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. Abstract

H

~

A review of cross—vayidation shrinkage formulas ig Eresented which focuses on
the theoretical and practical problems in the use of various fo}ﬁulas. A
comparison of results using these formilas in a range of situations is then
sresented. The result of these comparisons is that use of Cattin's formula
is recommended. Double cross-validation is considered inefficient and un-

satisfactory and a cautionary remark concerning the functional number of

pred¥ctors is presented. {}
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Formula Estimatioﬁiof Cross-Validated

Multiple Correlation .

4 A
»

In 1931, Wherry published a formu1§ subsequently used to estimate the

multiple correlation between actual measures on some criterion variable and

predicted values of that same variablé. The predictions, of course, are made

using regression weights developed in a saﬁple from tﬂe same population con-

cerning which the predictions are made. Wherry himself recognized that his

formula really was an estimate of what the multiple correlatioqs between pre-

dicted and actual criterion values would be if one had the popufation or true
regression weights instead of those derived from some fallible samp}é. Because .

of the recognition that the formula was conceptually inappropriate (Wherry, 1951)

and because of bad experiences with applications of the formula (Guion, 1965),

> »

] N
most authors concerned with the stability of their prediction equations used

actual em;irical cross-validatton of the type.described by Mosier (1951).

Brieflv, Mosier proposed splitting the samplé in half, computing regression

equations and associated multiple cgrrelatibns in £oth halves, an#d then using

the regression qu;tions de&eloped in one half to make predictiong about values

of the criterion in‘the other half. Correlations between actual and p;ediéted

values for these two Cross—Qalidations were averaged to provide an estimate of
)

. " the cross-validity. Mosier's procedure was called double cross-validation.

In 1977, Schmitt, Coyle, and Rauschenberger evaluated the performance of

the Wherry estimate and two other simiiar-formulas (Darlington, 1968}
Nichlson; 1960) and the double cross-validation technique. The evaluation of
these four methods was done in a Monte Carlo study using (1) the difference

between the estimated cross-validated R and the actual population cross-validity

-

N and (2) the_s?andard deviation of these estimates. Several guidelines for the
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usage f these formulas were presented, most significantly that actual empirical”

cross-validation was inefficient and likely to be in greater error in any single

application than any of the formulas including the Wherry formula.
N ¥
Since that time several papers have appeared which have raised issue

with the appropriateness of thé formulas evaluated by Schmitt et al. (1977)¢

" Rozeboom (1978) indicated their conceptual inadequacy and Rozeboom (1978) as

well as Drasgow, Dorans, and Tucker (1979) have shown that for low levels of
multiple correlation not sampled by Schmitt et al.” (1977), the formulas,

particularly Darlington's, produced a severe negative bias. That is, for low
i * -~
levels of sample multiple correlation, the formula estimates of cross-validated

multiple correlation were muoch too low.

4

Since that time there has also been general agreement (Cattin,-1980a;
1980b; Rozeboom, 19783 1981) that a fourth formula® presented by Browne (1975) .

is mathematically correct. Table 1 is & presentation of various formula estimates.

[}

As can be seen, the Browne formula is horrendous from a computational viewpoint.

Hence recent efforts (Cattin, 1980a; Rozeboom, 1981) have focused on thé_develop—(

&

L ¥ ’: -

ment and evaluation of shortcut formulas.which yield essentially the same vaiﬁés“;
! ! . g

as the formula presented by Browne (1975). oY
B e

The purpose of this paper is to present briefly some comparisons of gheSéfﬁ .

3
formulas, parts of which are available in the citations listed above. Sééond,

I will attempt to provide practical guidelines for use of both formulas and
empirical cross-validation. ) ‘

E’fgt_hﬁo d t
A range of possible sample squared multiple correlations (.1 to .9),

sample sizes KAO to 240) and number of predictors (5 to 25) was selected to be

A -

reasonably representative-of applied research emploxing multiple regression.

£ ’
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The various formulds'presented in Table 1 were then applied to these sample
statistics to provide estimates of the population corss-validity in any given

situation.

Results and Discussion , s

Ta

A\
In Table 2, are cross-validity. estimates based on the various proposed

v

formulas (see Table 1). Various levels of sample multiple correlation (R),

Y

sample size (N), and number of predictors (P), are used in these computations.
I{ one examines Table 2, it becomes obvious that for relatively large N/P
ratios there are larger differences, as various authors-have pointed out
(Rozeboom, 1978; Drasgow, Dorans, & Tucker, 1979), and they are likely practi-

e

cally important differences., . ‘

v
.

The other factor that is extremely important practically is that the
Nicholson and Darlington formula fail for low levels of multiple correlation
(R2<.6) which is precisely the levels of multiple correlation typically found/
in applied situations. This failure, of course, is the one noted by var‘ious
authors cited above. Finally, even the Cattin and Rozeboom alternatives
produce impossible results when the N/P ratio and R2 is small. The underlined
values in Table 2 are illustrative of this problem.

The most significant conclusion to be drawn from these results as Qell
as the other cited literature on this topic is that Cattin's formula is the

.
most appropriate estimate of the cross-validated multiple correlation. Note
th5£ Cattin's formula requires the use of Wherry's formula to calculate the
population multiple correlation., Further, it seems appropriate that use of
even their formula be restricted to instance; in which N/P is greater than 2

Ay

especially when R2 is low (<.6).

.

At least one other practical issue remains. Is it better to use the Cattin

formula or empirical cross-validation? My answer is that empirical ,cross-
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validation is not only a waste é‘ time, it is is less satisfactory than any:

§

formula estimate. The reason for this was displayed'in Table 3 of Schmitt,

Covle, and Rauschenberger (1977). Empirical cross-validation, since it is

-

based on substantially less than the total sample, is associated with greater
. .« W

variance across repiications than are formula estimates. So, in any given
. { . . R .

instance, we can be much more wrong in our estimate with empirical cross-
validation than if we had applied one of the formulas available.

A final note of caution in the use of formula estimates of cross-validation

»

is that they assume there has been no 'data-snooping" prior to the calculation

of the sample regression equation. The procedure in some studies is to compute

\

zero-order correlations between a criterion and a large number of predictors,

pick those variables which are significantly related to the criterion and compute

L 4
e - e
a regression equation and multiple cdrrelation using this subset of significant

- i

‘ .
predictors. The functional p in this case is not the number of predictors in
the regression equation but the total number of potential predictors' for which

correlations were observed. :

i

Conclusions .

*

The conclusions are simple: 1) use the Cattin formula to estimate cross-

I

validated R employing either Wherry or Olkin-Pratt estimates of the population K

(see Cattin, 1980a for dgtails); and 2) if examination of prediEtor-criterion

-

correlations has occurred prior to regression analysis, use enpirical cross-

validation or adjust p to indicate the original number of variables examined.

’
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Table 1

Summary of Cross-Validation

Adthor

. o o N _ 2
waerry (1931 pc =1 é\ - IJ (1 R .
o < N = 1Y {N+ptl) 2
Nichois & . ¢ = - ! ( -
tcholson (1960) ‘ P 1 (N—p—lg N/ (1 RT)

darcington (1968) o <

2

. N - 1Y/N - 2' N+1 /
¢ =1 ((\Ipl))KN_I;:Z)>( )uR)J

Formula

' Estimates multiple R when we have
population weights

Developed for fixed and random effects
models respectively = both suffer
negative bias > .1 when N/P < 2.

r P /1 wﬂl-l
ey e " 07s N , =~ &
Rozepoom (19738) pc N J} +(N-p-2) \ 7 ZJ ) Py
3
Cattin (19804, 1980b) L0 o (N-p=3) p"* + . First portion of Browne formula (1975).
t1i d, e (N-2p-2) ¢ + p must be estimated separately by a
nTep ' P a formula such as Wherry's above or in
. cases of very low N, a formula provided
; * by Olkin and Pratt (1958).
: o~ N~p- “+}°‘ 2 (N~p- -2p- - Y A=’ i -1
drown (1975) QCZ = (EN_g)E)z)p,-' " J (N P 2) (N 2p- 6) (L: 1) o L ) + 0 {N-p) J
LTepmel v P (N-p-4) EN—Zp—Z) poe 4 pT _ L.

\_/

[ 4

a - . . . .
In al} formulas, R = sample multiple correlation, N = sample size,

. = population multiple correlation, SC = population cross-validity.

p = number of pred¥ctor variables, =
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”4’ . . Table 2
w7 Fstimates of pcz‘Based‘oﬁ‘thrry, Nicholson, Rozebodm
defl{?ggon,‘and'CdtLin Fgrmulas for
Various Combinations of R4, N, and p
a
> 900
) édﬁ ' Sép éﬁﬁ& ¢P&§ 609
R N P & N Q RUI -
.9 . 40 E .89 .87 . .86 .87 .88
9 80 5 .89 .89 .89 .89 .89
.9 240 5 .90 .90 .90 .90 .90
R 40 10 .87 .83 .81 .82 .83
.9 80 10 .89 .87 .87 .87 w87
.9 240 10 .90 .89 .89 ~ .89 , .89
.9 40 25 .73 . .54 17 .41 N
.9 .80 25 .85 .81 .78 .79 .79
. ", 240t 25 89 .88 88 88 88
8 - 40 5 77 4 ! .74 .75
8 80 5 W79 Ny .77 77 .78
.8 240 5 - .80 .79 79 .79 .79 ’
.8 40 10 .73 .66 .63 .65 67
.8 80 10 77 .74 .73 .74 .74
8 240 10 .79 .78 .78 78 .18
.8 40 25 .44 .08 -.67 13 15
‘ S8 80 25 .71 61 .56, .59 60
, B 240 25 .78 .75 .75 .75 s
.6 40 5 TN 46 48 .51 )
6 80 5 .57 .54 3, .55 - .55 )
.6 240 5 59 58 "8 58 _ 59
.6 40 10 46 31 25 In .36
6 80 10 .5 48 47 48 .9
6 © 240 10 .58 567 .56 .57 57
6" 40 25 -1 -84 o 01 .00
6 80 25 .62 .23 S LS © .26
.6 240 25 .55 .51 .50 .51 51
4 40 5 31 21 19 2326
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40
80
240
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240
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80
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40
80
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10
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25
25

25

10
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25
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25
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Table 2 Continued
S ‘ ’
- . & .
é;% 5§$f {;f% qgfﬁs 609

& & A\ R N
.36 .31 .31 .32 .33
.39 .37 .37 37 .38
.19 -.03 -.12 .08t .10
.31 .22 .20 .24 .24
.37 357 .34 .35« .35
-.07 —— - .18 17
12 -.16 -.31 .03 .03
.33 .26 , .25 .27 .27
.08«  -.06 -.08 +.03 .04
.15 .08 .08 .10 11
.18 .16 A6 17 .17
-.08 -.37 -.50 02 01
.08 -.04 -.06 .03 .04
17 .13 13 14 14
- - - .49 .51
=49 el
-.17 -.55 -.74 08 .07
11 .10 -.02 .05 .06
-.03 -.19 ~.22 01 00
.04 -.03 -.04 1~ .02 T2
.08 .06 .06 .07 .07
-.21 -.5 -.68 .20 0 .19
~.03 -.17 -.20 01 04
.02 -.07 -.08 .00 .04
=" - - -6 =73
-.32 -.75 ~.96 .33 30
-.01 ~.11 -.13 00 00

a . .
Values in cases with a blank were less thbn -1.00.




