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Abstract

The purpose of this paper is to review the researgh on how children
acquire basic addition and subtraction concepts and skills. The re-
view starts with an analysis of major theories of the development of
basic number concepts. Two major lines of theories are identified:
logical concept theories and quantification skill theories. The most
notable ‘example of a logical concept theory is represented by the work
of Piaget while the work of Gelman and Klahr and Wallace provide the
most comprehensive examples of quantification skill theories. Ginsburg's
work attempts to build a bridge between the two approaches. Major
recurring issues In the development of early number concepts are also
discussed. These include the relation between counting and subitizing,
how number conservation develops, and how early number operations affect
the acquisition of addition and subtrdction skills.

The second section of the paper examines research on basic concepts spe-
cifically related to addition and subtraction. By kindergarten most
children understand that joining an element to a set increases its
numerosity and removing an element decreases its numerosity. However,

a complete understanding of basic properties of addition and subtraction,
like i.wversion and compensation, develop over a protracted span of years. ~

Most early research on children's solutions of symbolic addition and
subtraction problems was limited to problem difficulty. Much of the
initial research focused on the relative difficulty of different basic
number  facts. More recently, the emphasis has shifted to an analysis
of children's solution processes. Using a variety of paradigms, a
number of solution strategies based on counting have been identified.
Research on word problems has also been concerned with both problem
difficulty and solution processes. Most of the problem difficulty re-
search has focused on syntax variables. Current research on children's
solution'processes has attempted to make a cqpnection between thg seman-
tlc structure of problems and the processes children use to solve them.
A mounting body of evidence clearly demonstrates that young children
can solve a variety of addition and subtraction problems by physically
modeling the action or relationships described in the problems. These
direct modeling strategies gradually give way to more abstract counting
representations that retain certain characteristics of the initial
modeling strategies. Several simulation models have been developed

to account for the internal cognitive mechanisms that are required for
the observed patterns of development.

The review suggests that a great deal is known about both children's
knowledge of addition and subtraction and how they solve addition and
subtraction problems, but also indicates that there is not yet a clear
picture of how to apply these insights to design more effective instruc-
tion.




INTRODUCTION

The learning of basic addition and subtraction concepts and skills
is a major objective of primary school'mathematics instruction. Because
of the central place it occupies in the mathematics curriculum, there is
an extensive body of research on the teaching and learning of addition
and subtraction that dates back to the turn of the century. In the last
few years, there has been a resurgence of interest in the study of addi-
R tion and subtraction as researchers have found that the techniqﬁes of
cognitive peyshology provide new insights into the processes that chil-
dren use in solving addition and subtraction problems.

The purpose of this paper is to review this growing body of research
on addition and subtraétion. The paper is divided into six major parts.
To provide some backgrourd, the firét section briefly summarizes some of
the major'lines of inquiry on the development of basic number concepts.
The second section deals with children's understanding of basic concepts

underlying addition and subtraction. The third section focuses on addition

and subtraction problems presented in a symbolic context, and the fourth
section examines research on word problems. The fifth section attempts
to synthesize what is known about the general pattern of development of

. addition and subtraction processes, and the sixth section provides a gen-
eral discussion of issues and areas of needed research. The paper limits
its review to research on addition and subtraction with relatively small
numbers. Problems that require the use of algorithms depend on the de-

velopment of place value concepts and are beyond the scope of this review.




THE DEVELOPMENT OF BASIC NUMBER CONCEPTS

In recent’years, there has been an increa;ing interest in éhe
develobment of early number concepts by psychologists. Within the
past few yegrs.alone several major works have been published on th;
subject (Brainerd, 1979; Gelman & Gallistel, 1978; Giosburg, 1977a; v l
Klahr & Wallace, 1976). There are several reascns for this. TFirst,
the developing ability to deal with quantitative concepts has core
to be recognized as a milestone in children's intelleqtqal development
(KrLahr & Wallace, 1976; Piaget, 1952). Consequent%y, the acquisition
pf number concepts provides for the psychologist a\&@gitimate area of :
study in its own right. Second, th~® way in which yoﬁng children learn
to deal with quantitative situations serves as a window to other di-
nensions of cognitive development (Gelman & Gallistel,'1978). Thus,
number concepts provide a vehicle from which to study the growth of the
intellect in general. | L

Due to this prodigious input from developmental psychology, the
initial section of this paper will draw heavily from psychologically
oriented research. The aim of this section is to outline the major
approaches which have been taken in investigating the development of
early number concepts., The purpose is to present the fundamental
theoretical positions which have guided empirical activities in this

.rea rather than to review all relevant research. The discussion

focuses on the development of number concepts prior to symbolization.

It deals with children's ability to quantify sets and to -reason about

//f_ them, However, it stops short of describing the development cof operations

1




with quantities in the arithmetical sense. Borrowing Elkind's (1969)
distinccion, this section deals with operations within sets, like quanti-
fying and conserving, but not with‘operations between sets, like ad&;—
tion and subtraction. It attempts to outline how the development of
basic number concepts might influence the acquisition of arithmetic
operations but leaves the description of the acquisition process itself
to later sections of the paper.

Many investigators have studied the development of number concepts,
each from a somewhat different perspective. However gome important
similarities can be detected. For example, ;ll have used a develop-
mental apprcach. That is, they have focused on the way in which young
children's conceptipn of, and skill with, number changes over time. In
describing th}s development, most investigators have identified two ma-
jor components of children's proficiency with number--ability to quantify
or assign number to specific sets, and ability to reason about number.
While most researchers recognize the importance of these two abilitiles,
they do not all agree on their developmental sequence, i.e., the order
in which these abilitles are acquire&.

This disagreement represents a fundamental difference between the
major positions on the growth of number concepts, a difference which
serves to partition theory and research into two distinct camps. One
assumes that children must acquire certain logical reasoning nbilitiés
before they can apply quantification processzs in any‘meaninéful way,
while the other argues thuat children can reason about number cnly after

they have quantified sets and have specific numerosities in mind. Some

12




of the differences between these positions can be resolved by pointing
to differences in definitions of "number” and differences in tasks used
to assess number concepts. However some basic disparities still rem;in.
The purpose of the following discussion 1s to outline‘these two major
positions. on the development of early number concepts by reviewing the

work of each position's primary proponents.

LOGICAL CONCEPT THEORIES

Several investigators have adopted the position that number is the
outgrow;h of more basic logical concepts. Therefore, the development
of number concepts are believed to depend upon the development of certain
logical reasoning abilities. Foremost among the advocates of this posi-
tion is Piaget (1952). So great has been Piaget's influence in this
area of research that Flavell (1970) concluded, "Virtually everything .
of interest that we know about the early growth of number concepts grows
out of Piaget's pioneer work in the area" (p. 1001).

To understand Piaget's (1952) view of number concept development,
it is useful to review a critical distinction which Piaget (1964, 1970)
made between logical-mathematical knowledge and physical knowledge.

The first type of knowledge is generated by internal mental processes

while the second 18 achieved by direct contact with the external environ-

ment via sensory perceptions (Steffe, 1976). The first arises from de-

duction and is verifiable by logical reasoning; the second arises from

induction and is verifiable by empiriceal test (Beilip, 1976). The first

generalizes across content, transfers to related problems, and is recon-~
*

° §tructab1e (i.e., is not based on recall); the second is content-specific

and is subject to memory loss (Furth, 1969).

Q , 1:3




For Piaget (1952; see also Beth & Piaget, 1966), number is a form
of logical-mathematical knowledge. As such, the construction of number
is thought to be closely tied to the development of logic. In particular,
number depends upon the logic of classes and asymmetrical relations.
Classes are collections of ubjects grouped together on the basis of a
common quality or attribute, and classification leads to hierarchies
of classes and the notion of part-whole. Relations refer to ways in
which the objects within a class may be compared. The primary activity
here is seriation (arr;Rging the objects in order according to some
continuous attribute) which is based on the asymmetrical relation of
transitivity. The logic of classes corresponds to the cardinal aspects
of number while the logic of relations corresponds to its ordinal aspects.

According to Piaget, children initiaily consider the logical acti-
vities of classification and seriation as separate and independent enti-
ties resulting in a dual system of logic. However, they are eventually
fused into a single system, and a primary xesult of this fusion or
synthesis is the concept of number.

A hallmark of children's growing understanding of number is the
ability to conserve (i.e., to mentally preserve one-to-one correspon-
dence). The principle of comservation is of critical impo?tance in
Piaget's theory and represents the segment of Piaget's work which un-
doubtedly has had the greatest impact on subsequent research. Piaget
(1952) left no doubt about the role he saw conservation to play:

Our, contention is merely that conservation is a

necessary condition for all rational activity.
A set or collection is only conceivable if it




remains unchanged irrespective of the changes
occurring in the relationship between the
elements. . . . Number is only intelligible
if it remains identical with itself, whatever
the distribution of the units of which it is
composed. (pp. 3-4)

He has described a stagewise development of number concepts in
which conservation, seriation, and classification develop in close
synchrony. In the first stage, children are dominated by immediate
perceptual qualities of an event and give little evidence of logical
reasoning. Only gross quantification, absolute quantifying ideas such
as '"more" and "less," are evident, and these are based on perceptual
Judgments. If equivalence is not perceived it is thought not to exist.
As a consequence, children in the first stage do not conserve, are
incapable of seriation, and do not understand simple class inclusion
relationships.

Stage two is a transitional period. Some progress is made on all
fronts so that children can construct series and one-to-one correspon-
dences. But they still have difficulty when either is spatially trans-

formed. Quantification at this stage is "intensive." That is, quanti-

ties cannot yet be combined in the numexrical gense but only compared in

terms of "bigger than" or "smaller than," based on perception. Solutions
come by empirical substantiation rather than by logical necessity.

The third stage brings a series of major breakthroughs.in the child's
thought. The focus on perceptual cues and on the qualities of objects,
which has dominated in the past, now shifts to quantitative aspects. Up

to this point, the objects in a class have been distinguished on the




basis of perceived qualities. Now, however, children are able to sup-
press these quali’ies and the individual elements of a class are seen

to be equivalent in all relevant respects. Their only distinction from
one another is thelr relative position, or order, which is imposed by
the child's seriation. This is the notion of unit, the basic gumerical
concept. All elements are at the same time equivalent (belonging to the
same..class) and different (by virtue of their enumerated position).

Out of these developments emerge the two complementary aspects of
number--cardinality and ordinality. Cardinality refers to the numerous-
ness of a class; all classes which can be put into one-to-one correspon-
dence have the same cardinal value. With the newly acquired ability to
decompose a class into units, the child can now conserve and can under-
stand class inclusion relationships. Ordinality is also fully understood.
The decomposition of a set into units entails the realization that an
object's position completely defines the object.

Along with th; achievement of cardinal and ordinal understanding
comes an immediate synthesis or fusion to form the complete number con-
cept. The child can now identify the ordinal position of an object with
the sum of that object and those preceding it, i.e., its cardinal value.
Once again, Piaget (1952) commented about the close relationship between
numberland logical reasoning, '"the psychological, as well as the logical,
constitution of classes, relations, and numbers is a siﬁgle development,

whose respective changes are synchronic and interdependent” (p. 157).

In summary, Piaget viewed number as a logical-mathematical concept

which is constructed by the child, rather than a physical concept which

16




8 g

is discovered by the child through sensory percebtions. By definition,
an understanding of number requires an understanding of conservation,
class inclusion, and segiation. While Piaget acknowledged that certain
quantifying skills, such as counting, are acquired prior to the full
development of these logical reasoning abilities, he contended that they
take on meaning only with the onset of 1ogica1_thought. Evidence cited
for this position comes from the observation that these quantifying
skills do not help young children to so}ve the logical reasoning tasks.
Thus, the early acquisition of quan;ification skills is believed to make
no significant contribugion to the &evéiopment of a mature number concept.
Other investigators have adopted positions similar:to Piaget's with
regard to the developmental relationship between logical reasoning abili-
ties and quantification skills, but differ with Plaget, either with rgspéct
to their focus of interest or with respect to thelr logical anaiy§is of
the number Eoncept. Brainerd (1973a, 1973c, 1976, 1979) disagreed with
Piaget on the deveiopméﬁtai sequence of the logical notions undérly}ng
number. Pilaget contended that an operational understanding’of number
results from the concurrent development of cardinal and ordinal concepts.
In cont¥ast, Brainerd (1979) believes the ordinal,conéépt'to be a more
desireable Yogical foundation for number, and ordinal number éq be psycho-
logically more basic than cardinal number. While there has bqu\ggysid- '
erable dgbate about what logical foundation for number is most consistent
with psychological reality (Beth & Piaget, 1966; Brainerd, 1973a,.1979;
o

Macnamara, 1975, 1976; Piaget, 1952), Brainerd maintained that ordinal

number concepts emerge earlier than cardinal concepts and that ordinal

Ad
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number plays a more important role in the early growth of arithmetic
concepts. Brainerd proposed the following developmental sequence:
ordinal number-natural number-cardinal number.

While the results of Brainerd's research’ (Brainerd, 1973b, 1974,
1977; Brainerd & Fraser, 1975; Brainerd & Kaszor, 1974) supported the

I

ordinal-cardinal sequence, there are several limitations which dissuade

drawing broad theoretical conclusions from the findings. Larsen (1977)

«

pointed out that the criteria Brainerd used to assess performance is

biased toward detécting developmental sequences vis-a-vis‘'developmental

[N —

synchronies. ‘More tritical, however, is the selection of tasks used
, . \
to measure ordinal, natural, and cardinal number. These concepts are
{

oy

complex, and {attempts to measure ch?ld;en's understanding of them should
therefore include .a cbmpreheﬁsive array of tasks designed to tap each of-
their various components. ﬁrainerd,'however, employs a narrow set of
tasks which do not vreflect the full meanings of these concepts. The
ordinal number prohlems usually involve some form of a transitivity task;
the natural number problems are usually a series of arithmetic number
facts; and the cardinal number problems generally inwplve a conservation-
type task. Tbe centrql question is whether the observed ordinal-natural-
cardinal sequence is a. function of basic competence or simply reflects
differences in difficulty of the selected tasks due to nonessential task
variables. Brainerd (1976, 1979) cited the results of a study by Gonchar

(1975) as supportinghis position. Although Gonchar found the same de-

.velopmental sequence for Brainerd's tasks, a close synchrony was found

when other ordinal tasks were used. Gonchar conqluded that Bfainerd's

[N
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ordinal-cardinal sequence 1s primarily a performance distinction between .

the tasks used to measure each concept.

QUANTIFICATION SKILL THEORIES S

. The theoretical positions of Piaget and Brainerd, while differing
in some important respects, agree that the development of certain logi-
cal reasoning abilities are necessary for the acquisition of a complete .
number concept. Children construct number through the application of N
basic mental operations, rather than acquiring number through the appli-
cation of quantification skills. It is-in this respect that these posi-
tions differ most significantly from those to be reviewed in this section.
Ginsburg (1975, 1976, 1977a, 1977b), like Piaget and Brainerd, be-
lieved that the number concept is not complete without certain reasoning
abilities including conservation. However, Ginsburg's work is directed
toward describing what young children gégldo, rather than characterizing
young children strictly in terms of their intellectual deficiencies.
Ginsburg suggested that the'development of preschool children's
knowledge of number concepts can be portrayed as a progression through
two cognitive systems. Systemul is informal in that it develops outside
of formal school instruction; and it 1s natural since it does not depend
on social transmission or specific cultural experiences. Children who
are operating within th}é c;gnitive system are gble to discriminate |
between numerosities in terms of "qore“ and "less," based on well-devel-
oped perceptual skills. Since these judgments are based on perceptual
cues, changes in things such as length o> density.of the displayed sets
which are inconsistent with actual numerosity may lead to erroneous re-

sponses. Consequently, System 1 does not yield a mature number concept.

[
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System 2, like System 1, is informal, i.e., it develops prior to
formal instruction. However, System 2 is not a natural system since it
depends upon socially transmitted knowledge. Counting is che primavy
characteristic of System 2 and provides the child with a widely applicable
and reliable quantification skill. Ginsburg (1977b) believes that count-
ing plays such an important role in children's concept of number that
even after fofmal instruction, "the great majority of young children
interpret arithmetic as counting" (p. 13).

At first children learn a portion of the number sequence by rote
and then begin searching for rules which will generate the entire
sequence. Eventually, counting becomes a rule-governed activity, but
its consistent and accurate application depends upon the development
of logical reasoning abilities which are necessary to make one-to-one
correspondences between the counting numbers and the objects, and to
plan strategies for enumerating each object once and only once.

Without these logical abilities children are believed to commit
certain predictable errors. First, number is treatred as a name rather
than an aribtrary and temporarily assigned label. This leads to the
erroneous assumption that the order in which the objects are counted
makes a difference. Counting is qlso tied to concrete contexts and is
applied only to collections perceived to be homogeneous. Finally,‘the
dependence on perceptual cues reappears when the cues are salient; and
reliance on the more accurate counting skill is abandoned.

Counting skills first are applied successfully to small collec~
tions and then to larger ones. They can be used early on to discriminate

between two static sets (i.e., to judge more, less, or equal) even if the

v 20
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perceptual cues are misleading. However, prior to the development of
the required logical reasoning abilities, counting is not helpful in
solving Piaget's conservation task. Consequently, the counting skill
itself is believed to be insufficient for acquiring a complete rumber
conggpt. "A mature concept of number requires more than just counting
or tﬁg appropriate number language: it requires mature thought"
(Ginsburg, 1975, p. 136).

’ Wnereas Ginsburg acknowledges that conservation and other basic
logical reasoning abilities plag a significant role in the development
of a complete number concept, other theoretical approaches propose that

’children's concept of ‘number érows strictly out of the acquisition and
application of certain quantification skills. Number concepts do not
depend on the development of more basic logical reascuing abilities, in
fact it is the other way around. Gelman (1972b, 1977, 1978; Gelman &
Gallistel, 1978) presented one of the more carefully reasoned and docu-
mented statements of this position. She began by emphasizing the distinc-
tion (also made in this paper) between processes of quantification and
processes of reasoning. She distinguished further between reasoning
about specified numerosities (collections that have been quantified) and
unspecified numerosities. To Gelman, the definition of a number concept
does not include operating with unspecified numerosities. Consequently,
a~discussion of number concept development can be carried out entirely
w;i;;h\psf\fontext of numerosities that can be accurately represented.

In fapt; Gelman suggests that touwdo otherwise would shortchange the

child's proficiency in operating with number.

—
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Confining the focus of investigation tonumerosities which the yéung

child can quantify leads to an in-depth ahalf;is of quant%ﬁication skiils
which yield accurate representations. Gelman's ;esearch (Bullock &
Gelman, 1977; Gelman, 1972a; Gelman & Tuéké;, léﬁ?} reflected this empha-
sis. Counting is believed o be the basic and pri;ary quantifica;ioh
skill. It serves to reliably determine the numerosity of sets gndwthere-
by defines the domain Qithin which children ﬁ}rst learn to operate with
number.

The development of the counting skill over the preschool years is
guided by the presence of five céunting principles which define a suc-
cessful counting procedure. The first of these is a one—-to-one corres-—
pondence principle which requires: that each item be assigned one and only
one label. This involves partitioning the objects at each count into
those which have been counted and those yet to be counted, tagging each
item with a unique label, and synchronizing these two activities. The .
second counting principle is the stable-order rule. This points out the
need to use the same number list for every new count. The list need not
be the conventional number list; it need only contain the same tags,
assigned in the same order each time a collection is counted., The third
principle is the cardinal principle. This says that the final tag
applied to a collection identifies the numerosity of that collectinn.

The first three principles describe the counting mechanism; the
fourth generalizes these "how-to-count” principles to any collection of

physical and nonphysical entities. This abstraction or "what-to-count"

principle concerns the range of applicability of the first three. The

22
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fifth and final principle 1s one of order-irrelevance. t"I‘h'j.s principie

states that the order in which the items are tagged has no effect on

the counting process. It includes the id;a that a counted item does

not permanently retain the number name which it was assigned and that

the same cardinal number results regardless of the order of enumeration.
These five counting principles are believed to form a scheme, in

the Plagetian sense, which motivates and guides the child's developing

counting behavior. A unique aspect of Gelman's theory is the conjecture

.

that these principles are "wired in" and unfold with development, much
5

as Chomsky's (1965) language principles (Gelman & Gallistel, 1978).

Thus, the principles are believed to precede acquisition of the related

skill so that children's behavior is rule-governed rather than cépricious.

In other words, young children possess counting priunciples in search of

appropriate skills, Gelman's conjecture about the origins of these

principles also means that development 1is primarily a matter of perfecting

skills rather than acquiring new principles. More efficient and accurate
execution of counting skill is in fact seen to be the major tafﬁéfjof
preschool children's number concept development.

The five counting principles emerge in an identifiable sequence.
Children first show evidence of the stable-order principle, followed by
the one-to-one correspondence principle and the cardinal principle. The
abstractign principle is also presumed to become functional at about this
time. The development of these how-to-count and what-to-—count principles
overlap to a significant degree, but it is only after they are well-

established that the order-irrelevance principle appears. As Gelman

noted, this principle involves a gocd deal of reasoning as well as skill
"

23




- 15
<

execution. Consistent with the position that quantificatioh skills pre-
cede reasoning about number, Gelman andrﬁallistel (1978) s;ggested that
“being a reasonably good counter is a necessary but not a sufficient con-
dition for getting a high score on the 'doesn't matter' [order-irrelevance]
test" (p. 148).

Several behaviors accompany the development of the counting procedure.

First, there seems tc be a move from overt to covert action as the counting
routine becomes more efficient and eriable. Initially, children point
when counting, possibly;to help coordinate the one-to-one principle or

to keep attention focused on the task. Counting aloud is also a popular
technique which may secve the same function. As counting becomes routin-
ized and requires less attention, child¥en dispense with assigning all

but the last tag (the cardinal number) aloud.

This description is sebﬁkingly similar to Davydov's (1975)
characterization of the counting process. Initially, counting depends
upon the presence of objecﬁs and exaggerated hand movements. With prac-
tice the hand movements become abbreviated and are eventually replaced
by counting aloud, often accompanied by slight head movements. These
overt actions finally disappear as counting becomes internalized. Thus,
the development of the number concept involves the gradual internaliza-
tion of the counting process.

Aﬁiecond important characteristic of the development of counting
noted by Gelman is its gradual extension from very small to large

numbers. Children can reliably count small sets before they can apply

this skill to larger sets. This fact becomes particularly significant
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when considering the development of reasoning abilities. Since Gelman-
maintains that children can only reason with what they can quantify, it
follows that children's reasoning abilities are first operational with
small numbers and only gradually extend to larger numbers.

»

The child's arithmetic reasoning is intimately related
to the representations of numerosity that are obtained
by counting. The domain of numerosities about which
the ¢hild reasons arithmetically seems to expand as
the child becomes able to count larger and larger
numerosities. (Gelman & Gallistel, 1978, p. 72)

Gelman identified three reasoning principles which govern the way
children think about number once it has been abstracted from the set.
The first concerns relations and the abiliﬁy to recognize equivalent and
nonequivalent numerosities. Equivalence can be established in two ways:
by quantifying each set separately and comparing their cardinal number;,
or by setting up a one-to-one correspondence between elements of the
sets. Although the latter procedure is the one used in formal mathe-
matics, the former is presumably preferred by young children. Gelman
suggests that this difference is the greatest disparity between childre;'s
arithmetic and formal arithmetic. It 1s proposed as a striking counter-
example to the hypothésis that the development of children's cognitive
structures mirror the logical structures of the discipline. It also
assumes that young children can appreciate numerical equivalence before
the& can establish or conserve one-to-one correspondences. Gelman
suggested that Piaget's number consetvation task requires more than rea-
soning about numerical equivalence. It requires reasoning about the

equivalence between unspeclfied numerosities. The first kind of reason-

ing Gelman called arithmetic reasoning and the second kind Gelman called
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algebraic reasoning. Arithmetic reasoning functions within the domain of
quantified sets but not outside of it. Gelman maintained that children
perceive the conservation question to be a question about correspon-
dences and unspecified numerosities and consequently, do not apply their
G?rithmetic reasoning principles to solve the task.

While the first arithmetic reasoning principle concerned relations
between numerosities, the second deals with operations on'numerosities.
Gelman believes that young children\can distinguish between transforma-
tions *that are relevant and irrelevant to quartity as long as they can
determine the numerosity of the set in question. This principle provides

3

the basis for children's understanding of arithmetic operations such as
addrtion apd subtraction and depends unly on a reliable counting proce-
dure. -

. The thi\g arithmetic reasoning principle is closely-related to the
second and says that children not only reccgnize relevant transformations
but that they also can specify an inverse transformation which will
"undo" the effect of the first. 1f a certain number of objects have
been added to a set, the reversibility principle says that this effect
can be nullified\Hy removing the same number of elements from the set.
Again, the existence of this principle depends upoa a counting procedure-
which will reliably determine the numerosity of the set.

In summary, Gelman's approach to the study of early number concepts

was an attempt to uncover and carefully describe young children's pro-

ficiency with number. She made an important distinction between reason-

Ing about numerosities and reasoning about relations or unspecified
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numerosities. ‘The first depends upon, and follows closely behind, the
development of counting skills. Therefore, young children weré pictured
as logical reasoning arithmeticians who deal with small numbers.

As children's principle-governed counting behavior increases in
efficiency it is extended to larger and larger sets, and with this ex-
tension comes the ability to reason with larger and larger numbers.
Reaséning about unspecified numerosities is not a simple extension of
this process but involves a qualitatively new form of thought. This
form of reasoning, suggested Gelman, is not required for the developusent
of early number concepts.

A second line»of research which assumes number to be the outgréwth
of quantification skills can be characterized as a hierarchic skill
integration approach. Adherents of this approach focus on the acquisi-
tion of separate skills such as subitizing (immediate perEeptual appre-
hension of number), counting, one-to-one correspondence, and estimating.
Their concern is with the order in which these skills are acquired and
the rule each of them plays in thé development of the others. While
many researchers haQe attempted to document the acquisition of these
skills (Dixén, 1977; D'™Mello & Willemsen, 1969; Riess, 1943b; Schaeffer,
Eggleston, &ﬁécott, 1974; Siegel, 1971; Wang, Resnick, & Boozer, 1971;
Wohlwill, 1960b; Young & McPherson, 1976), the work of Klahr and Wallace
(1576) reprgignts the most concertea effort to develop a theoretical
rationale for this approach.

Klahr and Wallace (1976) postulated three distinct quantif}cation

processes——subitizing, counting, and estimating. The function of these

ey
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®
processes is to generate quantity symbols for mental manipulation, which

represent the numerosity of a given set. These processes or skills are
hypothesized to develop in an invariaét sequence. Subitizing is the
%ir§t~é}ill to be acquired and comprises the basis for children's under-
standing of number. Subitizing also plays a vital role in the later
development of counting and estimating., These‘latter two skills develop
concurrently, but since estimating requires the acquisition of several
additional component skills, it reaches maturity later than counting.
The developmental goal of the quantification processes 1s to pro-
vide consistent output, i.e., to reliably determine the numerosity of
sets and~generate the ;ame symbol for equivalent sets. The mechanism
whereby this consistency is thought to be achieved places this approach
in distinct contrast to the positions reviewed previoﬁsly._ Klahr and
‘Wallace (1976) believe that the quantification skills become reliable
through the detection of regularities or consistencies in the environ-
ment. This means that children discover number by abstracting it from
empirical activities. Using McLellan and Dewey's (1896) terminology,

number is taken out of objects rather than put into them. The detection

. of regularities is also presumed to explain the way in which earlier

developing skills facilitate the acquisition of later skills. Counting
begins to achieve reliable output as it is applied to small sets within
the child's subitizing range and both processes are observed to vield

the same result. Likewise, estimating develops through detecting the

consistencies of double-processing judgments in overlapping domains.
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Klahr and Wallace's emphasis on the discovery of number through enm-
pirical abstraction contrasts sharply with the positions taken by.Piaget
and Gelman. Pilaget (1952) maintained that children construct number

through the deployment of mental operations. Therefore, for Plaget, the

‘development of number concepts does not depend on spec.iic learning ex-

periences, but ra;her on the development of logical operations and the
reorganization of mental structures. Gelman (Gelman & Gallistel, 1978)
dealt with this problem in yet another way. While she maintained that
quantification skills develop prior to the logical abilities identified
by Piaget, she differed with Klahr and Wallace (1976) on the mechanisms
which motivate their development. Rather than depending on the detection
of environmental regularities, Gelman postulated the a priori existence
of several counting prinf;ples which govern the acquisition process.
Counting is considered the essential quantification skill, and develop-
ment consists of refining the given logical principles.' Gelman believes
that while specific experiences are necessary to bring the counting pro-
cedure within culturally accepted norms (e.g., asing the conventional
verbal sequence "one, two, . . ."), they are not required to demonstrgte
its basic ;ules of usage.

A corcollary of Klahr and Wallace's (1976) approach is that the quan—
tification skills develop gradually and are first operational with small
numbers. The extension from small to large numbers is reflected both in
the developmental sequence of individual skills (i.e., subitizing-counting-
estimating) and in tht increase in proficiency within a particular skill.

The idea that counting 1s first applied correctly to small numbers is

29
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" Zomsistent with Gelman's (Gelman & Gallistel, 1978)--conclusion.—-One

reason for this sequence of development may be that children have diffi-
culty systematically partitioning the objects into "already counted"
and "to be counted" sets as they are counting (Potter & Levy, 1968;
Wang, Resnick, & Boozer, 1971). These component skills develop as other
skills are practiced and eventually automated, reducing their demand on
the child's attention and working memory, and freeing memory space to
concentrate on other skills such as the "partitioning" skill (Schaeffer,
Eggleston, & Scott, 19%4).

Along with the acquisition of skills fo} quantifying individual
sets comes the ability to make comparisons between sets in terms of
relative numerosities. Klahr and Wallace (1976) made an important dis-
tinction between two/compaf@son processes: . one process compares internal
representatiéns or "s&mbols" of the sets which are generated by the
quantification skills, while the other compares the actual entities of
the sets. Since the quantification skills of subitizing and counting
are the earliest emergirg processes with which the child deals with
number, and since these produce intermal representations of sets, the
first comparison processes are those which operate on symbols, ?herefore,
the first method a child has to compare tﬁé numerosities of two sets is
to quantify each set separately and then compare the two numerical
representations of these sets. Dealing with one-to-one correspondences
is not yet possible since it requires a process which compares the external

collections or actual entities of the sets without mediating symbols.

This comparison process is believed to be acquired after the quantification
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skills and the symbol comparison processes are functional. This hypothe-
sized developmental sequence 1is used to explain why children who have'
well-developed counting skills still fail Pilaget's number conservation’
task. The conventional task format elicits the child's immature' corres-
pondence éomparison process or the estimating quantification skill which
is not yetlreliable. In'either casé, the misleading perceptual cues lead
to an erroneous fésponse. .
In summary, Gelm;n and Hallistel (1978) and Klahr and Wallace (1976)
suggested that quantification skills are acquired and become proficient
well before the\logical reasoning abilities identified by Piaget are
qperational. However, they suggested more than that. Not only do these
skills happen to develop earlier than Piaget's reasoning abilities, they
Eggggggziiz_develop earlier. According to Gelman, children can reason
only with wh: : they can quantify. Therefore, the development of reason-
ing abilities depends upon the prior acquisition of éuantification skills.

This is the fundamental difference between the views of Gelman and Klahr

and Wallace, and those 6f Piaget, Ginsburg, and Brainerd.

L]

RECURRING ISSUES
Several imporﬁani issues surrounding the development of early number .
concepts have attracted the continuing interest of investigators. Some
of these were alluded to in the previous discussion, but three issues
:in particular deserve further consid;nation. One is the question of

the iniEial process by which children apprehend number, i.e., the debate

on the developmental primacy of subitizing versus counting. A'seqond

issue focuses on the conservation phenomena--how does this ability come
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about) and why is it important? The third issue bridges the gap between
this section of the paper and the next. It concerns the role played by
the early emerging number skills and concepts in the acquisition of

arithmetic operations and other school-related mathematical skills.

Counting or Subitizing: Which Comes First?

History has recorded a continuing debate on the developmental pri-
macy of counting versus subitizing.A The purpose of this discussion is
not to provide an exhaustive review of this debate since comprehensive
reviews already exist (Brownell, 1941; Gelman & Gallistel, 1978; Ginsburg,
1975; Klahr & Wallace, 1976; Martin, 1951). The aim is rather to high-
light some of the important considerations which have led to the adop-
tion of oné view or the other. As mentioned previously, subitizing is
generally defined as the immediate visual apprehensién of number. The
task used to measure a person's subitizing ability often consists of a
ser;es of cards with a différent numbexr of dots randomly positioned on
each card. The person is shown the cards, one at a time, and is asked
to determine the number of dots on each card without counting. The
criterion is eitﬁer the time it takes the person to respond (measured in
milliseconds) or the error rate given a constant stimulus exposufé time
(e.g., two seconds per,card). \

Graphing the response times for adults on this type of task yields'
noticeably different functions for small numbers than for large ones.
The slope of éhe graph for the set of numbers up to 6 + 1 is relatively
shallow while that for numbers larger ﬁhan six 1s much Steeper. This

discontinuity at 6 + 1 appears whether the criterion is response latency,

\
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confidence of judgment, or error rate (Klahr & Wallace, 1976), a result
often interpreted as evidence that subitizing is used for small numbers
(less than six or seven) and counting i; used for larger numbers.
Klahr and Wallace hyp;thesized further that since young children can
quantify small sets before they quantify large sets, with the critical
value between five and seven, it is likely that children initially
quantify sets by subitizing. -

Gelman and Galliséel (1978) interpreted this evidence differently,
and cited additional evidence to support their position that children

.

couqt before subitizing. They questioned why, if children subitize
small numbers, the slope of the graph is not zero, and furthermore, why
the differences in respongse times follow an orderly progression with an
increase in set size. They suggested that the data are expiaiAéd in~
stead by postulating a rapid counting procedure which is perfected early
on with the amount of practice most children experience. This explana-
tion. is more consistent, they said, Vith the ubiquitous tendency of
young children to count. Evidence for the prevalence of young ch&ldren's
counting has been gathered by Gelman and associates using a "magic" task
(Bﬁllock & Gelman, 1977; Gelman, 1972a; Gelman & Tucker, 1975). Children
as young as two years were found to s#ontaneously use a counting procedure
to quantify small sets.

For Gelman and Gallistel, subitizing is not viewed ag a low level
or primitive process, but rather as a sophisticated procedure for group-

ing objects visually, thereby increasing the efficiency of quantifica-

tion. It is a later acquisition, used by oldér children along with

-

AN
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counting, to quantify visually perceived séts of objects. This idea is
similar to that proposed by Brovnell (1928) . In Brownell's study,
children in grades one, two, and three were shown the conventional stimu-
lus cards for five seconds each. Results showed a gradual increase in .
error rate with the younger children as the number of dots increased,
but a sporadic erroxr pattern for the older children. ' Brownell inferred
from these two error pattern types that younger childrén were counting
to quantify the sets while thé older children were using perceptual
grouping, addition facts, and counting to determine the cardinalities.
Follow-up interviews with individual children were reported to confirm
these hypotheses. Additional evidence was also obtained by readminister-
ing'the stimuli with a shorter (three second) exposure time. Error
rates of the younger children increased whg&e those of the older children
remained the same. Agéin, Brownell interpreted this as evidence for the
increased tendency with age to use subitizing as a sophisticated grouping
procedure in ghe service of more efficient quantification.

The inconclusive natufe of the results and the continuing debate
about the sequence in which ghese skills develop stem from two method-

ological problems. One is the difficulty of inferring process used

from product data. Most of the evidence which bears on this question con-

sists of average response latencies or error rates. The process which
was used to produce these data must be inferred; no direct evidence is
available on the quantification process itself. The problem is that

usually there are several processes which may have produced a given set

of results and is accentuated by the fact that the processes in question
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are executed so quickly that individuai% have a difficult time monitoring
them and giving retrospective accounts of their use. éonsequently, the
investigator gets little help from asking subjects to explain how they
quantified 'a particular set.

A second methodological problém is one of obtaining information
from the population of interest. Since the question conce.ns the earliest
foxm of quantification, the population of interest 1s children less than
two years of age. It is difficult to gather reliable data from children
this ;oung, so the usual approach has bqen to Infer certain performance
characteristics of young children from the results of older subjects.
Coupled with the first methodological problem, this added inference step

makes the evidence equivoééinﬁﬁ'ﬂéégz’

Beforé moving to the second major issue, mention should be made of
another perceptual process which is distinguished from subitizing. This
process involves the comparison of two visually displayed sets rather
than the quantification of a single set. The task requires the subject
to dete;mine which of the two sets has more or less and, therefore, is a
question about relative numerosity rather than absolute numerosity. Young
children are apparently quite proficient in perceptually determining
the larger or smaller of two sets displayed-as randomly positioned dots 4
on two different cards. Ginsburg (1975) cited evidence that children as
young as four years can distinguish the larger of two sets which'differ
by only one or two with set size as large as 15. Estes and Combs (1966)

reported similar data. However, it may be that children are not attend-

ing to number per se in these tasks, but rather to other correlated cues
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such as area or brightness (see Trabasso & Bower, 1968). Therefore,
while this perceptual ability may be unrelated to number, it may be
an early developmental form of children's ability to deal with equality

and inequality relationships between sets.

Conservation of Number: How Does it Develop?

“The failure of children younger than 5 to conserve . . : is one
of the most reliable experimental findings in the entire lite;ature on
‘cognitive development' (Gelman & Gallistel, 1978, p. 1). When and how
does this much discussed and frequently studied phenomenon occur?

Generally, children begin performing successfully on number conser-
Qétion tasks by. age five or six.' A much debgted study by Mehler and
Bever (1967) claimed to show evidence gﬁkcgnsgrvation much earlier than
this, at about two years of age. Although their gené;;l>£;;&1nés have
been replicated (Bever, Mehler, & Epstein, 1968; Calhoun, 1971), several
investigators (Beilin, 1968; Piaget, 1968; Rothenberg & Courtney, 1968;
Willoughby & Trachy, 1972) have conducted related studies and concluded
that Mehler a;a\gever were not dealing with true conservation and that

their findings were artifacts of the nonconventional task they used to

AN
assess conservation.

Whatever the resolution of this debate, it is true that certain

task variables have significant effects on children's number conservation
* \
performance. Task characteristics such as number of objects employed

(Gelman & Gallistel, 1978; zimilies, 1966), interest of stimuli (Roberge

& Clark, 1976), nature of the relatioﬁship between correspondiay objects

AN
(Piaget, 1952), salience of misleading perceptual cues such as length
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and density (Brhinerd, 1977; Miller & Heller, 1976), and experimenter
expectancy (Hunt, 1975) all have been shown to affect task performance,
although contradictory evidence eﬁists in most cases. The one conclu-
sion which can be drawn from this bewildering collection of results is
_that children cannot be labeled simply as conservers or nonconservers.
Young children often conserve number under some conditions but not under
others. Therefore, it 1s difficult to establish an age at which children
first "conserve."
However, there is a point before which a child will faifthe

number conservation task regardless of context. How is it that every
child moves from this universal nonconservation ability to increasingly
successful conservation'performance in a wide variety of task situations?
The popularity of this question as a toplc of study is probably due to
the importance which Piaget ascribed to this phenomena. For Piaget
(1952), number conservation is the hallmark of ch’ldren's acquisition

of the number concept. It develops as children begin to decenter their
attention and move from focusing on only one dimension to coordinating
several dimensions of the stimulus situation. In the number comserva-~
tion task, this means recognizing that the decrease in density compen-
sates for the increase in length when one row of objects is spread -

apart. The tendency of young children to center on only one dimension,

you

2
. -n,

usually length, id tﬁe number conservation task is a well-documented

fact (Baron, Lawson, & §iégel, 1975; Brainerd, 1977; Lawson, Baron, &

Siegel, 1974) and has even been observed by recording children's eye
1

movements during task‘solugion (0'Bryan & Boersma, 1971).

37.
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At a more abstract levél, Piaget described the development of con-
servation as the modification or reorganizatioﬁ of men£a1 structures.
Children at this stage of development acquire the ability to reverse
their thought processes, i.é., to mentaliy reverse the transformation
they have just w{tnessed'éﬁd return the elements to their original
state. This ability, to run back and forth in one's mind, characterizes
the onset of operational thought. Conservation is simply a reflection
of this new mental structure.

Piaget's explanation for the development of number conservation
suffers from a certain abstractness and high level of inference. It
is difficult to validate t@e presence of '"mental sfructures." "The
absence of a precise process—ﬁerforménce link contributes to the extreme
difficulty of putting Plaget's account of transition to an experimental
test" (Klahr & Wallace, 1976, p. 4). Partially because of this problem,
several alcernate explanations have been advanced for the development of
conservation. Klahr and Wallace éescribed the acquisitiors of number con-
servation in information-processing terms. Like their explanations of
the growth of quantification skills, they‘suggested that children learn
how to conserve by detecting regularities in their experience with
quantity. As children perfect their quantification skills, they are
able to determine the numerosities of sets before and after transforma-
tions. In this way, they learn to identify those transformations which
are irrelevant to number, 1.e., they learn to conserve. Since subitfizing

is believed to be the first available quantification skill, and since

only small sets can be queatified using this skill, conservation is first

38 .
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functional with small numbers. Once children échiéve conserYation with
small numbers, they are able to develop more rapidly the additional
quantification skills (counting and estimating), si;ce the acquisitioﬁ;
of these skills also depends upon detecting empirical regularities.
Therefore, conservation is seen to facilitate the development of counting
rather than vice versa.

The problem which accompanies Klahr and Wallace's description of
conservation ach&sition ig that it is difficult to see how the detection
of regularities can lead to conservation when conservation is the first

) sign that regularities are detected. That is, how can children observe
a "no change" condition in the stimulus after the transformation if
they do not yet conserve, since by definition, conservation represents
precisely this ability. (See Wallach, 1969, for a further discussion of
thie problem.) This is, in effect, a type of circular reasoning. The
development of conservation is being explained by its own definition.

Although Gelman and Gallistel (1978) did not offer an explanation
of how conservation is achieved, their description of why children fail
in conservation is sufficiently important to warranrt é%me discussion.

The thesis of Gélman's work is that young children can deal proficiently
with small numbersj i.e., with sets of objects they can quantify. This
proficiency includes the ability to distinguish between number relevant
and number irrelevant transformations. The question is why children do
not apply these reasoning principles to the larger collections of objects

traditionally used in the conservation task. Gelman and Gallistel main-

tained that young children do not evidence their already developed reason-
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ing ability in the conservation task because they interpret the question
to be one about equivalence relations between unspecified numerosities

o

rather than about the.equivalencq of two specific cardinal numbers.
The authors belileve that the perceptual salienge ;f the “initial one-to-
one correspondence leads children to this interpretation.

The problem for Gelman a;d Gallistel, who hang so‘much of children';‘
number concept development on their ability to count, is why ghildren who
“count in the conservation task, either spontaneously or upon request,
stil% fail to conserve. It seems as though such counting behavior would
help the child rcinterpret the question as one involving the present
numerosi;ies. However, many young children count the two-sets correctly
and‘then give a nonconservation response (Carpenter, 1971; Ginsburg,
1975; Wohlwill & Lowe, 1962). Piaget (1952) observed thi; phenomenon
and concluded that there is little relationship getween the two: "There
is no connection bet;een the acquired ability to count and the actual
operations of which the child is capable" (p. 61). Gelman and Gallistel
would, of course, disagree with this claim, But it still remains to
explain how young children can possess the counting and reasoning skills
they attribute to them and £811 to conserve number. )

This problem is indicative of a more general issue which emerges
when discussing the development of number conservation--what is the
relationship of conservation to other number skills and concepts. For
those, like Gelman and Gallistel, who claimed that children have some
substantive number skills prior to conservation, the problem is to explain

-

why these proficiencies do not suffice for the conservation task. For

N—
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“others, like Piaget, who insisted gﬁat conservation marks the begirning

32

of a mature number corcept, the problem is to explain how children can

become proficient in number skills and concepts before conserving.

Early Number Operations: How Do They Affect Later Mathematics

Performance?

*

A

Of the early number concepts and skills considered to this point, <

. ” 2
gyo-haye been sugge§ted by educators .and psychologists as playing par-

_ticularl& important rolegsin the acquisiflon'pf more comblex arithmetic

.

, o. .
. operations. These are conseryation and ,counting. This section reviews

N
the research on the relation between children's conservation ability‘énd

-

their ability to add and subtract. A more complete review of thé rela—

tionship between performanceé on Piagetian tasks and ‘arithmetical perform-

ance can be found in Hiebert and Carpenter (in press). ?

¢

Many investigators have taken a global approach in étudyiﬂé the re-
\ ) -

-lationship between conservation and mathematical performance. A frequent

2
2

technique is to administer a battery of Piagetian tasks and a schoo; matﬁe—

matics achieveﬁent test, either concurrently or several monihs or years «

ar«rt, and correlate the scores of these two measures. These ddta

usually show high, positive correlations between conservation responses

and achievement scores (Dimitrovsky & Almy, 1975; Dodwell, 1961; Kﬁminsky,

1971; Kaufman'& Kaufman, 1§72; Nelson, 1975; Rohr, 1973; Smith, 1974),

although some low correlations have been reported (Cathcart, 1974; DeVries,
° .

1974; Penningtor, 1977).

Some studies have considered the relationship between number conserva-

tion and children's facility with specific mathematical skills or concepts.
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Steffe (1970) and LeBlanc (1971) observed fi;s;;grade children's addi-
tion and subtraction skills, respectively, and their relationship to
number conservation ability. Both found that conservation performance
was a significant predictor of arithmetic skill, with low conservation
scores agsociated with especially poor arithmetic scores. Woodward
£1978) considered several different types of addition and subtraction
problems and found that number conservation was significantly related to
first-grade children's performaqce on all types of problems except sub:
traction problems involving missigg differences. Johns (1974), on the
other hand, found only a few significant cér;elations betwéen'number
conservation and the subtraction skills of first, second, and third
graders; and Michaels (1977) reported that some specific addition and
subtraction abilities emerge before the ability to conserve number. The
" fact that relationships seem to exist between number conservation and
only certain types of arithmetic problems suggests that different skills
or concepts may make different demands on conservation ability.

A study by Hiebert, Carpenter, and Moser (1982) provides additional
information by analyzing the processes that children at different levels
of conservation ability use to solve basic addition and subtraction
problems. On most problems, nonconservers used an appropriate strategy

~ .

less often than conservers, but every strategy identified was used by

at least some nonconservers. As a consequence, Hiebert et al. concluded

that,conservation is not a prerequisite for solving basic addition and

subtraction problems or for acquiring advanced solution strategies.
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The evidence revié;ed to this_ﬁéiﬁi is oni}géﬁggestive since the
positive correlations providd little insight into the reason for the
relationships. They do not indicate that number conservation is a pre-
requisite for learning arithmetic skills or concepts. The high correla-
tions may result from the fact that both require the same underlying
abilities or that tpey are both highly correlated with general mathema-
tical ability. The question of interest is still whether, in fact,
number conservation i1s required to learn certain mathematical skills.
Lovell (1966) suggested a theoretical basis for believing that conserva-
tion may.be reqqired.to undersfand arithmetic operations. Since success
on the copservation task implies an understanding of those transforma-
tions which are irrelevant for number, it also indicates a basic knowledge
of relevant transformations {e.g., addition and subtraction). However,
experimental studies involving instructional components are needed to
determine whether conservation is an essential prerequisite to such
understanding.

One sdih study, conducted by Mpiangu and Gentile (1975), investi-
gated the effect of number conse}vation on kindergarten children's ability
to learn certain arithmetic skills. Problems on the arithmetic pre- and
posttest involved numbers 0-10, and most of them required rote- or point-
counting skills. (Rote counting consists of recitation of the counting
numbers in correct sequence; point counting involves establishing a one-
to-one correspondence between the counting numbers and a set of markers,
and labeling the set with the appropriate cardinal number.) Although
number nonconservers performed lower than conservers on the arithmetic

pretest, and still performed lower on the posttest given after 10 arith-

-~
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m— e e

, metic training sessions,‘they showed a similar amount of gain from pre-
to posttest. The authors interpreted this as evidénce that conserva- '. . ;
tion (a) does not affect children's ability to benefit from arithmetic
instruction, and (b) is not a necessary condition for mathematical N
understanding.

Steffe, Spikes, and Hirstein (1976) contestgg ghi; conclusion
after conducting a prolonged instru;tional study with first-grade children.
Following about 40 hours of arithmetic instruction over a three-month
.period, all children were tested on 29 individual measures which were
~clustered into seven acﬁiéveéent Qériableé} Six\of these variables
assessed numerical skills such as working with cardinal and ordinal
numbers; solving orally presented addition and subtraction problems with
and without.objects; and counting at the rote, point, and ratignal levels
(rational counting is evidenced by cgunting on or counting back to solve
a numerical problem). The results of the study are complex and diffi- ‘
cult to summarize. However, several of the major findings follow: ~
(a) number co - servers performed significantly better than number non-
conservers on those t;sks which required rational counting; (b) number
conservation was not required to perform tasks solvable by rote counting;
and (c) with special training, number conservation was not required to
- master tasks solvable by point counting.
The authors concluded that children who differed in corservation

\

ability differed in the benefit théy derived from instruction. The

learning experienced by the numher conservers was qualitatively different

than that of the nonconservers. Number conservers wer@&.able to acquire

-
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i fatiéﬁ%i;CGunting skills ;ﬁ&<appl§ them to solve~5.§;fiety of-prbbiems.

Nonconservers, on the other hand, demonstrated task-specific learning and

\

used rote- and point-counting procedures. The authors suggested that

the con lusions of MpiangL and Gentile (1975) suffer from overgeneraliza—
tion. While conservation may noé affect the learning of simple skills,
it is important for learning more advanced énd logically based concepts
and skills. .

' One feature of the study by Steﬁfe et al. (1976) which makes the
results difficult to compare wifh other studies is the use of ra~poncon-
ventional consgrvat?én task. The task required children to discriminate
between two sets of objects presented in a visugl d}splay. No transforma-
tion was performed on either of the sets. As mentioned earlier, this
perceptual discrimination is a relatively easy task'for many children as
young as 4 years old (Beilin, 1968; Siegel, 1971; Wohlwill, 1960a).
Ginsburg (1975) referred to this as a simple equivalence task, in con-
trast to the traditional conservation, or complex equivalence task. Al-

though the relationship between the two 1s not entirely clear, Ginsburg

argued that success on the former does not imply a full understanding of

.N
number, °
In general, it appears that performance on conservation tasks is
correlated with performance on arithmetic tests. Conservers are generally .

more successful in solving a variety of addition and subtraction problems
and use adv;nced strategies more often than nonconservers. There is
little evidence, however, that the apility to.conserve is required to
learn any of the Basic arithmetic concepts or skills that are presently

included in the school mathematics curriculum.

P
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BASIC ADDITION AND SUBTRACTION CONCEPTS

Sy

Research on addition and subtraction has focused p;imarily on an
analysis of the quantification skills involved in adding and subtract-
ing. Howevér, some of the research on the logical reasoning abilities

. req.ired to acquire a Eomplete understanding of number has also included
an analysis of basic concepts underlying addition and subtraction. This
research has been revised in some.detail by §farkey and Gelman (1982).
Therefore, this research is summarized only briefly here..

Perhaps the most basic principle_undérlying‘addition and'subtracéion
is that joining elements to’'a set increases its pumerosity and removing
elements decreases its numerosity. Brush (1978) and Smedslund (1966)
and others have found that most kindergarten and older preschool children
understand the effect of these transformations, and some studies have
. found that children as young as three years could successfully compare

sets that had elements joined or removed (Cooper, Starkey, Blevins, Goth,
& Leithner, 1978). 1In fact, the earliest age at which children under—
stand the :ffect of these transformations has not been identified (Starkey
& Gelman, 1982).

Piaget (1952) has arguéd that an operational understanding of addi-

tion also requires that a child recognizes that a whole remains constant
- irrespective of the composition of its parts. He found a stagewise
devg}opment of this concept that paralleled the development of conserva-
tioh. In the initial stage, children did not realize that in a set of
eight objects divided into two'supsets of four aﬁjects, each was equiva-

lent to a set of eight objects divided into sets containing one and seven

ENC - - 48
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In this stage, children responded primarily on the basis of
misleading spatial cues.

In the second stage, children could often

solve the task correctly, but only after empirical verification.

It
was not until the third stage at about age seven that children logically

recognized that the composition of the set did not affect the number in
the set (i.e., 6 + 4 =1+ 7),

Several other experiments, concerned with

partitioning sets into equally numerous arrays, found similar patterns
‘of development.

‘It has also been proposed that a complete understanding of addition
f

?nd subtraction requires that children understand the basic properties of
each operation.

Two properties that have been the subject of several

studies are inversion and compensation (Brush, 1978; Cooper et al., 1978;
Smedslund, 1966).
‘ﬁ

An understanding of inversion means that a child

recognizes that the effect of gdding elements to a set can be offset by

rermoving the same number of elements.

Understanding compensation re-
quires that the child recognize that adding elements to one of two

equivalent set$ can be compensated for by adding the same number of
elements to the other set.

To test understanding of these properties, children were first to
establish the relation between two initial arrays. In some cases, the )
arrays contained the same number of elements and in others, one array

contained more elements than the other.

In general, a child would not
determine the exact number of elements in the arrays, but rather the
relation between them.

Often the arrays contained too many elements to
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make counting easy or they were partially covered to prevent counting.
This was done to test children's understanding of the properties of
inversion and compensation and not their ability to calculate the exact
number of elements following a transformation. Once the initial rela-
tionship was established, elements were added’to one of the arrays.
Then, if it was an inversion task, elements were removed from the same
set. If it was a compensation task, elements were added to the other
set. ' In some cgses,-éhe second transformation involved the s;mé number_ 
of elements as the first, in some cases it did not. |
The ability to solve inversion and compensation problems develops

over a number of years. Young children at about age'3 give a primitive
gsolution that is based exclusively on the last array transformed. If
the last transformation involves joining elements to an array, that y
array is tgought to contain the most elements, regardless of the initial
relation between the arrays or the previous transformation. fimilarly,
{f the final transformation involves removing elements from one array,
that array is thought to contain fewer elements than the other. Before
a child develops an operational understanding of inversion and compensa-
tion, there is an intermediate stage in which the child relies on quali-
tative solutions that take into account all the transformations but not
the number of elementé in the transformation. At this stage a child would
believe that adding two elements to a set from which three elements had
just been removed would return the ge£ to its initial state.

' To summarize, young children have nonperceptual, noncounting pro-
cedures for solving certain types of addition and subtraction problems.

The basic principles underlying these strategies appear to develop in a

48
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pattern that is similar but not synchronous with the development of con-
servation and other concrete operational concepts. Additional work is
needed to give a more detailed description of these strategies and their

relation to the quantitative strategies described in the following sec-

¥

tion of this iswiew. T e e

With a few exceptions, most notably Piaget (1952), most research
on basic logical operations underlying addition énd subtraction has been :'
“conducFed within ;he paét 15 years. By contrast, research that directly
assessed children's ability to add and subtract, dates back to tﬁe begin-
ning of the century, The earliest research focused primarily on préblems
presented symbqlically, but recently, much of the research has examined
children's solutions of simple addition and subgraction word problems.

There are clear similarities in how children solve symbolic problems

and word problems; but because there are some important distinctions

between them, symbolic problems and word problems are discussed separately.
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\\
SYMBOLIC PROBLEMS \\
\\\
RELATIVE DIFFICULTY OF BASIC FACTS \\\
Most of the early research on addition and subtraction investigated \\
children's ability to compute and was concerned exclusively with identi- \\\\

fying which problems children could and could not solve. The largest
group of ea?ly studies attempted to rank the relative difficulty of the
100 addition and»subtraction number combinations (basic facts). Among

‘-the empirical attempté at ranking combinétions by difficulty‘were those
by Holloway (1915), 65unts (1917), Smith (1921), Clapp (1924), Batson
and Combellick (1925), Washburne and Vogel (1928), Knight and Behrenms
(1928), Thiele (1938), Murray (1939), .and.-Wheeler (1939). This research
has been reviewed in some detail (Brownell, 1941; Buckley, 1975; Buswell
& Judd, 1925; Grouws, 1972a; Suppes, Jerman, & Brianm, 1968) . Much of
Brownell and Carper's (1943) critique of studies ranking the difficulty
of the multiplication combinations is also relevant.

. The studies reviewed attempted to determine a ranking of the 100
canonical addition facts and the 106 canonical subtraction facts when
presented in abséract form. The motivation for this research was to

- provide guidelines for organizing instruction. If certain facts were
"intrinsically difficﬁlt," they might require more practice,-their intro-
duction might be delayed, pairs of facts might be taught together, etc.

’

However, the studies did not generate consistent rankings and did not

provide.a coherent empirical basis for the design of instruction.

Brownell (1941) pointed out many conflicting results and inconsis-

tencies in the rankings in these studies. He noted that ranks for 0 + 3

| ERC 2d
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were 1, 8, 14.5, 32, 76, and 97.5 in six of the studies, and that in two
of the studies, a éhange from 93.0% to 93.8% correct caused & rank dif-
ference of over 20 places for the combination 0 + 5. He also noted that

two combinations ranked nearly equally could differ by 40 points in —
. i
percent correct. Suppes, Jerman, and Brian (1968) ranked just the "zero

combinations"” and found that some of the 19 combinations varied in rank
from 2 to 17. Grouws (1972a) concluded that a serious fault of any such
rankings is that they exaggerate small differences and mask large differ-
énces. |

The only clear consistency in the rankings of different 'studies i;
that the difficulty of addition and subtraction combinations increases
as the numbers get 1argeF. Although there were relatively high correla-
tions between the rankings of several studies (Murray, 1939), there were
many conflicting results ;nd inconsistencies (Brownell, 1941).

In addition to attempting to generate a linear ranking of the number
facts, some studies attempted to identify factors that account for the
relative difficulty of different number combinations. Knight and Behrens
(1928) hypothesized that addition facts in which the larger addend is
given first (e.g., 6 +°3) would be easier than the corresponding pair
in which smaller addend appears first (3 + 6). Their results and.the
results of other studies failed to confirm the hypothesis. Browne (1906)
and Pottle (1937) contended that problems in which both addends are
eve; were easier than problems in which beth addendsﬁﬁfe odd which in

turn were easier than problems involving one even and one odd addend.

Other studies, however, did not support this hypothesis ecither (e.g.,

.

9
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Murray, 1939). 1In general, the only consistent pattern that emerges is
that doubles (e.g., 8 + 8) are easier than other combinations with com-
parable gige addends. -

One factor which contributed to the conflicting results was the -
variety of experimental conditions used in the studies. Brownell and
Carper (1943) pointed out that t£e studies ranking combinations used sup-

jects ranging from beginners to experts, e.g., Knight and Behrens (1928)
tested éécond graders during initial instruction on the facts, Smith ~
(1921) used subjects in grades 3 through 8, and Batson and Combellick
(1925) used college graduates and undergraduates. It is unlikely thag
difficulty rankings would be conéistent when based on studies using sub-
jects of Varying ages and tested before, during, and after instruction
on the facts, | -

The method (rote or meaningful) by which subjeéﬁs were taught, ad-
ministration details such as presentation order, and success criteria
were other factors which contributed to the cénflicting results. Among
the criteria for success were percent correct, the number of trials needed
to learn, latency of the first correct.solution, latency of correct solu-
tions on a review test, etc. Brownell (1941) also pointed out that a
rank for j;i might actually be a rank for "3 + 5" if the subject added
upward in vertical addition problems. The above factors make comparisons
among studies extremely risky. '

Brownell (1941) prgvided a succinct analysis of research on number
combination difficulty. -

it may be assumed that all difficulty rankings are

authentic for the conditions under which they were
obtained and for the techniques by which they were

.5522 . \
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determined. And this is precisely why research

to ascertain the comparative difficulty of the com- ,

binations has been unprofitable.- There is no such \[ -

thing as "intrinsic" difficulty in the number facts;’ :

their difficulty is relative, contingent upon manv °

conditions, chief of which is method of teaching, or’

stated differently, the number, order, and nature of \

learning experiences on the part of pupils. (p. 127)°'

\
Brownell's attack seems to have dampened enthusiasm for this line

of research, and after 1941 there were relatively few studies attempting
to rank order basic number fae¢ts. Researchers continued to be interested
in the relative difficulty of different probléms, but the emphasis shifted

to structural features of the problems or the conditions under which

problems are administered.

STRUCTURAL VARIABLES
A number of studies have attempted to determine factorsiﬁhich

v

affect the success rate on "open sentence" problems.\ Open addition and
subtr;ction sentences (canonical and noncanonical) are oftén classifiad
into six types by operation and the position of the ﬁ!aceholder. These
are a + b = E], a->b= E], a+ E] = ¢, [j +b=¢ a- E] = ¢, and
E] - b= c,

Six studies (Beattie & Beichmann, 1972; Goren & Poll, 1973; Grouws,
1972a, 1972b, 1974; Hirstein, 1979; Lindvall & Ibarra, 1980a; Weaver,
1971) have generated somewhat comparable data pertinent to the relative
difficulty of some of the six open sentence types above. Commonalities
among portions of these studies include (a) subjects from grades 1, é,
and 3, (b) the use of constants from the "basic fact" domain, (c) use of
sentences with whole number solutions, and (d).use of the "operation-

left" form of open senteaces. Selected results from these studies which

addressed overlapping questions are summarized in Table 1.

0J




> Table 1 >

The Effects of Operation and Placeholder Position on the Difficulty of
Open Addition and Subtraction Sentences

a+b=] a-b-= [] a+ [] =c [] +b =c a-[d=c [] -b

(¢}

l

Grade 1
Weaver (1971) 65° 55 53 46 50 on
Lindvall & Ibarra b ) : N o !
(1980a) — - i 83 ) 86 77 26
Beattie & Deichmann
(1972) 92 88 80 74 87 75
Groen & Poll (1973) -— - 77 77 —_ _—
Hirstein (1979) 75 53 - - - ] -
Grade 2 .
Weaver (1971) 87 80 79 *76 79 27
Beattie & Deichmann : )
(1972) 3 94 95 92 Y’ o
Hirstein (1979) 95 77 . 71 73 - -
)

. Grade 3
Weaver (1971) 93 88 92 88 90 33
Grouws (1972a) - - 94 86 88 *45

Note. Data are only included for basic fact items with a solution.
81ndicates percentage of correct responses.

N b(—-—) indicates that item did not appear.
rd

-t
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Results whgph are consistent across these studies are:

€Y

@

(3)

(4)

(5)

(6)

Canonical addition and subtraction sentences are generally
less difficult than noncanonical sentences. Performance on
canonical items ranged from 557 to 947 correct across 'studies
and grade levels.

Canonical sthraction items were more difficult than canonicdal
aAddition~items in six of. seven instances in Table 1. Such °
differgntial perf&rmance Has been substantiated in numerous
studies (e.g., Brownell, 1941).

The two missing addeﬁd.séntenceq are of compafableiﬁifficulty,
with a +:£:]= c being slightly easier than E] + b = c. Per-
formance ranged from 46% to 95% correct.

The pissing_subtrahend sentence is comparablg in difficulty
to‘the m:f:ssing addend senten(‘:es.

The missing minuend sentence’is the most difficult and is
distiﬁctly more difficult than the others. It was solved
.correétly less than 50% of the time in all but Beattie and
Deichmann's (1972) workbook format, in which teacher assis-
tance was presumably available. Performance in the other
studies ranged from 11% ;o 45% correct.

Performance on all items improves ;s subjects' age increases.
In each of the three studies using subjects at several grade
levels (Hirstein's design was longitudinal; Weaver's and

Beattie and Deichmann's were cross-sectional), all items

used reflected improved performance from one grade to the next.
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Several other studies have investigated the effect of operation and
placeholder position on performance with open sentence problems. The\
work of Suppes and his colleagues (Suppes, 1967; Suppes, Jerman, & ‘
Brian, 1968; Suppes & Mormingstar, 1972) used response latencies and

. error probabilitieg to make predictions about the difficulty of the~various
'ogsn sentence types. Suppes' work is not altogether comparable to that
R }n the gix gtudies cited above and some of his conclusions are at odds .
with the findings of the other researchers. For instance (a) Suppes'
subjects were drawn from a population having extensive experience with
computer—assisted ihstruction‘on these tasks and who displayed near-
ceiling performance, (b) latency of response was used as one of the
dependent variables so analyses were performed on mean data averaged
over individuals, and (c) magnitude of the consténts in the open sen-
tences was not strictly controlled. ‘

‘Suppes-et al. (1968) identified several factors which contributed

to the difficulty of open sentence problems, including the magnitude of

4 ’

the largest number in the problenm, magnitude of the smallest numbgr, the
form‘of the equation, and of steps required.to solve the problem. Of
these, they found the number of steps was the best predictor of diffi-
culty and.this depended upon how many steps were required to transform

- the problem into canonical form, the number of operations performed, and

the number of digits which had to be held in memory. The number of
digits held in miemory was found to be the most important and the gumber
. of operations performed the'least»important of these three.
Some of the above factors have a questionable influence on diffi-

¢

culty because of a:lack of observational evidenée that children actually
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-
attend to such factors. In particular, the transformation of a problem
to canonical form is not a behavior whicﬁ has been doéumented in stud;es
describing children's solutio; strategies on addition and subtraction
problems. Many counting gtrategies can be employed without any transfor-
mation of the problem's original format. .

‘Suppes et al. concluded that [] + b = ¢ was more difficult than
a+ [] = ¢. They also contended that [] + b = ¢ is more difficult than
[] - b = c. Both of these findings contradict those of the six studies
mentioned earlier. Grouws (1972a) argued that the differences which .
Suppes et al. found on the two missing addend problems can be attributed
to factors other than placeholder pésition. He noted that a substantially
greater number of E] + b = ¢ problems involved two-digit constants than
did problems of the form a + E] = ¢, and also pointed out that different
samples were used when judging the relative difficulty of [] +b=c
and [] < b =.c problems. Consequently it appears that Suppes' findings

must be interpreted with caution.

Nesher (1979, 1982) also used reaction time to compare types of
open sentence problems. . Her findings show difficulty~to be ranked in

the following order (in increasing order of difficulty):

(1) a+b=
(2) a-b=[]
3) a+[J=canda-[=c¢
% O+bv=c¢
) J-b=c

Nesher's reaction time data are generally consistent with Weaver's and

Hirstein's difficulty data for second graders. In this case, reaction
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times and percent -of correct responses seem to yield similar results, un-
like the discrepancies between reaction time data found by Subpes et al.

(1968) and direct observation data on strategy use summarized in Table 1.

Symmetric Forms

. Two studies (Lindvali & Ibarra, 1980a; Weaver, }973) have attempted
to degerming what effect the stmet;ic presentation of open sentences,
e.g., atb =D vs. D = a + b, has on performance. In both studies,
addition and subtraction items with the operation given on the i;Ft were

consistently easier than those with the operation given on the right.

OTHER VARIABLES

Horizontal/Vertical Format

Although some studies have analyzed both horizontal and vertical
formats, Beattie and Deichmann (1972) provide the only systematic com-
parison of errcr rates and error types on abstract horizontal and ver-

tical addition and subtraction items. Within both grades 1 and 2, per-

formance was slightly better for vertical than for Horizontal items.
In three of the four instances (addition at the second-grade level being
the exception), they found more computation errors and fewer process
(wrong operation) errors in horizontal than in vertical format.

Several factors make it difficult to generalize from Eeattie and

Deichmann's results. An imprecise categorization of errors is one, and

the workbook context.is another.. It is not clear that workbook items

. paralleled instructional emphasis; approximately 80% of first-grade work-

book items were horizontal while second-grade items were split almost
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equally between horizontal and vertical, but no measure of instructional
emphasis other than number of workbook items is given.

Engle and Lerch (1971) compared first graders' performance on hori-
zontal and vertical abstract addition items. 'Perfprmance was slightly
higher on vertical than on horizontal items, but the difference was not
statistically significant. Engle énd Lerch's findings for first-grade
addition closely paralleled Beattie and Deichmann's results. In both

studies, perfoimance was over 85%, so there may have been a ceiling

———
i

effect. —_—

Existence of a Solution

Some empirical evidence has been gathered which indicates that the
existence or nonexistence of a whole number solution affects performance
on open addition ané subtraction sentences. However, this evidence is
not unequivocal.

In a multiple choice format, Howlett (1974) found no significant
with and without whole number solutions, but performance was slightly
better yheq no solution existed.

Weaver (1972) also reported a significant difference in performance
due to the existence of a solution, across grades 1,-2, and 3, but in
this case achievement was higher when a solution existed than when no
whole number solution existed. Existence of a solution also interacted
with grade level and operation. The solution-no solution performance dif-
ferential was greater at grade 3 than at grades 1 and 2 and was also

greater for addition items than for subtraction items (as defined by the

bu
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operation present in the open sentence). In fact, first graders cor-
rectly solved a -[:J = cand ¢ = a -[:] more often when no solution
existed than when a solution existed.

Mitchell (1981) administered items of the form E] +b=¢, a +[:] = ¢,

-a - b =[:], and a —[:] = ¢ to first, second, and third graders. For

these items, grade 1 performance was better when a solution existed than
when it did not, but this differénce was less pronounced in grades 2 and 3,
Thiarcontradiéts Weaver's (1972) finding of a greater performance dif-
ferential at the higher grade levels.

Overall, the evidence suggests that performance is generally better
on open sentence items for which a solution exists than on items for
which no solution exists. The effects vary consi@grably, however, with

»
differing placeholder positions, operationms, grade levels, etc. The

[
~

lack of <instructional emphasis on problems with no solution makes it dif-
ficult to make conjectures regarding other causes for poorer performance on
' \ \

problems with no solution; poor per formance méy simply be due to lack of’

L

Presence of Aids

Little empirical evidence 1is available regarding the effects of
various aids on the solution of abstract addition and subtraction problems.
One reason is that much of the research discusséd‘above was conducted in
a setting in whlich no manipulatives were available to the subjects. Be-
sides, some research has indicated that by the time children reach second
grade they no longer use manipulatives frequently. In particular, Houlihén

and Ginsburg (1981) reported that second graders used manipulatives in

-
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their solutions to‘two-digit'gbstract addition problems only 4% of the
time. Second graders did not use manipulatives at all on single-digit
addition or on single-digit, double-digit problems,

Studies in which manipulatives have been available have generally
found that thelr presence improves éerformance (e.g., McLaughlin, 1935).
The impact of other aids such as pictures is essentially unknown. Grouws
(1972a) reported for third-grade subjects that presentation of an accompany-
ing verbal problem did not aid in the solution of abstract open sentence

problems. There is little other relevant research available.
STRATEGIES OF SOLUTION

Research Paradigms

) ~ Identifying--the processes that children use to solve simple addition
and subtraction problems is not an eésy task. Internal cognitive pro-
cesses cannot be observed directly, and the problems are sufficiently
simple that children themselves often are not aware of héw they solved

a given problem. Three basic paradigms have been used to study the pro-
cesses that children use to solve simple addition and subtraction problems.

The most straightforward has involved the use of individual interviews.

Use pfﬁindividual interviews. An individual interview to assess a

child's performance on addition and subtraction problems can take several
forms. Opper (1977) described Piaget's clinical method, one diagnostic

tool for studying children's reasoning. In a true clinical interview,

. hypotheses are generated about the processes children use to arrive at

their solutions and the subject's responses serve as a basis for subse-

quent tasks and questions from the interviewer. Oppér also described a
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modification of Piaget's clinical method which she termed the "partially
standardized clinical method" (p. 92). This approach uses standard tasks
but allows the interviewer freedom to be flexible in subsequent probing
related to the child's response.

. Alternatives to the partially standardized individual interview
also exist and have been used by researchers to study various aspécts
of children's thinking. Naturalistic observation, teaching experiments,
and the case study method (Easley, 1977; Opper, 1977; Stake, 1578) are
three of these. Each, however, has advantages and disadvantages. In-
dividual interviews do not generate responses which are as spontaneous
as those which derive from naturalistic observation nor do they provide
the depth and breadth of data found in the case study approach. On the
other ﬁand, the individual interview procedure minimi{es occurrences of
irrelevant behavior and provides an opportunity to focus on specific
.thought processes, while retaining sufficient generalizability to make
comparisons between subjects and tasks possible.

Researchers who have used the individual interview procedure with
young children have often reported difficulty in eliciting or interpret-
ing the child's verbalizations. Menchinskaya (1969) used thinking aloud
and introspection to study problem-solving behaviors of first graders but

- reported that "verbal description of their actions was difficult even for

the stronger pupils" (p. 25). Shchedrovitskii and Yakobson (1975) also

reported difficulty in identifying first graders' solution processes and :

focused on’ problems in which children could externalize their method of

solution (problems presented with objects). Attempts to determine why
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a child chose a particular strategy or used a given operation in the com-
putational process have often been unsuccessful (e.g., Zweng, 1979).
Thus, two critical aspects of the individual interview procedure are

the cﬂoice of follow-up questions and the use of tasks that elicit solu-
tions which are based on observable or easily inferable behaviors.

Opper (1977) pointed out some of the procedural difficultiés asso-
clated with the individual interview method. Among these Gere (a) the
possibility that the child would not be at ease and perf9rm naturally
in the course of dialogue with the interviewer, (b) the problem of the
interviewer maintaining neutrality and avoiding attempts to elicit
"correct”" answers, (c) the misunderstanding of language not adjqfted to
the child's level, (d) insufficient time for the child to refle;t.on the
problem and to develop his/her explanations, and (e) the interviewer's
interpretation of ;hedghild's actions and responses on'which subsequent
questions are based.

One of the most serious problems with interview data is that children's
explanations of how they solved a problem may no; accurately reflect‘the
processes that they actuélly used. The interview procedure may change
how a child solves a problem, or children may have difficulty articulat-—
ing the process that they really used and therefore describe another pro-
cess that 18 easier to explain. Or they may try and second guess what
they th%nk the interviewer is looking for. énother serious problem is
that the inferences drawn from an intervié; involve a great deal of sub-
jective Judgment on the part of the experimenter.

Because of these limitations, researchers have soqgh;,altgrnati;e‘

procedures that do not rely on children's explanations and can be based

6
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on more objective measures. One of the more popular techniques is the
use of response latencies.

Response latency. Response latencies: have been used for a number

of years to assess problem difficulty (Arnett, 1905; Knight & Behrens,

. [4
. 1928; Smith, 1921). More recent studies employing the response latency '

methodology have grown out of Suppes' initial work in this area (Suppes
& Groen, 1966, 1967; Suppes, Jerman, & Brian; 1968). These studies have

used response latency as a method for investigating possible solution

’

strategies rather than as a relative difficulty indicator for addition

and subtraction patterns, and have hypothesized various counting strate-
]

gies. Reaction times are assumed to be a linear function of the number

E -

of counting steps required to solve a problem, and linear regression

analysis is used'to %dentify which counting model best fits the observed
latencies. For a more complete description of the response latency
* paradigm, see Suppes and Groer (1967) and Groen and Parkman (1972).

The performance models used in the response latency studies hypo-
thesize the existence of certain mental operations, i.e., setting a
counter to a value and incrementing (or decrementing, or both) that
counter by one. The five models hypothesized for additioq problems of
the form a + b™ Dare the: foMowing: '

. . (1) The counter is set to 0:\it is increﬁented by a units, then
it is further incremented by b units. (ALL)

(2) The counter is set to a (the left-most number), and is incre- .

meited by b units. (LEFT)

(3) The counter is set to b (the right-most number), and is in~

cremented by a units. (RIGHT) ]
|




56

{(4) The counter is set to the minimum of a and b, and is incre-
mented by the maximum of a and b. (MAX)

(5) The counter is set to the maximum of a and b, and is increj
mented by the minimum. (MIN)

The companion models for subtraction problems of the formec - b = [] -

(or items with a subtractive structure such as the missing-addend items |
of the foém a + [] = ¢ or [:]+ b = ¢) are the following:

(1) The counter is set to 0, it is incremented ¢ times, then it
is decremented b times. The solution is the final value
of the counter. (O, INC) DEC)

(2) The counter is set to ¢ and is decremented b times. The
solution is the final value of the counter. (DEC)

(3) The counter is set to b and is incremented uhtil.g is reached.
The solution is the number of times the counter has been in-
cremented. (INC)

(4) The counter is set to 0, it is incremented b times, and is
then incremented until ¢ is reached. The solution is the
number of times the counter has been incrementgd during the

~ second phase. (0, INC, INC)

(5) Either method (2) or method (3) is used, depending on which
involves fewer increments of the counter. (FEWER)

Two data reduction methods have been used in résponse latency work.

One involves an analysis by subject, in which the various counting models
are fit to each subject's performance data (e.g., Groen, 1968; Groen &
Resnick, 1977; Rosenthal, 1975). The other involves an analysis by item,
in which a mean latency is computed for each item acrose all subjects

A
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(e.g., Groen & Poll, 1973; Jerman, 1970; Parkman & Goren, 1971; Suppes

& Groen, 1967; Svenson & Broquist, 1975; Woods, Resnick, & Groen, 1975).
Svenson (1975) employed both methods of analysils, and Buckley (1975), and
- Winkelman and Schmidt (1974) used median rather than mean latencies. A
great deal of information is lost in using latency averages which may
hide important variability. This suggests that fitting ingividual sub-
ject; to regression models is the more appropriate procedure.

The assumptions of the response 1atency‘paradigm are presented in
Suppes and Groen (1966, pp. 5-6), and are more succinctly stated in
Rosenthal (1975, pp. 45-48) and in Svenson (1975). One assumption is
that a constant time is required for each increment of the counter. A
second is that a constant time is required to set the counter to 1its
initial value. These two are independent of each other and indepen@ent
of the values in the problem in which they are used. The time required
to determine whether enough counts (increments) have taken place is
"assumed to be a random variable independent of how many steps the counter
should move" (Svenson, 1975, p. 297). This means that the time required
for the decision to continue counting is constant, regardless of how
close one is to finishing.

One assumption of the latency model which remains suspect with the
time required to decide whi;h of two values given in the item is larger.
The time 1s assumed to be constant despite substantial evidence to the

contrary. Moyer and Landauer (1967), Aiken and Williams (1968), and

Restle (1970) identified factors that affected the speed with which pairs

of numbers were compared. Among these are left or right position of the
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larger number,;sizg of the larger néﬁber, and the difference between the
%arger and the smaller number. '

Groen and Parkman (1972) dismissed this evidence. They argued
that "the procesg of finding the largest and smallest addends has only a

second-order effect on the reaction times" (p. 332), and that the amount
»

. . %ime in question is on the order of only 10 milliseconds. They also

contended that Moyer and Landauer's (1967) procedure indicated a strong
rela:ionship between the absolute difference of the addends and the
magnitude of the smallest of the two addends. Groen and Parkman suggest
that to determine the minimum addend "the subject searches (or generates)
the discrete number line, beginning with one and continuing in increments
of one until he finds one of the two numbers" (p. 332). No conscious
counterpart of this process has been identified.

Another drawback of the response latency paradigm is that extreme
values may result in a reasonably good fit of latency data to the re-
gression equation of a particular strategy. This can give the impres-
sion that children consistently use a given strategy, whereas only a
piete of the 'ata really fits the model well. For example, a reanalysis
of the data from a study by Groen and Parkman (1972) indicated that
their best fitting model was much more appropriate for certain number

domains than {or others (Siegler & Robinson, 1981).'

Analysis of errors. The third technique that has been used to

infer children's solution processes is the analysis of error patterns
(Lindvall & Ibarra, 1980a; Riley, Greeno, & Heller, in press). For
simple addition problems involving basic facts, it is usually difficult

to infer what strategies may be implied by errors to specific probleus,

o BG ) ol
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as can be done for algorithmic solutions to multi-digit problems (Brown
& Van Lehn, 1982). However, certain general solution strategies will
allow. students to ;olve some problems but not others. By examiniug the
pétthns of err;rs over groups of problems, inferences may be drawn re-
garding strategies used. Certain errors also result in answers that
consistently relate to problems.in a predictable way. By observing a
consistent pattern of errors, ;ne may infer that the errors are caused
by a partiéﬁlar incorrect procedure. Certain counting procedures may
result in systematic errors, but unless the particular error is observed
over a:;;mber of cases, it is not possible to determine whether a syste-
matic erﬁ?r or a random counéing error has occurred. An example of a
systeﬁatic counting error is ome in which a child counts on from a given
number to find a sum but instead of counting on the correct number of
places beyond- the gi&en numbeF, the child includes thg given number in
the count. For example, to add 5 + 3, the child‘counts:5£ 6, 7 and re-
sponds that the answer is 7. This is a systematic error that will cou-
;istently result in an answer one less than the correct answer. '1f a
child consistently responds with an answer one less than the correct
answer, one can infer that the child may be committing this error. How-
ever, caution is required.in concluding that a child has used a particular
strategy as other '"buggy" procedures muy result in the same incorrect
answer.

' Althdugh certain errors, like adding when subtraction is called for,

are relatively easy to detect—-many errors are difficult to identify,

especially when several errors occur in combination. Analysis of errors
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also ﬁ}ovides relatively little information about correctlétrategies.
Thus, although €rror analysis provides only limited information on the
strategies childreh use, a careful analysis of errors does help to ;ound
out the plcture since response latepcy data is usually most effective in

choosing between cCorrect strategies.

Results of Latency Studies

Response latency studies have been carried out with-subjecgs of all
ages. For the purpose of ;his discussion, they have been divided into
three groups determined by the general age range of the subjects, since
it is likely that the processes used by subjects change oven‘time. The

‘ studies with young children (preschool through first grade) used subjects
having little or no formal (school) mathematics experience with addition
agd subtraction. A second group o’ studies used elementary or middle
school students who had experienced extended instruction in addition and
subtraction. The third group of studies was carried out with adult
subjects whose ;trategies presumably represented mature approacﬁts to the

problems.

Studies with young children. Several studies utilizing the response

latency methodology have used young children as subjects. Suppes and .
Groen (1967), Groen (1968), and Groen and Poll (1973) hypothesized cer-
tain strategiles which could be used by first graders on simple addition
and subtraction problems.
Suppes and Groen (1967) presented the first test of the five addi-
tion models discussed above. Thirty first graders were tested during the

first half of the school year on 21 items presented in the form a + b = [],

: ‘ ) " 7u
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with sums less than 6. Two’models, ALL and MIN (see the list of additjion

models given above) were found to fit the dara, with the MIN (count from

larger) model providing the best fit. Groen (1967, 1968) extended the

SuPpes and Groen study to the larger class of addition items having sums
less than 10. The 37 subjects in this study, had compieted most of first
grade. For 20 of these children, the MIN model was the only one which
fit their ;erformance. Ogly one of the remaining 17 subjects fit any of

the other models. As in the Suppes and Groen study, problems involving

doubles had consistently lower response latencies than other items with

the same minimum addend. These lower latencies on problems involving

doubles are explained by assuming that a reproductive (memory) process
rather than a reconstructive (counting) process is used in these problems.
Groen and Parkman (1972) noted that Groen's (1967) estimate of the slope
of the regression line for the MIN model was nearly equal to the estimate
of the speed of silent counting given in Beckwith and Restle (1966) and
Landauer (1962). This provides additional support for the inference

that children were indeed using a Counting On From lLarger strategy to
solve these problems. Replications and extensions of these indings

with older subjects are discussed below.

The Groen and Poll (1973) study included first graders in the first
half of the school year who had been taught addition but not subtracgion.
Their responae latencies on missing addend sentences of the form
a+[]=~cand[]+b =c wvas tested against che DEC, INC, and FEWER
models listed above. The FEWER model was the only one which fit the

observed latencies and then only for half of the items, those with the

71




62

placeholder in the b positionm. Problems” involving doubles again yielded
upiformly lower latencies. ’

None of the above studizs controlled instruction, so they provigg\?o
clear evidence whether the hypothesized counting strategles are invented
or learned through instFuétion. To examine this question, Groen and
Resnick (1977) taught the Count All (ALL) strategy for symbolic addition
problems with addends less than 6, and sums less than 10, to ;reschoolers -
who were proficient at counting but who had not been exposed to instruc-
tion in addition. Items were presented in a + b form, and blocks were
initially manipulated to demonstrate thé Counting All strategy. After
being instructed in the Counting All strategy only, and given extended <
practice, the performénce of 5 of the 10 subjects best fit a Counting On
From Larger (MIN) strategy which was presumably invented by the children
themselves. Groen and Resnick noted that these preschool subjects
followed a progression from the use of blocks to the us; of finger
counting to the use of mental counting strategies. They contented that
the i{mmediate representation of addends by the fingers of one hand is a
physical analog of and precursor to the mental operation of setting a
counter to a nonzero sﬁarting value.

The response latency studies with young children suggest that be-
fore children have much formal instruction on the addition and subtrac-
tion operations, their performance can be modeled by strategles which
involve counting. Furthermore, these counting strategles are efficient

ones tha: involve the fewest steps and are constructed by the children

indesendent of instruction.
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Studies with older children. Response latency studies with older

children extend the findings of those using young children. Three
studies with subjects ranging from third through seventh grade (Jerman,
1970; Svenson, 1975; Svenson & Broquist, 1975} investigated performance
on subsets of the 100 basic addition facts. In all three studies, the
MIN model provided the best descfiption of performance. When used by
Jerman, the MIN model included .the assumption that for items in which
the smaller addend appeared first, a transformation to the commuted
form wouid take place prior to incrementing of the counter. Svenson also
reported that latenciles for items with the smaller addend first averaged
0.1 seconds greater than those for the same addends with the larger
addend first. Problems involving doubles again resulted in low, latencies
in each of these studies.

Woods et al. (1975) compared the response latencies of second
and fourth grade subjects on items of the forma - b =[:], a<9. All
20 of the fourth graders and 30 of the 40 second graders were best fit
by the FEWER model. Among the remaining second grade subjects only 2
were fit by INC, and 6 by the DEC model. These data suggest that with
age, children progress from less efficient to more efficient processes
for solving the canonical subtraction items just as they do for addition
items. Also, as in the addition studies, doubles (and inverse do?bles)
were easier thar. other problems with comparable minimum addends.

One conclusion suggested by the Woods et al. study is that the

FEWER model, which was used by the majority of third and fourth grade

subjects to solve subtraction problems, was the same as that ldentified
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for 7-9 year clds on missing addend problems of the form a +-[:] = ¢
(Groen & Poll, 1973). This suggests that,older éhildren solve these two
types of symbolic problems by the same process, but use a different pro-
cess to solve open sentence problems of the forml:j-+ b = ¢ (Groen §
Poll, 1973; Rosenthal, 1975). PRosenthal found more overall support for
the use of trial (successive substitution) models than for counting
. models on. these items.

A second conclusion Suégested by the Woods et al. study concerns

. >

the procedure by which the most efficient process is chosen when the
FEWER model is used. If subjects do use a process in which they must
decide which of I&E or DEC is more efficient, the question arises as
to how such a decision is made. Groen and Poll (1973) offered two vea-
sonable ways in which a subject might decide whether to increment or
decrement. These are (a) making a rough approximation and (b) having
sufficient familiarity with specific instances to "know" what to do. The
latter would be based on a search of an incrementin; list and a decrement-
ing list stored in memory. A remote, but conceivable alternative to
these is that of simultaneous incrementing and decrementing until one
generates an answer. Woods et al. provided an additional explanaticn of
how this choice might be made. Based‘on the accounts of two subjects,
they suggested that twice the subtrahend is compared to the minuend,
and that when the minuend is greater, decrementing is chosen. Other-
wise incrementing is more efficieant.

The response latency studies with older children who have more ex-—

tensive school mathematics experience confirm many of the findings of the
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studies with young children. They indicate that even though there is

a definite trend toward the use of more efficient procedures by older

subjects, counting strategies for solving simple addition and subtrac-
tion problems persist throughout the e%ementéry school years.

Studies with adults. Response latencies have also been used to
test the above counting models against adult performarice. Using six
subjects and the 100 basic addition facts, Parkman and Groen (1971)
found the SUM and MIN models to nearly equally fit the patterun of
latencies. They also supported Svenson (1975) in finding that 29 of
44 item pairs had longer latencies when the smaller addend appeared
first. Use of a derived number fact based on 10, similar to that
identified by Svenson, was found when one addend was 9. Consistent
with the studies using children, lower latencies of doubles were attri-
‘ buted to use of a recall process.

Winkelman and Schmidt (1974) hypothesized that an association (re-
call) process could account for Parkman and Groen's (1971) data. Assum-
ing that sums with larger addends are practiced less often, the strength
of association between addends and sum would decrease, producing a
monotone increase of reaction.time with increasing minimum digit. (This
monotohe increasing function would fit fairly well with the linear
structural model, MIN, proposed by Parkman and Groen.) Winkelman and
Schmidt offered support for the existence of, but not nécessarily ex-
clusive use of such a recall process. With their six subjects, there
were significantly more associative confusions (e.g., errors such ag

3+4 =12, or 4 x 5 = 9) than nonassociative (unrelated) errors on
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items using addends or factors of 3, 4, and 5, so they rejected the MIN
model since it would predict no difference between associative and non-
a;sociative errors,

From three experiments with 2 total of 70 adults, Buckley (1975)
concluded that a minimum of two pfocesses—-recall and counting--are
needed to explain adult performance on addition ahd subtraction problems.
He found a significantly higher correlation between the sum of the addends
and response time than between the minimum addend and response time, and .
concluded that the SUM model was the best-fitting counting model. Con-
trary to Parkman and Groen (1971), Buckley also concluded that suéjects
do not compare addends and count on from the larger addend. He found no
gignificant difference between the latencies of a group given larger
addends first and a group given smaller addends first.

. An analog, number line model has been proposed (Aiken, 1971; Restle,
1970) as an alternative to both the digital, counting model and the recall
model for adult performance on simple addition problems. Aiken found
resp&nse latencies proportional to the magnitude of both addends. This
supports a model in which number lines corresponding to addends are men-
tally concatenated to form a sum.

Thomas (1963) presented another alternative to the counting models
in which response latency is proportional to the log of the sum of the
members of the numbexr triple used in the addition or subtraction problem.
For addition items of the forma +b =¢, log (a+ b + ¢c) = log 2(a +b) =

log (a + b) + .3010,.s0 the sum of the addends is the crucial value in

this model. However, the relationship is not linear as in the SUM model.
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In general; for response latency studies with adults, performance
is not consistently accounted for by any of the hypothesized models.

There is evidence that recall, counting, and derived fact processes may
all be used, especially in light of the high variability of response
, times for an item by a given subject (e.g., Buckley, 1975). Some parallels
were found between the studies with adults and those with children, yet
no clear picture of adult-level, mature procecses is given by the re-
sponse latency work. The lack of a definitive description of processes
used by adults may be due i; part to the lack of attention paid to des-
cribing the re;all process with models similar to those describing the
counting processes. It seems reasonable to assume that many addition and
subtraction facts are available to adults via some form of direct recall
rather than by a reconstructive counting procedure, but the response
latency studies have done little to substantiate or refute this conjec-

o
ture.

Recall. While nearly all of the response latency studies acknowledge
the possibility of some type of recall (memory, reproductive) process being
used for certain problems, only Jerman (1970) has attempted to formulate
and test a spgcific model of recall performance. Jerman's model assumed
that addition facts are stored as elements of a mental array in which
the subject proceeds from (0,0) to the coordinate (a,b) for the fact
a+b. Thus, a value of va + b is associated with the "shortest route"
to that combination. This means that 4 + 5 and 5 + 4 should be of
equal difficulty but would have their values located at different points

of the array.- This type of recall model assumes a type of sequential
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.

access to facts rather than random access. In order to retrieve the
larger facts, the subject must "pass by" the smaller ones. This seems
to be a somewhat restrictive assumption.

Groen and Parlman (1972) discussed various recall models. They sug-
gested that "the counting models could easily be:reformulated as re-
trieval algorithms that calculated an index, rather than a sum, with the
index being used for a memory retrieval operation" (p. 342). Another
formulation given is a list structure in which the setting operation
correSponds‘to accessing a list, and the incrementing operation corres-
ponds to finding the next element in the list. They cited the similarity
between the memory search rate found by Sternberg (1969) and the incre-
menting rate used by adults on additions as evidence that such a list-
based recall process might exist (p. 340).

Svenson, Hedenborg, and Lingman (1976) noted that

if a certain proportion of the answers were directly re-
trieved from LTM, and thus not reproduced through the
steps in the model . . . this could not be detected in
a regression analysis of soiution times._ OCnly when a
great majority of the subjects in most of the cases had
the answer to a given problem stored in LTM, was it
possible to detect this fact in the earlier presented
analyses of latencies. The only additions fulfilling
this requirement were the ties. (p. 169)
They have admitted here that regression analysis of response latencies
is an inadequate determinant of whether or not recall is being used.
Winkerman and Schmidt (1974) contended that latency of recall might

be proportional to the size of the addends (or size of the minimum

addend). They attributed this to the hypothesis that "larger sums are

practiced less often" (p. 734), this hypochesis was tested by Groen (1974,
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pp. 8-9). Twelve 4 year olds were taught gddition facts with sums less
than 10 using two different methcds of instruction-~one group was éiven
more facts having larger sums and the other group was given more smaller
sum items., Items with small sums were recalled fagtest in both groups
(after 11 practice sessions). Greoen cited this result as support for
the hypothesis that the children were actually learning a counting al-
gorithm rather than the effect being due to differential practice.

2

Information processing. The response latency studies raise ques-

tions about cognitive information processing mechanisms. Most of the
studies hypothesize the existence of a single counter which is set aﬁd
then incremented or decremented, one unit at a time. The question
arises whether an additional counter is necessary to keep track of the
number of times thé counter which contains the total (or result) has
been incremented. Several of the studies suggést that simultaneous
operation of two counters may be a more reasonable model. Buckley (1975)
suggested that both the MIN and the ALL models require the existence of
two counters which are "yoked," counting together (with alternate
rather than simultaneous incrementation) so that one records the number
of increﬁents while the other records the successive values terminating
in the result (pp. 7-9). Beattie (1979) identified counting stracegies
vhich mirror this "yoked" counter situation (e.g., for 14 - 6, the sub-
ject 'says, "7, 1; 8, 25 9, 3; . . . 14, 8").

Rogsenthal (1975) also discussed the use of two counters in conjunc-

*

tion with his trial value models. In these models, a trial value is

chosen and entered into a counter. That trial value is then validated
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by one of the addition or subtraction counting models. If the trial
value is incorrect, the trial counter is incremented or decremented and
the new trial value is then validated.

Groen and Parkman (1972) raised the issue of two counters but
stated that the counter wﬁich records the number of increments '"can
be assumed to influence each of the five counting algorithms in a unifomm
fashion, and since it is difficult to conceive of a way in which this
operation could affect the linearity of the predictions, it is not dis-
cussed any further" (p. 331),

Svenson (1975) discussed information processing requirements of the
responsge latency counting models in terms of the number of items to be
operated on in STM. He contended that "three entities may be operated
on in short-term memory; actual value of the counter, the unit that is
presently added ﬁo the counter setting, and the number of units remain-

ing to be counted" (p. 300).

Error Analysis

Strategies used to solve addition and subtraction problems can be
inferred from errors in geveral ways. One is to hypothesize general
strategles that will allow children to solve rome problems but not others,
and then match their performance with predicted patterns. Another attempt
to classify errors for specific problems, and infers that certain strate-
gies have resulted in specific types of errors. No studies so far have
systematically attempted to characterize childrenfs strategies for ab-
stract problems based on analyzing patterns cf correct and incorrect

resronses, although inferences may be drawn from the studies reviewed
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earlier that compare the difficulty of different types of problems. For
example, the research cited earlier in this review consistently found
that open sentence problems of the type[:] + b = ¢ were significantly
more difficult than any of the other five types. Since the initial
quantity is unknown, this problem would be difficult for any child who
used a strategy that started with the initial quantity presented in the
problem. These results would be consistent with predictions based on
such a strategy:

Several studies have attempted to characterize errors on basic fact
addition and subtraction problems. The classification schemes are very
general or require a high level of inference. In general, these studies
provide only limited insight into children's strategies.

Beattie and Deichmann (1972) classified errors on addition and sub-
traction open sentences as: basic fact (computatiocn), incorrect opera-
tion (process), and unclassifiable (random). The generality of this
classification scheme virtually precludes making conjectures regarding
the type of strategy used.

Thyne (1941) analyzed Scottish Primary Division students' errors on
basic addition and subtraction facts presented in a + b = [] foruat.

He found that for basic addition and subtraction facts, 11% and 15% of
the errors, respectively, deviated by 7 from the correct answer, and
that the wrong operation was performed 15% and 21% of the time. Re-
sponding with a given number occurred on 10% and 17% of the items, re-
spectively. Other classifiable errors involved‘(a) zero—-27% and 5%,

(b) giving a "sequence" response such as 5 +J = 8--9% and 11%, and

8i
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N
(c¢) incorrect use of doubles such as 5 + 8 = 16—-7% and 0%, respectively.

For both addition and subtraction, findings showed fewer than 157% of

the responses to be unclassifiable. .

~
.

In the above studies, interpretation errors involved use of the *

. '
wrong operation and procedural errors invclved recall or computational

- . -

(counting) errxors with batig facts, as well as oﬁher‘unclassifiable

errcrs. Finer analysis of these ''other'" procedural errors suggests .

¢

that a variety of systematic errors may be present. Thyne's (1941)

dnalysis provides some support for the i#nference that a variety of strate-
gies are employed. ’ . Co

e r

Direct Observation of Strategies

»

A variety of solution strategies have been obsgrved‘among subjects
of various‘ages asked to solve syéﬁélidally presented addition anq sub-
traction problems in an indeigual interview'setting. "In facr,.many

of 'he strateg;es identified by direct oﬁger;afion have not been reported
at all in studies using high;infefenge teghniques. _In the section which
%ollows, thg range of strateg%ea which chi}dren and adults use wherr
soiving sfmple gymbolic°addition ggd subttaction problems is described.
Thét”is foliowe& b}‘a_reviey of‘the more systematic research on.children's

» 1

problem-3dlving strategies. ~

[

Iggppggi_gtion of strategies. Over 75 yeafé ago, Arnett (}905)

and Browﬁe (1906) identified a variety of strategies used by adults to

sblvg sinple addition problemg. Browne noted that counting by one and
*

counting by two were used by eight adults on single-digit additiun items.
<
Atnett and Browne also identified the practice of adding the smaller

. s . 4 '
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digit to the larger even if the smaller was the first addend. In column
addition, some subjects frequently reordered the addends to add 10 com-
plements or other easily assessable sums.

Ginsburg (1975, 1976, 1977b) contended that counting forms the core
of children's practic;l arithmetic and that early solutions to addition
and subtraction problems involve counting strategies. Later, more effi-
cient strategies evolve which are based,either on more sophisticated
counting techniqﬁes or on a core of known facts. Ginsburg's case study
analyses have provided ample evidence that such strategies are used. He
identified strategies such as Counting All, Counting From the Larger or
Counting From the Smaller addend, and the use of a core of known facts

L3
which involve doubles or ten to derive other facts.

Riess (1943a) identified many of the counting strategies used
by prqschool and early elementary students, and also distinguighed
between those,used in the presence or absence of manipulatives. Helseth
(1927) found that adults used dots, fingers, and other strategies based
on a core of known facts to solve combinations they determined to be
difficult. McLaughlin (1935) tested 125 three-, four-, and five-year-
olds on abstract addition tasks presented with concrete, pictorial, or
no aids. The data was summarized in very g;neral descriptive terms, but
it appears that typical perform;nce ranged from inability of the three-
Xear-olds to grasp the task, to use of Counting All and occasional Coupt-
}ng On among f&ur;year—olds, and to Counting All, Counting On and sdme
occasional use of facts with the five-year-olds. Preserce of/manipula—

-

tives improved performance.
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problems presented concretely, and to solve more complicated multiplica-

~ure ol 10 as a bridge, the use of any known fact followed by sequential

Peck and Jencks (1976) administered missing addend problems in ab-
stéact form to first graders and reported two strategieé used : ove£1 or
mental counting and recall of facts. Of 103 subjects who cQuld solve
missing addend problems, 80 were observed as counting, a "few'" counted

mentally, and 17 used recall. They noted that those students who used

counting strategies were able to extend their strategy to solve similar

tion problems and concretely represented items of the form ax + b - c.
"The students who answered from memory were unable to solve subsequent
problems. . ., . In fact, they were unable to solve problems they had
answered correctly in symbolic form when these same (or similar) prob-
lems were posed with concrete physical materials" (p. 659).

Thornton (1978) has documented the use of various taught apd un-
taught counting strategies as well as strategies involving derived
number facts among second and fourth graders. Smith (1921) similarly
identified subjects who use derived facts on addition problems. Since
his subjects were in the third through seventh grades, Smith considered
these "rounéabout schemes" to be a handicap for them, and cautioned
against allowing lower grade pupils to use such strategies.

Beattie (1979) interviewed 98‘fifth and sixth graders and found
that many of the strategies listed above were used when basic subtrac- .

tion facts could not be recalled. The derived facts noted by Beattie

include the use of doubles, the use of 19 for facts involving 9, and

o 8,1 c 2




generation of related facts, and regrouping of the minuend as (10 + x)
when a two-digit minuend is given. |

Flournoy (1957) examined strategies used by third graders on "higher
decade" (i.e., two-digit plus one~digit) additlon problems. She found
a variety of strategies similar to those identiﬁied above for addition
of basic facts. An important finding in this study was that nearly 20%
of these third graders used several different methods within a 12-item
test. ‘

Rosenthal (1975) attempted to get 9-year-old subjects to verbalize
about their solutions to noncanonical addition and subtraction open
sentences. ?hree of 25 subjects explained that they had used a syste-
matic substitution (trial and error) strategy, but ''most subjects
were unable to provide any explanation at all" (p. 83).

Lankford (i974) interviewed 176 seventh graders and found that
counting was the most frequently used strategy for whole number addi-
tions. Approximately 25% of these seventh gradgrs used fingegs and
another 16% used marks or motions when counting. Many derived facts
invol&ing doubles were also identdified. Lankford emphasized that even
at the seventh grade level, "pupils vary wideiy in the computational
strategies they employ in operations with whole numbersJ (p. 29).

Analysis of strategies. Tie studies reviewed above indicate the

wide variety of strategies used to solve addition and subtraction prob-
lems involving small numbers, but many of them were not carefully docu-
mented, so they can provide only a general impression of the actual

range of strategies used. The following studies were more systematic

fn their approach. Onc;\again the subjects' age leJel provides the most

»

convenient means of aggregating the studies.
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Davydov and Andronov (198l) interviewed 220 children aged four
tﬁ;ough seven on addition problems that were presented either abstractly
or with one addend concretely presented. They identified three levels
of strateéies and described variations within each of these levels. The
strategies which Davydov and Andronov identified for addition are a Count-
ing All strategy and two variations of Counting On. The Counting All
Strategy was observed in 14% of their subjects and involved the use of
objects to model the addends and point-counting to enumerate the final
set of objects. v

The second level, which included 20% of the subjects, was charac-
terized by counting without objects. Although objects were not used,
children at this level found it necessary to count fraqm 1 ("1, 2, 3, 4-—-
5, 6" for a problem such as 4 + 2). Davydov and Andronov identified
a number of hand and body movements which accompanied this strategy.

They attributed these movements to a mental reconstruction of the ob-
jects which is assumed to take place as the child moves from actions
with objects to action with "assumed sets.”

The third level involved Counting On with the first addend c;n—
sidered as a unit, e.g., "4--5, 6" for the problem 4 + 2. Counting On
was used by 55% of their sample. Generally, some type of sweeping motion
was .made tc acknowledge the objects of the first addend, and the numb;r
word represénting the first set was uttered in a drawn-out manner.

Davydov and Andronov also identified an erronéous strategy which

they referred to as‘"imaginary adding-on." VWith this strategy, the child

touched one object of the set and designated it by a number word corres-




4

pornding to the quantity of objects constituting the first addend. But
these children were unable to distinguish between the number assigned to .,
a seé and the labeling of an element in counting. Upon further examina-
tion, this IImitation led to a number of errors in attempting to count

on.

Houlihan and Ginsburg (1981) presented three types of symbolic addi-
tion problems (one-digit plus one-digit, one-digit plus two-digit, and
two-digit plus “wo-digit) to first and second graders. They found that
counting constituted the predominant strategy among first graders and
that approximately equal numbers of subjects used Counting A1l and Count-
ing On strategles. Counting All was used only infrequently by second
graders, but Counting On constituted nearly half of the appropriate strate-
gles; number facts and derived facts comprised the remaining half. The
use of appropriate strategies ranged from 777 on one-digit items to 4%
on two-digit items for first graéers and from 91% to 457 for second

N Q

graders. .,
Houlihan and Ginsburg presented problems orally and in written form
but found no difference between these presentation modes for symbolic
items. Also, paper and pencil’and manipulatives were avallable, but the
manipulatives were seldom used by second graders. Manipulatives were

used with approximately half of the first graders' counting strategies.

« Brownell (1928) observed the strategies of 14 children aged seven to

nine on each of 14 single-digit addition probleis with sums greater than
seven. Six had the larger addend first, six had the smaller first, and
two were doubles. He idertified counting, derived facts, and recall of

Ll

basic fscts as the primary methods of solution, and suggested that counting
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formed the lowest stage of development for addition and ''meaningful habitua-

tion,"

i.e., recall with understanding of number relationships. Seven of
the 14 subjects used recall as their predominant strategy, three children
uced recall and derived facts with approximately equal frequencies, two
children primarily used counting, and two children frequently used all
three strategies given above.
Brownell a;ggyprovided data régarding the consistency with which .
students added up or down for vertically presented items. TFour of 14
students consistently added ia one direction,.while tne other 10 varied
the order in which addends were combined. Questioning revealed that this
was done to achieve the 'preferred form" of a combination, e.g., 7 + 3
as opposed tc 3 + 7, For example, 9 + 6 was much preferred to 6 + 9.
Brownell did not explicitly describe whether the preferred form always
involved the larger addend first, but the implication is that this was
the case. This might be taken as evidence for the behavior of trans- 1“
forming the addends so that a Counting On From Larger strategy could be

used.

o

Brownell (1941) conducted a longitudinal investigation of 40 first

2

graders' and 60 second graders' strategies on abstract addition and sub-
traction problems. He individually interviewed children using both items
which had been taught and items which we¢fe unfamiliar. These interviews

were carried out at midyear and at the end of one school year. Brownell

tabulated strategies in six categories: no attempt, guessing, counting

from 1, partial counting, solution, and recall of number facts. Brownell's

88
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solution categorv includes derived facts based on doubles, use of a known -
fact, u;e of addition facts for subtraction problems and vice versa, and
use of a fact in commuted form, e.g., using 3 + 1 =4 for 1 + 3 =l:].
Several of Brownell's results are noteworthy. Recall of facts was the
predominant strategy at all levels; partial counting was more frequently
used by second graders than first graders; counting strategies occurred
infrequently in comparison to guessing, sq}ution, and recall of number
facts;qand more than 20% of the second graders' strategies on subtrac-
tion problems were classified in the solution category.

Russell (1977) observed 32 third graders' strategies on 15 verbally
presented symbolic addition items with sums between 19 and 48 and between
100 and 500. \Concretely pré;ented items (dots on cards) were also in-
cluded, and paper and pencil and manipulatives were made available.
Russell found that "third graders use strategies that are appropriate to
individual problems" (p. 157). Counting All was the most frequent strategy
with the dot items, while the written algorithm was used on at least.90%
of the large addend items and on those for which a written solution was
required. Counting On and derived facts were each used on about 15% of
the items with sums less than 48, while the standard algorithm accounted
for 63% of the strategies on those items. Russell concluded that a "trend
towards economy and efficiency” (p. 158) exists at the third-grade level.

Grouws (1972a, 1974) observed 32 third graders' strategies for solv-
ing both types of noncanonical adlition and subtraction sentences with

sums less than 19 and between 41 and 100. The strategies he identified

included counting, trial and error, use of facts, use of a written algor-

ithm, ise of derived facts, and transformation to an equivalent sentence.
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Although items were presented in two contexts, symbolic and symbolic with
verbal problem, ''there was a close similarity in pattern and in numbzr of
methods used in these two contexts" (Grouws, 1972a, p. 135).

As in Russell's (1977) study, counting strategies were used on approxi-
mately .5% of Grouws' items (for both basic fact and two-digit items).
Derived facts (G%) and written algorithms (38%) were used somewhat less
frequently than in Russell's study. The primary difference beﬁwee; i
Russell's findings and Grouws' was the use of facts when possible (17%)
and the use of trial and error (7%). ‘fransformation to an equivalent
sentence occurred infrequently (2%). Facts and derived fact strategies
were used more frequently on addition sentences, and standard algorithms
were used more often on subtraction sentences, although Grouws (1972a)
considered these differences tU? small to warrant any generalizations.

Grouws' study with noncanonical forms was consistent with Russell's

’ stgdy in that third graders used strategies appropriate fo~ .he item
(e.g., recall with small addends, algorithms with larger addends). A
variety of strategies, including counting, continued to be used at the
third-grade level. However, a trend toward the use of more efficient
strategies was evidenced by the fact that approximately 55% of the
strategies on noncanonical items involved recall or use of standard
algorithms.

In a sequence of studies (Sven<on, 1975; Svenson & Broquist, 1975;
Svenson, Hedenborg, ' Lingman, 1976), Svenson examined the strategies

used by 9-12-year-olds on canonical addition items with sums less than

4. 1In the first study, following several sessions in which response

latencies were measured, subjects were asked what strategies they would
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use when answering a selection of 5-8 addition items. Counting From
Larger, use of derived facts involving doubles or 10, and recall were
the strategies identified. Svenson and Broquist (1975) asked similar
questions and found that 22 of 26 subjects counted on from the larger
addend on some items.
Svenson et al. (1976) interviewed eight subjects who were asked

to tell "how they thought when they got the answer" to each of 250 itenms,
excluding doubles and those with addends of 0 or 1.

On the average about 74%Z of the analysed additions

were solved by applying a consisteat strategy. There

were great individual variations, from very consis-

tent subjects with about 90% of the answers in the

same categcry, to subjects with only about half or

one—third of the problems reported to be solved in

the same way during four or five presentations in

the experiment. (p. 167)
Recall and Counting On (from larger or smaller) each occurred on 36%
of the items. Counting in steps greater than one occurred on 16% of
the items, but this included responses like "8, then 9 and 11," for
which the counting did not continue sufficiently to determine if the
child was really counting in units of two. Terived facts involving
doubles were used on 8% of the items, and other derived facts accgunted
for 4% of the strategies. Svenson et al. concluded that subjects "used
highly individual methods for solving some cf the problems" (p. 169).

Although longitudinal data on the development of strategieé for

addition and subtraction is sparse, Ilg and Ames (1951) reported data
on strategiés used by 30 children, followed from age five through nine.
They concluded that addition strategies follow a sequence of developmeu:°
toward efficiency ;s reflected by Counting All, Counting From the Smaller

" /
Number, Counting From the Larger Number, and use of derived and known

Q E)i
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facts. Subtraction strategies were similarly modified. Children first
counted frorm 1 ro the larger number, then down from it a /number of counts
eqral to the smaller number. Later children began at the larger number
and just counted down from it. Derived facts, often with doubles,

. Counting Up From Given Smaller Number, and the use of known facts vere
the latest dJppearing strategies. Ilg and Ames gave ages at which the
above strategies were used, e.g., Counting All--age 5; Counting From the
Smaller Number--age 5%; Counting From the Larger Number--age 6; etc., but

these ages must be interpreted in light of the fact that Ilg and Ames'

sample was_"scnewhat above the average in intelligence"” (p. 4). Never-
theless, their data confirms the progression toward increasingly effi-
cient strategies which is suggested by the available cross-sectional data.
Conclusion. Children use a reasonably well-dafined set of strate-
gles to solve addition and subtracticn problems involving basic facts.
There appears to be an evolution from more priniitive counting strategies
to more efficient counting strategies, and finally to strategies based
upén recall of number facts, but children at all levels of elementary
and middle school continue to use bacic counting strategies on symbolic
addition and subtraction problems., It appears that many students do not

comnit all of the basic addition and subtraction facts to memory, nor

do they at any level adopt a universal strategy for solving these items.

3
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WORD PROBLEMS
Since there are a great many more variables upon which ;ord problems
are based than was the case for symbolic problems, the classification of
research on word problems is more complex.
Nesher (1982) identified three main components that she contended

account for the difficulty of verbal problems. These are

(1) the logical structure which includes the type of opera-

tion involved and the presence or absence of superfluous
information;

(2) the semantic componert which includes the contextual

relationships contributing to problem structure and the
verbal cue words included in the problem; and

(3) the syntactic component which includes structural variables

concerned with the number of words, position of the component
parts within the problem, etc.
In the analysis that follows, the logical structure dimension has been in-
corporated into the semantic component. Thus, there are two basic dimen-
sions upon which word problems are described in this paper: one based
on syntactic variables and the other based on the semantic structure of
the problems.

Most of the research on syntax has attempted to account for dif-
ferences in difficulty among problems, whereas most of the research
investigating the effect of semantic structure provides either direct
evidence of children's strategies or indirect support for the existence
of hypothesized strategies. Consequently, rather than organizing

studies on the basis of whether or not they investigated solution pro-
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cesses, the syntactic-semantic distinction is used as a basis of organiza-
tion. The review of word problem research is divided into three parts.
The first part is not concerned with distinctions between problems but
rather examines factors that affect children's overall performance on
addition and subtraction word problems. The next two parts examine fac-
tors that account for differences in performance on different word prob-
lems. The first of these two sections is concerned with the syntactic
component, and the final section is concerned with the semantic compon-
ent. The first two sections focus primarily on problem difficulty; the‘

third is concerned with solution strategies.
FACTORS RELATED TO WORD PROBLEMS

Knowledge of Basic Facts and Performance on Verbal Problems

Researchers have often suggested that computational ability corre-
lates highly with problem-solving performance (Suydam & Weaver, 1975).
Several studies have specifically addressed the relationship between
computational skill with basic addition and subtraction facts and per-
formance on addition and subtraction word problems.

Steffe (1970) reported a correlation of .49 between knowledge of
addition facts and scores on a test of addition word problems. He noted
that the most substantial correlation occurred for the lowest IQ group
(.60) and the lowest group of quantitative comparisons ability (.68).
He suggested that these children's difficulties with addition facts
might be explsined in large part by their inability to solve addition
verbal problems in contrast to the curriculum's emphasis on learning

facts at the expense of verbal problem instruction.

9.4
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LeBlanc (1971) found a correlation of .39 between knowledge of sub; -
traction facts and subtraction verbal problem performance. He reg;rded
this as a relatively low correlation. In fact, correlations for groups
of individuals of differing IQ and quantitative comparison levels were
"judged to be so low that the relationship bet seen children's knowledge
of number facts and their performance on the problem-solving test is | .
questionable" (p. 159). :~
Steffe, Spikes, and Hirstein (1976) found significant correlations
between addition and subtraction fact scores when childrer were forced
to solve problems without the aid of physical objects. When children
were allowed to use manipulatives to help them solve the problems, how- I
ever, only certain classe; of problems were significantly correlated

with knowledge of basic facts.

Additional support that problem-solving performance is related to
knowledge of number facts is found in studies which have considered a
range of number facts. Carpenter and Moser (1982) reported uniformly
better performance on probléms with sums between 5 and $ than on probléms'

with sums between 11 and 15. Vergnaud (1982) also reported uniformly

higher performance when small constants were used than when one or
both of the constants were between 12 and 15. 2Zweng (1979) concurred
and reported that '"for all grade levels {3, 4, 5, 6] and all ability
groups decreasing the size of the numbers was very effective in help-
ing students solve problems" (p. 61).

Overall, it is justifiable to conclude that children can solve
addition and subtraction problems better when the constants in the

problems are small numbers. It is also safe to conclude that knowledge

3o
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of basic facts is, to some degree, related to the ability to correctly
solve addition and subtraction word problems. However, as LeBlanc (1971)
noted, "Surely knowledge of basic facts is not sufficient for success in

problem solving" (p. 159).

Presence of Alds

Much empirical attention has been focused on the effects of manipula-
tive or pictorial aids on children's performance doing verbal addition
and subtraction problems. The issue of the availability of aids is not
a simple one. The conditions under which they were used have varied
widely across studies. In some instances aids were merely made available
to the SUbject;; in others the subjects were required to use the aids,
and in yet others, the verbal problems were actually presented concretely,
i.e., the problem data were presented via the experimenter's manipulation
of the objects.

We will first consider studies in which manipulatives (objects and/or
pictures) were available to the subjects. Bolduc (1970), Carpenter and
Moser (1982), Gibb (1956), Ibarra and Lindvall (1979), and Schwartz
(1969) have reported similar findings regarding the effect of manipula-
tives or pictorial aids on children's performance. In all five studies,
the availability of ;ids resulted in improved performance. Gibb found
that physical objects and pictures were about equal in effectiveness on
three types of subtraction problems, and that performance of second

graders was poorer when no aids were used. Bolduc reported that an ab-

sence of aids with first graders resulted in poorer performance than

when two types of visual aids were used. Schwartz compared only pictorial
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aids and nc aids, énd reported better performanice when kindergartners
were shown pictures of objects used in the verbal problems. Carpenter
and Moser reported data on 144 first graders' performance on six addi-
tion and subtraction préblems at three different times during4the school
year. For all‘six problems during each of the three interviews, when
objects were available, performance exceeded or equaled that when ob-
jects were not available. In addition, the difference between performance
with objects available and that with no objects availagle was more marked
with problems in which sums were between 11 and 15 than with problems
with smaller sums. Lindvall and Ibarra presented six verbal addition

and subtra;tion pi'chlems to-kindergartners under alvariety of conditions.
Two of these conditions were a verbal problem read by the experimehter
without manipulatives and-a similar reading with manipulatives available.
The p-values for all six problems were 10-20 po.nts higher when objects
were available.

Steffe and Johnson (1971) also found uniformly higher performance
with objects available. However, they found an interaction between the
availability of objects and quantitative comparison ability. The facili-
tating effect of objects was less at the high‘level of quantitative com-
parigon ability for certain addition problems. Steffe et al. (1976) and
Hirstein (1979) reported the only negative evidence concerning use of
manipulatives. They obtained E—values 10-30 points lower when objects'
were available. They conjectured that the superior performance often
found when manipulativgs érq available might be a result of instructi§hal
practices which encourage the use of objects and discourage the use of

fingers. fhey also suggested that children who ére low on the scale of

. 37




88

.being able to perform quantitative comparisons can still employ Counting
All techniques with fingers to solve many verbal problems.

In some instances children have been required to use objects in
their solutions of verbal problems, i.e., they have been instructed to
"use the objects to solve the problem." Riley (1979) reported that
kindergartners' performance "dropped significantly" in the abgence of
blocks, but first graders' performancé was unchanged from verbal problems'
without manipulatives available to problems in which they were required to
solve the problem by using the blocks.

Concrete presentation of the data and actions in the problem is
the third condition in which aids have been used in veré%l,ﬁroblems.
Shchedrovitskii and Yakobson (1975) present a detailed logical analysis
of the modeling and counting procedures a child must employ in order to
solve problems which use sets of objects to present the problem. There
is an essential difference between the use of objects in conjunction
with a verbal problem, i.e., a condition in which the experimenter does not
directly alter the condition of the manipulatives, and the use of objects
as a vehicle for presenting the problem, i.e., a condition in which all
or a portion of tﬁe manipulation is done by the experimenter. In the
latter case, a portion of the child's task is eliminated; he or she must
only be able to correctly solve the problem after it (or part of it) has
been’ represented in the physical mode. Consequently, the performances
exhibited in the studies below must be distinguished from those on t;sks
requirin’, the subject to solve the problem without assistance.

Lindvall and Ibarra (1979) used three variations of ''concrete" pre-

sentation. In one, they used objects to show the sets described in the
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problems; in anothgr,\they used a pictorial representation of the sets
and the actiong in the problem; and in the third, they used objects
manipulated byv the eXper;menter to model the sets and the actions in

the problem. * Their data indicated that the third condition resulted In
drastically improvednﬁerformance over the other two, and that performance
levels under the first two were roughly comparable to performance when
objects were available to the subject. In any case, all three variations
of concrete presentation of Qerbal problems resulted in improved per-
formance over ghat exhibited in the absence of objects.

Steffe (1570) and LeBlanc (1971) carried out similar investigations
to compare first graders' performance oﬁ addition and subtraction prob-
lems, using (a) no aids, (b) concrete aids, and (c) pictorial aids.
Steffe reported that "prob;ems with no accompanyihg aids were signifi-
caﬁtly more difficult thap either of the other two types of problems
for all children involved" (p. 159), and LeBlanc ccncurred, noting that
"rhe conclusion that the children solved the problems better with the
presence of aids is well substantiated" (p. 150). LeBlanc also noted
that the mean differences fcr provlems with and without aids were great-
est for children in the lower levels of IQ and quantitative comparison
ability, although differences were not significant. Grunau's (1978)
findings were consistent with those of Steffe and LeBlanc. She concluded
that for kindergarten subjects the presence of aids was more crucial to
successful perfermance among number nonconservers than among conservers.

Hebbeler (1977) studied prekindergartner'; through second graders'
performance on addition prcblems and found that when the problem data

were presented concretely, more preschoolers could do the problems than

1
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could without objects present, but .that '"the older children do not need
the objects nor do they benefit from having them" (p. 113). In discus-
sing her use of objects to present the problem data, HebBeler noted that
using ébjects in this way precluded the need for the subject to repre-
sent the quantities to bé combined. These particular children seemed
able to represent the data in the Qroblems without assistance from the
experimenter. The older children were performing near ceiling level; by
second grade, her subjects with and without objects were correct on
better than 93% of the i}ems.

The method of concrete presentation in Stark;y and Gelman (1982) and
MacLat;hy (1933) is somewhat different from that in the studies dis-
cussed above. MacLatchy and Starkey and Gelman presented problems by
using objects to present the problem data but screened the first set of
objects before any action was performed. These problems were not thereby
reduced to simple enumeration. Children as young as three years old h
were able to solve some of the probleﬁs with small numbers presented in
this fashion.

In another variation of concretely presented problems, Hendrickson
(1979) had the subject model the first number in the problem before
continuing to read the rest of the verbal problem, e.g., "Put 2 blocks
in front of you. WNow, if I give you S‘more, how many blocks will you
have?" His p-values are lower than most of those for entering first
graders who were given the entire problem in con;réte form.

As early as 1933, Maclatchy documented bet;er pérformance on verbal
problems presented concretely than on verbal problems presented without

aids. Similar findings have appeared many times since, whether the
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© The syntax measure was a casual intuitive one apparently velated to
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manipulative objects or pictures have simply been available to the sub-
jects or whether they have been manipulated by the experimenter to show
‘ghe dats and relationships in the problem. It is safe to conclude that

the use of aids generally improves'performance, but that éhis effec% be-

)

comes less marked as the age of the subjects increases. One can also con-

clude that some of the difficulty in solving verbal problems stems from

N~
b

formulating -2 plan for solution of the p%oblem, i.e., analysis of the
relationships or actions, and the modeling of those relationships or

actionsi and the remaining difficulty relates to the mechanics of determ-
ining the result, once the problem has been represented. If the problem
is presented using the materials, the first difficulty is'removed. If
the aids are simply available, they appear tc aid in the Fepresentation

of the problem and in the mechanics of finding an answer from this repre-

sentation.

SYNTAX VARIABLES .

A number of studies nave investigated the effects of vocabulary or
syntax on difficulty in verbal problems. Thé intent of these studies is
to find structural variables within the problems which affect the suc:ess

|
rate. A study which included both’ vocabulary and syntax as variables )
was reported by Linville (1970, 1976). I 'is primary purpose was to
ascertain whether or not either the Aegree of syntax complexity or the

vocabulary level used in the problems sigr ‘ficantly contributed to their

difficulty when the computational operations required were kept constant,

length of sentence and presence or absence of a relative clause. Both
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syntax and vocabular;)were divided inco easy and hard, producing a 2 x 2
partitioning of the problems. Syntax and vocabulary level were both
found to be significant determinants of difficulty in verbal arithmetic
problens, with vocabulary level more important in determining success than
syntax.

Blénkenship and Lovitt (1976) manipulated vocabulary level in

addition problems, using both accuracy and speed as dependent variables.

One finding was that extraneous information impaired solution.

.
o

Several studies have discussed the role of various verbal factors
in the solution of word problems. Nesher and Teubal (1975) investigated
the effects éf "cue" words on performance of addition and subtraction
problems{ They reported that the presence of certain distracting '"key
words" had a detrimental effert on first graders' choices of the correct
operatjon in verbal problems. ’

Steffe (1967) interviewed 90 first graders to determine the effect
of varying the types of objects described in combined addition problems.
Hélf of the éroblems used objectélwith different names, e.g., ''Someone '
hadyg marbies and b balls, how many toys did she have?", while the other
. half used objects with the same names, "Someone had a blue marbles and
£ green marbles, how many marbles did he have?" Steffe found that
problems in which the objects had the same name were significantly easier
than those with differently named objects. Bolduc (1970) found no sig-
nificant difference on this factor, but Kellerhouse's (1975) replica-
tion of Steffe's study found significant differences in favor of problems

with identically named objects for both first graders and second graders

who solved problems using visual aids. Kellerhouse found no significant




differences between these two types of problems for second graders who
had no visual aids available.

Steffe (1967) also compared first graders performance on problems

s
"

wich a quantifier, e.g.,
John'ha§¢spme toys in his pockets. He has 5 jacks in
one pocket™and 2 marbles in:another pocket. How many
toys does he have in his pockets?

and similar problems without the quantif%gr,

John has 5 jacks in one pocket and 2 marbles in another
pocket. How many toys does he have in his pockets?”

He found no difference in performance on the €wo types of probl-ms.
Several studies have investigated the effects of varying the posi-

tion of certain components of verbal problems. Rosenthal and Resnick

(1974) varied the order in which temporal Information was given in ’

verbal problems modeled by a + b = [], a-b= [], [:]+ b = ¢, and

[]-b = ¢. All problems given to the third graders involved action

described in chronological order, e.g.,

If Paul started out with 5 boats and he bought 3 boats,
how many boats did he end up with?

or in reverse chronological order, ‘ .

How many boats did Paul end up with if he bought 3
boats and he started out with 5 boats?

They found that the reverse order was more difficult when percent correct
was the criterion, but not when latency of response was the criterion.
Bolduc (1970) found that the position of the question (before or after
the data) was not a significant factor in difficulty of addition problems
for first graders. Thig suggests éhat Rosenthal and Resnick's results
may be gue more to the temporal aspect than to the presence of the ques-

tion in the first sentence of the problem.
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Grunau (1978) tested whether verbal problems having a larger first
addend were equ~l in difficulty to those in which the smaller addend
was presented first. GCrunau described as 'tentative" her conclusion that
problems in which the larger a&dend appears first are easler than those
in which the smaller addend appeérs first. Conservers and nonconservers
had significantly more correct responses when the larger addend was first,
and tranaigggggi subjects exhibited a similar but nonsignificant differ-
ence., Vergnaud (1982), however, did not find thét order of the data in-
fluences performance. °

The most systematic research on word problem difficulty has in-
volved the construction of linegr regression models. The fundamental
objective of this line of resoarch.has béen to build cémpreheﬁsive models
to accurately predict the difficulty of different problems. This re-
search attempts to identify components of the problems (both nonlinguistic
and linguistic), and then to regress these variables multilinegrf; upon
the observed difficulty level. "The term 'structural' indicates that
the focus of attention is on the variables that characterize the specific
problems themselves (e.g., the number of words in the problem) and on
the variables that characterize the relationship between individual
problems (e.g., the structural similarity of two adjacent problems"
(Loftus & Suppes, 1972, p. 531). A further analysis of regression
studies can be found in Barnett, Vos, and Sowder (1978).

In 1966, Suppes, Hyman, and Jerman wrote a paper analyzing the pro-
perties of various linear structural models and their possible uses in

advancing a theoretical mathematics education. Their declared aim was

to attach weights to various factors and then use them to predict the {
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relative difficulty or lat?ncy of response for a large number of ifz;s.
This multilinear regression model, using factors suggested by an ini-
tially theoretical analysis of the problems, based on suggestions from
other research, was repeatedly used by Suppes and his co-workers through-

Al .
v

out the ensuing decade.

They believed that it would be possible to analy;e and predigt,
with the use of meaningful variables, the response and latency performance
of children solving arithmetical problems. Note that all variation was
assumed to be inherent within the problem itself. The use of average
observed success rates as the variable to be preéicteq, rather than in-
dividual responses, effectively ignored any differences among students.
A widespread aSSumpZion among these regre;sion studies\is‘that a diffi-
culty index can be established with small number of variables, specific
to verbal problems, which will account for a large portion of the vari-
ance in observed success rates of such problems. No significant role is
given to strategies used by the !tudents; the concern is merely whether
or not they correctly solved the problem.

Suppes, Loftus, and Jerman (1969) presented a series of word prob-
lems to 27 students via computer teletype. The variables were supposed
to be "objective," with the result that they were all "count" variables:
either 0, 1 (e.g., whether or not a problem required convsrsion of units),
or ones which took on a finite set of values (e.g., length of problem as
measured by number of words.) Sentence length was chosen as the most
plausible variable associated with sentence difficulty. Approaches to

this variable became increasingly complex in this series of studies.

"In subsequent studies, we hope to look at the actual syntactic structure
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"' of the sentences which should provide a more meaningful index of diffi-

culty than mere word count alone" (Suppes et al., 1969, p. 4). 1In all,
six structural variables were %dgntified; and 45% of the total va}iance
was accounted féf, although none of the specifically linguistic variables
were of majoq importance. . '

The next study in this sequence (Loftus & Suppes, 1972) incoréorated
a more co;plex measure of linguistic structure. One hundred word prob-
lems involving all four arithmetic;operations were presented to 16
sixth grade studenbijcharactenized as "of low ability." As well as )
the six -old variablég, two new ones were included. These were order
(a 0,1 variable) which reflected whether. or not the numerical data pre-
sented in an order other than one which could be used to solv; the
problem, and a measure of sentence complexity based on main word~dep;h
as described by Yngre (1960). With the;e eight variables, 70% df;the
variance could be accounted for, although the order of their relative
importance in terms of which one entered the regression equation first

was different from the previous study. Five variables: sequential,

operations, depth, length, and conversion provided almost as good a fit.

Searle, Lorton, and Suppes (1974) continued this line of investiga-
tion, although their intention was to use the variables to structure a

computer-based problem-solving curriculum. Twelve variables were ini-

culties coding. An r2 of .66 was obtained.

! |

tially used, although the depth measure was excluded, because of diffi-
Jerman and Rees (1972) summarized the work done to that time. They

|

discussed the evolution of the attempts and of the variables employed

in the regression problem. '"One of the purposes of these regression
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studies has been to identify and quantify in a clear and explicit way a
get of structural variables tha£ account for a significant amount of the .
variance in the observed error rate. . . . What we hope for is to be

-

able to generate sets of arithmetical problems of a specified difficulty

level" (Jerman & Rees, 1972, p, 306). They summarized the mu;hrooming
sets of variables being proposed in an attempt to account for ever- ‘
increasing proporxtions of the varianc%. They then ;ttempt to fit the
most robust variables to a new set of dét; on fifth grade students,
where in contrast to the CAI format, the calculations were also being
done by the student. After 9 variables, an r? of .59 was obtained.
Following further adjustment and new less intuitive or easily imple-

mented variables, an gz

of .87 was obtained with only five variables.

Jerman (1973) attempted to replicate the above study using stu-
dents of diffexent grade levels (4, 5, and 6). He focused. primarily on
length, the simplest of the five variables successfully employed in the
1972 work, and the one with the oldest pedigree. This new study involved
19 variables, and length failed to consistently account for a significant
amount of the variation. He concluded: "The task of further refining
the definitions of the variables seems to be the next logical step.

Perhaps through a combination of structural and linguistic vari-

ables the ability of the model tg predict error rate will improve sig-

‘nificantly" (p. 122). Here, as in earlier works, his aim was to identify

a small subset of variables (six or fewer) which could be used in further’
investigation. He was attempting to generate robust variablss which might
have explanatory power across grade levels. The focus on specifically

linguistic factors was influenced by Krushinski (1973). Krushinski
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investigated the influence of 14 specifically linguistic variables on
the difficulty of verbal arithmetic problems for college students en-
rolled in an elementary mathematics methods course. Examplesfgf his
variables were sentence length, number of clauses, clause length, number !
%%)3repositional phrases, and number of words in the question sentence.
These five were all found to be significantly related to problem diffi-
culty and entered consistently into the regression equation.

The final study emerging from this group is Jerman and Mirman (1974).
It is a major attempt to identify linguistic predictor variables.
Seventy~three variables were identified ang organized in seven different
categories. These were measures of length (of problem), parts of speech,
words, numbers, sentences, parts of sentences, and punctuation/symbols/
characte;s. A study of 340 studénts in grades 4~9 was conducted to
provide data upon which to regress these variables. A tremendously

detailed analysis was included, but no discernable patterns were identi-

fied. Length was not significant at any grade level. One generalization

. A e e e -

they made was that linguistic factors are appareftly better predictors

of difficulty level for older students. They concluded, "At this point
{ in the searcii for a.set of linguistic structural variables which will

account for the observed variance in proportion correct across grade

levels [we seem] to have found that there is no such universal set"

(p. 360).

" SEMANTIC VARIABLES

The Semantic Classification of Word Problem Types

There have been a number of attempts to characterize basic semantic

differences between various types of addition and subtraction problems.

L0g




One issue is how to classify a problem as either an addition or sub-

traction problem. Reckzeh (1956) pointed out that attempts have often
been made to connect key words in verbal problems (more than, less than,
eté.) with the operation of addition and subtraction, and he suggested
a more desirable alternative. His alternative classified addition and
subtraction verbal problems as involving additive or subtractive situa-
tions. He took issue with Van Engen's (1955) use of '"additive or addi-

tion situation" to include missing addend problems modeled by the equa-

‘tions a + []'= ¢ and [:]+ b = c. Reckzeh argued that the structure of

a problem is determined by the operation required to generate the solu-
tion. For Reckzeh, an additive situation is "one in which two or more
groups of known siz. are joined to form a single group where the size
of the latter group is to be determined" (p. 95).

Van Engen and Reckzeh arrived at different categories for addition
and subtraction problems becaﬁse they based their definitions on differ-

ent dimensions. Kossov {1975) recognized this distinction and classi-

fied simple addition and subtraction varbal problems according to two
aspects of problem structure which he referred to as Feature I and
Feature II. Thq,first feature of verbal addition and subtraction prob-

Y
lems is based on the action described in the problem, either making

larger or making smaller. <Yhe use of words such as "‘ﬂfnoge" amd— fewer™
are the deté}minants of this feature. Kossov concedes that some problems
may not involve action and thus may not have this feature present. The
second essential feature of Kossov's classifigstion is "the position of

the unknown in the problem's structure" (p. 127). Problems can be classi-

fied along this dimension into two categories: Direct problems (those
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with a canonical corresponding open sentence) and indirect problems
I

(those with a —oncanonical corresponding open sentence).

Addition and subéraction word.problems have also been partitioned
in several other ways. One approach distinguished between problems on
the‘basis of whether or not action was involved (LeBlanc, 1971; Steffe,
1970). A Second approach differentiated betwee;uproblems in terms of thé
open sentences they represented (Grouws, 197éa, 1972b; Lindvall & Ibarra,
1980b; Rosenthal & Resnick, 1974). Both approaches overlook important
differences between éertaiq classes of problems. Recently, a group of

.

researchers studying children's solutions to addition and subtraction

problems have adopted a common framework whicl appears most productive
in distinguishing imp;rtant differences in how different problems are
solved (Carpenter & Moser, in press; Riley, Gr;eno, & Heller, in press).,
This framework is generally consistent with several earlier classifica-

" tion schemes (Carpenter & Moser, 1982; Greeno, 1981; Nesher & Katriel,

1977) and incorporates the "take away," "joining," and "comparison"

situations identified by Gibb (1956), Reckzeh (1956), and Van Engen
(1949). This analysis proposes four broad classes of addition and sub- '
traction problems: Change, Combine, Compare, and Equalize.

There are two basic types of Change problems both of which involve

action. In Change/Joingﬁroblems, there is an initial quantity and a
hirect or implied action tgat causes an increase in that quantiéy. For
Change/Separate problems, a subset is,removesyfrom a given set. In
both clagses of problems. the change occurs over time. There is an
initial condition at T1 which is followed by a change occurring at T2

which results in a final state at T3.

liy
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Within both the Join and Separgte classes, there are three distinct
types of problems depending upou which quantity is unknown (see Table 2).
For one type, the initial quantity and the magnitude of the change is
given and the resultant quantity is the unknown. For the second, the
initial quantity and the result of the change is given aqd the object
is to find the magnitude of the change. In the third case, the initial
quantity is the unknown.

) Both Combine and Compare problems involve static relationships for
which there is not éirect or implied action. Combine problems Zinvolve |
the relationship existing among a particular set and its two, disjoint
subsets. Two préblem types exist: the two subsegs are given and one is
asked tor find the size¢ of their union; o? one of the subséts and the
union are given and the solver is asked to find the size of the other
subset ksee Table 2). -

Compare problems involve ;he‘comparison of twe distinct, disjoint

sets. Since one set is compared to the other, it is possible to label

one set the referent set and the other the compared set-—The-third

&

N

entity in these problems 1s the difference, or amount by which the larger

get exceeds the other. In this clase of problems, any one of the three

. entities could be the unknown: the difference, the reference set, or
the compared set. There is also the pogsibility of having the larger
set be either the referent set of the compéred set. Thus, there exist
¢ix different types of Compare problems (see Table 2).

L ~

The final class of problems, Equalize problems, are a hybrid of

in the Change problems, but it is based on the comparison of two disjoint

111 .

)

Compare and Change problems. ' There is the same sort of action as found-
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Table 2

Classification of Word

Problems °~ -

Change
Join Separate
Connie had 5 marbles. Jim gave 2. Connie had 13 marbles. She gave
her 8 more marbles. How many . S marbles tc Jim. How many

marbles does Ccmnie have altogether?

Connie has 5 marbles.
more marbles does she need to have
13 marbles altogether? '

Connie had some marbles. .Jiﬁ gave 6.

her 5 more marbles. Now she has
13. How many marbles did Connie
have to start witn?

How many b,

marbles does she have left?

Connie had 5 marbles. She gave
some to Jim. Now she has 8

marbles left. How many marbles
did Connie have to start with?

Connie had some marbles. She
gave 5 to Jim. Now she has

8 marbles left.. How many marbles
did Connie have to start with?

Comb ine
Connie has 5 red marbles and 8 8. Connie has 15 marbles. TFive
blue marbles. How many marbles are red and the rest are blue.
does she have? . How many blue marbles does
Connie have?
Compare o _
Connie has’13 marbles. Jim has . 10. UConnie has 13 marbles. Jim has
S marbles. How many more marbles 5 marbles. How many fewer
does Connie have than Jim? marbles does Jim have than
. Connie?
Jim has 5 marbles. Connie has 8 12, Jim has 5 marbles. He has 8
more marbles than Jim. How many , fewer marbles than Connie. How
marbles does Connie have? v marbles does Connie have?
Connie has 13 marbles. She has 14. Connie has 13 marbles. .Jim has
5 more marbles than Jim. How 5 fewer marbles than Connie.
many marbles does Jim have? How many marbles does Jim have?
Equalize !
Connie.has 13 marbles. Jim has 16. Connie has 13 marbles. Jim has

5 marbles. How many marbles does
{im have to win to have as many
marbles as Connie?

- Y 1”1;2

5 marbles. How many marbles does
Connie have to lose to have as
many marbles as Jim?.

(Continued)
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Table 2—-—continued - :

, 0N

: -  Equalize (Continued)

Join Separate .
. 17: Jim has 5 marbles. If he wins 18. Jim has 5 marbles. If Connie
8 marbles, he will have the same loses 8 marbles, she will have
number of marbles -as Connie. How the same number of marbles as
. many marbles does Connie have? Jim. How many marbles does
; ‘ Connie have? ‘
19. Connie has 13 marbles. If Jim 20. Connie hass13 marbles. If she
wins 5 marbles, he will have ‘ loses 5 marbles, she will have
s the same number of marbles as the same number of marbles as’
‘ Connie. How many marbles does Jim. How many marbles does Jim
Jim have? . have? ‘
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sets. Equalize problems are not as commonly found in the research litera-

ture or in most American mathematics programs; however, they do appear

\ \ .
in the Developing Mathematical Processes (DMP) program (Romberg, Harvey,
AN

Moser, & Montgomery, 1974). These problems are also present in experi- \\\‘ x
mental programs developed in the Sgyiet Union (Davydov, 1982) and in

Japan (Gimbayashi, 1969). As in the Compare problems, two disjoint sets

are com;ared; then the question is posed, "What could be done to one of

the sets to make it equal to the other?" If the action to be performed

-

is on the 'smaller of the two sets, then it becomes an Equalize/Join prob-
lem. On the other hagd, if tpe action to be performed is on the larger
set, then Equalize/Separate problems result. As wiFh comparison problems,
the unknown can be varied to produce three distinct Equalize problems of
each type (see ?dble 2).)
The above analysis of addition and subtraction word problems is
limited to siqple problems that are appropri;%e for primary age children.
It is not as complete as the framework proposed by Vergnau;i (1982) that »
extends to operations on integers. Vergnaud's (Vergnaud, 1982; Vergnaud

. . o} .
—— - —— -~ - —& Durand;-1976)-classification of verbal addition and subtraction prob-

e e,

lems is consistent with the above analysis but encompasses a greater
number of problem types. Vergnaud ouilined six classes of problems
which are geﬁerat;d by considering measures, transformations, and g
static relationships (relative states) as entities in the problem. His
classification scheme included problems which involve:
(1) Composition of two measures (Combine problems) ('‘measure-
measure-measure") M-M-M .

(2) A transformation links two measures (Change problems) ("ini-

tial state—transformation-final state')
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. (3) A static relationship links two measures (Compare problems)
("measure-static relationship-measure)
(4) Composition for twc transformations ("transformation-
transformation-transformation")
A (5) A transformation links two static relationships ("static
relationship-transformation-static relationship")

(6) Composition of two static relatlonships ("static relationship-

static relationship-static relationship’™)
Static relationships and transformations can be either positive or nega-
tive, i.e., they are represented by directed numbers. Transformations
are "changes of state'" such as "losing 5," "giving 3," etc., and static
relationships are relationships such as: "has 8 more than," 'owes 6
dollars to," etc.

For each of the six problem types above, Vergnaud pointed out that -
several problems can be generated depepding upon which entity.is to be
the unkr.own, and if directed numbers are involved, whether positive or

vnegative numbers are used. The problem types proliferate when each of
the entities is'é transformation; 18 distinct problem types are possible
for the composition of two transfbrmation categories alone.

Thevséctions that follow are based on the analysis presented in

. ' Table 2. Although this analygis is not as complete as Vergnaud's, and
does not unambiguously cﬁaracterize all addition and subtraction word .
problems (cf. Fuson, 1972), it is useful to help clarify distinctions
between problems that are accessible to young children and to help dis-
tinguish between problems with clearly different semantic characteris-

tics that result in different methods of solution.

o . S
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Strategies

In the section on Symbolic problems, a number of strategies were
described that have been tested using response latencies. These strate-
gies generally involved settiné and incrementing or decrementing a
mental counter. ﬁost of the research on the strategies that children
ugse to solve word problems have used a different re;earch paradigm.
Generally, strategies have been observed directly, using individual in-
terviews, and children often have had manipulative objects available to
agsigt them in their solutions. Consequently, although many of the same
basic strategies have been observed, there are some important differences
in how they have been characterized. In general, the descriptions of
strategies based on direct observation provide more detail regarding
overt manifestations of counting processes. Strategies are described in
texrms of modeling action or relations in problems rather than in terms
of constructing counting sequences. Alternative strategies are also ¢

identified.

Early studies of solution strategies. Several early studies

o attempted to characterize children's addition and subtraction strategies
for solving word problems. Although other researchers h;d directly
studied strategies children use to solve symbolic problems (Browmell,

\\\igffj Ilg & Ames, 1951), Gibb's (1953, 1956) studies represented a .

. ploneering effort to focus on strategies used for solving various types

of verbal subtraction problems. While she did not systematically report

the frequency

ﬁ\ii;ategies, she did, categorize strategies on an ordinal
The n

scale (1-9).

e levels of strategies were:




(1)
(2)

(8)

(9
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No attempt

Guess, incorrect response with no justificatiocn, or given
number — -

Counting with fingers

Counting all or Separating from

Counting on startiné with 1, e.g., "1, 2, 3, 4, 5, 6, 7"
Counting on or back (without counting one of the groups)
"Working with groups" without reference to counting or a
nunber fact (not clear)

Use of number fact or heuristic (derived fact}r
Spontaneous response (quick)--subject not ablééto recall

the process used

Other researchers have also classified children's solution strate-
gies on verbal addition and subtraction problems. Hebbeler (1977) iden-
tified six categories of strategy used by children in grades pre-K to 2

on addition problems presented in concrete format. Her categories are some-

what more global than Gibb's and are given below:

(1)

2)

3

. : (4)
(5)

(6)

Ginsburg

Counting *

Subitizing o cE
Use of number fact

Guessing

Uncodable--ambiguous

No attempt

and Russell (1979a, 1979b) used a similar classification of

strategies used by 4 and 5 year olds on verbal addition problems pre-

sented in a concrete format. Thelr categories were: -
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(1) Counting

(2) Correct noncounting strategy

(3) . Counting with some error (miscount)

(4) Guessing

(5) Other incorrect.strategy
This categorization is again somewhat global, although preschoolers'
strategies can be assumed to be somewhat more limited than those found
with older children.

These classification schemes introduce some important distinctions
not found in the strategies based on response latencies, but the cate-
gories fail to differentiate between strategies along certain critical
dimensions that are directly related to the structure of different gypes
of problems. The characterizatiop below provides a more comprehensive
description of childrén's stratégies. It is based largely on the work
of Carpenter and Moser (1982), but incorporates most of the distinctions
found in other analyses of solution strategies. In fact, virtually all
of the important distinctions have been observed in a variety of studies
that will be discussed in the following section of this review.

Addition strategies. Three basic levels of addition strategies

have been identified: strategies based on direct modeling with fingers

or physical objects, strategies based on the use of counting sequences,
and strategies based on recalled number facts. In the most basic strategy,
physical objects or fingers are used to represent each of ths addends,

and then the union of the two sets is counted, starting with one (Count-
ing Al11). Theoretically, there are two ways in which this\basic strategy

might be carried out. Once the two sets have been constructed, they

1l
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could by physically joined by moving them together or addiﬁg one set to -
the other, or the total could be counted without physically joining the
sets. This distinction is important. The first case would best repre-
sent the actior of the Change/Join problems while the sécond would best
represent the static relationsnips implied by'the Combine problems.
:Children generally do not distinguish between t;e two strategies in solv-
ing either Change/Join or Combine problems. Thus, is appears that there
is a single Counting All With Models strategy. The strategy may be
accompanied'by different ways of organizing the physical objects, but
the arrangements do not represent distinct strategies or different in-
terpretations of addition.
A third alternative is also possible. A child could construct a
set representing one addend and then increment this set by the number of
_ elements given by the other addend without ever constructing a second set.

Such a strategy would seem to best represent a unary conception of addi-

tion (Weaver, 1982). This strategy is seldom used.
There are three distinct strategies involving cqunting sequences.

In the most elementary strategy, the counting sequence begins with one
,and continues until the answer is reached. This strategy, which is also

a Counting All strategy, is the SUM strategy identified by Suppes and
Groen (1967) and Goren and Parkman (1972). It is similar to the

Counting All With Models strategy except that physical objects or fingers -
are not used to represent the addends. However, this strategy and the

two following counting strategies require some method of keeping track

of the number of counting Steps that represent the second addend in

order to know when to stop counting. Keeping-track procedures are
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discussed in detail in Fuson (1982). Most children simultaneously

count on their fingers, but a suvstantial number give no evidence of

any physical action accompanying their counting. When counting is
cgrried out mentally, it is difficult to\determine how a child knows

when to stop counting. Some children appear to use some sort of rhythmic
or cadeﬁce counting such that counting words are clustered into groups of
two or three. Others have explicitly described a double count, but
children generally have difficulty explaining this process. When fingers
are used, they appear to play a very different role than in the direct
modeling str;tegy. In this case, the fingers do not seem to represent
the second addend per se, but are used to keep track of the number of
steps in the counting sequence. When using fingers, children often do
not appear to have to count their fingers, but can immediately tell when
they have included a given number of fingers. Steffe (personal communi-
cation) has hypothesized that fihger patterns play a critical role in the
development of advanced counting strategies.

~¢
The other two counting strategies are more efficient and imply a

less mechanical application of counting. 1In applying these strategies,
a child recognizes that it is not necessary to reconstruct the entire
counting sequence. In Gounting On From First, a child begins counting
forward with the first addend in the problem. The Counting On Fro?
Larger strategy is identical except that the child begins counting foxr-
waéd with the larger of the two addends. This strategy is the MIN
strategy of Groen and Parkman (1972).

Although learning of basic number facts appears to occur over a

protracted span of tipe, most children ultimately solve simple addition

. 1<y
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and subtraction problems by recall of number combinations rather than by
using céunting or modeling strategies. Certain number combinations are
learned earlier than others; and before they have completely mastered

their addition tables, many children use a small set of memerized facts

to devive solutions fcfbadditigﬁ'énd subtraction problems involving

other number combinations. These solutilons usually are based on doubles

or numbers whose sum is 10. For example, to solve a problem representing
6 + 8 =[:], a child might respond that 6 + 6 = 12 and 6 + 8 is just 2
more than 12. In an example involving the operation &4 + 7 = [], the
_ solution may involve the following analysis: 4 + 6 = 10 and 4 + 7 is
just 1 more than 10,

Hatano (1980) identified a type of derived strategy usgé,by Japanese
children. It is a mental strategy which relies on the use of gumber
facts other than the one directly related to}the pgoblem bejng solved,
but it is based on the use of 5 as an intermediate unit. This mental re-
grouping strategy involves breaking up addends into forms such as "5 + n"
where n < 5, e.g., for 5 + 7 the child thinks 5 + (5 + 2) or 10 + 2.
Hatsano cites three pleces of evidence which support the use of this
strategy by Japanese children: (a) skilled abacus users rely on an
internalized system based on numbers complementary-to 10 and 5; (b) Count-
ing On strategies are not observed with first and second grade Japanese ’
children; and (c) latency data indicate that Japanese children exhibit
lower latencies when addends of 5 are used. Hatano's findings suggest
that some of the strategies children use on verbal addition and subtrac-

tion problems are culturally dependent rather than universal.
{\

121




112 -

Subtraction strategles. Each of the three levels of abstraction

described for addition strategles also exist for the solution of sub-
traction problems. However, whereas a single basic interpretation of
addltion has been the rule, a number of distinct classes of subtraction
strategies have been observed at the direct modeling and counting levels.
One of the basic strategies involves a subtraction action. In this
case, the larger éuantity in the subtraction problem is initially repre-
sented and the smaller quantity is subsequently removed from it. When
concrete objects are used, the strategy is called Separating From. The
child constructs t#e larger given set and then takes away or separates,‘
one at a time, a number of objects equal to the given number in the
problem. Counting the set of remaining objects ylelds the answer. There
is also a parallel strategy based on counting called Counting Down From.
A child initiates a baékward counting sequence beginning with the given
larger number. The backward counting sequence contains as many counts
as the given smaller number. The last number uttered in the counting
sequence 1is the answer. 2
The Separating To stfhtegy is similar to the Separating From strategy
except‘that elements are removed from the larger sét until the number of
objects remaining is equal to the smaller number given in the problem.
Counting the number ¢f objects removed provides the answer. Similarly,
the backward counting sequence in fhe Counting Down To strategy continues
until the smaller number is reached and the number of words in the counting
sequence is the solution to the problem.

The third pair of strategies involves an additive action. In an

additive solution, the child starts with the smaller quantity and con-
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structs the larger. With concrete objects (Adding*On), the child sets

put a number of objects equal to the small given number (an addend) .

[~qu_1he child then adds objects to that set one at a time until the new ...

¥

collection is equal to the larger‘given number. Counting the number of
objects ad%gd on‘gives the answef. In the parallel counting strategy,
Counting Up From Given, a child initiates a forward counting strategy
beginning with the smaller given number. The sequence ends with the
larger given numSer. Again, by keeping track of the number of counts
uttered in the sequence, the child determines the answer. )

The fourth basic strategy is called Mat;hing. Matching is only
feasible when concrete objecgs are available. The chiid puts out two
ée;s of cubes, each set standing for one of the given numbers. The sets
are then matched one-to-one. Counting the unmatched cubes gives the
answer.

A fifth strategy, the Choice strategy, involves a combination of
Counting Down From and Counting Up From Given, depending on which is the

most efficient. 1In this case, a child decides which strategy requires

the fewest number of counts and solves the problem accordingly. ¥or

example, to find 8 - 2, it would be more efficient to Count Down From
whereas the counting Up From Given strategy would be rore efficient for

8 - 6.

As with addition, modeling and counting stragegies eventually give

’

way to the use of either recalled number facts or derived facts. Chil-
dgen's explanations of their solutions suggest that the number combina-
tions they are calling upon are often addition combinations. To explain

Al .

¥y
how they found the answer 13 - 7, many children reSﬂ?zﬁBthat they just
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knew that 7 + 6 = 13. Mény of the derived subtraction facts are also
based on addition. For example, to explain the solution to find 14 - 8,
one child reported, "7 and 7 is 14; 8 is 1 more than 7; so the answer is

6" (Carpenter, 1980b, p. 319).

Problem Structure and Solution Process

Subtraction. As can be seen from the descriptions of problem
structure and children's processes, certain strategies naturally model
the action‘described in specific subtraction problems. The Separate/
Result Unknown problems (see Table, problem 2)' are most clearly modeled
by the Separating and Counting Down From Given strategies, whe{eas the
Separate/Change Unknown problems (problem 4) are best modeled by the
Separating To and Counting Down To strategies. ‘On the other hand, the

implied joining action of the Join/Change Unknown problem (problem 3) is

most closely modeled by the Adding On and Counting Up strategies. Com-

pare/Difference Unknown (problems 9 and 10) deal with static relation-
ships between sets rather than action. In this case, the Matching
strategy appears to provide the best model. ‘ )

For the Comhine subtraction problem, the situation is more ambiguous.
Since Combine problems have no implied action, neither the Separating nor
Adding On strategies (or their counting analogs), which involve action,
exactly model the given relationship between quantities. And since one
of the given entities is a subset of~the other, there are no two distinct
sets that can be matched.

For Equalize problem the situation is reversed. Since Equalizé

problems involve both a comparison and some implied action, two different
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strategias would be consistent with the problem structure. The Equalize/
Join problems (problem 15) involve a comparison of two quantities and
a -decision of hda much should be joined to the smaller quantity to make
them equivalent. Either the Matching or the Adding On (Counting Up From
_ Given) strategies might be appropriate. For the Equalize/Separate
problems (problem 16), the implied action involves removing elements
from the larger set until the two sets are equivalent. This action seems
to be best modeled by the Separating To strategy, although the Matching
stravegy is again appropriate for the comparison aspect of the problem.
The results of a number of studies consistently show that young
children use a variety of strategles to solve different subtraction prob-
lems and that the stgategies used generally tend to be consistent w?th

the action or relationships described in the proble; (Blume, 1981;

Carpenter, Hiebert, & Moser, 1981; Carpenter & Moser, 1982; Hiebert,
1981). * This tendency is especlally pronounced for children below the
esecond grade, but for some children the structure of the problem in-
fluences their choice of strategy at least through the third gradé.

The results summarized in Table 3 are from a three-year longitudinal
study of the processes that children use to solve basic addition ang sub-
traction word problems (Carpenter & Moser, 1982) .. The study involved
approximately 100 childfen who wérg individuallyJinterviewed, three times
a year in the first and second grades, and twice in the thira grade. The
study ipcluded prob%Fms similar to problems 1, 2, 3, 7, 8, and 9 in Table 2.
Thg results reported in Table 3 are f9r problems involving basic subtrac-

tion facts with the larger number between 11 and 16. Manipulative objec—

tives were available to aid in the solution, but children were not required
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- . Table 3

911

R Relation of Strategy to Problem and Structure

(Carpenter and Moser, 1982)

- - ' : ) Strategy
- (Percent Responding)
Subtractive Additive ' Numerical
Percent Separating \ Counting Adding Counting Up Recalled Derived
Problem Type Grade Correct From Down From On From Given Matching Fact Fact
Separate/ 1 61 . 68 1 1 3 0 1 2
Resul.t 2 83 34 8 1 10 0 20 9
. Unknown - 3 95 9 3 1 12 0 54 13
Join/ 1 57 2 0 42 12 1 2 4
Change 2 93 1 2 18 31 0 25 16
Unknown p 3 95 0 1 6 27 1 48 14
Compare/ 1 41 8 0 3 9 .30 1 1
Difference 2 70 11 6 2 17 14 19 7
Unknown 3 89 3 3 2 14 2 52 17
Combine/ 1 45 45 0 4 3 0 2 2
Part 2 78 36 5 0 11 0 20 14
Unknown 3 91 6 1 0 13 0 53 18
127
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to use them. To simplify the table, only results for the January inter-
Qiews ire included. At the time of the grade 1 interview, the children
in the study had received no formal instruction in additionyand subtrac-
tion. By the second-grade interview, they had received about six months
of instruction in addition and subtraction, but mastery of number farts
was not expected, and there had been no instruction on the subtraction

) algorithm. By the third—gfade interview, students were expected to have
learned their number facts and to have learned the addition and subtrac-
tion algorithms.

In grade 1, the vast majority of responses were based on problem
structure. Almost all of the first graders who solved the problems
correctly used the Separating From or Counting Down From strategles for
the Separate problem and the Adding On or Counting Up From Given strategy
for the Join/Change Unknown problem. The results were not quite so over-
whelrming for the Compare problem, but the Matching strategy was used by

the majority of children who solved the problem correctly., Furthermore,

it was the only problem for which mére than two children used a matching
strategy. The results for the Combine problem, for which there is no
élear action to represent, generally tended to pavallel those of the
Separate. problem.

T By the second grade, about a third of the responses were based on
number facts and the effect of problem structure was not quite so dominant;

‘ however, the structure of the problem continued to influence the responses
of a large number 6f second graders. To s;lve the Separate problem 427

: of the second graders used a subtractive strategy, while only l1% used

an additive strategy. For the Join problem, 49% used an additive strategy
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and‘only 3% used a subtractive strategy. Thus, for these two probiems,
most of the children who used a counting or modeling sérategy continued
to represent the action described in the problém. The structure of the
Compare problem did not continue to axert as strong an influence, and
many sé;ond graders abandoned ghe Matching str;tegy for the more effi-
clent Separating From or Counting Up From Given strategies.

By the third grade, about two-thirds of the responses were based
on number facts; and there was moxe flexibility in the use of counting
_strategles.” For the Separate problem, the most popular non-numerical
strategy was Counting Up From Given, and the Matching strategy was seldom
used for the Compare problem. For the Join problem, however, almost all
children who did not use number facts used an additive strategy. This
| represented about a third of the t@ifd gr;ders in the study.

Tgefe are two plausibleiexplanations for the continued reliance on
additive strategies for the Join problem. The Counting Up From Glven
strategy may simply be the most efficient strategy available to some
third graders for solving subtr;ctidn problems of any kind. In other
words, for some children;'the choica of a Counting Up From Glven strategy
for the Joiq problem may not have been dictated by the additive structure
of the Join problem, it may simply be the strategy they use to solve
subtraction problems. The fact that 12-14% of the third graders used
the Counting Up From Given sirategy for the other three subtractio;
problems supports this hypothesis. On the other hand, almost twice as

many third graders used the additive strategy for the Join problem as

for the other three problems.

-
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fhe influence of the additive structure of the Join problem is
apparent in the solution of two—digig problems, which are most effi-
ciently sol;;d using the subtraction algorithm. By the time of the
January interview, the third graders in the study were expected to have
mastered the subtraction algorithm. For the other five types of problems,
between 80% and 95% of the children used the standard addition or sub-
traction algorithm; but for the Join/Change Unknown problem, oﬁly 53%
used the subtraction algorithm. Almost a third used some form of addi-
tive strategy that paralleled the structure of the problem.

Results of othe{ studias investigating the processes that children
use to solve word problems are generally consistent with those of the
longitudinal study reported above (Anick, in preparation; Blume, 1981;
Carpenter, Hiebert, & Moser, 1981; Hiebert, 1981). These studies also
included )roblems not administered by Carpenter and Moser (1982).: Per-
haps the most compelling evidence showing the effect of problem struc-
ture is found on Separate/Change ﬁnknown problems. The strategy that
best represents the action described in these problems is th; Separating
To strategy. In general, this strategy appears somewhat inefficient and
unnatural. The strategy involves removing elements from a set until the
number remaining is equal to a given value. With the Separating From
or Adding On strategies, the elements that are removed or added can be
sequentially counted as they are removed or added. With the Separating
To strategy, however, the size of the remaiﬂing set must regularly be re-
evaluated. Furthermore, the Separating To strategy is virtually never

taught explicitly. In spite of these limitatiomns, Anick (in preparation)

and Hiebert (1981) found that the Separating To strategy was used by
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approximately half of the children in their studies.who were able to

. solve the Separate/Cihange Unknown problem. Results for the Equalize
problems also generally followed the predicted pattern (Carpehter, Hiebert,
& Moser, 1981).

The one case in which results were not consistent across the studies
involves the use of the Matching strategy. Matching was the priﬁary
strategy for Compare problems in both the Carpenter and Moser (1982)
study and ip the Carpenter, Hiebert, and Moser (1981) study. It was
almost never found, however, ih the étudies of Anick @n preparation5 or
Riley et al. (in press). This may be due to the type of mathematics
program used by the children studied. In the studies where Matching

was used, the mathematics program in use was Developing Mathmematical

Processes (DMP) (Romberg, Harvey, Moser, & Montgomery, 1974), a program
which provides early experience in comparing the relative size of two
sets by matching. It appears that children who have used Matching to
compare sets can extend this process t& find the magnitude of the dif-
ference in Compar problems without explicit instruction. If children
have no experience ;;tghing sets, they do not spontaneously apply the
process to Compare probleqf, in which case, they have no way to repre-

sent the relationship describgd in the Compare problems. As a conse-,

quence, these problems are very-difficult for them (Anick, in prepara-

tion; Riley et al., in press).
These réSUlts clearly illustrate ‘the importance of examining
children's solution processes. Although there were significant dif-

\
ferences in the success level for Compare problems between these two

sets of studies, the results of both are generally consistent with the
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« cenclusion that childrep's earliest solution processes are based on model-

.ing éhe action or relationships described in the problem. However, in

one instance, children had available to them a process with which to

model the relationship described in the Compare problems; in the other,

they did not. )

The results for the Compare problems demonstrate that if children do

not have a process available to model the action or relationships in a

given problem, the problem is much more difficult that if it can be )
directly modeled. Certain types of problems are difficult to model.
For example, in the Change/Start Unknown problems (Table 2,.problems 5
and 6), the initial quantity operated on to yield a given result is
unknown. To directly model the action in a Change problem requires
that there is an initial set to either increase or decrease. Therefore,
to model the action in the Start Unknown problems would require some sort
of trial and error in which one guessed at the size of ‘the initial set
and then performed the specified transformation to check whether it pro-
duced the given result. Rosenthal and Resnick (1974) hypothesized that
children may use such a process. But recent data from Anick (in prepara-
tion) indicate that trial and error is almost never used. Consequently,
Start Unknown problems should be significantly more difficult than
problems that can be modeled directly.

An anaiysis of the'relative difficulty of different types of word

problems indicates that problems that cannot be easily modeled are sig-
nificantly more difficult than those that can. The results of a study

by Riley et al. (in press) are summarized in Table 4. The Start Unknown

problems were found to be significantly more difficult than the other

ERIC | 132 -
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Table 4
‘Relative Difficulty of Word Problems

(Riley, Greeno, and Heller, in press)

! 4 Grade

Problem Type K 1 2 3

Join/Result Unknown (1) .87° 100 1.00  1.00
Separate/Result Unknown (2) 1.06 1.60 1.00 1.00
Join/Change Unknown (3) .61 .56 1.00 1.00
‘Separate/Change Unknown (4) 91 .78 1.00 1.00
Join/Start Unknown (5) .09 .28 .80 .95
Separate/Start Unknown (6) .22 .39 .70 .80
Combine/Addition (7) ‘ 1.00 1.00 1.00 1.00
Combine/Subtraction (8) .22 .39 .70 1.00
Compare/Difference Unknown (9) .17 .28 .85 1.00
Compare/Difference Unknown (10) .04 .22 .75 1.00
Compare/Compared Quantity Unknown (11) .13 .17 .80 1.00
Compare/Compared Quantity Unknown (14) .17 .28 .90 .95
Compare/Referent Unknown (13) .17 11 .65 .75
Compare/Referent Unknown (12) .00 .06 y35 .75

4problem number in Table 2.

bProportion of children responding correctly.
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four change problems. Since subjects in the study had not been exposed
to the Matching strategy, all of the Compare problems were difficult

for them. The other problem that proved to be especially difficult

was the Combine/Part Unknown problem. .Since no clear action can be
modeled in the Combine problem, these results are also consistent with :
the hypothesized effect of probleﬁ struéture.

Differences in the wording of problems, experimental protocols and
procedures, and student backgrounds all complicate the comparison of
different studies that examine problem difficulty. However, although
most studies have not found the clear differences reported by Riley et
al. (in press), dther studies do support the conclusion that Start Un-
known problems are more difficult than other Change problems (Anick, in
preparation; Lindvall & Ibarra, 1979), and that Compare and Combine sub-
traction problems are relatively difficult to solve (Anick, in prepara-
tion; Gibb, 1956; Nesher, 1982; Schell & Burns, 1962; Shores & Underhill,
197¢). There is also relatively consistent evidence that Join/Change
Unknown problems are more difficult than Separate problems (Gibb, 1956;
Hirstein, 1979; Lindvall & Ibarra, 1979; Rosenthal & Resnick, 1974;
Schell & Burns, 1962; Shores & Underhill, 1976; Steffe et al., 1976).

Addition. Whereas children have multiple conceptions of subtrac-

tion, reflected in the different processes used to solve different prob-

. -
.

lems, they appear to have a reasonabi&\unified concept of addition.
Children apﬁear to treat Join and Combine addition problems as though
they were equivalent. Not only are the same basic processes used for

both problems, but the same pattern of responses appears for both. The

similarity of responses for the two types of problems is illustrated by
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«Fhe results from éarpenter and Moser (1982), summarized in Table 5. These
‘results are from the September interviews of the same children reported
;6n in Table 3, this time involving basic addition problems with sums
between 11 and 16 in which manipulétive objects were not available.
Studies of problem difficulty support the conclusion that there
is little difference in children's solutions to Join and Combine addi-
tion problems (Grunau, 1978; Lindvail & Ibarra, 1979; Nesher, 1982;
Shores & Underhill, 1976; Steffe, 1570; Steffe & Johnson, 1971). in
|
most cases, performance was not markedly different on these two types
of items. At the kindergarten level, three of these studies (Grunau,
Lindvall and Ibarra, and Shores and Underhill) reported slightly better
performance on the Combine problem than on the Join (p values were ,46
and .59, respectively, for Join and Combine problems in Shores and Under-
. hill; .55 and .63 in Grunau; and .47 and .54 in Lindvall and Ibarra).
At the first-grade level, Shores and Underhill and Steffe and Johnson
found nearly identical performance on the two types of addition verbal
problems. On problems with sums less than 10, p values ranged from .63
to .88 across these studies, indicating that first graders do well with
‘both kinds of addition problems. Steffe reported p values of .85 and
.77 for Join and Combine problems with first graders. Nesher found
similar results at the elementary level with p values of .89 and .75 for
Join and Combine problems,
Differences in performance do exist, however, between Join and
Combine addition problems and some of the other categories of addition
word problems. In fact, the Separate/Start Unknown and Compare addition

problems are significantly more difficult than Join or Combine problens

(see Table 4), because the structure of the Separate and Compare problems
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z ) . Table 5 f// -
Combine and Join Addition Problems

(Carpenter and Moser, 1982) 2

Py

Strategy
(Percent Responding)

Problem Percent Counting Counting On Counting On Derived Recalled

Grade Type . Correct’ All From First: From Larger - Fact Fact
L Combine 50 52 3 3 1 1
Join - 47 46 3 8 2 1

) Combine 72 39 6 .29 4 7
Join 84 41 14° 26 . 6 6

3 Combine 91 13 7 33 1 30

Join : 90

11 15 32 9 32
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are not directly modeled by the addition strategies children have available.

This lack of congruence between problem structure and available solution

- strategies is not there in Join and Combine addition problems for which
the Counting All and Counting On étrategies provide reasonrable models.

Children appear to use the same basic processes to solve all types

of addition problems (Carpenter, Hiebert, & Moser, 1981); however, prob-
lem structure a}go }nfluences children's solutions. .The problem; that
can be ‘reasonably modeied by available strategies are relativeiy easy’

. whereas those that cannot are significantly more difficult.

o-
DEVELOPMENT OF ADDITION AND SUBTRACTION PROCESSES

Much of the early research on addition and subtraction focused on
]

factors éffécting problem difflculty. This approach provided a rela-

tively static view of children's performance. Certain problems were -

identified as being more difficult than others,.but generally no

attempt was made to describe the different levels of difficulty,.in

terms of a hevelopmental hierarchy, i.e., in which the acquisition of

~

ability to solve more difficult problems- built upon the abilities used

[ .

to solve the easier problems.
A primary focus of current research is to describe how addition .
and subtraction concepts are acquired by .children over time. This em-
'ﬁﬁ?sis reflects the influence of Piaget; however, while Piaget's
development model focuses on children's limitations and misconceptions
. at early stages of development, much of the current research describes

1

a sequence of development for addition and subtraction concepts wherein

perfectiy valid solution processes are replaced by increasingly efficient

and abstract processes.
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Reasonably clear evidence has been found which indicates that there

is a level at which children c;n only solve addition and subtraction
problems by directly modeling yith physical objects or fingers the ac-
tion or relétionships described in the problem, At this level, children
cannot solve problems that cannot be directly modeled. Results for the
lowest gfade levels reported in Tables 3, 4, and 5 provide compelling’ |
evidence for the existence of this level in’children's dcquisition of
addition and subtraction concepts and skills...The great majority .of. o
the youngest children's responses were limitéh to direct modelihg
strategies (Tables 3 and 5), and few of the younger children‘could
solve any problem that could not be directly modeled.(Table 4).
Development of the more advanced levels of children's solution
processes proceeds along two dimensions: an increase in the level of

A

abstraction and an increase in the 'flexibility of strategy choices.

3

H

Level of Abstraction

‘o~

Direct modeling. At the moat primitive level of solving addition
and subtraction problems, children gompletely‘model the action or re-
lationships in the problem using physical objects or fingers. Tﬁey
actuglly construct sets to represent all of the quantities described
in th~ problems. The Counting All strategy is the addition strategy
used at this level. The pavallel subtraction strategies are Sep;rating

1o
From, Separating To, Adding On, &nd Matching.

Counting sequences, ét the next level, the external direct model-

‘ing actions of this initial concrete level become internalized zid ab-
stracted, allowing greater flexibility and efficiency. Children no

longer have to physically represent each of the quancitiés described in
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1

the problem. 1Instead they are able to focus on the counting sequence
itself. They realize that they do not have to actually construct the
sets or even éo through the complete counting sequence to find the number
pf elements in the union of two sets. They can start at a number re-
presenting one quantity and count on the number representing the other

quantity. Although children do use finger patterns in conjunction with

the Countdng On strategy, fingers are used in a very different sense than

-at the—direct-modeling level. Children's éxplanations of theilr use of

Counting On suggest that these finger patterns do not represent the
second set pér se but are simply a tally of the number of steps counted
on. The abstraction of the subtraction strategies involves essentially
the same basic pattern of dévelopment, except that in the case of the
Separating strategles, a backward éounting sequence is required.

The shift from complete modeling to use of counting strategles
depends upon the development of certain basic number concepts and count-
ing skills. Fuson (1982) has argued that counting on depends upon under-
stahd*ng bas%c principles which involve (a) the relation between cardin-
ality and gounting.and (b) recognizing that each addend plays a double
role as both an addend~and a.part of the sum. The counting‘ékills re-
quired include kaO the ability to begin a counting sequence at any
humber, (b) thelability to maintain a:- doubles count, and (¢) in the .
case of subtraction, the ability to count backwards.

The rolé of these ééncepcs and skills in the development of the
Counting On strategy is discussed in detail in Fuson (1982). The
essential point is that counting strategies are not sdimply mechanical

techniques that children have learned to solve addition and subtraction

ﬁroblems, but are conceptually based strategies which directly build

11245
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upon gﬁe diréc£>modeling sgf;tégiés éf"ihe ;feéious level. The abstrac—
tion and flex%bility demonstrated by their application imply a deeper
understanding of number and addition and subtraction than was gound at
the direcﬁ modeling level, but this understanding is based upon the con-
ceptualizétions pf the ini;ial concrete actions. In other words, the
levels are not independent; they build on one another.. -

There is a clear parallel between the development of counting strate-
gies and the stages éﬁ development descfibed by Piaget. In both paSes;
operations initially performed with_external concrete actions ;re intern~-
alized, providing for greater flexibility in their application.

Chiidren cbntinﬁe to use counting strategies for an extended period
of time. Lanford (1974) found that as many as 36% of the seventh graders
he ‘interviewed continued to use counting strategies to arrive at some
tagic addition and subtraction facts. Furéhermore, children beccme so
pr;ficient and quick in the use of the counting strategies'énd so covert
in their use of finéers ;s tallying devices that it is often difficult
to distinguish between the uge of a counting strategy and recal} of a
basic nugber fact. However, relying on counting strategies when solving
more complex problems that require algorithms is inefficient and piovides
too much opportunity for miscalculation. Learning number facts at a
recall level ;emains a viable goal of the mathematics curriculum, and
most students eventually attaih this level.

Use of number facts. There is no clearly distinct shift from count-

ing strategies to use of number facts. As the research on difficulty of
different number facts indicated, some facts are learned and used

earlier than others; and there is a long period when children use a

14
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combiﬂ;;i;; of number facts in conjﬁnction wifh diféct modeling of count-
iqg strategiles.

Not a great deal is kﬁown about how the use of cqunting strategies
evolves into or;affects the larning of basic facts at the recall level,.
Leutzinger (1979) investigated the effect of Counting On on the learning
of basic addition facts, and other studies have provided instruction on
a number of types of strategies, including goqnting strategles, to pro-
vi&é'som; structure to facilitate recall of basic fac&s\(Rathmeil; 1979;‘
Swenson, 1949; Thiele, 1938; Thornton, 1978). Aside from finding that
such instruction has generally proved effective, it is still not clear’
exactly how recall of number facts related to children's counting strate-
gles.

The relation between counting strategles and learning basic facts
at the recall level is one issue. A second is the relation between
differént facts. As noted earlier, children occasionally use known
facts to derive :facts that they do not know at the recall level.
Carpenter (1980b) proposed that the use of derived strategles is not
limited to a select group of superior students. By the end of first
grade, over half of the students in the study reported by Carpenter and
Moser (1982) had used a derived strategy at least once, and by the middle
of second grade, over three-fourths of the students had done so. Children .
who used derived strategiles, however, did not use them consistently. For
the smaller numbers, only one child used a derived strategy more than
three times in the 12 problems administered. For the larger numbers,
only one first grader used more than three derived strategles. Four
second graders used more than three derived strategles at the September

interview and 12 did so in January.

14
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- B o - e e e o e e meem e ¢ s e ¢ s emm e = =
It is tempting <o assume that derived strategies are used during a

transitional level between the use of counting strategies and the routini-
_zation of number'facts. The data from Carpenter and Moser (1982) °
suggested, however, that Ehings a%e not that simple. So far, we have
been able to estéblish no clear connection between the use of derived
strategies and the levels of development of either modeling or counting
strategies. Derived strategies are occasionally used by children using
the m5;t primitive:médeiiné and counting stratééies.. |

Some studies have claimed success for explicit instruction in
strategies that can be used to derive unknown facts from known facts
(Swenson, 1949; Thiele, 1938; Thornton, 1978). But the role that de-
rived strategies play in the learning of basic facts at the recall level
is far from clear (Rathmell, 1979; Steffe, 1979). Potentially, these
strategies provide a logical basis for relating facts that could facili-
tate recall. Furthermore, Brownell (1928) strongly argued that students
must be capable of the reasoning involved in derived strategies in order
to give meaning to memorized addition and subtraction combiné%ions.

.Generalizability of levels of abstraction. One of the questions

regarding the development of different levels of abstraction is whether
the use of more advanci? strategies is broadl& based across all problems
or whether children use advanced strategies on some problems but not on
others. Results of Carpenter and Moser (1982) suggested that children

use different patterns of increased abstraction for different strategies
and problems. 'The Counting Up From Given strategy is used much earlier

and more frequently than the Counting Do&n From strategies. For the

Separating subtraction problem, no more than 15% of the children used the
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Counting Down from strategy in any inter&iew. The Counting Up From Given
strategy, on the other hand, accounted for as many as 50% of the responses
to the Join/Change Unknown problem. 1In fact, it appears that some children
may never use a Counting Down From strategy.

There does seem to be a relation between the use of Counting On
strategies for addition and the Counting Up From Given strategy‘for sub-
traction. Mgpy children appear to see them as essentially the same strategy.
A nuﬁber.of ch;lQren.when~asked to‘e#plain their use of the Counting Up
From Given strategy said that they did the same thing that they had done

on the previous problem, which was an addition problem that they solved

by counting on.

Choice of Strategy

The second dimension along which development occurs>is in the flexi-
bility in choice of strategy. At first, the only problems that young
children can solve are those for which the éction or relationships des-
cribed in the problem can be directly modeled. By the second or third
grade, however, many children are able to use strategies that are not
entirely consistent with the structure of the problem (see Tables 3 and
4).

As with the shift to moré abstract counting strategies, children's
flexibility in choice of strategy is not consistent over problems.

(.hildren soon abandoned the somewhat complicated Matching strategy for

-

the Compare problem, but were much less flexible in their choice of
strategy for the Separate and Join problems (see Table 3). In fact,

even though children were much more successful in appiying Counting Up

14
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From Given than they were with Counting Down From strategles, fewer than
15% ever used Counting Up From Given to solve Separating From problems.
Flexibility in the cholce of strategy also affects children's
ability to sélve numerical‘open sentence prdblems. Young children tend
to use a Sepa;ating From strategy to solve problems of the form a - b = [:]
and the Counting Up From Given strategy to solve problems of the form
a + [:]= ¢ (Blume, 1981). Woods et al. (1975) and Groen and Pcll (1973)
. suggested that the incregsipg flexibility‘to choose betyegn stra;égies is.
also reflected in tﬁé cholce of ;tr;tegy‘for'solving numerical subtrac-
tion problems. They presented response latency data that they argue is
best explained by the Choice strategy, which involves choosing either
a Counting Up From Given or Counting Down Ffom strategy, depending on
which requires fewer steps. The support for the widespread use of such
a strategy has not been uniformly consistent. Although it does seem to
present the best fit with the data from response latency studies, Blume
(1981) found little evidence of such a strategy, using clinical inter-
views. Intuitively, it would seem that children would use such a
st;aqegy with problems with only a few steps involved (e.g., 11 - 3,
or 11 - 9), but would be less likely in situations where the cholce was
not as clear (e.g., 12 - 5). One also has to be cautious in interpreting
the data in support of the Choice strategy. Some of the children hypothe-
sized to bg using the Cholce strategy weré in the fourth grade. Most
children of this ?ge have memorized the basic facts used in these
studies. Consequently, the latency data may reflect something other

than the overt use of counting strategiles.
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To héve a completely developed concept of subtraction, chilcren
should recognize the equivalence of the different strategies. This knowl-
edg; should make the Choice strategy possible. But the evidence suggests
that many children avoid Counting Down Freom strategies. Consequently,
some caution should be exercised in assuming widespread use of the

Choice strategy over a broad class of precblems.

Relationship Between Dimensions of Development

Thé previous section of this paper described the increase in flexi-
bility and abstrac;ion that occurs over time in children's processes
for solving addition and subtraction problems. An important question
to ask is whether certain levels of abstraction require a more flexible
choice of strategy or vicé versa. Attempting to chéracterize the rela-
tionship between these two dimensions into which children's strategies
evolve is complicated b§ the fact that children do not consistently use
their optimal stfategies. For example, throughout first grade, children
in Carpentér aﬁ& Moser's (1982) study solved Join/Change Unknown problems
using counting strategies'rather than direct modeling strategies almost
twice as often when cubes were n;t available as when they were. 1In
fact, direct modeling strategies were used more frequently for problems
with smaller numbers than for problems with larger numbers. .

It appears that there is a shift in the level of abstraction‘of
children's solution processes before children begin to recognize the
equivalende of different subtraction strategies. In other words, the
first evidence of growth is that children begin to use counting strate-

gies that pafallel the action in a problem instead of completely modeling

14y
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the action. The results summarized in Table 6 are taken from the June

o

interviews. Number combinations involved the difference of a two-digit

!
and a one-digit number fact, and manipulatives were not provided. Almost

half f the first—grade children used a counting strategy rather than
completely modeled the problem. On the other hand, most children used
either a modeling or counting étrategy that directly represented the
action in the problem.

The relationship between.children's understanding of the equiva-
1ehce of'different additional and subtraction strategies and their
ability to use either derived or recalled number facts is a bit more .
difficult to establish. Many derived number facts are based on under-
standing rqlationships betwegg addition and subtraction and suggest an
understanding of the equivalénce of different subtraction strategies.
Similarly, for ﬁany children, recall of subtraction number facts is
based on their knowledgé of addition facts. On the other hand, many
children learn some number facts and generate derived facts before they
give any ev}dence of being able to use modeling or count ing strategies
that are not consistent with the st?ucture of the problem.

In fact, the abflity of some children to solve problems that cannot
be directly modeled may be based on their ability to relate the problem
to known number facts rather than to an understanding of tfe relationships
in the problem that would allow them to choose different counting or model-
ing strategies. Many children do not solYE/éroblems that cannot be
readily modeled until they would be expected to have learned the related
number facts. However, although Anick (in preparation) found a high in-

cidence of recall in children's solutions to problems that could not

.
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Table 6
Results for Selected Separate and Join Subtraction Problems

(Carpenter and Moser, 1982)

9¢T

Strategy
(Percent Responding)
Subtractive Additive
' Percent Counting Adding - Counting Up Derived/Recalled
Problem Type Correct Separating . Down From On From Given Number Fact
Separate/Result Unknown 45 23, 14 1 8 15
Join/Change Unknown 61 1 0 14 43 13
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be directly modeled, she also found many responses that were based on

counting strategies._ This suggests that even the problems that cannot

i
be directly modeled are not just solved at an abstract numerical level.

Children can solve these problems by understanding how the action or

relationships in the problems are related to the counting processes that

represent the different actions or relationships. How rhis may occur is

the topic of the next section of this paper.

A Model of Verbal Problem Solving

Several models have been proposed which describe stages for solving
additién and subtraction problems and which hypothesize knowledge
;tructures sufficient to account for the behavior in these stages.

Briars and Larkin (unpublished) and Riley et al. (in press) have
developed computer simulation models to solve addition and subtraction
word problemg that provide a v%ry similar analysis of the basic knowledge
at each stage of problem solving.

Riley et al. identified three basic kinds of knowledge involved
1q p39plem sBlving: (a) problem schemata which are used to represent

the problem situation, (b) action schemata which, at the most global
level, essentially &or;eSpond to the solution prccesses described
‘earlier, and (c) strategic knowledge for planning solutions to problems.

Based on the results summarized in Table 4, Riley et al. identified
the levels of skill for solving Change, Combine, and Compare problems,
and a computer simulation model was constructed for each level.

For Change problems, Model 1 is limited to external representations

of problem_situations using physical objects. Model 1 relies on Counting

H
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All and Separating strategies. It cannot even use the Adding On strategy,
since it has no way to keep track of set subset relationships.

The major advance of Model 2 over Model 1 is hat it includes a
schema which makes it possible to keep a mental record of the role of
each piece of data in the problem. This'allows Model 2 to solve Change
Unknown problems (see Table 2, problem 3). Model 2 is also able to use
Counting On procedures. Mo&el 2 is limited to direct representation of
problem action and is unable to solve Start Unknown problems (see Table 2,
problems 5 and 6) because it is unable to fepresent the initial set.

Both Model 1 and Model 2 are limited to direct rgpresentation of
problem structure. Model 3 includes a schema for representing part-whole
relations that allows it to proceed in a top-down direction so as to con-
struct a representation of the relationships between all the pieces of
information in the problem before solving it. This frees the model from
relying on solutions that directly represent the action in the problem.
Model 3 can solve all six Change problgms.

Similar models have been proposed for Combine and Compare problems,
although computer simulations have not yet been implemented (Riley et al.,
in press).

The simulation models developed by Riley et al. and Briars and Larkin
generate solutions to problems that are generally consistent with the way
in which children solve problems. That is, their predicted patterns
of both problem difficulty and solution strategies match the results of
empirical studies of addition and subtraction. This suggests that the
constructs upon which the models are based are sufficient to explain

how children at different levels solve addition and subtraction problems.

.
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épecifically, it implies that a part-whole schema is sufficlent to acc wur:

for children's ability to solve the more difficult addition and subtrac-

tion problems. ‘
The fact that the models are sufficient to explain children's behavior

does not mean that children necessarily use part-whole relatlonships to

solve the more difficult addition and subtraction problems. Alterna-

tive explanations may also account for children's performance. For

example, solutions to Start Unknown problems may be based on an under-

standing of the inverse relationship between addition and subtraction.

So far there has been no attempt to systematically generate and test

alternative models of children's behavior. Until that has been done,

some caution Should be exercised in drawing any firm conclu;ions about

the mental operations involved in children's solutions. At this time,

some sort of part-whole schema appears to be on; of the most plausible

explanations, but perhaps not the only one. That an understanding of

part-whole relationships can provide a basis for solving a wide range

of addition and subtraction problems is supported by the fact that expli-

cit instruction on ways of represeﬂting part-whole relationships has met

with some success in te;ching addition and subtraction problem-solving

. gskills (Kouba & Moser, 1979). )
It should also be observed that the simulation models are only a

reasonable first approximation for representing children's behavior.

There 1s a great deal that they either oversimplify or do not explain.

For example, the models are limited to opérations on sets and fail to

take into account children's knowledge of number facts. There 1s also

3

a great deal less uniformity in childrenls behavior than is implied by
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the modeis. -dﬁ&ldren are not consistent in their use of strategies

(Blume, 1981; Carpenter, Hiebert, & Moser, 1981)., Siegler and Robinson

(1981) have argued that it is not sufficient to build a model of how

.

children may abply a particular strategy; it is also necessary to acounf

for how they choose between alternative strategies.

\

%
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DISCUSSION

Research on how children solve basic addition and subtraction prob- °
lems has come a long way in the last few years. A framewori for charac~
terizing problems has evolved that helps to understand how children
solve different problems and why certain problems are more difficult
) thanﬂpthers. The strategies that child;en use to solve addition and
subtraction problems have been clearly documented in -such a way as to
makg it possible to identify m;jor stages in the acquisition of addi-
tion and Subtraction;—ehpecially at the eérly levels. Very recently,
models have been constructed that go a long way in characterizing in-
ternal cognitive processes which may account for children's behaviér.

There is, however, a gréat deal that is yet unknown about how addi-
tion and subtraction concepts and skills are acquired. One of the basic
assumptions of much of the research and theéry—building in the area is
that the processes children use to solve an addition or subtraction prob-
lem are intrinsically related to the structure of the problem. There
is support for this assumption in that generally consistent results have
been reported over a variety of imstructional programs and within a
number of different population groups.

The effects of instruction are still unclear, howevef, especially
at the more advanced levels of children's acquisition of addition and
subtraction. The specific strategies that children use may be influenced
by instruction as children’s use of the Matching strategy clearly shows.
Hatano (1982) suggested that Japanese children may not rely predominantiy

on the counting strategies that have been so prevalent in American re-

search.
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There is also very little known about the-transition fr.m the in-
formal modeling and counting strategies that children appear to invent
themselves to the formal algorithms and memorized nvmber facts that
children learn as part of the mathematics curriculum. Some evidence
suggests that at first children do nofhsee any connection between their
infgrmal modeling and counting strategiles and many of the formal skills
they learn in their maghematics classes (Carpenter, Moser, & Hiebe.z,
1981). How or whether this connection is made is an important issue that
so far has received rélatively littlé attention in the growing body of
research on addition and subtraction. .

There is clear evidence that young children;s responses to addition
and subtraction problems 1s based on the sémantic structure of the
problem, but little is known regarding how children extract the meaning
from the particular wording of different pro?lems. Children's solutions’
clearly are not based exclusively on semantic structure. :

Several recent investigations demonstrate the effect on performance
of differences in wording of problems'with the same semantic structure.
In a study of kindergarten and first-grade children, Hudson (1980) pro-
duced significant differences in per;ormance cn a basic subtraction
problem which asked children to compare the number of birds in a picture
to the number of worms. In one case, children were asked how many more
birds there were than worms. The problem was significantly easier, how-
ever, when children were asked the following question: "Each of these
birds wants to eat -a worm. How many of them will not get a worm?"

Similar differences have been found for different wordings of Join/Change

Unknown problems (Carpenter, Hiebert, & Moser, 1981; Riley et al., in

press).
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These studies indicate that the semantic structure of addition and
subtraction problems does not completely determine children's performancex
It is also necessary to be cautious in drawing conclusions about children's
processing from specific studies, esﬁecially when difficulty level is
used as the criterion measure. The fact that alternative versions of
problems with the same semantic structure produce significant differences
in performance does not threaten the 8enefa1 conclusions regarding young
children's attention to problem struct;re. Although the diff1Culpy levels
are affected by changes in wording or syntax, the processes that children
use remain relatively consistent. It appears.that some wordings mdke
the semantic structure of proP;ems more transparent than others, but
beyond that the processes used to extréct meaning from the verbal state-
ments of the problems remain something of, a black box, which has not been
the focus in most of the current research and theory:

Another limitation of most current research on addition and sub-
traction is fhat it does not deal with the question of individual dif-
ferences. Most of the theory at least tacitly assumes that children go
through essentially the same stages in acquiring addition and Subtra;—
tion conceéts and skills. Clearly, there are differences between children
within a given grade, but generally these differences have been attributed
to individual children being at different levels in acquiring basic
addition and subtraction concepts and skills. So far, this assumption
has not been seriously examined, and little is known about whether there
are fundamentally different ﬁethods that individual children use to

acquire addition and subtraction concepts and skills.
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One of the reasons for the recent progress in understanding how
children learn to add and subtract.is the clear focu; of much of the
current research on a well defined domain. Thié research chould be
criticized, however, for beilng too narrowly focused. Siegler and Robinson
(1981) argued for the importance of bullding large scale, integrative
models that speclfy how performance in addition and subtraction is
related to performance in other basic content domains. They provided
one example of such a model. Fuson (1982) and Steffe, Thompson, and
Richards (1982) have also been attempting to examine addition and sub-
traction within a larger context. They have focused on the relation

.betwéen addition and s&ftraction and the development of counting skills.

It has also been proposed that the development of specific addit;on
and subtraction processes may depend on the development of central in-
formation processing capacities (Case, 1982). Research by Romberg and
Collis (1980) provided some support for this conclusiod, but a great
deal must still be done to'really understand how informatien processing
capacity affects the addition and subtraction processes children are
capable of using. 1

There 1s certainly a great deal left to be explained about how
children learn to add and subtract. However, these detalls are insigi
nificant compared to the disparity between what is already known about
how, children solve addition and subtraction problems and current pro-
grams of instruction (Carpenter, 1981). There is a compelling need

for research that attempts to establish how this knowledge already

accumulated can be applied to design instruction.
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