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Abstract

The purOse of this paper is to review the research on how children

acquire basic addition and subtraction concepts and skills. The re-

view starts with an analysis of major theories of the development of

basic number concepts. Two major lines of theories are identified:

logical concept theories and quantification skill theories. The most

notable aa(ample of a logical concept theory is represented by tht work

of Piaget while the work of Gelman and Klahr and Wallace provide the

most comprehensive examples of quantification skill theories. Ginsburg's

work attempts to build a bridge between the two approaches. Major

recurring issues in the development of early number concepts are also

discussed. These include the relation between counting and subitiLing,

how number conservation develops, and how early number operations affect

the acquisition of addition and subtraction skills.

The second section of the paper examines research on basic concepts spe-

cifically related to addition and subtraction. By kindergarten most

children understand, that joining an element to a set increases its

numerosity and removing an element decreases its numerosity. However,

a complete understanding of basic properties of addition and subtraction,

like ittversion and compensation, develop over a protracted span of years.

Most early research on children's solutions of symbolic addition and

subtraction problems was limited to problem difficulty. Much of the

initial research focused on the relative difficulty of different basic

number facts. More recently, the emphasis has shifted to an analysis

of children's solution processes. Using a variety of paradigms, a

number of solution strategies based on counting have been identified.

Research on word problems has also been concerned with both problem

difficulty and solution processes. Most of the problem difficulty re-

search has focused on syntax variables. Current research on children's

solution processes has attempted to make a connection between the seman-

tic structure of problems and the processes children use to solve them.

A mounting body of evidence clearly demonstrates that young children

can solve a variety of addition and subtraction problems by physically

modeling the action or relationships described in the problems. These

direct modeling strategies gradually give way to more abstract counting

representations that retain certain characteristics of the initial

modeling strategies. Several simulation models have been developed

to account for the internal cognitive mechanisms that are required for

the observed patterns of development.

The review suggests that a great deal is known about both children's

knowledge of addition and subtraction and how they solve addition and

subtraction problems, but also indicates that there is not yet a clear

picture of how to apply these insights to design more effective instruc-

tion.



INTRODUCTION

The learning of basic addition and subtraction concepts and skills

is a major objective of primary school mathematics instruction. Because

of the central place it occupies in the mathematics curriculum, there is

an extensive body of research on the teaching and learning of addition

and subtraction that dates back to the turn of the century. In the last

few years, there has been a resurgence of interest in the study of addi-

tion and subtraction as researchers have found that the techniques of

cognitive ptlyhology provide new insights into the processes that chil-

dren use in solving addition and subtraction problems.

The purpose of this paper is to review this graring body of research

on addition and subtraction. The paper is divided into six major parts.

To provide some backgrouLd, the first section briefly summarizes some of

the major.lines of inquiry on the development of basic number concepts.

The second section deals with children's understanding of basic concepts

underlying additiOn and subtraction. The third section focuses on addition

and subtraction problems presented in a symbolic context, and the fourth

section examines research on word problems. The fifth section attempts

to synthesize what is known about the general pattern of development of

addition and subtraction processes, and the sixth section provides a gen-

eral discussion of issues and areas o'f needed research. The paper limits

its review to research on addition and subtraction with relatively small

numbers. Problems that require the use of algorithms depend on the de-

velopment of place value concepts and are beyond the,scope of this review.

1
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THE DEVELOPMENT OF BASIC NUMBER CONCEPTS

In recent,years, there has been an increasing interest An the

development of early number concepts by psychologists. Within the

past few years alone several major works have been Published on the

subject (Brainerd, 1979; Gelman &,Gallistel, 1978; Ginsburg, 1977a;

Klahr & Wallace, 1976). There are several reasons for this. First,

the developing ability to deal with quantitative concepts has core

to be recognized as a milestone in children's intellectnal development

(Klahr & Wallace, 1976; Piaget, 1952). Consequently, the acquisition

of number concepts provides for the psychologist a Legitimate area of

study in its own right. Second, thl way In which young children learn

to deal with quantitative situations serves as a window to other di-

mensions of cognitive development (Gelman & Gallistel,.1978). Thus,

number concepts provide a vehicle from which to study the growth of the

intellect in general.

Due to this prodigious input from developmental psychology, the

initial section of this paper will draw heavily from psychologically

oriented research. The aim of this section is to outline the major

approaches which have been taken in investigating the development of

early number concepts. The purpose is to present the fundamental

theoretical positions which have guided empirical activities in this

zee rather than to review all relevant research. The discussion

focuses on the development of number concepts prior to symbolization.

It deals with children's ability to quantify sets and to-reason about

them. However, it stops short of describing the development of operations

I i
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with quantities in the arithmetical sense. Borrowing Elkind's (1969)

distinction, this section deals with operations within sets, like quanti-

fying and conserving, but not with operations between sets, like addi-

tion and subtraction. It attempts to outline how the development of

basic number concepts might influence the acquisition of arithmetic

operations but leaves the description of the acquisition process itself

to later sections of the paper.

Many investigators have studied the development of number concepts,

each from a somewhat different perspective. However same important

similarities can be detected. For example, all have used a develop-

mental approach. That is, they have focused on the way in which young

Children's conception of, and skill with, number changes over time. In

describing this development, Most investigators have identified two ma-

jor components of children's proficiency with number--ability to quantify

or assign number to specific sets, and ability to reason about number.

While most researchers recognize the importance of these two abilities,

they do not all agree on their developmental sequence, i.e., the order

in which these abilities are acquired.

This disagreement represents a fundamental difference between the

major positions on the growth of number concepts,.a differenee which

serves to partition theory and research into two distinct camps. One

assumes that children must acquire certain logical reasoning abilities

before they can apply quantification process2s in any meaningful way,

while the other argues that children can reason about number only after

they have quantified sets and have specific numerosities in mind. Some

12
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of the differences between these positions can be resolved by pointing

to differences in definitions of "number" and differences in tasks used

4
to assess number concepts. However some basic disparities still remain.

The purpose of the following discussion is to outline these two major

Tositions_on the development of early number concepts by reviewing the

work of each position's primary proponents.

LOGICAL CONCEPT THEORIES

Several investigators have adopted the position that number is the

outgrowth of more basic logical concepts. Therefore, the development

of number concepts are believed to depend upon the development of certain

logical reasoning abilities. Foremost among the advocates of this posi-

tion is Piaget (1952). So great has been Piaget's influence in this

area of research that Flavell (1970) concluded, "Virtually everything

of interest that we know about the early growth of number concepts grows

out of Piaget's pioneer work in the area" (p. 1001).

To understand Piaget's (1952) view of number concept development,

it is useful to review a critical distinction which Piaget (1964, 1970)

made between logical-mathematical knowledge and physical knowledge.

The first type of knowledge is generated by internal mental processes

while the second is achieved by direct contact with the external environ-

ment via sensory pemeptions (Steffe, 1976). The first arises from de-

duction and is verifiable by logical reasoning; the second arises from

induction and is verifiable by empirical test (Benin, 1976). The first

generalizes across content, transfers to related problems, and is recon-

0 structable (i.e., is not based on recall); die second is content-specific

and is subject to memory loss (Furth, 1969).

13
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For Piaget (1952; see also Beth & Piaget, 1966), number is a form

of logical-mathematical knowledge. As such, the construction of number

is thought to be closely tied to the development of logic. In particular,

number depends upon the logic of classes and asymmetrical relations.

Classes are collections of objects grouped together on the basis of a

common quality or attribute, and classification leads to hierarchies

of classes and the notion of part-whole. Relotions refer to ways in

which the objects within a class may be compared. The primary activity

-1
here is seriation (arradging the objects in order according to some

continuous attribute) which is based on the asymmetrical relation of

transitivity. The logic of classes corresponds to the cardinal aspects

of number while the logic of relations corresponds to its ordinal aspects.

According to Piaget, children initially consider the logical acti-

vities of classification and seriation as separate and independent enti-

ties resulting in a dual system of logic. However, they are eventually

fused into a single system, and a primary result of this fusion or

synthesis is the concept of number.

A hallmark of children's growing understanding of number is the

ability to conserve (i.e., to mentally preserve one-to-one correspon-

dence). The principle of conservation is of critical importance in

Piaget's theory and represents the segment of Piaget's work which un-

doubtedly has had the greatest impact on subsequent research. Piaget

(1952) left no doubt about the role he saw conservation to play:

Our, contention is merely that conservation is a

necessary condition for all rational activity. . .

A set or collection is only conceivable if it
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remains unchanged irrespective of the changes
occurring in the relationship between the
elements. . . . Number is only intelligible
if it remains identical with itself, whatever
the distribution of the units of which it is
composed. (pp. 3-4)

He has described a stagewise development of number concepts in

which conservation, seriation, and classification develop in close

synchrony. In the first stage, children are dominated by immediate

perceptual qualities of an event and give little evidence of logical

reasoning. Only gross quantification, absolute quantifying ideas such

as "more" and "less," are evident, and these are based on perceptual

judgments. If equivalence is not perceived it is thought not to'exist.

As a consequence, children in the first stage do not conserve, are

incapable of seriation, and do not understand simple class inclusion

relationships.

Stage two is a transitional period. Some progress is made on all

fronts so that children can construct series and one-to-one correspon-

dences. But they still have difficulty when either is spatially trans-

formed. Quantification at this stage is "intensive." That is, quanti-
,

ties cannot yet be combined in the numerical sense but only compared in

terms of "bigger than" or "smaller than," based on perception. Solutions

come by empirical substantiation rather than by logical necessity.

The third stage brings a series of major breakthroughs.in the child's

thought. The focus on perceptual cues and on the qualities of objects,

which has dominated in the past, now shifts to quantitative aspects. Up

to this point, the objects in a class have been distinguished on the
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basis of perceived qualities. Now, however, children are able to sup-

press these qualities and the individual elements of a class are seen

to be equivalent in all relevant respects. Their only distinction fram

one another is thelr relative position, or order, which is imposed by

the child's seriation. This is the notion of unit, the basic numerical

concept. All elements are at the same time equivalent (belonging to the

same_class) and different (by virtue of their enumerated position).

Out of these developments emerge the two complementary aspects of

number--cardinality and ordinality. Cardinality refers to the numerous-

ness of a class; all classes which can be put into one-to-one correspon-

dence have the same cardinal value. With the newly acquired ability to

decompose a class into units, the child can now conserve and can under-

stand class inclusion relationships. Ordinality is also fully understood.

The decomposition of a set into units entails the realization that an

object's position completely defines the object.

Along with the achievement of cardinal and ordinal understanding

comes an immediate synthesis or fusion to form the complete number con-

cept. The child can now identify the ordinal position of an object with

the sum of that object and those preceding it, i.e., its cardinal value.

Once again, Piaget (1952) commented about the close relationship between

number and logical reasoning, "the psychological, as well as the logical,

constitution of classes, relations, and numbers is a single development,

whose respective changes are synchronic and interdependent" (p. 157).

In summary, Piaget viewed number as a logical-mathematical concept

which is constructed by the child, rather than a physical concept which

.16



is discovered by the child through sensory perceptions. By definition,

an understanding of number requires an understanding of conservation,

class inclusion, and seriation. While Piaget acknowledged that certain

quantifying skills, such as counting, are acquired prior to the full

development of these logical reasoning abilities, he contended that they

take on meaning only with the onset of logical.thought. Evidence cited

for this position comes from the observation that these quantifying

skills do not help young children to solve ehe logical reasoning tasks.

Thus, the early acquisitibn of quantification skill; is believed to make

no significant contribution to the development of a mature number concept.

Other investigators have adopted positions similar.to Piaget's with

_regard to the developmental relationship between logical reasoning abili-

ties and quantification skills, but differ with Piaget, either with rpagect

to their focus of interest or with respect to their logical analysis of

the number Concept. Brainerd (1973a, 1973c, 1976, 1979) disagreed with

Piaget on the developmental sequence of the logical notions underlying

number. Piaget contended that an operational understanding of number

results from the concurrent development of cardinal and ordinal concepts.

In contYast, Brainerd (1979) believes the ordinal.concept to be a more

desireable 'logical foundation for number, and ordinal number to be psycho-
:,

logically more basic than cardinal number. While there has beconsid-
erable debate about what logical foundation for number is most consistent

with psychological reality (Beth & Piaget, 1966; Brainerd, 1973a,-1979;

blacnamara, 1975, 1976; Piaget, 1952), Brainerd maintained that ordiai

number concepts emerge earlier than cardinal concepts and that ordinal

17
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number playS a, more important role in the early growth of arithmetic

concepts. Brainerd proposed the following developmental sequence:

ordinal number-natural number-cardinal number.

While the results of Brainerd's research'(Brainerd, 1973b, 1974,

1977; Brainerd & Fraser, 1975; Brainerd & Kaszor, 1974) supported the

ordinal-cardinal sequence, there are several limitations which dissuade

drawing broad theoretical conclusions from the findingg. Larsen (1977)

pointed out that the criteria Brainerd used to assess performance is

biased toward detecting developmental sequences vis-a-vivdevelopmental

synchronies. More tritical, however, is the selection of tasks used

to measure ordinal, natural, and cardinal number. These concepts-are

camplex, and:attempts to peasure children's understanding of them should

therefore include.a campreherisive array of tasks designed to 4ap each of-

their various components. Brainerd,llowever, employs a narrow set of

tasks which do not reflect the full meanings of these concepts. The

ordinal number pralems usually involve some form of a transitivity task;

the natural number problems are usually a series of arithmetic nutber

facts; and the cardinal number problems generally intTlve a conservation-

type task. The central question is whether the observed ardinal-natural-

cardinal sequence is a.function of basic competence or simply reflects

differences in difficulty of the selected tasks due to nonessential task

variables. Brainerd (1976, 1979) cited the results of a study by Gonchar

(1975) as supportinghis position. Although Gonchar found the same de-

velopmental sequence for Brainerd's tasks, a close synchrony was found

when other ordinal tasks were used. Gonchar concluded that Brainerd's

1 8
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ordinal-cardinal sequence is primarily a performance distinction between

the tasks used to measure each concept.

QUANTIFICATION SKILL THEORIES

The theoretical positions of Piaget and Brainerd, while differing

in same important respects, agree that the development of certain logi-

cal reasoning abilities are necessary for the acquisition of a complete

number concept. Children construct number through the application of

basic mental opeiations, rather than acquiring number through the appli-

cation of quantification skills. It is.in this respect that these posi-

tions differ most significantly from those to be reviewed in this section.

Ginsburg (1975, 1976, 1977a, 1977b), like Piaget and Brainerd, be-

lieved that the number concept is not complete without certain reasoning

abilities including conservation. However, Ginsburg's work is directed

toward describing what young children can.do, rather than characterizing

young children strictly in terms of their intellectual deficiencies.

Ginsburg suggested that the development of preschool children's

knowledge of number concepts cain be portrayed as a progression through

two cognitive systems. System 1 is informal in that it develops outside

of formal school instruction; and it is natural since it does not depend

on social transmission or specific cultural experiences. Children who

are operating within this cognitive system are able to discriminate

between numerosities in terms of "more" and "less," based on well-devel-

oped perceptual skills. Since these judgments are based on petceptual

cues, changes in things such as length ,t): density,of the displayed sets

which are inconsistent with actual numerosity may lead to erroneous re-

sponses. Consequently, System 1 does not yield a mature number concept.

e
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System 2, like System 1, is informal, i.e., it develops prior to

formal instruction. However, System 2 is not a natural system since it

depends upon socially transmitted knowledge. Counting is the primary

characteristic of System 2 and provides the child with a widely applicable

and reliable quantification skill. Ginsburg (1977b) believes that count-

ing plays such an important role in children's concept of number that

even after formal instruction, "the great majority of young children

interpret arithmetic as counting" (p. 13).

At first children learn a portion of the number sequence by rote

and then begin searching for rules which will generate the entire

sequence. Eventually, counting becomes a rule-governed activity, but

its consistent and accurate application depends upon the development

of logical reasoning abilities which are necessary to make one-to-one

correspondences between the counting numbers and the objects, and to__

plan strategies for enumerating each object once and only once.

Without these logical abilities children are believed to commit

certain predictable errors. First, number is treaved as a name rather

than an aribtrary and temporarily assigned label. This leads to the

erroneous assumption that the order in which the objects are counted

makes a difference. Counting is also tied to concrete contexts and is

applied only to collections perceived to be homogeneous. Finally, the

dependence on perceptual cues reappears when the cues are salient; and

reliance on the more accurate counting skill is abandoned.

Counting skills first are applied successfully to small collec-

tions and then to larger ones. They can be used early on to discriminate

between two static sets (i.e., to judge more, less, or equal) even if the

(.1 20
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perceptual cues are misleading. However, prior to the development of

the required logical reasoning abilities, counting is not helpful in

solving Piaget's conservation task. Consequently, the counting skill

itself is believed to be insufficient for acquiring a complete number

concept. "A mature concept of number requires more than just counting

or the appropriate number language: it requires mature thought"

(Ginsburg, 1975, p. 136).

Whereas Ginsburg acknowledges that conservation and other basic

logical reasoning abilities plat, a significant role in the development

of a complete number concept, other theoretical approaches propose that

children's concept of'number grows strictly out of the acquisition and

application of certain quantification skills. Number concepts do not

depend on the development of more basic logical reasoning abilities, in

fact it is the other way around. Gelman (1972b, 1977, 1978; Gelman &

Gallistel, 1978) presented one of the more carefully reasoned and docu-

mented statements of this position. She began by emphasizing the distinc-

tion (also made in this paper) between processes of quantification and

processes of reasoning. She distinguished further between reasoning

about specified numerosities (collections that have been quantified) and

unspecified numerosities. To Gelman, the definition of a number concept

does not include operating with unspecified numerosities. Consequently,

a N4cussion of number concept development can lie carried out entirely

within he context of numerosities that can be accurately represented.

In fact, Gel n suggests that to.ido otherwise would shortchange the

child's proficie cy in operating with number.
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Confining the focus of investigation to.numerositieg which the young

child can quantify leads to an in-depth analysis of quantification skills

which yield accurate representations. Gelman's research (Bullock &

Gelman, 1977; Gelman, 1972a; Gelman & Tucker, 1975Y reflected this empha-

sis. Counting is believed to be the basic and primary quantification

skill. It serves to reliably determine the numerosity of sets and there-

by defines the domain within which children y.rst learn to operate with

/ number.

The development of the counting skill over the preschool years is

guided by the presence of five counting principles which define a suc-

cessful counting procedure. The first of these is a one-to-one corres-

pondence principle which requires.that each item be assigned one and only

one label. This involves partitioning the objects at each count into

those which have been counted and those yet to be counted, tagging each

item with a unique label, and synchronizing these two activities. The

second counting principle is the stable-order rule. This points out the

need to use the same number list for every new count. The list need not

be the conventional number list; it need only contain the same tags,

assigned in the same order each time a collection is counted. The third

principle is the cardinal principle. This sayS that the final tag

applied tO a collection identifies the numerosity of that collection.

The first three principles describe the counting mechanism; the

fourth generalizes these "how-to-count" principles to any collection of

physical and nonphysical entities. This abstraction or "what-to-count"

principle concerns the range of, applicability of the first three. The
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fifth and final principle is one of order-irrelevance. ;This principle

states that the order in which the items are tagged has no effect on

the counting process. It includes the idea that a counted item does

not permanently retain the number name which it was assigned and that

the same cardinal number results regardless of the order of enumeration.

These five counting principles are believed to form a scheme, in

the Piagetian sense, which motivates and guides the child's developing

counting behavior. A unique aspect of Gelman's theory is the conjecture

that these principles are "wired in" and unfold with development, much
0

as Chomsky's (1965) language principles (Gelman & Gallistel, 1978).

Thus, the principles are believed to precede acquisition of the related

skill so that children's behavior is rule-governed rather than capricious.

In other words, young children possess counting principles in search of

appropriate skillst Gelman's conjecture about the origins of these

principles also means that development is primarily a matter of perfecting

skills rather than acquiring new principles. More efficient and accurate

execution of counting skill is in fact seen to be the major targa-of

preschool children's number concept development.

The five counting principles emerge in an identifiable sequence.

Children first show evidence of the stable-order principle, followed by

the one-to-one correspondence principle and the cardinal principle. The

abstraction principle is also presumed to become functional at about this

time. The development of these how-to-count and what-to-count principles

overlap to a significant degree, but it is only after they are well-

established that the order-irrelevance principle appears. As Gelman

noted, this principle involves a good deal of reasoning as well as skill

23
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execution. Consistent with the position that quantification skills pre-

cede reasoning about number, Gelman andrPallistel (1978) suggested that

"being a reasonably good counter is a necessary but not a sufficient con-

dition for getting a high score on the 'doesn't matter' [order-irrelevance]

test" (p. 148).

Several behaviors accompany the development of the counting procedure.

First, there seems to be a move from overt to covert action as the counting

routine becomes more efficient and reliable. Initially, children point

when counting, possibly to help coordinate the one-to-one principle or

to keep attention focused on the task. Counting aloud is also a popular

technique which may serve the same function. As counting becomes routin-

ized and requires less attention, childien dispense with assigning all

but the last tag (the cardinal number) aloud.

This descriptiOn is kingly similar to Davydov's (1975)

characterization of the counting process. Initially, counting depends

upon the presence of objects and exaggerated hand movements. With prac-

tice the hand movements become abbreviated and are eventually replaced

by counting aloud, often accompanied by slight head movements. These

overt actions finally disappear as counting becomes internalized. Thus,

the development of the number concept involves the gradual internaliza-

tion of the counting process.

A second important characteristic of the development of counting

noted by Gelman is its gradual extension from very small to large

numbers. Children can reliably count small sets before they can apply

this skill to larger sets. This fact becomes particularly significant
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when considering the development of reasoning abilities. Since Gelman .

maintains that children can only reason with what they can quantify, it

followi,that children's reasoning abilities are first operational with

small numbers and only gradually extend to larger numbers.

The child's arithmetic reasoning is intimately related
to the representations of numerosity that are obtained
by counting. The domain of numerosities about which
the child reasons arithmetically seems to expand as
the child becomes able to count larger and larger
numerosities. (Gelman & Gallistel, 1978, P. 72)

Gelman identified three reasoning principles which govern the way

children think about number once it has been abstracted from the set.

The first concerns relations and the ability to recognize equivalent and

nonequivalent numerosities. Equivalence can be established in two ways:

by quantifying each set separately and comparing their cardinal numbers,

or by setting up a one-to-one correspondence between elements of the

'..ets. Although the latter procedure is the one tised in formal mathe-

matics, the former is presumably preferred by young children. Gelman

suggests that this difference is the greatest disparity between children's

arithmetic and formal arithmetic. It is proposed as a striking counter-

example to the hypothbsis that the development of children's cognitive

structures mirror the logical structures of the discipline. It also

assumes that young children can appreciate numerical equivalence before

they can establish or conserve one-to-one correspondences. Gelman

suggested that Piaget's number conservation task requires more than tea-

soning about numerical equivalence. It requires reasoning abOtit the

equivalence between unspecified numeroskties. The first kind of reason-

ing Gelman called arithmetic reasoning and the second kind Gelman called
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algebraic reasoning. Arithmetic reasoning functions within the domain of

quantified sets but not outside of it. Gelman maintained that children

perceive tha c)nservation question to be a question about correspon-

dences and unspecified numerosities and consequently, do not apply their

arithmetic reasoning principles to solve the task.

While the first arithmetic reasoning principle concerned relations

between numerosities, the second deals with operations on numerosities.

Gelman believes that young children can distinguish between transforma-

tionsThat are relevant and irrelevant to quart-ity as longsas they can

determine the numerosity of the set in question. This principle provides

the basis for children's understanding of arithmetic operations such as

addition and subtraction and depends unly on a reliable counting proce-

dure.
. -

. The th\I arithmetic reasoning principle is closely.related to the

second and says that children not only recognize relevant transformations

but that they also can specify an inverse travsformation which will

"undo" the effect of the first. If a certain number of objects have

been added to a set, the reversibility principle,says that this effect

can be nullified\bY removing the same number of elements from the set.

Again, the existence of this principle depends upoa a counting procedure-

which will reliably determine the numerosity of the set.

In summary, Gelman's approach to the study of early number concepts

was an attempt to uncover and carefully describe young children's pro-

ficiency with number. She made an important distinction between reason-

ing about numerosities and reasoning about relations or unspecified

26
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numerosities. The first depends upon, and follows closely behind, the

development of counting skills. Therefore, young children were pictured

as logical reasoning arithmeticians who deal with small numbers.

As children's principle-governed counting behavior increases in

efficiency it is extended to larger and larger sets, and with this ex-

tension comes the ability to reason with larger and larger,numbers.

Reasoning about unspecified numerosities is not a simple extension of

this process but involves_a qualitatively new form of thought. This

form of reasoning, suggested Gelman, is not required for the development

of early number conceRts.

A second line of research which assumes number to be the outgrOwth

of quantification skills can be characterized as a hierarchic skill

integration approach. Adherents of this approach focus on the acquisi-

tion of separate skills such as subitizing (immediate perCeptual appre-

hension of number), counting, one-to-one correspondence, and estimating.

Their concern is with the order in which these skills are acquired and

the role each of them plays in the development of the others. While

many researchers have attempted to document the acquisition of these

skills (Dixon, 1977; D'Mello & Willemsen, 1969; Riess, 1943b; Schaeffer,

Eggleston, ENScott, 1974; Siegel, 1971; Wang, Resnick, & Boozer, 1971;

Wohlwill, 1960b; Young & McPherson, 1976), the work of Klahr and Wallace

(1976) represents the most concerted effort to develop a theoretical

rationale for this approach.

Klahr and Wallace (1976) postulated three distinct quantification

processes--subitizing, counting, and estimating. The function of these

.1zsre
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*

processes is to generate quantity symbols for mental manipulation, which

represent the numerosity of.a given set. These processes or skills are

hypothesized to develop in an invariant sequence. Subitizing is the

first to be acquired and comprises the basis for children's under-
.. -

standing of number. Subitizing also plays a vital role in the later

development of counting and estimating. These latter two skills develop

concurrently, but since estimating requires the acquisition of several

additional component skills, it reaches maturity later than counting.

The developmental goal of the quantification processes is to pro-

vide consistent output, i.e., to reliably determine the numerosity of

sets and generate the same symbol for equivalent sets. The mechanism

whereby this consistency is thought to be achieved places this approach

in distinct contrast to the positions reviewed previously. Klahr and

Wallace (1976) believe that the quantification skills become reliable

through the detection of regularities or consistencies in the environ-

ment. This means that children discover number by abstracting it from

empirical activities. Using McLellan and Dewey's (1896) terminology,

number is taken out of objects rather than put into them. The detection

of regularities is also presumed to explain the way in which earlier

developing skills facilitate the acquisition of later skills. Counting

begins to achieve reliable output as it is applied to small sets within

the child's subitizing range and both processes are observed to yield

the same result. Likewise, estimating develops through detecting the

consistencies of double-processing judgments in overlapping domains.

28
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Klahr and Wallace's emphasis on the discovery of number through em-

pirical abstraction contrasts sharply with the positions taken by Piaget

and Gelman. Piaget (1952) maintained that children construct number

through the deployment of mental operations. Therefore, for Piaget, the

development of number concepts does not depend on spec.,lic learning ex-

periences, but rather on the development of logical operations and the

reorganization of mental structures. Gelman (Gelman & Gallistel, 1978)

dealt with this problem in yet another way. While she maintained that

quantification skills develop prior to the logical abilities identified

by Piaget, she differed with Klahr and Wallace (1976) on the mechanisms

which motivate their development. Rather than depending on the detection

of environmental regularities, Gelman postulated the a priori existence

of several counting principles which govern the acquisition process.

Counting is considered the essential quantification skill, and develop-

ment consists of refining the given logical principles. Gelman believes

that while specific experiences are necessary to bring the counting pro-

cedure within culturally accepted norms (e.g., using the conventional

verbal sequence "one, two, . . ."), they are not required to demonstrate

its basic rules of usage.

A corollary of Klahr and Wallace's (1976) approach is that the quan-

tification skills develop gradually and are first operational with small

numbers. The extension from small to large numbers is reflected both in

the developmental sequence of individual skills (i.e., subitizing-counting-

estimating) and in thh increase in proficiency within a particular skill.

The idea that counting is first applied correctly to small numbers is

29
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consisient with Gelman's (Gelman & Gallistel, 1978)--conclusionOne

reason for this sequence of development may be that children have diffi-

culty systematically partitioning the objects into "already counted"

and "to be counted" sets as they are counting (Potter & Levy, 1968;

Wang, Resnick, & Boozer, 1971). These component skills develop as other

skills are practiced and eventually automated, reducing their demand on

the child's attention and working memory, and freeing memory space to

concentrate on other skills such as the "partitioning" skill (Schaeffer,

Eggleston, & Scott, 1974).

Along with the acquisition of skills for quantifying individual

sets comes the ability to make comparisons between sets in terms of

relative numerosities. Klahr and Wallace (1976) made an important dis-

tinction between twolcompaflson processes: one process compares internal

representations or "symbols" of the sets which are generated by the

quantification skills, while the other compares the actual entities of

the sets. Since the quantification skills Of subitizing and counting

are the earliest emergiug processes with which the child deals with

number, and since these produce internal representations of sets, the

first comparison processes are those which operate on symbols. Therefore,

the first method a child has to compare the numerosities of two sets is

to quantify each set separately and then compare the two numerical

representations of these sets. Dealing with one-to-one correspondences

is not yet possible since it requires a process which compares the external

collections or actual entities of the sets without mediating symbols.

This comparison process is believed to be acquired after the quantification

311
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skills and the symbol comparison processes are functional. This hypothe-

sized developmental sequence is used to explain why children who have

well-developed counting skills still fail Piaget's number conservation'

task. The conventional task fOrmat elicits the child's immature corres-

pondence comparison process or the esthnating quantification skill which

is not yet,reliable. In either case, the misleading perceptual cues lead

to an erroneous response.

In summary, Gelman and Zallistel (1978) and Klahr and Wallace (1976)

suggested that quantification skills are acquired and become proficient

well before the logical reasoning abilities identified by Piaget are

operational. However, theY suggested more than that. Not only do these

skills happen to develop earlier than Piaget's reasoning abilities, they

necessarily develop earlier. According to Gelman, children can reason

only with wh;.: they can quantify. Therefore, the development of reason---

ing abilities depends upon the prior acquisition of quantification skills.
o

This is\the fundamental difference between the views of Gelman and Klahr

and Wallace, and those of Piaget, Ginsburg, and Brainerd.

RECURRING ISSUES

Several imporfant issues surrounding the development orearly number

concepts have attracted the continuing interest of investigators. Some

of these were alluded to in the previous discussion, but three issues

'in particular deserVe further considerAtion. One is the question of

the initial process by which children apprehend number, i.e., the debate

on the developmental primacy of subitizing versus counting. A selond

issue focuses on the conservation phenomena--how does this ability come
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aboueand why is it important? The third issue bridges the gap between

this section of the paper and the next. It concerns the role played by

the early emerging number skills and concepts in the acquisition of

arithmetic operations and other school-related mathematical skills.

Counting or Subitizing: Which Comes First?

History has recorded a continuing debate on the developmental pri-

macy of counting versus subitizing. The purpose of this discussion is

not to provide an exhaustive review of this debate since comprehensive

reviews already exist (Brownell, 1941; Gelman & Gallistel, 1978; Ginsburg,

1975; Klahr & Wallace, 1976; Martin, 1951). The aim is rather to high-

light some of the important considerations which have led to the adop-

fion of on& view or the other. As mentioned previously, subitizing is

generally defined as the immediate visual apprehension of number. The

task used to measure a person's subitizing ability often consists of a

series of cards with a different number of dots randomly positioned on

each card. The person is shown the cards, one at a time, and is asked

to determine the number of dots on each card without counting. The

criterion is either the time it takes the person to respond (measured in

milliseconds) or the error rate given a constant stimulus exposuie time

(e.g., two seconds per,card).

Graphing the response times for adults on this type of task yields

noticeably different functions for small numbers than for large ones.

The slope of the graph for the set of numbers up to 6 + 1 is relatively

shallow while that for numbers larger than six is much bteeper. This

discontinuity at 6 + 1 appears whether the criterion is response latency,
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confidence of judgment, or error rate (Klahr & Wallace, 1976), a result

often interpreted as evidence that subitizing is used for small numbers

(less than six or seven) and counting is used for larger numbers.

Klahr and Wallace hypothesized further that since young children can

quantify small sets before they quantify large sets, with the critical

value between five and seven, it is likely that children initially

quantify sets by subitizing.

Gelman and Gallistel (1978) interpreted this evidence differently,

and cited additional evidence to support their position that children

count before subitizing. They questioned why, if children subitize

small numbers, the slope of the graph is not zero, and furthermore, why

the differences in response times follow an orderly progression with an

increase in set size. They suggested that the data are explained' in-

stead by postulating a rapid counting procedure which is perfected early

on with the amount of practice most children experience. This explana-

tion is more consistent, they said, with the ubiquitous tendency of

young children to count. Evidence for the prevalence of young children's

counting has been gathered by Gelman and associates using a "magic" task

(BUllock & Gelman, 1977; Gelman, 1972a; Gelman & Tucker, 1975). Children

as young as two years were found to spontaneously use a counting procedure

to quantify small sets.

For Gelman and Gallistel, subitizing is not viewed as a low level

or primitive process, but rather as a sophisticated procedure for group-

ing objects visually, thereby increasing the efficiency of quantifica-

tion. It is a later acquisition used by older children along with
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counting, to quantify visually perceived sets of objects. This idea is

similar to that proposed by Brownell (1928). In Brownell's study,

children in grades one, two, and three were shown the conventional stimu-

lus cards for five seconds each. Results showed a gradual increase in

error rate with the younger children as the number of dots increased,

but a sporadic error pattern for the older children. Brownell inferred

from these two error pattern types that younger children were counting

to quantify the sets while the older children were using perceptual

grouping, addition facts, and counting to determine the cardinalities.

Follow-up interviews with individual children were reported to confirm

these hypotheses. Additional evidence was also obtained by readminister-

ing the stimuli with a shorter (three second) exposure time. Error

rates of the younger children increased while those of the older children

remained the same. Again, Brownell interpreted this as evidence for the

increased tendency with age to use subitizing as a sophisticated grouping

procedure in the service of more efficient quantification.

The inconclusive nature of the results and the continuing debate

about the sequence in which these skills develop stem from two method-

ological problems. One is the difficulty of inferring process used

from product data. Most of the evidence which beats on this question con-

sists of average response latencies or error rates. The process which

was used to produce these data must be inferred; no direct evidenCe is

available on the quantification process itself. The problem is that

usually there are several processes which may have produced a given set

of results and is accentuated by the fact that the processes in question

34
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are executed so quickly that individuals have a difficult time monitoring

them and giving retrospective accounts of their use. Consequently, the

investigator gets little help from asking subjects to explain how they

quantified'a particular set.

A second methodological problem is one of obtaining information

from the population of interest. Since the question concerns the earliest

fozm of quantification, the population of interest is children less than

two years of age. It is difficult to gather reliable data from children

this young, so the usual approach has been to infer certain performance

characteristics of young children from the results of older subjects.

Coupled with the first methodological problem, this added inference step

_
makes the evidence equivocal at best.

Before moving to the second major issue, mention should be made of

another perceptual process which is distinguished from subitizing. This

process involves the comparison of two visually displayed sets rather

than the quantification Of a single set. The task requires the subject

to determine which of the-two sets has more or less and, therefore, is a

question about relative numerosity rather than absolute numerosity. Young

children are apparently quite proficient in perceptqally determining

the larger or smaller of two sets displayedas randomly positioned dots

on two different cards. Ginsburg (1975) cited evidence that children as

young as four years can distinguish the larger of two sets which differ

by only one or two with set size as large as 15. Estes and Combs (1966)

reported similar data. However, it may be that children are not attend-

ing to number per se in these tasks, but rather to other correlated cues



27

such as area or brightness (see Trabasso & Bower, 1968). Therefore,

while this perceptual ability may be unrelated to number, it may be

an early developmental form of children's ability to deal with equality

and inequality relationships between sets.

Conservation of Number: How Does it Defelop?

"The failure of children younger than 5 to consrve . . . is one

of the most reliable experimental findings in the entire literature on

*cognitive development" (Gelman & Gallistel, 1978, p. 1). When and how

does this much discussed and frequently studied phenomenon occur?

Generally, children begin performing successfully on number conser-

vation tasks by.age five or six. A much debated study by Mehler and

Bever (1967) claimed to show evidence of conservation much earlier than

this, at about two years of age. Although their general findings have

been replicated (Bever, Mehler, & Epstein, 1968; Calhoun, 1971), several

investigators (Beilin, 1968; Piaget, 1968; Rothenberg & Courtney, 1968;

Willoughby & Trachy, 1972) have conducted related studies and concluded

that Mehler ad\Bever were not dealing with true conservation and that

their findings were artifacts of the nonconventional task they used to

assess conservation. \

Whatever the resolutl,on of this debate, it is true that certain

task variables have significant effects on children's number conservation

performance. Task characteristics such as number of objects employed

(Gelman & Gallistel, 1978; ZimilieS, 1966), interest of stimuli (Roberge

& Clark, 1976), nature of the relationship between corresponding objects

(Piaget, 1952), salience of misleading perceptual cues such as length
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and density (Brainerd, 1977; Miller & Heller, 1976), and experimenter

expectancy (Htint, 1975) all have been shown 6) affect task performance,

although contradictory evidence exists in most cases. The one conclu-

sion which can be drawn from this bewildering collection of results is

that children cannot be labeled simply as conservers or nonconservers.

Young children often conserve number under some conditions but not under

others. Therefore, it is difficult to establish an age at which children

first "conserve."

However, there is a point before which a child will fail the

number conservation task regardless of context. How is it that every

child moves from this universal nonconservation ability to increasingly

successful conservation performance in a wide variety of task situations?

The popularity of this question as a topic of study is probably due to

the importance which Piaget ascribed to this phenomena. For Piaget

(1952), number conservation is the hallmark of chUdren's acquisition

of the number concept. It develops as children begin to decenter their

attention and move from focusing on only one dimension to coordinating

several dimensions of the stimulus situation. In the number conserva-

tion task, this means recognizing that the decrease in density compen-

sates for the increase in length when one row of objects is spread-

apart. The tendency of young children to center on only one dimension,

usually length, id, the number Conservation task is a well-documented

fact (Baron, Lawson, & aegel, 1975; Brainerd, 1977; Lawson, Baron, &

Siegel, 1974) and has even been observed by recording children's eye

movements during task solution (O'Bryan & Boersma, 1971).

37,
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At a more abstract level, Piaget described the development of con-

servation as the modification or reorganization of mental structures.

Children at this stage of development acquire the ability to reverse

their thought processes, i.e., to mentally reverse the transformation

they have just witnessed-and return the elements to their original

state. This ability, to run back and forth in one's mind, characterizes

the onset of operational thought. Conservation is simply a reflection

of this new mental.structure.

Piaget's explanation for the development of number conservation

suffers from a certain abstractness and high level of inference. It

is difficult to validate the presence of "mental structures." "The

absence of a precise process-performance link contributes to the extreme

difficulty of putting Piaget's account of transition to an experimental

test" (Klahr & Wallace, 1976, p. 4). Partially t:ecause of this problem,

several al4ernate explanations have been advanced for the development of

conservation. Klahr and Wallace described the acquisition of number con-

servation in information-processing terms. Like their explanations of

the growth of quantification skills, they suggested that children learn

how to conserve by detecting regularities in their experience with

quantity. As children perfect their quantification skills, they are

able to determine the numerosities of sets before and after transforma-

tions. In this way, they learn to identify those transformations which

are irrelevant to number, i.e., they learn to conserve. Since subitizing

is believed to be the first available quantification skill, and since

only small sets can be qutntified using this skill, conservation is first

3 8
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functional with small numbers. Once children achieve conservation with

small numbers, they are able to develop more rapidly the additional

quantification skills (counting and estimating), since the acquisition

of these skills also depends upon detecting empirical regularities.

Therefore, conservation is seen to facilitate the development of cou.nting

rather than vice versa.

The problem which accompanies Klahr and Wallace's description of

conservation acquisition is that it is difficult to see how the detection

of regularities can lead to conservation when conservation is the first

sign that regularities are detected. That is, how can children observe

a "no change" condition in the stimulus after the transformation if

they do not yet conserve, since by definition, conservation represents

precisely this ability. (See Wallach, 1969, for a further discussion of

thic problem.) This is, in effect, a type of circular reasoning. The

development of conservation is being explained by its own definition.

Although Gelman and Gallistel (1978) did not offer an explanation

of how conservation is achieved, their description of why children fail

in conservation is sufficiently important to warrapt ame discussion.

The thesis of Gelman's work is that young children can deal proficiently

with small numbers, i.e., with sets of objects they can quantify. This

proficiency includes the ability to distinguish between number relevant

and number irrelevant transformations. The question is why children do

not apply these reasoning principles to the larger collections of objects

traditionally used in the conservation task. Gelman and Gallistel main-

tained that young children do not evidence their already developed reason-

3a
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ing ability in the conservation task because they interpret the question

to be one about equivalence relations between unspecified numerosities

rather than about the equivalence of two Specific cardinal numbexs.

The authors believe that the perceptual salience of the'initial one-to-

one correspondence leads children to this interpretation.
.

The problem for Gelman and Gallistel, who'hang so much of cAldren's

number concept development on their ability to count, is why children who

'count in the conservation task, either spontaneously or upon request,

still fail to conserve. It seems as though such counting behavior would

help the child reinterpret the question as one involving the present

numerosities. However, many young children count the two-sets correctly

and then give a nonconservation response (Carpenter, 19714, Ginsburg,

1975; Wohlwill & Lowe, 1962). Piaget (1952) observed this phenomenon

and concluded that there is little relationship between the two: "There

is no connection between the acquired ability to count and the actual

operations of which the child is capable" (p. 61). Gelman and Gallistel

would, of course, disagree with this claim. But it still remains to

explain how young children can possess the counting and reasoning skills

they attribute to them and fail to conserve number.

This problem is indicative of a more general issue which emerges

when discussing the development of number conservation--what is the

relationship of conservation to other number skills and concepts. For

those, like Gelman and Gallistel, who claimed that children have some

substantive number skills prior to conservation, the problem is to explain

why these proficiencies do not suffice for the conservation task. For

.40
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others, like Piaget, who insisted that conservation marks the begiuning

of a mature number corcept, the problem is to explain how children can

become proficient in number skills and concepts before conserving.

Early Number Operations: How Do They Affect Later Mathematics

Performance?

Of the early number concepts and skills considered to this point,

two-have been suggested by edpcatc;r4,and psychologists as playing par-
.

.ticularly important roles:in the acquialtion 9f more complex arithmetic

0.

operations, These are conservation and,counting. This section reviews
. 1

the research on the relation between children's conservation ability'and

their ability to add and subtract. A more complete review of the rela-

r

tionship between performance on Piagetian tasks and'arithmetical perform-.

ance can be found in Riebert and Carpenter (in press).

Many investigators have taken a global approach in dtudying Ihe re-
?

lationship between conservation and mathematical performarwe. A frequent

technique is to administer a battery of Piagetian tasks and a school mathe-

matics achievement test, either concurrently or several monLhs or years

apIrt, and correlate the scores of these two measures. These data

usually show high, positive correlations between conservation responses

and achievement scores (Dimitrovsky & Almy, 1975; Dodwell, 1961; Kaminsky,

1971; Kaufman'& Kaufman, 11'72; Nelson, 197b; Rohr, 1973; Smith, 1974),

although seine low correlations have been reported (Cathcart, 1974; DeVries,

1974; yendillgton?, 1977)'.

Some studies have considered the relationship between number conserva-

tion and children's facility with specific mathematical skills or concepts.

1.0
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Steffe (1970) and LeBlanc (1971) observed first-grade children's addi-

tion and subtraction skills, respectively, and their relationship to

number conservation ability: Both found that conservation performance

was a significant predictor of arithmetic skill, with low :conservation

scores associated with especially poor arithmetic scores. Woodward

(1978) considered several different types of addition and subtraction

problems and found that number conservation was significantly related to

first-grade children's performance on all types of problems except sub-

traction problems involving missing differences. Johns (1974), on ehe

other hand, found only a few significant correlations between number

conservation and the subtraction skills of first, second, and third

graders; and Michaels (1977) reported that some specific addition and

subtraction abilities emerge before the ability to conserve number. The

'fact that relationships seem to exist between number conservation and

only certain types of arithmetic problems suggests that different skills

or concepts may make different demands on conservation ability.

A study by Hiebert, Carpenter, and Moser (1982) provides additional

information by analyzing the processes that children at different levels

of conservation ability use to solve basic addition and subtraction

problems. On most problems, nonconservers used an appropriate strategy
.Csr

less often than conservers, but every strategy identified was used by

at least some nonconservers. As a consequence, Hiebert et al. concluded

that,conservation is not a prerequisite for solving basic addition and

subtraction problems or for acquiring advanced solution strategies.

t,42
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The evidence reviewed to this point is only suggestive since the

positive correlations provida little insight into the reason for the

relationships. They do not indicate that number conservation is a pre-

requisite for learning arithmetic skills or concepts. The high correla-

tions may result from the fact that both require the same underlying

abilities or that they are both highly correlated with general mathema-

tical ability. The question of interest is still whether, in, fact,

number conservation is required to learn certain mathematical skills.

Lovell (1966) suggested a theoretical basis for believing that conserva-

tion may be required to understand arithmetic operations. Since success

on the conservation task implies an understanding of those transforma-

tions which are irrelevant for number, it also indicates a basic knowledge

of relevant transformations (e.g., addition and subtraction). However,

experimental studies involving instructional components are needed to

determine whether conservation is an essential prerequisite to such

understanding.

4
One such study, conducted by Mpiangu and Gentile (1975), investi-

gated the effect of number conservation on kindergarten children's ability

to learn certain arithmetic skills. Problems on the arithmetic pre- and

posttest involved numbers 0-10, and most of them required rote- or point-

counting skills. (Rote counting consists of recitation of the counting

numbers in correct sequence; point counting involves establishing a one-

to-one correspondence between the counting numbers and a set of markers,

and labeling the set with the appropriate cardinal number.) Although

number nonconservers performed lower than conservers on the arithmetic

pretest, and still performed lower on the posttest given after 10 arith-
_
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metic training sessions, they showed a similar amount of gain from pre-

to posttest. The authors interpreted this as evidence that conserva-

tion (a) does not affect children's ability to benefit from arithmetic

instruction, and (b) is not a necessary condition for mathematical

understanding.

Steffe, Spikes, and Hirstein (1976) contested this conclusion

after conducting a prolonged instructional study with first-grade children.

Following about 40 hours of arithmetic instruction over a three-month

.period, all children were tested on 29 individual measures which were

-clustered into seven achievement variables. Six of these variables

assessed numerical skills such as working with cardinal and ordinal

numbers; solving orally presented addition and subtraction problems with

and Without.objects; and counting at the rote, point, and rational levels

(rational counting is evidenced by counting on or counting back to solve

a numerical problem). The results of the study are complex and diffi-

cult to summarize. However, several of the major findings follow:

(a) number c(4-servers performed significantly better than number non-

conservers on those tasks which required rational counting; (b) number

conservation was not required to perform tasks solvable by rote counting;

and (c) with special training, number conservation was not required to

master tasks solvable by point counting.

The authors concluded that children who differed in conservation

ability differed in the benefit they derived from instruction. The

learning experienced by the number conservers was qualitatively different

than that of the nonconservers. Number conservers were\able to acquire
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rational-counting skills and apply them to solve a variety of problems.

Nonconservers, on the other hand, demonstrated task-specific learning and

used rote- and point-counting procedures. The authors suggested that

the con lusions of Mpiangu and Gentile (1975) suffer from overgeneraliza-

tion. While conservation may not affect the learning of simple skills,

it is important for learning more advanced and logically based concepts

and skills.

One feature of the study by Steffe et al. (1976) which makes the

reaults difficult to compare with Other studies is the use offa-Aoncon-

ventional conservation task. The task required children to discriminate

between two sets of objects presented in a visul display. No transforma-

tion was performed on either of the sets. As mentioned earlier, this

perceptual discrimination is a relatively easy task for many children as

young as 4 years old (Benin, 1968; Siegel, 1971; Wohlwill, 1960a).

Ginsburg (1975) referred to this as a simple equivalence task, in con-

trast to the traditional conservation, or complex equivalence task. Al-

though the relationship between the two is not entirely clettr, Ginsburg

argued that success on the former does not imply a full understanding of

number.

In general, it appears that performance on conservation tasks is

correlated with performance on arithmetic tests. Conservers are generally

more successful in solving a variety of addition and subtraction problems

and use advanced strategies more often than nonconservers. There is

little evidence, however, that the ability to.conserve is required to

learn any of the basic arithmetic concepts or skills that are presently

included in the school mathematics curriculum.
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BASIC ADDITION AND SUBTRACTION CONCEPTS

Research on addition and subtraction has focused primarily on an

analysis of the quantification skills iiivolved in adding and subtract-

ing. However, some of the research on the logical reasoning abilities

req...ired to acquire a complete understanding of number has also included

an analysis of basic concepts underlying addition and subtraction. This

research has been revised in some,detail by Starkey and Gelman (1982).

Therefore, this research is summarized only briefly here,.

Perhaps the most basic principle underlying addition and *subtraction

is that joining elements to.a set increases its numerosity and removing

elements decreases its numerosity. Brush (1978) and Smedslund (1966)

and others have found that most kindergarten and older preschool children

understand the effect of these transformations, and some studies have

found that children as young as three years could successfully compare

sets that had elements joined or removed (Cooper, Starkey, Blevins, Goth,

& Leithner, 1978). In fact, the earliest age at which children under-

stand the Iffect of these transformations has not been identified (Starkey

& Gelman, 1982).

Piaget (1952) has argued that an operational understanding of addi-
.

tion also requires that a child recognizes that a whole remains constant

irrespective of the composition of its parts. He found a stagewise

development of this concept that paralleled the development of conserva-

tion. In the initial stage, children did not realize that in a set of

eight objects divlded into two'subsets of four objects, each was equiva-

lent to a set of eight objects divided into sets containing one and seven
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-Idthii stage, children responded primarily on the basis of

misleading spatial cues. In the second stage, children could often

solve the task' correctly, but only after empirical verification. It

was not until the third stage at about age seven that children logically

recognized that the composition of the set did not affect the number in

the set (i.e., 4 + 4 = 1 + 7). Several other experiments, concerned with

partitioning sets into equally numerous arrays, found similar patterns

'of development.

'It has also been proposed that a complete understanding of addition

nd subtraction requires that children understand the basic properties of

each operation. Two properties that have been the subject of several

studies are inversian and compensation (Brush, 1978; Cooper et al., 1978;.

Smedslund, 1966). An understanding of inversion means that a child

recognizes that the effect of adding elements to a set can be offset by

removing the same number of elements. Understanding compensation re-

quires that the child recognize that adding elements to one of two

equivalent seta can be compensated for by adding the same number of

elements to the other set.

To test understanding of these properties, children were first to

establish the relation between two initial arrays. In some cases,' the

arrays contained the same number of elements and in others, one array

contained more elements than the other. In general, a child would not

determine the exact number of elements in the arrays, but rather the

relation between them. Often the arrays contained too many elements to

4

0



39

make counting easy or they were partially covered to prevent counting.

This was done to test children's understanding of the properties of

inversion and compensation and not their ability to calculate the exact

number of elements following a transformation. Once the initial rela-

tionship was established, elements were added to one of the arrays.

Then, if it was an inversion task, elements were removed from the same

set. If it was a compensation task, elements were added to the other

set. 'In some cases, the seccind transformation involved the same number

of elements as the first, in same cases it did not.

The ability to solve inversion and compensation problems develops

over a number of years. Young children at about age 3 give a primitive

solution that is based exclusively on the last array transformed. If

the last transformation involves joining elements to an array, that

array is thought to contain the most elements, regardless of the initial

relation between the arrays or the previous transformation. Similarly,
4

if the final transformation involves removing elements from one array,

that array is thought to contain fewer elements than the other. Before

a child develops an operational understanding of inversion and compensa-

tion, there is an intermediate stage in which the child relies on quali-

tative solutions that take into account all the transformations but not

the number of elements in the transformation. At this stage a child would

believe that adding two elements to a set from which three elements had

just been removed would return the set to its initial state.

To summarize, young children have nonperceptual, noncounting pro-

cedures for solving certain types of addition and Subtraction problems.

The basic principles underlying these strategies appear to develop in a

48
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pattern that is similar but not synchronous with the development of con-

servation and other concrete operational concepts. Additional work is

needed to give a more detailed description of these strategies and their

relation to the quantitative strategies described in the following sec-

tion of this roppIew.

With a few exceptions, most notably Piaget (1952), most research

on basic logical operations underlying addition and subtraction has been

conducted within the past 15 years. By contrast, research that directly

assessed children's ability to add and subtract, dates back to the begin-

ning of the century. The earliest research focused primarily on problems

presented symbolically, but recently, much of the research has examined

children's solutions of simple addition and subtraction word problems.

There are clear similarities in how children solve symbolic problems

and word problems; but because there are some important distinctions

between them, symbolic problems and word problems are discussed separately.

4J
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SYMBOLIC PROBLEMS

RELATIVE DIFFICULTY OF BASIC FACTS

Most of the early research on addition and stibtraction investigated

children's ability to compute and was concerned exclusively with identi-

fying which problems children could and coUld not solve. The largest

group of early studies attempted to rank the relative difficulty of the

100 addition and subtraction number combinations (basic facts). Among

the empirical attempts at ranking combinations by difficulty were those

by Holloway (1915), 6Ounts (1917), Smith (1921), Clapp (1924), Batson

and Combellick (1925), Washburne and Vogel (1928), Knight and Behrens

(1928), Thiele (1938), Murray (1939), ,and_Wheeler (1939). This research

has been reviewed in some detail (Brownell, 1941; Buckley, 1975; Buswell

& Judd, 1925; Grouws, 1972a; Suppes, Jerman, & Brian, 1968). Much of

Brownell aud Carper's (1943) critique of studies ranking the difficulty

of the multiplication combinations is also relevant.

-.The studies reviewed attempted to determine a ranking of the 100

canonical addition factS and the 100 canonical subtraction facts when

presented in abstract form. The motivation for this research was to

provide guidelines for organizing instruction. If certain facts were

"intrinsically difficult," they might require more practice,.their intro-

duction might be delayed, pairs of facts might be taught together, etc.

However, the studies did not generate consistent rankings and did not

provide a coherent empirical basis for the design of instruction.

Brownell (1941) pointed out many conflicting results and inconsis-

tencies in the rankings in these studies. He noted that ranks for 0 + 3

&i)
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were 1, 8, 14.5, 32, 76, and 97.5 in six of the studies, and that in two

of the studies, a Change from 93.07. to 93.8% correct caused d rank dif-

ference of over 20 places for the combination 0 + 5. He also noted that

two'combinations ranked nearly equally could differ by 40 points in

percent correct. Suppes, Jerman, and Brian (1968) ranked just the "zero

combinations" and found that some of the-19 combinations varied in rank

from 2 to 17. Grouws (1972a) concluded that a serious fault of any such

rankings is that they exaggerate small differences and mask large differ-

ences.

The only clear consistency in the rankings of different;studies is

that the difficulty of addition and subtraction combinations increases

as the numbers get larger. Although there were relatively high correla-

tions between the rankings of several studies (Aurray, 1939), there were

many conflicting results and inconsistencies (Browne11,-1941).

In addition to attempting to generate a linear ranking of the number

facts, some studies attempted to identify factors that account for the

relative difficulty of different number combinations. Knight and Behrens

(1928) hypothesized that addition facts in which the larger addend is

given first (e.g., 6 +.3) would be easier than the corresponding pair

in which smaller addend appears first (3 + 6). Their results and the

results of other studies failed to confirm the hyPothesis. Browne (1906)

and Pottle (1937) contended that problems in which both addends are

even were easier than problems in which both addendsliare odd which in

turn were easier than problems involving one even and one odd addend.

Other studies, however, did not support this hypothesis either (e.g.,

5i
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Murray, 1939). In general, the only consistent pattern that emerges is

that doubles (e.g., 8' + 8) are easier than other combinations with com-

parable size addends.
-

One factor which contributed to the conflicting results was the -

variety of experimental conditions used in the studies. Brownell and

Carper (1943) pointed out that the studies ranking combinations used s0-

jects ranging from beginners to experts, e.g., Knight and Behrens (1928)

tested second graders during initial instruction on the facts, Smith

(1921) used subjects in grades 3 through 8, and Batson and Combellick

(1925) used college graduates and undergraduates. It is unlikely that

difficulty rankings would be consistent when based on studies using sub-

jects of irarying ages and tested before, during, and after instruction

on the facts. Ir.

The method (rote or meaningful) by which subjects were taught, ad-

ministration details such as presentation order, and success criteria

were other factors which contributed to the conflicting results. Among

the criteria for success were percent correct, the number of trials needed

to learn, latency of the first correct.solution, latency of correct solu-

tions on a review test, etc. Brownell (1941) also pointed mit that a

5

rank for + 3 might actually be a rank for "3 -I- 5" if the subject added

upward in vertical addition problems. The above factors make comparisons

among studies extremely risky.

Brownell (1941) provided a succinct analysis of research on number

combination difficulty.

It may be assumed that all difficulty rankings are
authentic for the conditions under which they were
obtained and for the techniques by which they were

52
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determined. And this is precisely why research
to ascertain the comparative difficulty of the com-
binations has been unprofitable.- There is no such
thing as "intrinsic" difficulty in the number facts;
their difficulty is relative, contingent upon many '\

conditions, chief of which is method of teaching, or\
stated differently, the number, order, and nature of \
learning experiences on the part of pupils. (p. 127) \

Brownell's attack seems to have dampened enthusiasm for this line

of research, and.after 1941 there were relatively few studies attempting

to rank order basic number facts. Researchers continued to be interested

in the relative difficulty of different problgms, but the emphasis shifted

to structural features of the problems or the conditions under which

problems are administered.

STRUCTURAL VARIABLES

A number of studies have attempted to determine factorsWhich

affect the success rate on "open sentence" problems. Open addition and

subtraction sentences (canonical and noncanonical) are often classified

into six types by operation and the position of the Placeholder. These

are a b = E3, a b = a E3 c, b = c, a - = c, and

[3 - b = c.

Six studies (Beattie & Beichmann, 1972; Goren & Poll, 1973; Grouws,

1972a, 1972b, 1974; Hirstein, 1979; Lindvall & Ibarra, 1980a; Weaver,

1971) have generated somewhat comparable data pertinent to the relative

difficulty of some of the six open sentence types above. Commonalities

among portionls of these studies include (a) subjects from grades 1, 2,

and 3, (b) the use of constants from the "basic fact" domain, (c) use of

sentences with whole number solutions, and (d) use of the "operation-

left" form of open senteaces. Selected results from these studies which

addressed overlapping questions are Sutmarized in Table 1.



Table 1

The Effects of Operation and Placeholder Position on the Difficulty of

Open Addition and Subtraction Sentences

a + b a -b=0 a + 0 = c 0+b=c a = c b= c

Grade 1

Weaver (1971) 65a 55 53 .46 50 11

Lindvall & Ibarra
(1980a)

83 86 77 26

Beattie & Deichmann

(1972)
92 88 80 74 87 75

Groen & Poll (1973) 77 77
- _

Hirstein (1979) 75 53

Grade 2 a....m.Irw,11.^mo..III,.II,oIPII

Weaver (1971) 87 80 79 76 79 27

Beattie & Deichmann

(1972)
93 94 95 92 94 77

Hirstein (1979) 95 77 71 73

Grade 3

Weaver (1971) 93 88 92 88 90 33

Grouws (1972a)
94 86 88

10.1....0,.........111111

Note. Data are only 1nc1ude0 for basic fact items with a solution.

aIndicates percentage of correct responses.

b(--) indicates that item did not appear.

54
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Results wh h are consigtent across these studies are:

(1) Canonical addition and subtraction sentences are generally

less difficult than noncanonical sentences. Performance on

canonical items ranged from 55% to 94% correct across'studics

and grade levels.

(2) Canonical subtraction items were more difficult than canoni

Addition-items in six of seven instances in Table 1. Such

differential performance has been substantiated in numerous

studies (e.g., Brownell, 1941).

(3) Ile two missing adderid sentences are of comparable difficulty,

ce.th a + = c being slightly esier than 0 + b = c. Per-

forinance ranged from 46% to 95% correct.

(4) The missing.subtrahend sentence is comparable in difficulty

to the missing addend sentences.

(5) The missing minuend sentencellts the most difficult and is

distinctly more difficult than the others. It was solved

correCtly less than 502 of the time in all but Beattie and

Deichmann's (1972) workbook format, in which teacher assis-

tance was presumably available. Performance in the other

studies ranged from 11% to 45% correct.

(6) Performance on all items improves as subjects' aie increases.

in each of the three studies using subjects at several grade

levels.(Rirstein's design was longitudinal; Weaver's and

Beattie and Deichmann's were cross-sectional), all items

used reflected improved performance from one grade to the next.

5 6
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Several other studies have investigated the effect of operation and

placeholder position on performance with open sentence problems. The

work of Suppes and his colleagues (Suppes, 1967; Suppes, Jerman, &

Brian, 1968; Suppes & Morningstar, 1972) used response latencies and

error probabilities to make predictions about the difficulty of the various

open sentence types. Suppes' work is not altogether comparable to that

in the six studies cited above and some of his conclusions are at odds

with the findings of the other researchers. For instance -(a) Suppes'

subjects were drawn from a population having extensive experience with

computer-assisted instruction on these tasks and who displayed near-

ceiling performance, (b) latency of response was used as one of,the

dependent variables so analyses were performed on mean data averaged

over individuals, and (c) magnitude of the constants in the open sen-

tences was not strictly controlled.

Suppes.-et al. (1968) identified several factors which coniributed

to the difficulty of open sentence problems, including the magnitude of

the largest number in the problem, magnitude of the smallest number, the

form of the equation, and of steps required to solve the problem. Of

the6e, they fdund the number of steps was the best predictor of diffi-

culty and.this depended upon how many steps were required to transform

the problem into canonical form, the number of operations.performed, and

the number of digits which had to be held in memory. The number of

digits held in demory was found to be the most important and the number

of operations performed the least-important of these three.

Some of the above factOrs have a questionable influence on diffi-

culty because of aA.ack of observational evidence that children actually

5 7
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attend to such factors. In particular, the transformation of a problem

to canonical form is not a behavior which has been documented in studies

describing children'g solution strategies on addition and subtraction

problems. Many counting strategies can be employed without any transfor-

mation of the problem's original format.

Suppes et al. concluded that Ej b = c was more difficult than

a + Ej = c. They also contended that Ej b = c is more difficult than

0 - b = c. Both of these findings contradict those of the six studies

mentioned earlier. Grouws (1972a) argued that the differences which

Suppes et al: found on the two missing addend problems can be attributed

to factors other than placeholder position. He noted that a substantially

greater number of 0 b = c problems involved two-digit constants than

did problems of the form a + 0 = c, and also pointed out that different

samples were used when judging the relative difficulty of Ej b = c

and Ej = =.c problems. Consequently it appears that Suppes' findings

must be interpreted with caution.

Nesher (1979, 1982) also used reaction time to compare types of

open sentence problems. . Her findings show difficulty to be ranked in

the following order (in increasing order of .difficulty):

(1) a + b =

(2) a - b =

(3) a + Ej c and a - Ej c

(4) 0 + b = c

(5) - b = c

Nesher!s reaction time data are generally consistent with Weaver's and

Hirstein's difficulty data for second graders. In this case, reaction
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times and percenthf correct responses seem to yield similar results, un-

like the discrepancies between reaction time data found by Suppes et al.

(1968) and direct observation data on strategy use summarized in Table 1.

Spmnetric Forms

Two studies (Lindvall & Ibarra, 1980a; Weaver, 1973) have attempted

to determine what effect the sYmmetric presentation of open sentences,

e.g., a + b = El vs. El u a + b, has on performance. In both studies,

.
addition and subtraction items with the operation given on the left were

consistently easier than those with the operation given on'the right.

OTHER VARIABLES

Horizontal/Vertical Format

Although some studies have analyzed both horizontal and vertical

formats, Beattie and Deichmann (1972) provide the ohly systematic com-

parison of error rates amA error types on abstract horizontal and ver-

tical addition and subtraction items. Within both grades 1 and 2, per-

_tormance was slightly-better fbr vert-fdai-then-fbt'bhrizontal items.

In three of the four instances (addition at the second-grade level being

the exception), they found more computation errors and fewer process

(wrong operation) errors in horizontal than in vertical format.

Several factors make it difficult to generalize from Beattie and

Deichmann's results. An imprecise categorization of errors is one, and

the workbook context.is another- It is not clear that workbook items

paralleled instructional emphasis; approximately 80% of first-grade work-

book itets were horizontal while second-grade items were split almost
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equally between horizontal and vertical, but no measure of instructional

emphasis other than number of workbook items is given.

Engle and Lerch (1971) compared first graders' performance on hori-

zontal and vertical abstract addition items. 'Performance was slightly

higher on vertical than on horizontal items, but the difference was not

statistically significant. Engle and Lerch's findings for first-grade

addition closely paralleled Beattie and Deichmann's results. In both

studies, perfoLmance was over 85%, so there may have been a ceiling

effect.

Existence of a Solution

Some empirical evidence has been gathered which indicates that the

existence or nonexistence of a whole number solution affects performance

on open addition and subtraction sentences. However, this evidence is

not unequivocal.

In a multiple choice format, Howlett (1974) found no significant

differences-in first graders' performance on missing addend problems

with and without whole number solutions, but performance was slightly

better when no solution existed.

Weaver (1972) also reported a significant difference in performance

due to the existence of a solution, across .grades 1,-2, and 3, but in

this case achievement was higher when a solution existed than when no

whole number solution existed. Existence of a solution also interacted

with grade level and operation. The solution-no solution performance dif-

ferential was greater atgrade 3 than at grades 1 and 2 and was also

greater for addition items than for subtraction items (as defined by the
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operation present in the open sentence). In fact, first graders cor-

rectly solved a -D = c and c = a -0 more often when no solution

existed than when a solution existed.

Mitchell (1981) administered items of the form + b = c, a +0 = c,

'a - b =0, end a -0 = c to first, second, and third graders. For

these items, grade 1 performance was better when a solution existed than

when it did not, but this difference was less pronounced in grades 2 and 3,

This,contradicts Weaver's (1972) finding of a greater performance dif-

ferential at the higher grade levels.

Overall, the evidence suggests that performance is generally better

on open sentence items for which a solution exists than on items for

which no solution exists. The effects vary considerably, however, with

differing placeholder positions, operations, grade levels, etc. The

lack of:instructional emphasis on problems with no solution makes it dif-

ficult to make conjectures regarding other causes for poorer performance on

problems with no solution; poor performance may simply be due to lack of'

.opportunity to learn.

Presence of Aids

Little empirical evidence is available regarding the effects of

various aids on the solution of abstract addition and subtraction problems.

One reason is that much of the research discussed above was conducted in

a setting in which no manipulatives were available to the subjects. Be-

sides, some esearch has indicated that by the time children reach second

grade they no longer use manipulatives frequently. In particular, Houlihan

and Ginsburg (1981) reported that second graders used manipulatives in
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their solutions to two-digit.abstract addition problems only 4% of the

time. Second graders did not use manipulatives at all on single-digit

addition or on single-digit, double-digit problems.

Studies in which manipulatives have been available have generally

found that their presence improves performance (e.g., McLaughlin, 1935).

The impact of other aids such as pictures is essentially unknown. Grouws

(1972a) reported for third-grade subyects that presentation of an accompany-

ing verbal problem did not aid in the solution of abstract open sentence

problems. There is little other relevant research available.

STRATEGIES OF SOLUTION

Research Paradigms

Identifying-the processes that children use to solve simple addition

and subtraction problems is not an easy task. Internal cognitive pro-

cesses cannot be observed directly, and the problems are sufficiently

simple that children themselves often are not aware of how they solved

a given problem. Three basic paradigms have been used to study the pro-

cesses that children use to solve simple addition and subtraction problems.

The most straightforward has involved the use of individual interviews.

Use of individual interviews. An individual interview to assess a

child's performance on addition and subtraction problems can take several

forms. Opper (1977) described Piaget's clinical method, one diagnostic

tool for studying children's reasoning. In a true clinical interview,

hypotheses are generated about the processes children use to arrive at

their solutions and the subject's responses serve as a basis for subse-

quent tasks and questions from the interviewer. Opper also described a
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modification of Piaget's clinical method which she termed the "partially

standardized clinical method" (p. 92). This approach uses standard tasks

but allows the interviewer freedom to be flexible in subsequent probing

related to the child's response.

Alternatives to the partially standardized individual interview

also exist and have been used by researchers to study various aspects

of children's thinking. Naturalistic observation, teaching experiments,

and the case study method (Easley, 1977; Opper, 1977; Stake, 1978) are

three of these. Each, however, has advantages and disadvantages. In-

dividual interviews do not generate responses which are as spontaneous

as those which derive from naturalistic observation nor do they provide

the depth and breadth of data found in the case study approach. On the

other hand, the individual interview procedure minimizes occurrences of

irrelevant behavior and provides an opportunity to focus on specific

,thought processes, while retaining sufficient generalizability to make

comparisons between subjects and tasks possible.

Researchers who have used the individual interview procedure with

young children have often reported difficulty in eliciting or interpret-

ing the child's verbalizations. Menchinskaya (1969) used thinking aloud

and introspection to study problem-solving behaviors of first graders but

reported that "verbal description of their actions was difficult even for

the stronger pupils" (p. 25). Shchearovitskii and Yakobson (1975) also

reported difficulty in identifying first graders' solution processes and

focused oriproblems in which children could externalize their method of

solution (problems presented with objects). Attempts to determine why
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a child chose a particular strategy or used a given operation in the com-

putational process have often been unsuccessful (e.g., Zweng, 1979).

Thus, two critical aspects of the individual interview procedure are

the choice of follow-up questions and the use of tasks that elicit solu-

tions which are based on observable or easily inferable behaviors.

Opper (1977) pointed out some of the procedural difficulties asso-

ciated with the individual interview method. Among these 47ere (a) the

possibility that the child would not be at ease and perform naturally

in the course of dialogue with the interviewer, (b) the problem of the

interviewer maintaining neutrality and avoiding attempts to elicit

"correct" answers, (c) the misunderStanding of language not adjusted to

the child's level, (d) insufficient time for the child to reflect.on the

problem and to develop his/her explanations, and (e) the interviewer's

interpretation of .theJthild's adtions and responses on which subsequent

questions are based.

One of the most serious problems with interview data is that children's

explanations of how they solved a problem may not accurately reflect the

processes that they actually used. The interview procedure may change

how a child solves a problem, or children may have difficulty articulat-

ing the process that they really used and therefore describe another'pro-

cess'that is easier to explain. Or they may try and second guess what

they think the interviewer is lookilg for. Another serious problem is

that the inferences drawn from an interview involve a great deal of sub-

jective judgment on the part of the experimenter.

Because of these limitations, researchers have sogght. alternative

procedures that do not rely on children's explanations and can be based
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'on more objective measures. One of the more popular techniques is the

use of response latencies.

Isp.2aat_litaksz. Response latencies-have been used for a number

of years to assess problem difficulty (Arnett, 1905; Knight & Behrens,

1928; Smith, 1921). More recent studies employing the response latency

methodology have grown out of Suppes' initial work in this area (Suppes

& Groen, 1966, 1967; Suppes, Jerman, & Brian; 1968). These studies have

used response latency as a method for investigating possible solution

strategies rather than as a relative difficulty indicator for addition

and subtraction patterns, and have hypothesized various counting strate-

gies. Reaction times are assumed to be a linear function of the number

C6';)

of counting steps required to solve a problem, and linear regression

analysis is used.to identify which counting model best fits the observed

latencies. For a more complete description of the response latency

paradigm, see Suppes and Groen (1967) and Groen and Parkman (1972).

The performance models used in the response latency studies hypo-

thesize the existence of certain mental operations, i.e., setting a

counter to a value and incrementing (or decrementing, or both) that

counter by one. The five models hypothesized for addition problems of

the form a + be'IN Dare the following:

(1) The counter is set to 0, it is incremented by a units, then

it is further incremented by b units. (ALL)

(2) The counter is set to a (the left-most number), and is incre-

Mehted by b units. (LEFT)

(3) The counter is set to b (the right-most number), and is in-

cremented by a units. (RIGHT)."
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(4) The counter is set to the minimum of a and b, and is incre-

mented by the maximum of a and b. (MAX)

(5) The counter is set to the maximum of a and b, and is incre-_

mented by the minimum. (MIN)

The companion models for subtraction problems of the form c b = ID

(or items with a subtractive structure such as the missing-addend items

of the form a + El = c or El+ b = c) are the following:

(1) The counter is set to 0, it is incremented c times, then it

is decremented b times. The solution is the final value

of the counter. (0, INC, DEC)

(2) The counter is set to c and is decremented b times. The

solution is the final value of ,the counter. (DEC)

(3) The counter is set to b and is incremented until c is reached.

The solution is the number of times the counter has been in-

cremented. (INC)

(4) The counter is set to 0, it is incremented b times, and is

then incremented until c is reached. The solution is the

number of times the counter has been incremented during the

second phase. (0, INC, INC)

(5) Either method (2) or method (3) is used, depending on which

involves fewer increments of the counter. (FEWER)

Two data reduction methods have been used in response latency work.

One involves an analysis by subject, in which the various counting models

are fit to each subjectts performance data (e.g., Groen, 1968; Groen &

Resnick, 1977; Rosenthal, 1975). The other involves an analysis by item,

in which a mean latency is computed for each item across all subjects

6 13
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(e.g., Groen & Poll, 1973; Jerman, 1970; Parkman & Goren, 1971; Suppes

& Groan, 1967; Svenson & Broquist, 1975; Woods, Resnick, & Groen, 1975).

Svenson (1975) employed both methods of analysis, and Buckley (1975), and

Winkelman and Schmidt (1974) used median rather than mean latencies. A

great deal of information is lost in using latency averages which may

hide important variability. This suggests that fitting individual sub-

jects to regression models is the more appropriate procedure.

The assumptions of the response latency paradigm are presented in

Suppes and Groen (1966, pp. 5-6), and are more succinctly stated in

Rosenthal (1975, pp. 45-48) and in Svenson (1975). One assumption is

that a constant time is required for each increment of the counter. A

second is that a constant time is required to set the counter to its

initial value. These.two are independent of each other and independent

of the values in the problem in which they are used. The time required

to determine whether enough counts (increments) have taken place is

"assumed to be a random variable independent of how many steps the counter

should move" (Svenson, 1975, p. 297). This means that the time required

for the decision to continue counting is constant, regardless of how

close one is to finishing.

One assumption of the latency model which remains suspect with the

time required to decide which of two values given in the item Is larger.

The tine is assumed to be constant despite substantial evidence to the

contrary. Moyer and Landauer (1967), Aiken and Williams (1968), and

Restle (1970) identified factors that affected the speed with which pairs

of numbers were compared. Among these are left or right position of the
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larger number,, size of the larger naber, and the difference between the

larger and the smaller number.

Groen and Parkman (1972) dismissed this evidence. They argued

that "the process of finding the largest and smallest addends has only a '

second-order effect on the reaction times" (p. 332), and that the amount
*

time in question is on the order of only 10 milliseconds. They also

contended that Moyer and Landauer's (1967) procedure indicated a strong

relationship between the absolute difference of the addends and the

magnitude of the smallest of the two addends. Groen and Parkman suggest

that to determine the minimum addend "the subject searches (or generates)

the discrete number line, beginning with one and continuing in increments

of one until he finds one of the two numbers" (p. 332). No conscious

counterpart of this process has been identified.

Another drawback of the response latency paradigm is that extreme

values may result in a reasonably good fit of latency data to the re-

gression equation of a particular sttategy. This can give the impres-

sion that children consistently use a given strategy, whereas only a

pie6e of the 'ata really fits the model well. For example, a reanalysis

of the data from a study by Groen and Parkman (1972) indicated that

their best fitting model was much more appropriate for certain number

domains than 1.:or others (Siegler & Robinson, 1981).

Allfalaajderrors. The third technique that has been used to

infer children's solution processes is the analysis of error patterns

(Lindvall & Ibarra, 1980a; Riley, Greeno, & Heller, in press). For

simple addition problems involving basic facts, it is usually difficult

to infer what strategies may be implied by errors to specific problems,

6
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as can be done for algorithmic solutions to multi-digit problems (Brown

& Van Lehn, 1982). However, certain general solution strategies will

allow, students to solve some problems but not others. By examining the

patterns of errors over groups of problems, inferences may be drawn re-
,

garding strategies used. Certain errors also result in answers that

consistently relate to problams.in a predictable way. By observing a

consistent pattern of errors, one may infer that the errors are caused

by a particular incorrect Procedure. Certain counting procedures may

result in systematic errors, but unless the particular error is observed

+fillear"..

over a number of cases, it is not possible to determine whether a syste-

matic error or a random counting error has occurred. An example of a

systeatic counting error is one in which a child counts on from a given

number to find a sum but instead of counting on the cotrect number of

places beyond-the given number, the child includes the given number in

the count. For example, to add 5 + 3, the child(counts 5; 6, 7 and re-

sponds that the answer is 7. This is a systematic error that will con-

sistently result in an answer one less than the correct answer. 'If a

child consistently responds with an answer one less than the correct

answer, one can infer that the child may be committing this error. How-

ever, caution is required.in concluding that a child has used a particular

strategy as other "buggy" procedures may result in the same incorrect

answer.

Although certain errors, like adding when subtraction is called for,

are relatively easy to detect--many errors are difficult to identify,

especially when several errors occur in combination. Analysis of errors
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also provides relatively little information about correct-trategies.

Thus, although error analysis provides only limited information on the

sttategies children use, a careful analysis of errors does help to round

out the picture since response latepcy data is usually most effective in

choosing between Correct strategies.

Results of Latency Studies

Response latency studies have been carried out with.subjects of all

ages. For the purpose of this discussion, they have been divided into

three groups determined by the general age range of the subjects, since

it is likely that the processes used by subjects change over time. The

studies with young children (preschool through first grade) used subjects

having little or no formal (school) mathematics experience with addition

and subtraction. A second group o2 studies used elementary or middle

school students who had experienced extended initruction in addition and

subtraction. The third group of studies was carnied out with adult

subjects whose strategies presumably represented mature approach,s to the

problems.

Studies with young children. Several studies utilizing the response

latency methodology have used young children as subjects. Suppes and

Groen (1967), Groen (1968), and Groen and Poll (1973) hypothesized cer-

tain strategies which could be used by first graders on simple addition

and subtraction problems.

Suppes and Groen (1967) presented the first test of the five addi-

tion models discussed above. Thirty first graders were tested during the

first half of*the school year on 21 items presented in the form a + b =0,
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with sums less than 6. TwoAmodels, ALL and MIN (see the list of addition

models given above) were found to fit the data, with the MIN (count from

larger) model providing the best fit. Groen (1967, 1968) extended the

Suppes and Groen study to the larger class of addition items having sums

less than 10. The 37 subjects in this study, had completed most of first

grade. For 20 of these children, the MIN model was the only one which

fit their performance. Only one of the remaining 17 subjects fit any of

the other models. As in the Suppes and Groen study, problems involving

doubles had consistently lower response latencies than other items with

the same minimum addend. These lower latencies on problems involving

doubles are explained by assuming that a reproductive (memory) process

rather than a reconstructive (counting) process is used in these problems.

Groen and Parkman (1972) noted that Groen's (1967) estimate of the slope

of the regression line for the MIN model was nearly equal to the estimate

of the speed of silent counting given in Beckwith and Restle (1966) and

Landauer (1962). This provides additional support for the inference

that children were indeed using a Counting On From Larger strategy to

solve these problems. Replications and extensions of these indings

with older subjects are discussed below.

The Groen and Poll (1973) study included first graders in the first -

half of the school year who had been taught additIon but not subtraction.

Their response latencies on missing addend sentences of the form

a +0 c and 0+ b = c was tested against che DEC, INC, and FEWER

models listed above. The FEWER model was the only one which fit the

observed latencies and then only for half of the items, those with the
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placeholder in the b position. Problems-ini:Tolving doubles again yielded

uniformly lower latencies.

None of the above studies controlled instruction, so they provide no

clear evidence whether the hypothesized counting strategies are invented

or learned through instruction. To examine this question, Groen and

Resnick (1977) taught the Count All (ALL) strategy for symbolic addition

problems with addends less than 6, and sums less than 10, to preschoolers

who were proficient at counting but who had not been exposed to instruc-

tion in addition. Items were presented in a + b form, and blocks were

initially manipulated to demonstrate the Counting All strategy. After

being instructed in the Counting All strategy only, and given extended

practice, the performance of 5 of the 10 subjects best fit a Counting On

From Larger (MIN) strategy which was presumably invented by the children

themselves. Groen and Resnick noted that these preschool subjects

followed a progression from the use of blocks to the use of finger

counting to the use of mental counting strategies. They contented that

the immediate representation of addends by the fingers of one hand is a

physical analog of and precursor to the mental operation of setting a

counter to a nonzero starting value.

The response latency studies with young children suggest that be-

fore children have much formal instruction on the addition and subtrac-

tion operations, their performance can be modeled by strategies which

involve counting. Furthermore, these counting strategies are efficient

ones that involve the fewest steps and are constructed by the children

inde;4ndent of instruction.

7
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Studies with older children. Response latency studies with older

children extend the findings of those using young children. Three

studies with subjects ranging from third through seventh grade (Jerman,

1970; Svenson, 1975; Svenson & Broquist, 1975) investigated performance

on subsets of the 100 basic addition facts. In all three studies, the

MIN model provided the best description of performance. When used by

Jerman, the MIN model included.the assumption that for items in which

the smaller addend appeared first, a transformation to the commuted

form would take place prior to incrementing of the counter. Svenson also

reported that latencies for items with the smaller addend first averaged

0.1 seconds greater than those for the same addends with the larger

addend first. Problems involving doubles again resulted in low,latencies

in each of these studies.

Woods et al. (1975) compared the response latencies of second

and fourth grade subjects on items of the form a - b =0, a < 9. All

20 of the fourth graders and 30 of the 40 second graders were best fit

by the FEWER model. Among the remaining second grade subjects only 2

were fit by INC, and 6 by the DEC model. These data suggest that with

age, children progress from less efficient to more efficient processes

for solving the canonical subtraction items just as they do for addition

items. Also, as in the addition studies, doubles (and inverse doubles)

were easier than other problems with comparable minimum addends.

On con 1,17 th. WWWIR Pt al. study is that thee

FEWER model, which was used by the majority of third and fourth grade

subjecta to solve subtraction problems, was the same as that identified

7.3



64

for 7-9 year olds on missing addend problems of the form a +0 = c

(Groen & Poll, 1973). This suggests that ,older children solve these two

types of symbolic problems by the same process, but use a different pro-

cess to solve open sentence problems of the form 0+ b = c (Groen &

Poll, 1973; Rosenthal, 1975). Rosenthal found more overall support for

the use of trial (successive substitution) models than for counting

,models on these items.

A second conclusion suggested by the Woods et al. study concerns
<7.

the procedure by which the most efficient process is chosen when the

FEWER model is used. If subjects do use a process in which they must

decide which of INC or DEC is more'efficient, the question arises as

to how such a decision is made. Groen and Poll (1973) offered two rea-

ionable ways in which a subject might decide whether to increment or

decrement. These are (a) making a rough approximation and (b) having

sufficient familiarity with specific instances to "know" what to do. The

latter would be based on a search of an incrementing list and a decrement-

ing list stored in memory. A remote, but conceivable alternative to

these is that of simultaneous incrementing and decrementing until one

generates an answer. Woods et al. provided an additional explanation of

how this choice might be made. Based on the accounts of two subjects,

they suggested that twice the subtrahend is compared to the minuend,

and that when the minuend is greater, decrementing is chosen. Other-

wise incrementing fs more efficient.

The response latency studies with older children who have more ex-

tensive school mathematics experience confirm many of the findings of the

7,1
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studies with young children. They indicate that even though there is

a definite trend toward the use of more efficient procedures by older

subjects, counting strategies for solving simple addition and subtrac-

tion problems persist throughout the elementary school years.

Studies with adults. Response latencies have also been used to

test the above counting models against adult performance. Using six

subjects and the 100 basic addition facts, Parkman and Groen (1971)

found the SUM and MIN models to nearly equally fit the pattern of

latencies. They also supported Svenson (1975) in finding that 29 of

44 item pairs had longer latencies when the smaller addend appeared

first. Use of a derived number fact based on 10, similar to that

identified by Svenson, was found when one addend was 9. Consistent

with the studies using children, lower latencies of doubles were attri-

buted to use of a recall process.

Winkelman and Schmidt (1974) hypothesized that an association (re:-

call) process could account for Parkman and Groen's (1971) data. Assum-

ing that sums with larger addends are practiced less often, the strength

of association between addends and sum would decrease, producing a

monotone increase of reaction time with increasing minimum digit. (This

monotone increasing function would fit fairly well with the linear

structural model, MIN, proposed by Parkman and Groen.) Winkelman and

Schmidt offered support for the existence of, but not necessarily ex-

clusive use of such a recall process. With their six subjects, there

were significantly more associative confusions (e.g., errors such as

3 4 = 12, or 4 x 5 = 9) than nonassociative (unrelated) errors on
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items using addends or factors of 3, 4, and 5, so they rejected the MIN

model since it would predict no difference between associative and non-

associative errors.

. From three experiments with a total of 70 adults, Buckley (1975)

concluded that a minimum of two piCcesses--recall and counting--are

needed to explain adult performance on addition and subtraction problems.

He found a significantly higher correlation between the sum of the addends

and response time than between the minimum addend and response time, and

concluded that the SUM model was the best-fitting counting model. Con-

trary to Parkman and Groen (1971), Buckley also concluded that subjects

do not compare addends and count on from the larger addend. He found no

significant difference between the latencies of a group given larger

addends first and a group given smaller addends first.

An analog, number line model has been proposed (Aiken, 1971; Restle,

1970) as an alternative to both the digital, counting model and the recall

model for adult performance on simple addition problems. Aiken found

response latencies proportional to the magnitude of both addends. This

supports a model in which number lines corresponding to addends are men-

tally concatenated to form a sum.

Thomas (1963) presented another alternative to the counting models

in which response latency is proportional to the log of the sum of the

members of the number triple used in the addition or subtraction problem.

For addition items of the form a + b = c, log (a + b + c) = log 2(a + b) =

log (a + b) + .3010,,so the sum of the addends is the crucial value in

this model. However, the relationship is not linear as in the SUM model.

76
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In general; for response latency studies with adults, performance

is not consistently accounted for by any of the hypothesized models.

There is evidence that recall, counting, and derived fact processes may

all be used, especially in light of the high variability of response

times for an item by a given subject (e.g., Buckley, 1975). Some parallels

were found between the Studies with adults and those with children, yet

no clear picture of adult-level, mature processes is given by the re-

sponse latency work. ,The lack of a definitive description of processes

used by adults may be due in part to the lack of attention paid to de's-

cribing the recall process with models similar to those describing the

counting processes. It seems reasonable to assume that many addition and

subtraction facts are available to adults via some form of direct recall

rather than by a reconstructive counting procedure, but the response

latency studies have done little to substantiate or refute this conjec-

ture.

Recall. While nearly all of the response latency studies acknowledge

the possibility of some type of recall (memory, reproductive) process being

used for certain problems, only Jerman (1970) has attempted to formulate

and test a specific model of recall performance. Jerman's model assumed

that addition facts are stored as elements of a mental array in which

the subject proceeds from (0,0) to the coordinate (a,b) for the fact

a + b. Thus, a value of is associated with the "shortest route"

to that comb4nation. Th4s means that 4 + 5 and 5 + 4 should be of

equal difficulty but wOuld have their values located at different points

of the array.- This type of recall model assumes a type of sequential
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access to facts rather than random access. In order to retrieve the

larger facts, the subject must "pass by" the smaller ones. This seems

to be a somewhat restrictive assumption.

Groen and Parkman (1972) discussed various recall models. They sug-

gested that "the counting models could easily be'reformulated as re-

trieval algorithms that calculated an index, rather than a sum, with the

index being used for a memory retrieval operation" (p. 342). Another

formulation given is a list structure in which the setting operation

corresponds to accessing a list, and the incrementing operation corres-

ponds to finding the next element in the list. They cited the similarity 11$

between the memor); search rate found by Sternberg (1969) and the incre-

menting rate used by adults on additions as evidence that such a list-

based'recall process might exist (p. 340).

Svenson, Hedenborg, and Lingman (1976) noted that

if a certain proportion of the answers were directly re-
trieved from LTM, and thus not reproduced through the
steps in the model . . . this could not be detected in
a regression analysis of solution times.. Only when a
great majority of the subjects in most of the cases had
the answer to a given problem stored in LTM, was it
possible to detect this fact ip the earlier presented
analyses of latencies. The only additions fulfilling
this requirement were the ties. (p. 169)

They have admitted here that regression analysis of response latencies

is an inadequate determinant of Whether or not recall is being used.

Winkerman and Schmidt (1974) contended that latency of recall might

be proportional to the size of the addends (or size of the minimum

addend). They attributed this to the hypothesis that "larger sums are

practiced less often" (p. 734), this hypochesis was tested by Groen (1974,

o
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pp. 8-9). Twelve 4 year olds were taught addition facts with sums less

than 10 using two different methods qf instruction-7one group was given

more facts having larger sums and the other group was given more smaller

sum items. Items with small sums were recalled fastest in both groups

(after 11 practice sessions). Groen cited this result as suppqrt for

the hypothesis that the children were actually learning a counting al-

gorithm rather than the effect being due to differential practice.

Informationyrocessing. The response latency studies raise ques-

tions about cognitive information processing mechanisms. Most of the

studies hypothesize the existence of a stagle counter which is set and

then incremented or decremented, one unit at a time. The question

arises whether an additional counter is necessary to keep track of the

-
number of times the counter which contains the total (or result) has

been incremented. Several of the studies suggest that simultaneous

operaiion of two counters may be a more reasonable model. Buckley (1975)

suggested that both the MIN and the ALL models require the existence of

two counters which are "yoked," counting together (with alternate

rather than simultaneous incrementation) so that one records the number

of increments while the other records the successive values terminating

in the result (pp. 7-9). Beattie (1979) identified counting strazegies

which mirror this "yoked" counter situation (e.g., for 14 - 6, the sub-

ject'says, "7, 1; 8, 2; 9, 3; . . . 14, 8").

Rosenthal (1975) also discussed the use of two counters in conjunc-

tion with his trial value models. In these models, a trial value is

chosen and entered into a counter. That trial value is then validated
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by one of the addition or subtraction counting models. If the trial

value is incorrect, the trial counter is incremented or decremented and

the new trial value is then validated.

Groen and Parkman (1972) raised the issue of two counters but

stated that the counter which records the.number of increments "can

be assumed to influence each of the five counting algorithms in a uniform

fashion, and since it is difficult to conceive of a way in which this

operation could affect the linearity of the predictions, it is not dis-

cussed any further" (p. 331).

Svenson (1975) discussed information processing requirements of the

response latency counting models in terms of the number of items to be

operated On in STM. He contended that "three entities may be (*rated

on in short-term memory: actual value of the counter, the unit that is

presently added to the counter setting, and the number of units remain-

ing to be counted" (p. 300).

Error Analysis

Strategies used to solve addition and subtraction problems can be

inferred from errors in several ways. One is to hypothesize general

strategies that will allow children to solve Fome problems but not others,

and then match their performance with predicted patterns. Another attempt

to classify errors for specific problems, and infers that certain strate-

gies have resulted in specifie types of errors. No studies so far have

systematically attempted to characterize children's strategies for ab-

stract problems based on analyzing patterns cf correct and incorrect

responses, although inferences may be drawn from the studies reviewed

bo
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earlier that compare the difficulty of different types of problems. For

example, the research cited earlier in this review consistently found

that open sentence problems of the type J + b = c were significantly

more difficult than any of the other five types. Since the initial

quantity is unknown, this problem would be difficult for any child who

used a strategy that started with the initial quantity presented in the

problem. These results would be consistent with predictions based on

such a strategy.

Several studies have attempted to characterize errors on basic fact

addition and subtraction'problems. The classification schemes are very

general or require a high level of inference. In general, these studies

provide only limited insight into children's strategies.

Beattie and Deichmann (1972) classified errors on addition and sub-

traction open sentences as: basic fact (computation), incorrect opera-

tion (process), and unclassifiable (random). The generality of this

classification scheme virtually precludes making conjectures regarding

the type of striltegy used.

Thyne (1941) analyzed Scottish primary Division students' errors on

basic addition and subtraction facts presented in a + b = CI foruat.

He found that for basic addition and subtraction facts, 11% and 15% of

the errors, respectively, deviated by 7 from the correct answer, and

that the wrong operation was performed 15% and 21% of the time. Re-

sponding with a given number occurred on 10% and 17% of the items, re-

spectively. Other classifiable errors involved (a) zero--27% and 5%,

(b) giving a "sequence" response such as 5 +c7 = 8--9% and 11%, and

81
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(c) incorrect use of doubles such as 5 + 8 = 16--7% and 0%, respectively.

For both addition and subtraction, findings showed fewer than 15% of

the responses to be unclassifiable.

In the above studies, interpretation errors involved use of the
#

wrong operation and procedural errors involved recall or computational
-

(counting) errors with baLiq facts, as.well as other unclassifiable

/PO

errors. Finer analysis of these "other" procedural errors suggests

4
that a variety of systematic .errors may ke present. Thyne's (1941)

analysis provides some support for the knference that a variety of strata,-

gies are employed.

Direct Obiervation of Strategies

A variety of solution strategies have been observed'among subjects

of various ages asked to solve symbolic'ally presented addition and sub-

traction problems in an indPiidual interview 'setting. In facr, many

of '.he strategies identified py direct obAervaeion have not been reported

at all in studies using high-infetence techniques. .In the section which

follows, the range of strategieo which children and adults use when.

4
solving srmple symbolic-addition and subtraction problems is described.

ThAt is fol1owe8 b'Y'a review of the more systematic research on.children's

problem-solving strategies.

Identification of strategies. Over 75 yea,i4 ago, Arnett (1905)

and Browne (1406) identified a variety of strategies used by adults to

sOlve simple addition problems. Browne noted that connting by one and

counting by two were used by eight adults on singlc-digit addition items.

.ernett and Browne also identified the practice of adding the smaller

8
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digit to the larger even if the smaller was the first addend. In column

addition, some subjects frequently reordered the addends to add 10 com-
.

plements or other easily assessable sums.

Ginsburg (1975, 1976, 1977b) contended that counting forms the core

of children's practical arithmetic and that early solutions to addition

and subtraction problons involve countini strategies. Later, more effi-

cient strategies evolve which are based,either on more sophisticated

counting techniques or on a core of known facts. Ginsburg's case study

analyses have provided ample evidence that such strategies are used. He

identified strategies such as Counting All, Counting From the Larger or

Counting From the Smaller addend, and the use of a core of known facts

Which involve dougles or ten to derive other facts.

Riess (1943a) identified many of the counting strategies used

by preschool and early elementary students,, and also distinguished

between those,used in the presence or absence of manipulatives. Helseth

(1927) found that adults used dots, fingers, and other strategies based

on a core nf known facts to solve combinations they determined to be

difficult. McLaughlin (1935) tested 125 three-, four-, and five-year-

olds on abstract addition tasks presented with conclete, pictorial, or

no aids. The Ota was summarized in very general descriptive terms, but

it appears that Mpical performance ranged from inability of the three-

y,ear-olds to grasp the task, to use of Counting All and occasional Count-

ing On among fdur-year-olds, and to Counting All, Counting On and some

occasional use of facts with the five-year-olds, Presence of manipula-

tives improved perfornance.

83
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Peck and Jencks (1976) administered missing addend problems in ab-

stract form tO first graders and reported two strategies used: overt or

mental counting and recall of facts. Of 103 subjects who could solve

missing addend problems, 80 were observed as counting, a "few" counted

mentally, and 17 used recall. They noted that those students who used

counting strategies wete able to extend their strategy to solve similar

problems presented concretely, and to solve more complicated multiplica-,

tion problems and concretely represented items of the form ax + b - c.

"The students who answered from memory were unable to solve subsequent

problems. . . . In fact, thy were unable to solve problems they had

answered correctly in symbolic form when these same (or similar) prob-

lems were posed with concrete physical materials" (p. 659).

Thornton (1978) has documented the use of various taught and un-

taught counting strategies as well as strategies involving derived

number facts among second and fourth graders. Smith (1921) similarly

J.dentified subjects who use derived facts on addition problems. Since

his subjects were in the third through seventh grades, Smith considered
-

these "roundabout schemes" to be a handicap for them, and cautioned

against allowing lower grade pupils to use such strategies.

Beattie (1979) interviewed 98 fifth and sixth graders and found

that many of the strategies listed above were used when basic subtrac-

tion facts could not be recalled. The derived facts noted by Beattie

include the use of doubles, the use of 10 for facts involving 9, and

o: 10 as a bridge, the use of any known fact followed by sequential

8,1
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generation of related facts, and regrouping of the minuend as (10 + x)

when a two-digit minuead is given.

Flournoy (1957) examined strategies used by third graders on "higher

decade" (i.e., two-digit plus one-digit) addition proaems. She found

a variety of strategies similar to those identified above for addition

of basic facts. An important finding in this study was that nearly 20%

of these third graders used several different methods within a 12-item

test.

Rosenthal (1975) attempted to get 9-year-old subjects to verbalize

about their solutions to noncanonical addition and subtraction open

sentences. Three of 25 subjects explained that they had used a syste-

matic substitution (trial and error) strategy, but Pmost subjects

were unable to provide any explanation at all" (p. 83).

Lankford (1974) interviewed 176 seventh graders and found that

counting was the most frequently used strategy for whole number addi-

tions. Approximately 25% of these seventh graders used fingers and

another 16% used marks or motions when counting. Many derived facts

involving doubles were also idelatified. Lankford emphasized that even

at the seventh grade level, "pupils vary Widely in the computational

strategies they employ in operations with whole numbers" (p. 29).

Analysis of strategies. The studies reviewed above indicate the

wide variety of strategies used to solve addition and subtraction prob-

lems involving small numbers, but many of them were not carefully docu-

mented, so they can provide only a general impression of the actual

range of strategies used. The following studies were more systematic

in their approach. Once again the subjects' age lai;e1 provides the most

convenient means of aggregating the studies.
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Davydov and Andronov (1981) interviewed 220 children aged four

through seven on addition problems that were presented either abstractly

or with one addend concretely presented. They identified three levels

of strategies and described variations within each of these levels. The

strategies which Davydov and Andronov identified for addition are a Count-

ing All strategy and two variations of Counting On. The Counting All

Strategy was observed in 14% of their subjects and involved the use of

objects to model the addends and point-counting to enumerate the final

set of objects.

The second level, which included 20% of the subjects, was charac-

terized by counting without objects. Although objects were not used,

children at this level found it necessary to count frqm 1 ("1, 2, 3, 4--

5, 6" for a problem such as 4 + 2). Davydov and Andronov identified

a number qf hand and body movements which accompanied this strategy.

They attributed these movements to a mental reconstruction of the ob-

jects which is assumed to take place as the child moves from actions

with objects to action with "assumed sets."

The third level involved Counting On with the first addend con-

sidered as a unit, e.g., "4--5, 6" for the problem 4 + 2. Counting On

was used by 55%.of their sample. Generally, some type of sweeping motion

wasAmade tc acknowledge the objects of the first addend, and the number

word representing die first set was uttered in a drawn-out manner.

Davydov and Andronov also identified an erroneous strategy which

they referred to as'"imaginary adding-on." Vith this strategy, the child

touched one object of thc set and designated it by a number word corres-

8i;
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ponding to the quantity of objects constituting the first addend. But

these children were unable to distinguish between the number assigned to .

a set and the labeling of an element in counting. Upon further examina-

tion, this limitation led to a number of errors in attempting to count

on.

Houlihan and Ginsburg (1981) presented three types of symbolic addi-

tion problems (one-digit plus one-digit, one-digit plus two-digit, and

two-digit plus .:wo-digit) to first and second graders. They found that

counting constituted the predominant strategy among first graders and

that approximately equal numbers of subjects used Counting All and Count-

ing On strategies. Counting All was used only infrequently by second

graders, but Counting On constituted nearly half of the appropriate strate-

gies; number facts and derived facts comprised the remaining half. The

use of apprf.T.riate strategies ranged from 77% on one-digit items to 4%

on two-digit items for first graders and from 917. to 457. for second

graders. c,

Houlihan and Ginsburg presented problems orally and in written form

but found no difference between these presentation modes for symbolic

items. Also, paper and pencil and manipulatives were available, but the

manipulatives were seldom used by second graderg% Manipulatives were

used with approximately half of the first graders' counting strategies.

' Brownell (1928) observed the strategies of 14 children aged seven to

nine on each of 14 single-digit addition problems with sums greater than

seven. Six had the larger addend first, six had the smaller first, and

two were doubles. He idertified counting, derived facts, and recall of

basic facts as the primary methods of solution, and suggested that counting
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formed the lowest stage of development for addition and "meaningful habitua-

tion," i.e., recall with understanding of number relationships. Seven of

the 14 subjects used recall as their predominant strategy, three children

used recall and derived facts with approximately equal frequencies, two

children primarily used counting, and two children frequently used all

three strategies given above.

BrOwnell also.provided data regarding the consistency with which

students added up or down for vertically presented items. Four of 14

students consistently added ia one direction, while the other 10 varied

the order in which addends were combined. Questioning revealed that this

was done to achieve the "preferred form" of a combination, e.g., 7 + 3

as opposed to 3 + 7. For example, 9 + 6 was much preferred to 6 + 9.

Brownell did not explicitly describe whether the preferred form always

involved the larger addend first, but the implication is that this was

the case. This might be taken as evidence for the behavior of trans-

forming the addends so that a Counting On From Larger strategy could be

used.

Brownell (1941) conducted a longitudinal investigation of 40 first

graders' and 60 second graders' strategies on abstract addition and sub-

traction problems. He individually interviewed children using both items

which had been taught and items which wfee unfamiliar. These interviews

were carried out at midyear and at the end of one school year. Brownell

tabulated strategies in six categories: no attempt, guessing, counting

from 1, partial counting, solution, and recall of number facts. Brovinell's

86
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solution categorv includes derived facts based on doubles, use of a known'

fact, use of addition facts for subtraction problems and vice versa, and

use of a fact in commuted form, e.g., using 3 + 1 = 4 for 1 + 3 =El

Several of Brownell's results are noteworthy. Recall of facts was the

predominant strategy at all levels; partial counting was more frequently

used by second graders than first graders; counting strategies occurred

infrequently in comparison to guessing, solution, and recall of number

facts;and wore than 20% of the second graders' strategies on subtrac-

tion problems' were classified in the solution category.

Russell (1977) observed 32 third graders' strategies on 15 verbally

presented symbolic addition items with sums between 19 and 48 and between

100 and 500. Concretely presented items (dots on cards) were also in-

cluded, and paper and pencil and manipulatives were made available,

Russell found that "third graders use strategies that are appropriate to

individual problems" (p. 157). Counting All was the most frequent strategy

with the dot items, while the written algorithm was used on at least,90%

of the large addend items and on those for which a written solution was

required. Counting On and derived facts were each used on about 15% of

the items with sums lees than 43, while the standard algorithm accounted

for 63% of the strategies on those items. Russell concluded that a "trend

towards economy and efficiency" (p. 158) exists at the third-grade level.

Grouws (1972a, 1974) observed 32 third graders' strategies for solv-

ing both types of noncanonical adJition and subtraction sentences with

sums less than 19 and between 41 and 100. The strategies he identified

included counting, trial and error, use of facts, use of a written algor-

ithm Use of derived facts, and transformation to an equivalent sentence,

89
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Although items were presented in two contexts, symbolic and symbolic with

verbal problem, "there was a close similarity in pattern and in numbar of

methods used in these two contexts" (Grouws, 1972a, p. 135).

As in Russell's (1977) study, counting strategies were used on approxi-

mately .5% of Grouws' items (for both basic fact and two-digit items).

Derived facts UM and written algorithms (38%) were used somewhat less

frequently than in Russell's study. The primary difference between

Russell's findings and Grouws' was the use of facts when possible (17%)

and the use of trial and error (7%). Transformation to an equivalent

sentence occurred infrequently (2%). Facts and derived fact strategies

were used more frequently on addition sentences, and standard algorithms

were used more often on subtraction sentences, although Grouws (1972a)

considered these differences to, small to warrant any generalizations.

Grouws' study with noncanonical formS was consistent with Russell's

study in that third graders used strategies appropriate fo- .he item

(e.g., recall with small addends, algorithms with larger addends). A

variety of strategies, including counting, continued to be used at the

third-grade level. However, a trend toward the use of more efficient

strategies was evidenced by the fact that approximately 55% of the

strategies on noncanonical items involved recall or use of standard

algorithms.

In a sequence of studies (Svencon, 1975; Svenson & Broquist, l975;

Svenson, Hedenborg, & Lingman, 1976), Svenson examined the strategies

used by 9-12-year-olds on canonical addition items with sums less than

14. In the first study, following several sessions in which response

latencies were measured, subjects were asked what strategies they would

it)
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use when answering a selection of 5-8 addition items. Counting From

Larger, use of derived facts involving doubles or 10, and recall were

the,strategies identified. Svenson and Broquist (1975) asked similar

questions and found that 22 of 26 subjects counted on from the larger

addend on some items.

Svenson et al. (1976) interviewed eight subjects who were asked

to tell "how they thought when they got the answer" to each of 250 items,

excluding doubles and those with addends of 0 or 1.

On the average about 74% of the analysed additions
were solved by applying a consistent otrategy. There
were great individual variations, from very consis-
tent subjects With about 90% of the answers in the
same categc:y, to subjects with only about half or
one-third of the problems reported to be solved in
the same way during four or five presentations in
the experiment. (p. 167)

Recall and Counting On (from larger or smaller) each occurred on 36%

of the items. Counting in steps greater than one occurred on 16% of

the items, but this included responses like "8, then 9 and 11," for

which the counting did not continue sufficiently to determine if the

child was really counting in units of two. Derived facts involving

doubles were used on 8% of the items, and other derived facts accOunted

for 4% of the strategies. Svenson et al. concluded that subjects "used

highly individual methods for solving some of the problems" (p. 169).

Although longitudinal data on the development of strategies for

addition and subtraction is sparse, Ilg and Ames (1951) reported data

on strategies used by 30 children, followed from age five thrjugh nine.

They concluded that addition strategies follow a sequence of developmeJ:

toward efficiency as reflected by Counting All, Counting From the Smaller

Number, Counting From the Larger Number, and use of derived and known

9i
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facts. Subtraction strategies were similarly modified. Children first

counted from 1 to the larger number, then down from it a:number of counts

ecilal to the smaller number. Later children began at the larger number

and just counted down from it. Derived facts, often with doubles,

Counting Up From Given Smaller Number, and the use of known facts vere

the latest dppearing strategies. Ilg and Ames gave ages at which the

above strategies were used, e.g., Counting All--age 5; Counting From OIL

1

'

Smaller Number--age 5 Counting From the Larger Number--age 6; etc., but
2

these ages must be interpreted in light of the fact that Ilg and Ames'

sample was:somewhat above the average in intelligence" (p. 4). Never-

theless, their data confirms the progression toward increasingly effi-

cient strategies which is suggested by the available cross-sectional data.

Conclusion. Children use a reasonably well-defined set of strate-

gies to solve addition and subtraction problems involving basic facts.

There appears to be an evolution from more pri-litive counting strategies

to more efficient counting strategies, and finally to strategies based

upon recall of number facts, but children at all levels of elementary

and middle school continue to use bacl.c counting strategies on symbolic

addition and subtraction problems.. It appears that many students do not

commit all of the basic addition and subtraction facts to memory, nor

do they at any level adopt a universal strategy for solvjng these items.
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WORD PROBLEMS

Since there are a great many more variables upon which word problems

are based than was the case for symbolic problems, the classification of

research on word problems is more complex.

Nesher (1982) identified three main components that she contended

account for the difficulty of verbal problems. These are

(1) the logical structure which includes the type of opera-

tion involved and the presence or absence of superfluous

information;

(2) the semantic component which includes the contextual

relationships contributing to problem structure and the

verbal cue words included in the problem; and

(3) the syntactic.component which includes structural variables

concerned with the number of words, position of the component

parts within the problem, etc.

In the analysis that follows, the logical structure dimension has been in-

corporated into the semantic component. Thus, there are two basic dimen-

sions upon which word problems are described in this paper: one based

on syntactic variables and the other based on the semantic structure of

the problems.

Most of the research on syntax has attempted to account for dif-

ferences in difficulty among problems, whereas most of the research

investigating the effect of semantic structure provides either direct

evidence of children's strategies or indirect support for the existence

of hypothesized strategies. Consequently, rather than organizing

studies on the basis of whether or not they investigated solution pro-

93



84

cesses, the syntactic-semantic distinction is used as a basis of organiza-

tion. The review of word problem research is divided into three parts.

The first part is not concerned with distinctions between problems but

rather examines factors that affect children's overall performance on

addition and subtraction word problems. The next two parts examine fac-

tors that account for differences in performance on different word prob-

lems. The first of these two sections is concerned with the syntactic

component, and the final section is concerned with the semantic compon-

ent. The first two sections focus primarily on problem difficulty; the

third is concerned with solution strategies.

FACTORS RELATED TO WORD PROBLEMS

Knowledge of Basic Facts and Performance on Verbal Problems

Researchers have often suggested that computational ability corre-

lates highly with problem-solving performance (Suydam & Weaver, 1975).

Several studies have specifically addressed the relationship between

computational skill with basic addition and subtraction facts and per-

formance on addition and subtraction word problems.

Steffe (1970) reported a correlation of .49 between knowledge of

addition facts and scores on a test of addition word problems. He noted

that the most substantial correlation occurred for the lowest IQ group

(.60) and the lowest group of quantitative comparisons ability (.68).

He suggested that these children's difficulties with addition facts

might be explained in large part by their inability to solve addition

verbal problem3 in contrast to the curriculum's emphasis on learning

facts at the expense of verbal problem instruction.
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LeBlanc (1971) found a correlation of .39 between knowledge of sub-

traction facts and subtraction verbal problem performance. He regarded

this as a relatively low correlation. In fact, correlations for groups

of individuals of differing IQ and quantitative comparison levels were

"judged to be so low that the relationship betleen children's knowledge

of number facts and their performance on the problem-solving test is

questionable" (p. 159).

Steffe, Spikes, and Hirstein (1976) found significant correlations

between addition and subtraction fact scores when childrer were forced

to solve problems without the aid of physical objects. When children

were allowed to use manipulatives to help them solve the problems, how-

ever, only certain classes of problems were significantly correlated

with knowledge of basic facts.

Additional support that problem-solving performance is related to

knowledge of number facts is found in studies which have considered a

range of number facts. Carpenter and Moser (1982) reported uniformly

better performance on proble.ms with sums between 5 and 9 than on problems

with sums between 11 and 15. Vergnaud (1982) also reported uniformly

higher performance when small constants were used than when one or

both of the constants were between 12 and 15. Zweng (1979) concurred

and reported that "for all grade levels [3, 4, 5, 6] and all ability
a

groups decreasing the size of the numbers was very effective in help-

ing students solve problems" (p. 61).

Overall, it is lustifiable to conclude that children can solve

addition and subtraction problems better when the constants in the

problems are small numbers. It is also safe to conclude that knowledge
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of basic facts is, to some degree, related to the ability to'correctly

solve addition and subtraction word problems. HoweNer, as LeBlanc (1971)

noted, "Surely knowledge of basic facts is not sufficient for success in

problem solving" (p. 159).

Presence of Aids

Much empirical attention has been focused on the effects of manipula-

tive or pictorial aids on children's performance doing verbal addition

and subtraction problems. The issue of the availability of aids is not

a simple one. The conditions under which they were used have varied

widely across studies. In some instances aids were merely made available

to the subjects; in others the subjects were required to use the aids,

and in yet others, the verbal problems were actually presented concretely,

i.e., the problem data were presented via the experimenter's manipulation

of the objects.

We will first consider studies in which manipulatives (objects and/or

pictures) were available to the subjects. Bolduc (1970), Carpenter and

Moser (1982), Gibb (1956), Ibarra and Lindvall (1979), and Schwartz

(1969) have reported similar findings regarding the effect of manipula-

tives or pictorial aids on children's performance. In all five studies,

the availability of aids resulted in improved performance. Gibb found

that physical objects and pictures were about equal in effectiveness on

three types of"subtraction problems, and that performance of second

graders was poorer when no aids were used. Bolduc reported that an ab-

sence of aids with first graders resulted in poorer performance than

when two types of visual aids were used. Schwartz compared only pictorial
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aids and nc aids, and reported better performarke when kindergartners

were shown pictures of objects used in the verbal problems. Carpenter

and Moser reported data on 144 first graders' performance on six addi-

tion and subtraction problems at three different times during the school

year. For all six problems during each of the three interviews, when

objects were available, performance exceeded or equaled that when ob-

jects were not available. In addition, the difference between performance

with objects available and that with no objects available was more marked

with problems in which sums were between 11 and 15 than with problems

with smaller sums. Lindvall and Ibarra presented six verbal addition

and subtraction pl.cblems to kindergartners under a variety of conditions.

Two of these conditions were a verbal problem read by the experimenter

without manipulatives and a similar reading with manipulatives available.

The p-values for all six problems were 10-20 po.Ints higher when objects

were available.

Steffe and Johnson (1971) also found uniformly higher performance

with objects available. However, they found an interaction between the

availability of objects and quantitative comparison ability. The facili-

tating effect of objects was less at the high level of quantitative com-

paripon ability for certain addition problems. Steffe et al. (1976) and

Hirstein (1979) reported the only negative evidence concerning use of

manipulatives. They obtained p-values 10-30 points lower when objects

were available. They conjectured that the superior performance often

found when manipulatives are available might be a result of instructional

practices which encourage the use of objects and discourage the use of

fingers. They also suggested that children who are low on the scale of
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.being able to perform quantitative comparisons can still employ Counting

All techniques with fingers to solve many verbal problems.

In some instances children have been required to use objects in

their solutions of verbal problems, i.e., they have been instructed to

"use the objects to solve the problem." Riley (1979) reported that

kindergartners' performance "dropped significantly" in the absence of

blocks, but first graders' performance was unchanged from verbal problems

without manipulatives available to problems in which they were required to

solve the problem hy using the blocks.

Concrete presentation of the data and actions in the problem is

the third condition in which aids have been used in verbel problems.

Shchedrovitskii and Yakobson (1975) present a detailed logical analysis

of the modeling and counting procedures a child must employ in order to

solve problems which use sets of objects to present the problem. There

is an essential difference between the use of objects in conjunction

with a verbal problem, i.e., a condition in which the experimenter does not

directly alter the condition of the manipulatives, and the use of objects

as a vehicle for presenting the problem, i.e., a condition in which all

or a portion of the manipulation is done by the experimenter. In the

latter case, a portion of the child's task is eliminated; he or she must

only be able to correctly solve the problem after it (or part of it) has

been'represented in the physical mode. Consequently, the performances

exhibited in the studies below must be distinguished from those on tasks

requirilv., the subject to solve the problem without assistance.

Lindvall and Ibarra (1979) used three variations of "concrete" pre-

sentation. In one, they used objects to show the sets described in the
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problems; in another, .they used a pictorial representation of the sets

and the actions in the problem; and in the third, they used objects

manipulated by the experimenter to model the sets and the actions in

the problem. 'Their data indicated that the third condition resulted in

drastically improved performance over the other two, and that performance

levels under the first two were roughly comparable to performance when

objects were available to the subject. In any case, all three variations

of concrete presentation of verbal problems resulted in improved per-

formance over that exhibited in the absence of objects.

Steffe (1970) and LeBlanc (1971) carried out similar investigations

to compare first graders' performance on addition and subtraction prob-

lems, using (a) no aids, (b) concrete aids, and (c) pictorial aids.

Steffe reported that "problems with no accompanying aids were signifi-

cantly more difficult than either of the other two types of problems

for all children involved" (p. 159), and LeBlanc concurred, noting that

"the conclusion that the children solved the problems better with the

presence of aids is well substantiated" (p. 150). LeBlanc also noted

that Lhe mean differences fcr prolgems with and without aids were great-

est for children in the lower levels of IQ and quantitative comparison

ability, although differences were not significant. Grunau's (1978)

findings were consistent with those of Steffe and LeBlanc. She concluded

that for kindergarten subjects the presence of aids was more crucial to

successful performance among number nonconservers than among conservers.

Hebbeler (1977) studied prekindergartner's through second graders'

performance on addition problems and found that when the problem data

were presented concretely, more preschoolers could do the problems than
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could without objects present, but.that "the older children do not need

the objects nor do they benefit from having them" (p. 113). In discus-

sing her use of objects to present the problem data, Hebbeler noted that

using objects in this way precluded the need for the subject to repre-

sent the quantities to be combined. These particular children seemed

able to represent the data in the problems without assistance from the

experimenter. The older children were performing neer ceiling level; by

second grade, her subjects with and without objects were correct on

better than 93% of the items.

The method of concrete presentation in Starkey and Gelman (1982) and

MacLatchy (1933) is somewhat different from that in the studies dis-

cus'Sed above. MacLatchy and Starkey and Gelman presented problems by

using objects to present the problem data but screened the first set of

objects before any action was, performed. These problems were not thereby

reduced to simple enumeration. Children as young as three years old

were able to solve some of the problems with small numbers presented in

this fashion.

In another variation of concretely presented problems, Hendrickson

(1979) had the subject model the first number in the problem before

continuing to read the rest of the verbal problem, e.g., "Put 2 blocks

in front of you. Now, if I give you 5 more, how many blocks will you

have?" His 2.-values are lower than most of those for entering first

graders who were given the entire problem in concrete form.

As early as 1933, MacLatchy documented better performance on verbal

problems presented concretely than on verbal problems presented without

aids. Similar findings haVe appeared many times since, whether the

.101)
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manipulative objects or pictures have simply been available to the sub-

jects or whether they have been manipulated by the experimenter to show

the data and relationships in the problem. It is safe to conclude that

the use of aids generally improves.performance, but that this effeck be-

comes less marked as the age of the subjects increases. One can also con-

clude that some of the difficulty in solving verbal problems stems from

formulating ea plan for solution of the pkoblem, i.e., analysis of the

relationships or actions, and the modeling of those relationships or

- actions; and the remaining difficulty relares to the mechanics of determ-

ining the result, once the problem has been represented. If the problem

is presented using the materials, the first difficulty is'removed. If

the aids are simply available, they appear to aid in the representation

of the problem and in the mechanics of finding an answer from this repre-

sentation.

SITTAX VARIABLES

A number of studies have investigated the effects of vocabulary or

syntax on difficulty in verbal problems. The intent of these studies is

to find structural variables within the problems which affect the suczess

rate. A study which included both-vocabulary and syntax as variables

was reported by Linville (1970, 1976). ns primary purpose was to

ascertain whether or not either the degree of syntax complexity or the

vocabulary lever used in the problems sigr 'ficantly contributed to their

difficulty when the computational operations required were kept constant.

The syntax measure was a casual intuitive one apparently related to

length of sentence and presence or absence of a relative clause. Both

10 1
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0
syntax and vocabulary were divided inco easy and hard, producing a 2 x 2

partitioning of the problems. Syntax and vocabulary level were both

found to be significant determinants of difficulty in verbal arithmetic

problet4s, with vocabulary level more important in determining success than
,

Synta.X.

Blankenship and Lovitt (1976) manipulated vocabulary level in

addition probkems, using both accuracy and speed as dependent variables.

One finding was that extraneous information impaired solution.

Several studies have discussed the role of various verbal factors

in the solution of word problems. Nesher and Teubal (1975) investigated

the effects of "cue" words on performance of addition'and subtraction

problems. They reported that the presence of certain distracting "key

words" had a detrimental effer.t on first graders' choices of the correct

operation in verbal problems.

Steffe (1967) interviewed 90 first graders to determine the effect

of varying the types of objects described in combined addition problems.

Half of the problems used objects with different names, e.g., "Someone

had a marbles and b balls, how many toys did she have?", while the other

half used objects with the same names, "Someone had a blue marbles and

b green marble;, how many marbles did he have?" Steffe found that

problems in which the objects had the same name were significantly easier

than those with differently named objects. Bolduc (1970) found no sig-

nificant difference on this factor, but Kellerhouse's (1975) replica-

tion of Steffe's study found significant differences in favor of problems

with identically named objects for both first graders and second graders

who solved problems using visual aids. Kellerhouse found no significant
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differences between these two types of problens for second graders who

had no visual aids available.

Steffe (1967) also compared first graders performance on problems

with a quantifier, e.g.,

John has some toys in his pockets. He has 5 jacks in

one pocket'and 2 marbles in,another pocket. How many

toys does he have in his pockets?

and similar problems without the quantifier,

John has 5 jacks in one pocket
pocket. How many toys does he

He found no difference in performance on

and 2 marbles in another
have in his pockets?-

the two types of prob.:1ms

Several studies have investigated the effects of varying the posi-

tion of certain components of verbal problems. Rosenthal and Resnick

(1974) varied the order in which temporal information was given in

verbal problems modeled by a + b = a a - b = EJ 0+ b = c, and

b = c. All problems given to the third graders involved action

described in chronological order, e.g.,

If Paul started out with 5 boats and he bought 3 boats,
how many boats did he end up with?

or in reverse chronological order,

How many boats did Paul end up with if he bought 3

boats and he started out with 5 boats?

They found that the reverse order was more difficult when percent correct

was the criterion, but not when latency of response was the criterion.

Bolduc (1970) found that the position of the question (before or after

the data) was not a significant factor in difficulty of addition problems

for first graders. This suggests that Rosenthal and Resnick's results

may be due more to the temporal aspect than to the presence of the ques-

tion in the first sentence of the problem.
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Grunau (1978) tested whether verbal problems having a larger first

addend were equ-1 in difficulty to those in which the smaller addend

was presented first. Grunau described as "tentative" her conclusion that

problems in which the larger addend appears first are easier than those

in which the smaller addend appears first. Conservers and uonconservers

had significantly more correct responses when the larger addend was first,

and trauajpnal subjects exhibited a similar but nonsignificant differ-

ende. Vergnaud (1982), however, did not find that order of the data in-

fluences performance.

The most systematic research on word problem difficulty has in-

volved the construction of linear regression models. The fundamental

objective of this line of reenarch has been to build comprehensive models

to accurately predict the difficulty of different problems. This re-

search attempts to identify components of the problems (both nonlinguistic

v
and linguistic), and then to regress these variables multilinearly upon

the observed difficulty level. "The term 'structural' indicates that

the focus of attention is on the variables that characterize the specific

problems themselves (e.g., the number of words in the problem) and on

the variables that characterize the relationship between individual

problems (e.g., the structural similarity of two adjacent problems"

(Loftus & Suppes, 1972, p. 531). A further analysis of regression

studies can be found in Barnett, Vos, and Sowder (1978).

In 1966, Suppes, Hyman, and Jerman wrote a paper analyzing the pro-

perties of various linear siructural models and their possible uses in

advancing a theoreticS'l mathematics education. Their declared aim was

to attach weights to various factors and then use them to predict the

104



95

relative difficulty or latency of response for a large number of kals.

Thi.s multilinear regression model, using factors suggested by an ini-

tially theoretical analysis of the problems, based on suggestions from

other research, was repeatedly used by Suppes and his co-workers through-

out the ensuing decade.

They believed that it would be possible to analyze and predict,

with the mse of meaningful variables, the response and latency performance

of children solving arithmetical problems. Note that all variation was

assumed to be inherent within the problem itself. The use of average

observed success rates as the variable to be predicted, rather than in-

dividual responses, effectively ignored any differences among students.

A widespread assumption among these regression studies is'that a diffi-

culty inde..c can be established with small number of variables, specific

to verbal problems, which will account for a large portion of the vari-

ance in observed success rates of, such problems. No significant role is

given to strategies used by the Students; the concern is merely uhether

or not they correctly solved the problem.

Suppes, Loftus, and Jerman (1969) presented a series of word prob-

lems to 27 students via computer teletype. The variables were supposed

to be "objective," with the result that they were all "count" variables:

either 0, 1 (e.g., whether or not a problem required conversion of units),

or ones which took on a finite set of values (e.g., length of problem as

measured by number of..words.) Sentence length was chosen as the most

plausible varlable associated with sentence difficulty. Approaches to

this variable became increasingly complex in this series of stndies.

"In subsequent studies, we hope to look at the actual syntactic structure

_1 06
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'of..the sentences which should provide a more meaningful index of diffi-

culty than mere word count alone" (Suppes et al., 1969, p. 4). In all,

six structural variables were identified; and 45% of the total variance

was accounted fol% although none of the specifically linguistic variables

were of major importance.

The next study in this sequence (Loftus & Suppes, 1972) incorporated

a more complex measure of linguistic structure. One hundred word prob-

lems involving all four arithmetic operations were presented to 16

sixth grade studentscharacterized as "of low ability." As well as

the six-old variables, two new ones were included. These were order

(a 0,1 variable) which reflected whethen or not the numerical data pre-

sented in an order other than one which could be used to solve the

problem, and a measure of sentence complexity based on main word depth

as described by Yngre (1960). With these eight variaSles, 70% Of)the

variance could be accounted for, although the order of their relative

importance in terms of which one entered the regression equation first

was different from the previous study. Five variables: sequential,

operations, depth, length, and conversion provided almost as good a fit.

Searle, Lorton, and Suppes (1974) continued this line of investiga-

tion, although their intention was to use the variables to structure a

computer-based problem-solving curriculum. Twelve variables were ini-

/

tially used, although the depth,measure was excluded, because of diffi-

culties coding. An r
2
of .66 was obtained.

Jerman and Rees (1972) summarized the work done to that time. They

discussed the evolution of the attempts and of the variables employed

in the regression problem. "One of the purposes of these regression
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studies has been to identify and quantify in a clear and explicit way a

set of structural variables that account for a significant amount of the .

variance in the observed error rate. . . . What we hope for is to be

able to generate sets of arithmetical problems of a specified difficulty

level" (Jerman & Rees, 1972, p. 306). They summarized the mushrooming

sets of variables being proposed in an attempt to account for ever-
,

increasing proportions of the variance. They then attempt to fit the

most robust variables to a new set of data on fifth grade students,

where in contrast to the CAI format, the calculations were also being

done by the stUdent. After 9 variables, an r
2

of .59 was obtained.

Following further adjustment and new less intuitive or easily imple-

mented variables, an r
2 of .87 was obtained with only five variables.

Jerman (1973) attempted to replicate the above study using stu-

dents of different grade levels (4, 5, and 6). He focused.primarily on

length, the simplest of the five variables successfully employed in the

1972 work, and the one with the oldest pedigree. This new study involved

19 variables, and length failed to consistently account for a significant

amount of the variation. He concluded: "The task of further refining

the definitions of the variables seems to be the next logical step.

. . . Perhaps through a combination of structural and linguistic vari-

ables the ability of the model to predict error rate will improve sig-

'nificantly" (p. 122). Here, as in earlier works, his aim was to identify

a small subset of variables (six or fewer) which could be used in further'

investigation. He was attempting to generate robust variablas which might

have explanatory power across grade levels. The focus on specifically

linguistic factors was influenced by Krushinski (1973). Krushinski

lo
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investigated the influence of 14 specifically linguistic variables on

the difficulty of verbal arithmetic problems for college students en-

rolled, in an elementary mathematics methods course. Example6.1A his

variables were sentence length, number of clauses, clause length, number

oc?,p)repositional phrases, and number of words in tlie question sentence.

These five were all found to be significantly related to problem diffi-

culty and entered consistently into the regression equation.

The final study emerging from this group is Jerman and:Mirman (1974).

It is a major attempt to identify lintic predictor variable;.

Seventy-three variables were identified and organized in seven different

categories. These were measures af length (of problem), parts of speech,

words, numbers, sentences, parts of sentences, and punctuation/symbols/

characters. A study of 340 students in grades 4-9 was conducted to

provide data upon which to regress thede variables. A tremendously

detailed analysis was included, but no discernable patterns were identi-

fied. Length was not significant at any grade level. One generalization

they made was that linguistic factors are apparc.ntly better predictors

of difficulty level for older students. They concluded, "At thi: point

( in the search for a set of linguistic structural variables which will

account for the observed variance in proportion correct across grade

levels [we seem] to have found that there is no such universal set"

(p. 360).

SEMANTIC VARIABLES

The Semantic Classification of Word Problem Types

There have been a number of attempts to characterize basic semantic

differences between various types of addition and subtraction problems.

08
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One issue is how to classify a problem as eithe'r an addition or sub-

traction problem. Reckzeh (1956) pointed out that attempts have often

been made to connect key words in verbal problems (more than, less than,

etc.) with the operation of addition and subtraction, and he suggested

a more desirable alternative. His alternative classified addition and

subtraction verbal problems as involving additive or subtractive situa-

tions. He took issue with Van Engen's (1955) use of "additive or addi-

tion situation" to include missing addend problems modeled by the equa-

tions a + El= c and El+ b = c. Reckzeh argued that the structure of

a problem is determined by the operation required to generate the Solu-

tion. For Reckzeh, an additive situation is "one in which two or more

groups of known siz are joined to form a single group where the size

of the latter group is to be determined" (p. 95).

Van Engen and Reckzeh arrived at different categories for addition

and subtraction problems because they based their definitions on differ-

ent dimensions. Kossov (1975) recognized this distinction and classi-

.c$

fied simple addition and subtraction v3rbal problems according to two

aspects of problem structure which he referred to as Feature I and

Feature II. The,Eirst feature of verbal addition and subtraction prob-
'.."

lems is based on the act:ion described in the problem, either making

larger or making smaller. The use of woras sucn as Ino e anu

are the determinants of this feature. Kossov concedes that some problems

may not involve action and thus may not have this feature present. The

second essential feature of Kossov's classification is "the position of

the unknown in the problem's structure" (p. 127). Problems can be classi-

fied along this dimension into two categories: Direct problems (those

109
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with a canonical corresponding open sentence) and indirect problems

(those with a -,oncanonical correspondin open sentence).

Addition and subtraction word problems have also been partitioned

in several other ways. One approach distinguished between problems on

the basis of whether or not action was involved (LeBlanc, 1971; Steffe,

1970). A second approach differentiated between problems in terms of the

open sentences they represented (Grouws, 1972a, 1972b; Lindvall & Ibarra,

1980b; Rosenthal & Resnick, 1974). Both approaches overlook impo4ant

differences between certain classes of problems. Recently, a group of

researchers stOdying children's solutions to addition and subtraction

problems have adopted a common framework which appears Most productive

in distinguishing important differences in how different probl:Ms are

Solved (Carpenter & Moser, in press; Riley, Greeno, & Heller, in press).,

This frameworksis generally consistent with several earlier classifica-

'tion schemes (Carpenter & Moser, 1982; Greeno, 1981; Nesher & Katriel,

1977) and incorporates the "take away," "joining," and "comparison"

situations identified by Gibb (1956), Reckzeh (1956), and Van Engen

(1949). This analysis proposes four broad classes of addition and sub-

traction problems: Change, Combine, Compare, and Equalize.

There are two basic types of Change problems both of which involve

action. In Change/Join problems, there is an initial quantity and a

direct or implied action that causes an increase in that quantity. For

Change/Separate problems, a subset is,removeFfrom a given set. In

both classes of problems. the change occurs over time. There is an

initial condition at TI which is followed by a change occurring at T2

which results in a final state at T3.



101

Within both the Join and Separ§te classes, there are three distinct

types of problems depending upon which quantity is unknown (sect Table 2).

For one type, the initial quantity and the magnitude of the change is

given and the resultant quantity is the unknown. For the second, the

initial quantity and the result of the change is given and the object

is to find the magnitude of the change. In the third case, the initial

quantity is the unknown.

Both Combine and Compare problems involve static relationships for

which there is not direct or implied action. Combine problems involve

the relationship existing among a particular set and its two, disjoint

subsets. Two problem types exist: the two subsets are given and one is

asked to.find the sizE of their union; or one of the subsets and the

union are given and the solver is asked to find the size of the other

subset (see Table 2).

Compare problems involve the Comparison of two distinct, disjoint

sets. Since one set is compared to the other, it is possible to label

-

one set the referent set and the other the cOmgaredse . Thethird

entity in these problems is the difference, or amount by which the larger

set exceeds the other. In this ciasa of problems, any one of the three

entities could be the unknown: the difference, the reference set, or

the compared set. There is also the pogsibility of having the larger

set be either the referent set of the compared set. Thus, there exist

six different types of Compare problems (see Table 2).

The final class of problems, Equalize problems, are a hybrid Of

Compare and Change problems. There is the same sort of action as found-

in the Change problems, but it is based on the comparison of two disjoint
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Table 2

Classification of Word Problems

Change

Join Separate

1. Connie had 5 marbles. Jim gave
her 8 more marbles. How many.
marbles does Connie have altogether?

3. Connie has 5 marbles. How many
more marbles does she need to have

13 marbles altogether? '

5. Connie had some marbles. Jim gave
her 5 more marbles. Now she has

. 13. How many marbles did Connie
have to start with?

2. Connie had'13 marbles. She gave

5 marbles to Jim. How many

marbles does she have left?

4. Connie had 5 marbles. She gave
some to Jim. Now she has 8
marbles left. How many marbles
did Connie have to start with?

6. Connie had some marbles. She

gave 5 to Jim. 'Now she has
8 marbles left., How many marbles
did Connie have to start with?

CoMbine

7. Connie has 5 red marbles and 8
blue marbles. How many marbles
does she have?

8. Connie has limarbles. Five

are re& and the rest are blue.
How many blue marbles does
Connie have?

........1
Compare

9. Connie has"13 marbles. Jim has
5 marbles. How many more marbles
does Connie have than Jim?

11. Jim has 5 marbles. Connie has 8
more marbles than Jim. How many
marbles does Connie have?

13. Connie has 13 marbles. She has
5 more marbles than Jim. How
many marbles does Jim have?

10. Connie has 13 marbles. Jim has

5 Marbles. How many fewer
marbles does Jim have than
COnnie?

12.. Jim has 5 marbles. He has 8
fewer marbles than Connie. How
marbles does Connie have?

14. Connie has 13 marbles. Jim has

5 fewer marbles than Connie.
How many marbles does Jim have?

Equalize

15. Connie has 13 marbles. Jim has

5 marbles. How many marbles does
Jim have to win to have as many
marbles a Connie?

11 2

16. Connie has 13 marbles. Jim has

5 marbles. How many marbles does
Connie have to lose to have as
many marbles as Jim?,

(Continued)
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Table 2--continued

Equalize '(Continued)

Join Separate

17: Jim has 5 marbles. If he wins
8 marbles, he will have the same
number of marbles,as Connie. How
many marbles does Connie have?

19. Connie has 13 marbles. If Jim
wins 5 marbles, he will have

'the same number of marbles as
Connie. How many marbles does

Jim have?

7..
18. Jim has 5 marbles. If Connie

loses 8 marbles, she will have
the same number of marbles as
Jim. How many marbles does
Connie have?

20. Connie has4,13 marbles. If she
loses 5 marbles, she will have
the same number of marbles as
Jim. How many marbles does Jim
have?
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sets. Equalize problems are not as commonly found in the research litera-

ture or in most American mathematics programs; however, they do appear

in the Developing Mathematical Processes (DMP) program (Romberg, Harviy,

Moser, & Montgomery, 1974). These Problems are also present in experi- N

merttal programs developed in the Soviet Union (Davydov, 1982) and in

Japan (Gimbayashi, 1969). As in the Compare problems, two disjoint sets

are compared; then the question is posed, "What could be done to one of

the sets to make it equal to the other?" If the action to be performed

is on the .smaller of the two sets, then it becomes an Equalize/Join prob-

lem. On the other hand, if the action to be performed is on the larger

set, then Equalize/Separate problems result. As with comparison problems,

the unknown can be varied to produce three distinct Equalize problems of

each type (see Tdble 2).

The above analysis of addition and subtraction word problems is

limited to simple problems that are appropriate for primary age children.

It is not as complete as the framework proposed by Vergnaud (1982) that

extends to operations on integers. 'Vergnaud's (Vergnaud, 1982; Vergnaud

---&-DurandT-19-76)-classification of verbal addition and subtraction prob-

lems is consistent with the above analysis but encompasses a greater

number of problem types. Vergnaud outlined six classes of problems

which are generated by considering measures, transformations, and

static relationships (relative states) as entities in the problem. His

classification scheme included problems which involve:

(1) Composition of two measures (Combine problems) ("measure-

measure-measure") M-M-M

(2) A transformation links two measures (Change problems) ("ini-

tial state-transformation-fihal state")

1 .1



105

(3) A static relationship links two measures (Compare problems)

("measure-static relationship-measure")

(4) Composition for two transformations ("transformation-

transformation-transformation")

(5) A tiansformation links two static relationships ('static

relationship-transformation-static relationship")

(6) Composition of two static relationships ("static relationship-

static relationship-static relationship")

Static relationships and transformations can be either positive or nega-

tive, i.e.,'they are represented by directed numbers. Transformations

are "changes of_state" such as "losing 5," "giving 3," etc., and static

relationships are relationships such as: "has 8 more than," "owes 6

dollars to," etc.,.

For each of the six prpblem types above, Vergnaud pointed out that--

several problems can be generated depending upon which entity.is to be

the unknown, and if directed numbers are involved, whether positive or

negative numbers are used. The problem types proliferate when each of

the entities is a transformation; 18 distinct problem types are possible

for the composition of two transformation categories alone.

The sections that follow are based on the analysis presented in

Table 2. Although this analysis is not as complete as Vergnaud's, and

does not unambiguously characterize all addition and subtraction word

problems (cf. Fuson, 1979), it is useful to help clarify distinctions

between problems that are accessible to young children and to help dis-

tinguish between problems with clearly different semantic characteris-

tics that result in different methods of solution.

115
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Strategies

In the section on Symbolic problems, a number of strategies were

described that have been tested using response latencies. These strate-

gies generally,involved setting and incrementing or decrementing a

mental counter. Most of the research on the strategies that children

use to solve word problems have used a different research paradigm.

Generally, strategies have been observed directly, using individual in-

terviews, and children often have had manipulative objects available to

assist them in their solutions. Consequently, although many of the same

basic strategies have been observed, there are some important differences

in how they have been characterized. In general, the descriptions of

strategies based on direct observation provide more detail regarding

overt manifestations of counting processes. Strategies are described in

terms of modeling action or relations in problems rather than in terms

of constructing counting sequences. Alternative strategies are also

identified.

Early studies of solution strategies. Several early studies

attempted to characterize children's addition and subtraction strategies

for solving word problems. Although other researchers had directly

studied strategies children use to solve symbolic problems (Brownell,

928; Ilg & Ames, 1951), Gibb's (1953, 1956) studies represented a

pione ring effort to focus on strategies used for solving various types

of verbal gutraction problems. While she did not systematically report

the frequency strategies, she did,categorize strategies on an ordinal

scale (1-9). Theie levels of strategies were:
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(1) No attempt

(2) Guess, incorrect response with no justification, or given

number

(3) Counting with fingers

(4) Counting all or 6eparating from

(5) Counting on starting with 1, e.g., "1, 2, 3, 4, 5, 6, 7"

(6) Counting on or back (without counting one of the groups)

(7) "Working with groups" without reference to counting or a

number fact (not clear)

(8) Use of number fact or heuristic (derived fact),_

(9) Spontaneous response (quick)--subject not able'!to recall

the process used

Other researchers have also classified children's solution strate-

gies on verbal addition and subtraction problems. Hebbeler (1977) iden-

tified six categories of strategy used by children in grades pre-K to 2

on addition problems presented in concrete format. Her categories are some-

what more global than Gibb's and are given below:

(1) Couniing

(2) Subitizing

(3) Use of number fact

(4) Guessing

(5) Uncodable--ambiguous

(6) No attempt

Ginsburg and Russell (1979a, 1979b) used a similar classification of

strategies used by 4 and 5 year olds on verbal addition problems pre-

sented in a concrete format. Their categories were:
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(1) Counting

(2) Correct noncounting 3trategy

(3), Counting with some error (miscount)

(4) Guessing

(5) Other incorrect,strategy

This categorization is again somewhat global, although preschoolers'

strategies can be assumed to be somewhat more limited than those found

with older children.

These classification schemes introduce some important distinctions

not found in the strategies based on response latencies, but the cate-

gories fail to differentiate between strategies ilong certain critical

dimensions that are directly related to the structure of different types

f problems. The characterization below provides a more comprehensive

description of children's strategies. It is based largely on the work

of Carpenter and Moser (1982), but incorporates most of the distinctions

found in other analyses of solution strategies. In fact, virtually all

of the important distinctions have been observed in a variety of studies

that will be discussed in the following section of this review.

Addition strate ies. Three basic levels of addition strategies

have been identified: strategies based on direct modeling with fingers

Or physical objects, strategies based on the use of counting sequences,

and strategies based on recalled number facts. In the most basic strategy,

physical objects or fingers are used to represent each of the addends,

and then the union of the two sets is counted, starting with one (Count-

ing All). Theoretically, there are two ways in which this basic strategy

might be carried out. Once the two sets have been constructed, they

lid
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could by physically joined by moving them together or adding one set to

the other, or the total could be counted without physically joining the

sets. This distinction is important. The first case would best repre-

sent the action of the Change/Join problems while the second would best

represent tba static relationships implied by.the Combine problems.

'Children generally do not distinguish between the two strategies in solv-

ing either Change/Join or Combine problems. Thus, is appears that there

is a single Counting All With Models strategy. The strategy may be

accompanied by different ways of organizing the physical objects, but

the arrangements do not represent distinct strategies or different in-

terpretations of addition.

A third alternative is also possible. A child could construct a

set representing one addend and then increment this set by the number of

elements given by the other addend without ever constructing a second set.

Such a strategy would seem to best represent a unary conception of addi-

tion (Weaver, 1982). This strategy is seldom used.

There are three distinct strategies involving counting sequences.

In the most elementary strategy, the counting sequence begins with one

aand continues until the answer is reached. This strategy, which is also

a Counting. All strategy, is the SUM strategy identified by Suppes and

Groen (1967) and Goren and Parkman (1972). It is similar to the

Counting All With Models strategy except that physical objects or fingers

are not used to represent the addends. However, this strategy and the

two'fellowing counting strategies require some method of keeping track

of the number of counting steps that represent the second addend in

order to know when to stop counting. Keeping-track procedures are
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discussed in detail in Fuson (1982). Most children simultaneously

count on their fingers, but a suostantial number give no evidence of

any physical action accompanying their counting. When counting is

carried out mentally, it is difficult to determine how a child knows

when to stop counting. Some children appear to use some sort of rhythmic

or cadence counting such that counting words are clustered into groups of

two or three. Others have explicitly described a double count, but

children generally have difficulty explaining this process. When fingers

are used, they appear to play a very different role than in the direct

modeling strategy. In this case, the fingers do not seem to represent

the second addend per se, but are used to keep track of the number of

steps in the counting sequence. When using fingers, children often do

not appear to have to count their fingers, but can immediately tell when

they have included a given number of fingers. Steffe (personal cammuni-

cation) has hypothesized that finger patterns play a critical role in the

development of advanced counting strategl.es.
,Nr

The other two 'counting strategies are more efficient and imply a

less mechanical application of counting. In applying these strategies,

a child recognizes that it is not necessary to reconstruct the entire

counting sequence. In Counting On From First, a child begins counting

forward with the first addend in the problem. The Counting On From

Larger strategy is identical except that the child begins counting for-

ward with the larger of the two addends. This strategy is the MIN

strategy of Groen and Parkman (1972).

Although learning of basic number facts appears to occur over a

protracted span of tipe, most children ultimately solve simple addition
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and subtraction problems by recall of number combinations rather than by

using counting or modeling strategies. Certain number combinations are

learned earlier than others; and before they have completely mastered

their addition tables, many children use a small set of memorized facts

to devive solutions for additipft and subtraction problems involving

other number combinations. These solutions usually are based on doubles

or numbers whose sum is 10. For example, to solve a problem representing

6 + 8 =0, a child might respond that 6 + 6 = 12 and 6 + 8 is just 2

more than 12. In an example involving the operation 4 + 7 =0, the

solution may involve the following analysis: 4 + 6 = 10 and 4 + 7 is

just 1 more than 10.

Hatano (1980) identified a type of derived strategy used by Japanese
,4

children. It is a mental strategy which relies.on the use of number

facts other than the one directly related to the problem being solved,

but it is based.on the use of 5 as an intermediate unit: This mental re-

grouping strategy involves breaking up addends into forms such as "5 + n"

where n < 5, e.g., for 5 + 7 the child thinks 5 + (5 + 2) or 10 + 2.

Hatno cites three pieces of evidence which support the use of this

strategy by Japanese children: (a) skilled abacus users rely on an

internalized system based on numbers complementary to 10 and 5, (b) Count-

ing On strategies are not observed with first and second grade Japanese

children; and (c) latency data indicate that Japanese children exhibit

lower latencies when addends of 5 are used. Hatano's findings suggest

that some of the strategies children use on verbal addition and subtrac-

tion problems are culturally dependent rather than universal.

12i
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Subtraction strategies. Each of the three levels of abstraction

described for addition strategies also exist for _the solution of sub-

traction problems. However, whereas a single basic interpretation of

addition has been the rule, a number of distinct classes of subtraction

strategies have been observed at the direct modeling and counting levels.

One of the basic strategies involves a subtraction action. In this

case, the larger quantity in the subtraction problem is initially repre-

sented and the mnaller quantity is subsequently removed ft= tt. When

concrete objects are used, the strategy is called Separating From. The

-

child constructs the larger given set and then takes away or separates,

one at a time, a number of objects equal to the given number in the

problem. Counting the set of remaining Objects yields the answer. There

is also a patallel strategy based on counting called Counting Down From.

A child initiates a backward counting sequence beginning with the given

larger number. The backward counting sequence contains as many counts

as the given smaller number. The last number uttered in the counting

sequence is the answer.

The Separating To stAtegy is similar to the Separating From strategy

except_that elements are removed from the larger set until the number of

objects remaining is equal to the smaller number given in the problem.

Counting the ntimber a objects removed provides the answer. Similarly,

the backward counting sequence in the Counting Dbwn To strategy continues

until the smaller number is reached and the number of words in the counting

sequence is the solution to the problem.

The third pair of strategies involves an additive action. In an

additive solution, the child starts with the smaller quantity and con-
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tructs the larger. With concrete objects (Adding*On), the child sets

Out a number of objects equal to the small given number (an addend).

child then adds objects to that set one at a time until the new

collection is equal to the larger given number. Counting the number of

objects added on gives the answer. In the parallel counting strategy,

Counting Up From Given, a child initiates a forward counting strategy

beginning with the smaller given number. The sequence ends with the

larger given number. Again, by keeping track of the number of counts

uttered in the sequence, the child determines the answer.

The fourth basic strategy is called Matching. Matching is only

feasible when concrete objects are available. The child puts out two

sets of cubes, each set standing for one of the given numbers. The sets

are then matched one-to-one. Counting the unmatched cubes gives the

answer.

A fifth strategy, the Choice strategy, involves a combination of

Counting Down From and Counting Up From Given, depending on which is the

most efficient. In this case, a child decides which strategy requires

the fewest number of counts and solves the problem accordingly. For

example, to find 8 - 2, it would be more efficient to Count Down From

whereas the counting Up From Given strategy would be rore efficient for

8 - 6.

As with addition, modeling and counting strategies eventually give

way to the use of either recalled number facts or derived facts. Chil-

dren's explanations of their solutions suggest that the number combine-

tions they are calling upon are often addition combinations. To explain

1,04

how they found the answer 13 - 7; many children res113that they just
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knew that 7 + 6 = 13. Ma'ny of the derived subtraction facts are also

based on addition. For example, to explain the solution to find 14 - 8,

one child reported, "7 and 7 is 14; 8 is 1 more than 7; so the answer is

6" (Carpenter, 1980b, p. 319).

Problem Structure and Solution Process

Subtraction. As can be seen from the descriptions of problem

structure and children's processes, certain strategies naturally model

the action described in specific subtraction problems. The Separate/

Result Unknown problems (see Table, problem 2), are most clearly modeled

by the Separating and Counting Down From Given strategies, whereas the

Separate/Change Unknown problems (problem 4) are best modeled by the

Separating To and Counting Down To strategies. On the other hand, the

implied joining action of tile Join/Change Unknown problem (problem 3) is

'most closely modeled by the Adding On and Counting Up strategies. Com-

pare/Difference Unknown (problems 9 and 10) deal with static relation-

ships between sets rather than action. Id this case, the Matching

strategy appears to provide the best model.

For the Combine subtraction problem, the situation is more ambiguous.

Since Combine problems have no implied action, neither the Separating nor

Adding On strategies (or their counting analogs), which involve action,

exactly model the given relationship between quantities. And since one

of the given entities is a subset of the other, there are no two distinct

sets that can be matched.

For Equalize problem the situation is reversed. Since Equalize'

problems involve both a comparison and some implied action, two different
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strategias would be consistent with the problem structure. The Equalize/

Join probl,ems (problem 15) involve a comparison of two quantities and

a-decision of how much should be joined to the smaller quantity to make

them.equivalent. Either the Matching or the Adding On (Counting Up From

Given) strategies might be appropriate. For the Equalize/Separate

problems (problem 16), the implied action involves removing elements

from the larger set until the two sets are equivalent. This action seems

to be best modeled by the Separating To strategy, although the Matching

strategy is again appropriate for the comparison aspect of the problem.

The results of a number of studies consistently show that young

children use a variety of strategies to solve different subtraction prob-

lems and that the strategies used generally tend to be consistent with

the action or relationships described in the problem (Blume, 1981;

Carpenter, Hiebert, & Moser, 1981; Carpenter & Moser, 1982; Hiebert,

1981). 'This tendency is especially pronounced for children below the

,second grade, but for some children the structure of the problem in-

fluehces their choice of strategy at least through the-third grade.

The results summarized in Table 3 are from a three-year longitudinal

study of the processes that children use to solve basic addition and sub-

traction word problems (Carpenter & Moser, 1982)., The study involved

approximately 100 children who were individually interviewed, three times

a year in the first and second grades, and twice in the third grade. The

study included problema similar to problems 1, 2, 3, 7, 8, and 9 in Table 2.

The results reported in Table 3 are for problems involving besic subtrac-

tion facts with the larger number between 11 and 16. Manipulative objec-

tives were available to aid in the solution, but children were not required
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Table 3

Relation of Strategy to Problem and Structure

(Carpenter and Moser, 1982)

Problem Type Grade

Percent
Correct

Strategy

-(Percent Responding)

Subtractive Additive

Matching

Numerical

Separating
From

Counting
Down From

Adding
On

Counting Up
From Given

Recalled
Fact

Derived
Fact

Separate/ 1 61 68 1 1 3 0 1 2

Result 2 83 34 8 1 10 0 20 9

Unknowm 3 95 9 3 1 12 0 54 13

Join/ 1 57 2 0 42 12 1 2 4

Change 2 93 1 2 18 31 0 25 16

Unknowm
(,

3 95 0 1 6 27 1 48 14

Compare/ 1 41 8 0 3 9 . 30 1 1

Difference 2 70 11 6 2 17 14 19 7

Unknowm 3 89 3 3 2 14 2 52 17

Combine/ 1 45 45 0 4 3 0 2 2

Part 2 78 36 5 0 11 0 20 14

Unknown 3 91 6 1 0 13 0 53 18

12?
126
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to use them. To simplify the table, only results for the January inter-

views dre included. At the time of the grade 1 interview, the children

in the study had received no formal instruction in addition and subtrac-

tion. By the second-grade interview, they had received about six months

of instruction in addition and subtraction, bilt mastery of number far.ts

was not expected, and there had been no instruction on the subtraction

algorithm. By the third-grade interview, students were expected to have

learned their number facts and to have learned the addition and subtrac-

tion algorithms.

In grade 1, the vast majority of responses were based on problem

structure. Almost all of the first graders who solved the problems

correctly used the Separating From or Counting Down From strategies for

the Separate problem and the Adding On or Counting Up From Given strategy

for the Join/Change Unknown problem. The results were not quite so over-

whelming for the Compare problem, but the Matching strategy was used by

the majority of children who solved the problem correctly. Furthermore,

it was the only problem for which more than two children used a matching

strategy. The results for the Combine problem, for which there is no

clear action to represent, generally tended to parallel those of the

Separate problem.

By the second grade, about a third of the responses were based on

number facts and the effect of problem structure was not quite so dominant;

however, the structure of the problem continued to influence the responses

of a large number of second graders. To solve the Separate problem 42%

of the second graders used a subtractive strategy, while only 11% used

an additive strategy. For the Join problem, 49% used an additive strategy
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and only 3% used a subtractive strategy. Thus, for these two problems,

most of the children who used a counting or modeling strategy continued

to represent the action described in the problem. The structure of the

Compare problem did not continua, to exert as strong an influence, and

many second graders abandoned the Matching strategy for the more effi-

cient Separating From or Counting Up From Given strategies.

By the third grade, about two-thirds of the responses were based

on number facts; and there was more flexibility in the use of counting

strategies.' For the Separate problem, the most popular non-numerical

strategy was Counting Up From Given, and the Matching strategy was seldom

used for the Compare problem. For the Join problem, however, almost all

children who did not use number facts used an additive strateiy. This

represented about a third of the third graders in the study.

There are two plausible explanations for the ,continued reliance on

additive strategies for the Join problem. The Counting Up From Given

strategy may simply be the most efficient strategy available to some

third graders for solving subtraction problems of any kind. In other

words, for some children,'the choica of a Counting Up From Given strategy

for the Join problem may not have been dictated by the additive structure

of the Join problem, it may simply be the strategy they use to solve

subtraction problems. The fact that 12-14% of the third graders used

the Counting Up From Given strategy for the other three subtraction

problems supports this hypothesis. On the other hand, almost twice as

many third graders used the additive strategy for the Join problem as

for the other three problems.

1 29
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The influence of the additive structure of the Join problem is

apparent in the solution of two-digit problems, which are most effi-

ciently solved using the subtraction algorithm. By the time of the

January interview, the third graders in the study were expected to have

mastered the subtraction algorithm. For the other five types of problems,

between 807. and 957. of the children used the standard addition or sub-

traction algorithm; but for the Join/Change Unknown problem, only 53%

used the subtraction algorithm. Almost a third used some ni7m of addi-

tive strategy that paralleled the structure of the problem.

Results of other studies investigating the processes that children

use to solve word problems are generally consistent with those of the

longitudinal study reported above (Anick, in preparation; Blume, 1981;

Carpenter, Hiebert, & Moser, 1981; Hiebert, 1981). These studies also

included ?roblems not administered by Carpenter and Moser (1982)., Per-

haps the most compelling evidence showing the effect of problem struc-

ture is found on Sepatate/Change Unknown problems. The strategy that

best represents the action described in these problems is the Separating

To strategy. In general, this strategy appears somewhat inefficient and

unnatural. The strategy involves removing elements from a set until the

number remaining is equal to a given value. With the Separating From

or Adding On strategies, the elements that are removed or added can be

sequentially counted as they are removed or added. With the Separating

To strategy, however, the size of the remaining set must regularly be re-

evaluated. Furthermore, the Separating To strategy is virtually never

taught explicitly. In spite of these limitations, Anick (in preparation)

and Hiebert (1981) found that the Separating To strategy was used by

130
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approximately half of the children in their studies who were able to

solve the Separate/Change Unknown problem. Results for the Equalize

problems also generally followed the predicted pattern (Carpenter, Hiebert,

& Moser, 1981).

The one case in which results were not consistent across the studies

involves the use of the Matching strategy. Matching wa's the primary

strategy for Compare problems in both the Carpenter and Moser (1982)

study and in the Carpenter, Hiebert, and Moser (1981) study. It was

almost never found, however, ih the studies of Anick On preparationj or

Riley et al. (in press). This may be due to the type of mathematics

program used by the children studied. In the studies where Matching

was used, the mathematics program in use was Developing Mathmematical

Processes (DMP) (Romberg, Harvey, Moser, & Montgomery, 1974), a program

which provides early experdence in comparing the relative size of two

sets by matching. It appears that children who have used Matching to

compare sets can extend this process to find the magnitude of the dif-

ference in Compar problems without explicit instruction. If children

have no experience matching sets, they do not spontaneously apply the

process to Compare proble7, in which case, they have no way to repre-

sent the relationship described in the Compare problems. As a conse-,

quence, these problems are very difficult for them (Anick, in prepara-

tion; Riley et al., in press).

These results clearly illustrate 'the importance of examining

children's solution processes. Although't,here were significant dif-

ferences in the success level for Compare, problems between these two

sets of studies, the results of both are generally consistent with the

4

13i
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conclusion that children's earliest solution processes are based on model-

ing fhe action or relationships described in the problem. However, in

one instance, children had available to them a process with which to

model the relationship described in the Compare problems; in the other,

they did not.

The results for the Compare problems demonstrate that if children do

not have a process available to model the action or relationships in a

given problem, the problem is much more difficult that if it can be

directly modeled. Certain types of problems are difficult to model.

For example, in the Change/Start Unknown problems (Table 2, problems 5

and 6), the initial quantity operated on to yield a given result is

unknown. To directly model the action in a Change problem requires

that there is an initial set to either increase or decrease. Therefore,

to model the action in the Start Unknown problems would require some sort

of trial and error in which one guessed at the size of 'the initial set

and then performed the specified transformation to check whether it pro-

duced the given result. Rosenthal and Resnick (1974) hypothesized that

children may use such a process. But recent data from Anick (in prepara-

tion) indicate that trial and error is almost never used. Consequently,

Start Unknown problems should be significantly more difficult than

problenis that can be modeled directly.

An analysis of the-relative difficulty of different types of word

problems indicates that problems that cannot be easily modeled are sig-

nificantly more difficult than those that can. The results of a study

by Riley et al. (in press) are summarized in Table 4. The Start Unknown

problems were found to be significantly more difficult than the other
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Table 4

Relative Difficulty of Word Problems

(Riley, Creeno, and Heller, in press)

Problem Type

Grade

1 2 3

Join/Result Unknown (1)a .87
b

1.00 1.00 1.00

Separate/Result Unknown (2) 1.00 1.00 1.00 1.00

Join/Change Unknown (3) .61 .56 1.00 1.00

Separate/Change Unknown (4) .91 .78 1.00 1.00

Join/Start Unknown (5) .09 .28 .80 .95

Separate/Start Unknown (6) .22 .39 .70 .80

Combine/Addition (7) 1.00 1.00 1.00 1.00

Combine/Subtraction (8) .22 .39 .70 1.00

Compare/Difference Unknown (9) .17 .28 .85 1.00

Compare/Difference Unknown (10) .04 .22 .75 1.00

Compare/Compared Quantity Unknown (11) .13 .17 .80 1.00

Compare/Compared Quantity Unknown (14) .17 .28 .90 .95

Compare/Referent Unknown (13) .17 .11 .65 .75

Compare/Referent Unknown (12) .00 .06 ,35 .75

a
Problem number in Table 2.

b
Proportion of children responding correctly.
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four change problems. Since subjects in the study had not been exposed

to the Matching strategy, all of the Compare problems were difficult

for them. The other problem that proved to be especially difficult

was the Combine/Part Unknown problem. Since no clear action can be

modeled in the Combine problem, these results are also consistent with

the hypothesized effect of problem structure.

Differences in the wording of problems, experimental protocols and

procedures, and student backgrounds all complicate the comparison of

different studies that examine problem difficulty. However, although

most studies have not found the clear differences reported by Riley et

al. (in press), other studies do support the conclusion that Start Un-

known problems are more difficult than other Change problems (Anick, in

preparation; Lindvall & Ibarra, 1979), and that Compare and Combine sub-

traction problems are relatively difficult to solve (Anick, in prepara-

tion; Gibb, 1956; Nesher, 1982; Schell & Burns, 1962; Shores & Underhill,

197). There is also relatively consistent evidence that Join/Change

Unknown problems are more difficult than Separaie problems (Gibb, 1956;

Hirstein, 1979; Lindvall & Ibarra, 1979; Rosenthal & Resnick, 1974;

Schell & Burns, 1962; Shores & Underhill, 1976; Steffe e't al., 1976).

Addition. Whereas children have multiple conceptioins Of subtrac-

tion, reflected in the different processes used to solve different prob-

:-

lems, they appear to have a reasonabliunified concept of addition.

Children appear to treat Join and Combine addition problems as though

they were equivalent. Not only are the same basic processes used for

both problems, but the same pattern of responses appears for both. The

similarity of responses for the two types of problems is illustrated by

.134
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..dhe results from Carpenter and Moser (1982), summarized in Table 5. These

a
results are from the September interviews of the same children reported

45n in Table 3, this time involving basic addition problems with sums
410.6

between 11 and 16 in which manipulative objects were not available.

Studies of problem difficulty support the conclusion that there

is little difference in children's solutions to Join and Combine addi-

tion problems (Grunau, 1978; Lindvall & Ibarra, 1979; Nesher, 1982;

Shores & Underhill, 1976; Steffe, 1970; Steffe & Johnson, 1971). In

most cases, performance was not markedly different On these two types

of items. At the kindergarten level, three of these studies (Grunau,

Lindvall and Ibarra, and Shores and Underhill) reporte4 slightly better

performance 04 the Combine problem than on the Join (2 values were .46

and .59, respectively, for Join and Collibine problems in Shores and Under-

hill; .55 and .63 in Grunau; and .47 and .54 in Lindvall and Ibarra).

At the first-grade level, Shores and Underhill and Steffe and Johnson

found nearly identical performance on the two types of addition verbal

problems. On problems with sums less than 10, 2 values ranged from .63

to .88 across these studies, indicating that first graders do well with

both kinds of addition problems. Steffe reported 2 values of .85 and

.77 for Join and Combine problems with first graders. Nesher found

similar results at the elementary level with 2. values of .89 and .75 for

Join and Combine problems.

Differences in performance do exist, however, between Join and

Combine addition problems and some of the other categories of addition

word problems. In fact, the Separate/Start Unknown and Compare addition

problems are significantly more difficult than Join or Combine problems

(see Table 4), because the structure of the Separate and Compare problems
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Table 5 (/

Combine and Join Addieion Problems

(Carpenter and Moser, 1982) a

Strategy
(Percent Responding)

Problem Percene Counting Counting On Counting On Derived Recalled

Grade Type , Correct All From First, From Larger- Fact Fact
_

1

2

3

Combine 50 52 3 3 1 1

Join 47 46 3 8 2 1

Combine 72 39 6 29 4
. .

Join 84 41 14 26 . 6
0

Combine 91 13 7 33 11

Join : 90 11 15 32 9

7

30

32

136
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- - - - - - - - - - -

are not directly modeled by the addition strategies children have available.

This lack af congruence between problem structure and available solution

strategies is not there in Join and Combine addition problems for which

the Counting All and Counting On strategies provide reasonable models.

Children appear to use the same basic processes to solve all types

of addition problems (Carpenter, Hiebert, & Moser, 1981); however, prob-

lem structure also influences children's solutions. The problems that

can beTeasonably modeled by available strategies are relatively easy.

,whereas those that cannot are significantly more difficult.

0.

DEVELOMENT OF ADDITION AND SUBTRACTION PROCESSES

Much of the early research on addition and subtraction focused on

4

factors affecting problem difficulty. This approach provided a rela-

tively static view of children's performance. Certain problems were

identified as being more difficult than others,,but generally no

attempt was made to describe the different levels of difficulty_in

terms of a developmental hierarchy, i.e., in which the acquisition of

ability to solve more difficult problems built upon the abilities used

to solve the easier problems.

A primary fodus of current research is to describe how addition

and subtraction concepts are acquired by ,children over time. This em-

Aasis reflects the influence of Piaget; however, while Fiaget's

development model focuses on children's limitations and misconceptions

at early stages of development, much of the current research describes

a sequence of development for addition and subtraction concepts wherein

perfectly valid solution processes are replaced by increasingly efficient

and abstract processes.

13
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Reasonably clear evidence has been found which indicates that there

is a level at which children can only solve addition and subtraction

problems by directly modeling with physical objects or fingers the ac-

tion or relationships described in the problem. At this level, children

cannot solve problems that cannot be directly modeled. Results for the

lowest grade levels reported in Tables 3, 4, and 5 proNiide compelling'

evidence for the existence of this level in children's acquisition of

addition and subtraction concepts and skills._ The great majority .of

the youngest children's responses were limited to direct modeling

strategies (Tables 3 and 5), and few of the younger children could

solve any problem that could not be directly modelee(Table 4).

Development of the more advanced levels of children's solution

processes proceeds along two dimensions: an increase in the level of

abstraction and an increase in the flexibility of strategy choices.

Level of Abstraction

Direct modeling. At the most primitive level of solving addition

'and subtraction problems, children completely' model the action or re-

lationships in the problem using physical objects or fingers. They

actually construct sets to represent all of the quantities described

in th- problems. The Counting All strategy is the addition strategy

used at this level, The parallel subtraction straEegies arIe Separating

From, Separating To, Adding On, and Mataing. ,

Counting sequences. At the next level, the external direct model-
..

'ing actions of this initial concrete level becone internalized &Ad ab-

stracted, allowing greater flexibility and efficiency. Children no

longer have to physically represent each of the quantities described in
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the problem. Instead they are able to focus on the counting sequence

itself. They realize that they do not have to actually construct the

sets or even go through the complete counting sequence to find the number

of elements in the union of two sets. They can start at a number re-

presenting one quantity and count on the number representing the other

quantity. Although children do use finger patterns in conjunction with

the Countdng On strategy, fingers are used in a very different sense than

at the-direct-modeling level. Children's eNplanations of their use of

Counting On suggest that these finger patterns do not,represent the

second set per se but are simply a tally of the number of steps counted

on. The abstraction of the subtraction strategies involves essentially

the same basic pattern of development, except that in the case of the

Separating strategies, a backward counting sequence is required.

The shift from complete modeling to use of counting strategies

depends upon the development of certain basic number concepts and count-

ing skills. Fuson (1982) has argued that counting on depends upon under-

stand4ng basic principles which involve (a) the relation between cardin-

ality and counting and (b) recognizing that each addend plays a double

role as both an addend and a.part of the sum. The counting 'skills rp-

quired include (a) the ability to begin a counting sequence at any

number, (b) thelability to maintain a,doubles count, and (c) in the

case of subtraction, the ability to count backwards,

-
The role of these concepts and skills in the development of the

Counting On strategy is discussed in detail in Fuson (1982). The

essential point is that counting strategies are not simply mechanical

techniques that children have learned to solve addition and subtraction

problems, but are conceptually based strategies which directly build

1
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upon the direct modeling strategies of the previous level. The abstrac-

tion and flexibility demonstrated by their application imply a deeper

understanding of number and addition and subtraction than was found at

the direct modeling level, but this understanding is based upon the con-

ceptualizations of the initial concrete actions. In other words, the

levels are not independent; they build on one another..

There is a clear parallel between the development of counting strate-

gies and the stages of development described by Piaget. In both cades,

operations initially performed with_external concrete actions are intern-

alized, providing for greater flexibility in their application.

Children cOntinue to use counting strategies for an extended period

of tine. Lankford (1974) found that as many as 36% of the seventh graders

he Interviewed continued to use counting strategies to arriye at some

1.asic addition and subtraction facts. Furthermore, children become so

a

proficient and quick in the use of the counting strategieseand so covert

in their use of fingers as tallying devices that it is often difficult

to distinguish between the use of a counting strategy and recall of a

basic number fact. However, relying on counting strategies when solving

more complex problems that require algorithms is inefficient and Provides

tQo much opportunity for miscalculation. Learning number facts at a

recall level remains a viable goal of the mathematics curriculum, and

most students eventually attain this level.

Use of number facts. There is no clearly distinct shift from count-

ing strategies to use of number facts. As the research'on difficulty of

different number facts indicated, some facts are learned and used

earlier than others; and there is a long period when children use a

140
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combination of number facts in conjunction with direct modeling of count-

ing strategies.

Not a great deal is known about how the use of counting strategies

evolves into or affects the larning of basic facts at the recall level.

Leutzinger (1979) investigated the effect of Counting On on the learning

of basic addition facts, and other studies have provided instruction on

a number of types of strategies, including counting strategies, to pro-

vide some structure to facilitate recall of basic facts. (Rithmell', 1979;

Swenson, 1949; Thiele, 1938; Thornton, 1978). Aside from finding that

such instruction has generally proved effective, it is still not clear'

exactly how recall of number facts related to children's counting strate-

gies.

The relation between counting strategies and learning basic facts

at the recall level is one issue. A second is the relation between

different facts. As noted earlier, children occasionally use known

facts to derive;tacts that they do not know at the recall level.

Carpenter (1980b) proposed that the use of derived strategies is not

limited to a select group of superior students. By the end of first

grade, over half of the students in the study reported by Carpenter and

Moser (1982) had used a derived strategy at least once, and by the middle

of second grade, over three-fourths of the students had done so. Children

who used derived strategies, however, did not use them consistently. For

the smaller numbers, only one child used a derived strategy more than

three times in the 12 problems administered. For the larger numbers,

only one first grader used more than three derived strategies. Four

second graders used more than three derived strategies at the September

interview and 12 did so in January.

14i
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It is tempting co assume that derived strategies are used during a

transitional level between the use of counting strategies and the routini-

zation of number facts. The data from Carpenter and Moser (1982)

suggested, however, that things are not that simple. So far, we have

been able to establish no clear connection between the use of derived

strategies and the levels of development of either modeling or counting

strategies. Derived strategies are occasionally used by children using

the most primitive. modeling and 'counting strategies..

Some studies have claimed success for explicit instruction in

strategies that can be used to derive unknown facts from known facts

(Swenson, 1949; Thiele, 1938; Thornton, 1978). But the role that de-

rived strategies play in the learning of basic facts at the recall level

is far from clear (Rathmell, 1979; 5teffe, 1979). Potentially, these

strategies provide a logical basis for relating facts that could facili-

tate recall. Furthermore, Brownell (1928) strongly argued that students

must be capable of the reasoning involved in derived strategies in order

to give meaning to memorized addition and subtraction combinAions.

Generalizabilitz of levels of abstraction. One of the questions

regarding the development of different levels of abstraction is whether

the use of more advanced strategies is broadly based across all problems

or whether children use advanced strategies on some problems but not on

others. Results of Carpenter and Moser (1982) suggested that children

use different patterns of increased abstraction for different strategies

and problems. The Counting Up From Given strategy is used much earlier

and more frequently than the Counting Down From strategies. For the

Separating subtraction problem, no more than 15% of the children used the

,



132

Counting Down From strategy in any interview. The Counting Up From Given

strategy, on the other hand, accounted for as many as 50% of the responses

to the Join/Change Unknown problem. In fact, it appears that some children

may never use a Counting Down From strategy.

There does se.em to be a relation between the use of Counting On

strategies for addition and the Counting Up From Given strategyvfor sub-

traction. Many children appear to see them as essentially the same strategy.

A number.of children when asked to'explain their uSe of the Counting'Up

From Given strategy said that they did the same thing that they had done

on the previous problem, which was an addition problem that they solved

by counting on.

Choice of Strategy

The second dimension along which development occurs is in the flexi-

bility in choice of strategy. At first, the only problems that young

children can solve are those for which the action or relationships des-

cribed in the problem can be directly modeled. By the second or third

grade, however, many children are able to use strategies that are not

entirely consistent with the structure of the problem (see Tables 3 and

4).

As with the, shift to more abstract counting strategies, children's

flexibility in choice of strategy is not consistent over problems.

(,h1laren soon abandoned the somewhat complicated Matching strategy for

the Compare problem', but were much less flexible in their choice of

strategy for the Separate and,Join problems (see Table 3). In fact,

even though children were much more successful in appiying Counting Up

1
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-

From Given than they were with Counting Down From strategies, fewer than

15% ever used Counting Up From Given to solve Separating From problems.

Flexibility in the choice of strategy also affects children's

ability to solve numerical open sentence problems. Young children tend

to use a Separating From strategy to solve problems of,the form a - b =

and the Counting Up From Given strategy to solve problems of the form

a .4. 0= c (Blume, 1981). Woods et al. (1975) and Groen and Poll (1973)

suggested that the increasing flexibility to choose between strategies is.
,

also reflected in the choice of strategy for solving numerical subtrac-

tion problems. They presented response latency data that they argue is

best explained by the Choice strategy, which involves choosing either

a Counting Up From Given or Counting Down From strategy, depending on

which requires fewer steps. The support for the widespread use of such

a strategy has not been uniformly consistent. Although it does seem to

present the best fit with the data from response latency studies, Blume

(1981) found little evidence of such a strategy, using clinical inter-

views. fntuitively, it would seem that children would use such a

strategy with problems with only a few steps involved (e.g., 11 - 3,

or 11 - 9), but would be less likely in situations where the choice was

not as clear (e.g., 12 - 5). One also has to be cautious in interpreting

the data in support of the Choice strategy. Some of the children hypothe-

sized to be using the Choice strategy were in the fourth grade. Most

children of this age have memorized the basic facts used in these

studies. Consequently, the latency data may reflect something other

than the overt use of counting strategies.
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To have a completely developed concept of subtraction, chilcren

should recognize the equivalence of the different strategies. This knowl-

edge should make the Choice strategy possible. But the evidence suggests

that many children zvoid Counting Down From strategies. Consequently,

some caution should be exercised in assuming widespread use of the

Choice strategy over a broad class of problems.

Relationship Between Dimensions of Development

The previous section of this paper described the increase in flexi-

bility and abstraction that occurs over time in children's processes

for solving addition and subtraction problems. An important question

to ask is whether certain levels of abstraction require a more flexible

choice of strategy or vice versa. Attempting to characterize the rela-

tionship between these two dimensions into which children's strategies

evolve is complicated b; the fact that children do not consistently use

their optimal strategies. For example, throughout first grade, children

in Carpenter and Moser's (1982) study solved Join/Change Unknown problems

using counting strategies rather than direct modeling strategies almost

twice as often when cubes were not available as when they were. Ia

fact, direct modeling strategies were used more frequently for problems

with smaller numbers than for problems with larger numbers.

It appears that there is a shift in the level of abstraction of

children's solution processes before children begin to recognize the

equivalende of different subtraction strategies. In other words, the

first evidence of growth is that children begin to use counting strate-

gies that paallel the action in a problem instead of completely modeling
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the action. The results summarized iu Table 6 are taken from the June

interviews. Number combinations involved the difference of a two-digit

and a one-digit number fact, and manipulatives were not provided. Almost

half Lf the first-grade children used a counting strategy rather than

completely modeled the problem. On the other hand, most children used

either a modeling or counting strategy that directly rel.resented the

action in the problem.

The relationship between children's understanding of the equiva-

lence of different additional and subtraction strategies and their

ability to use either derived or recalled number facts is a bit more

difficult to establish. Many derived number facts are based on under-

standing relationships between addition and subtraction and suggest an

-r
understanding of the equivalence of different subtraction strategies.

Similarly, for many children, recall of subtraction number facts is

based on their knowledge of addition facts. On the other hand, many

children learn some number facts and generate derived facts before they

give any evidence of being able to use modeling or counting strategies

that are not consistent with the structure of the problsm.

In fact, the ability of some children to solve problems that cannot

be directly modeled may be based on their ability to relate the problem

to known number facts rather than to an understanding of tite relationships

in the problem that would allow them to choose different counting or model-

ing strategies. Many children do not solve problems that cannot be

readily modeled until they would be expected to have learned the related

number facts. HoWever, although Anick (in preparation) found a high in-

cidence of recall in children's solutions to problems that could not

116



Table 6

Results for Selected Separate and Join Subtraction Problems

(Carpenter and Moser, 1982)

PrOblem Type

Percent
Correct

Strategy

(Percent Responding)

Subtractive Additive

Derived/Recalled
Number FactSeparating .

Counting
Down From

Adding
On

Counting Up
From Given

Separate/Result Unknown

Join/Change Unknown

45

61

23 ,

1

14

0

1

14

8

43

15

13

147 148
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be directly modeled, she also found many responses that were based on

counting strategies.This suggests that even the problems that cannot

be directly modeled are not just solved at an abstract numerical level.

Children can solve these problems by understanding how the action or

relationships in the problems are related to the counting processes that

represent the diffe'rent actions or relationships. How Phis may occur is

the topic of the next section of this paper.

A Model of Verbal Problem Solving

Several models have been proposed which describe stages for solving

addition and subtraction problems and which hypothesize knoWledge

structures sufficient to account for the behavior in these stages.

Briars and Larkin (unpublished) and Riley et al. (in press) have

developed computer simulation models to solve addition and subtraction

word problems that provide a very similar analysis of the basic knowledge

at each stage of problem solving.

Riley et al. identified three basic kinds of knowledge involved

in problem sOlving: (a) problem schemata which are used to represent

the problem situation, (b) action scheiata which, at the most global

level, essentially correspond to the solution processes described

pearlier, and (c) strategic knowledge for planning solutions to problems.

Based on the results summarized in Table 4, Riley et al. identified

the levels of skill for solving Change, Combine, and Compare problems,

and a computer simulation model was constructed for each level.

For Change problems, Model 1 is limited to external representations

of problem_situations using physical objects. Model 1 relies on Counting
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All and Separating strategies. It cannot even use the Adding On strategy,

since it has no way to keep track of set subset relationships.

The major advance of Model 2 over Model 1 is hat it includes a

schema which makes it possible to keep a mental record of the role of

each piece of data in the problem.P This allows Model 2 to solve Change

Unknown problems (see Table 2, problem 3). Model 2 is also able to use

Counting On procedures. Model 2 is limited to direct representation of

problem action and is unable to solve Start Unknown problems (see Table 2,

problems 5 and 6) because it is unable to represent the initial set.

Both Model 1 and Model 2 are limited to direct representation of

problem structure. Model 3 includes a schema for representing part-whole

relations that allows it to proceed in a top-down direction so as to con-

struct a representation of the relationships between all the pieces of

information in the problem before solving it. This frees the model from

relying on solutions that directly represent the action in the problem.

Model 3 can solve all six Change problems.

Similar models have been proposed for Combine and Compare problems,

although computer simulations have not yet been implemented (Riley et al.,

in press).

The simulaticin models developed by Riley et al. and Briars and Larkin

generate solutions to problems that are generally consistent with the way

in which children solve problems. That is, their predicted patterns

of both problem difficulty and solution strategies match the results of

empirical studies of addition and subtraction. This suggests that the

constructs upon which the models are based are sufficient to explain

how children at differeLt levels solve addition and subtraction problems.
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Specifically, it implies that a part-whole schema is sufficient to acc

for children's ability to solve the more difficult addition and subtrac-

tion problems.

The fact that the models are sufficient to explain children's behavior

does not mean that children necessarily use part-whole relationships to

solve the more difficult addition and subtraction problems. Alterna-

tive explanations may also account for children's performance. For

example, solutions to Start Unknown problems may be based on an under-

standing of the inverse relationship between addition and subtraction.

So far there has been no attempt to systematically generate and test

alternative models of children's behavior. Until that has been done,

some caution should be exercised in drawing any firm conclusions about

the mental operations involved in children's solutions. At this time,

some sort of part-whole schema appears to be one of the most plausible

explanations, but perhaps not the only one. That an understanding of

part-whole relationships can provide a basis for solving a wide range

of addition and subtraction problems is sUpported by the fact that expli-

cit instruction on ways of representing part-whole relationships has met

with some success in teaching addition and subtraction problem-solving

skills (Kouba & Moser, 1979). Ak

It should also be observed that the simulation models are only a

reasonable first approximation for representing children's behavior.

There is a great deal that they either oversimplify or do not explain.

For example, the 'rrio3dels are limited to operations on seta and fail to

take into account children's knowledge of number facts. There is also

a great deal less uniformity in children;a behavior than is implied by

15i
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- .

the models. .Children are not consistent in their use of strategies
..

(Blume, 1981; CarpenteHiebert, & Moser, 1981). Siegler and Robinson

(1981) have argued that it is not sufficient to build a model of how'

..,

n\

children may apply a particular strategy; it is also necessary to acou t

for how they choose between alternative strategies.

n

-
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DISCUSSION

Research on how children solve basic addition and subtraction prob-

lems has come a long way in the last few years. A framework for charac-

terizing prdblems has evolved,that helps to understand how children

solve different problems and why certain problems are more difficult

than others. The strategies that children use to solve addition and
*

subtraction problems have been clearly documented in-such a way as to

make it possible to identify major stages in the acquisition of addi-
,

tion and subtraction, especially at the early levels. Very recently,

models have been constructed that go a long way in characterizing i -

ternal cognitive processes which may account for children's behavior.

There is, however, a great deal that s yet unknown about how addi-

tion and subtraction concepts and skills are acquired. One of the basic

assumptions of much of the research and theory-building in the area is

that the processes children use to solve an addition or subtraction prob-

lem are intrinsically related to the structure of the problem. There

is support for this assumption in that gemarally consistent results have

been reported over a variety of instructional programs and within a

number of different population groups.

The effects of instruction are still unclear, however, especially

at the more advanced levels of children's acquisition of addition and

subtraction. The specific strategies that children use may be influenced

by instruction as children's use of the Matching strategy clearly shows.

Hatano (1982) suggested that JF.panese children may not rely predominantly

on the counting strategies that have been so prevalent in American re-

search.
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There is also very little known about the-transition fr..m the in-

formal modeling and counting strategies that children appear to invent

themseives to the formal algorithms and memorized timber facts that

children learn as part of the mathematics curriculum. Some evidence

suggests that at first children do not see any connection between their

informal modeling and counting strategies and many of the foraml skills

they learn in their mathematics classes (Carpenter, Moser, &

1981). How or whether this connection is made is an important issue that

so far has received relatively little attention in the growing body of

research on addition and subtraction. .

There is clear evidence that young children's responses to addition

and subtraction problems is based on the semantic structure of the

problem, but little is known regarding how children extract the meaning

from the particular wording of different problems. Children's solutions

clearly are not based exclusively on semantic structure.

Several recent investigations demonstrate the effect on performance

of differences in wording of problems with the same semantic structure.

In a study of kindergarten and first-grade children, Hudson (1980) pro-

duced significant differences in performance on a basic subtraction

problem which asked children to compare the number of birds in a picture

to the number of worms. In one case, children were asked how many more

birds there were than worms. The problem was significantly easier, how-

ever, when children were asked the following question: "Each of these

birds wants to eat.a worm. How many of them will not get a worm?"

Similar differences ha;ie been found for different wordings of Join/Change

Unknown problems (Carpenter, Hiebert, & Moser, 1981; Riley et al., in

press).
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These studies indicate that the semantic structure of addition and

subtraction problems does not completely determine children's performance.

It is also necessary to be cautious in drawing conclusions about children's

processing from specific studieG, especially when difficulty level is

used as the criterion measure. The fact that alternative versions of

problems with the same semantic structure produce significant differences

in performance does not threaten the general conclusions regarding young

children's attention to problem structure. Although the difficulty levels

are affected by changes in wording or syntax, the processes that children

use remain relatively consistent. It appears that some wordings make

the semantic structure of problems more transparent than others, but

beyond that the processes used to extract meaning from the verbal state-

ments of the problems remain something of.a black box, which has not been

the focus in most of the current research and theory.

Another limitation of most current research on addition and sub-

traction is that it does not deal with the question of individual dif-

ferences. Most of the theory at least tacitly assumes that children go

through essentially the same stages in acquiring addition and subtrac-

tion concepts and skills. Clearly, there are differences between children

within a given grade, but generally these differences have been attributed

to individual children being at different levels in acquiring basic

addition and subtraction concepts and skills. So far, this assumption

has not been seriously examined, and little is known about whether there

are fundamentally different methods that individual children use to

acquire addition and subtraction concepts and skills.
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One of the reasons for the recent progress in understanding how

children learn to add and subtract is the clear focus of much of the

current research on a well defined domain. This research chould be

criticized, however, for being too narrowly focused. Siegler and Robinson

(1981) argued for the importance of,building large scale, integrative

models that specify how performance in addition and subtraction is

related to performance in other basil content domains. They provided

one example of such a model. Fuson (1982) and Steffe, Thompson, and

Richards (1982) have also been attempting to examine addition and sub-

traction within a larger context. They have focused on the relation

between addition and subtraction and the development of counting skills.

It has also'been proposed'that the development of specific addition

and subtraction processes may depend on the development of central in-

formation processing capacities (Case, 1982). Research by Romberg and

Collis (1980) provided some support for this conclusion, but a great

deal must still be done to really understand how information processing

capacity affects the addition and subtraction processes children are

capable of using.

There is certainly a great deal left to be explained about how

children learn to add and subtract. However, these details are insig-

nificant compared to the disparity between what is already known about

how,children solve addition and subtraction problems and current pro-

grams of instruction (Carpenter, 1981). There is a compelling need

for research that attempts to establish how this knowledge already

accumulated can be applied to design instruction.
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