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Abstract

New ability estiﬁétorslhavé been proposed by Wainer and Wright (1980)
and Mislévy and Bock (198l), that are resistant against guessing and
careless behaviors exhibited by some examinees. This paper presents‘
another class of ability estimators that are resistant to-departures
from the underlying assumptions concerniné guessing and carelessness.
‘In addition to computing tge asymptotic relative efficiency of such

estimators, this paper eyaluates estimators by comparing their
. "

influence curves (Huber, 1981).
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Introduction

New ability estimators have been proposed by Wainer and Wright
(1980) and Mislevy and Bock (1981), that are resistant against
guessing and careless behavior exhibited by some examinees. This
paper presents another class of ability estimators that are resistant
to departu;eS’from phe underlying assumptions concerning guessing
and carelessness. In addition to computing the asymptotic relative
efficiency'of such estimators, this paper evaluates the estimators
by comparing their influence curves (Huber, 1981).

It is of some importance to note two difficulties that have
had to be overcome in the derisation of the asymptotic behavior of
the estimators. The first is that the desired results do not follow
directly from those for marimum likelihood estimators since the new
class of estimators include some estimators that are not maximum
likelihood. 1In fact, the asymptotic behavior has been derived from
first principles. The secondvdifficulty is that item responses are

not identically distributed random variables when the items differ

“in difficulty, discrimination, or guessing characteristics. This

has been overcome by assuming the items to be randonmly sampled from
a parent population.

Definition and Motivation of a New Class of Estimators

Let x X be independent dichotomous item responses such

IERERE

that for a candidate with ability T, a real value parameter,

| | | i I
Pr(X,=x,|T) = [P, (T)] “[1-P,(T)] ,X. = 1 or 0 where the P, (")'s,
i i 1 1 1 S
called item response curves, are possibly different mappings from

the real line to the unit interval [0, 1]. For convenience the

subscript i will be deleted.

By
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. The proposed estimator of T is defined as the solution to the

equation-
. h__l .
ta[x - P(t) I[P(D)Q(T)]" "=0 ~ (2.1)
/ .

where the sum is over all items, Q=1-P, the a's are given but
possibly different constants, and h is a real number greater than
or equal to 1. In the foregoing we refer to these estimators as

h-estimators.

The value of h is chosen according to how much robustrness is

~desired; the greater the value of h; the more robust the estimator _—

is. Guidelines for the choice of h depend on the value of the 5 /

estimator's asymptotic Qariance that can be tolerated in order to \
reduce the influence of individual responses on the estimator. More
discussion on this topié will follow in the next several sections.

Under certain circumstanées, h-estimators correspond to maximum
likelihood estimators (mle's). 1If, in addition to the above assump-

tions, dP(t)/dt = P(t) exists for each item, the mle is the solution

to

P [x-P(T) ][P(T)Q(T) =0

Furthermore, if all. P satisfy the two-parameter logistic model :

In[P(t)/Q(t) ] = a(t-b), !
then '

}:’(t:) = aP(t)Q(t).

So for h = 1, the h~estimator is the mle for the two-parameter logistic model.

Both h-estimators and mle's are special tases of more general kinds of
estimators: those that are solutions to
w(T) [x-P(T)] = 0,

tor some function w, e/

4




For various kinds of w—functions we have:

1) An h-estimator is the special case

w(t) = alP(£)Q(e) 1L

2) An mle arises when
w(t) = dlnlP(£) /Q(E)1/dt.
We will denote the weight functions of the h-estimators by
w(tsa,h) = alp()Q(e) 1"t (2.2)
A priori, h-estimators with reésonable Qeight functions shéuld
possess good robustness properties. First, they should not be overly
influenced by any one item respongé and second, they should Le stable
when the true model for response departs from the assumed mode for

response. Reasons for these assertions are discussed as follows.

h-estimators should resist the influence of single outlying responses
Suppose a new item is administered and that h is greater than one.

(T ) is near O,

If Tn’ based on n responses, is already such that Pn+l n

but x 1, then [ (T) Iw(T;a h) is a relatively small contri-

nt1l Xkl Tl ntl’

bution to the sum in (2.1) defining the new estimator Tn+l' So the new

observation will not dramatically change the old estimate of T. A similar

finding holds for Pn+l(Tn) near 1, but X 41 0, since the sum in (2.1)

+1
is syymetrlc in the value Pn+l'
Example 1 Suppose the model for item response is the logistic model
with bi =-0.8 to 1.0 by steps of 0.2 and ai=l. Table 1 displays the

various values of the h-estimator for two item response sequences: one

without an outlier and one with an outlier. The h-estimators are less

o))




affected by the outlier than the mle, (h=1). Further, the effect
is smaller, the larger the value of h.

h-estimators should be insensitive to departures from the model

Suppose the true model is P* unequal to P for each item.
One could retain the old weight,functibn so that the estimator
remains resiétant to outliers, but solve'
I[x-P*(T)] w(T;a,h) = O ) (2.3)
i for a readonable estimator of ability. The equation (2.1) is
equal to the above equation plus the term
[P*(T)~P(T) ] w(T;a,h)
added to its right hand side. If this term is small, then =olutions
tuo (2.1) are close‘to solutions to (2.3). Since this term gets smaller
as h gets larger; we expect h-estimacors to be robusg to departures
from the moéel.
In fact, the property described is precisely continuity of the
estimator wnen viewed as a function of the Pi's. We show in the
foregoing that h—estimators‘are continuous functions under the

N
proper mathematical setting.

3. (The Influence Function and Other Heuristics

The influence function is a useful tool in robust statistics.

Not only does it allow the evaluation of the influence of outliers

4

on the estimator under investigation, it also allows a heuristic
derivation of the limiting law of its sample distribution function

(Hampel, 1968; 1974: Huber, 1981). Of course, the result must be
) | |

}

4
checked with a rigorous mathematical proof.

\
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The Influence Function of the h—estimator

For general statistical estimators, the derivation of the
influence function is facilifated by viewing the estimator as a
function of  the probability distribution function F of the observa-
tions. Then the influence function is derived from the Gateaux
de§ivative response (ﬁdﬁer, 1981) of the estimator functioﬁ, T(F),
at\a distribution function F in the direction Q:

| .

T(G3F) = lim T((1-8)F+sG)=T(F)
S-*0 S

‘ Thg last‘ékpression is the ordinary derivative of T((l-s)F+sG)
with respect to s.  (Further disdussion and references will be found
in Huber (1981) pages 13 and %?.) The influence function at ZO is
the Gateaux derivative in theldirection, G(z) = d(z, zo), which is
the point-mass at zé.

The difficulty in determining the influence function of item
ability estimators lies in representing them as functions of the
probabilit} distribution functions of the observations. The defining
equation (2.1) relates each value of the gstimator to every §et of

values of item responses, item resnonee curves, and constants:

z, = (x,, P., ai), i=l, ..., n. Denote the point-mass at zy

i i i

as above, and define the empirical distribution function as
Fn(z)=2d(z, Zi)/;' Clearly, the estimator ‘defined in (2.1) depends
on Fn since (2.1) is equivalent to

f1x-P()] w(T3a,h)dF_=0. (3.1)

| e
.




-

Denote thisxdeggpdencehby the functional notation T=T(F )

The function T(-) will be extended to any probability mass

n
function F by replacing Fn by F in (3.1).
[[x=P(T(F))] w(T(F);a,h)dF=0. ’ (3.
'Since the functional notation is defined implicitly,
AN

substitution of (l—s) F+sG for F in (3.2) and chain—ru&eﬁ\\\
differentiation with respect to s vields an equation involv-.
ing the Gateaux derivative:

T d SIx=PCt)] w(t;z,h)dF!
dt

: B
=T |
|

L ()
+ [ [x=P(T) ] w(Tsa,h) (dG-dF)=0.

where T=T(F). Because (3.2) is satisfied, letting C=d(z,2.)
: i

}n'(3.3) vields the following influence function:

I B A N
4 Sxp(0)]
dt

IC (zi;F,T)

(1.4)
w(t;a,h) drj

t=T
(The notation IC refers to Influence Curve).

Where the sub-
seript tor w is «dded to emphasize its dependence on the i-th
response curve.

Comparison between the influence curve of estimators for
different values of T are useful.

The usual notion of an influ-
ence fuvction ig a rurve in
\

N

x; however, since x takes onlv two
values this notion is not useful for item response theory. On

4
¥
}
%

the other: hand, these influence functions are curves in T;
kY
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however, graphs of the influence function are not as easily
manufactured as they are for the problems typically investi-
gated by statisticians. The difficulty lies in the dependence
of the denominator on the value of T.

A few examples of the influence curves are plotted in'Figure
1 as functions of F(T). The general form of the curve for h
strictly greater than one, excluding the mle, approach zero asymp-
totically as T approaches infinity. This indicates that outlying
responses have less influence for very large or very small abilities.
fhe behavior of the influence function for h equal to one,.the mle,
reveals that the largest influencee'gre obtained for T approaching
negative or positive infinity.

Cempéred to the mle, the influence function of the ‘h-estimator
is redesceunding; that is, for either response, the influence starts
at zero, rises and retu}ns to zero. Hence, the property of influence
functions of h-estimators are analogous to those of redescending M-
estimators for the location problem in standard statistics.

Conjectured Asymptotic Normality of h-estimators

If Fn hag the limiting value F, then the one-term Taylor
expansion entails

T(Fn) = T(F) + ZIC(Zi; F,T) + R(Fn,F), where R(Fn,F) is

the reaminder term depending on Fn and EL__jkLigw%raenoted

‘to be a random triplet witﬁ\dist;ipution F. We would expect;
p e .

7
i —

. . s
for heuristic reasons, that an(Fn,F) ce;;;;EES\LQ\EEES;\ Conse~

1 . .
quently, nZ[T(Fn) —~ T(F)] would have the same limiting valﬁe\QQ\

\\.




1, .
n?IC(Z ;F,T). We state the consequences of these results
l .

as a theorem.

‘Theorem' If the response and items are sampled so that_Zi are
L. . ,/
independent replicates from F and an(Fn,F) converges to zZero

1. . .
then nZ[T(Fn) - T(F)] has a limiting normal distribution with

mean 0 and variance

ra?-p(m 12 e (maer) 1PV ar

[dra[x-P(t)]P(t)Q(t)h-1gF
dt t

(3.5)

AF,T), = —T]2

In the following, this theorem will be proven with sufficient

1.
conditions weaker than an(Fn,F) converging to zero.

4, 'AsymptS;;:\Properties
Y

We will describe a probability structure that conveniently

vields the asymptotié behavior of the abilityfestimators in ‘ Pl
item response theory. 'Let Z be the set of all triples z=(x,P,a) \
as x=0 or‘;, P ranges th;Ough‘a finite set P of non—decreésing
maps from the entire real line to the closed unit interval, and
a ranges tﬁrough a positive finite set A. The set zZ, imbued Qith
the discretq/topolégy on its power set, is the sample space.
/
Distfibutiéns over Z are defined as follows. If {f(z), zeZ} is

i

e a set of positive weights, summing to one, for a subset B, the asso-

ciated distfibution function F on Z is expreséed as F(B)=% _ pf(B)

Let Zys .,zn'be a random sample from T, then tne empirical distri-
bution function is Fn(B)=Z i=1 nd(zi,B)/u, where,d(z,ﬁ)=l'if zeB and
. . . - ] . :

0 otherwise. Fn enjoys several properties following from the Strong

fo
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Law of Large Numbers and the Central Limit Theorem: a) for any real

valued function g on Z, fg(z)an(z) converges to JSg(z)dF(z) wpl, and

5

b) if fgz(z)dF is finite, n [fg(z)an(z)* fg(z)dF(z)] is asymptot-

. -2
ically normal with mean zero and variance /[[g(z)-g] dF(z) where

g = fg(z)dF(z). The latter integration is the‘expectation of g with

respect to F denoted by EFg. In the foregoing we consider. :

8(2)=g(z;0)=alx-P(0) T [R(6) [1-2 () 11", | =
Define mF(t) = EFg(Z;t). We assume throughout that Zi;;..,znm;s -~

a random sample from F with empirical distribution fundtion F .
Theorem 1 (Consistency) Let to be an isolated root of mF(t) = 0.
e Suppose that P(t) is continuous in t for each P in P. If Tn is a

solution sequence to the empirical equation m, (T ) =0, then Tn
converges to t wpl.
)

N |
\
_ |
Proof of Theorem 1 Since P(t) is continuous, mF(t) is continuous in t. | }
B ) h \
\

)

Therefore, for each € sufficiently small mF(to* €) and mF(to + ¢) are

, , {on. , , ~ + o).
opposite in sign. Without loss of generality assume mF(tO £)<0< mF(tO £)

Since g(Z;t) is bounded in z for each t, the Strong Law of Large
Numbers implies m, (t) » mF(t) wpl. Hence

n
lim n - P{mF (to* g) <0 < m (to+ g€), for all m>n} = 1.
n : n . .

But this implies

limn »» P{t -e < T < t +e, for all m >n} = 1.
o m o /

\

The proof is complete.
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Remark 1 Theorem 1 is valid even for a model of item responses

- that is”/different from the assumed model. The simplest way to

see this is to allow F=F* where F* induces a random variable P* in

P such that EF*(X[P*)=P*.

Remark 2 Even if to does not correspond to T, the true ability, the

e -
solution sequence Tn will converge to’ and to can not correspond to

T unless mF*(T)=0.

The final remark brings us to our next ﬁheorem about the
magnitude of the difference between the true ability‘T and the limit
of a sequence of estimators under an aiternative model. Let F* be
a distribution over Z induced by a mapping from P inﬁo P denotgd by

P*. The item response curve alternative to P is P*(P) and its value

-

at t is denoted by P*(P)(t). Define m*F(t) = EFé[X—P#(P)(t)][P(t)Q(t)]h—l.

Define the true ability to be a solution to m*F(t)=O.

Theorem 2 (Asymptotic Bias) Let tg'be a solution to’mF(t) = 0 and let

T be a solution to m*F(t) = 0. Then
T-t, @ mF(T)/[de(t)/dt’ t=tl] ' /

v

where [t,-t | < e | o . &/

Proof The Mean Value Theorem implies mF(T)léF(to) =
. ll
(T-t_ ) dm (t)/dt| _ . where e / >
> F TR ; _

ltl—tO{ < ET—tOI. The theorem follows froz the definition of £y .

I

P

The next corollary insures that any solution sequence converges
I .

with probability one. This is a strong resylt that indicates how strdng

N
the standard assumptions of item response theory are.
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Corollary 1 Suppose P(t) is continuous in t for 'each P in P.» Assume
that fo? each f in P, P is a cdf in t. If T, is a solution to the
empirical equation mfn(Tn) = 0, then Tn converges wpl.

Proof We must show ;hat mF*(t) =0 always has a solution for any F*

that isuthé limit of F_. Suppose that m,(t) # 0 for any t. Then F#
gives positive probability to a set of P* and P such that P*(T)—P(t)'¢ 0
for all t. Since O.< P*(T) < 1, the last condition leads to a contradic-
fion to the assumed céhﬁindiéy of each P.

We now turn to the distributional prbperties of a solution sequence.
Theorem‘3 (Asymptotic Normality) lLet to be an isolated ropt of mF(t) = 0. |
Suppose that dP(t)/dt is cbntinuous in t uniformly in P. Let Tn be a
solution sequence of m (t) = 0 satisfying Tn+to. Then Tn is asymptotically

n

normal with variance A(F, to) given by
At ) = EgP(z5t )/ [Eg” (23t )12
’O ’O 9‘ ,O

Proof of Theorem 3 For notational convenience define ui(t) = g(Z ;t) =
- i

X h-1 ., , ,
ai[xi—Pi(t)][Pi(t)(l—Pi(t)] . Since dPi(t)/dt is continuous, we

may apply the Mean Value Theorem to obtain the'expansion

U (T D=4, (e ) = (T -t) du, (6 /at]

t=t .
. n A
where ltn—tol<|Tn—tol . Si9ce an(Tn)=0, we have
Y
1. n* I (t )
n® (T -t ) = U? )0
. CoL _l_z—q_ W t ‘ -
" de © t tn
rowp
17
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The Central Limit Theorem implies that the numerafor is asympF
totically normal with mean 0 and variance EFgZ(thO). The Strong
Law of Large Numbers, the hypothesis that dP(t)/dt is uniformly
continuous, and Tn-+to imply that the denominator converges to
EFg’(Z;tO) wpl. The'proof follows from Slutsky's Lemma.

We will use thése theorems to compare estimators in the
/

next section.

5. Efficiency Comparisons

\\ Recall thatr when h=1l, the h-estimator corresponds to a certain
‘mle associated with a two—parameter logistic model having
discrimination parameters equal to the corresponding values of ai
that appear in (2.1). Consequently, it is easy to determine the

asymptotic efficiency of the h-estimator relative to this mle.

The first comparison is made under the associated two-parameter

“

logistic model and the sééond comparisons are made under a nelghBor—
ing éwo—parameter logistic model. The first model éorresponds to
‘the one appearing in Example 1. The‘samplingvscheme cqnsiéts of
choosing_from‘the designated items with equal probability._

Table 2 displays the asymptotic relative efficiencies when the
true F* corresponds to the assumed hode}. For the computed vaiues.of
h, the h—estimators lose no more fﬁan 10 percent efficiency, or one in
ten items is wasted. |

Table 3 displays the asymptotic relative efficiency when the true

F* generates a P*(t)=P(t-0.l) for each sampled item. This is equiva-

ERIC

Aruitoxt provided by Eic:




lent to uniformly shifting the difficulty parameters to the left

A

"y by 0.1, or 6 percent of the total range of the difficulty parameters.

\

\In computing the efficiency we have used the approximation to the

'asymptotic bias given by Thedrem 2 in order to compare the mean

| . :

}squared errors. The h-estimators outperform the mle for each

computed value of h.
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7. Tables

Jable 1: Values of the h-estimator at chosen response

sequences
Responses A‘ h

X ) 101E) 1.5 | 2 3 4
1111100000 1‘ 0.1l | 0.11+ 0.14 0.13 0.12

1111100001 0.58 0.41 0.22 0.20 0.19

Table 2: Efficiency comparison of h-estimators to the
MLE under the assumed model -

h 1.5 , 2.0 3.0 4.0 5.0
EFF .99 .98 .95 .92 .90

Table 3: Efficiency comparison of h-estimators to the
MLE under a neighboring model

h 1.5 2.0 3.0 4.0 5.0
EFF 2.24 4.83 19.15 51.46 82.62
. l’) cl "
3 Fou A .E

A
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