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% . Abstract -

k)

. Various methods have been suggested for the ahalysié of
data collected in regearch settings where random assignment
of subjects to(groups has not 'c;ccurredt For the purposes’of
this pépe; the set 6f aflowable nonrandomized dééfgns is-
made up of those rqsearchldesigns where data are collected
for one or'more groups of subjects at two or more time pdinfs ,
on some measure of interest. Further, none of the groups
need be a control group.  The main purgose of thelpaper is
to describe and report the results-of a Monte Carlo simula-
tion study that was carried out to deéermine‘which of‘several
da;a aﬁalysis methods déveloped by either Blumberg and Porter
or Olejnik Yyields the.best point estimates of treatment
effects uner vérious constraints. When growth oh‘the measure
of‘interést is linear over time ﬁlumberg and Porter's methods
providé the best eétiﬁat;;. When growth‘is exponential'OQer
time the results are mixed: uhdﬁr some constraints dlejnik's

~n

method is beét% but usually Blumberg and Porter's methods

- provide the best estimates. : .
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Various methods have been suggested for the analysis of

data collected in regearch settings where random assignmeht

.0of subjects to groups has not occurred. For the pﬁrposes of -

this paper the set of allowable nonrandomiqed designs is made

"up of those research designs where data‘are collected for one

or more groups of sdbjects at two or more time points od some
measure of interest; Further, none of the groups need be a
control group. The desrgns making up this set are most often
referred.to as either nonegquivalent control group desi;ns

and/or interrupted time series designs (Cook & Campbell, 1979j.

The main purpose of this paper is‘to report the results of a <

Monte Carlo simulation study that was, carried out by the au-

.

thors. to determine which of the several data analysis methods
to be described in the ‘next section results in the best point

estimators of treatment effects under the various conditions

studied.

Data  Analysis Methods
) /

All of the data analysis methods to be compared in this
paper assume some type of continmuous natural growth model )
whlch is supposed to describe the changes(1 e., growth) in

the measure of Interest dver time. Biumberg (along with Porter).

has déveloped several methods for der1V1ng p01nt est1mates

of treatment effects (Blumberg, 1982a, Blumberg, 1982b;
4
Blumberg & -Porter, 1982). All of ‘these methods assume the

o ?
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following plodel of growth over time:

) .

Ve () % gL (£)-Yo.(t.) + h.(t) + a.(t)
SRS R R A j .

1]
and * s - (1)
. =Y., + e,. .
Ylj(t) Ylj(t) elj(t)'
* 1 ' ‘~ ,5
where Yij(t), Yij(t) and eij(t) represent the true scores, g
obgerved scores, and errors of measurement, respec-
tively, for the ith indiviudal in the jth group, on
"the measure of interest; ~
gj(t) and hj(t)°a£e continuous functions;
aj(t) represents the population treatment effegt . “
for the jth group; .
and t is an arbitrary time point. ) oo

1

i

Further assumptions are: ,
(1) Classical measurement theory holds. :That is, for

* ! t G
each time t Yj(t)and ej(t) are uncorrelated apd E(eij(t)) = 0.
4

and (2) Treatment‘effects are additive. The expression

4

K 3 ] ’
gj(t)-Yij(t) + hj(t) represents the natural growth portion of

’ [ R R .
this class Jdf models and represents any natural growth situation B

where there is a correlation within each group between true
scores at any two points in time. Finally, thg‘treatment effects,

7 3 )
as defined by the uj(t)'g in the system of equations (1), are
. - |

' not the same as the usual definition of treatment effects.

Jerinis ,

] . !

Xl
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Let a(t) be the grand‘mean of thé'@j(t)'s, The usual definition
) -
1

of a treatment-eff?cé i's given by aj(t) - a(t).

L 4

All that is required in order apply Blumberg and Porter's

methods is that the functional forms of the hj(t)'s are known

(e.g., hl(t):ié a logarithmic function of the form
hl(t) = ) b(c-(t-tl) + 1); Jﬁere b and c afe constants, possibly

unkno@n; 2(t) is- a linear function of the form hz(t) = c.(t-tl)

where c is gome constant, possibly unknown; etc). fIn this paper

-

L/3:hree of Blumberg and Porter's methods will be described and
’ -
used in the simulation study. The reason for not discussing

the remainder of their methods is.that the remaining methods

> t

are not applicable under the conditions imposed for this par-

ticular simulation study. T \
Blumberg and Porter's first method reguires that the data

-

analyst have knowledge of the functional fbrms of the gj(t)'s )

.

and hj(t)'s. It further requires that pretest observations

under natural growth conditions are available on the measure
of interest at at least M time points, where M is thé'maxigum

‘of (i) two more than the number of unknown constants in ‘the

.

functional form expression for gj(t); and (ii) two more than

the number of unknown constants in the functional form expres-

sioﬁzfor hj(t). For convenience, this method wiil be called

Method A and p will denote the number of pretest time points.

i
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If one considegs the sys%em of equations (1) for each of the p

pretest points, then the structwal model depicted in Figure 1
‘¢an be set up relatingythe pretest ob§ervatlons at the variqus

time points. In this fidure and in the remalnder of the paper,

A

without loss of generality, the 3 subscript representlng group

L3

This structural equations model contains

' g(t ), h(ty),

~membefship is droppegd.

many unknown parameters, nqmely glt,), g(t3), ‘o

!

h(t,), ... ., h(tp), the variance of the true scores at time tys

and the variances of the errors of measurement at tl' t2' .oy

! and 't

p-1’ p’

¢

e(tz)

e(t3)

e(t4)

{ Figure 1 , -
Pictorial represehtation of the structural model

’
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To implement Method A i;‘is necessary to obtain maximum

Tikelihood estimates of these unknown parameters. But, the:

-

strqcturalimodel‘is overidentified and hence does not have a

~

closed solution for the maximum likelihood estimates of the

:parameters. Conseqguently, LISREL (J6reskog & Sorbom, 1978)

or some other maximum likelihood structural equations computer
s . * ‘

program must be used to obtain the maximum likelihood estimates.

[

The Appendix’ gives the LISREL IV input stréam corresponding

. /\\ . .
to Figure 1. Let g(tk) represént the obtained maximum like-

"lihood estimate of g(tk) for k{= ?,3,...,'p . The maximum

t

likelihood estimates of’ the h(tk)'s for k=2,3,...,p are obtained

//

- . _ = /\ +_ e )
by using h(t,) = Y(t,) — g(t i{Y t,). The g(t,)'s and the
Sk k k b | . k .
P P . )
b(tk)'s thus provide estimates for the true values of g(t) and

h(t),~respéc;ively, at the pretest time points.. The method of
o N

feast‘squares is then used to obtain estimates of the unknown

constants in the functional fprm expressions for g(t) and h(t).

For example if g}t) = p-clt-t)) +'(l —.b), then the estimates

‘ e , DN
of b and c are those values which minimize the quantity

b o _ , S )
. /kzz(g(tk)w(b-c(ttl)+(l—b)))z. , ) _

«

New functions, labelled g(t) and A(t) are formed hy subsfituting
. , F
the estimates of the unknown constants,that were obtaimed using

" the process just described, back into the functional form )

.

14 v ) /

Al
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expressions for g(t) and h(t). For example, if g(t) = b.c(t"ty)

N

A A ~ . ' PN R -
+ (1-b) and b = 1.45 and ¢ = 5.7, then g(t) = 1.45.(2.® TP 45 .

Point estimates of treatment effects are finally given under

i . . K
" Method A by .

>

’ ap (£) = TTE) — (g(t) -TTE Y= fi(t)) . 2
Bluﬁbérg and Porter's second method, to-be‘'called Method B,

© éepends wpon assuming that the‘reliability of Y, the measure

*

of interest, is constant over time and upon having knowledge
of the exact nature of h(t) [e.g., knowing. that h(t) = 3-t br

h(tf‘= log3[4(t41)ﬁ, etc.] and requires observations at on19

( one pretest time point, namely tl’ Under Method B, point

estimatef of treatment effects are given by, where S,(t) repre- 1
. .

sents the standard deviation of Y (t),

e . Sy (t)
aglt). = ¥Y(t) = J——— -¥(t)) + h(t)
. Sy (ty)

o

Blumberg and Porter's third method, to be called Method C,
depends upon assuming that the reliability of Y is constant '

over time and upon having knowledge of the functional forms of

g(t) and h(t). Further, both g(t) and h(t) can each only have
[ 4 .

one unknown constant -(e.g., g(t) =-b-(t-t1) + 1 and h(t)-=-
. o . .
log3[c-(t—t1)7]). Method C also requires that pretest obser-

.

vations are available at two pretest time points, say t, and

t This method is a combination of some aspects of Methods

9
t

1

N
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A and B.

Call this estimator of g(tz) by the name 61:;).

T
h(tz)

of N(t,) is thén gstimited by using

. . /\
The equations g(tz)

for the unknown constants.

of the unknown constants.

then the equation

z

~ S.(t.)
. yielding b = {SYTZ) —
’ ) Y 1)

N

Sy(t,)

_ = b.(t
Sy (ty) 2

Sy (t,)

Under Method C, g(t ) can be estimated by'7§_ﬁ?7"'
1

The ,value
A

Y(E,) — gl(ty) -¥(E)).

For example, if g(t) =

= g(tz) and h(tz) = h(tz) are then solved

These solutions provide estimators

b. (t — tl)’+ 1,

- tl) + 1 is solved for b

{}/(tz-tl). Once the estimates of the

unknown constants are obtained, new functions labelled g(t) and

h(t) are formed, as in Method A, by substltutlng the estimates

of the unknwon constants into the funct10nal form expressions

for g(t) and h(t).

then given by

N
ac(t)

Point estimates of treatment effects are

;

(®) = [g(t)-¥(ty) + h(t)]

.

Olejnik. (1977) assumes the following model for the mean

population growth over time on the measure of interest:

uy¢t)

and
.Yi(t)

‘ *
where u&(t) is the population mean for Y (t)=

= -

(e (£ = £7) + 1]y (£)) + e (b =t P a(t) -

*
Yi(t) + ei(t) P

_/

P
4

Hence, Olejnik

requires that the population mean natural growth over time be

-

AU
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linear while Blumberg and Porter allow natural growth to follow
any continuous function. Olejnik, however, does not reguire
the assumption of a correlation of +1 between true scores at

any two points in time, as is required by Blumberg and Pogter's

LI

: : , -
model of natural growth. Olejnik's method, as did Blumberg and
Porter's Method C, requires observations to be available at

and t.,. Under

exactly two pretest time points, namely tl 2

Olejnik's method, the point estimators of treatment effects

are given by

t - tl

2 %

a/o\(t) = ¥Y(£) - ¥(t,) - [¥(L,) —77;‘1)1-‘ -
All of the four methods just descéibed have some unsolved
problems associated with them.- The methods developed by Blum-
berg and Porter are'based on maximum iikelihooé estimation
and/or the use of ratios of standard deviatiéns. Both maximum
likelihood_téchniques and estimators based on ratios of standard
deviations are known to often lead éo-biased,halthough con-
sisteﬁt, estimatorst 6ne unsolved problem is whether each of‘ .

Blumpgsg and Porter's methods lead to estimators whose bias is

at an acceptéble,or unacceptable level. Further, nothing is

known about the standard errors of the estimators generated by e

these methods. Olejnik's method has only been studied when
the population natural growth pattern was taken to be linear,

over time. It can éasily be shown bv elementary élgebra and
¢ v
Id

/

;-




. =9-

P , .

-

-

statisﬁics tha; when population mean growthﬂis linear that
Olejnik's meﬁhod produces unbiaseé estimates of treatment
.effeété. Olejnik (1977) studied the standard error of his
“method for. linear medn population growth under various con-
strainté on the errors of measurement. The bias aﬁd standard
érror of Olejnik‘é method have n&t, however, been studied

ﬁor non-linear mean population growth. The computer simula-
/ .
[tion study to be described Qresently, thus, had several

purposes:

(i) to study the bias of Blumberg and Porter's Methods

A, B, and C and Olejnik's method under various natural growth

formulations;

(ii) to study the standard errors of the four methods;‘

(iii) to compare the estimates obtained under the four

methpds;

%
and (iv) to make recommendations for the use of these methods

‘onp .real data sets.
y

&éhere is only-one other class of methods known to the authors

re
Q%

E&by which one can obtain point estimates of treatment effects.
H ;..,,/;’ ) _
giThis class of methods which was developed by Strenio, Bryk, and

., Weisberg (Bryk, Strenio, & Weisberg, 1980; Strénio, ngsbeég, &

S S e s

{7 Bryk, in press) is based on the ideas of Empirical Bayes esti- "

.

mation. The use of their class of methods demands a.great deal

of mathematical and statistical sdphistication on the part of

the data analyst. Hence, even though Strenio, Bryk, & Weisberg
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:hqve produced an excellent class of methods, their metho@s were

not included in this simulation study because of their com=~
plexity. - ' ' - ‘ ‘ \ .
. w ” : ~ ’

> . Set Up &f Simulation Study ' ‘ #
’ " K

[

One thousand two hundred data setg'were generated in thé
> - _ . ’/ M g \ (4
following manner. . First, the canned prqgfam NRAN31 was used
; .

‘to generate 13 stanﬁard nornial randony deviates for each .of

I

25 'individuals. This program and all remaining programs men-
; . ; .

tioned in this.paper were run on the Burroughs 7760~€9mputer
at  the University of Delaware. A base true score. for each
individual was established by adding 5 to the first standard
normal random deviate'generated for each individual. With-.
out logs of- generality, this time-point was set equal to

t = 1. Two different sets of individuals' £rue scéres under
naturaligroﬁth over time were generated atvll additioﬁal
time points, which were taken to be equally spaced at té2,3,

- g . '
* ¢ * . :
.+, 11, and 12 , using ¥ (t) = g(t)-Y (1) + h(t) where
g(t) rand h(t) were certain specified functions. The” first
set of true scores was.generated by setting g(t) = .5(t —'1) + 1

and h(t) = .3+ (¢ -.1). The second set of true scores was

i

generateéd using g(t) = .7+(1.2)¥1 4+ .3 and h(t)30 . Next,
it was assumed that the reliability of Y was constant across
time. Three different values were taken for this fel;ability: '

-5, .7, and .9 . For each of these reliability values the

«
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second through'thirteenth standard normal random deviates gen-

erated at the ¥first step were used to-.add én errors of measure-

'
; -

ment to the true scores in order to generate observed scores

L3 »
with the féquired reliability wvalues. vThus, for each set of

-

' %S individuals, six different dataji?ts were generated. .The

. properties of the six data sets are enumerated below:

) will .
(1) The first data set, which®”be referred to as .5 Linear,

was generated using g(t}) = .55&;1) + 1, h(t) = .5-;, and a

reliability of .5 . " »

(2) The second data set, which will be referred to as .7

’,

Linear, was generated'using q(f) = .5(t-1) + 1, -h(t) .3°t,

and a reliability of .7,.
(3) The third data set, which wiil be referred to as .9

Linear, was generated using g(t) = .5(t=-1) + 1, h(t) = .3-t;

and'a reliabilitytof .9 .. \ .

(4) Thé fourth data set, which will be referred to as .5 )
Exponential, was generated using g(t) = yeq1.2) 1 4 L3,
h(£)= 0, and a reliability of .5 . | |

(5) The fifth data set, which willibe referredato as .7
‘Exponentiai, was generated using g'(t)l='.7-4(1.2)t"1 + 3,
h(t)s 0, and a rel iiity of .7 . |

(6) The sixth data set, which will be referred to as .9

Exponential, was gene;ated ui}ng ggt) = .7-(1.2)tf1 + .3,

-

-

h(F)E 0, and a reliability of .9 .
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The procedure just described in the preceding péragraph .

' was repeated 200 times yielding a total of 1200 simulated data
[ 4

sets. Notice that when the data sets, were generated no treat-

ment effects were entered into the data.,,Hence, when the four
v .

methods described in the last section are used to estimate
treatment effects, the calcudated values of the estimated treat-

ment effects do in fact represgnt the bias in theymethods because

the theoretical valyes of all treatment effects were set to

.
2ero. i

3

For the .5 Linear, .7 Linear, and .9 Linear data sets the

estimates of treatment effects for the various methods were

1

‘calculated in the following manners. For Method A the time

t

ﬁointé t=1,213,4,5,;aéd 6 were taken asﬁthe.preteéé time pqints."
Tﬁé simulated obseéved scores for each data set corresponding

to these six time points were én£ered into the LISREL program
illustrated in the Ag?endixf The LISREL ‘estimates of GA(1,1),
Ga(2,1), ca(3,1), Ga(4,1), and GA(5,1) were then used as the

maximum likelihood estimates of g(2), g(3), g(4), g(5), and

§(6),.respectively. It was then assumed that g(t) = b.(t'="1)

+ 1 and that h(t) = c-(t =1). The method of least squares

was then used to estimate b and c. 7In this case, because both

g(t) and h(t) are linear,-closed expressioqi\for £ and ¢ are

.

»

i

available and are gfven by ﬁ~=(6 - 15)/55 and by ¢ = )

3

('T(’Z) + 2Y(3) + 3Y(3) + 4Y(5) + 577%) .—~6i?‘(I))/55, where i

- ) 1=
. -~

,
4%
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. . ) /\
was calculated for t=7,8,9,10,11, and 12 using aA(t) =
v ‘j
Y(t) - (b(t - 1) + 1)+Y¥(I) — c-(t —'1). For Method.B it was’
\ ,assumed'that h(t) = .3-t (the correct function) and t = 1.was
. ( . . F . - ‘e .
taken as the only reguired pretest time point. To -¢alculate

the @)'s the formula a/B\(t) = Y(t) = ((sy(t)/sy(l)j-m) + .3:t)

_was used for t=2,3,4,5,6, and 7 . For Method C ahd-fqr Olejnik's

method it was aésu@ed that g(t) =’b-(t -1) + 1 and h(t) =,c-t'
and the pretest time points were taken as being t=1 and t=2.,
When these linear functions are assﬁmed for g(t) and h(t),

Method C and dlejnik's method result in the same'estimates for

[

treatment effects. For ease ‘of - later dlSCUSSlQn, these estlmates

will be referred to as the estimates from Olejnxk‘s method and

. /\ - . _____ .
are given by ao(t) = Y(t ) Y( ) - (Y(2) = ‘Z ))+(t — 1) for
. , ; )

For the &5 exponentlal, .7 exponentlal, and .9 exponential

t=3,4,5,6,7, and 8.

data gets the estimates of the treatment effects were calculated
"in the following manners. For Method A the time p01nts t= l 2,

. o~
3,4,5, and 6 were taken as the pretest time points and the g(t)'s

for 't=2,3,4,5,and 6 were'generated using LISREL as desc;ibed in

the previous paragraph: It was then- assumed that g(t) = b.c(t'l) "

(1 -~ b). Since h(t) was set to be identically equal to zero

when generating the data sets, h(t) was assumed to be identically

-,
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¢

Vg . L.
equal té zero.for Method A and for all the other methods when

. 3

simulating the analys?s methods for, the bprnéntial data sets.

.The method of least squares, using the 2ZXSSQ subroutine df the

- ’ -

IMSL package, was then employed to estimate b and c, and aA(t)
. o

AN - A : " .

was calculated using aA(t) = Y(t) - [b°c(; b ¥ (1 —b))-¥Y(D)

. _for.t=7,8,9,10,%1,and 12 . For Method B t = 1 was used as the

S
pretest time p?int and aB(t) was calculated using the formula
and . Sylt) - - .
GB(t) = ¥Y(t) - _ST)-—.Y(I) for t=2,3,4,5,6, and 7. Method C
. v ]

is not applicable for the exponential data .sets since g(t) =

N R _ - -
o0 b‘c(t Doy (1 - b), which is the corresponding functional form

for the g(t) uégd to- generate the aata sets, has two unknown:

constants. For Olejnik's method the time points of the pretests

\ /\ - .
were' taken as t=1 and t=2 and the formula a,(t) = Y(t) — Y1) —
' ' LI \

— — : \ .
(Y(2) -~ ¥Y(1))+(t — 1) for t=3,4,5,6,7,and 8 was st@ll used to
estimate tﬁ; treatment effects, even though it was realized that

Olejnik's assumption of population mean/growfﬁ being .linear does

.4:\ .
not hold for these data setst p

s
Results and Conclusions

The easiest way to report the results of this simulation

study is by- the use of tables., ‘Tables 1 through 6 give the

resﬁgts for the .5 Linear, .7 Linear, t9 Linear, .5 Exponential,

- -
\ . {
N )
. .
.

1y
“ ¢

»

-~
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1

.7 Exponential, and .9 Exponential data sets. As was mentioned

€ Insert EabIes 1l to 6 Here

.« earlier, the observed mean for each of the estimators over the

200'simulated data sets is the eame as the observed bias of
these estimates since.the theoretical value of the treatment
effects is zero. »This observed bias is reported in each tab1e1‘
in the column, labelled Observed bias.: The standard dev1at10n'
of each of the various estimated treatment effects over the
200 data sets is an estimate of the standard error of the es~ -
" timators and is reported in the column of each table labelled
cp tab%e tge‘églumn labelled Percentage

A

standard dev1at10n.
o i, T
f times that the indicated method

treatment effect whose absolute value was
less than the absolute value of the estimated treatment effects
generated using the other two methods. _Conversely, the eolumn
labelled Percentage worst reports the number of times that the
indicated method yielded an estiﬁated'treatment effect whose
absolnte value was more than the absolute value of the~estimated
treatment effects generated.using the other two methods. The~
rows labelled A and B refer to Elumberg and~?orter's°methods

and the rows labelled O refer to Olejnik's method. The starred

values in Tables 4,5, and 6 are crude estimatés of the observed

«

1§ .
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bias and standard deviations rather than the actual valués. To

- keep .the computer programming traotable, values of estimated

treatment effects which were smaller than -1000 were treated

as missing when the obsexrved bias and standard deviations were

,computed. Hence the observed biases are even more negative than

indicated and the standard errors are even bigger than indicated.
- . §

3 B .
The .réason for including the crude estimates of bias and standard

-:

deviation is that they do give an 1nd1catloQ of the problems

assoc1ated with Method A when exponentlal grdwth is used..

F{om inspection of Tables 1 through 6 several conclusions

can be drawn. When g(t) and h(t) are linear (Tables 1,2, and )
‘ -

3), Method A leads to point estimates of. treatment effects which

appear to have no noticeable bias while Method B leads,to biased

N

estimates. Olejnik's method theoretically leads to unblased
estimates andxthls was confirmed by the samulatlon ‘study. Method

B has much'larger standard errors than either Method A or Olejnik“s

- 14

. method Further, Method B, for all rellablllty levels and for

all. posttest time p01nts, rarely dgives estimates w1th smaller
absolute value (i.e., Percentage best is lower) than elther
MethpdNA or Olejnik's ‘method and, in fact, most often, ylelds
the éstimates with the largest absolute value (i.e., Percentage

worst ishbigh). Hence, Method B can be eliminated as a possible

method for analyzihg data which follow a linear growth pattern.

over time. Therefore, the choice of data analysis methods for

linear growth is reduced to Method A and Olejnik's method.




- larger for Method A than for Olejnik's method.

- method.

.17~

. Since both Method A and Olejnik's method lead to virtually
\ . . » . R 13

. . . . :
‘u%ﬁ;ased estimators, the choice between them must b2 made based

RN ) N
on considerations other than bias. When one extends one time

point beyond the last pretest for all three reliability levels

the standard error for Olejnik's method is less than the standard

-

error for Method A and further, Olejnik's method leads to smaller
absolute va%ues of estimated treatmetn effects a larger per:Eh—

tage of the time. When one extends two time points beyond the /) s

pretest for all three reliability level the standard errors

’

and Percentages best and worst are approximately the same for ’

When one extends threg‘or more time points bheyond
- .

the pretests for all three ﬁgliability levels the standard errors

both me;heds.

and Percentages worst.are smaller and the Percentages best are

Hence, for

measures of iInterest whose true growth pattern over time is L
Z,

'11near, it appears that.if one wants to extend only one time

p01nt beYond the pretests that Olejnik's method should be used ' :
If one wants to extend two time points beyond, it appears to

be.a tdssfup.‘ But, Olejnikfe method is much.simplier eo use "’
and hence is recommended when extending two éime'points beyond

the pretests. When one wants,to extend 3 or more time'points. -

- beyond the pretests, Method A appears to be the preferrable'.

’

~ When the true growth pattern on the measure of interest

follows the exponential growﬁh model (Tables 4, 5, and 6).

~ A

a
&<
\

f;' ‘ 20
\ - -~

-




" extending only one or two time points beyond the pretests.

iqf the data. When the reliability is .9, Method B has a - 1y

“with data of reliability of .9, Method B is the preferred .

-18~
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-

Method A can immediately be eliminated as a' possible data anal-

.

" ysis method because of its huge standard errors. Hence, when

data follow an |lexponential growth model the choice of data

analysis methods is limited to Method B and Olejnik's method. \

For all 3 reliability levels &nd when one extends any number

of time points be

a the pretest time points Method B appears

to give estiates of treatment effects with no noticeable bias

while Olejnik's method always leads to biased estimators. The,

f Olejnik's method should not, however, be surprising
L 1

since the mekhod assumes linear growth and the growth.ﬁbdélh .

biasedness

used to generdte the data was not lineai. When one extends:

‘only one or twd time boints beyond, the pretest time pbints

Vs : : .
for all three reliability levels Olejnik's method has smaller

standard errors and Percentages worst’and larger Percentages

best than does Method B. Hence, despite being slightly biased,

,0lejnik's method appears to be the preferrable method when . )

[3

. When extending three time points beyond the pretest fimq\\;~;:jt)

points the choice of methods. is dependent\on'the reliability

~

larger Percentage bes§ and smaller Percentage worst than

Olejnik's method. Further Method B provides'virtﬁga nbidased

.estimates while Olejnik's method leads to biased estimates.

Hence when extending thr time points beyond the pretests,

»

&, . . 1

Y
-
Qa
R
-~
e
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A

method, ev though Olejnik's method has a smaller standard

error. When .the reliaBility .of the data is either .5 or .7
’ - . . L,
and one is extending three time points, beyond the pretests, .

e

" the Percentades best and worst are almost identical for Method

P

B and for Olejnik's methdd. BAs mentioned earlier, Method B

Lo leads to vf}tuaily unbiased estimates while Olejnik's’method ‘
leads to biased.estimates. 'Howe&er, the staﬁdard errors
_associated wiéh Oléjnik's method are smaller. So, when the
reliability of the data is ‘either .5 or .7 apq.bne is egtending

¢ o .

three time points beyond the pritestsf data analysts must

decide whether they want' unbiasedness, in-which case Method

¢

. i ' . . . ’
B should be chosen, "or smaller standard errors, in which case

" Olejnik's method should be chosen. When'extendiﬂg:four or more
e : .. . AT

time points beyond the pretests Method B becomes the recommended ~ -

method for all three reliability levels. The reason for this"

recommendation is that Method B remains virtuéliy unbiased

w o

while the bias inherent is Olejnik's method becemes larger as ’

the data is extended more and more time .points beyond the

pretests. Further, the P:;;jgtages best are larger and the

Percentages worst af%‘émé for Me'thod B than .for Olejnik's
. 7 . by

-

method. ’ S : ' T

Limitations and Directions for Further Research

: . e . : . A »° -
This simulation study was- carried out using only "two forms .- (,

of natural growth models--a linear growth model and an exﬁonential

~

, n ’
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growth model. Further, for each of the two models only one set
of parameters was used to generate'the data. bAlso, the assumg—
tion of equal reliability across time was made. Hence, the -

results reported in this paper are very limited. On a positive

note, however, the results of this simulation study show that

' Blumberg and Porter's methods and OlejniR's method are v1ab1e

data analys1s methods. This is imlportant because these methods
are not well known and hence have rarely been used in actual
data analysis 51tuatlons. Because of the llmltatlons just

c1ted much further research needs to be done. Flrst, for

1 -
the functlonal forms studied here, parameter values other than
those used in this ‘'study should be 1nvest1gated. Second,

functlonal forms other than linear or exponentlal should be

studied. Third, constraints on the errors of measurement .

-

other™ than that'of equal reliability should .be included in

.

future simulation studies. Finally, this study only concerned
the point estimation of treatment effects. Both‘Blumberg and
Porter (Blumberg, 1982a; Blumberg, 1982b; Blumberg & Porter,
1982) and Olejnik (1977) have developed interval estimation
and hypothesis testlng procedures based on their p01nt esti-

mation procedures.. The utlllty of their interval estimation

and hypothesis testing procedures still needs to be studied.

- k3

1

-
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1 Appendix

LISREL IV Input Stream

f
Tjtle Card ‘ _
DA NG=1 NI=p NO=gample size MA=CM

LABEL
*

P

rypar! 'YT3' 'YT4' ... 'YTP' 'YT1'

RA . .

R ‘

Data is next using the following form
Yl(tz) Yz(ts) ce Yl(tp) Yl(tl)

YZ(tZ) YZ(t3) ces YZ(%p) Yz(tl)

Tylty) Tylty) oo Ty(t ) X0t

~

MO NY=p-l NX=1 NE=p-1 NK=1 LY=ID LX=ID BE=ID (
GA=FU,FR PH=DI,FR PS=ZE TE=DI,FR TD"DI FR C

ST Give starting values for GA(1,1) to GA(p 1, 1), PH(Z)
TE(1) to TE(p-1), and TD(1) makzng sure that they are

all positive.

MR FD SE ND=8
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Table 1

w6
X

Standard
deviation

Results for .5 Linear

~

Percentage
best

Percentage
worst

0.937
2.547

,35.5 %
L 11.5

21
69

[
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Table 2

Results for .7 Linear

Numher of time

Percentage

points beyond Observed | Standard Perceétage
last pretest Method bias deviation - best -worst
a .049. 0.613 37.5 % 15 1 8-
1 B .227 1.983 8.5 76




Results for .9 Linear
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Table 3

>

.

Number of time ) ’ T .
~ points beyond Observed Standard Percentage | Percentage
last pretest Method bias deviation best worst
r
A .025 0.312 37.5 % - 16" %
1 B 122 | -1.145 6.5 “.15.5
0o’ 005 0.246 56 8.5
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Table.4
B ; Results for .5 Exponential
Number of time , -1 -
points beyond . Observed | Standard’ Percentage | Percentage
last pretest Method bias deviation 1 best worst
A -11.562 55.541 3 % 86.5 %
1 - B - -0.064 1.226 36.5 1
o '0.153 .561 60.5 2.5
- A -57.052 388770 4 “  gg -
i 2 B ~0.170 | . 1.487 38.5 7
o 0.455 |& 0.855 ° 57.5 . 5
emmmm e e e e e} e
y A -72.352 429.307" 3 89
T3 B -0.098 1.750 46.5 7.5
0 1.037 1.203 50.5 3.5
SV AR VUSRI U A I
o A -121.758 467.1494 4 87
4 ‘B ~0.255 1.991 57.5 o
o) 1.700 1.582 38.5
........... 7......---:..-.......__-..‘_-_ e S P
. T a -i78.686" 766.859" 4.5 86
5. B ~0.167 * »2.096 71.5 4
) 2.834 1.845 24 10
....:.....’.....__..-.._-_-............‘__._;_r ------------------------------------
A -218.836 956.396 /5 86
6 B -0.214 13,092 .75.5 3.5
0 4.225 2.162 19.5 10.5
T e ﬁ ’
. o ) ‘

3
1}
i
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Table 5 °

Results for .7 Exponential

Numbef of time . ‘ ,
points beyond : Observed Standard Percentage | Percentage
last pretest Method bias deviation best worst -
‘o A -4.993 27.927 3.5 % 85.5 %
"1 B -0.045 0.985 28 11.5
o 0.149 0.367 68.5 3
badendhade s dh odandn e dh of "--’-—--"’-—-"‘ ----- *- ----------- * ? ----- £ D D G W G G D e D S . -
a -138.164 . 963.686 5.5 85.5
2 B -0.133 1.199 36 12
o 0.453 0.560 "58.5 2.5
............ - e - o - - - —— - — - ---‘-‘-—_.T:-- PR S ——
a -57.992 664.887 4 87.5
3 B -0.062 1.402° 48 8
o 1.009 0.788 48 .5
...................................... e R e
a -46.826 366.526 4 90.
& 4 B -0.166 1.569 61
0 1.702 1.037 35
A -74.629" |  438.340" 5.5 88.5
5 B -0.095 1.697" 80 2
‘ . \
-——-——-—-————-————--—————————-*- ——————————— *- ————————————————————————— -l
a -83.196 .| 407.534 4.5 86.5
6 B -0.093 2.418 85 1
o} 4.194 1.423 10.5 12.5
______ e e
., !
Q . U\_l ‘) 3()
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Table 6
Results for™.9 Exponential
Number of time 1. < .
.points beyonq; o Observed Standard Percentage | Percentage
last pretest Method bias deviation best worst
X LESE " T
A -3.011 21.806 5.5 % 79 %
1 B -0.016 0.598 23 19"
0 | . 0.144 0.187 +71.5 2
. | PO Y
a -117.414 811.526 7 85
2 B -0.070 | 0.721 42 9
0 0.983 0.403 51 6"
' S U S e i R o
A -3.878 27.861 - 8 83.5
3. B -0.016 | —-0.843 64.5 6
0 " 0.983 0.403 27.5 10.5
- e e v e am anle s a® e an an en of ——————--;—p --------- ; ---—————-.———-— _---\ -------
‘ A -15.978 123.460 . 5.5 85
"4 B -0.066 0.939 86 1
. 0 - 1.704 , 0.532 . 8.5 14
UYL i I “i‘
A -62.224 560.774 5.5 85
5 - B -0.052 [/ 1.029 91.5 0.5
' 0 2.776 0.626 3 ‘14.5
- ) hl (
. ak .
a -67.189 409.017 5- 84.5
6 - - B 0.014 " 1.405 93.5 0-
o 4.165 0.742 1.5 15.5
______________________ el
. Q - ~




