trials.

During session 1, S #10 was incorrect on all commuted trials of task 1. During session 2,
she again responded incorrectly to the commuted trials. However, she adopted a questioning

tone ('Different answer?'") with only the commuted trials. Later, durlng session 3, she ap- i

['44

peared to appreciate commutativity.
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Performance on Commutativity Tasks | and 2
, gutcessful Mixed Success . Unsuccessful °~ Total
; Predominant  CAL 42 ' LA © 6
Addition : o : | . '
’Strategy'by : o A .
. Session 2 coL 29 2% ~— f 5 '
Total -6 (55%) 3 (27%) 2 (18%) n

Tablg 4:° Qverall Commutativity Performance of Those Who Used ''Invented" (CAL or
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" COL) "Addi tion Strategies

2 Inctudes S #36 who swi thced from using CAF in session 1 to CAL in session 2.

Includes S #18 (A/C) who switched from using CAF exclusively in session 1

For both‘sessions, S #36 was administered the addition and then the commuta-

t|V|ty task. (A/C)

includes S #23 (C/A).who counted on the first trlal of commutatnvnty task o

and again on commutativity task 2 to determine his response.

to using CAF and CAL in session 2.

Includes S #03 (C/A) who counted once during session of commutativity task 1

to determine her_ response,

Includes § #10 (C/A) who was consistently incorrect on commutativity task 1 ~ °®

but adopted a questioning tone during the second session armd S #35 who was

hésitant on commutativity:task. 2‘\ v : .. )

a
v

Includes S #0h (C/A) who switched from using CAF in session ! to COL in

session 2.

\ | e h’ | .

-y . \
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Figure 1: The development of addition and commutativity concepts.

Commutativity and Addition
24 '

.Figure Caption
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Early Concepts (concrete)
- \\_ Early addition1 supplementing the first set (unary conception).

different addend orders imply different problems
seen) different sums

Noncommutatlvnty
and (because the outcomes cannot be for
3 + 2 represents ''three and two more' and 2 + 3 repre-

a

(e.g.,
sents "two and three more').

Early additiony: supplementing the larger set with a smaller amount

(unary conception).
the order in which addends are dealt with does
2 + 3 may be

Protocommutatnvnty
not affect the correctness of the outcome (e.q.,

recast as “three and two more'' to facilitate computation--even

though 2 + 3 and 3 + 2 may not be equivalent problems--i.e.,

equivalent in outcome) . l

Functiona! concepts (semi-abstract)

”Addition”; supplementing a set (unary conception).

nCommutativity's while different addend orders imply
processes, the order does not affect the xglge_of the outcome

2 + 3 and 3 + 2 are psychologlcally dlfferent problems,

different

(e.g.,
but have identical sums) .

«

Mathematical conception (abstract)

[y

n is the union of (interchangeable) sets (binary conception).

the order of combining two cardinal values (e. g.,
affect the B

Additio

Commutativity:
the cardinality 3 and. the cardinality 2) does not

totality (the cardinality 6).




