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ABSTRACT

Consider an n-item multiple choice test where it is decided that

an examinee knows the answer if and only if he/she gives the correct

response. The k out of n reliability of the test, pk, is defined to

be the probability that for a randomly sampled examinee, at least k

correct decisions are made about whether the examinee knows the answer to

an iteM. The paper describes and illustrates how an extension of a

recently proposed latent structure model can be used in conjunction

with results in Sathe et al. (1980) to estimate upper and lower bounds

on pit. A method of empirically checking the model is discussed.



Consider a randomly sampled examinee responding to a multiple-

choice test item. In mental test theory there are, of course, many

procedures that might be used to analyze this item. One approach might

be as follows. Suppose a conventional scoring procedure is used where

it is decided that an examinee knows the correct response if the correct

alternative is chosen, and that otherwise the'examinee does not know.

If it were possible to estimate the probability,t, of correctly deter-

mining an examinee's latent state (whether he/she knows the correct

response) based on the above decision rule, this woUld give an indication

of how well the distractors are performing for the typical examinee. The obvious.

problem is that under normal circumstances, there is no way of estimating

this probability unless additional assumptions are made. One approach

is to assume that examinees guess at random among the alternatives when

they do not know the,answer. If this kncdledge or random guessing model

holds, T is easily estimated. Hewever, e:Tirical Investigations (Bliss,

1980; Cross & Frary, 1977) suggest that this assumption will frequently

be violated, and some related empirical results (Wilcox, 1'982, in press a)

indicate that such a model can be entirely un-satisfactory for other reasons

as well.

Another approach is to use a latent structure model, and many such

models have been proposed for measuring-achievement (e.g., Brownless &

Keats, 1958; Marks & Uoll, 1967; Knapp, 1977; Dayton & Macready, 1976,

1980; Macready & Dayton) 1977; Wilcox, I977a, 1977b, 1981a; Beigan et al., 1980).

The choice of a model depends on what one is willing to assume in a

particular situation. These models make it possible to estimate errors

at the item level such as
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=.Pr(randomly selected examinee gives the correct responselexaminee

does not know)

which in turn yields an estimate of T.- An illustration is given in a

later section. (For a review of latent structure modell vis-avis'

criterion-referenced tests, see Macready and Dayton, 1980.) For some

recent general comments on using latent structure models to measure

achievement, see Molenaar (1981) and Wilcox'(1981b).

Assume for a moment that for each item on an n-item test, an estimate

oftcanbeinade.Let xi .=lif a randomly selected examinee'S latent state

is correctly determined for the ith,item; otherwise xi = O. Then E(x.,) T4
I

= 1, ..., n) is the probability of a correct decision on the ith item

where the expectation is taken over the population of examinees.

Within the framework just describe, how should an n-item test be

characterized? Observing that xi is t?-e number of correct decisions

among the n items, an obvious ap;'roa: is to use

u = E(zxi) = z-

where the expectation is over some particular population of examinees.

The parameter p is just the expected number of correct decisions among

the n items for a typical examinee.

Knowing p might not be important for certain types or tests, but

[2]

surely it is important for some achievement tests.. How'ever, even if

p is known exactly, it would be helpful *to have soma additional related

information about Exi. For instance, a test constructor would have a

bett"ideaohowthetestperforri Exi ould be determined.

TheproblemisthatVAR(Ex.)depends on COV(x.,x.), but this last quantity
1 3

is not known,and at present there is no way of estimating it. An

alternative approach Is to use the k out of n reliability of the test

(Wilcox, in press a) which is given by
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pk = Pr(Exi > k) . [3]

In other Words, ff the goal of a test is to determine which of n items

an examinee-knows, and if a conventional scoring procedure is used, pk.

is the probability of making at least k correct decisions for the typical

examinee.

Suppose, for example, n = 10 and p is estimated to be 7. Thus, the

expected number of correct decisions is 7, but there is no information

about the likelihood that at least 7 correct deciiions will be made.

If p
k
were known, a test constructor would have some additional and

useful information for judging the accuracy of the test. pk might also

be used as follows. Suppose it is desired to have p8 >.9. If p is

estimated to be 9.1, this is enccuracing, but it is not clear what

implications this has in terms of makirg at least 8 correct decisions

for the typical examinee.

Ifxiisindependentofx..i j, an exact expression for pk is
3

available via the compound binomial distribution. Perhaps there are

situations where this independence might be assum2d, but it is evident

that this independence will not always hold. If it can be assumed that

COV(x..x.) $ 0, bounds on p
k
are available (N1cox, in press). Recently

1 J

Sa the , Pradhan, and Shah (1930) derived bounds on pk that make no
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assumption about COV(x.,x.). The main point of this paper is that these
1 J

bounds can be estimated using an extension of an answer-until- correct

(AUC) scoring 'procedure proposed by Wilcox (1981a).

An Extension of an Answer-Until-Correct Scoring Procedure

As just indicated, an extension of results in Wilcox (1981a) is

needed in order...to apply the bounds derived by Sathe et al. (1980).

First, however, it is helpful to briefly review the procedure and basic

assumptions in Wilcox (1981a).

Consider a specific test item havIng t alternatives from which to

/choose, one of which is the correct response. ssume examinees respond

according to an AUC scoring procedure. This m ans that examinees

choose an alternative, and they are told im7ediately whether the correct

response has been identified. If they are incorrect another response

is chosen, and this process continues until they are successful. Special

forms are generally available for administering AUC tests which make

these tests easy to use in the classroom.

Let be the proportion of examinees who know the correct4
t-1

response, and let 41 (i = 0, ..., t-2) be the proportion of examinees

who can eliminate i distractors given that: they do'not know.* Wilcox

(1DC1a) a,3st. .os that examinees eliminate as many distractorli as they

can, and then choose at random from among those that remain. If p.



is the probability of choosing the correct resirinse on the ith attempt,

then
t-i

p. = 411(t - j) (i=1, t).

j=0

[4]

Note that the model assumes that at least one effective distractor is

being used. Put another way, no distinction is made between examinees

who know the answer and examinees who can eliminate all of the distractors.

Also, the model assumes Pr (incorrect responserexaminee knows) = 0. In

certain special cases this assumption can be avoided (e.g., Macready &

Dayton, 1977), and the results reported here 4re easily extended to this

case (cf. Motenaar, 1981; Wilcox, 1981b).

Assuming the model holds,

and

ct-1 Pi P2

T 1 pl 1 p!.

If in a random sample of N examinees, yi examiness are correct on their

[5]

ithattempt,p..=y./Nisanuayiasedestimateo Pi .which yields an

estimate of g and T.

Although empirical studies \suggest that this model will frequently

be reasonable (Wilcox,- 1932a,1982b); there are instances where this

will not be the case. For example, some items might require a misinfor-

mation model, and an appropriate modification of the AUC scoring procedure

has been proposed (Wilcox, 1982). . The results outlined here are readily

extended to this case, and a brief outline of how this can be done is given

below.

IA\
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Consider any two.items on an n-item test, say items i and j.

i 1 J

i.e., the joint probability of making a correct decision for both items

i and j. The remainder ofitthis section outlines how this might be done.

It is assumed that' an examinee's guessing rate is independent over

the items that he/she does not know. This mewls, for example, that if

an examinee can eliminate all but 2 alternatives on iteM i, and all but
\

3 alternatives on item j, the probability of choosing the correct response

: on the first attempt of both items is (1/2)(1/3) = 1/6-

For the two items under consideration, let pkm (k, m = 1, ..., t)

be the probaMlity tbat a rand:mlj sele:ted examinee chooses the correct

res;:nse on the kth attempt of the firs: ite.1, and the correct response

on the nth attept of the second. If z;c,1 is the proportion of examinees

who can eliminate g distractors from the first item and h distractors

from the second (g, h = 1, ..., t-l), then
t-k t-m

Pkn = I Y. ;Ii/[(t i)(t j)]
i=0 j=0

E7]
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The last expression can be used to express
4t-1,t-1-

in terms of the pkm's

which can be used to estimate
t-1,t-1*

Note that if the first item has t'

alternatives, t' t t, simply replace t-k with t'-k in equation 7.

To clarify matters, consider the special case t = 3. Equation 7

says, that

r /2 4. 4 /3 4. 4 /24.
Pll 7 422 -21 20 12 11

401/6 '1" 00/9

p12 2-1/2 420/3 411/4 410/6

/4 4. 4 /6
10

401/"

4
02

/3 [8]

P13 420/3f 410/6 400/9 .

[10]

P21 412/2 4. 402/3 4. 411/4 4.'401/6 410/6 400/9
1:1]

P22 411/4 410/6 4011" 400/9
[12]

P23 410/6 400/9
[13]

4,0d

P31 402/3 401/6 400/9
[14]

P32 01.(6 '00/g
[15]

P33 7 ',en/9
[16]

Thus, starting with equation 16

= 9 P33 [17]
400

401 6(P32 P33)
[18]

and eventually can be expressed in terms of,r p,," 's. Replacing

che pkm's with their usual unbiased estimate yields an'estimate'of
422

say
22'

But it can be seen that for the two items under consideration



(items i and j),

22 + 1 Pll
[19]

Replacing 22 and p11 with and p yields an estimate of = Pr(xj=1, xj=1),

A

say -r,.. For arbitrary t, -rij is given by equation 19 with
22

replaced

with Note however, that the model implies that certain inequali-

ties among the pkm's must hole. For example, p31>p32>p33. .Estimating the

Okm's assuming these inequalities are true requires an application of the

pool-adjacent violators ,algorittrit (Barlow,et I97.2). 'Testing these in-

,
equalities'can be accomplished by applying results in Robertson (1978).

Bounds on pk

This section describes how the results n the previous section can

be used to estimate bounds on pk. First, however, results in Sathe et al.

(1980) are summarized.

Recall that i = Zri and let

n-I n

S = [20]
i=1 j=i+1

[21]Uk = p - k

and

(2S - k(k - 1))/2

Then, ,-

2Vb_l (k - 2)Uk_i

k n(n

If.2Vk_.r< (n Irhen

2((k4P', 7, 1--.)131.r-e-xt )

k ( k* - k) (1:` - k 1)

[22]

123]

[24]



where k* +,k - 3 is the largest integer in 2Vk_l/Uk_l. Two upper

bounds on pk are also given. The-first is

1 + ((n + k - 1)Uk - 2Vk)/kn

and the second is that if 2Vk < (k - 1)llk,

Pkfl 2

(k* 1)Uk - Vk

(k - k*)(k k* + 1)

where k* + k - 1 is the largest integer in 2VkOk.

An Illustration'

[251

[26]

To illustrate how Pk might be applied and interpreted, observations

on seven items were analyzed according to the procedure outlined

-above. Each item had two distractors, and they were found to be

consistent with the assumptions of the answer-until-correct scoring

model. (See Wilcox, 1981a). Table I shows the observed'frequencies

for the first two iteas. The question to be answered is if these

, seven items are taken to be the whole test, do they give reasonably

accurate information about what the typical examinee knows?

As previously mentioned, the model described above implies that various

inequalities among the pij's must hold. These inequalities were tested at

the .25 level of significance with the procedure in Robertson (1978). In

every case the observed responses were consistent with the model.
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Generally, when estimatin g g22 there is no need to estimate all

of the g's in equations 8-16. For the situation at hand
'

z
22

can be

estimated as follows. First compute

P31 P32
,/

for the data in Table 1, this is .107. Next'compute

412/2 P21 P22 02/3

which is .074. Then'

- -422 Pll P12 412/2 02/3

[27]

[28]

[29]

which is equal to .225. Substituting these values into equation 19,

the estimate of T
12

iS T
12

= .75/. Applying equation 6 to all seven items,

it is seen-that = 5.434. In other words, it is estimated that the

expected num5er of correct decisions is 5.434.

Next consider ps. The value of S was estimated to be 16.929.
\

From equations 20 - 26, this implies that

.42< p5 < .74.

This analysis suggests that these seven items, taken as a whole,

are not very accurate since there is at least a 26 percent chance of

,rilaking an incorrect decision on three or more ieems. How should the

. test be modified? Another important question is to what extent can

it be improved? One approach to improving the test is to increase the

number of distractors, and another approach is to try to modify or

replace the distractors that are being used. The latter approach will

be considered first.

b

[30]
'



The initial step in trying to decide whether to replace or modify

the existing distractors is to determine the extent to which they can

be improved. This can be done with the A measure in Wilcox (1981) eq..20).

This measure is just the difference between the maximum possible Jalue

of and the estimated value given that Another related

measure is the entropy function (see Wilcox, l981a). This measures

th- effectiveness of the distractors among the examinees who do not know

the correct response by indicating the extent to which p2, pt are

unequal. The closer they are to being equal, the more effective are

the distractors, i.e., guessing is closer to being random. It has been
_

pointed out (Wilcox, 1981a) that A might be objectionabie as a

measure of the extent to which p2, , pt are equal, but for present pur-

poses it would seem to be of interest because increasing pk depends on

the-extent to which T can be increased for each item.

Referring to Wilcox (1981a), a little algebra shows that for the

case t . 3, li(

A = (P2 p3)/2 -
[30]

For item 1 in Table 1, A .024, and for item 2 it is .034 (A is assumed

!to be positive; so if p2 < p3, apply the pool-adjacent violator algorithm

in which case A is estimated to be zero.)

If the number of alternatives for item 1 is Increased to t = 5,

and if guessing is at random, then the value of T would be .893 which

represents an,increase of .126 over the value of T using the existing

distractors. Thus, it would seem that one approach to improving

/7

item 1 is to find tem more distractors that are about as effective as the

two being used. Of course in practice, this might be very difficult

1

to do.
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Estimating When There Is MisinformationTij

Among the 30 items analyzed by WilcOx (in press, a), the observed

test scores suggeit that two of the items do not conform well to the

AUC scoring model described in a previous section. Thus, the proposed -

estimate of Tij is inappropriate. This section outlines how this

problem might be solved when a misinformation model appears to be more

appropriate for some (if the items on the test.

Consider a test item with t alternatives, and let 4.t be the pro4

portion of examinees 1410 eliminate the correct response from consideration

on their first attempt 0 the item. (An AUC scoring procedure is being

assumed.) Once an examinee eliminates all of the distractors that are

consisteit with his/her misinformation, it is assumed that the examinee

chooses the correct response on the next attexpt. This assumption is

made here because it seems to give a goot appoximation to how examinees

were b?.having on the items used in Wilcox (in press a). It is also

assumed that if an examinee does not knod and does 'not have misinformation,

then he/she guesses at random among the t alternatives. Finally, for

examinees with misinformation, assume that they believe the correct

response is one of c alternatives that are in actuality incorrect.

Thus, examinees with misinformation will require at least c 1 attempts

before getting the item correct. As an illustration, consider t = 5

and c = 3. Then,



P1 4t-1 t-E1/5

P
2
= WI 5

P3 gt+1/5

134 7 t-F1/5

P5 gt+1/5

where gtil is the proportion of examineeS who do not know and who dO

not have misinformation.

Various modifications of the model are, of course, possible and

[32]

[33]

[34]

[35]

[36]

presumably this model (with some appropriately chosen c value) will-give

a good fit to the observed test scares. For.illustrative purposes,

equations 32 - are assumed. The point of this section is that

it is now possible to again esti7xce - where the misinformation model
4'0

is assumed to hold for one or both of the items in any item pair. Note

that for a single item where equations 32 - 36 hold,
.37'
[453

To estimate T.. the joint probability of making a correct decision

on a pair of items where, say, the first item is representeq by a mis-

\

information model, equation 7 must be rederived. AccordinglA,, let t'

bethenimberofalternativesonnefirstitm,amitisnanumber of
,

alterfiatives on the second. The misinformation model assumes' that on

the first attempt of the item, examinees belong to one of three mutually
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exclusive categories, namely, they knoa the answer and choose it,

they have misinformation and eliminate the correct response, or they

do-not know and guess at random. Thus, dsing previoufly established

notation, equation 8 becomes,
3 Y/

12 ,1041' /2t'
Pll 42 /3t' 02/t' 00/3t1

where, in this illustration, t'.= 5. There is no ti3 term (i = 0) 1, 2)

because the misinformation model assumes that if examinees do not know,

they cannot eliminate any of the distractors. More generally,

Pll 4t*-1,t-1 / tt1-1 j/(t j)ti /
00/(t

j)t'
pe3

i=o

Also

Pkl Pll 42 (k 2

P12 41/2111 40

PIr = 7 4a4gt

t')

(m = 0,

The remaining.pij values can be determ-Inea' in a similar manner. For the

two items being .use,1 here
rn 113

P2m / 0j(t j)t'
(m = 2, ..., t) [&11-

j=0

and
13m

The expressions for p4m and p5m involve the proportion of examinees who

have misinformation on the first item. The necessary equations can be derived

as was illustrated above. This in turn yields an estimate oi T which can be

used to estimate the baunds on pk.
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Testing Whether Items are Equivalent or Hierarchically Related

The model described in this paper might also be useful when

empirically checking the assumptions of other latent structure models.

For example, Macready and Dayton (197?) and Wilcox (1977) propose models

where it is assumed that pairs of equivalent items are available. Two

items are defined to be equivalent if examinees either know both or neither

one. When equivalent items are available, the proportion of examinees

who know both can be estimated (assuming local independence). Macready

and Dayton checked their model with a,chi-square goodness-of-fit test, but

this requires at least three items that are equivalent to one another.

(When there are only two items, there are no degrees of freedom left.)

For illustrative purposes, assume t=3, and consider equations 8-16.

If two items are equivalent, then

21 20 ("02

P12 P21 P22

P13 P23

and

P31 P23

EPA

1/7
16,01

For N < 50, an exact test of these last three equlities can be made using the critical



values in Katti (1973) and Smith et al. (1979) (Note that the conditional

distribution et multinomial random variables is multinomial.) For larger N,

the usual chi-square test can be used. From Smith et al. (1979), a slight

adjustment to the usual chi-square test appears to be useful. Finally, if

one of these items is assumed to.be hierarchically related to the other,

again certain equalities must hold among equations 8-16, and this can again

be tested (cf. White and Clark, 1973; Dayton and Macready, 1976).

A Concluding Remark

It sfmuld be stresied that pk is of interest after it has been decided

which items ere to be included on a test. pk is not intended to measure

validity -- it is designed to measure the overall effectiveness of the dis-

,ctors that are aeing used. Put another way, pk is not meant to be the

one and only index for characterizincl a test -- it is intended to be one of

c=vveral indizs that might be used. The reason for raising this issue is

that a test constructor can ensure that pk is large by using easy items.

This is an imprnper procedure that misses the point of how pk is to be used.
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Table 1

Number of Examinees Requiring i Attempts on Item 1

and j Attempts on Item ?

Number of Attempts on
Item 2

1 2 3 Total

1 179 26 14 219

Number of
Attempts on 2 76 8 4 88

Item 1

3 53 13 4 70

Total 308 47 22 -377

Ow
%
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ABSTRACT

Consider any scoring procedure for determining whether an examinee
%

knowstheanswertoatestiteri x1=1 if a correct decision is made

about whether the examinee knows the ith item; otherwise x.=0. The k out

of n reliability of a test is 131(=Pr(z xek). That is, pk is the probabil-

ity of making at least k correct decisions for a typical (randomly sampled)

examinee. This paper proposes an approximation of pk that can be estimated

with an answer-until-correct test. The paper also suggests a scoring

procedure that might be used when p)*( is judged to be too small under a

conventional scoring rule where it is decided an examinee knows if and

only if the correct response is given.
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Consider an n-item multiple-choice test, and suppose that every

examinee can be described as either knowing or not,knowing the correct

response. In some situations, particularly with respect to some instruc-

tional program, the goal of a test might be to determine how many of the

n items an examinee actually knows; in terms of diagnosis, it may even

be desirable to determine which specific items an examinee knows or

does not know. Under a conventional scoring procedure, about the only

scoring rule available is one where it is decided that an examinee knows

if and only if a correct response is given.- Obviously guessing will

affect the accuracy of this rule. If it is assumed that examinees who

know will always give the correct response, and if most examinees really

do know the correctsresponse, then of course guessing has little impact

on the accuracy of the test or ihe effectiveness of the distractors in

tenms of the typical examinee. Ho,Aever, if ; is the proportion of exam-/

ineas who know, the answer to anitem,then as ; decreases, the importance

of having effective distractors increases in order to avoid incorrect de-

cisions about whether an examinee knows.

Guessing can seriously affect various other measuroment riroblems

as well (e.g., Weitzman, 1970; van den Brink and Koele, 1980; Wilcox, 1980,

1982c; Ashler, 1979). For example, when estimating the biserial correla-

tion coefficient, guessing can substantially affect the results (Ashler,

1979). Ashler gives a method of correcting the estimate for the effects

of guessing, but it requires a procedure fortdetermining which items an

.

examinee reaTly knows. The conventional rule is to decide an examinee knows

if and only if the correct response ig given, but this can be unsatisfactory.
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Suppose, for example, and the probability of a correct response,

given that the examinee does not know, is 1/3. Then 1/6 of the examin-

ees would be misclassified. The extreme case is where none of the ex-

aminees know, in which case 1/4 would be incorrectly judged as knowing

the correct response.

As another example, suppose an investigator wants to determine

whether the proportion of examinees who know an item is relatively large.

In order to ensure a reasonably high probability of a correct decision

about this proportion,.it follows from Wilcox (1980) that it might be

necessary to sample ten, perhaps even forty times as many examinees as

would be required if guessing did not exist.

For a specific examinee taking a test; let xi.1 if a correct decision

is made about whether the answer to tne ith item is known; otherwise

xi ..10. For an examinee randomly samplej from the population of potential

examinees, let

pk = Pr(Ixi > k).

This is just the probability of making at least k correct decisions among

the n items for a randomly sampled examinee; pk is called the k out of n

reliability of a test.

Suppose every item has t alternatives. One approach to designing

a reasonably accurate teit is to assume random guessing, and then choose

t so that pk is reasonably close to one. IF xi is independent of xj for

all itj, then pk is easily calculated on a computer. Unfortunately,

there are three serious problems with this approach. First, there is

considerable empirical evidence that guessing is seldom at random

(Coombs et al., 1956; Bliss, 1980; Cross & Frary, 1977; Wilcox, 1982a,

3



1982b). Second, even if guessing is at random, some situations will re-

quire more alternatives than is practical in order for p
k
to be close to

one (Wilcox) 1982c). Finally, there is 'no particular reason for assuming

x.independentof xj, .Vj, or to believe that such an assumption will

give a good approximation of pk. If cov(x.,x,VO, bounds on p, are avail-
j

able (Wilcox, 1982c, in press a), but point estimates do not exist.

One goal in this paper is to suggest an approximation of pk that can'

be estimated with an answer-until-correct test. Another and perhaps more

important goal is to describe a scoring procedure that might be used when

the estimate of pk is judged to be too small under a conventional scoring

rule. The new rule is based on a recently proposed latent structure model

for test items. Included are soma results on how to test whether this

model is consistent with observed test scores.

2. An Approximation of p,

Let ,yn) be any vector of length n wherey,=0 or 1, and

let f(y) be the probability density function of.y. Bahadur (1961) shows

that f(y) can be written as

f(y) = fl(Y)h(Y)

where
n

n
1-y.

f CO= aj.1 (I- ai)

.1=1

a1=Pr(y1=1)

h(y)1 r .. z. z. 1 ri.j z.zz ... r
12.,.n

z
1

z
n

ij j
i<j<M

m j m
i<j



z..
1 1 1 1 1

r.. = E(z.z.)
lj 1 j

rlj.. =E(z.zj z )

M 1 M

r12 .n(z1z2...zn)..=E

An mth order Bahadur approximation of f is one where the first m summations

are used in the expression for h. Several authors have used a second

order approximation when investigating problems in discrete discriminate

analysis (e.g., Dillon & Goldstein, 1978; Gilbert, 1968; Moore, 1973).

In this case f(y) is approximated with

g(y)=f1(y) [1 riizizi] (2.1)

1<j

Other approximations have been proposed, but as wilt become evident,

(2.1) js particularly convenient for the situation at hand.

Occasionally (2.1) will not be a probability function. In particular,

it may be that g(y)(0 for some vectors y. In this paper, whenever this

occurred, g(y) was assumed to be zero, but the g(y) Values were not re-

scaled so that they sum to one.

Bahadur (1961) discusses how to assess the goodness of fit of the

approximation. Here, however, interest is in approximating pk Note

that for a random vector y, pk can be written as

y f(Y)
y:S>k

(2.2)

where S=Eyi and the summation in (2.2) is over all vectors y such that S>k.

3



Of course, when approximating pk, f(y) would be replaced by f(x) where

%the vector x indicates which items a correct decision is made about

,whether an examinee knows. To gain scime fRsight into how well g(y) ap-

proximates pk, assuming ai and rij are known, we set r1.5, k=4 and ran-

domly chose values for the 2
5
=32 probability cells. Next, pk was eval-

_,

uated with ('4.2), -and then it was approximated with pk where pk is given

by (2.2) with f(y) replaced by g(y). This process was repeated 100 times

yielding a wide range of values for pk. The values for pk and pk were

rounded to the second decimal place after which it was found that 85%

of the time, Ipk-pkl< .02. For 5% of the approximations it was found

that Ipk-pki> .05. For Ipk-pkl< .05 it was also found that pk<pk. The

poorest approximation was for a probability function where pk =.365 and

pk=.232. Although hardly conclusive, these results suggest that pk is

generally useful when approximating px,_at least when.n is small. For

n large the test can be broken into subtests containing five items or less,

and Bonferroni's inequality (e.g., Tong, 1980) can be applied. For example,

suppose n=10. If for the first five items pe.95, and for the remaining five

items p4=.98, then for the entire test it is.estimated that

pel-(1-.98)-(1-.95)=.93.
(2.3)

Estimating pk

There remains the problem of estimating -pk. What is needed is an

estimate of the parameter rij in the expression for g(y). An estimate

is available using a slight extension of the model in Wilcox (in press.a)

which Can be briefly summar:ized as follows. Assume that examinees take

the test according to an answer-until-correct scoring procedure. That is,

3,1
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they choose a response, and if it is wrong they choose another. nis

process continues until the correct response is selected. Administering

such tests is easily accomplished with especially designed answer sheets

that are available commercially.

Consider a specific item and let pi be the probability' that a ran-

domly selected examinee gets the item correct on the ith attempt,

i=1,...,t where t is the number of alternatives. Let be the propor-

tion of examinees who,can eliminate i distractors (i=0,...,t-1). It is

assumed that for examinees who do not know, there is at least one effec-

tive distractor in which case is the proportion of examinees who

know. It is also assumed that once examinees eliminate as many distrac-

tors as they can, they guess at random from among those alternatives that

remain. It foillows that

t-i

(i=1,...,t) (2.4)

3=0

and the model implies that

(2.5)

which can be tested (Robertson) 1978). For empirical results in support

of this model, see.Wilcox (1982a, 1982b, in press b). In the few instances

where (2.5) seems to be unreasonable, a misinformation model appears to

explain the observed test scores., When (2.5) is assumed, the pool-adjacent

violators algorithm (Barlow et al., 1972) yields a maximum likelihood esti-

mate of the P.'s. These estimates in turn yield an estimate of the .'s.

For any pair of items, let P
ij

be the probability of a correct on the

ith attempt of the first and the jth attempt of the second, respectively.
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and let cij be the probability that a randomly chosen examinee can elimin-

ate i distractors from the first, and j distractors from the second. Then

is the proportion of examinees who know both. It is assumed
4t-1, t-1

that an examinee's guessing rate is independent over the items not known,

and so

P
km

t-k t-m
= cii / [(t-i)(t-j)]

1=0 j=0

If the second item has t- alternatives, tft-, simply replace t with t- in

the second summation. Testing certain implications' of (2.6) is discussed

below.

For the ith item on the test, let T.=E(x.) be the probability of a cor-

rect decision about whether the examinee knows when a conventional scoring

procedure is used. Thus, Ti plays the role of ai when approximating pk For

an answer-until-correct test, a conventional rule means to decide an exam-
,

inee knows if and only if the correct response is given on the first

-:-attempt. In this case (Wilcox, 1982a

= 1-p2

Thus, if for the ith item, cj of N examinees get the correct response on

the jth attempt under an answer-until-correct scoring procedure, then

= 1-c
2
/N

Tl

is an estimate of T.. If the i's are inconsistent with (2.5), apply
1
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the pool-adjacent-violators algorithm (Barlow et al., 1972, pp. 13-16),

as was previously mentioned.

hasirriarmaraler,lett....pto(.=10(..=1),i.e.,.-is the prob-
,

Tij

ability of a correct decision for both items i and j. For the conventional

decision rule under an answer-until-correct model, it can be seen that

where

t t

Tii = qkm

k=1 m=1 ,

q11 4t-J, t-1

t-i

Ck,t-1/(t-k)kO
t-j

qij 1-7:=0

(j=2,...,t)

7ij
(i>1 and j>1)

qij=

(Wilcox, in press a)

Thus, rij, zi and zj in equation (2.1)-are easily determined.

In particular,
-

13 1 j
[TiTi(l-Ti)(1-Tj

where T. plays the role of a. in the definition of z.. But as noted in

Wilcox (in press), the cij's in equation (2.6) are easily estimated, and

these estimates yield an estimate of Tij which in turn gives an estimate

of . Wence, p
k
can be estimated with equation (2:1) which gives an

approximation of pk.



Testing Certain Implications of the Model

For any pair of items, equation (2.6) implies that

(2.7a)

1 -P21 ..."'-.Ptl-Pte."'->-Ptt' (2.7b)

(i=2,...,t-1) (2.7c)

and

P
13-
.>p .>...p

23--
.

tj
(j=2,...,t--l) 2.7d)

where as before, t and t' are the number of alternatives for the first

and second items, respectively. A few other inequalities are implied

if the are assumed to be protabilitieS., but these have not been

derived.

Experience with real data suozests that when observed scores are

consistent with (2.5), the inequalities in (2.7) will also hold. If

some of the observed proportions are inconsistent with (2.7), maximufti

likelihood estimates can be obtained when the model is assumed to be

true by applying the minimax order algorithm in Barlow et al. (1972).

Robertson (1978) includes some asymptotic results on testing (2.7).

At the moment, however, his proposed procedure can not be applied because

certain constants (the P (x,k)'s in Robertson's notation) are not avail-

able. An alternative approach is to perform a separate test of the in-

equalities in (2.7d), one corresponding toeveryj, j=2,..., t--1, then



perform a test of (2.7c), one.for every i=2,...,t-1, then test (2.7b)

and finally (2.7a). The total number of tests is m=t+t'-2. 'If the

critical value for every test is set at a/m, then from the Bonferroni

inequality ,(e.g., Tong, 1980), the probability of a Type I error among

the m tests is at most a.

Consider, for example, the inequalities in (2.7d) for j=2. That

is, the goal is to test

Hb: PleP2e1332?.."'?-13t2

Let A be the likelihood ratio for testing (2.8) where the alternatiye

(2.8)

hypothesis is no restriction on the proportions. From Robertson (1978,

Theorem 2), the asymptotic null distribution of T=-2 ln A is

k-1

Pr(T>T0)= Z3.13(2,k)Pr(x:To)

whers P(E,k) is th7 probability that the maximum likelihood estimate of

(2.9)

p19,....,pt2 subject to (2.8) will have t distinct values among the k param-

2 -

eters being estimated, and xk_21s a chi-square random variable with k-t
-

degrees of freedcm. -For (2.8), k=t. (As previously mentioned, the pool-

adjacent-violators algorithm yields maximum likelihood estimates when (2.8)

is assumed.) The constants P(2.,k) can be read from Table A.5 in Barlow

et al. (1972).

Thus, in order for the m tests to have a_critical level of at most a,

choose To so that (2.9) equals a/m, and reject Ho if T>T0. This process

is repeated for the other inequalities to be tested, but note that k (the

number of parameters being tested) will have a different value for (2.7a)

and (2.7b).

3 .1
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To facilitate this procedure, critical values are reported in

Table 1 for t=2(1)5, a=.1, .05, .01; and some appropriately chosen,values

for m. (Additional values for m were not used because for t(5, these

are the only values of Ohat will occur.)

As an illustration, suppose t=t'=3. Then there are m=4 sets of

inequalities to be tested. If a=.05, then from (2.7a) there are k=5'

parameters, and so T0=10.81. For (2.7b) again k=5 and To=10.81. For

(2.7c) there is only one set of inequalities which corresponds to 1=2,

t=k=3, and To=7.24. The same is true for (2.7d).

3. A Scoring Procedure for Tests

Consider a specific item on an n-item test. In contrast to most of

the existing scoring procedures, the gcal here is to minimize the expected

number of examinees for whom an inaorrect decision is made about whether

they know the answer to the item. It is interesting to note that when

items are scored right/wrong, this criterion can rule out the conventional

rule where it is decided an examinee knows if and only if the correct

response is given. The extreme case is where gt_1=0, i.e., none of

the examinees know, in which case the optimal rule is to decide that an

examinee does not know regardless of the response given. If 8=Pr (correct

examinee does not know), it can be seen that if an item is scored right/

wrong, and if p4t.1./(1-t_i) the optimal rule is to always decide that

examinees do not know. If a</(1-4t_1), use the conventional rule.

From Copas (1974), this approach (in terms of parameters) is admissible.

tiff
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These parameters can be estimated which yields an estimate of the optimal

decision rule (e.g., Macready and Dayton, 1977). .The goal here is to

derive a decision rule based on an answer-until-correct scoring procedure.

The advantage of this new approach is that if is not necessary to assume

all-n items are equivalent as was done in Macready and Dayton. (Two items

are said to be equivalent if every examinee knows both or neither one.)

The results in Macready'and Dayton (1977) could be extended to the case

of hierarchically related items by applying results,in Dayton and Macready

(1976), but here the goal is to derive a rule where no particular relation

ship is assumed among the items. However, the situation considered by

Macready and Dayton (1977) has the advantage of allowing Pr (in-

correct response 1 examinee knows) >0, while here this probability is

assumed to be zero.

Consider the ith item on a test taken by a specific examinee, and

let w.=l if it is decided the examinee knows; otherwise w.=0. Consider

the jth item on the test Vj for the purpose of assisting in the decision

about whether w1 should be 1 or 0. (The optimal thoice for the second

item will become eviden It is assumed that items are administered

according toan answer-until-correct scoring procedure. For a specific

examinee, let vi be the number of attempts needed to choose the correct

response to the ith item. The decision rule to be considered is

1, if vi<voi and vi<voi

(3.1)
1 J 0, otherwise
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where voi (=1 or 2) and voi (1fv0i<t-) are constants to be determined.

Note that when v =2 and v
Oj
..1, the rkile is similAr to the one in Macready

and Dayton (1977). Also note that voi=t- corresponds to the conventional

decision rule where the information about the jth item plays no role in

determining whether the examinee knows the ith. It is evident, therefore,

that in terms of parameters, (3.1) always improves upon the conventional

apProach. The improvement actually achieved will of course vary. If

is close to one for every item, pk will also be close to one under

a conventional scoring rule, in which case there is little motivation

for usihg (3.1). However, when pk is unacceptably small, (3.1) can in

crease pk by a substantial amount:

One problem fs choosing the constants voi and voi. A solution is

as follows. For a randomly sampled examinee responding to the ith and

jth items, let Pkno. be the probability of choosing the correct response

on the kth attempt of the ith item, the mth attempt of the jth item, and

making a correct decision under the rule (3.1). The probability of a

correct decision for a randomly sampled examinee is

t t'

Pkm1

which is a function of voi and vco. Thus, the obvious choice for voi

and voj is the one that maximizes pc.

Let.

ilj

qlj=
/(t-k)



and
t t

Q1 13;,1

i=2 j=1 1J

For v0i=2 and any voj

vOj

Pc= Q lk +i (Plk-glk)
voj

(3.3)

When vort-, the second sum in (3.3) is taken to be zero. As for voi=1,

t' -

Pc I (Plk-cilk)-
(3.4)

k=1

Thus, to determine the optimal choice for voi and voj in (3.1), simply

evaluate pc for every possible choice of voi and voi, and then set voi

and v equal to the values that maximize p
c'

Of course, when
Oj

making a decision about the ith item, this process can be repeated over

the n-1 other items'on the test. The item that maximizes p
c

is the one

that sihould be used when determining wnether an examinee knows the ith

item.

An Illustration

As a simple illustration, the optimal rule is estimated for two items

used in Wilcox (1982a). The observed frequencies are shown in Table 2. Note

that the observed frequencies already satisfy (2.7a)-(2.7d). For the first

item the estimate of T, the probability of correctly determining whether a

randomly sampled examinee_knows, is Ti=(236-71)/236=.699. For the second

items it is

Suppose the second item is used to help determine whether an examinee

knows the first. Let v
01

=2 and v
02

=1. Thus, a correct response must be



given on the first attempt of both items in order to decide that an exam-

inee knows. Note that
4

(7=1- X pli,
j=1 -

and so Q is estimated to be .513.

The easiest way to estimate the 4..'s s to start with
1J

From (2.6) with t=t-=4,

P44=444/16

and so from Table 2, ..44=0.

Next consider

P
43

=4
01
/12 +4

4
4/16 /

-

and so 40/=.048. Eventually this process yields estimates,of all the cols

which n turn yields estimates of q/j, j=1,...,4. The estimates turn out to

be q11=.109 , q12=.012, q13=.012, and q14=0. Thus, the estimate of Pc is

.513+.109+(.089-.012)+(.042-.012)+(.013-0.0)=.742.

If nstead v01=1, so that it is als.vays decided an examinee does not

know, regardless of the o5served respsnse, Pc is just one minus the pro-

portion of examinees who know. From (2.4), 4t_1=p1-p2, so the estimate

of P
c

is 1-.187=.813. This is a substantial increase in accuracy over

the conventional rule.

Determining pk Under the New Scoring Procedure

It is evident that the scoring procedure represented by (3.1) im-

proves upon the conventional scoring procedure, but when voj in (3.1)

is less than t-, the method already described for determining pk will

in general be inadequate. The reason is that'io determine pk, Tij
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(the joint probability of making a correct decision about the ith and

jthiter) mustbeknown.(SeeSection2.-illayOj
Ti

depend on two other items, say items k and m. That is, information on

the kth item and mth item will be used to determine whether the examinee

knows the ith and jth items respectively. Hence, (2.6) is no longer ade-

quate for determining pk.

One solution might be to extend (2.6) to include four items. In

theory the parameters could be estimated under the resulting,inequalities

by-applying the minimax order algorithm. However, writing an _epropriate

computer program that is valid for t<5 will be a relatively involved task.

Another and perhaps more practical approach might be to restrict the

decision rifle so that if the response to the jth tem is used in the de-

\
cision about whether an examinee knows the ith item, then the response

to the ith wfll be used in decid.!ng abpu t.e jth. An advantage of this

approach is that it simplifies tha process of\choosing a decision.rule

by reducing the number of pairs of items that are considered. A second

advantage is that an approximation of pk can be made using the results in

section 2. A disadvantage is that by restricting the class of decision

rules, the potential increase in pk (over what it is under a conventional

scoring rule) is reduced. Perhaps this is not a serious problem; at the

moment it is impossible to sky.

An approach to choosing a scoring rule might be as follows: First

estimate pk under conventional scoring rule. If it is judged to be too

small, choose a decision rule from among the rules described in the pre-

ceding paragraph and then estimate pk in the manner indicated below. If

pk is still too small, choose a decision rule from among the broader class
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of rules described in the preceding subsection. In this case, however,

an approximation of pk s no longer available for the reasons just given.

,Suppose that if the jth item is chosen to aid in the decision about

the ith, then the ith item s used n the decision rule for the jth.

What s needed in order to approximate pk is an expression forthe joint

probability of making a correct decision for both items. Accordingly,

consider any two items, and let u1(k)m)=1 if it is decided that an exam-

inee knows the first item if the correct response is given on the

kth attempt of the first item, and the mth attempt of the second; other-

wise u1 (k,m)=0. Similarly, u2(k,m)=1 if t is decided that an examinee

knows the second item if the correct response is given on the kth

attempt of the first and the mth atzempt of the second; otherwise u2(k,m)=0.

Let

and

s (k,m)=

1, if ul(k,m)=1 ard i=t-1, or if

ul(k,m) =0 and <t-1

0, otherwise

1
'

if u
2 '

(k m)=1 and j=t'-1, or if

u2 "m)=0 and j<C-1
s .

'
(k m)=

2J
0, otherwise.

Recall .that the probability of getting the correct response on the kth

attempt of the first tem and the mth attempt of the second is given by

(2.6). From this expression t can be seen that the joint probability

of k attempts on the first item, m attempts on the second, and a correct

-



decision on both items is

t-k t--m

Ykm X X
7=0 J=0

18

Thus, for a randomly sampled examinee, the joint probability of a cOrrect

decision for both items, say items i and j, is

t t'

Tii X X Yt
k=1 m=1

h-

The joint prObability of a Correct decision about the first item, k at-

tempts on the first and m attempts on the second is

km

t t-
41

1=0

sii(k,
i

m) c../[(t-i)(t--j)]
j

3=0 '

The corresponding probability for the_second item is

t t-

nkm = s2j(k,m);1j/[(tLigt--j)]
1=0 J=0

Thus, Ti, the probability of a correct decision about the ith item on

a test (using the jth item in (3.1)) for a randomly sampledexaminee, is

t t-

Ti =
k=1 m=1

Similarly, for the second item, item j,

t t'

T.

k1m1 nkm

Hence, pk can be approximated as described in section 2.

4
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Concluding Remarks

Virtually all of the results on *the proposed.scoring rule have been

in terms of parameters. These parameters are not known, but they are

easily estimated. The question arises as to the sampling effects on

estimating the approximation of pk, and on estimating the optimal de-

cision rule for deterMining whether an exaMinee knows the correct response.

In some instances, a large number of examinees will be available, and so'

very acturate estimates of the parameters can be obtained. This is the

case for certain testing firms where literally thousands of examinees

take the same test. When the number of examinees is small, however,

sampling fluctuations need to be taken into account; this problem is

currently being investigated.

Another important feature of the proposed scoring rule is that the

decision about whether an examinee knoyvs an item is a function of the

responses given by the other examinees. If the goal is to minimize the

number of examinees for whom an incorrect decision is made, there is no

problem. However, in some instances, this feature might be objectionable.

Suppose, for example, an examinee takes a test to determine whether a

high school diploma will be received. It is possible for an examinee

to fail because of how other examinees perform on the test even though

the examinee in question deserves to pass. If this type oF error is

highly objectionable, perhaps the proposed scoriflg rule should be used

only in diagnostic situations where the goal is to determine how many
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items an examinee actua ly knows, or which specific items are not known.

A technical point that should be mentioned is that a few of the

were slightly negative in which case was set equal to zero.

As a result, the sum to .997 rather than one as they should.

The problem is that equations (2.7a)-(2.7d) are necessary but not sui-

ficient conditions for the model to hold. For example, these inequalities

do not guarantee that 4,-, will be positive.

Despite these difficulties, there will be situations where correct-

ing for guessing can be important. Some examples were given at the begin

ning sof the paper. Even if a conventional scoring procedure is to be

used in operational versions of a test, it Might be important to first

estimate the effects of guessing using an answer-until-correct scoring

procedure.

Many scoring rules have een prcposeci that are based on various cri-

teria. If a particular criterion is deemed important, of course the cor-

responding scoring rule should be considered. The point is that most of

these rules are not based on the goal of determining how many items an

examinee knows, or which specific skills an examinee has failed to learn.

Moreover, typical rules usually ignore guessing or assume guessing is at

random. Thus, the results reported here might be useful in certain

situations.

4 LI
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TABLE 1

Critical Values T for the Bonferroni
0

Test of Equations (2.7)

k m a: .1 .05

3 4 5.90 7.24

3 5 6.33 7.67

3 6 6.68 8.03

4 3 7.03 8.49

4 4 7.64 9.10

4 5 8.11 9.56

4 6 8.49 9.95

5 4 9.25 10.81

5 5 9.75 11.31

5 6 10.15 11.71

5 7 10.57 .12.05

5 8 10.81 12.35

6 5 11.32 12.96

7 6 -, 13.29 15.00

8 7 15.18 16.95

9 8 17.02 18.84

t) 4)

.01

1 .38

10 1

11.1

11.8,6

12.46

12.92

13.30

14.36

14.85

15.25

15.58

15.87

16.67

18.85

20.93

22.94
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Table 2

OBSERVED FREQUENCIES FOR TWO ITEMS ADMINISTERED UNDER

AN ANSWER-UNTIL-CORRECT SCORING PROCEDURE

1

2

3

4

Number of Attempts for the Second Item

1 2 3 4

81 21 10 3

44 18 6 3

20 7 5 1

10 6 1 0

155 52 22 7

115

71

33

17

236
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Horst (1933) assumed that when examinees respond to a multiple-

choice test item, they eliminate as many distractors as possible, and

guess at random from among those that remain. More recently, Wilcox

(1981) proposed a latent structure model for achievement test items that

was based on this assumption and which solves various measurement prob-

lems. (See also, Wilcox, 1982a, 1982b.)

Suppose an item is administered according to an answer-until-correct

(AUC) scoring procedure. That is, examinees chose a response, and they

are told whether it is correct. If incorrect they choose another response,

and this process continues until the correct response is selected. Now

consider tdo specific distractors. If Horst's assumption is true, then

a7.ong the examinees choosing these two distractors, the order in which

hey are chosen should be at rar.:0-1. Of course for 3 distractors the

same conclusion holds, only rog frere are 6 patterns of responses rather

than 2. An empirical investigation of this implication is described below.

As was done on previous tests, the final examination for students

enrolled in an introductory psychology course was administered according

to an AUC scoring procedure. For 26 items, examinees were asked to record

the order in which they chose their responses. Bonus points were given

to those examinees complying with this request. There were 236 examinees

who took the first 13 items, and 237 examinees took the remaining 13,

All items had 4 alternatives.

For any two distractors, the null hypothesis of random order in re-

sponses can be tested with the usual sign test. Among the examinees
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choosing all three distractors, the chi-square test given by

[Insert Equation I here-1_,

was used where xi is the number of examinees choosing the ith response

pattern, and N is the number of examinees choosing all three distractors.

Some exact critical values are given by Katti (1973), and Smith et al.,

(1979) and they were used whenever possible. For larger values of N,

theadjusted, chi-square test was .us.ed (Sinith et al., 1979).

For each item, the responses to all pairs of distractors were tabu-

lated. For N<5, no test was made because it is impossible to reject the

null hypothesis at the .1 level. For the first tesi form, 29 tests were

made and the hypothesis of random choices was rejected three times at

the .1 level. For the second test form, 23 tests were performed, and again

H
o

was rejected 3 times.
N,

Next, an analysis was perfor7ed on those respOnses where all three

distractors were chosen. Again no test was made for N<5. The largest

value for N was 75.

At the .1 level, Ho was rejected for 5 of the,12 items on the first

test form, and for the second test form the rejection rate was 3 of 11.

The question remains as to the relative extent to which responses

are not at random when H
o

is rejected. For the case where all three

distractors were chosen, this quantity was measured with

[Insert Equation 2 here]

5 r



2
where Xmax

and X
2 are the maximum and minimum possible valUes of X

2
.

min
2

From Smith et al. (1979), Xmax
= 5N, and X

2

n
is given by Dahiya (197i).

mi

The quantity w has a value between 0 and 1 inclusil The closer w is

to one, the more unequal are the cell probabilities in a multinomiai

distribution.

Marshall and Olkin (1979) suggest that when measuring inequality,

a certain class of functions (called Schur functions) should be used.

Writing Equation 1 as a function of Exf (Dahiya, 1971) and noting that

tx is just Simpson's measure of diversity, it follows from results

in Marshall and Olkin (1979) that w is a Schur function.

Note that using the w statistic is similar to using Hays
,

03

2
(Hays,

1973). That is, rejecting the n.111 hyoothesis does mit indicate the ex-

tent to which the cell probabilities are unequal. It may be, for example,

that the cell probabilities are not eTJai, but that for practical purposes

they are nearly the same in value.

For the first test form where H
o
was rejected, the w values were

found to be .074, .183, .286, .167, and .137. For the s'econd test form

they were .098, .125 and .133. Thus, even when Ho is rejected, Horst's

assumption apRears to be a tolerable approximation of reality in most

cases. Of course there will probably be items' where this assumption is

grossly inadequate. In this case the measurement procedures proposed

by Wilcox may be totally inappropriate.
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