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Abstract

New ability estimators have been proposed by Wainer and Wright (1980)

and Mislevy and Bock (1981), that are resistant against guessing and

careless behaviors exhibited by some examinees. This paper presents \

another class of ability estimators that are resistant to departures

from the underlying assumptions concerning guessing and carelessness.

In addition to computing the asymptotic relative efficiency of such

estimators, this paper ayaauates estimators by comparing their

influence curves (Huber: 1981).
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1. Introduction

New ability estimators have been proposed by Wainer and Wright

(1980) and Mislevy and Bock (1981), that are resistant against

guessing and careless behavior exhibited by some examinees. This

paper presents another class of ability estimators that are resistant

to departures from the underlying assumptions concernfng guessing

and carelessness. In addition to computing the asymptotic relative

efficiency of such estimators, this paper evaluates the estimators

by comparing their influence curves (Hubel-, 19.81).

It is of some importance to note two difficulties that have

had to be overcome in the deriiation of the asymptotic behavior of

the estimators. The first is that the desired results do not follow

directly from those for mayimum likelihood estimators since the new

class of estimators include some estimators that are not maximum

likelihood. In fact, the asymptotic behavior has been derived from

First principles. The second difficulty is that item responses are

not identically distributed random variables when the items differ

difficulty, discrimination, or guessing characteristics. This

has been overcome by assuming the items to be randomly sampled from

a parent population.

2. Definftion and Motivation of a New Class of Estimators

Let x1..., x
n

be independent dichotomous item responses such

that for a candidate with ability T,a real value parameter,

4x
[P.(T)] -[1-1).(T)] ,x = 1 or 0 where the P.(')'s,

called item response curves, are possibly different mappings from

the real line to the unit interval [0, 1]. FOr convenience the

subscript i will be deleted.
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The proposed estimator of T is defined as the solution to the

equation-

Ea[x P(t)][P(T)Q(T)]
h-1

=0

where the sum is over all items, Q=1-P, the a's are given but

possibly different constants, and h is a real number greater than

(2.1)

or equal to 1. In'the foregoing we refer to these_estimators as

h-estimators.

The value of h is chosen according to how much rdbustness is

desired; the greater the value of h, the more robust the estimator

is. Guidelines for the choice of h. depend on the valhe of the

estimator's asymptotic variance that can be tolerated in order to

reduce the influence of individual responses on the estimator. More

discussion on this topic will follow in the next several sections.

Under certain circumstances, h-estimators correspond to maximum

likelihood estimators (mle's). If, in addition to the above assump-

tions, dP(t)/dt = P(t) exists for each item, the mle is the solution

tO

'T(r)[x-P(T)][P(T)Q(T)-1=0 .

Furthermore, if all.P satisfy the two=parameter logistic model:

1 [P(t)/Q(t)] = a(t-b),

then

P(t) = aP(t)Q(t).

So for h = 1, the h-estimator is the mle for the two-parameter logistic model.

Both h-estimators and mle's are special cases of more general kinds of

estImators: those that are solutions to

w(T)[x-P(T)] = 0,

1 or some function w.
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For various kinds of w-functionsi` we have:

1) An h-estimator is the special case

w(t) = a[P(t)0(t)]11-1;

2) An mle arises when

w(t) = dln[P(t)/Q(t)Vdt.

We will denote the weight functions of the h-estimators by

w(t;a,h) = a[P (t)0(t)]11-1

A priori, h-estimators with reasonable weight functions should

possess good robustness properties. First, they should not be overly

influenced by any one item response and second, they should be stable

when the true model for response departs from the assumed mode for

response. Reasons for these assertions are discussed as follows.

h-estimators should resist the influence of single outlying responses

(2.2)

Suppose a new item is administered and that h is greater than one.

If T
n
, based on n responses, is already such that P

n+1
(T
n
) is near 0,

but x
n+1

=1, then [x
n+1 n+1

(T)]w(T;a
n+i-
h) is a relatively small contri-

bution to the sum in (2.1) defining the new estimator T
n+1

So the new

observation will not dramatically change the old estimate of T. A similar

finding holds for P114.1(Tn) near 1, but xn+1 = 0, since the sum. in (2.1)

is symmetric in the value P
n+1.

Example 1 Suppose the model for item response is the logistic model

withb.="0-8t(31.011YstePso"."11.".=1 Table 1 displays the

various values of the h-estimator for two item response sequences: one

without an outlier and one with an outlier. The h-estimators are less
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affected by the outlier than the rale, (h=1). Further, the effect

is smaller, the larger the value of h.

h-estimators should be insensitive to departures from the model

Suppose the true model is P* unequal to P for each item.

One could retain the old weight.functiOn so that the estimator

remains resistant to outliers, but solve

E[x-P*(T)] w(T;a,h)= 0 2.3)

for a reaonable estimator of ability. The equation (2.1) is

equal to the above equation plus the term

[P*(T)-P(T)] w(T;a,h)

added to ,its right hand side. If this term is small, then solutions

to (2.1) are close to solutions to (2.3). Since this term gets smaller

as h gets laTger, we expect h-estimators to be robust to departures

from the model.

In fact, the property described is precisely continuity of the

estimator wnen viewed as a function'of the P
i
's. We show in the

foregoing that h-estimators are continuous functions under the

proper mathematical setting.

3. Llbe Influence Function and Other Heuristics

The influence function is a useful Cool in robust statistics.

Not only does it allow the evaluation of the influence of outliers

on the estimator under investigation, it also allows a heuristic

derivation of the limiting law af its sample distribution function

(Hampel, 1968c 1974: Huber, 1981). Of course, the result must be

checked with a rigorous mathematical proof.
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The Influence Function of the h-estimator

For general statistical estimators, the derivation of the

influence function is facilitated by viewing the estimator as a

function of the probability distribution function F of the observa-

tions. Then the influence function is derived from the Gateaux

derivative respons'e (Huber, 1981) of the estimator function, T(F),

atia distribution functionT in the direction G:

T(G;F) = lim T((l-s)F+sG)-T(F) .

s+o

\

The lastexpression is the ordinary derivative of T((l-s)F+sG)

with respect to s. (Further dis6ussion and references will be found

in Huber (1981) pages 13 and 37.) The influence function at z
0

is

the Gateaux derivative in the direction, G(z) = d(Z, z
o
), which is

the point-mass at z
o

.

The difficulty in determining the influence function of item

ability estimators lies in representing them as functions of the

probability distribution functions of the observations. The defining

equation (2,1) relates each value of the estimator to every set of

values of item responses, item resnonge enrveq, nnd constants:

z = (x., P., a,), i=1, n. Denote the point-mass at z,
1 1 1

as above, and define the empirical distribution function as

F(z)=Eci(z,z.)/n. Clearly, the estimator'defined in (2.1) depends
1

on
n

since (2.1). is equivalent to

f[x-P(T)] w(T;a,h)dF =O.
n

(3.1)
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Denote this, dependence by the functional notation T=T(F ).

The function T(.) will be extended to any probability mass

function F by replacing Fn by F in (3.1).

f[x-P(T(F))] w(T(F);a,h)dF=0.

Since the functional notation is defined implicitly,

substitution of (1-s) F+sG f-O-r F in (3.2) and chain-r41,e----

differentiation wit:1 respect to s yields an equation involv-,

ing the Gateaux derivative:

T 4 f[x-P(t)] w(t;z,h)dF
dt

+ f[x-kT)1,14(Tp,h) (dG-dF) =0.

where T=T(F). Because (3.2) is satisfied, 1 tting G=d(z,zi)

in*(3.3) yields the following influence function:
c

IC (zi;F,T) =

Cry] J. (To. ,h)
1

d f[x-P(t)J w(t;a,h) dF
dt L=T

(The notation IC refers to Influence Curve). Where the sub-,

script for w is added to emphasize its dependence on the i-th

response curve.

Comparison between the influence curve of estimators for

different values of T are useful. The usual notion of an influ-

ence fu\Iction is a furve in x; however, since x takes only two

values this notion is not useful for item response theory. On

Ole othep hand, these influence functions are curves in T;
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however, graphs of the influence function are not as easily

manufactured as they are for the problems typically investi-

gated by statisticians. The difficulty lies in the dependence

of the denominator on the value of T.

A few examples of the influence curves are plotted in Figure

1 as functions of P(T). The general form of the curve for h

strictly greater than one, excluding the mle, approach zero asymp-

totically as T approaches infinity. This indicates that outlying

responses have less influence for very large or very small abilities.

The behavior of the influence function for h equal to one, the mle,

reveals that the largest influences are obtained for T approaching

negative or positive infinity.

Compared to the mle, the influence function of the 'h-estimator

is redescenAng; that is, for either response, the influence starts

at zero, rises and returns to zero. Hence, the property of influence

functions of h-estimators are analogous to those of redescending M-

estimators for the location problem in standard statistics.

Conjectured Asymptotic Normality of h-estimators

If F
n
has the limiting value F, then the one-term Taylor .

expAnslon entails

T(Fn) = T(F) EIC(Zi; F,T) R(Fn,F), where R(Fn,F) is

the reaminde.r term dep'ending on F
n
and Fl±_WE_Lave denoted

to be a random triplet with-distxibution F. We would expect,

for heuristic reasons, that n R(F
n
,F) converge o zero. Conse-

quently, n2[T(Fn) - T(F)1 would have the same limiting
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n ZIC(Z ;F,T). We state the consequences of these results

as a theorem.

Theorem If the response and items are sampled so that Z. are

h
independent replicates from F and n2R(F

n
,F) converges to Zero

then n [T(Fn) - T(F)] has a limiting normal distribution with

mean 0 and variance

A(F,T
:a

2
[x-P(T)]

2
[P(T)Q(T)]

2(11-1)
dF

[dia[x-P(t)]F(t)Q(t)h-ldF
dt

]2
t=T

(3.5)

In the following, this theorem will be proven with sufficient

conditions weaker than n2R(F ,F) converging to zero.

'Asympt tic Properties

We will describe a probability structure that conveniently

yields the asymptotic behavior of the ability estimators in

item response theory. Let Z be the set of all triples z=(x,P,a)
_

as x=0 or 1, P ranges through a finite set P of non-decreasing

maps from the entire real line to the closed unit interval, and

a ranges through a positive finite set A. The set z, imbued with

the discret5 topology on its power set, is the sample space.

Distributions over Z are defined as follows. If (f(z), zeZ1 is

a set of positive weights, summing to One, for a subset B, the asso-

ciated distribution function F on Z is expressed as F(B)
=EzcBf(B)

Let zl, ...,zn.be a random sample from F, then the empirical distri-

bution function is F
n
(B)=Z

i=1,n
d(z ,B)/a, where.d(z,B)=1 if zeB and

0 otherwise. F
n enjoys several properties following from the Strong
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Law of Large-Numbers and the Central Limit Theorem: a) for any real

valued function g on Z, fg(z)dFn(z) converges to fg(z)dF(z) wpl, and

b) if fg
2
(z)dF is finite, n½ [fg(z)dF

n
(z)- fg(z)dF-(z)] is asymptot-

2
ically normal with mean zero and variance f[g(z)-g] dF(z) where

g = fg(z)dF(z). The latter integration is the expectation of g with

respect to F denoted by Erg. In the foregoing we consider

g(z)=g(z;0=a[x-P(t)][P(0[1-P(t)]]h-1.

befine mF(t) = Erg(Z..,t). We assume throughout that Z1..,Z is

a random sample from F with empirical distribution funCtion F.

Theorem 1 (Consistency) Let to be an isolated rooh of m(t) = 0.

Suppose that P(t) is continuous in t for each P in P. If Tn is a

solution sequence to the empirical equation (T) 0, then T
n

converges to t
o

wpl.

Proof of Theorem 1 Since P(t) is continuous, mF(t) is continuous in t.

Therefore, for each 6 sufficiently small mF(t
o

6) and mF(t
o
+ e) are

opposite in sign. Without loss of generality assume my(t
o

6)<0< my(t
o
+ e).

Since g(Z;t) is bounded in z for each t, the Strong Law of Large

Numbers implies my (t) + m(t) wpl. Hence

lim n +, Pfmr (t
o

6) < 0 < my (t
o
+ 6), for all m>n} = 1.

But this implies

lim n 4°° P(t
o

-6 < T < t
o
+6, for all m >n) = 1.

The proof is complete.



-10-

Remark 1 Theorem 1 is valid even for a model of item responses

that is/different from the assumed Model. The simplest way to

see this is to allow F=F* where F* induces a random variable P* in

P such that EF*(X1P*)=P*.

Remark 2 Even if t
o

does not correspond to T, the true ability, the

solution sequence T
n
will converge t

o'
and t

o
can not correspond to

T unless mF*(T)=0.

The final remark brings us to our next theorem about the

magnitude of the difference between the true abilityT and the' limit

of a sequence of estimators under an alternative model. Let F* be

a distribution over Z induced by a mapping from P into P denoted by

P*. The item response curve alternative to P is P*(P) and its value

at t is denoted by P*(P)(t). Define m*F(t) = EFa[X-P*(P)(t)][P(t)Q(t)]
h-1

.

Define the true ability to be a solution to m*
F
(t

)
=0.

Theorem 2 (Asymptotic Bias) Let to be a solution to m (t) = 0 and let

T be a solution to m*
F
(t) = 0. Then

T-to mF(T)/[dmF(t)/dt1 ]

"1
where !t-t < !T-t I . 1

1

Proof The Mean Value Theorem implies mF(T)F(to) =

(T-t
o
) dm (t)/dtttii where

=

It1o-t 01 < 1T-t 1. The theorem follows fro l. the definition of t
o

.

The next corollary insures that any solution sequence converges 1

with probability one. This is a strong rest,Ilt that indicates how strcing

the standard assumptions of item response theory are.

1

1
_,t)



Corollary 1 Suppose P(t) is continuous in t for each P in P. Assume

that for each P in P, P is a cdf in t. If T
n

is a solution to the

empirical equation my (T
n

) = 0, then T
n

converges wpl.

ProofWemustshowthatm_.(t) = 0 always has a solution for any F*
F*

that is the limit of F. Suppose that myk(t) y 0 for any t. Then F*

gives positive probability to a set of P* and P such that P*(T)-P(t) 0

for all t. Since 0.-< P*(T) < 1, the last condition leads to a contradic-

tion to the assumed conandity of each P.

We now turn to the distributional properties of a solution sequence.

Theorem 3 (Asymptotic Normality) Let t
o
be an isolated ropt of m(t) = 0.

Suppose that dP(t)/dt is continuous in t uniformly in P. Let Tn be a

solution sequence of mF = 0 satisfying T
n
4t

o
. Then T

n
is asymptotically

normal with variance A(F, t
o

) given by

A(F,t0) = Eg (Z;t
o
)/[Eg'(Z;t

o
)]

2

ProofofTheorem3Fornotationalconveniencedefineu.1 (t) = g(Z ;t) =

a
i
[X.-P

i
(t)][P (t)(1-P

i
(0]

h 1
. Since dP (t)/dt is continuous, we

may apply the Mean Value Theorem to obtain the exbansion

ui (T)-u(t) = (T-t) du(t)/dtlt=t

where -t
o
I<IT

n
-t

o
. Sice my (

Tn
)=0, we have

n (T -t ) =
n o

Eui(to)

vl-ld u.(t)
t=tn
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The Central Limit Theorem implies that the numerator is asymp-

totically normal with mean 0 and variance EFg
2
(7,,t0). The Strong

Law of Large Numbers, the hypothesis that dP(t)/dt is uniformly

continuous, and Tn÷t o
imply that the denominator converges to

E
F

) wpl. The 'proof follows from Slutsky's Lemma.

We will use these theorems to compare estimators in the

next section.

5. Efficiency Comparisons

Recall that when h=1, the h-estimator corresponds to a certain

mle associated with a two-parameter logistic model hgving

discrimination parameters equal to the corresponding values of a

that appear in (2.1). Consequently, it is easy to determine the

asymptotic efficiency of the h-estimator relative to this mle.

The first comparison is made under the associated two-parameter

logistic model and the second comparisons are made under a neighbor-

ing two-parameter logistic model. The first model corresponds to

the one appearing in Example 1. The sampling scheme consists of

choosing from the designated items with equal probability.

Table 2 displays the asymptotic relative efficiencies when the

true F* corresponds to the assumed model. For the computed values of

h, the h-estimators lose no more than 10 percent efficiency, or one in

ten items is wasted.

Table 3 displays the asymptotic relative efficiency when the true

F* generates a P*(t)=P(t-0.1) for each sampled item. This is equiva-
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lent to uniformly shifting the difficulty parameters to the left

by 0.1, or 6 percent of the total range of the difficulty parameters.

In computing the efficiency we have used the approximation to the

asymptotic bias given by TheOrem 2 in order to compare the mean

squared errors. The h-estimators outperfoiffi the mle for each

computed value of h.
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7. Tables

,Table 1: Values of the h-estimator at chosen response
sequences

Responses

X l(MLE) 1.5 2 3 4

1111100000 0.11 0.11+ 0.14 0.13 0.12

1111100001 0.58 0.41 0.22 0.20 0.19

Table 2: Efficiency comparison of h-estimators to the
MLE under the assumed model

1.5 , 2.0 3.0 4.0 5.0

EFF .99 .98 .95 .92 .90

Table 3: Efficiency comparison of h-estimators to the
MLE under a neighboi-ing mOdel

1.5 2.0 3.0 4.0 5.0

EFF 2.24 4.83 19.15 51.46 82.62
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