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ABSTRACT

Consider an n—iteﬁ multiple choic? test where_it is decided thatr
an examinee knows the answer if and only if he/she gives the correct
response. The k out of n reliability of the test, p,, is defined to
be the probability that for a randomly sampled examinee, at least k
correct decisions are made about whether the examinee knows the answer to
an item. The paper describes énd ifiﬁstrates how an extension of a
recently probosed latent structure model can be used in conjunction
with results in Sathe et al. (1980) £6 estimate upper and lower bounds

—

on p, . A method of empirically checking the model is discussed.
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Consider a randomly sampled examinee responding to a multiple-
choice test item. In mental test theory there are, of coursé, many
procedures that might be used to analyze this item. GOne approach might
be as follows. Suppose a conventional scoring procedure is used where /
it is decided that an examinee knows the correct response if the corrgct
alternative is chosen, and that otherwise the ‘examinee does not know. |
If it were possible to estimate the probability, T, of correctly deter;
mining an ekaminee’s latent state (whether he/she knows the correct
response) based on the above decision rule, this wohlq give an indication )
of'how well the distractors are performing for the typical examinee. The obvious- )
problem is that under normal circumstances, there is no way of estimating
this probability un]esg additional assumptions dfe made. One approach
is to assume that examineés gueég at randem among the alternatives when ‘
/ they do not’&now thefanswer. If"his knc+ledge or random guessing modé1
holds, t is easily e;fimated. Bowaver, enpirical investigations (Bliss,
1980; Cross & Frary, 1977) suggest that this assumption will frequently
be violated, and some related emﬁi}ical résults (Hilé;x; f§82, in press @)

indicate that such a model can be entirely unsatisfactory for other reasons

as well.

Another approach is to use a Tatent structure modé], and many such
rodels have been proposed for meaéuring'achiebement (e.g., Brownless &
Keats, 1958; Marks & No]}, 1967; Knapp, 1977; bayton & Macready, 1976,
1980; Macready & Dayton, 1977; Wilcox, 1977a, 1977b, 1981a; ?grgan et al., 1980).
The choice of a model depends on what one is willing to assume in a i

particular situation. These models make it possible to estimate errors

at the item level such 2s




g =-Pr(randonly selected examinee gives the correct response|examinee

o does not know) ' ]
which iﬁ turn yields -an estimate of 1. - An illustration is given in a
Tater section. (For a review of Jatent structure models vis-a-vis'
critgrion—referenced tests, see Macready and Daytoh, 1980.) For some

recent general comments on using latent structure models to measure

a;hievemgnt,‘§ee_@plenaar (1981) anﬂ_ﬂiigggii]Qﬁ]b):“’
Assume for a moment that for each item on an n—itemrtest, an estimate

of t can be made. Let X % 1 if a randomly selected ekaminee's Tatent stéte

is correctly determined for the ith item; otherwise x, = 0. Then E(x;) = 7

(i =1, ..., n)is the probability of a correct decision on the ith item
vhere the expectation is taken over the population of examinees.

Within the framework just describsd, how should an n-item test be
characterizsd? Observing that oy is tre number of correct decisions
atong the n items, an obvicus approzch 1s o use
[2]
where the expectation is over soma particular population of examinees.

The parameter p is just the expected numbar of correct decisigns among

the n items for a typical examinee.

Knéwiﬁg u might not be important for certain types of tests, but
surely it is important for some achievement tests. However, even if
u is known exactly, it would be helpful to have some additional re]ated\ '
information about Zx,. For instance, a test constructor would have a
better idea of how the test performs if VAR(zxi) could be determined.
The problem is that VAR(zxi) depends on COV(xi,xj), but this last quantity °
is not known, and at present there is no vay of estimating it. An

alternative approach is to use the k out of n reliability of the test

(Wilcox, in oress a) which is given by

A e s e
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In other words, Tf the goal of a test is to determine wﬁiqh of n items
an examinee-knows, and if a conventional scoring procedure is used, Py

is the probability of making g;?ﬂgygg k correct decisions for the typical
Y examinea. .

Suppose, for éxamp]e, n=10and p is éstimated to be 7. Thus, the
expectéd number of correct décisions‘is 7, but there is no information
about the likelihood that at ledst 7 correct decisions will be made.

If f, were known, a test constructor would Have some additicnal and
\ useful information for judging the accuracy of the fest. Py might also

. be used as follows. Suppoée it is desired to have Pg >-.9. If y is

estimated to be 9.1, this is enccuraging, kut it is not clear what

| for the typical examinee.

o If Xs is indepeﬁdent of Xj’ i # J, an exact expression for Py is
available via the compound binomial distribution. Perhaps there are
situations where this independence might be assumad, but it is evident
that th%s independence will not always hold. If it can be assuned that
COV(xi.xj) 3 0, bounds on Py are avaf1able (Hilébx, in press). Recently

Sathe, Pradhan, and Shah {1930) derived bo&nds on py that make no

o = P‘r‘(Xxi > k) . » - . ) - [3]




assumption about COV(xi,xj). The main point of this paper is that these

bounds can be estimated using an extension of an answer-until- correct

(AUC) scoring ‘procedure proposed by Wilcox (1981a).

An Extension of an Answer-Unti1-Correct Scoring Procedure

\

As just indicated, an extension of results in Wilcox (IQQTa) is
needed 1in order?to apply the bounds derived by Sathe et al. (1980)- '
First, however, it is helpful to briefly review the pﬁocedure and basic
assumptions in Wilcox (1981a). | '

Consider a speci?ic test item having t alternatives from which to
choose, one of which is the correct rssponse. Assume examinees respond
according to an AUC scoring procsdure. This maéns that examinees
choose an alternative, and thay are told irmadiately whether the correct
response has beszn identifééd. If thay are incorrect another response

- is chosen, and this process continuss until thsy are successful. Special
forms are generally available for adwinistering AUC tests which make
these tests easy to use in the classrcom.

Let Ct—] be the proportion of examinees who know the correct
response, and let ¥ (i = O,W.C., t-2) be the proportion Bf examinees
who can eliminate i distractors given{thac they do ‘not knouw.  Wilcox
(15512) asst'.es that examinees eliminate as many distractors as they

can, and then choose at rapdbm from among those that remain. I P;




[83]

is the probability of choosing the correct response on the 1th attempt,

then

t-1

P; =

1~

g/t = §) (=1, ..., t). [4]

2=0

Mote that the model assumes that at least one effective distractor is

-

being used. Put another way, no distinction is made between examinees

who know the answer and examinees who can eliminate all of the distractors.

e ———— e — o ———— e - -

Also, the model assumes Py (incorrgct response[examinee knows) = 0. In
“certain special cases this éssumption can be %voided (e.g., Macready &
Dayton, 1977), and the results reported here %re easily extended to this
case (cf. MoTenaar, 1981; Wilcox, 1981b). -

Assuming the model holds,

= p. - ‘ 5
and
= - = - 16

Tt 1-p 1 pg. 6]
I in a random semple of N examiness, Y5 examiness are correct on their
ith attempt, 5i‘= yi/N is an unbiased estimate of P; which yié]ds an

3 £

estimate of e g and t. '

Although empirical studies suggest that this model will frequently
be reasonable (Wilcox, 1982a, 1982b); . there are ipstances where this

will not be the case. For example, some items might require a misinfor-
mation model, and an appropriate modification of the AUC scoring procedure
has been proposed (Wilcox, 1982). . The results outlined here are readily

extended to this case, and a brief outline of how this can be done is given

below.

e R ——— ¥ 2 ——
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Consider any two items on an n-item test, say jtems 1 and j.
Applying results in Sathe et al. requires an estimate of Tij=pr(xi=],x5=])’ )
i.e., the joint probabiiity of making a correct decisior for both items

iand j. The remalnder of! this section outlines how this mlght be done. .

-

It is assumed that an exantinee's guessing rate is independent over
the items that he/she does not know. This means, for examp]a, that if

an exantinee can ellmlnate a]] but 2 alte\nat1\es on item i, and all but

f\ N PPN
3 alternatives on ftem j, the probabtlity of choosing the correct response

on the first attempt of both 1tems 15‘(1/2)(1/3) = 1/6.

For the two items under considarziicn, let Pym (k, m=1, ..., tf

-
§\)

be the probability that a randizly ss stad examinee chooses the correct

respoase en the kih attempt of tha First it ed, and the correct response

on the mth attespt of tha second. IT ;ch is the proportion of examinees

who can eliminate g distractors from the first item and h distractors

from the second (g, h =1, ..., t-1}, then
t-k t-m \
=3 oz /[(t - i)t - J3)] _ \ ~[7]

p
km i20 =0 id . . ‘




©say c22' But it can be seen that for the two items under cons1deret1on

The last expression can be used to express Ct-l;t—l'in terms of the pkm's
which can be used to estimate ;tf];t"]-_ Note thaF if Fhe first ipem has t'
’alternatives{,tf # t, simply replace t-k with t'-k in equation 7.

To clarify matters, considér the special case t = 3. Equation 7

-,

sa}e‘that A
By T ¥ 2t Bpgf3 ¥ /2 By /A nf6 + g, /3 8]
* 216 * 2go/ ,
Pz = /2 B3 % il * F10/6 * 5016 * g/ . 9]
Pyt S/t S el o)
Pyy = B1/2 + 50l 3+ B/t ¥ 5g)/6 + 210/6 + 50/ 1:1]
Pog = /4 + Byg/6 * 5qp/6 * Tge/d ' . D
Pp3 = %10/8 * 2g0/% _ - 13]
P3y = Zgof/3 * 507/6 * T/ - R AL
P3p = 301/8 *00/0 | ' ' [15]
P33 = Sgo/° \ - Dl

Thus, starting with equation 16
' C-ﬂo = 9P33~ []73
and eventually ;22 can be expressed in terms of t = pkm S. Rep]acing

che pk 's with their usial unbiased estimate yields an est1mate of Zoo

-

- —
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(items i and j), L . . m—
i Tt T v [19] ;

Replacing Zoo and P13 with L9 and 1y yie]ds an estimate of 5 = Pr(x =], xj:})’

- o o—— -

|
|
. say Tij’ For arbitrary t, rij~1s g1ven by equat1on 19 with ;22 replaced
with Lio1,t-1° Note however, that the model implies that certain inequali-
ties among the pkm s must hold? For examp]e, p31>p32>p33. ‘Estimating the
pkn s assuming these 1nequa11t1es are true requires an application of the
poal-adjacent v101ators a]gor1thm (Bar]ow:et al.,. 1972). Testing these in-

, equalities can be accomplished by applying results in Bobertson (1978).

Bounds an Py
This section describes how the results in the previous section can
be used to estimate bounds con Py- First, however, results in Sathe‘et al.
(1280) are summarized. .

Recall that p = Zt, and let

n-I n 1 )
S= 3§ ) T , [20]
i=1 j=ia ) -
Uk =p -k ' [21]
and oo .
v, = (25 - k(k - 1))/2 [22]
Then, 4 N, o / ,
2V - (k- 200 / 123]
Pk n{n - k +1)
- T
If 2V, q.< (n+ k- 2)U _1» then . }
2( ([‘:’5" - :I/).U J'//V k'ﬁ.) [24]

Pk = e - Kk -k + 1)




where k* + k - 3 is the largest Integer in 2Vk~]/Uk_]: Two upper
bounds on p are also given. The. first is

o <1+ ((n+k -1y - 2V, )/kn : [25]

and the second is that if 2\!k < (k - 1)Uk,

' k* - 1y, -V
Pkf] -2 ( ) k k [26]
(k - k*)(k - k* + 1)

where k* + K - 1 is the largest integer in 2Vk/Uk.

o — «' . ¥ mm S m v - . P—— — e —n
N [ P

An I]lustra@ion'

To illustrate hovw ak(-might be applied and interpreted, observations
on seven items were analyzed according to the procedure outlined - R
_above. Each item had two distractors, and they were Found to--be ~ .
cg?sistsnt with the assumptions of the answar-until-correct scoring
modal. (Sze Wilcox, 1981a). Tab1é 1 shows the observed frequencies
for the Tirst two iteds. The‘question to be answered is if these
seven iteas are taken to be the whole test, do they give reasonab}y
accurate information about what the typical examinee knows?
As‘previous]y mentioned, the model described above implies that various
inequalities among the pij's must hold. These inequalities were tested at
the .25 level of significance with the procedure in Robertson (1978). In

every case the observed responses vere consistent with the model.

1y

e e
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Generally, when estimating T9o there is no need to estimate all
of thé‘;’s in equations 8-16. For the situation at hand, 7Y can be

estimated as follows. First compute

Eoz'j - EJ31 ) E>3z , _.[27]
for the data in Table 1, this is .107. {ext/éompute
£15/2 = Py < Ppp - 202/ [28]
which is .074. Then )
- _ - ’_‘ ‘“"“_, . :." s - o e s ——
-*E“zé"= Bni B fJ12 ) 2;1'2/2 } Zo‘z/ 3 T (201

which is equal to .225. Substituting these values into equation 19,

the estimate of 3y is ;]2'= .75¢ Applying equation 6 %o all seven itgms,
it is seem that p = 5.434. In other words, it is estimated that the
expacted number of correct decisions is 5.534.

\ Egﬁi consider ?5. The veiue of S was estimated to be 16.929.

From esquations 20 - 26, this impiies tnat

42<pg < T ‘ [30]

This analysis suggests that these seven items, taken as a whole,

are not very accurate since there is at least a 26 percent chance of

=~making an incorrect decision on three or more itkms. How should fhe
. test be modified? Another important question is‘to what extent can

it be improved? One approach to improving the test 1s to increase the

number of distractors, and another approach is to try to'modify or ‘ : /

replace the distractors that are being used. The latter approach will N

b

be considered first.

1y

- /
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The Initlal step in trying to docide whether to replace or modify

~—

the -existing distractors is to determine the extent to viiich they can

be improved. This can be done with the A measure in Uilcox (1981, eq..20).

This measure is just the difference between the maximum posslb1e ralue

of and the estimated value given that Ly = 2, Another re]ated S oo

measure 1s the entropy function (see Wilcox, 1981a) This measures

th.. effect1veness of the distractors among the exam1nees vho do not know .

the correct response by 1nd1cat1ng the extent to which pz, ---:5 Py are

unequal. The closer they are to being equal, the more effective are

the distractors, i.e., guessing is c]oser to being random. It has been

pointed out (Wilcox, 1981a) that A n1ght be ob3ect1onab1e as a

measure of the extent to which pz, ... 5 Py are equal, but for present pur-

hY

poses it would -seem to be of interest bacause increasing Pk depends on

Ny

the -extent to which T can be incrzasec for each 1tem.

Referring to Wilcox (1981a), & Tittle algebra shows that for the
case t = 3, T

8= (p, - P32 - 3071

jFo% jtem 1 in Table 1, & = .024, and for item 2 1t is .034 (r is assumed
to be pos1t1ve, so if p2 < P3» apply the pool-adjacent viclator algorithm

/
/ in which case & is estimated to be zero.)
y If the number of alternatives for item 1 is increased to‘E - %;*'~ e

and if guessing is at random, then the value of 1 would be .893 which K

X . represents an increase of .126 over the value of T using the existing
f distraétors Thus, it would seem that one approach to improving
! item 1 is to find two more d1stractors that are about as effect1ve as the

w0 being used. Of course in practice, this might be very d1ff1cu1t

to4do.

1,




When There Is Misinformation

Estimating T§j

Among the 30 items analyzed by Wilcox (in press, a), the observed
‘test scores suggest that two of the items do not conform well to the
AUC scoring model described in a previous section. Thus, the proposed -
estimate of 43 is inappropriate. This section outlines how this
problem m1ght be solved when a misinformation model appears to be more
appropriate for some 5{ the 1tems on the test

Consider a test item with t alternatives, and let Ty be the pro+
portion of examinees Qho eliminate the carrect response from consideration
on their first attempt 6{ the item. (An AUC scoring procedure 1is being
assumed.) Once an exéminéé:eﬂiminates all of the distractors that are }

consistent with his/her misinformaticn, it is assumed that the examinee

chz032s the correct response on tha naxt atierpt. This assumption is

_made hera because it seems to give @ ccog approximation to how examinees
were b2having on the items used in Wilcox (in press a). It is also
assumed that i7 an examinee does nob knoy and does not have misinformation, o
then he/she guesses at random among the t albernatives. Finally, for .
examinees w{th misinformation, assume that they believe the correct
response is one of c alternatives that are in actuality incorrect. . ,

Thus, examinees with misinformation will require at least ¢ + 1 attempts .

5

before getting the item correct. As an illustration, consider t

and ¢ = 3. Then, . - -
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Py = gy Een/S . [32]

Pp =t/ o | [33)

Py = Eyp/5 \\ | [34]

Py = &y + Tyyq /5 \\ ' [35]
' \

Pg = Zpq/5 1 . [ 36]

vhere il is the proportion of examineeg who do not know and who do )
- ot have misinformation. : o

V;rious mﬁdifica?fohﬁ 6? %hé‘hédel are, of courset.bassfbi2;2;;5"~~mk'4fh-':;-‘:’x§if

presumably this model (with some appropriately chosen c value) will give
a good fit to tha observed test scbrés. For-illustrative purposes, o
equations 32 - 36 are assumed. The point of this sectfon is that

r it is now possibie to again estirnzts 53 vinere the misinformation model

is assumed to hold for one or both of ‘the items in any item pair. Note

that for a'sing3e item where equatioﬁs 32 - 35thJd, _3;7:
TEL o/t | | asih
To estimate rij,the joint probability of making a correct decision

on a pair of items where, say, the first item is representeq by a mis-

infermation model, equatioﬁ 7 must be rederived. According]&, let t° o

be the number of alternatives on the first item, and t is théinumber of

alterfiatives on the second. The misinformation model assumes that on g

the first attempt of the item, examinees Belong to one of three mutually

1y




exclusive categories, namely, they knos the answer and choose it,

i

they have misinformation and eliminate the correct response, or they
do not know and guess at random. Thus, using previously established
notation, equation 8 becomes, . .
‘ 1 ‘ 35
Py = Bgp * ea1/2t F gg/3T Fpgp/tT + gy /2T + g/t E561
" where, in this illustration, t' = 5. There is no Ti3 term (1 = 0, 1, 2)
because the misinformation model assumes that if examinees do not know,
they cannot eliminate any of the distractors. More generally,
t-1 . t-1 39
- > ] - 3
p'” - Ctx_-l’t_] + jzogt'_]’j/(t - J)t + jzo“;oj/(t - J)t W]

Also

E . _ Yo
Pg = Py "oz (K2 e ) [48]
— i : o .
Pra = 347/28 * 249 _ (4]
3 : N &/ 2
Pim = L tgy/(t - T (m=20, ..., t-2) .~ -  se]

Ths remaining.pij values can be determinzd in a similar manner. For the

m . .Yy3
b = ) coslt - A (=2, . t) : [51]

\

Semee e L e

The expressioné\for Pam and”b5m involve the proportion of examineesﬂwho
\ 3

have misinformation dp the first item. The necessary equations can be derived
" as was illustrated aboye. This in turn yields an estimate of © which can~be?
\ ]

used to estimate the bounds on Py -

X
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Testing Whether Items are Equivalent or Hierarchically Related

The model described in this paper mighf also be useful when

empirically ehecking the assumptions of other latent structure models.
For example, Hécready and Dayton (1977) and Wilcox (]977) propose mode]s‘
where it 1s assumed that pairs of equivalent items are available. Two
items are defined to be equivalent if examinees either know both or neither
one. When equivalent items are available, the proportion of examinees~

who know both can ba estimated (assuming local independence). Macready

and Dayton checked their model with avchi-square goodness—of—fit test; but
this requires at least Fhree items that are equivalent to one another.

(¥ihen there are only two items, thers are no Legrees of freedom 1eft )

For illustrative purposes, assums t=3, and consider equations 8-16.

I two items are equ:va]ent then )

. i

521 % %20 = %12 % %z 7 ¢ | [5?53;"
P12 = P21 ~ P o . %)
. : ¢
P13 © Po3 [%]
and C - . .
P33 © Pos - : [e0]

. -




%A

pges

values in Katti (1973) and Smith et al. (1979) (Note that the conditional
disfribution of multinomial random variables is multinomial.) For larger N,
the usual chi-square test can be used. From Smith et al. (1979), a slight
adjustment to the usual chi-square test appears to be useful. Finally, if
one of these items is assumed to:be hierarchically related to the othe(,
again certain equalities must hold among equations 8-16, and this can aéain

be tested (cf. White and Clark, 1973; Dayton and Macready, 1976).
A Concluding Remark

It should be stressed that Py is of interest after it has been decided
which itsms are to be included on a test. oy is not intended to measure
validity -~ it is designed to measurs the overall effectiveness of the dis-

wetors thzi ars oeing used. Put anothar way, Py is not meant to be the
on2 and only inié for charactarizinz & tast -- it is intended to be one of

1i-as that might be used. Ths reason for raising this issue is

EAY

in
[13]
<
[
=
£Y
ovend
-t
=

that a test constructor can ensure that £y is large by using easy items.

This is an improper procedure that misses the point of how Pk is to be used.
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Table 1

i

Number of Examinees Requiring i Attempts on Item 1

and j Attempts on Item ¢

Number of Attempts on

Ttem 2
1 ) 2 3 Total
1 179 26 14 219
Number of . - .
Attempts on 2 76 8 4 88
Item 1
3 53 13 4 70

Total 308 47 22 377
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ABSTRACT

Consider any scoring procedure for determining whether an examiqee
knows the answer to a test item. Let X;=1 if a correct decision is made
about whether the examinee knows the ith item; otherwise x.=0. The k out
of n reliability of a teét is pk=Pr(z xigk). That is, py is the probabil-
ity of making at Teastlk correct decisions for a typical (randomly sampled)
examinee. This paperyproposes an approximation of Py that can be estimated
with an answer-until-correct test. The paper also suggests a scoring '
pfocedure that might be Jsed when pk is judged to be too small under a

conventional scoring rule where it is cecided an examinee knows if and

only if the correct response is given.




Consider an n-item multiple-choice test, and suppose that every

examinee can be described as either knowing or not knowing the correct
response. In some situations, particularly with respect to some instruc-

tional program, the goal of a test might be to determine how many of the

-

n items an examinee actually knows; in terms of diagnosis, it may even
be desirable to determine which specific items an examinee knows or

does not know. Under a conventional scoring procedure, about the only
scor1ng rule available is one where it is decided that an examinee knows
if and only if a correct response .is given.- Obviously guessing w1]]
éffect the accuracy of this rule. If it is assumed that examinees who
know will always give the correct response, and if most examinees really
do knOH the correct‘re ponsg,»than of course guessing has little impact

on thn aucuracy of the test or the sffactivensess of the distractors in

4
»
¥ , ;

terms of the typical examinea. Howsver, i¥ ¢ is the proportion of exam-,
/

inees who know the answer to zn itzm, then as g decreases, the importance

of having effective distractors increases in order to avoid incorrect de-

cisions about whether an examines knows. \

N x mw- .

L : ‘
Guessing can seriously affect various other measurcment problems

as well (e.g., Weitzman, 1970; van den Brink and Koele, 1980; Wilcox, 1980,

1982c; Ashler, 1979). For example, when estimating the biserial correla-
tion coefficient, guessing can substantially affect the results (Ashler,
1979). Ashler gives a method of correcting the estimate for the effects

of guessing, but it requires a procedure for“ determining which items an

examinee reaTly knows.

if and only if the correct response i$ given, but this can be unsatisfactory.

The conventional rule is to decide an examinee Knows

. - ——




Suppose, for example, £=.5, and the prdbabi]ity of a correct response,
given that the examinee does not know, is 1/3. Then 1/6 of the examin-
ees would be misclassified. The extréme case is where none of the ex-
aminees know, in which case 1/4 would be incorrectly judged as knowing

3

the correct response.

As another example, supposé an inQestigator wants to determine
whether the proportion of examinees who know an item is relatively large.
In order to ensure a reasonably high probability of a correct decision
about this‘proportion,.it follows from Wilcox (1980) that it wmight be
necessary to sample ten, perhaps even forty times as many examinees as
would be required if guessing did not exist.

For a specific examinee taking a test, let xi=1 if a correct decision
is made aboq;/whether the answer to the ith item is known; otherwise

xi=0. >For an examinee randomly semplsd from the population of poteptia]
examin2as, let ’ X

Py = Pr(ix; > k). '
This is just the probability of making at least k correct decisions among

the n items for a randomly sampled examinee; Pr js called the k out of n

reliability of a test.

Ve o we e et ———

Suppose every item has t alternatives. One approaéh to designing
a reasonably accurate test is to assume random guessing, and then choose
t so that oy is reasonably close to onz. If X; is independent of xj for
all i#j, then Pk is easily calculated on a computer. Unfortunately,
there are three serious problems with this approach. First, there is .
considerable empirical evidence that guessing is seldom at random

{Coombs et al., 1936; Bliss, 1980; Cross & Frary, 1977; Wilcox, 1982a,

¢

34




1982b). Second, even if guessing is at random, some situations will re-
quire more a]tgrnatives than is practical in order for Py to be close to
one (Wilcox, 1982c). Finally, there fsxno particular reason for assuming
X; independent of X3 i#j, or to believe that such an assumption will

give a good approximation of Py - If cov(xi,xj)fo, bounds on.pk are gvai1~
able (Wilcox, 1982c, in press a), but point estimates do not exist.

One goal in this paper is to suggesf an approximation Of‘pk that can’
be estimated with an answer-until-correct test. Another and perhaps more
important goal fs to descrjbe a scoring procedure that might be used when
the estimate of Py is judged to be too small under a conventional scoring
rule. The new rule is based on a recently proposed latent structure model
for test items. Included are some results on how to test whether this

model is consistent with observed tsst scores.

2. An Approximation ot Py '

rr

Let y=(yys.:-¥ )
J (.Yl’ SJnI

let f(y) be the probahility density function of.y. Bahadur (1961) shows

e any vecior of length n where y.=0 or 1, and
[

that f(y) can be written as
£ly) = F,(y)h(y)

w.. -
where ..
n
Y 1-y;

fl(.Y)"‘_‘ I_[_ 0‘1'1 (1- 0‘1‘) 1

i=1
ai=Pr(yi=1) ,
hiy)=1 + Z Ti; z; 25 + rijmzizjzm + ... F r12.,.n21"'zn o

1<J 'i<j<m




Lz (g (1e) T

rij = E(Zizj) -

rijm=E(zizjzm) | ,

riz’__g=é(zlzz.;.zn) . ST
An mﬁﬂ order Bahadur approximation of f is one where the first m summations
are used in the expression for h. Several authors have used a second
order approximation. when investigating problems in discrete discriminate ~
analysis (e.g., Dillon & Goldstein, 1978; &ilbert, 1968; Moore, 1973). ‘
In this case f(y) is approximated with |

sly)=fy) i +§ r (2.1)

1<§ ,
Other approximations have been propesed, but as will become evident,

A

L T 2.1
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(2.1) is part}cu]ar]y convenient for the situation at hand.

Occasionally {2.1) will not be a probability function. In particular,

H

it may be that gly)X0 for some vectors y. In this paper, whenever this
occurred, g{y) was assumed to be zero, but the g{y) Values were not re-

scaled so that they sum to one. - .

Bahadur (1961) discusses how to assess the goodness of fit of the
.\/
approximation. Here, however, interest is in approximating py. Note

that for a random vector y, p, can be wri*ten as

Joofly) “ (2.2)
y:S>k. . : X

— x

where S=Zyi and the summation in (2.2) is over all vectors y such that S>k.

-
-

e
c




;3 Ofveourse, when approximating ék’ f(y) would be replaced by f(x) where

s the Qector x indicates which itéms a correct decision is made about
‘whether an examinee knows. To gain some Tnsight into how well gly) ap-
proximates p,, assuming o, andvrij are knoﬁﬁ, ve set n=5, k=4 and ran-
domly chose values for the 25=32 probability cells. Next, py Wwas eval-

" uated with '(2.2), -and then it was apﬁroximated with ;g where ;k is given
by (2.2) with f(y) replaceq by.g(y). This process was repeated 100 times
yielding a wide range of values for PL- The va]ues‘for pk and ;k viere
rounded to the second decimal place after which it was found ihat 85%
of the time, [pk-;klf .02. For 5% of the approximations it was found
that [p,-p,|> -05. For o, oy l< 05 it was also found that oo The
poorest approximation was for a probability functicn where Pk =.365 and
;k=.232. Although hardly conclusive, thsse results suggest that ;k is

2 genera11y useful when aporoximating gk;,aﬁ']east vhen n is small. For

n large the Eest can be b}oken inta‘subtests containing five ifems or less,
and Bonferroni's inequality (e.g., Tong, 1989) can be applied. For example,
suppose n=10. If for ths first five itams ;4=.95, and for the remaining five
items ;4=.98, then for the entire test it is_estimated that

pg>1-(1-.98)-(1-.95)=.93. (2.3)

Estimating ;k
There remains the problem of estimating ;k' What is needed is an
estimate of the parameter rij in the expression for g(y). An estimate
is available using a slight extension of the model in Wilcox (in press.a)

which can be briefly summarized as follows. Assume that examinees take '

the test according to an answer-until-correct scoring procedure. That is,




they choose a response, and if it is wrong they choose another. [Fhis

process continues until the correct response is selected. Administering
such tests is easily accomplished with especially designed answer sheets

that are available commercially.

Ad
=1

Consider a specific item and let Pi be the probability that a ran-
domly selected examinee gets the item correct on the ith attempt,,
i=1,...,t where t is the number of alternatives. Let Z4 be the propor-
tion of examinees who can eliminate i distractors (i=0,...,t-1). It is
assumed that for examinees who do not know, there is at least one effec-
tive distractor in which case i1 is the proportion of examinees who
know. It is also assumed that once examinees eliminate as many distrac-

tors as they can, they guess at randcm from among those alternatives that

remzin. It fo}]ows that

t-i |

Py =] &/ (t-) (i=1,...,t) (2.4)
J=0

and the model implies that

P2Py2. 2Py (2.5)

which can be tested (Robertson, 1978). For empirical results in support T T
of this model, see-Wilcox (1982a, 1982b, in press b). In the few instances
where (2.5) seems to be unreasonable, a misinformation model appears to
explain the observed test scores.. When (2.5) is assumed, the pool-adjacent
vio]ato;s algorithm (Barlow et al., 1972) yields a maximum likelihood esti-
mate of the P 's. These estimates in turn yield an estimate of the ;.'s.

For any pair of items, let P . be the probab1l1ty of a correct on the

ith attempt of the first and the Jth attempt of the second, respectively.

Jou
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¥

and let 24 be.the probability that a randomly chosen examinee can elimin-
ate i distractors from the first, and j distractors from the second. Then

is the proportion of examinees vho know both. It is assumed

St-1, t-1
that an examinee's guessing rate is independent over the items not known,
and so "
t-k t-m [ ] v o
P = z:s [/ L{t-1)(t-3) . . . (2.6)"
km §=0 §=0 i) ‘

-

1f the second item has t~ alternatives, t#t”, simply rep1ace t w1th t‘ i

the second summation. Testing certain 1mp11cations of (2.6) is d1scussed

below.

For the ith item on the test, let 5 E(x ) be the probab111ty of a cor—
rect decision about whether the examinae knows when a conventional scoring

procedure is used. Thus, T plays the role of @ when approximating Py For

an answer-until-correct test, & conver~ional rule means to decide an exam-

!

inee knows if and only if the correct raspoase is given on the first

/

attempt In this case (Wilcox, 198%@)

1570-171P) ]

= 1_p2
Thus, if for the ith item, c; of N examinees get the correct response on -
the jth attempt under an answer-until-correct scoring procedure, then

= 1-c2/N

is an estimate of ;. If the gj's are inconsistent with (2.5), apply

-

"

o




the pool-adjacent-violators algorithm (Barlow et al., 1972, pp. 13-16),

as was previously mentioned.
Imi L ! ] . -
In a s1m1iar manner, let 5 PT(Xi—l,Xj”L), i.e., 54 s the prob-
ability of a correct decision for both items i and j. For the conventional

decision rule under an answer-until-correct model, it can be seen that

t t
5T ey ey Yo
where
qn B ct':l, t-1
t-1 ) .
qi] = E=0 ck,t‘ll(t-k) (]:2’...’t)
t-j : . -
=P £ 01 rd i
%5 T5i . (i>1 ard j>1)

{(Wilcox, in press-a)

Thus, rij’ zi and Z5 in equation (2.1) -are easily determined.
In particular,

- Tij—TiTj'
ij 1
[ryry (1o ) (1-v5)1°

where T plays the role of o in the definition of z;. But as noted in

Wilcox (in press), the ;ij's in equation (2.6) are easily estimated, and
these estimates yield an estimate of i3 which in turn gives an estinate

of rij' tence, ;k cani be estimated with equation (2.1) which gives an

approximation of Py




1Y)

Testing Certain Implications o? the Model
7

For any pair of items, equation (2.6) implies that
'p]]iplzi"°3p]t‘3p2t‘3‘"Zptt‘ ) >
Py2Pp2-- 2P 2Py 2Pyt

P:12Pi0>- - <2P5¢- {1=2,...,t-1) : 5

and

P]jEPZjZ""Zptj ,‘jf?"""?"]{ ‘
where as before, t and t” are the number of alternatives for the first
and second items, respectively. A& Tew other inequalities are implied
if the ;ij's are assumed to be prosabilitzies, but these have not been
derived.

Experiencélwith real &ata sugzasts that when observed scores are
consistent with (2.5), the inequalities in (2.7) will also hold. 1If
some of the observed proportions are inconsistent with (2.7), maximum
Tikelihood estimates can be obtained when the model is assumed to be
true by applying the minimax order algorithm in Barlow et al. (1972).

Robertson (1978) includes some asymptotic resuits on testing (2.7

{2.7a)

{2.7b)

(2.7¢)

(2f7d) ]

).

At the moment, however, his proposed procedure can not be applied because

certain constants (the Pq(z,k)'s in Robertson's notation) are not avail-

able. An alternative approach is to perform a separate test of the in-

equalities in (2.7d), one corresponding toevery J, j=2,..., t°=1, then

1
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perform a test of (2.7c), one for every i=2,...,t-1, then test (2.7b)
and finally (2.7a). The total number of tests is m=t+t”-Z. "If the
critical value for every test is set ét o/m, then from the Bonferroni
fnequa]ity‘(e.g., Tong, 1980), the probability of a Type I error among
the m tests is at most a. N

Consider, for example, the inequalities in (2.7d) for j=2. That
js, the goal is to test } )

Ho: Ppg2Pop2P3g2---2Pt2 (2.8)

Let A be the likelihood ratio for testing (2.8) where the alternative
hypothesis is no restriction on the proportions. From Robertson (1978,

Theorem 2), the asymptotic null distribution of T=-2 In x is

2

=

S
Pr(T>Ty)= x‘lP(z,k)?r(x >Tg) (2.9)
L= g

-~

whaere P{g.k) is EE? probability that thz maximum Tikelihood estimate of

subject to (2.8) will have & distinct values among the k param-

eters being estimated, and xi_lis & chi-square random variable with k-2

P12>-+>Pe2

degrees of freedom. For (2.8), k=t. (As previously mentioned, the pool-
adjacent-violators algorithm yields maximum likelihood estimates when (2.8)
is assumed.) The constants P(&,k) can be read from Table A.5 in Barlow
et al. (1972).

Thus, in order for the m tests to have a critical level of at most o,
choose Ty s0 that (2.9) equals o/m, and reject H0 if T>T,- This process --

is repeated for the other inequalities to be tested, but note that k (the

number of parameters being tested) will have a different value for (2.7a)

and (2.7b).




To facilitate this procedure, critical values are reported in

Table 1 for t=2(1)5, «=.1, .05, .0l; and some gppropriately chosen.values
for m.  {Additional values for m were not used because for t<5, these
are the only vaiues of ﬁ;that will occur.}

As an i11ustraﬁion, sQFpOSe t=t-=3. Then there are m=4 ;eﬁéwgfr
inequalities to be testéd. If o=.05, then from (2.7a) there are k=5
parameters, and so T0=10.81. For (2.7b) again k=5 and T0=10.8}. For

(2.7¢) there is only one set of inequalities which corresponds to i=2,

t=k=3, and TO=7.24. The same is true for (2.7d).

3. A Scoring Procedure for Tests

Consider a specific item on an n-item test. 1In contrégt to nmost of
the existing scoring procedurss, the goal here is to minimize the expected
numbar of examinees for whom an incorrect decision is made about whether
they know the answer to the item. It is interest}ng to note that when
items are scored right/wrong, this criterion can rule out the conventional
rule where it is decided an examinee knows i¥ and only if the correct
response is given. The extreme case is where ;t_1=D, i.e., none of
the examinees know, in which case the optimal rﬁie is to decide that an
examinee does not know regardless of the response given. If g=Pr (correct [
examinae does not know), it can be seen that if an item is scored right/
vrong, and if s>;t_1/(l-;t_1) the optimal rule is to always decide that

examinees do not know. If B<;t_1/(1—;t_l), use the conventional rule.

From Copas (1974), this approach (in terms of parameters) is admissible. 1'




These paraméters can be estimated which yields an estimate of the optimal
decision rule (é.g., Macready and Dayton, 1977).'.The goal here is to
derive a deéisipn rule based on an answer-until-correct scoring procedure.
The advantage.of this new approach is that it is not necessary to assu&e
allsn items are equiva}ent as was done in Macready and Dayton. (Twé items . ::;(;
are said to be equivalent if every éxaminée knows both or neither one.) h
The results in Macready and Dayton (1977) could be extended to the casel ’f'~:if;
of hierarchically related items by applying results in Dayton and.Macready"'J

(1976), but hereithe goal is. to derive a rule where no particular relation-‘

"ship is assumed among the items. However, the situation considered by - L

Macready and Dayton (1977) has the advantage of allowihg Pr (in-‘
correct response | exéminee knows) >0, while here this probability is
assumed to be zero. )

Consider the ith item on 2 tast taken by a specific examinee, and
Tet wi=1 if it is decided the examinez kngows; otherwise wi=0. Consider
the jth item on the test i#j for the purpose of assisting in the decision
about whether W should be 1 or 0. ,gzgg,aptﬁmaT choice for the second
item will become evideﬁff7”fgﬂ;;;;§sumed that items are administered
according to an answer-until-correct scoring procedure. For a spgcific
examinee, let Vs be the number of attempts needed to choose the correct

response to the ith item. The decision rule to be considered is

‘ ) 1, if vi<vg; and Vi<Voj
W; (v;) (3.1)
0, otherwise :
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where v (=1 or 2) and Vo3 (lgvojft') are constants to be determined.

Note that when v03=2 and v0.=1,‘the rule is similar to the one in Macready

|
|
i
;
and Dayton (1977). Also note that voj=t' corresponds to the conventional '

decision rule where the information about the jth item plays no role in \
determining whether the examinee knows the ith. It is evident, thereforéi
that in terms of parameters, (3.1) always improves upon the conventional \
apbroach. The improvement actually achieved wili of course vary. If |

i1 is close to one for every item, Py will also be ¢lose to one under

a conventional scoring rule, in which case there is Tittle motivation

for using (3.1). However, when Py is unacceptably small, (3.1) can in-
crease pp by a substantial amount. »

. One problem is choosing the constants vy and VOj' A solution is
as follows. For a randemly sempled examineg responding to the ith and
jth items, let Pkml be the probasility of choosing the correct response
on the kih attempt of the ith itsm, the mih attsmpt of the jth item, and
making a corfect decision under the rule (3.1). The probability of a

correct decision for a randomly sampled examinee is

t §'
P~ p
¢ E=1 m=1 ki

which is a function of voi’and VOj' Thus, the obvious choice for Voi

and vOj is the one that maximizes Pe-

Let - \
£-j ) .
q)5° g:o Ct—l,k/(t_k) (3=1,...,t7) | ¥




For V0i=2 and any Vo3

VO- - o~

T g+ ) ( ) C (3.3
P = {Q+ - : - .
c L, Y vt Pk %k )

When v0j=t’, the second sum in (3.3) is taken to be zero. As for VOizl’

t” -
p. =Q+ E_l (Pyp9q ) (3.4)

Thus, to determine the optimal choice for vy, and vy. in (3.1), simply

J
evaluate p, for every possible choice oF Vv, and Voj? and then set v,.
and Y03 equal to the values that maximiza Pe- 0f course, when
making a decision about the ith item, this process can be repeated over
the n-1 other items*ori the test. The item that maximizes p_ is the one
!
! . o . .
that should be used when determining wnether an examinee knows the ith

t

2

An Illustration

As a simple illustration, the optimal rule is estimated for two items
used %n Wilcox (1982a). The observed frequencies are shown in Table 2. Note
that the observed frequencies already satisfy (2.7a)-(2.7d). For the first
item the estimate of ¢, the probability of correctly determining whether a
randomly samb]ed examinee_knows, 'is ;1=(236—71)/236=.699. For the second
items it is ;2=.78.' ' '

Suppose the second item is used to help determine whether an examinee

knows the first. Let v01=2 and v02=1. Thus, a correct response must be

45




S
e

given on the first attempt of both items in order to decide that an exam-
L~

inee knows. Note that _ ) //
4 1 /
Q"l" JZ=1 plj H] . ‘ //
and so ( is estimated to be .513. /

The easiest way to estimate the Cijls is to'start_with ptt';
From (2.6) with t=t =4, )
Faa=540/16
and so from Table 2, ;44=0, N
Next consider /
= g /'
P43 c01/12 + 44/16, ‘
and so g01=.048. Eventually this process yields estimates of all the Cij‘s
which in turn yields estimates of qu, j=1,...,4. The estimates turn out to
be q11=.109, q12=.012, q13=.012, and qlé=0' Thus, Ehe estimate of PC is
.513+.102+(.089-.012)+(.022-.012)+(.013-0.0)=.742.

If instead v01=1, so that it is always decided an examinee does not

know, regardless of the o2sarved rasponse, P_is just one minus the pro-

c
portion of examinees who know. From (2.4), Zi_1=P17Pys SO the estimate

of P, is 1-.187=.813. This is a substantial increase in accuracy over

the conventional rule.

Determining Pk Under the New Scoring Procedure

It is evident that the scoring procedure represented by (3.1) im-
proves upon the conventional scoring procedure, but when VOj in (3.1)
is less than t-, the method already described for determining Py will

in general be inadequate. The reason is that"to determine Pk> Tij N




f

+

(the joint probability of making a correct decision about the ith and
jth item) must be known. (See Sectioﬁ 2.) But when Vdj<t’ T45 may
depend on two other items, say iteﬁs k and m. That is, information on v
the kth item and mth item will be used to determine whether the examinee
- knows the ith and jth items respectively. Hence, (2.6) is no ﬁanger ade-
quate for determining Py
One solution might be to extend (2.6) to include four items:. In
theory the parameters could be estimated under the resulting inequalities
by -applying the minimax order algorithm. However, writing an ..propriate
computer program that is valid for t<5 will be a relatively involved task.
Another and perhaps more practical approach might be to restrict the
decision rule so that if the responss tc the jth item is used in the de-
cision about whather an examinse kntws i ; ith item, then the response
1 \
\

to the ith will be used in decicing abcu e jth. An advantage of this

/

approach is that it simplifies tha process of\chgqsing a decision: rule

by reducing the number of pairs of items that are considered. A second
advantage is that an approximation of P can be made using the results in
section 2. A disadvantage is that by restricting the class of decision
rules, the potential incréaéé in Py (over what it is under a conventional
scoring rule) is reduced. Pérhaps this is not a serious probiem; at the
moment it is impossible to say. .

An approach to choosing a scoring rule might be as follows: First
estimate Py under conventional scaring rule. If it is judged to be too
small, choose a decision rule from among the rules described in the pre-
ceding paragraph and then estimate p, in the manner indicated below. If

Pk is still too small, choose a decision rule from among the broader class

b




of rules described in the preceding sﬁbsection. Iﬁ this case, however,

an apﬁroximation of Py is no longer available for the reasons just given. : 3
_Suppose that if the jth item is chosen to aid in the decision about T

the ith, then the ith item is used in the decision rule for the jth.

What ié needed in ordef‘to approximate P is an expression for the joint

probabiility of making a corfect decision for both items. Accordingly,

consider any two items, and let ul(k,m)=1 if it is decided that an exam- 4 :1

inee knows thé-first-item if the correct response is given on the

kth attempt of the first item, and the mth attempt of thé second; other-

wise u](k,m)=0. Simiiarly, uz(k,m)=1 if it is decided that an examinee

knows the second item if the correct response is given on the kth

attempt of the first and the mth atzsmpt of the second; otherwise uz(k,m)=0.

Let
1, if u](k,m}=1 ard i=t-1, or if
u](k,m),=0 and i<t-1
sliLk,m)=
0, otherwise
and
1, if uz(k,m)=1 and j=t°-1, or if ‘
u,(k,m)=0 and j<t’-1 e
SZj(k’m)= Lo el

0, otherwise.

Recall .that the probability of getting the correct response on the kth
attempt of the first item and the mth attempt of the second is given by
(2.6). From this expression it can be seen that the joint probability

of k attempts on the first item, m attempts on the second, and a correct




decision on both items is

/

t-k t--m

Ykm 5 g_ S}i(k’m)SZj(k’m)Cij/[(t'i)(t"j)]_

L,
5=

Thus, for a randomly sampled examinee, the joint probability of a correct

0 3=0

decision for both items, say items i and j, is

U
e = Z Y )
Uk e T

The joint probability of a correct decision about the first item, k at- ...
tempts on the Tirst and m attempts on the second is
¢ t t- )
=7 - sq: (kom) g2 /[(t-1)(t"-3)]
km §=0 §=0 1t ij

The corresponding probability for the second item is

t t-
= JSkom)o. L/ T (ES1 ) (E7-]
nkm 'IZ=O §=0 Szj(k,-'r)\,}:j/,_(t 1)(" J)]

ihus, 5, the probability of a correct decision about the ith item on

a test (using the jth ditem in (3.1)) for a randomly sampled examinee, is

t te
s = Do
i E=1 =1 KW

Similarly, for the second item, item j,

t t-

T: =

. ) n
J E=l m=1 km
Hence, py can be approximated as described in section 2.




Concluding Remarks

Virtually all of the results on ‘the proposed ‘scoring rule have been
in terms of parameters. These parameters are not known, but they are
easily estimated. The question arises as to the sampling effects oﬁ
estimating the approximation of Py and on estimating the optimal de-
cision rule for determining whether an examinee knows the correct response.'
In some instances, a large number of examinees will be available, and so’
very accurate estimates of the parameters can be obtained. This_is the
case for certain testing firms where literally thousands of examinees \
take the same test. When the number of examinees is small, however,
sampling fluctuations need to be taken into account; this problem is
currently being investigated.

Another impdrtant faaturs of the proposed scoring rule is that the
decision about whether an exzminese knows an item is a function of the
responses given by the other examinees.. If the goal is to minimize the
number of examinees for whom an incorrect decision is made, there is no
problem. However, in some instances, this feature might be objectionable.
Suppose, for example, an examinee takes a test to determine whether a
high school diploma will be received. It is possible for an examinee
to fail because of how other examinees perform on the test even though
the examinee in question deserves to pass. If this type of error is

highly objectionable, perhaps the proposed scoring rule should be used

~only in diagnostic situations where the goal is to determine how many
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jtems an examinee act;;¥Qy knows, or which specific items are not known.
~

A technical point that should be mentioned is that a few of the
iij's vere slightly negative in which case gij was set equal to zero.
As a result, the Eij’s sum to .997 rather than one -as they should.

The problem is that equations (2.7a)-(2.7d) are necessary but not suf-

ficient conditions for the model to hold. For example, these inequalities

do not guarantee that %12 wi]l‘be positive.

L mmm—— o w xom e

Degpite these difficulties, there will be situations where correct-
fng for guessing can be important. Some examﬁ]es were given at the begin-
ning.of the paper. Even if a conventional scoring procedure s to be '
used ih operational versions of a test, it might be important to first

estimate the effects of guessing using &n answer-until-correct scoring

procedure.
Many scoring rules have bazn proposad that are based on various cri-

teria. If a particular criterion is dzemed jmportant, of course the cor-
responding scoring rule should be considered. The point is that most of
these rules are not based on the goal of determining how many items an

examinee knows, or which Qbecific skills an examinee has failed to learn.
Moreover, typical rules usually ignore guessing or assume guessing is at

random. Thus, the results reported here might be useful in certain
N

situations.

- S x s mem m—a— eI X
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Critical Values T0 for the Bonferroni

TABLE 1

Test of Equations (2.7)

a: .1 .05
5.90 7.24
6.33 7.67
6.68 8.03
7.03 8.49 .8
7.64 9.10 12.46
8.11 9.56 12.92
8.49 9.95 13.30
9.25 10.81 14.36
9.75 11.31 14.85
10.18 11.71 15.25
10.51 .12.05 15.58
15.81 12.35 15.87
11.32 12.96 16.67
©13.29 15.00 18.85
15.18 16.95 20.93
17.62 18.84 22.54




T . Table 2

OBSERVED FREQUENCIES FOR TWO ITEMS ADMINISTERED UNDER
AN ANSWER-UNTIL-CORRECT SCORING PROCEDURE IR

1 2 3 4 >
Number of 1 81 21 10 3 l 115 . .i
Attempts 2 44 18 6 3 71 .
for the 3 20 7 5 1 33
First Item 4 10 6 1 0 17 .

155 52 22 7 236

Number of Attempts for the Second Ttem ‘"" O
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Horst (1933) assumed that when examinees respond to a multiple-
choice test item, they eliminate as many distractors as possible, and

guess at random from among those that remain. More recently, Wilcox

-

(1981) proposed a latent structure model for achievement test items that

was based on this assumption and which solves various measurement prob-
Tems. (See also, Wilcox, 1982a, 1982b.)

Suppose an item is administered according to an answer-until-correct
(AUC) scoriné procedure. That is, examinees chase a response, and they
are told whether it is correct. If incorrect they choose another response,
and this process continues until the corract response is selected. Now
considér tvo specific distractors. IT Horst's assumption is true, then
emong the examinees choosing thess two distractors, the order in wh%ch

thay are chosan should be at randem. Of course for 3 distractors the

"sawa conclusion holds, oaly rcs thers are 6 patterns of responses rather

than 2. An empirical investigation of this implication is described below.
As was done on previous tests, the final examination for students

enrolled in an introductory psychology course was administered according

to an AUC scoring prgcedure. For 26 items, examinees were asked to record

the order in which they chose their responses. Bonus points were given

to those examinees complying with this request. There were 236 examinees

vho took the first 13‘it§ms, and 237 examinees took the remaining 13,

A11 items had 4 alternatives.

)

For any two distractors, the null hypothesis of random order in re-

sponses can be tested with the usual sign test. Among the examinees

J0




chdbsing 211 three distractors, the chi-square test given by

[Insert Equation 1 hered._

~

was used where x; 1S the number of examinees choosing the ith Yresponse
pattern, and N is the number of examinees choosing all three distractors. .
Some exact critical values are given by Katti (1973), and Smith et al.,
(1979) and they were used whenever possible. For larger values of N,
the adjusted. chi-square test was used (Smith et al., 1979).
For each item, the responses to all pairs of distractors were tabu-
Jated. For N<5, no test was made because it is impossible to reject the
null hypothesis at the .1 level. For the first test form, 29 tests were
made and the hypothesis of randon choices was rejected three ti@es at
tha .1 level. For the second test form, 25 tests were performed, and again
HO vias rejected 3 times. .
Next, an analysis was performed on those reébbnses where all three
distractors were chosen. Again ro test was made for N<5. The largest
value for N was 75. .
At the .1 level, H0 was rejected for 5 of thé\lz jtems on the first
test form, and for the second test form the rejection rate was 3 of 1l.
The question remains as to the relative extent t& which responses

are not at random when H0 is rejected. For the case where all three

distractors were chosen, this quantity was measured with

[Insert Equation 2 here] \




where Xiax and Xéin are the maximum and minimum possibie values of X".

2

From Smith et al. (1979), xflax = 5N, and X2, isgivenby Dahiya (1971).
The quantity w has a value between 0 and 1 inclusivg. The closer w is
to one, the more unequal are the cell probabilities in a multinomial
distribution.

Marshall and 01kin (1979) suggest that when meésuring inequality,
a certain class of functions (called Schur functions) should be uged.

Writing Equation 1 as a function of 2x$ (Pahiya, 1971) and noting that
", i

i
in Marshall and Olkin (1979) that w is a Schur function.

£x$ is just Simpson's measure of diversity, it follows from results

Nota that using tha w statis=ic is similar to using Hays’ mz {Hays,
1873). That is, rejectirg the null ryscthasis does not indicate thé ex-
tent to which'thé cell probzhilities a2re2 unequal. It may be, for example,
that the cail probabilities are nct ejuzl, but that for practical purposes

they are nearly the same in valua.

For the first test form where H was rejected, the w values vere
found to be .074, .183, .286, .167, and .137. For the second test form
they were .098, .125 and .133. Thus, even vhen H0 is rejected, Horst's
assumption appears to be a tolerable approximation of reality in most
cases. Of course there will probably be jtems where this assumption is
grossly inadequate. In this case the measurement procedures proposed

by Wilcox may be totally inappropriate.
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xP=z(x.-N/6)%/ (/6)

2 -~
max

2

A 2
w=(X"-X min)/(x Xmin)




