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ABSTRACT

Least squares fitting is perhaps the most commonly used tool

of statisticians. Under sampling assumptions, statistical infer-

ence makes possible the estimation of population parameters and

their confidence intervals and also the testing of hypotheses. In

this paper the properties of least squares fitting is examined

without sampling assumptions. It is shown that some of the output

(e.g. standard errors, t , F , and p statistics) from stand-

ard regression programs can be interpreted as (approximate)

measures of goodness-of-fit of a model to the observed data. The

interpretation is also applicable in weighted least squares situa-

tions such as robust regression.
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1. INTRODUCTION

Apparently, fitting simple functions to observed data is a

very basic human function. Art students are taught that an

observer will see familiar shapes such as lines, 3quares, or

circles even when only a few points or segments are actually

present. Science students are taught that finding rlimple functions

that represent complex events is one of the fundamental procedures

of science. Given the breadth of application, it is no wonder that

fitting functional forms to data has such an important position in

statistical theory.

Statistical theory enhances fitting procedures in many ways.

Given assumptions about a population and sampling procedures, we

may infer that the fit from a random sample is an unbiassed

estimator of a population parameter, and we can estimate the sample-

to-sample variance of the parameter estimate. Under correct condi-

tions, we may develop a confidence interval for a parameter or test

an hypothesis that the parameter is some known value. Clearly,

statistical theory adds substantially to the interpretation of

fitting--at the cost of collecting (or assuming) a random sample

and making assumptions about the population distribution of

residuals. Statistical theory also dictates, to some degree, what

functions of the data (e.g. standard error of a mean) that we

interpret.
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However, the estimation of population parameters is but one of

the important functions of statistics. R. A. Fisher (1930) wrote

on the first page of Statistical Methods of Research Workers,

"Statistics may be regarded as (i) the study of populations, (ii)

as the study of variations, (iii) as the study of the methods of

the reduction of data." He also wrote of (page 5) "the practical

need to reduce the bulk of any given body of data," and later

(page 6) "We want to be able to express all the relevant information

contained in the mass by means of comparatively few numerical

values." Although random sampling may be important in estimating

population parameters, there is no reason to forego data reduction

in nonrandom samples as long as one is careful not to make the

inferences that only random sampling allows.

The purpose of this paper is to discuss the fitting process as

a method of data redtiction. No assumptions about the sampling

process nor population distribution will be made. Clearly, when-

ever the usual statistical assumptions are plausible, standard

procedures of statistical inference should be usq4, but the concern

here is with data for which the assumptions are quite inappropriate.

The general strategy is to consider fitting (linear) models as

partitioning data into a fit and residuals. The fit can be parsi-

moniously represented by a summary of the data. A fit is considered

adequate if the residuals are small enough so that manipulating

their signs and locations does not affect the summary more than a
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pre-specified amount. The effect of the residuals on the summary

is shown to be (approximately) characterized by the output of

standard regression programs. Decision rules for accepting a fit

will be proposed, and these rules will be shown to be equivalent

in large samples to standard hypothesis tests.

That some of the stati.stics from a regression analysis can be

interpreted as descriptive statistics is known (e.g. regression

coefficients, squared multiple correlation), but this paper also

shows possible interpretations of the covariance of regression

coefficients, t , F ; and "probability" statistics. Not much

work seems to have been done in this area, but a paper by Freedman

and Lane (1978) does approach the problem of nonstochastic signifi-

cance testing and, although they differ in purpose and approach,

come to similar conclusions where their work overlaps with what is

covered here, and the bootstrap of Efron (1979) is in a similar

spirit.

The next section in this paper will cover in detail the

general process of linear fitting models by least squares and

discuss briefly its relationship to standard hypothesis testing

and to Fisher's randomization test.. The following section will

discuss fitting in Weighted least squares and compare fitting to

standard methods. Most proofs are relegated to the appendix.
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2. CASE I: ORDINARY LEAST SQUARES

Let us assume that we have a set of data and wish to fit a

linear model using the least squares criterion. The data require-

ments and the notation used in this paper are shown in Table 1.

All data elements are known, fixed, finite, real numbers. The

matrix W 'is a.diagonal matrix of weights which will be discussed

later and can be assumed equal t6 an identity matrix here. Least

squares fitting is a matter of algebra and, as long as X'X has an

inverse, an unique equation can be fitted. The computation of the

least Squ4res coefficients can be performed, using a standard
,

regression program.

Insert Table 1 about here

The output of most regression programs consists not only of

the regression coefficients but also of a number of other statistics

associated with regression analysis. Table 2 contains a fairly

extensive list of regression statistics which tight be included in

Computer output and a formula for each. That computer programs

differ in internal algorithm or precision does rot c:oncern us ligle;

we will assume that enough precision is kept so that roundineerror

can be ignored. The derivation and interpretation of these:Siatis-

tics using sampling theory are too well known to repeat here (see,

for example, Graybill 1961, Draper and Smith 1966, Daniel and Wood

1971, Searle 1971, etc.)

lv
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Insert Table 2 about here

The interpretation of some of these statistics without sam-

pling theory is also well known. Fish'ar (1930) showed that a

regression coefficient may be considered as a weighted average of

the response variable y where the weights are a function of a

regressor variable. Tukey's catchers. (Beaton and Tukey 1974) may

be thought of as sets of weights to be applied to the response

variable in order to form partial regression coefficients. Thus,

any regression coefficient may be conceived of as a weighted average

of the response variable. The standard error of estimate is a

measure of how well the linear model fits the data, although divi-

sion by the number of degrees of freedom comes from sampling

considerations whereas division by the sample size would seem more

appropriate for descriptive purposes. The squared multiple correla-

tion may be interpreted as a relative measure of goodness of fit.

However, some common regression outputs, the cov(b) t ,

p(t ) F , and p(F) , are not usually interpreted as descrip-
'

tive statistics but from consideration of the inferred behavior of

different random samples. We will show below that these statistics

also permit interpretation as measures of goodness of fit without

recourse to sampling theory.

The premise of this paper is that data reduction is a suffi-
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cient reason for data analysis. We wish to reduce a mass of data

into a few numbers which characterize or summarize an interesting

relationship between the response vector y and the regressor

matrix X . We often do this by fitting a linear (in the param-

eters) model by least squares. Since the regression coefficients

are weighted averages of the response values, they may be considered

as summary statistics. A summary will in most cases lose some of

the information in the original data in the sense that the response

variable cannot be exactly reconstructed.from X and the summary,

b . To judge the adequacy of the summary, we will develop measures
-

of how well the uriginal data can be reconstructed from the summary

and how sensitive the summary is to the information lost in the data

reduction.

Fitting equations to data may be considered as a way of parti-

tioning a set of observations ,. y into two parts, a fit, y , and

residuals, . e ; that is,

-

(data) (fit) (residuals)
(2.1)

where the values of y are related to the regressors X by the

linear function y = Xb and the residuals e = y - y are what is
- /.

left over. A data summary b is considered good if y ; y , that
- -

is, the actual values y are satisfactorily reconstructed from the

fitted values which implies that e 0 and thus may be ignored.
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The residuals are, of course, minimal in the least squares sense,

but mininial does not necessarily mean small.

We will here consider the vector e to be small if its
-

elements e
i

are so close to zero that we can be indifferent to

1. changesinthesignslofthee.,and

2. rearrangements of the locations of the e
i

that is, we will consider the vector e to be small if we can

rearrange its elements and change some or all of their signs to

form a vector ek , say, then create a pseudo-data vector

yk = y + ek and still have the vector y ; yk . We will judge

the closeness of yk to y by summarizing yk in the same way

that y was summarized, that is, regress yk on X , and see
-

whether the summary bk , say, of yk is reasonably close to b .

-

If a large proportion of all possible b
k

are close to b in the
- -

sense discussed below, then we will consider the fit to be adequate.

There is a large number of ways in which the signs and, locations

of the e
i

can be altered; there are 2 different possible

arrangements of the signs and N! different ways to permutethe

elements of e- ; thus there are

K = 2
N
N:

(not necessarily distinct) possible signed permutations of e
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Let us denote each possible signed permutation of e as e where
-k

k = 1,2,...,K . The order in which the signed permutations are

arranged is not important here, but for convenience we will denote

e = e , the vector with elements in the original order and with no
-1 -

sign changes.

is convenient to write the e
k

as the product of a signed
-

permutation matrix P
k

and the vector e , i.e.

e = P e
-k k-

(2.2)

where P
k

is of order NxN , has one nonzero element in each row

and column, and that nonzero element is +1 or -1. The location

of the nonzero elements determine the permutation and the

determines sign changes. Since e
1 '

= e P
1

is an NxN identity
- -

matrix.

In this notation, the pseudo-data vector

and the summary computed from yk is

(2.3)

bk = C'yk = b + C'Pke (2.4)

The judgment of goodness of fit will be based on the differences

between the b and b .

-k -

The notation for ordinary least squares is summarized in Table

3.
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Insert Table 3 about here

To illustrate the signed permutation scheme, a numerical

demonstration is shown in Figures A and B. Figure A shows a simple

data set with N = 5 .and m = 1 ; thus, the regression line has

two coefficients, an intercept and a slope. The coefficients of the
.

best fit line, b- = (2,3) , as well as the fit y , the residuals

, the catchers C , and the variance of the residuals a
2

, are

shown. If these residuals are small, then we should be able to

resign and rearrange the elements of e and then construct data sets

yk , and the summaries of these data setw, b , should be reason-
-k

ably close to b . Figure B shows four such signed permutations.
-

The vector e
2

is the same as e except that the sign of the first
-

element is changed; the pseudo-data vector y2 = y + P2e is also

shown, as are the regression coefficients 1):2 = (-9.2, 5.8) which

result from the regression of y2 on X . Comparing b2 to b

shows that changing the sign of just one element of e results in
-

a regression line in which the intercept has a different sign. e3

ccntains the same elements as e except that the first two elements
-

are exchanged; the sign of the intercept in the resulting regression

coefficientsb is different from b . In the two other examples,
-3

P
3

was chosen so as to identify the signed permutation with the
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largest value of the intercept and P4 was chosen to maximize the

slope.
2

Insert Figures A and B about here

These are but four values of ek ; Figures Cl and C2 show

the distribution of all K = 3840 different possible values of the

slope and the intercept. The values of the intercept vary from -10

to +14 and about 38 percent differ in sign from the intercept

computed from the unmodified data; the values of the slope range

from -.6 to +6.6 with but about two percent differing in sign from

the original slope. The residuals are large enough so that their

signed permutation often results in intercepts which do not even

have the same sign as the original, although the residuals are not

so large as to affect the sign of the slopes in a vast majority of

cases.

Insert Figures Cl and C2 about here

If we consider the coefficients of a fit adequate when the

residuals are small enough such that the signed permutations of

the residuals will seldom, if ever, result in regression coeffi-

cients with a different sign from the original, then the following

16



one-tailed decision rule for a single coefficient seems appropriate:

Decision Rule 1: The single regression coefficient bi

will be considered adequate if 100(1 - a)% of the

coefficients b
kj

have the same sign as b
j

, and

inadequate otherwise, where a is a constant selected

by the fitter.

Values such as .05 and .01 seem appropriate for a . If we are

concernedwithlargedeviationsbxj-b.in either direction, we

may use a two-tailed decision rule:

Decision Rule 2: The fit of a regression coefficient b.

will be considered adequate if 100(1 - a)% of the

coefficients b
kj

are no farther away in either direc-

tion frimn b. than the point where the bkj have a

differentsignfromb.,and inadequate otherwise,

where a is a constant selected by the fitter.

More stringent fitting rules are possible; for example, we might

require that the residuals be so small that their signed permuta-

tion does not affect the first (second, etc.) significant digit

of a coefficient.

In add,ition to assessing the adequacy of fit for each individual

regression coefficient, we may wish to judge the adequacy of fit of

the vector b taken as a whole. We might ask: in what proportion
-

of the cases did the signed permutation scheme result in vectors

b in which all of the elements had different signs from b ?

-k

17
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For the numerical example, the joint distribution of the slopes and

intercepts is shown in Figure C3; the absence of any points in the

third quadrant indicates that in no ase did any bk differ from

b in all signs. However, a more interesting question might be:

what proportion of cases are as far away in any direction as the

origin, that is, the point beyond which all elements of LI( have

different signs. To answer this question, we need a definition of

distance. Inspection of Figure C3 shows that the values of the

slopes and intercepts are not independent; in fact they are corre-

lated at about -.90. The choice of a particular ek affects the

elements of b
k

in a complementary manner; it seems natural, there-
-

fore, to measure (squared) distance in a Mahalanobis-like manner,

that is, the squared distance of any vector bk from b is

= (bk - (cov(4))-1 (12k - 12) . (2.5)

and, in the same metric, the squared distance of b from the point

beyond which all elements have different sign is

2
d = b(' cov(b

k
))-1 h

-
(2.6)

The distribution of all possible values of d
k

2
is shown in Figure

C4.

Insert Figures C3 and C4 about here

Is
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Using this definition, we may form the following decision rule:

Decision Rule 3: The fit of the regression coefficients b

will be considered adequate if 100(1 - a)% of the

vectors b are no farther away from b than the point
-k -

where all elements of b have different signs from
-k

those of b , and inadequate otherwise, where a is a
-

constant selected by the fitter.

It is unusual in statistical applications to be concerned about the

fit of all coefficients; in practice, the intercept is often

arbitrary and not of interest. Decision Rule 3 can be modified so

that it refers to any subset of the regression coefficients.

Using these decision rules dlrectly implies calculating all

K possible values of bk and this is clearly impossible except in

very small samples; in fact, for a modestly sized sample in which

N = 30 , the number of possible sets of regression coefficients

is K 1 2.8 x 10
41

and thus cannot be calculated by simple direct

measures. Conceivably, Monte Carlo techniques could be used to

estimate the proportion of bk in any particular range, but such

would entail a large investment in computer time and programming.

We can, however, approximate the decision statisics for reasonably

large samples.

Let us first examine the distribution of the b . We can
-k

calculate the mean and covariance of b since
-k
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ave(lak) .

cov(bk) = a
2
(x )0

-1

and the skewness and kurtosis of the jth element of bk are

(2.7)

(2.8)

skew( ) = 0bkj (2.9)

8 8
2e 2c4 82e /

kurt(bkj) = N - 1

)(1 32cj )

3N (1 -
(2.10)

where 8
2e

and 8
2c

are the measures of the kurtosis of e and

the jth column of the catcher matrix respectively. (See Table 9

for summary of definitions.) Note that these calculations are

exact, not estimates or approximations. The skewness is exactly

that of a normal distribution (as are all odd moments), and it is

easily seen that, given fixed values of the kurtosis of the

residuals and catcher vectors, that

lim kurt(b )
kj

N
(2.11)

that is, as the sample size grows large, the kurtosis of each bkj

approaches the kurtosis of the normal distribution. Thus, the

distribution of the b
kj

has, in the limit, the same character-

istics as the normal curve with mean b. and variance
b.

2
=

020CX)ii where (CX)ii is the jth diagonal element of (X'X)
-1

If we accept the normal distribution as close enough to

the distribution of b
kj

for our purposes, then we can use a

table of the normal curve to approximate the proportion of .bkj
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within any particular range. Let us assume that we wish to approxi-

mate the proportion of bkj that differ in sign from bj which

was computed in the orginal solution. Since we know the mean and

variance of the bkj exactly, we can form the standard normal

deviate

0-2(X-x)ii

which can be referred to a table of the normal curve to find the

approximate proportion ii(z.j) . If i(z.j) is one-tailed, then it

is approximately the proportion of bkj with different sign than

bj . If ii(zj) is two-tailed, then it is approximately the

proportion of bkj as far away from b% Ps the point beyond which

thedifferinsignfromb..l'he values of
Ji

therefore, can be used as approximations for the values needed for

Decision Rules 1 and 2.

We can also develop an approximation for the proportion of

b as far away from b as the point where all the elements of
-k -

b differ in sign from b . The mean and variance of the squared
-k -

distances of the b
k

from b are

ave(dk
2
) = + 1

\

(2,12)

var(d
k
2

) -
(1 132e)

N - 1
(m + 1)2 + 2(

N - 1

2e)
(m + 1) (2.13)

+ E n
2(2e(N -I- 2) 3N

N - 1

)

N - 1
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The proofs are in the appendix. Both the mean and variance are

exact, not estimates or approximations. The mean is exactly that

of the x
2

distribution with m + 1 d.f. Given a fixed kurtosis

of the residuals, .0

2e
, then

lim var(d
k
2
) 2(m + 1)

N oz.

(2.14)

since E q 0 as the sample size increases, thus the variance

of the d
k
2

approaches the variance of the x
2

distribution-with

m + 1 d.f. If we accept the chi-squared distribution as close

enough to the distribution of the d
k
2

for our purposes, then the

squared distance d
2

of the point where all elements of bk have

different sign from b can be referred to a table of the chi-

squared distribution for an approximation of the percent of bk

as far away as the origin or, alternatively, the statistic

d
2 b.lcov(bk))-1

-1y'x(X'X)x'y
F* =

ave d
k
2

a
2
(m + 1)

m + 1

maY be computed and referred to an F table with m + 1 and

(2.15)

co d.f. Let us call this proportion ii(F*) . i(F*) is thus an

approximation of the value for Decision Rule 3.

As mentioned above, in many statistical applications it will be

of interest to measure the goodness-of-fit of some subset of b

instead of the entire vector; for instance, a researcher may be

interested in the goodness-of-fit of the slopes in a multiple regres-

sion but not in the fit of the intercept. Let us call the subset of
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interest b which is of length m (m < m + 1) Let us call
-s s s

12ks
the equivalent subset of bk , the kth signed permutation

summary. The question of interest is: what proportion of the b
-ks

are as far away from b as the point where all signs in b
ks

are
-s -

different from b ? The squared distance of the vectors b
-s -ks

from b is
-s

2

ncs
bs)- (cov(bks

))

-1

(?-ks .1?s)
(2.16)

and the distance of the point where all bks elements change sign,

the origin, from b is
-s

ds
2

= -(cov(bks))
-1

bs

Corollary 1 in the appendix shows that the mean and variance of

d
ks

2
are

ave(dk2) = m
s

a
2e 2e

var(dks1 =
N - 1 ) ms 2 N - 1 )ms

+ E q
2( f32e(N 1) 3N )

N - 1 N - 1

(2.17)

(2.18)

(2.19)

The mean is the same as the x
2

distribution with m
s

d.f. and

the variance in its limit

1 im var(d k2s
) -0- 2m

s
N -0- m

(2.20)
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approaches the variance of the chi-squared distribution, thus, if

we accept the chi-squared distribution for approximation purposes,

we may look up d
2

in a chi-square table or, alternately,

compute

F*=
d
s

2

12s
(c0v(d

ks
2))-1

?s
ms

ave (dks2

(2.21)

which may be referred to the F table with ms and co d.f. The

resultant value, p(F*) is approximately the proportion of bks

as far or farther away from b as the origin.
-s

If the researcher is interested in how close the values of the

fits 9k are to the original data points y , we can show that

the

ave(2k) = 9

cov(9k) = a2X(X X)-1 X'

Again the normal distribution, the proportion of yki in any

(2.22)

(2.23)

interval can be approximated.

Table 4 summarizes the approximation scheme for the numerical

example. It should be remembered that the sample size is very

small, five, and that the residuals e
i

are not close to normally

distributed; the summary here is to show numerical calculations,

not the adequacy of the approximations. This table first shows the

mean, variance, skewness, and kurtosis for the dJ3tribution of

2 Li
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b
k0 '

the intercept, and b
kl '

the slope, and the mean and

variance of the d
k

2

'

the squared distances. The statistics for

the approximation of the proportion of b
kj

with different signs

from the b. are

z = 2/$179748 = .368
0

z
1
= 3/1/2.68 = 1.833

which result in the (one-tailed) proportions ii(z
0
) = .37 and

ii(z
1
) = .03 which are reasonably close to the actual proportions

p(b
0
) and p(b

1
) which were computed by counting. The value of

F*

F* = 25.9328/2 = 12.966

should be referred to an F table with two and d.f. from

which the value p(F*) is found to be close to zero. The actual

proportion is exactly zero. Thus, according to the decision rules,

we would consider the intercept inadequate and consider the slope

adequate or inadequate depending on whether we used Decision Rule

1 or 2. The equation as a whole would be considered to fit

adequately.
3

Insert Table 4 about here
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2.1 Comment

It is interesting to note the similarities and differences

between classical hypothesis testing and the signed permutation

approach to goodness of fit. Classical hypothesi testing usually

assumes that there is a model in some population of the form

y = , that the elements Ei of E are i.i.d. N(0,ap

wheA a 2
'is the variance of the Ei in the population, and that

the sample at hand was randomly selected from that population; in

2)

return for these assumptions, probabilistic statements about the

unknown values of $ can be made. The signed permutation approach
-

makes no assumptions about the world outside of the sample and

thereby forfeits the right to make statements outside of the sample

itself. Given these major differences, it is interesting to note

that these two approaches lead to very nearly the same calculations.

Under its assumptions, the usual hypothesis 13s = 0 (where 13

s

includes all $ except the intercept) leads to the statistics

shown in Table 2 and the only differences between these and signed

permutation statistics are

a2 =
N - m - 1 se2

j = - m - 1 t
j

F* =
N - m 1

A ) N-m- 1
cov(bk-

cov(b)

(2.24)

(2.25)

(2.26)

(2.27)
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and referring t to a Student's t table and F to an F table

with N-m-1 d.f. in the denominator. For large N and moderate

m , the factor N/(N-m-1) is trivial as is the difference between

the t and normal curve tables and the difference in degrees of

freedom in the denominator for the F table. Thus, the two

approaches lead to the same probability statistics.

This leads to the interesting fact that the probability of

finding a value as large (small) or larger (smaller) than the

sample value b if the value of (3 = 0 in the population is the

same as the proportion of signed permutations bkj with different

signs than b . Also, the probability of finding a vector (3

-s

as far away as bs by chance if the equivalent subset of Fis in

the population was zero is the same in the limit as the number of

as far away from b as the point where all elements of b
-ks -s -ks

have different signs from bs

That the two approaches arrive at similar places should not

be surprising. The usual sampling assumptions that E(E) = 0 and
"0

E(EC.) = a
2
1 are analogous to lemmas 5a and 5b which are

that K
-1
Ekak = 0 and K

-1
Ekaka'l = a

2
I since the average

residual is zero in ordinary least squares. With the substitution

of the expectations into the theorems in the appendix, the same

theorems would almost suffice for hypothesis testing. The major

difference would be the E(s
e

2
) which would result in the need for

a correction for degrees of freedom and this correction would be
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carried to the cov(b) and statistics derived from it.
-

From the computational point of view, the statistics from a

standard regression program are close enough to the statistics for

signed permutations that they can be used directly in interpreting

goodness of fit if the sample size is much larger than the number

of variables.

2.2 Randomization Tests

The Fisher (1926)-pitman (1937) method of randomization has

great appeal because it is derived solely from the mechanics of

randomization without any assumptions about the parent population.

Basically, Fisher permutes residuals about a null model in which

all parameters are specified and, since the parameters are often

specified to be zero, the residuals may be the original data values

y .
Since sampling is involved, there is a major difference in

1

approach between a randomization test and measuring goodness of fit

by signed permutations.

It is possible to view the signed permutation scheme as a

variation of a randomization test. First, the population from

which the sample was selected would have to be assumed to be

symmetric to justify assuming that -ei was as likely to occur as

ei .
Secondly, the residuals about the null model would be

resigned and permuted instead of the residuals about the completely

fitted model as done when measuring goodness of fit. All of the

parameters would have to be specified since if any parameters were
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fit from the data the residuals would be overfitted.
4

With these

adaptations, a distribution of all possible results of an exper-

iment could be generated (for small N ) and the probability of

any particular result calculated. The moments of the distribution

of results are easily calculated using the lemmas in the appendix.

3. WEIGHTED LEAST SQUARES

Weighted,least squares is another common statistical tech-

nique which has been used for a number of different purposes. A

few uses are:

1. Equalizing variance. In samples where the variances of

residuals are known a priori to be different at different parts of

the regression surface, the variances can be equalized using

weights which are proportional to the inverse of the square root

of the variance. In this case, the sampling assumptions and infer-

ences are well known.

2. Different.Lal precision. In some fittings, the researcher

may be interested in fitting some segment of the regression plane

more carefully than other segments and does so by weighting the

residuals in that segment more heavily than the rest. This is

similar to the situation in survey reseach where various strata

are sampled with different probabilities to assure a fixed repre-

sentation of all strata, and the inverse of the sampling probabil-

ity is used as a weight when combining strata.

29
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3. Robust/resistant regression. Robust/resistant regression

uses the sample residuals to form weights and, by discounting

large residuals, reduces the effect of outliers on the fit (see

Mosteller and Tukey 1977; Beaton and Tukey 1974). Robust/resistant

regression may modify weights iteratively.

The implications from sampling theory are quite different in

the above cases, but the basic fitting procedure is the same. We

will again use the definitions of data in Table 1. Note that the

weights W are considered fixed as well as the data X and y .

Where the weights came from ie not important here; it is immaterial

whether W came from sampling considerations or from iteratively

,reweighting residuals. All that is required is that X"WX has an

inverse.

The basic algebra of the fitting process is clear. If we

wish to fit a linear model of the form

y = Xb + e (3.1)

subject to the condition that e"We be a minimum, then the value

of b which minimizes e"We is

b = (X"WX)-1X"Wy .

Thus the value of the fit is

y=Xb

(3.2)

(3.3)
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A.

e =y-y=y- Xb (3.4)

Weighted least squares, then may also be considered as partitioning

y into two parts

A.

y + e

(data) (fit) (residuals)

(3.5)

If the fit y and the summary b are to be accepted as adequate,
-

then we should assure ourselves that the residuals are not large

enough to affect seriously either. As with prdinary least squares,

we may develop a metric of goodness of fit by examining the effect

of signed permutations of the residuals.

However, there are at least two reasonable ways in which the

residuals may be resigned and permuted:

Case II: Weight the resigned and permuted residuals, and

Case III: Resign and permute the weighted residuals.

Both of these cases use the same data summary, b , which was
-

computed so as to minimize the objective function e"We , but
- -

differ in the way that the pseudo-data sets are constructed.

In Case II, the resigning and permuting is done without any

reference to the weights. The weights are considered to be

asspciated with the rows x of X , thus, whatever residual

A.

is attached to the yi computed from xib will be weighted by
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the weight associated with the ith observation. This approach

seems reasonable %Men the weights are used for differential preci-

sion since whatever residuals associated with a sensitiva area

will be so weighted.

In Case III, the weights are associated with the residuals,

so that the weighting is done before the resigning and permuting.

The weighted residuals are therefore added to value of xib to

compute the pseudo-data sets. This approach seems more appropri-

ate when the weights are chosen to operate on the residuals as

when chosen to equalize the variance of residuals or in robust/

resistant regression.

3.1 Case II: Weighting the Resigned, and Permuted Residuals

The basic definitions for Case II are shown in Table 5.

Although these definitions are quite similar to the definitions

for ordinary least squares (Case I), there are some important

differences which should be noted. The weights are included in

the catchers, i.e. C = WX(XNX)-1 . The mean of the residuals

is not in general equal to zero, although the weighted mean, that

is, the mean of We , is. The value
2e

does not equal the
P

variance of the residuals but is simply the unweighted, uncentered

mean square of the residuals.

Insert Table 5 about here
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The pseudo-values of the vector y are formed by

Yk 9 P e (3.6)

that is, a signed permutation of the residuals is added to the fit

as in Case.I, and the data are summarized by

b = C'y
k

= b + C'P
k
e-k -- (3.7)

The question is still whether or not the elements of b
k

often
-

differ in sign from the corresponding elements of b .

Figure D contains the results of a numerical demonstration of

Case II. The weights were arbitrarily chosen. The weighted

regression coefficients b and the other basic statistics of Case
-

II are shown in the top of the figure. Note that the intercept

using these weights is negative whereas the unweighted intercept

is positive. Four signed permutations are shown. P2 and P
3

are the same signed permutations as used in Case.I, but only one

results in a difference in sign from the original summary. P4

and P
5

were chosen to display the largest intercept and slope

respectively.

Insert Figure D about here

Since the number of signed permutations is the same in weighted

regression, we cannot reasonably compute all bk and count the
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number of b
kj

with different signs from the b
j

nor can we

compute the number of d
k
2 as far away as the point where all

elements have different signs, that is

d2 = blcov(120)-1 b (3.8)

However, we do know something about the distribution of these

statistics. We know

^
ave(bk) = 12

cov(bk) = p2eWX(X'WX)-
1 x,1423cormo-1 .

skew(bkj) = 0

132e2c
i 3N

8
8

2e
kurt(b,

xj
) =

N
+

2e
j

N - 1 N N
(3.12)

(3.13)ave(d
k
2 ) = m + 1

(N f32e)
= ( 1 I32e)

(m 1)

2

2
+ 1) (3.14)var(dk2) N - 1

+ q
ii

2 C2e(N + 2) 3N )

N - 1 N - 1

ave(yk) = y

cov(yk = p2e X(X WX) X W
2
X(X WX) X'

The proof is shown in Theorem 2 in the appendix.

It is easily shown that

(3.15)

(3.16)
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lim kurt(b
k
)4 3

j
N m

(3.17)

and thus,as the sample grows large, given fixed 8
2e

and 8
2c '

the moments of the distribution oi b
k

approach the moments of

the normal distribution. Also, the variance of d
k
2

var(d
k
2
) 4. 2(m + 1) (3.18)

approaches the variance of the x
2

distribution with 2(m + 1)

d.f. If we accept the normal and x
2 distributions as close

enough for our purposes, then we can compute

and

z = b./a
j j b2

F* = d /(m + 1)

(3.19)

(3.20)

.which can be referred to normal curve or F tables for approxi-

mate proportions to be used in the decision rules. The numerical

resuLts for Case 11 are shown in Table 6.

Insert Table 6 about here

3.2 Comment

Case II is analogous to the situation in sampling in which

one makes the usual assumptions of ordinary least squares but

3
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weights the data anyway. That is, one assumes that y = X + e1

where 8 is the population parameters, and that E(e) = 0 and

2
E(ee') = a

2
I where a is the variance of e in the popula-

tion. Under these assumptions,

E(112e) ap
2

A

The value b is ab unbiassed estimator

E(b) =

and the sample to sample variance of b is

cov(t) = a 2Wx0CWX)-1 X142X(X100-1 X'W

(3.21)

(3.22)

(3.23)

Thus the difference between the signed permutation approach and

weighted regression using these assumptions results in using

degrees of freedom as a divisor instead of the sample size N .

It is worth noting that Case II results in more complex and

unusual calculations than Case I and, as we shall see, Case III.

To compute the cov(bk) in one pass over the data requires some

unweighted summations, summations usiog the weights, and summations

using the squares of the weights. We know of no computer programs

that come close to these calculations. Weighting for differential

precision will, therefore, come at considerable.cost.

3.3 Case III: 'Resigning and Permuting the Weighted Residuals

To examine the effect of the residuals in Case III, it is
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convenient to transform the data in such a way that the data can be

handled as if they were unweighted. This can be done by defining

a diagonal matrix V in which the diagonal elements are the square

roots of the equivalent elements in* W , thus, V2 = V'V = W

Using an asterisk to identify transformed data, W. can form

y* = Vy and X* = VX . The catchers are C = X*(X*'X*)-1 =

VX(X"WX)
-1

and the regression coefficients are

b = Cy* = b (3.24)

which is to say that the regression coefficients are not changed

by the transformation. However, the fit

and the residuals

;7* = X*b = 167
ON/

(3.25)

e* = y* - = Ve (3.26)

are. Note that the residuals e
i
* do not sum to zero and that

p
2e

= e*"e* = e'We which is the objective function which was
-

minimized. The notation for Case III is summarized in both

weighted and unweighted form in Table 7.

Insert Table 7 about here

37
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Using the weighted dafa, the pseudo-values of y can be

defined as

A

yk* Pke*
(3.27)

and the regression coefficients computed using these values are

= C'yk* = b + C'Eke* (3.28)

Figure E contains a numerical demonstration of this signed permu-

tation scheme. The weights are the same as in Case II; thus the

regression coefficients are the same. The values of y* , X*

and C are shown. The first two signed permutation matrices,

P
2

and P
3

, are the same as used in the previous cases and the

last two, P4 and P5 , were selected to result in the maximum

intercept and slope respectively under this signed permutation

scheme. The demonstration shows that the distribution of b
k

is
-

quite different in Case III than Case II.

Insert Figure E about here

As in the previous cases, we cannot compute all K values

of b
k

except in very small samples and thus we cannot calculate
-

the proportions needed for using the decision rules. However, we

again know the moments of the distribution exactly if we compute
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AeNWeAl
k)

skew(bkj) = 0

e'.2.hc
J 3N

...
e'2e

e'2cj

kurt(bkj) = _
N N - 1 N N

ave(dk2) = m + 1

1 -

N -

8.2e

var (d
k
2)

=
N -

e(m
+ 1)2 + 2 (m + 1)

+ q
ii

2 °2e(N 2) 3N

N 1 N - 1

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)ave(k) =

- X(X100-1 X' (3.36)
cov (gk)

Proof is shown in Theorem 3. Since the kurt(b
kj

) and the

var(d
k

2
) approach the same limits as before, we can compute

and

zj = bj4diag(cov(bk))

F* = d
2
/(m + 1)

(3.37)

(3.38)

which can be referred to normal curve or F tables for the

approximate proportions'to be used in the deciGion rules.

The numerical values for this signed permutation scheme are

summarized in Table 8.

39
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Insert Table 8 about here

3.4 Comment

Case III is analogous to the sampling situation in which one

assumes that y = XS + e and that the E(e) = 0 and that

E(ee') = a
2
W
-1

where W
-1 is the inverse of the fixed matrix

W . Under these assumptions,

2

E(12e) ap
(3.39)

The proofs that E(b) = B and that the var(b) = a 2(Vwx)-1 are

in Draper and Smith (1966).

It is worth noting that the computations necessary to use

Case III are simple. The necessary summaries are yNy , y'WX ,

and X'WX from which decision statistics can be computed. In Case

III, as in Case II, the decision statistics are not affected by

multiplying W by any positive constant.

Insert Table 9 about here
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4. CONCLUSION

The signed permutations of residuals leads to an interpreta-

tion of least squares calculations without sampling assumptions but

at the cost of the inability to generalize formally to a population

Since in many applications the assumption of a random sample from

a known distribution may be unwarranted or an attempt at an actual

random sample may be thwarted by practical concerns, the interpre-

tation of regression statistics as measures of fit in the obtained

data may be the best that a researcher can do. Such an interpre-

tation is not trivial, however, since substantial confidence in a

model may come from fitting the model to many data sets under many

conditions and finding that the resultant coefficients are reason-

ably similar.-

Signed permutations may be most useful in robust/resistant

regression where the iterative reweighting clearly violates the

assumption of known, fixed weights and thus the sampling theory'of

weighted regression. At least the "probability statistics" gener-

-ated from iterative reweighting have an interpretation as measures

of goodness-of-fit. These goodness-of-fit measures may, therefore,

,

be used as a criterion for the effectiveness of weighting systems

or for comparing different systems now in use.
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Footnotes

1
The author is indebted to Paul Holland for suggesting the sign

changes.

2 The algorithm for finding the maximum values is due to Lustig

(1979). To find the maximum bkj , the column cj and the residuals

are each rearranged into descending order of absolute magnitude and

the signs of the residuals are changed to be the same as the corre-

sponding elements of c .

-j

3 The analogous test in sampling theory is seldom used, that is,

we seldom test the hypothesiG that all paramters including the

intercept are simultaneously equal to zero. The test of the subset

containing only b
I

would result in an F* = z
1

2
.

4 The sum of squared residuals is ee = C(1 - X(nc)-1)re

where c is the population residuals. Tukey has suggested weighting
-

the e
i

by the corresponding inverse square root of the diagonal of

(I - X(XX)-1X') . This idea .has not been followed up at this time.

42
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1. Notation for Data

Statistic Definition

number of observations

number of regressors

i,i" = 1,2,...,N indices of observations

= 0,1,2,...,m indices of regressors

Y = {Yi) Nth order vector of response values to
be fitted

w = fw

N X (m + 1) matrix of values of regressors.
All elements x

10
= 1 . The rank of X is

m + 1

NxN positive definite diagonal matrix of
weights

NOTE: All data elements are fixed, known finite, real numbers.

43
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2. Ordinary Least Squares Definitions

Statistic Description

= Eiyi /N

2 -
s " E(y 4)

2
/(N-l)

= {bil = (x'X)-lx'y

A A

" {y } = Xb

= {ei) = y - Xb

s
e

= tie'e/(N-m-1

^ 2

R2
E(y

i
-i)

=
- 2

E(Y -Y)

F /

2
E(yryi) /(N-m-1)

p(F)

-1
cov(b) {cov(b ,h s2(x'x)

e

SE(b ) " c(1::/(17)

t b /SE(b )

p(t )

mean value of the yi

variance of the yi

t+1 order.vector, of
regression coefficients

Nth order vector of
fitted values

Nth order vector of
residuals

standard error of estimate

squared multiple correlation

test statistic for 8
1
1.0

2
=..=8

m
=0

probability associated with F

m+1 by m+1 matrix of variances
and covariances of b

standard error of b

test statistic for 8
j
=0

probability associated with t
(usually two tailed)
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3. Case I: Ordinary Least Squares Definitions for Signed Permutation

Statistic Description

-1
{c

ij
} = X(X'X)

= {cij}

Nx(m+l) matrix of calculus
or generalized inverse of X'

The j
th

column of C

Q = {(111,} = C(CC)-lcv = X(X'X)-1X' NxN idempotent matrix

b {b } C'y

= {if} =

e = {ei} = y -

e = N lE e = 0

2 -1 2

2e
a = N Eiei

4

y = ly }
ki

=i+Pe
,k k-

{bkj} C'yk

(m+l)
th

order vector of
regression coefficients

N
th order vector of fitted values

N
th

order vector of residuals

Mean of residuals

Mean square or variance of
residuals

Constructed values of y for the

k
th

signed permutation

Regression coefficients for the

k
th

signed permutation

Y =
k.

Fitted values for the k
th

signed permutation

-1 -
ave(b

k
) = g' =K Eb Average value of b

k
_ k,k

cov(i ) = K-1E -
,k k _k _k

Covariance of b

d
2
= (b - g)(cov(b ))-1(b - ;) Squared distance of b

k
from g

k ,k ,k _k
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4. Case I: Ordinary Least Squares
Summary of K = 3840 Regression Equations

Regression Coefficient Squared Distance

Statistic

ave(b
kj

)

var(b
kj

)

skew(b
kj

)

kurt(b
kj

)

Intercept Slope Statistic Distance

b
ko

b
kl

d
2

2.0000 3.0000 ave(d
2
) 2.0000

29.4800 2.6800 var(d
2
) 1.8058

0 0

2.1500 2.1828 d
2

25.9328

.368 1.833 F* 12.966

.35 .03 ii(F*) == 0

.3792 .0229 p(F*) 0

NOTE: z = b
J
//var(b

kj
) ) from normal table, and p(z )

' j

is compiled by dividing the number of bkj with different

signs by lc = 3840 .

d
2

is distance of b from origin, i.e. a
2
b'(C'C)

-1
b , F* is

d
2
/(m + 1) , i3(F*) is from F table with m + 1 and 00 d.f.

p(F*) is computed by dividing the number of Al2( > d2 by. K .

4 6
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5. Case II: Weighting the Signed and Permuted Residuals Definitions

Statistic Description

c = { } = incochix)-1cij

{c..}
-J ij

Q = {qii ,} = C(C'C)-1C'

1;=0.1 = C'y

e = {e.} = y - 9

-1
e = N E.e.

1 1

a
2 -1
= N E (e - e)

- 2

2 -2 -1 2=a +e=NE e
12e

y = {y } = P9 + e
_k ki k,

y
_k

bkj C'-k

(91(i} 2(1^21(

ave(bk) = = K-lEkbk

cov(b
k
) = K

k
E (13

k
- b)(1) - b)'

d2 = (b T)(cov(bk
))-1(b

k
- i;)

k _k ,

Nx(61-1) matrix of calculus
or generalized inverse of X'

.th
The 3 column of c

NxN idempotent matrix

(m+1)
th

order vector of
regression coefficients.

N
th

order vector of fitted values

N
th

order vector of residuals

Mean residUal

Variance of residuals

Mean square residual

Constructed values of y for the

k
th

signed permutation

Regression coefficients for the

k
th

signed permutation

Fitted values for the k
th

signed permutation

Average value of bk

Covariance of b
k

Squared distance of bk from g

4 7
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6. Case II: Weighting the Resigned and Permuted Residuals
Summary of K = 3840 Regression Equations

Regression Coefficient Squared Distance

Statistic

ave(b
kj

)

var(b
kj

)

skew(b
kj

)

kur,t(bkj)

Intercept Slope Statistic Distance

b
ko

b
kl

2
d
k

-3.3750 4.1250
2

ave(d
k
) 2.0000

57.4901 5.2080 var(d
2
)

k
1.6500

2.0165 2.0067 d
2

10.8958

.445 1.808 F* 5.448

.33 .03 ii(F*) :::- 0

.3547 .0229 p(F*) 0

NOTE: zj = bavar(bkj) from normal table, and p(z )

is compiled by dividing the number of bkj with different

signs by Rk = 3840 .

d
2

is distance of b from origin, i.e. p
2e

bf(CfC) lb

F* is d
2
/(m +1) , P(F*) is from F table with m + 1

and 02 d.f. , p(F*) is computed by dividing the number of

d
2
> d

2
by Kk
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7. Case III: Permuting the Weighted Residuals Definitions

Statistic Description

C = {c
ij

) = VX(X'WX)
-1

= c(C0-1C

= ) = C'Vy = C'y*

= {i I = xt;

y* = {y*) = X*b = Vy
.1110 410

e = {ei) = y -

e* = {e*} = y* - y* = Ve
410

-* -1
e E e*

i

2e*
= N-1 e'We =

y = {y
ki

} = V-1P
k
Ve

.k

NxN matrix such that V
2
= W

Weighted values of y

Weighted values of X

Nx(m4-1) matrix of calculus or
generalized inverse of X'

NxN idempotent matrix

(m74-1) th ovder vector of regression

coefficients

N
th order vector of fitted values

Weighted values of .y

N
th order vector of residuals

Weighted values of residuals

Mean of weighted residuals

Mean square of weighted residuals

Fitted values for the k
th

signed permutation

43
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7. (Continued)

Statistic Description

y* = (y
ki

= y* + P
k
e*

.k .
Weighted values of y.k.

b = {b
kj

} = C'Vv = C'y
k

Regression coefficients for the
.k -

k
th

signed permutation

.k = {Y =ki .k
Fitted values for the kthY Xb
signed permutation

A A .

y* = y*
i

= Vy Weighted valueti of yk
-k _k _Lc

ave(b
k
) = g' = K Average value of bk

-

cov(b
k
) = - ;MU - g)' Covariance of b

kk ,k ,k

-
d = N (b b)(cov(b

k
))

1
(b

k
- b) Squared distance of b from E

k k k ,

5
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8. Case III: Resigning and Permuting the Weighted Residuals
Summary of K = 3840 Regression Equations

NOTE:

Regression Coefficient Squared Distance

Statistic Intercept Slope Statistic Distance

b
ko kl

d
2

ave(bk
j
) -3.3750 4.1250 ave(d) 2.0000

var(bkj) 30.7258 3.1219 var(d
2
) 1.7422

skew(b
kj

) 0 0

kurt(bki) 2.1728 2.1722 d
2

36.2613

zj .609 2.33 F* 18.13

J
.27 .01 ii(F*) ZO

P(z.) .2862 0 p(F*) 0

zj = bj//var(bkj) 13(zi) from normal table, and p(z )

is compiled by dividing the number of bkj with different

signs by K = 3840 .

d
2

is distance of b from origin, i.e. u
2e
b'(C'C) lb ,

F* is d
2
/(m +1) , P(F*) is from F table with m + 1

and 05 d.f. , p(F*) is computed by dividing the number of

d
2

> d
2

by K
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9. Summary of Signed Permutations and Moment Notation

Statistic Description

K = 2
N
NI

Signed Permutations

Number of possible signed permutations

k = 1,2,...,K Index of signed permutations

NXN signed permutation matrix. Each row

and column has exactly one nonzero element

which may be either +1 or -1.Pk iPkii'}

Moment Notation

1.1 = Z
-1

z
p

The p
th (uncorrected) moment of variable

pz = 1,2,...,z)zj

The (uncorrected) skewness of z
lz = 3z

2
/112z

3

a2z
= 4z

/112z

2 The (uncorrected) kurtosis of z



25

20

15

10

Data
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A. Case I: Ordinary Least Squares
Numerical Example

3 4

Y
,

12
0

10
12
21
[

X
2

a

[26.11

.12

[32)

A

Y

['lil17

e

-1

[75.4.1

-2

xo

1

1

1

1

1

xi

1

2

3

4

5

NMI

41011

5 X1

C

1-
-.4

-.1
-.2

0

.1

.2

Note: The line yw is the best fit weighted regression line and will

be discussed in Section 3 .
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-,2 -2

[-7-8
-1 110
-2 112
-4 L21
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B. Case I: Ordinary Least Squares
Signed Permutations

Values of ek and yk

!3 -3 !4 Y4 -5 -5

1] [1351

-1 10 2 13 1

-2 12 [1 13 2 16
4 21 -4 13 7 24

Signed Permutation Matrices

P
2

P
3

P
4

-1 0 0 0 0 0 1 0 0 0 0 -1 0 0 0 0 1

0 1 0 0 0 1 0 b 0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 1 0 0 0 0 0 -1 0 0 0

0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0 1 0 0 0 0 -1 1 0

Regression Coefficients

P
5

0 0 0

0 0 -1
-1 0 0

0 -1 0

0 0 0

b
2

b
3

b
4

b
5

[ 9.2] [2.5]
5.84.5

r
2

[9.2]
6.6

The minimum b
kj

can be computed from the maximum by

min b
kj

= b
j

- (max b
kj

- b
j

) for example, the

minimum intercept = 2 - (14 - 2) = -10 .
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Cl.

CASE 1: UNWEIGHTED LEAST SQUARES

DISTRIBUTIONS OVER ALL SIGNED PERHUTATIUNS

Distribution of b
Ok

C3.

4. 40 4.041
4.40 4.14

4. l 444.81144 .. on
4.40

MUM.
4.. 14 OD OD am on
4 40 44441.44440444444 in
.. 40 00144/1044 04 Man In 0.110

.141 4444440 40 01 4 0.84
I. 11. 44041844 NI 1 Mb 1.17.a
4.04
In MM. a =4001184{41 0.44

4.40
6.011 IIMMOMMIN44110 MOOS 6.71

MOM no MMUMI14M4441.10804 6. OD

6. a 4 M li es a an . el .. I 6.04
414 44 GINO MOM= 448 II 4411114 1.41
81411400 Mb MI NI 44441141.4.4.41 6.40

1.14 104 a M 64 m 4.14lin a Mein 44 OD I 1.10
4441144810 IN 44011441141408404,144 1.11laseas maul."

I a 4140404441404006 a an
4.44

4.48
0. PS

wasesa-aureea araarman e 51484404
SO S 515371581411m0 40

Mb Om MO I I Mb m 48 441011141414 IMMUMM
444 SO 11484 64144m i.5ar0 111.84143mu MINaSaS a se"mammas

.0111101110110111~~111 a MUM
444441144 1101010~1111~0111

NOIFSMOIP. 1 oar se awna ..... aa wawa a aro Wenn
4.81114111410414 SO SO

MVO 44 411101111.

N sr ss se
anew@

.41/4 4......nmamsnm.....M. P.11444 6.14010 .4.4MM 4.8444 4.0M 0.4414 11.41018 Linn WM*
48.40410 .4.4011 HARM HAMS nn 1.55 Lena WM. 611.41144 411.8444

Bivariate Distribution of b
Ok *

b
lk

CU

.0.44

5

C2.

Distributution of bik

C4.

1

Distribution of d2k
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D. Case II: Weighting the Permuted Residuals
Regression Analysis

_41 2e

[33.33]

[411

4 -3.3751
ii 4.125.1

-4.88 0.00

1.00 10.00
-1.13 12.00
3.75J 21.00

0

0 1

0 0

0 0

LO 0

P
2

0 0

0 0 0

1 0 0

0 1 0

0 0 1

[.75

4.8751 -4.8751

9.00 1.00

13.125 -1.125

17.25 3.75

Signed Permutations'

-111:8285 16.13 11.25 16.13

1.00 10.001 3.75 12.75

-1.13 12.00 -4.88 8.25

3.75 21.00 -1.00 16.25

C = WX(OWX)

.4276 -.125

.9605 -.250

.4737 0

-.5395 .250

:-.3224 .125

7-3.00
-11.25 -6.38

1.00 10.00
4.88 18.00
1.11 _18.38

P
3 4: P4 '

P
5

1 0 0 0 0 0-1 0 0 0 -1

1 0 0 0 0] 1 0 0 0 0 1 0 0 0 01

0

[0

0 1 0 0 0 0 0 0 1 0 0

[0

1 0 o

0 0 0 1 0 0 1 0 0 0 0-1 o o o

0 0 0 0 1 0 0-1 0 0 o o 0-1 oJ

13.001[
6.94j

[5.22] 112.651
2.11 L-0.171

1-18.30i

L 8.77j

NOTE: The data are y and X shown in Figure A.
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E. Case III: Permuting the Weighted Residuals

Regression Analysis

/12e*

[49.95]

[73.375]

4.125

Y* e* C =-VX(VWX)4

r .4276 -.125

9.750 -9.750 .4803 -.125
27.000 3.000 .1579 0

26.250 -2.250 -.2697 .125

17.25 3.750 -.3224 .125

Signed Permutations

Values of e
k

and y
. k

e* Y* e* Y*
-2 -2 -3 -3

[

-1:g -10:50g

-2.25
3.75

3.00 30.00

21.00
24.00

-]....72551

-2.25 24.00
3.75 21.00

30.00
21.00

-1
0

0
0

0

0

1

0

0_

0

13

0

0

1

0

0

-2

0

0

0

1

0

0

0

0

0

1

e* Y* e* Y*

[I

191:;; 201:5000 771:5 -1:00
2.25 29.25 2.25 29.25

-3.00 23.25 3.75 30.00

-3.75 13.50 3.00 L2o.5

1

o

o

o

o

P3

0

o

1

o

o

0

o

o

1

o

0

o

o

o

1

0-1
1 o

o o

o o

o o

P4

0

o

0

o

o o

-1 o

0

o o

o -

5

-1 0 0 o

o 1 o o

o o o -1

o o o o0010

d-
o

o

1

p_

_3

113.001 [_2.271

L 6.94j 4.13j

_4 -5

18.571 [-14.491

1.6.56j 7.59j

NOTE: The data y and X are shown in Figure A and the weights are shown

in Figure D.
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APPENDIX

Lemmas

For the following lemmas, a is an arbitrary column vector with

2 - 2
elements ai = Eai/N, aa = Ei(al - a)

2
/N, u

2a
Eai/N

2 -2 4,
a
a
+ a , and u

4a
= E

i
a
i
/N.

For all N
th

order signed permutation matrices P
k'

k = 1,2,...,K

where K = 2
N
N!, there is a signed permutation vector a

k
= P a with

_ k_

elements aki.

The subscript i' = 1,2,...,N but does not = i.
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2 2 2
Lemma 1: E iE alai = N(Np

2a
- p

4a

Proof:

2 2 2 2 2 2 2 2
EiEi ,a

i
aV = a1a2 + a1a3 + + a

N-1
a
N

2 2 2 2 2 2 2 2 2,
= a

1
(E

ia
- al) + a2 (E iai - a2) + + a

N
(E
iai

aN)

2 2 4
= (E iai) - Eiai

2
= N[Np

2a
- p

4a
]
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Lemma 2: Given any set of elements a,a," ...,aki (11 i2 0...0 im)
"1 2

which are raised to integer powers p1,p2,...,pm respectively, and at

least.one P (j = 1,2,...,m) is odd, then

-1 P1 P
2

Pm
K Eka ki a

ki
...a

ki
= 0 .

1 2

Proof: If any power is odd, then the summation over all k signed permu-

p4
tations will contain each combination of other a

k
J an equal number of
i.
3

times with positive and negative signs.

6 0



-56-

Lemma 3: Let a
i
be an element in a , then

a. K
-1

E a
2

= u
k ki 2a

b. K
-1

E a
4

= u
k ki 4a

c. K. E a a
i

, = (N - 1) (Ny-a - u )
z -4a'k kj k

Proof:

a. E
k
a
ki

2
contains the square of each element a

i
of a exactly

2
N
(N - 1): times, thus

2

K
-1

k

2 2
N (N - 1) Eiai

= E a
2

=E a
ki

2
N

N!
112a

4
b. E.

k
a
ki

contains the
4th

power of each element cf a exactly

2
N
(N - 1): times, thus as 3a.

2 2
c. E

k
a
ki

a
ki'

contains the product of squares of each distinct

pair of elements in a exactly 2N(N - 2): times, thus

-1 2 2 2
N
(N - 2):

K Eka
ki

a
kJ'

. [E E ,a
2
a
2
,]

2 N:

61
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Using Lemma 1 on the term in brackets,

1 2

N(N - 1)
u[N(N2a

- 2
(N - 1)1

2a
- 4a)

62
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Lemma 4: Given a column vector c With elements c (i =

'2 =with (uncorrected) moments Ulc = ic
'

./N u
'2c `iciwyi'",

and p4c Eic /N,

and p an odd positive integer, then

a. K
k
(c'a

k
)P = 0

_

- 1 ,2
b. K E (c'a ) = NP

2aP 2ck k

4 1/4a Ac 3N 2 2eta ) = + (NP P )(NP P )k k N - 1 2a 4a 2c. 4c

Proof:

a. Each term of (c
1
a
kl

+ c
2
a
k2

+ + c
N
akN)P will have at least

one odd power, thus each term vanishes by Lemma 2.

b. Using Lemma 3a, K Ek(ciakl + c2ak2 + + cNakN + odd powers)

2 2 2= cipa + c244 + + cNpla.
N'uz 2a'u 2c

- 1 ,4K Ek(cak) has terms ciaki,3cict,akia ki,, and odd powers.

Using Lemmas 3b and 3c on the terms in brackets,

K-1
4 4

ci
-1 4 4 -1 4Ek(cak) = [K Ekakl] + c2[K Ekak2] +

2 2 2 2 .cic2
1
Ekakek2] + . + odd powers

3 2 2 2= p
4a i

c
41.

+
N - 1

(Np
2a

- p
4a

)E
i

c
i
c

3N 2 2
= NO4a

P
4c

+ N - 1 (NP
2a

P
4a )(NP2c P

4c) .

63
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Lemma 5. For the vectors a
-k'

a. akk = K 1E
k
P
k
a = 0--

2 -2
b. K 1E a a! = K 1E P aa'P' = I=O+a )I

k-k-k k k k 2a a

where I is an N
th

order identity matrix.

Proof:

a. Each element of a is contained in the sum an equal number

of times with positive and negative signs.

b. The diagonal elements of K
-1

E
k
a
k
a' are K

-1
Ek

2

aki P2a--k
2 -2

and the off diagonals are odd powered. Also, qa = aa + a
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Lemma 6: Given an N x N matrix Q of rank r < N then

a) K-1 NAN 0 Irigl I

and if Q is idempotent (i.e. QQ Q) then

-1 r
.b) K E P QP' Ikk k N

where I is an Nth order identity matrix.

Proof: Since each off-diagonal element of Q, qii say, is matched vit:1

-q in all off-diagonal summations, then -1
E
k
P
k
QP' is at least diagonal.

k

Each diagonal element of K -1
E
k
P
k
QP' consists of the sum of the diagcnalk

-1 , .element of Q exactly 2
N

times, thus K
-1

E
k
P
k
QP' N Tr(Q)I. If

k

QQ Q. then Tr(Q) r and K-1 E
k
P
k
QP' N-irI.
k
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Theorem 1 (Case I: Ordinary Least Squares)

Given the definitions in Tables 1, 3, and 9, then

a. ave(bk) = b

b. cov(12k) = 1.12e
C'C = a

2
(X'X)

-1

c. skew(b
kj

) = 0

02e
0
2c

3N 02e
d. kurt(b

kj
) =

N - 1
+ - (1 - )(1 )

2
e. ave(d

k
) = m + 1

1 - 82e N - 82e
f. var (d

2)
=

N - 1
( ) (m + 1)

2
+ 2(

N - 1
) (m + 1)

2
+ E q (

82e(N 2) 3N
N - 1 N - 1

g. ave(&) = y

h. cov CX' = a
2x(Vx) V-1

(Yk) 1 xc2e'

Note that all moments are central since e = 0 and E
i
c
ij

= 0

for all j except j = 0, the intercept.

A A A A

Proof: Note that b - b = C'P
k
e and y

k
- y = xvp e

-

a. Using Lemma 5a on the term in brackets,

^
ave(12k) = K

-1
bk = K

-1
Ek(b + C'PO)

= b + C' [K
-1

E
k
P
k
e] = b .

-



b. Using Lemma 5b and the fact that i; = b ,

A

cov(b = E (1, - r))(b fOi
,k 1 k -k -k

-
= K lE (C'P e)(C'P

k k- k-

= C'EN
-1

k
E P

k-
ee'P']C = C' (pe 1)C'
- k

since 112e =
'a 2

and CC = (VX)
-1

, then

A
-

cov(b
k
) = a

2
(X'X)

1

c. Noting that c is the j
th

column of C and using Lemma 4a,

A
'A. A

skew(b j) = 0 = (K Ek(bitj -
-1E (1;

kj

12 3

j'

= [K
-1

E
k
(CP
j k

e)
3

]

2
/(K

-1
(E kIPk

e)
2
)
3

-, -j _.

=0

6
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d. Using Lemmas 4b and 4c,

kurt(bkJ ) =
2J

K-1E
k(1)kJ Ji

N4/(K-1_
k kJ j

)2)2

= [K E
k
(cIP

k
e)

4
V[K- 1E

k
(c

,

Pke)
2 2

_J _ _J _

3N f 2 Nfm 2
NP4eP4c N - 1 `Np2e P4e1"1-12c P4cj)

2

(NP2cP2c)

0
2e

02c 0
2c,01

= +
N f

w.

1
(1 - )(1 - )

e. Using Lemma 6b,

ave(d
k
) = K

k
1 (b

k
- bj'(cov(kb ))

-1 (kb - b)
_ _ -

= K lE
k
(C'P

k
e)'(p

2e
C'C)

-1
(C'P

k
e)

- -

p
-1

c'(K
-1

E
k
P'C(C'C)

-1
C'P

k
)e2e- k

= p
-1

e'[K E P'QP ]e
2e_ k k k

e 1 e

p
-1

e'
m

(
+ 1 m + 1

=
_

I)e
2e_

p2e

68
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2 -1 ,pfni,
f. Since d. 40. u

K 2ee

var(d
2
) 801

-1
E
k
d
4
- (ave(d

2
))

2

k

K
-1

E
k

(ti
-1

e'P
k
QP

k
e)

2
- (m + 1)

2

2e_ _

= p
2

-2 -1, , 2
L (g

11
e
k1

+ q
12

e
kl

e
k2

+
e

+ q e
2

)
2
- (m + 1)

2

NN kN

After squaring the term in the first parentheses and

rearrangement,

2 2-2 -lf 2 4 2
var(2) U

k '2eK `Eigii`keki

(m + 1)
2

By Lemma 3b,

2 e2
+ odd powers)

-2 2 -1 4
[K Eke

P4e 2 2
1.1

2e
E q ki] -

2 'iqii
U 2e
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By Lemma 3c and the fact that E E
i
,q

2
= (m + 1) - E

i
q
2

2 -1 2 2 ,21.1

-2
K
-1

E E q
2

,E e
2

e
2

= 2p
-2

E E q [K E e e ,12e i k ki ki' 2e i k ki ki

2

P2

2

- P
2

2
e

EiE q ,

e(N 1)

(N
P2e

2

N - 1
(N-8

2e
)((m + 1) - E

i
q
2

) .

By Lemma 3c and the fact that EiEvqiiqi,i, = (m + 1)
2

- E q
2

,

-1 2 2p
-2

K
-1EEqq Ee2

e
2

=
-2Ei Eqq,[K E

k
e
ki

e ]2e i k ki ki' 2e

1 2(NU, -P)EEqqq2 Le 4e i 1, 1, 1,
11 2e ( 1)

1
(,1 a

2e
)((m + 1)

2
- E q

2
) .

N - 1 i

By Lemma 2 all odd powers vanish, thus

2
var(d

2
) = q11 +

N - 1
(N -

2e
)(m + 1 - E

i
q
2

)

1

N 1
(N -

2e
)((m + 1)

2
- E q

2
) - (m + 1)

2

- i
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Rearrange in terms in powers of m + 1,

1 -
2e

2(N -
2e

)
2

'var(d
k
)

N - 1
= (m + 1)

2
+

N - 1
(m + 1),

2 82e(N 2) 3N
+ E

i
q ( )N - 1 N - 1

g. Using Lemma 5a,

A
ave(jk r ) =K-1

ky k
-K-1

Ek(y + XC'P
k
e)--

y + XC'[K-1EkPke]

h. Using Lemma 5b,

cov(yk) = ClEk(yk

= K 1E
k
(XC'P e)(XC'P

k- k-

= XC'M lE
k
P
k
ee'P']CX'
-- k

=
2e

XC'CX1

7 i



and thus
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cov(in) a2X(X'X)-1X'

7 2



Corollary 1:
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A A A
Given a subset b of b, the corresponding subset b

ks
of b and

- _k'

A A
2

A
A 'A. A

A

the subset cov(bks) of cov(bk), dks =
(bsk

s)'(Cov(bks)) (bsk - bs),

then the

and

1 A
ave(d

2
) = K E (b - b r(cov(b )) (b - b

ks k -ks -s -ks -ks -s

1 - a
ks )m2

N -
2e2

var(d
ks

) = (
N - 1 )m

sN - 1 s

2e
+ 2)

+ E q
2

(
3N

i sii N - 1 N - 1

where m
s

is the number of elements in b and the q
sii

are defined
-s

below.

Proof:

Let X be partitioned into (Xs,X;) where Xs in the N x ms matrix

consisting of the columns of X corresponding to bs and is a N x m;

(m- = m + 1 - m
s
) matrix containing the remaining columns. Also, let

x = x - x-(xlx-) 1x1xs
S S S S

73



and

ys = y - X (XIX-) -1-Xly
s

-69-

These values may be substituted for X and y in Table 4 without affecting

the values of y and e. Thus, C becomes

and

ft ft

C =S S S

C'i = b
s-s .s

With these substitutions in Table 4, Theorem le and lf follow. The

matrix Q becomes

Q
s

=
s
(C'C

s
) 1C' = X (X'X )

-1X'
i s s sss s

where Q
s

has elements g
i

, (i,i' = 1,2,...,N). The value of m + 1
-si

becomes m
s

since m
s

is the rank of Q
s

Note: In most statistical analyses the variance of the intercept 1,0

is not of interest;thus X
s
and y are X and y centered about their

.s

respective means and the eve d
2
= m .
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Theorem 2: (Case II: Permuting the Weighted Residuals)

Given the definitions in Tables 1, 5, and 9, then

a. ave(b
k
) = b

_

b. cov(b
k
) = p

2e
c'c = (a

2
e )WX(X'WX)-1X'W2X(X'WX)-1X'W

.

C. skew(b
kj

) = 0

0
2e

0
2c 0

02c

d. kurt(b
kj

) = N - 1
(1 - ---)(1 )

2
e. ave(dk) = m + 1

1 - ee N -
2e

f. var(d
2
) -

N - 1
( )(m + 1)

2
+ 2( )(m + 1)

g. ave(i.k) = ;

2 82e(N 2) 3N
+ E q ( N - 1 N - 1

h. cov (Yk) P2en
= (2 -2

ae + e )X(X'WX
-1

X'W
2
X(X'WX)

-1
X'

Note that the moments are not in general central except for

(P > 0, j > 0).
pc.
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Proof: With the substitution of definitions from Table 5 for Table 4,

the proof follows the same steps as Theorem 1 except that

and

2 -2
11

2e
= o

e
+ e

c'c = wx(x'wx -1X'W2X(X'WX) 1X'W

76
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Theorem 3: (Case III: Permuting the Weighted Residuals)

Given thedefinitions in Table 1, 7, and 9, then

a. ave(bk) = b

e'We
-1

b. cov(kk)
! P2eCtC ( -N )(VWX)

c. skew(b
kj

) = 0

0 2e0 2c 2c1
23N e

d. kurt(b
kj

) = (1 - )(1 - )
N - 1

e. ave(d
2
) = m + 1

1 N - 0
2e

f. var(d
2
) = ( )(m + 1) + 2( )(m + 1)

N - 1

g. ave(k) =

+ E q
2 (32e(N 2) 3N ,

i N - 1 N - 1

e
1 we

h. cov( ) = 1-12eXC'CX' = ( -N )X(X'WX)-1X'

Note that the moments are not, in general, central.



Proof: With the substitution of definitions from Table 6 for Table 4

and substitution of y*, X*, y*, e*, e*,
2e*

, y,* and y* for their
-k .k

unstarred equivalents, then the proof follows the same steps as Theorem 1

except that

and

e'we

u
2e*

=

-1
C'C = (X'WX)
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