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ABSTRACT

Least squares fitting is perhaps the most commonly used tool
of'gﬁatisticians. Under Sampling assumptions, statistical infer-
ence makes possible the éstiﬁation of population parameters and
their confidencé intervals and also the testing of hypotheses. In
this paper the properties of least squares fitting is examined
without sampling assumptions. It is shown that some of the output
(e.g. standard errors, t , F , and b\ statistics) from stand-
ard regression programs can be interpreted as (appgoximate) -
measures Oof g9odness—of—fit of a model to the observed data. The

interpretation is also applicable in weighted least squares situa-

tions such as robust regression.
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1. INTRODUCTION

Apparently, fitting simple functions to observed data is a
very basic human function. Art students are taught that an
observer will see familiar shapes such as lines, 3quares, or
circles even when only a few points or segments are actually
present. Science students are taught that finding rimple functions
that represent complex events is one of the fundamental procedures
of science. Given the breadth of application, it is no wonder that
fitting functional forms to data has such an important position in
statistical theory.

Statistical theory enhances fitting procedures in many ways.
Given assumptions ‘about a population and sampling procedures, we
may infer that the fit from a random sample is an unbiassed
estimator of a population parameter, aﬁ& we can estimate the sample-
to-sample variance of the parametef estimate. Under correct condi-
tions, we may develop a confidence interval for a parameter or test
an hypothesis that the parameter is some known value. Clearly,
statistical theory adds substantially to the interpretation of
fitting--at the cost of collecting (or assuming) a random sample
and making assumptions about the population distribution of
residuals. Statistical theory also dictates, to some degree, what
functions of the ddta (e.g. standard error of a mean) that we

interpret.
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However, the estimation of population parameters is but one of

the important functions of statistics. R. A. Fisher (1930) wrote

on the first page of Statistical Methods of Research Workers,

"Statistics may be regarded as (1) the study of populations, (ii)
as the study of variations, (iii) as the study of the methods of
the reduction of data." He also wrote of (page 5) "the practical

-

need to reduce the bulk of any given body of data,’

' and later

(page 6) "We want to be able to express all the relevant information
contained in the mass by means of comparatively few numerical
values." Although random sampling may be important in estimating
population parameters, there 1s no reason to forego data reduction
in nonrandom saméles as long as one is careful not to make the
inferences that only random sampling allows.

The purposé of this paper is to discuss the fitting prbcess as
a method of data reduction. No assumptions about the samplingv
process nor population distribution will be made. Clearly, when-
ever the usual statistical assumptions are plausible, standard
procedures ofvstatistical inference should be usgd, but the concern
here is with data for which the assumptions are quite inappropriate.
The general étrategy is to censider fitting (linear) mode;s_as
partitioning data into a fit and residuals. The fitycapfbe parsi-
moniouély represented by a summary of the data. A fit is cénsidered
adequate if the residuals are small enough so that manipulating

their signs and locations does not affect the summary more than a




pre-specified amount. The effect of the residuals on the summary

is shown to be (approximately) characterized by the output of
standard regression programs. Decision rules for accepting a fit
will be proposed, and these rules will be shown to be equivalent
in large samples to standard hypothesis tests.

That some of the é;gggsfiés from a regression ;;alysis can be
interpreted as descriptive statistics is known (e.g. regression
coefficients, squared multiple correlétion), but this paper also
shows possible interpretations of the covariance of regression
coefficients, t , F , and "probability" statistics. Not much

work seems to have been done in this area, but a paper by Freedman

and Lane (1978) does approach the problem of nonstochastic signifi-

cance testing and, although they differ in purpose and approach,
come to similar conclusions where thgir work overlaps with what is
covered here, and the bootst;ap of Efron (1979) is in a similar
spirit.

The next section in this paper will cover in detail the
general process of linear fitting models by least squéres and
discuss briefly iﬁs relationship to standard hypothesis testing
and to Fisher's randomizétion test.. The following section will
discuss fitting in weighted least squares and compare fitting to

standard methods. Most proofs are relegated to the appendix.




2. CASéMI: ORDINARY LEAST SQUARES

Let us assume that we have a set of data and wish to fit a
linear model using the least squares criterion. The data require-
ments and the notation used in this paper are shown in Table 1.
All data elements are known, fixed, finite, real numbers. The
matrix W -is a-diagonal matrix of weights which will be discussed
later and canfbe assumed equal to an identity matrix here. Least
Sqqares fitﬁiﬁg is a matter of algebra and, as long as XX has an

;o

;'ihverse, an unique equation can be fitted. The compﬁtétion of the

D

least Squérés coefficients can be performed using a standard

regression program.

The output of most regression programs consists not-only of
the regression coefficients but also of a number of othe; statistics
associated with regressionvanalyéis. Table 2 contains a fairly
extensive list of regreséion statistics which might be included in
computer output and a formula for each. That computer programs
differ in internzl algorithm or precision does nof concern u§ héré;
we will assume that eﬁough precision is kept so that roundigé'error
can be ignored. fﬁe derivation and interpretation of théséggia;iSF
tics using sampling theory arehtoo well known to repeat here (see,
for example, Graybill 1961, Draper and Smith 1966; Daniel and Wood

1971, Searle 1971, etc.)




The interpretation of some of these statistics without sam-
pling theory is also well known. Fisker (193Q0) showed that a
regression coefficient may be considered as a weighted average of
the response variable y where the weights are a function of a
regressor variable. Tukey's catchers (Beaton and Tukey 1974) may
be thought of as sets of weights to be applied to the response

variable in order to form partial regression coefficients. Thus,

any regression coefficient may be conceived of as a weighted average

of the response variable. The standard error of estimate is a
measure of how well the linear model fits the data, although divi-
sion by the number of degrees of freedom comes from sampling

considerations whereas division by the sample size would seem more

appropriate for descriptive purposes. The squared multiple correla-

tion may be interpreted as a relative measure of goodness of fit.
However, some common regression outputs, the cov(P) , tj ,
p(tj) , ® , and p(F) , are not usually interpreted as descrip-
tive statistics but from consideration of the inferred behavior of
different random samples. We will show below that these statistics

also permit interpretation as measures of goodness of fit without

recourse to sampling theory.

The premise of this paper is that data reduction is a suffi-




cient reason for data analysis. We wish to reduce a mass of data
into a few numbers which characterize or summarize an interesting

relationship between the response vector y and the regressor

~

matrix X . We often do this by fitting a linear (in the param-

eters) model by least squares. Since the regression coefficients
are weighted averages of the response values, they may be considered
as summary statistics. A‘summary will in most cases lose some of
the information in the original data in the sense that the response
variable cannot be exactly reconstructed from X and the summary,
b . To judge the adequacy of the summary, we will develop measures
of how well the uriginal data can be reconstructed from the summary
and how sensitive the summary is to the information lost in the data
reduction.

Fitting equations to data may be considered as a way of parti-

~

tioning a set of observations. y into two parts, a fit, y , and

-~

residuals, . e ; that is,

-~

~

y + e

y

(d;ta) (flt) (resi;uals) (2.1)

where the values of y are related to the regressors X by the

linear function y = Xb and the residuals e =y -y are what is
left over. A data summary b is considered good if y =y , that
is, the actual values y are satisfactorily reconstructed from the

~

fitted values which implies that e = 0 and thus may be ignored.




The residuals are, of course, minimal in the least squares sense,
but minimal does not necessarily mean small.

We will here consider the vector e to be small if its

~

elements ei are so close to zero that we can be indifferent to

. Y
1. changes in the signs1 of the e, and

2. rearrangements of the locations of the ei .

that is, we will consider the vector e to be small if we can

-~

rearrange its elements and change some or all of their signs to

form a vector e , say, then create a pseudo-data vector

<k

Vi ='X + e and still have the vector y = Yo We will judge

the closeness of Y to y by summarizing Vi in the same way

that y was summarized, that is, regress Y on X , and see

~

whether the summary Pk , say, of Vi is reasonably close to b .

-~

If a’lérge proportion of all possible bk‘ are close to P in the

sense discussed below, then we will consider the fit to be adequate.
There is a large numberlof ways in which the signs and, locations

of the e, can be altered; there are ZN different possible

i
arrangements of the signs and N! different ways to permute the
‘elements of e -, thus there are

-~

K = 2"N!

(not necessarily distinct) possible signed permutations of e .




Let us denote each possible signed permutation of e as e

where
“k=1,2,...,K . The order in which the signed permutations are
arranged is not important here, but for convenience we will denote

e, =e , the vector with elements in the original order and with no

sign changes.

I~ 15 convenient to write the: e as the product of a signed

permutation matrix P, and the vector e , i.e.

k =<

ex = Py (2.2)

where Pk is of order NxN , has one nonzero element in each row

and column, and that nonzero element is +1 or -1. The location
of the nonzero elements determine the permutation and the pal

determines sign changes. Since e; = e , P1 is an NxN identity

matrix.

In this notation, the pseudo-data vector

ems w0

Y =Y t Be ' (2.3)

=~

and the summary computed from Vi is

= - = -
b, = C’y, = b+ CPee . (2.4)

-~

The judgment of goodness of fit will be based on the differences

between the bk and b .

The notation for ordinary least squares is summarized in Table

ettt b e i)



To illustrate the signed permutation scheme, a numerical
demonstration is shown in Figures A and B. Figure A shows a simple
data set with N=5 and m=1 ; thﬁs; the regression line has

two coefficients, an intercept and a slope. The coefficients of the

~

best fit line, b~ = (2,3) , as well as the fit y , the residuals

~

e , the catchers C , and the variance of the residuals 02 , are

-~

shown. If these residuals are small, then we should be able to

resign and rearrange the elements of e and then construct data sets

~

, and the summaries of these data sets, ., b , should be reason-

Tk ~k

ably close to b . Figure B shows four such signed permutations.

~

The vector e, is the same as e except that the sign of the first

~

elemeni. is changed; theppseudo-data vecﬁor Yo = ¥ + P2e is also

shown, as are the regression coefficients b’2 (-9.2, 5.8) which

result from the regression of y, on X . Comparing b2 to b

~ -~

shows that changing the sign of just one element of e results in

~

a regression line in which the intercept has a different sign. eq

~

ccntains the same elements as e except that the first two elements

are exchanged; thefsign of the intercept in the resulting regression

. .// -
coefficients b3~ is different from b . In the two other examples,
P3 was chosen so as to identify the signed permutation with the




slope.

largest value of the intercept and P4 was chosen to maximizg the
These are but four values of e Figures C1 and C2 show
the distribution of all K = 3840 different possible values of the
élope and the intercept. The values of the intercept vary from -10
to +14 and about 38 percent diffé; in sign from the intercept
computed from the unmodified d;té; the values of the slope range
'from -.6 to +6.6 with but about two percent diffgfing in sigh from
-the original slope. The residuals are large enough.so that their
signed permutation often results in intercepts which do not even

have the same sign as the original, although the residuals are not

so large as to affect the sign of the lepés in a vast majority of

|
cases. o
, 1
1f we consider the coefficients of a fit adequate when the
|
residuals are small enough such that the signed permutations of

the residuals will seldom, if ever, result in regression coeffi-

cients with a different sign from the original, then the following
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one-tailed decision rule for a single coefficient seems appropriate:

Decision Rule 1: The single regression coefficient b

h|
will be considered adequate if 100(1 - @)% of the

coefficients b have the same sign as b , and

kj 3

inadequate otherwise, where & 13 a constant selected
by the fitter.
Values such as .05 and .0l seem appropriate for o . If we afe

concerned with large deviations bkj - bj in either direction, we

may use a two-tailed decision rule: : .
Decision Rule 2: The fit of a regression coefficient bj
will be considered adequate if 100(1 - @)% of the

coefficients b are no farther away in either direc-

kj
tion from b, than the point where the bkj have a

different sign from bj , and inadequate otherwise,

where 0o 1s a constant selected by the fitter.

More stringent fitting rules are possible; for example, we might
require that the residuals be so small that their signed permuta-

tion does not affect the first (second, etc.) significant digit

e 4

of a coefficient.

In addition to assessing the adequacy of fit for each individual
regression éoéfficient, we may wish to judge the adequacy of fit of
the vector P taken as a whole. We might ask: 1n what proportion

of the cases did the signed permutation scheme result in vectors

bk in which all of the elements had different signs from P ?

[_—
H
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For the numerical example, the joint distribution of the slopes and
intercepts is shown in Figure C3; the absence of any points in the
third quadrant indicates that in no case did any Ek differ from
b in all signs. However, a more interesting question might be:

what proportion of cases are as far away in any direction as the

origin, that 1is, the point beyond which all glements of Ek have
different signs. To answer‘this question, we need a definition of
distance. 1Inspection of Figure C3 shows that the values of the
slopes and intercepts are not independént; in fact they are corre-
lated at about -.90. The choice of a particular e affects the
elements of Pk in a éomplementary manner; if’seems natural, there-

fore, to measure»(squared) disgance in a Mahalanobis-like manner,

that is, the squared distance of any vector bk from b is

,dkz = (Pk - E)’ <c0v<9k>);l <Ek -b ) S »; *(2.5)

and, in the same metric, the squared distance of b from the point

beyond which all elements have different sign is
2 _ ! \-1, | 2.6
d P \cov<bk>) b (2.6)

The distribution of all possible values of dk2 is shown in Figure

C4.
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Using this definition, we may form the following decision rule:

Decision Rule 3: The fit of the regression coefficients E
will be considered adequate>if 100(1 - a)% of the
vectors Ek are no farther away from E than the point

where all elements of b have different signs'from

~k
those of E , and 1lnadequate otherwise, where 0 1s a
constant selected by the fitter.

It is unusual in statistical applications to be concerned abdut the

fit of all coefficients; in practice, the intercept is often |

arbitrary and not of interest. Decision Rule 3 can be modified so

that it refers to any subset of the regression coefficients.

Using these decision rules directly implies calculating all

K possible values of E and this is clearly impossible except in

very small samples; in fact, for a ﬁodestly sized sapple iﬁ which

N = 30 , the number of poséibie sets of regression coefficients

is K'; 2.8 x 1041 and thus cannot be calculated by siﬁple direct

measures. Conceivably, Monte Carlo teghniques could be used to

estimate the proportion of E iﬁ any particular range, but such

would entail a large investment in computer time-and programming.

We can, however, approximate the decision statisfics fof reasonébly

large samples.

Let us first examine the distribution of the bk . We can

calculate the mean and covariance of b since
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ave(Pk> =b | | 2.7)
] cpv(Pk) - fxrT : (2.8)

and the skewness and kurtosis of the jth element of bk are

Skew(bkj> (2.9)
B, B - B

” 2e"2¢ : R 2¢

' woa (i %)) e

kurt(bkj) = N + 5 1 1 - Ne 1 - Tl (2.10)

where B,  and BZc‘ are the measures of the kurtosis of e and

2e j
the. jth column of the catcher matrix respectively. (See Table 9
for summary of definitions.) Note that these calculalions are
exact, not estimates or approximations. ‘The skewness is exactly
that of a normal distribution (as are all odd moments) , and it is
easily seen that, given fixed values of the kurtosis of the
residuals and catcher vectors, that

1lim kurt(bkj> >3

N =+ o (2.11)

that is, as the sample size grows large, the kurtosis of each bkj

approaches the kurtosis of the normal distribution. Thus, the

distribution of the bkj ‘has, in the limit, the same character-

istics as the normal curve with mean bj and variance Gb. =

GZ(X'X)jj where (X'X)jj is the jth diagonal element of,J(X'X)_1
If we accept the normal distribution as close enough to

the distribution of bkj for our purposes, then we can use a

table of the normal curve to approximate the proportion of .bkj

<
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within any particular range. Let us assume that we wish to approxi-

mate the proportion of bkj that differ in sign from bj which

was computed in the orginal solution. Since we know the mean and

variance of the bkj exactly, we can form the standard normal
deviate
b
., = — 3

3 —
V 6% (x"x)33

which can be referred .to a table of the normal curve to find the

-~

approximate proportion §(2j> . If p(zj> is one-tajled, then it

is approximately the proportion of bkj with different sign than

bj . If ﬁ(zj> is two-tailed, rthen it is approximately the
proportion of bkj as far away from bj as the point beyond which

the bkj differ in sign from bj . The values of §(zj> R

therefore, can be used as approximations for the values needed for
Decision Rules 1 and 2.
We can also develop an approximation for the proportion of

bk as far away from b as the point where all the elements of

bk differ in sign from b . The mean and variance of the squared

distances of the bk from P are

2
d
ave( Kk )

1 -8 N -8
var(d 2) (-——ﬁ> (m + 1)2 + 2<T:%> (m + 1) (2.13)

m’+ 1 (2.12)

N-1

k

vy 2 BoeW@+ 2 5y
1941 \ N -1 N -1
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The proofs are in the appendix. Both the mean and variance are
exact, not estimates or approximations. The mean is exactly that

of the X2 distribution with m + 1 d.f. Given a fixed kurtosis

of the residuals, BZe , then
AN 9 ‘ '
lim var(dk ) (m+1) (2.14)
N &> o
since. ziqiiz + 0 as the sample size increases, thus the variance
of the dk2 approaches the variance of the X2v distribution-with

m+14d.f. If we accept the chi-sqﬁéred distribution as close
enough to the distribution of the dk2 éér‘our purposes, then the
squared distance d2 of the point where all elements of Ek have
different sign from P can be referred to a table of the chi-
squared distribdéion for an approximétion of the perceht of b

as far away as the origin or, alternatively, the statistic

- "1 i N
. d2 b (COV (bk>> b. y;x(X;X) "1x;y
= 2 7 m+1 T 2 (2.15)
ave dk " (m + 1)
may be computed and referred to an F table with m + 1 and
© d.f. Let us call this proportion p(F*) . p(F*) 1is thus an

approximation of the value for Decision Rule 3.

As mentioned above, in many statistical applications it will be
of interest to measure the goodness-of-fif of some sqbset of P
instead of the entire vector; for instance, a rese;r;her may be

interested in the goodness-of-fit of the slopes in a multiple regres-

sion but not in the fit of the intercept. Let us call the subset of

e




-~

~interest bs which is of length m (ms <m+ 1). Let us call

bks the equivalent subset of b, , the kth signed permutation
summary. The question of interest is: what proportion of the bks
-are as far away from bS as the point where all signs in b g are

different from bS ? The squared distance of the vectors bks

from b is
~S B

2 - -1
d . = (gks - Ps) (cov(gks)) (gks - gs) (2.16)
and the distance of the point where all bks elements change sign,

the origin, from bS is

2_ - _1
4’ =1 (cov(Pks)) b, (2.17)

Corollary 1 in the appendix shows that the mean and variance of

2
dks are

ave(d 2) =m (2.18)

]

1-8 N -8B .
2 2e .1
(ﬁ) mg + 2 (TT) Mg (2.19)

. 2( BpeW+ 1) 5y )
1944 N -1 N - 1

Thé mean is the same as the X2 distribution with m d.f. and

ks

2
var(dks )

+

the variance in its limit g»u

lim var(dksz) M 2ms _ (2.20)

N+
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approaches the variance of the chi-squared distribution, thus, if
we accept the chi-squared distribution for approximation purposes,
we may look up d2 in a chi-square table or, alternately,

compute

a? b <cov<d 2))‘1 b '
s ~S ks ~S (2.21)

~ which may be referred to the F table with m and >~ d.f. The
resultant value, p(F*) is approximately the proportion of Pks
as far or farther away from Ps as the origin.

If the researcher is interested in how close the values of the

fits §k are to the original data points y , we can show that

the
ave<2k> =3 (2.22)
~ ) "1 »
cov(zk> = OZX(X X) X (2.23)

Again the normal distribution, the proportion of Yiq in any
interval can be approximated.

Table 4 summarizes the approximation scheme for the numerical
example. It should be remembered that the sample size is very
small, five, and that the residuals e; are not close to normally
distributed; theAsummary here is to show numerical calculations,
not the adequacy of the approximations. This table first shows the

mean, variance, skewness, and kurtosis for the distribution of




, the intercept, and b ”, the slope, and the mean and

beo Kl

variance of the d 2 , the squared distances. The statistics for

k

the approximafidn of the proportion of bk with different signs

3

from the bj are

zg = 2/v 29.48 = .368
zy = 3/v2.68 = 1.833

which result in the (one-tailed) proportions E(zo) = .37 and
ﬁ(zl> = ,03 which are reasonably close to the actual proportions
p(bo) and p<b1> which were computed by counting. The value of

*

F*

F* = 25.9328/2 = 12.966
should be referred to an F table with two and *« d.f. from
which the value p(F*) 1is found to be close to zero. The actual
proportion is exactly zero. Thus, according to the decision rules,
we would consider the intercept inadequate and consider the slope
adequate or inadequate depending on whether we used Decision Rule
1 or 2. The equation as a whole would be considered to fit

adequately.3

25
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2.1 Comment
It is interesting to note the similarities and differences

between classical hypothesis testing and the signed permutation

approach to goodness of fit. Classical ﬁypothesi: testing usually

assumes that there is a model in some population of the form

-
y = XB + € , that the elements €y of € are {i.i.d. N<0,0p2>
wher® sz "is the variance of the Ei in the population, and that

the sample at hand was randomly selected from that population; in
return for these assumptions, probabilistic statements about the
unknown values of § can be made. The signed permutation approach
makes no assumptions about the world outside of the sample and
thereby forfeits the right to make statements outside of the sample
itself. Given these major differences, it is interesting to note
that these two approaches lead to very nearly the same calculations.
Under its assumptions, the usual hypothesis BS = 0 (where BS

~

includes all B, except the intercept) leads to the statistics

3

shown in Table 2 and the only differences between these and signed

"permutation statistics are
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and referring tj to a Student's t table and F to an F table
with N-m-1 d.f. in the denominator. Eop large N and moderate
m , the factor N/(N-m-1) is trivial as is the difference between
the t and normal curve fables and the difference in degrees of
freedom in the denominator for the F table. Thus, the two
. approaches lead to the same probability statistics.

This leads io the interesting fact that the probability of
finding a value as large (small) or larger (smaller) than the

sample value b if the value of B, = 0 in the population is the

3 3
same as the proportion of signed permutations bkj with different
signs than bj . Also, the probability of finding a vector §s
as far away as Es by chance if the equivalent subset of §s in
the population was zero is the same in the limit as the number of
Pks as far awéy f?om Ps as the point where 'all elements of Eks
have different signs from Ps

That the two approaches arrive at similar places should not
be surprising. The usual sampling assumptions that E(E) =0 and
E(EE') = szl are anaiogous to lemmas 5a and 5b which are
that K-lzkgk =0 and K-lzkaka'1 = %1 since the average
residual is zero in ordinary least squares. With the substitution
of the gxpectations into the theorems in the appendix, the same
theorems would almost suffice for hypothesis testing. The major

difference would be the E(sez) which would result in the need for

a correction for degrees of freedom and this correction would be




carried to the cov(g) and statistics derived from it.

From the computational point of view, the sfatistics from a
standard regression program are close enough to the statistics for
signed permutations that they can be used directly in interpreting
goodness of fit if the sample size is much larger than the number
;f variableg.

2.2 Randoﬁizétion Tests )

The Fisher (1926)-Pitman (1937) method of randomization has
great appeal because it is derived solely from the mechanics of
randomization without any assumptions about the parent population.
Basically, Fisher permutes residuals about a null model in which
all parameters are specified and, since the parameters are often
specified to be zero, the residuals may be the original data values
y - Since sampling is involved, there is a major difference in
approach between a randomization test and measuring goodness of fit
by signed permutations.

It is possible to view the signed permutation scheme as a
variation of a randomization test. First, the population from
which the sample was selected would have to be assumed to be
symmetric to justify assuming that -e, was as likely to occur as

*

e Secondly, the residuals about the null model would be

i
resigned and permuted instead of the residuals about the completely
fitted model as done when measuring goodness of fit. All of the

parameters would have to be specified since if any parameters were

23
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fit from the data the residuals would be overfitted.a With these
adaptations, a distribution of all possible results of an exper-
iment could be generated (for small N ) and the probability of
any particular result calculated. The moments of the distribution

of results are easily calculated using the lemmas in the appendix.

3. VWEIGHTED LEAST SQUARES
Weightedwleast squares 1s another common statistical tech-
nique which has been used for a number of different purposes. A
few uses are:
1. Equalizing variance. In samples where the variances of
residuals are known a priori to be different at different parts of
the regression surface, the variances can be equalized using

weights which are proportional to the inverse of the square root

of the variance. In this case, the sampling assumptions and infer-

ences are well known.

2. Differential precision. In some fittings, the researcher
may Be interested in fitting some segment of the regfession plane
more cafefully than other segments and does so by weighting the
residuals in that segment more heavily than the rest. This is
éimilar to the Situatioﬁ in survey resea:ch where various strata
are sampled with different probabilities to assure a fixed repre-
sentation of all strata, énd the inverse of the sampling probabil-

ity is used as a weight when combining strata.
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3. Robust/resistant regression. Robust/resistant regression {

uses the sample residuals to form weights and, by discounting
large residﬁals, reduces the effect of outliers on the fit (see ‘
Mosteller and Tukey 1977; Beaton and Tukey 1974). Robust/resistant ‘
regression may modify weights iteratively. ' ’

The implications from sampling theory are quite different in
the above cases, but the basic fitting procedure is the samé. We
will again use the definitions of data in Table 1. Note that the

weights W are considered fixed as well as the data X and Yy .

Where the weights came from is not important here; it is immaterial

whether W came from sampling considerations or from iteratively

'A.reweighting residuals. All that is required is that X“WX has an »

inverse.
|

The basic algebra of the fitting process is clear. If we

wish to fit a linear model of the form . .

X=Xb+e (3.1)

of b which minimizes e’We is

b= (XWX) Xy . (3.2)

Thus the value of the fit is

subject to the condition that e’We be a minimum, then the value




and the residuals are

e=y-y=y-Xb (3.4)

~ -~

. Weighted least squares, then may also be considered as partitioning

y into two parts

~

y = y + e (3.5)
(data) (fit) (residuals)

~

If the fit y and the summary E are to be accepted as adequate,
then we should assure ourselves that the residuals are not large
enough to affect seriously either. As with ordinary ieast squares,
we may develop a metric of goodness of fit by examining the effect
of signed permutations of the residuals.

However, there are at least two reasonable ways in which the
residuals may be resigned and permuted:

Case II: Weight the resigned and permuted residuals, and

Case IIT: Resign and permute the weighted residuals.
Both of these cases use the same data summary, b , which was

-~

computed so as to minimize the objective function e"We , but

differ in the way that the pseudo-data sets are constructed.
In Case 1I, the resigning and permuting is done without any
-~ reference to the weights. The weights are considered to be
associated with the rows X of X , thus, whatever residual
is attached to the ;i computed from x P will be weighted by




l

the’&eight associated with the 1ith observation. This approach
,seeﬁs reasonable when the weights are usedlfor differential preci- v ,
sion since whatever résiduals associated with a sensitive. area
will be so weighted.

In Caée I1I, the weights are associated with the residuals,
so that!the weighting is done before the resigning and permuting.
The weighted residuals are therefore added to value of 51b to
compute the pseudo-data sets. This approach seems more appropri-
ate when the’weights are chosen to operate on the residuals as
when chosen to equalize the variance of resid;als or in robust/
resistant regression.

3.1 Case II: Weighting the Resiglhé;i and Permuted Résiduals

The basic definitions for Case II a;e shown in Table 5.
Although these definitions are quite similar to the definitions
for ordinary least squares (Case I), there are some important
differences which should be notéd. The weights are included in
the catchers, i.e. C = WX(X'WX)—l . The mean of the residuals

is not in general equal to zero, although the weighted mean, that

is, the mean of We , is. The value uze does notxequal the

variance of the residuals but is simply the unweighted, uncentered

mean square of the residuals.
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The pseudo-vélues of the vector y are formed by

Vi =3+ Be (3.6)

that is, a signed permutation of the residuals is added to the fit

as in Case I, and the data are summarized by

B = C¥p =D H CTRe | (3.7)

The question is still whether or nof the elements of E often
differ in‘sign from the corresponding elements of E .

Figure D contains the resultsvof a numerical demonstration of
Case II. The weights were arbitrarily chosén. The weighted.
regression coefficients E and the other basic statistics of Case
II are shown in the'top of the figure. Note that the intercept
using these weights is negative whereas the unweighted intercept
is positive. Four signed éermutations are shown. P2 and P3
are the same signed permutations as used in Case.I, but only‘one
,.results in a difference in sign from the original éummary. P4

H

and P were chosen to display the largest intercept and slope

5

respectively.

Insert Figure D about here

Since the number of signed permutations is the same in weighted

regression, we cannot reasonably compute all b, and count the

33
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number.of bkj with different signs from the bj nor can we
compute the number of dk2 as far away as the point where all

elements have different signs, that is

a? = 13‘<cov(bk))'1 b (3.8)

~

However, we do know something about the distribution of these

statistics. We know

ave (by) = b (3.9)
cov(bk) = 112€wx(x‘wx)'1 x‘wzx(x‘WIX)'.1 X“W (3.10) ..
skew(bkj) =0 B - L (3.11)
'kurt(bkj) = BzeNzci + N3§ T (1 - E—ff) (1 - ;ej> (3.1?)
ave(4,) = m+1 (3.13)

1-8 N -8B
2 2 __2e
=<N_1)(m+l) +2< v )(m+1)(3-1“)

ave(5, ) = § (3.15)
~ \= - -1 ; - 2 - "'1 - )
cov(yk} My, XM XWXEWO T X (3.16)

The proof is shown in Theorem 2 in the appendix.

It is easily shown that

-~

f

.
v
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1im kurt(bkj>* 3 “ (3.17)

N &+ @

and thus .as the sample grows large, given fixed BZe and BZc s

: h|
the moments of the distribution of bk approach the moments of
the normal distribution.- Also, the variance of dk2
var (d 2\ 2(m + 1) '
k (3.18)

approaches the variance of the X2 distribution with 2(m + 1)
d.f. If we accept the normal and X2 distributions as close

enough for our purposes, then we can compute

2y = b0y 2 (3.19)

33

and

F* = d2/(m + 1) (3.205

]

“which can be referred to normal curve or F tables for approxi-
mate proportions to be used in the decision rules. The numerical

results for Case Tl are shown in Table 6.

3.2 Comment
Case II is analogous to the situation in sampling in which

one makes the usual assumptions of ordinary least squares but

¥
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weights the data anyway. That is, one assumes that y = XB + e
where B8 1is the population parameters, and that E(e) = 0 and
E(ee”) = opzl where Opz is the variance of e in the popula-

tion. Under these assumptions,

E(u2e> = opz (3.21)

~

The value b 1is ab unbiassed estimator
E(b) = é (3.22)
and the sample to sample variance of b 1is
N 2 - _1 - 2 - _1 -
cov(b) = op WX(XWX) ~ X"WX(X"WX) ~ X'W (3.23)

Thus the difference between the signed permutation approach and
weighted regression using these assumptions results in using
degrees of freedom as a divisor instead of the sample size N

It is wo;th noting that Case II results in more complex and
unusual calculations than Case I and, as we shall see, Case III.
To compute the cov(Ek> in one pass over the data requires some
unweighted summations, summations usiig the weights, and summations
using the squares of the weights. We know of no computer programs

that come close to these calculations. Weighting for differential

precision will, therefore, come at considerable cost.

3.3 Case III: 'Resigning and Permuting the Weighted Residuals

To examine the effect of the residuals in Case III, it is

36




convenient to transform the data in such a way that the data can be
handled as if they were unweighted. This can be done by defining

a diagonal matrix V in which the diagonal elements are the square
roots of the equivalent elements in° W , thus, v evyv=uw
Using an asterisk to identify transformed data, we can form

y* = Vy and X* = VX . The catchers are C = X*(X*'X*)“1 =

VX(X'WX)_1 and the regression'coefficients are
b=C'y*=b (3.24)

which is to say that the regression coefficients are not changed

by the transformation. However, the fit
G = X¥b = vy (3.25)
and the residuals

ek = ykx - 2* = Ve (3.26)

are. Note that the residuals ei* do not sum to zero and that

Moo = ex“e* = e“We which is the objective function which was

minimized. The notation for Case II1 is summarized in both

weighted and unweighted form in Table 7.

Insert Table 7 about here
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Using the weighted data, the pseudo-values of y can be

defined as

y*:;y*-{-P

Kk ke* - (3.27)

and the regression coefficients computed using these values are

e¥ (3.28)

h = - X = -
by = CY b+ CPe

‘Uk

¢

Figure E contains a numerical demonstration of this signed permu-
tation scheme. The weights are the same as in Case II; thus the
regression coefficients are the same. The values of y* , X* ,
and C are shown. The first two signed permutation matrices,

P2 and P3 , are the same as used in the previous cases and the
last two, P4 and P5 , were selected to result in the maximum
intercept and slope respectively under this signed permutation

scheme. The demonstration shows that the distribution of bk is

quite different in Case III than Case II.

As in the previous cases, we cannot compute all K values

of by

the proportions needed for using the decision rules. However, we

except in very small samples and thus we cannot calculate

again know the moments of the distribution exactly if we compute
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ave(bk) = b : (3.29)
7”“v’ e‘we, .- -1

cov(bk) = S (X"WK) | (3.30)

= (3.31)
skew(bkj) 2 B B

2e"2c 8 2c.

- ] 3N P2e j 3.3
kurt(bkj) N Ml e (1 - = > (1 - 5 ) (3.32)
ave(dkz) =m+ 1 (3.33)

1-8 N -8

var dkz) = N ie(m + 1)2 + 2 <_NT%£> (m + 1) (3'!34)

vro 2f[B2e®*D
1911 N - 1 N -1

ave(?k) =y (3.35)
cov(?k) . elwe )(()(’wx)_1 X’ (3.36)

N

Proof is shown in Theorem 3. Since the kurt(bkj) and the

- E var(dk2> approach the same limits as before, we can compute

2y = bj/;[qiag(cov(bk)) (3.37)

and
F* = dz/(m + 1) (3.38)

which can be referred to normal curve or F tahles for the
approximate proportions to be used in the decision rules.

The numerical values for this signed permutation scheme are

summarized in Table 8.
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Insert Table 8 about here

3.4 Comment

Case III is analogous to the sampling situation in which one
assumes that y = XB + € and tﬁat the E(e) = 0 and that
E(eg”) = Opzw_l where W_l ”i; the inverse of the fixed matrix

W . Under these assumptions,
E(u =g 2 (3.39)
2e p -

The proofs that E(b) = B and that the var(b) = opz(x‘wx)'l are

in Draper and Smith (1966).

It is worth noting that the computations necessary to use
Case 111 are ﬁimple. The necessary summaries are yWy yWx ,
and X'WXl from which decision statistics can be compﬁted. In Case

III, as in Case II, the decision statistics are not affected by

multiplying W by any positive constant.

Insert Table 9 about here




4. CONCLUSION

The signed permutations of residuals leads to an ipterpreta-
tion of‘least squares calculations without sampling assumptions but
at the cost of the inability to generalize formally to a population
Since in many applications the assumption of a random sample from
a known distribution may be unwarranted or an attempt at an actual
r?ndom sample may be thwarted by practical concerns, the interpre-
tation of regression statistics as measures of fit in the obtained
data may be the best that a researcher can do. Such an interpre-
tation is not trivial, however, since ;ubstantial confidence in a
model may come from fitting. the model to many data sets under many
conditions and finding that the resultant coefficients are reason-
ably similar.- ‘ |

Signed permutations may be most useful‘zh";bﬁust/resistant

regression where the iterative reweighting clearly violates the
assumption of known, fixed weights and thus the sampling theory of

weighted regression. At least the "probability statistics' gener-
-ated froﬁ iterative reweighting have an interpretation as measures
of goodness-of-fit. These goodness-of-fit measures may, therefore,

be ﬁséd as a criterion for the effectiveness of weighting systems

or for comparing different systems now in use.

4i
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Footnotes

1 The author is indebted to Paul Holland for suggesting the sign

Y

changes.

2 The algorithm for'finding the maximum values is due to Lustig

(1979). To find the maximum bkj , the column cj and the residuals

are each rearranged into descending order of absolute magnitude and
the signs of the residuals are changed to be the same as the corre-

sponding elements of ¢

~3

3 The analogous test in sampling theory is seldom used, that is,

we seldom test the hypothesic that all paraweters including the

intercept are simultaneously equal to zero. The test of the subset

containing only bl would result in an F* = zl2 .

4 The sum of squared residuals is e’e = g‘(I - x(x’X)'lx‘e

where ¢ 1s the population residuals. Tukey has suggested weighting

~

the e, by the corresponding inverse square root of the diagonal of

i
(1 - x(x’x)'lx’) . This idea ‘has not been followed up at this time.
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1. Notation for Data

Statistic Definition
N number of observations
m ndﬁber of regressors \
i,i* = 1,2,...,N indices of observations

j,3j* = 0,1,2,...,m indices of regressors

y = {yi} Nth order vector of response values to

- be fitted

X = {xij} _ NX (m+ 1) matrix of valueé of regressors.
All elements x,, =1 . The rank of X 1is

io

m+ 1

W= {wii,}  NxN positive definite diagonal matrix of
weights

NOTE: All data elements are fixed, known finite, real numbers.
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2. Ordinary Least Squares Definitions

Statistic . Description
y = tiyilN mean value of the y,
2 -2

s, = X(yi-y) / (N-1) variance of the y,
° ' -1 ' . <
b = {bj} = (X'X) X'y m+l ordér.vector of

- regression coefficients
Y= {Yi) = Xb Nth order vector of

’ g fitted values

e= (e} =y~ Xb Nth order vector of

: residuals
s, = ve'e/ (N-m-1} standard error of estimate

s =02
g2 = L)

squared multiple correlation

¥ z(y1-§?2/m

E(y,-y,) 2/ (N-m-1)

test statistic for 81-826..-8m-0

p(F) probability associated with F

cov(g) - {cov(bjj.» - sz(x'x)'l m+l by m+l matrix of variances
- e and covariances of b

SE(b,) = Ycov(b,,) standard error of Q

h R 13 h|

t, = b, /SE b ) test statistic for 8,=0

3 j/ ( j e , c for 8,

p(tj) : probability associated with tj

(usually two tailed)

44
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3. Case I: Ordinary Least Squares Definitions for Signed Permutation
Statistic Description
C= {cij} = X(X'X)_l Nx(m+l) matrix of calculus
or generalized inverse of X'
c, = {c,,} The jth column of C
~J 1]

Q= {qii.} = C(c'c)'lc' = x(x'x)'lx'

b= by} =C'y
y = {yi} = XE
e={e,}=y- y
- _ -.1 =
e N Ziei 0
Moo =90 = N Xiei
Ve = g} =y +Pe
Y = = '
by = byt = €3k
Ve = Upql = ¥y
ave(h.) = b' = K15 b
b)) =70 Kok
~ _ -1 ~ - -~ -.', .
cov(?k) = K zk(Ek - E)(Ek E)

a2 = ®, - B (cov® N by - B)

~

NxN idempotent matrix

(m+1)th order vector of
regression coefficients

th

N order vector of fitted values

Nth order vector of residuals

Mean of residuals

Mean square or variance of
residuals

Constructed values of y for the

kth signed permutation

Regression coefficients for the

k™D signed permutation

Fitted values for the kth
signed permutation

Average value of Gk

Covariance of bk

Squared distance of Gk from b

4

fd

9)
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4. Case I: Ordinary Least Squares
Summary of K = 3840 Regression Equations

Regression Coefficient Squared Distance

Statistic Intercept Slope Statistic Distance

' 2
bro b1 9
ave(b, ;) 2.0000 3.0000 ave(di) 2.0000
var(by,) 29,4800 2.6800 var(di) 1.8058
skew(bkj) 0 0 . — -
kurt (b, ;) 2.1500 2.1828 a2 25.9328
2y .368 1.833 i 12.966
§(zj) .35 .03 P (F*) 0
p(zj)" .3792 .0229 p(F*) 0

NOTE: zj = bj///var(bkj) R ﬁ(zj) from normal table, and p(zj)

is compiled by dividing the number of b with different

kj

signs by K = 3840

d? is distance of b from origin, i.e. o2b'(C'C)™ b , F* is

‘dZ/(m +1) , P(F*) is from F table with m + 1 and = d.f.

p(F*) is cdmputed by dividing the number of ‘di > d2 by K
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5. Case II: Weighting the Signed and Permuted Residuals Definitions

Description

Statistic
C = {c..} = WRGXWX)L
ij

¢y = {egy) ’

- ] -1 ]
Q= {q,.,}=cC(C'C) C
? = {bj} =C y
y = {y;} =%

e = N-lz.e,
11
2 -1 2
o =N Zi(ei - e)
2 - -
Moo =g + e2 = N 1Ziei
Ve = gt =Yt Re
- o
b = oy} = Oy

~

Ve = Dy} = Xy

ave(g ) =b' = K-l g
k) T2 5Py

cov(g ) = xflz (g - B)(g - b))’
°k K2k T2k T2

a2 = (o - B)(cov(d ) (b, - B)

Nxéﬁfl) matrix of calculus
or generalized inverse of X'

The jth column of ¢
NxN idempotent matrix

(m+1)th order vector of
regression coefficients

Nth order vector of fitted values

Nth order vectbr of residuals

Mean residual

Variance of residuals

Mean squafe residual

Constructed values of y for the

th .
k™ signed permutation

Regression coefficients for the

kth signed permﬁtation

Fitted values for the kth

signed permutation

Average value of bk

Covariance of bk

Squared distance of bk from b
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6. Case II: Weighting the Resigned and Permuted Residuals
Summary of K = 3840 Regression Equations

Regression Coefficient ’ Squared Distance
Statisti¢ Intercept Slope Statistic Distance
b by 2
ave(bkj) -3.3750 4.1250 ave(di) 2.0000
"“(bgj) 57.4901 5.2080 var(d2) 1.6500
skew(bkj) — R - -
kurF(bkj) 2.0165 2.0067 . d2 10.8958
Zj 445 1.808 F* ‘ 5.44ST
'Y:(zj) .33 .03 P (FY) zo0
p(zj) .3547 .0229 p(F*) 0

NOTE: 2, = bj/ /var(bkj) s §(zj) from normal table, and p(zj)

is compiled by dividing the number of bkj with different

signs by Kk = 3840 .

2 ] |A —1
d” 1is distance of b from origin, 1i.e. uzeb (c'e) v ,
F* is d2/(m +1) , p(F*) is from F table with m+ 1

and = d.f. , p(F*) is computed by dividing the number of
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7. Case III: Permuting the Weighted Residuals Definitions

Statistic . Description
V= {vii} NxN matrix such that vVew
y* = {y§} = Vy l Weighted values of y
X% = {x;j} = VX Weighted values of X
-1 ’
C = {cij} = VX(X'WX) ) Nx(m+l) matrix of calculus or
- generalized inverse of X'
Q= {q}= cc'o) e NxN idempotent matrix
b = {bj} = C'Vy = C'y* (m+1)th of¥der vector of regression
- - ~ coefficients
y = {§i} = Xb NP order vector of fitted values
y* = {y*} = X% = Vy Weighted values of y
| - - . th
e = {ei} =y-Yy N order vector of residuals
e = {ef} = y* - y* = Ve Weighted values of residuals
E*'N-l}:ie: Mean of weighted residuals
S -1 2
* Uoes = N “e'We = N Zi(e;) Mean square of weighted residuals
vy, = {y,,} =9+ vl ve Fitted values for the Kth
k ki - k<

signed permutation

43
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7. (Continued)

Statistic Description
Zi - {yki} = X* + P s* Weighted values of Yk
Pk = {Bkj} = C'VZk = C'Zk Rigression coefficients for the
k  signed permutation
Yk = {yki} = ka Fitted values for the kth
) - signed permutation
Zﬁ = !ﬁi = vZk Weighted values of Vi
ave(g ) =b' = K_lf g Average value of b
_k > kok verag a o] k
- -1 “ _ - _
COV(Ek) = K Ek(?k - E)(Ek - ?)' Covariance of by
d2 = N_l(g - E)(cov(g ))_1(6 - ;) Squared distance of b, from b
kK Tk ok o ok k. q Kk

o0




%
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8. Case III: Resigning and Permuting the Weighted Residuals

Summary of K = 3840 Regression Equations

Regression Coefficient Squared Distance

Statistic Intercept Slope Statistic Distance
vbko bkl . di
ave(by) 233750 4.1250 ave(al) 2.0000
var(bkj) 30.7258 3.1219 ) var(di) 1.7422
skew(bkj) 0 0 - -
kurt (bkj) 2.1728 2.1722 a? 36.2613
z, -609 2.33 Fx 18.13
E(zj) .27 .01 P(F*) =0
p(zj) .2862 0 p(F%) 0

NOTE: zj = bj/ /var(bkj) . ﬁ(zj) ffﬁm normal table, and p(zj)

is compiled by dividing the number of b with different

kj

signs by K = 3840

d2 is distance of b from origin, i.e. uZeb'(C'C)_lb ,
F* isg d2/(m +1) , p(F*). is from F table with m + 1

and « d.f. , p(F*) is computed by dividing the number of

d- > d2 by K

2
k

o1
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9, Summary of Signed Permutations and Moment Notation
.Statistic Description
Signed Permutations
K= ZNN! Number of possible signed permutations

k=1,2,...,K

P = {pyyy!
-.1 p
=271

pz 1%

2 3
Blz u3z /uZz

2

BZz

= u4z/u22

Index of signed permutations

NXN signed permutation matrix.. Each row
and column has exactly one nonzero element
which may be either +1 or -1.

Moment Notation

The pth (uncorrected) moment of variable
zj G =1,2,...,2)

The (uncorrected) skewness of z

The (uncorrected) kurtosis of z
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A. case I: Ordinary Least Squares
Numerical Example

Data
X
02 v e

y X, X1 y € C

12 |1 1 [26.8] 5 7 .8 -.2
o]l 1 2 * 8 -8 50 -.1
10]1 3 b 11 -1 .2 0
12 | 1 4 2 14 -2 -.1 .1
21 |1 5 3 17 4 -4 .2

Note: The line ;w is the best fit weighted regression line and will

be discussed in Section 3 .
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B. Case I:
Signed Permutations

Ordinary Least Squares

Values of e and Y

12 %3 Y3 S Y4
-2 -8 -3 8 13
0 17 15 7 15
10 -1 10 2 13
12 -2 12 -1 13
21 4 21_ =4 13
Signed Permutation Matrices
P3 P4
0 0 01 0 00 0-1 0 0 O 0
0 O 1 0 0 0 O 1 0 0 0 O 0
0 O 0 01 0O 0 0 0-1 O 0
1 0 0 0 01 o 0 01 0O 0
01 0 0 0 01 0 0 0 0-1 1
Regression Coefficients
b3 b4

The minimum b

s Ys
-8 -3
4 4
1 12
2 16
7 24
Py

[eNeNeNoN
OOI'-‘OO
Ok= OO0
OO OO

ki can be computed from the maximum by

min bkj = bj - (max bkj - bj) for example, the

minimum intercept = 2 - (14 - 2) = =10 .

94
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UNWEIGHTED LEAST SQUARES

OISTRIBUTIONS OVER ALL SIGNED PERMUYATRUNS

CASE 1:

oistributution of b] K

il

Distribution of DOK_

c4.

Distribution of tli"|l

------------------------------------
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D. Case II: Weighting the Permuted Residuals
Regression Analysis
W v C = WR(X'WRO L
i1 Hoe Y N
1 [33.33] .75 11.25 4276 -.125
4 ) 4.875 -4.,875 .9605 -.250
9 b 9.00 1.00 L4737 0
4 ~3.375 13.125 -1.125 1-.5395 .250
1) [ 4_125] 17.25 3.75 -.3224 .125
Signed Permutations’
&, ¥, ) Ys A Y4 S5 Is
~11.257 [-10.50 ~4.887 [-4.13 1.13 1.88 -3.75] [-3.00
-4.88 0.00 11.25 16.13 11.25 16.13 -11.25) |-6.38
1.00 10.00 1.00 10.00 3.75 12.75 1.00| [10.00
-1.13 12.00 -1.13 12.00 -4.88 8.25 " 4.88] [18.00
3.75 } 21.00 3.75, 21.00 |-1.00 16.25 1.1 8.38
P . P
1 0 0 0 O 01000 00 0-1 0 0 0 0 0-1
o010 00 1 00 00O 1 0 0 0 01 -1 0 0 0 O
0 01 00 0 01 0O 0 0 00 1 0 01 0O
0 00 10 0 00 10 01 00 O 0-1 0 0 O
LO 0 0 01 0 00 01 0 0-1 0 O o o 0o-1 ol
22 b3 By ®s
f13'00J [5.22 [12.65] [43.30]
6.94 2.11 -0.17 8.77

y and X shown in Figure A.

26 -

NOTE: The data are
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E. Case III: Permuting the Weighted Residuals
Regression Analysis
Mo y* e* ¢ = vR(X'Wx)t
2e* > ~
[9.95] .750 11.250 4276 =.125
N 9.750 -9.750 L4803 -.125
b 27.000 3.000 .1579 0
-3.375 26.250 -2.250 -.2697 .125
4,125 17.25 3.750 -.3224 .125

* *
€ Y3
~11.25 -10.50
-9.75 0.00
3.00 30.00
-2.25 24.00
3.75 21.00
P;
=1 0 0 0 O
01 0 00
00100
0 0.0 1 O
000 01
5,
13.00]
6.94

Values of-‘ek apd Vi
* *x * %
3 3 A Y4
-9.75 -9.00, 9.75 0.50
11.25 21.00 11.25 21.00
3.00 30.00 2.25 29.25
-2.25 24.00 -3.00 23.25
3.75 21.00 -3.750  113.50
P
Ps 4
01 0 0 O 0-1 0 0 O
1 0 00 O 1 00 00
0 01 0O 0 0 0-10
0 0 01 O 0 0-: 0 O
0 00 01 0 0 0 O-
b
b; ~4

Signed Permutations

~2.27 8-57]
4.13] 6.56

* *
et b
-9.75 0.00
2.25 29.25
3.75 30.00
3.00 20.25
P
5
-1 0 0 0 O
01 0 0 O
0O 0 0-1 O
0O 0 0 01
0 01 O

b
f14.49‘
7.59J

NOTE: The data y and X are shown in Figure A and the weights are showm

in Figure D.

57
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APPENDIX

Lemmas
For the following lemmas, a is an arbitrary column vector with
- - 2 =2 2
elements ai’(i 1,2,...,N), a Xai/N, o, Xi(ai a)“/N, Moo Xai/N
2, -2 4
o +a’, and H4a Xiai/N.
For all Nth order signed permutation matrices Pk’ k=1,2,...,K

where K = ZNN!, there is a signed permutation vector ak = Pka with

elements aki'

The subscript i' = 1,2,...,N but does not = 1.




2 2
Lemma 1: h;faff
Proof:

I I 22

54—

2 .
= N(NHZa - u4a)

141134840

2 2
al(Ziai

2.2
(Zia¥) -z

2
- al) + a

NN

2 2
N-1°N
2 _ 2
1




Lemma 2: Given any set of elements a

,a
kil kiz

seeesdy
» m

which are raised to integer powers PysPyseesP respectively, and at

least .one Pj(j =1,2,...,m) is odd, then

P, P, P
-1 1 "2 m
K zkaki apg cecdy = 0
1 2 m

Proof: If any power is odd, then the summation over all k signed permu-

P
tations will contain each combination of other aki
h|

times with positive and negative signs.

60

an equal number of

(1, # i, #ooof 1m)




Lemma 3: Let ay be an element in a , then

K—l

) a2 =
ki H2a

i ° u4a

-1 2 2 -1 2
K. zkakjaki' (N -1 (Nu2a - u4a)

of a exactly

a. I a2 contains the square of each element ay

k ki

ZN(N - 1)! times, thus

2
N : L,a
(lp 2 2ot 2 M

, =y
kki 'ZNN! i1 N 2a

zk?;i contains the 4th power of each element cf a exactly
N g
2 (N - 1)! times, thus as 3a.
2
ik
pair of elements in a exactly ZN(N - 2)! times, thus

iaii' contains the product of squares of each distinct

N
-1 2 2 2 (N=-2)¢ 22
K zkakiaki' 2NN' [Zizi,aiai,]
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Using Lemma 1 on the term in brackets,

1

2
"N (N - D NGy, = 1y,)]

- - nTawg, -




-58- e

Lemma 4: Given a column vector c with elements 4 1=1,2,...,N)
.- 2, 4
with (uncorrec;ed) moments Mo &ci/N, Moo Eici/N, and Mie Eici/N,

and p an odd positive integer, then

' P _
a. K Zk(f )t =

-1 ' 2
b. K Zk(s ?k) NuZau2c

‘ - 4
, 4a 4c 3N 2 2
c. K Z ks ? ) N + N -1 (NuZa‘— u4a)(NuZC'— u4c)<

Proof:
P
a. Each term of (clakl €39 + ... cy kN) will havevat least
one odd power, thus each term vanishes by Lemma 2.
2 2 22 22
b. Using Lemma 3a, K Z (c1 kl Crdy o + ... + CNPLN + odd powers)
_ 2 2., 2.,
ciMpa * 2“2 + CNH2a. Waabae -
c. K7z (ca ) has terms c4a4 3c,c a2 a? and odd powers.
’ ko2 13k1°7%1%40 %Kkd? ki

Using Lemmas 3b and 3c on the terms in brackets,

-1
K Zk(sgk)4 = c (K~ Z a ]+ ¢ [K Z + ...

k 'kl 2]

+ 3c c [K Z + odd powers

K2 kl k2] + ...

2 2
1'%1%4°

4, 3 2
Va1 TN ST Mgy 7ML T,

+ 3N

2 2
Nu4au4c 1 (NuZa - u4a)(Nu2c - u4c)

63




Lemma 5.

a.

For the vectors a

k’

-1
K zkfk K ZkPka = 0

= | ' = ' = 2 a 2
K Z akfk K ZkPkaa Pk "ZaI (ca + a1

where I is an Nth order identity matrix.

Proof:

Each element of a is contained in the sum an equal number

of times with positive and negative signs.

' "1 2 _
3,8, are K "Tyap, = ¥y,
2

The diagonal elements of K Z a

=2

and the off diagonals are odd powered. Also, uéa =0, + a
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Lemma 6: Given an N x N matrix Q of rank r < N then

o ey -l

and if Q is idempotent (i{.e. QQ = Q) then

-1

« ' - E
b) K ZkPkQPk N 1

where I i3 an Nth order idéntity matrix.

Proof: Since each off-diagonal element of Q, qii;. say, is matched «with

=G40 in all off-diagonal summations, then K-lszkQPL is at least ciagonal.

1

Each diagonal element of K~ ZkPkQPi consists of the sum of the diagecnal

element of Q exactly ZN(N—I)! times, thus K-l

1

-1 \
! = N £
ZkPkQPk N TTr(Q)I. If

- -1
- - ''=
Q0 = Q, then Tr(Q) = r and K zkpkqpk N “rI.

6o
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Theorem 1 (Case I: Ordinary Least Squares)

Given the definitions in Tables 1, 3, and 9, then

13N = Y

a. ave(gk) =
b. cov(b) = U, C'C= o> (X'¥) "
) -k 2e

c. skew(bkj) =0

B, B, . B
~ 2e " 2c 8 2c
- k| 3N _ 2e _ i
d. kurt(bkj) N tyo1 @ )1 - )
2
e. ave(d,;) =m+ 1
Kk
1 - N - 8,
£. var(di)=( N = %e )(m+1) +2(——e)(m+1)_
y BreM*+ 2 4y |
1911 N - 1 N -1
g. ave(ik) = i

h. cov(§k) = UzeXC'CX' = GZX(X'X)-lx'

Note that all moments are central since e=0and I,C

for all j except j = O, the intercept.

Proof: Note that gk -

HE -
n

e and yk y = XC'p, e ,

k~ k~

a. Using Lémma 5a on the term in brackets,

~ - _1A _ -1 ~ .
ave(Pk) Kb =K zk(g +C Pkg)

=b+ C'[KIL.Pel=b
b kP8 = b

i71]

=0
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b. Using Lemma 5b and the fact that b =

1o

cov(; = K_lzk(gk-ﬁ)(g - §)'

K

= -1 ' e '
K Zk(C Pkg)(Cbrkg)

] yr-l tpt - v )
Cc'[K szkSS Pk]C = C (uzeI)C

]
u2ec C

since “ze = 02 and C'C = (X'X)-l, then

cov(h) = o (X'D)

¢. Noting that ¢, is the jth column of C and using Lemma 4a,

3

) -l /% A~ 32, .1 ) ~
skew(bkj) = Bl = (K zk(bkj - b)) /(¥ Zk(bkj - bj

3 3

3

I T 3.2, -1, 4o 12
= [K Zk(Qijg) 17/ (K (Zkng e)’)

~ .,
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d. Using Lemmas 4b and 4c, S

4, ~l. S 2,2
NICE AR W

kurt(ﬁkj) = g j

-1 ~ ~
= K72, (b, - b

A 3

= [x‘lz (c'P e)4]/[K"12 (c'P e)z]2

k-3 k. k-] k.
N 2 2
Mgl TR T Mg ~ Mg My — Mgy
2
(Nu2cu2c)
B, B B
2e 2c B 2c
2e

- lrgr a-sa-

e. Using Lemma 6D,

2 T T PP
ave(d) = K 7%, (b, - b)'(cov(b)) “(b, - b)

= =1 ' ' ' -1 '
K Zk(C Pkg) (uzec c) (C Pkg)
= u’lc'(x'lz P'C(C'C)-IC'P )
2eS K k k'S

-1, o-1e
Hpee' [K "I, PLQP, e

e'e

N

.-l , m+1 s+l
Mpee' ( =y De

U 2e

68




2 _ =1 o,

f. Since dk M)l Pkngf,
2 -1 4 2..2

var(dk) = K dek - (ave(dk))

el -1, 2 2
K7L (uyee'P QP e)” = (m + 1)

-2,-1 2
= ek T a8 * 90080

2 .2 2
+ qNNekN) - (m + 1) .

After squaring the term in the first parentheses and

rearrangement,

2

2 4 I e .e
11" %k kiTki'

2 -2 -1 :
var(dk) = u2eK (Ziqiizkeki + zzizi.q

+ 212

2 2
i'qiiqii'zkekieki' + odd powers)

-+ 1% .

By Lemma 3b,

u
4, Ye 2 _ 2
Loyl =5 L9557 Bppliqyy -

u2e

2. 2

-2, -1
Hoe“1944

[K




2

By Lemma 3c and the fact that I.% = (m+1) - ziqii’

2
141941

-2
2e

2 2

202 - 2 -1

-1
2
K ZiZ 2

K%k 1%k1 ")

- 2

2

uge(N - 1) (Nuze - u4e)zizi'qii'

2 2

"N -1 (N-Bze)((m +1) - Lq/)

2

By Lemma 3c and the fact that I, = (m + 1)2 - ziqii R

1419449 g

-2 -1 2 2

2 2 2
u2eK ZiZ

_ - -1
AT S WL W YOO FPLPEFLL L LY

e~ M4e)T1240944940940

1 2 2
By Lemma 2 all odd powers vanish, thus
2 2 2 2
var(dk) = Bzeziqii + ﬁ-:—I-(N - Bze)(m +1 - Ziqii)
1 ' 2 2 2
+ ¥ o1 (N - BZe)((m +1)" - ziqii) - (m+ 1)




Rearrange in terms in powers of m + 1,

‘ l1-8 2(N - B, )
\ 2 2e 2 2e
var(dk) N < 1 (m +1)" + N -1 (m + 1).
'y 2(Bze(N+2)_ wn_,
1941 N - 1 N - 1 .
g. Using Lemma 5a,
“ave(y, ) = Kz ; = ks (A + XC'P, e)
-yk kZk kY k~" .
A , _1
=Z+XC [K ZkPe]
=¥ .
Using Lemma 5b,

~

y)

=~

"~ -1 ~ ~ ~
cov(y ) = K 7Z (y, - 9y - '

-1 ' ' '
K Zk(xc Pkg) (xc Pkg)

?

= xc'{K"1

. 1pt [
ZkP ee Pk]CX

= ' '
M, XC'CX

71




and thus
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cov()“vn) = o2x(x'x)"Ix’

72
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Corollary 1:

Given a subset bs‘of b, the corresponding subset b S of bk’ and

A

' ~ N A 2>— ~ A , A _1/\ _
the subset cov(P S) of cov(Pk), dks = (Psk - Es) (Cov(Pks)) (Esk ES),
then the

ave(d2 ) = K-IZ (g - g )'(cov(g ))-l(g - g ) = m

) ~ ks k'~ks ~s” -7 “<ks ~ks ~s s

and

1 -8 N-8
2 _ ks 2 2e
var(dy ) = (-7 Im+ 2(5—F Im,
B, (N + 2) ,
+ 7 q2 ( 2e _ 3N )
1i'sii N-1 N-1

where m is the number of elements in bS and the 9 44 2TE defined

below.

Proof:
Let X be partitioned into (XS,XE) where XS in the N x mS matrix

consisting of the columns of X corresponding to bs and Xg is a N x mo

(mg =m+ 1 - ms) matrix containing the remaining columns. Also, let

X =X - x—(xlx-)"lxle
S S S 8 S S




" Note:

3
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and

~

yg =y - X (X TRy

These values may be substituted for X and y in Table 4 without affecting

the values of ; and e. Thus, C becomes

rrumoa S

=~ X'y 3!
Ce = X (X!X )

and

With these substitutions in Table 4, Theorem le and 1f follow. The

matrix Q becomes

AT

L R
= ' ' = ' ]
Qs ps(cscs) Cs Xs(xsxs) Xs

SR CCREvr

=

‘gsii"(i’;' =1,2,...,N). The value of m + 1

N

. ) g Sra
becomes m_ since m_ is the rank of QS

where QS has eleﬁénts:

In most statistical analyses the variancé of the intercept bo

~

is not of interest; thus XS and yg are X and y centered about their

respective means and the ave di =m .




Theorem 2: (Case II: Permuting the Weighted Rgsiduals)
Given the definitions in Tables 1, 5, and 9, then
a. ave(?k) = E

b. cov(bk) = uzeC'C = (qi + Ez)wx(x'wx)‘lx'wzx(x'wx)'lx'w

c. skew(gkj) =0 {
8, B B B
. 2e 2¢ B. 2¢ |
d. kurt(bkj) = — 5 14 N ENI Qa - Ze Y - ___l ) "
|
e. ave(di) =m+ 1 .}
|

1 - N-8
£ var(di) = ¢ %e Y+ D2+ 2(—F 22 ) m + 1) {
B, (N + 2) R ‘

2 2e 3N

+1q (g1 "w-1)

g. ave(§k) =y
5 L Nah'd 2 _2 ] _1 1 2 ] -1
h. cov(yk) = U, XC'CX' = (oe + e )X(X'WX) TX'WX(X'WX) X

Note that the moments are not in general central except for

Upcj (p >0, j > 0)'




Proof: With the substitution of definitions from Table 5 for Table 4,

the proof follows the same steps as Theorem 1 except that

2 =2
u2e ce + e

WX (X 'WE) "X WK (X ) ~Lx
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Theorem 3: (Case III: Permuting the Weighted Residuals)

Given the*definitions in Table 1, 7, and 9, then

) ‘ a. ave(gk) = Q
- 'We
t -] ' -
b. cov(?k) uZEC C - (= ) (X! WX)
c. skew(gkj) =0
B, B ' B
“ 2e 2¢ B. 2¢
- | 3N Ze _ j
d. kurt(bkj) N tyog - (1 )
e. ave(dz) =m+ 1
i k
1 - N-8
f. var(di) = ( = Ble )(m+1) +2(—ie)(m+l)
B, (N + 2)
2 2e 3N
Loy (—f-1 "wW-o1)
g. ave(?k) = g
, : ' e we
- h. cov(§k) = U, XC'CX' = (= YX(X'WX) ™ 1go

Note that the moments are not, in general, central.
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e
e

A
T

Proof: With the substitution‘offdefinitions from Tahle 6 for Table 4

and substitution of y¥, X*, y*, e*, e*, u. ., y*, and y* for their
d ~ Y - 2e*’ k ~k

unstarred equivalents, then the proof follows the same steps as Theorem 1

M w , except that

e'we

Hoex = N

~

and

c'C = (x'wx)'1 .
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