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Abstract

- 3
Design Effects and the Analysis of Survey Data

by
Ralph E. Folsom

. and
Rick L. Williams

b4

The National Assessment of Educational Progress (NAEP),  like most
large national surveys, employs a complex stratified multistage unequal
probability sample. When properly accounted for in the analysis, the NAEP
sample design provides a rigorous justification for extending survey
results to the entire U.S. student target population. This ‘paper reviews

recent developments in the analysis of data from complex surveys which -

provide a straightforward method for taking account of the sample design
through proper estimation of subpopulation estimates and their covariance
matrix. Relationships among subpopulations can then be evaluated via large
-sample Wald statistics assumed to be asymptotically distributed as central
chi-squared random variables. ’

While these methods provide a mechanism for analyzing NAEP data, the
computer software required to properly estimate sample design-based co-
variance matrices is not generally available to NAEP data users. Recent
literature has suggested methods for adjusting test statistics obtained
from standard statistical methods which- implicitly”assume simple random
sampling from an infinite "population. These so called design effect
adjustments are reviewed and. several new decompositions obtained which

display the effects of multistage clusterlng, stratification and unequal

weighting on the covariance matrix.

Finally, an empirical comparison is presented of asymptotically valid
sample design-based chi-squared tests versus analogous simple random samp-

ling tests and design effect adjusted tests. These comparisons are made
for linear contrasts of domain means and proportions as well as for linear

models fitted to the domain estimates via weighted least squares. The data
were taken from the NAEP 1977-78 Mathematics assessment for 9-, 13- and
17-year-olds. For these data, the analyses indicate that the design effect
type adjustments of standard test statistics are not stable and are gener-
ally too conservative to be of practical value.
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1. INTRODUCTION

The .National Assessment data base provides a wealth of information on

a -

the way student ability to correctly aqswergNAEP test items relates to-

[ 4

student back;round and schoolJeHQironment variables. When properly taken
account of in the analysis, the comblex probability sample design used to
collect NAEP data provides a rigorous justification for extei@ing su?vey
results to the entire U.S.  student population.A Recent developments in the
analysis of categorical data from coﬁplex surveys provide a straight for-
ward methodology for taking account of sample design through the proper
estimaﬁion of subpopulatiop‘proportions (domain P-val&es) and their cova;iF
ance ma£rices [Koch, Freeman, and Freeman (1975)}. These vectors of sub-
population ,P-values are then fit to 1ipear models in the domain defining
‘'variables using the sample design based covariance matrix. to calculate
weighted 1east»\squares fits. Wald statistics that take the form of
Hotelling's multivariate T2 staﬁistic are then used to test for the good-
ness of fit of the model and to subsequenply £est for the significance of
model effec£s.‘ The following‘chapter surveying theoretical results begins
with a 'section on .the‘ Wald statistic/weightéd least ’squareg theory for
ﬁesﬁing hypotheses about NAEPVdomain p-values.

While the weighted least squares methodology provides ; straight
forward solution to the NAEP p-value analysis problem, the computer soft-
ware required to properly eétimate sample design based covariance matrices
is not generally available to .NAEP data users. Section A2.2 summarizes

methods explored by Fellegi (1980) and Rao and Scott (1981) for adjusting

test statistics derived from standard statistical software packages. The

\

i
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Fgc

Aruitoxt provided by Eic:
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standard statistical software:paékages émploy'either implicitly or expli-

-
i

citly covariance matrix calculations appropriate for simple random samples.

The adjustments proposed :by Fellegi, Rao and Scott involve dividing the

standard chi-squared statistic by a genéfalized design effect (Deff) summa-

S

:

i. -

.ri;ing the ratio of ;ample design based P-value variances and covariances
divided by their respective simple” random sampling variances and covari-
. énces.' To display the sample design effects of‘multi-Stage clustering,
stratification, and unequal weighting on the generalized Deff, akdesign

_ w 4
effect model identity is developed in Section 2.3 for the P-value co-

variance matrix and for linear contrasts among sample P-values. The proper

sample -design based inference for NAEP balanced fits obtained as dummy

-
“

4

variable regression coefficients is presented in Section 2.4 along with the

L}

analogous generalized Deff adjustment. Since much of the .descriptive

analysis of NAEP data utilizes subpopulation averages across several indi-

vidual item P-values, the proper covariance matrix estimation and gene-

, ralized Deff adjustment methods for .such statistics are explored in Sec-

tion 2.5. "
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2. THEORETICAL RESULTS

[y

2.1 The Wald Statistic/Weighteﬁ-LeaSt-quare Theory

~Td illustrate the weighted least-squares approach to the analysis of
NAEP domain P-values, consider asingle questionnaireaigem with respdnse
éategories 1abe11ed r ; 1,2,.!.,R. ‘Suppose furthe; that there are D sub-
population doméégs 6f~ipterest 1abe¥leq d =1,2,...,D. These domains can
be viewed as the student subpopulations formed by a cfoss-classifibatién of
background variables including Racé, Sex, Region, Type of Community, and
Parents Educa;ion. Let Xd(t) depiét aosubpopulation indicatqr variable
taking the value 1 when student t belongs to domain d and zero otherwise;
Similarly, let Yr(t) den?te‘% response indicator variable taking the value
1 when student t giveé‘response r to the specified item and zero otherwise.
With the U.S. student population size for a particular age class deﬁ;ted by

M, the population count of domain d members giving response r is

Y(dr) = I X, (t) Y _(v)
iﬁkk_ | t=1 d r

The U.S. student population size for subpopualtion d is specified as -

&

M
X(d) = =2 Xd(t)
t=1

The prbportion of dbm;in d members giving response r is then defined as the
ratio

. P(dr). = Y(dr)/X(d)
Thé NAEP sample estimates for these student subbopulatién response propor-

tions (domain P-values) have ‘the form




Y

2
m

~ m .
P(dr) = [ 2 W(k) X;(R) Y (k)] = [ 2 W(k) X (k)]
: k=1 . E k=1

where m denotes the number of sample students and W(k) is a Sample.weightq

incorporating the reciprocal of the sample student k inclusion probability
n(k) and various édjuétments for samplg -school and student nonresporse.

To simplify the notatibn, consider the’column vector é(d) of (R-1)
subpoﬁulation d" response proportions cqﬂsiSting of the first (R-1) esti-
mates defineq above. Stacking these domaia specific vectors on top of one

~

another, a single column vector P with D(R-1) elements is produced. Let

{V (DES) denote the D(R 1) by D(R- 1) estimated covariance matrix ‘derived for

&)

P accordlng to one of the ‘thecee asympotically equlvalent methods of vari-

N

ance estlmgtlon for nonlinear statistics from complex probablllty samples,
namely the Taylor Series linearization (TbL) method, balanced repeated
replication (BRR), and jackknife replication (JKR). Krewski®and Rao (1978)
have established limiting conditions for the asymptotic equivalence of
these covariance matrix estimation methods. Ancentrai limit theoldh esta-
blishiné conditions fqr”éhe asympzotic normality of studentized P-values
t(dr) = [P(dr) - B(AD)] / [Vppo(dr))®
is also presénted by Krewski and Rao when any'bf the three linearization

“)

methods is used to approximate the samplexdesign based variance VDES(dr)

for the ratio statistic P(dr). Such a central limit theorem provides the

~

theoretical -justification for assuming that the vector P of estimated-

domain P-values will be distributed approximately as a D(R-1)- variate
normal vector with mean P and covariénce matrix YP(DES);'

Assuming that the conditions for asymp®otic normality apply, wé}ghted
1easp“squares methods following Grizzle, Starmer, and Koch (1969) can be

v
<

<
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used to fit 1inear-modersvto functions of the estimated.domain P-yalues.

9

Let G(P) denote a vector ofi A continuous, lirearly independent functions

with partial derivatives thf§rgh second order. Define the A by D(R-1)
. matrix of partial derivatives w&th row a denoted by
H (D) =

36_/8p = (3C,/3Py,

£y 96, /3B b 13)-

~

The matrix of these partial derivatives is evaluated at the estimated P
values to define

- B ®

x>

Consider, for example, the logit function where

6,(&) = log, [P,/(1-2)]

with a = 1,2,...D indexing the D domain P-values associated with the typical

-
-

R=2 (correct-incorrect) item response breakdown. For this logistic function

B = (o,o,...,1/Pa(1-Pa), .. . 0)

Now, with é = g(é) denoting the sample eétimate for the.vector of A func-
tions, one notes that é is asymptotically A-variate normal with mean vector
G = G(P) and asymptotic covariance matrix o

v, (DES) = [H Y,(DES) H'].
where HT dehétes the transpose of H. A consistent estimate for YG(DES) is

A S oy
Vo (DES) = °[H U,(DES) H'].

<
One can now proceed to fit a general linear model of the fora

/ -

6@ = XB

where the columns of X specify selected main effect and interaction con-

trasts in terms of the domain defining Race, Sex, Type of Community and

©




Parents Education variables. The'/ésymptotically_ efficient BAN (Best

Asymptotically Normal) estimator for the coefficient vector ¢] is then

~

T

~ _ T -1 -1 ~ .1
B = [X Y (ES)” X]7 X Y (DES)” g

\

with asymptotic covariance matrix

) ~ T - -1 _’1
S Vo(DES) = [X' Y (DES)” X]
! Totest the fit of the model, that is Ho: G(P) = X B, the residual quadra-
7 T tde form . e “ '
2/."" ~ ~ T ~ -1 ~ -~ N
TED = G-Xp YO (©- X P ,

o

2 2 : : 2
T ..statistic. Asymptotically. T (Fit) is distributed as Chi-Square (¥ )

with degreesvof freedom df = rank of X under the null h§p;thesis. For
gubésympEOtic situations where the number " of replicates used.io form the
covariance matrix estimator does not substantially exceed the rank of X, a
-transformation of T2 tc Snedecor's. F may Bé appropriate. Thisbleads‘to
" F{df, L -df +1) = (L - df + 1) Tz(rit)/df(L)
where L is the number of degrees of freedom suggested by the.quad}atit form
used to estimaﬁe iP(Dﬁg) and df i§ the rank of X. This Grénsformed Wald
Statistic is comparéd against critical -values of Snedecor's F with df

" numerator and L - df + 1 denominator degrees of freedom.

Failing to reject Ho: _G(P) = X B, one can entertain linear hypotheses

of the form Ho: C B = ¢, with é denoting a null vector. The associated .

-«

Wald Statistic is ) "

m? T - T,-! -
T (G = (CB) [CV(DES) C'] (CB)

B

which. is asymptotically %2 (rank of C) -under the pull hypothesis. The F

transformed alternative

2

F(e, L-c+1) = (L-c+1) TQ(Q)/CL

is a Wald (1943) statistic which has the form of Hotelling's multivariate’

‘

o
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. ‘to the multiple subpopulation or domain problem by allowing P to represent;.

<
¢

is compared with critical values of Senedecor's F with ¢ = rank of C numera-
. ' o X 6

tor degrees of freedom and (L - ¢ + 1) denominator degrees of freedom. In

the next section the approximate methods of Rao and Scott (1979) based on
simple random sampling covariance matrices VP(SRS) and generalized design

effect (deff) adjustments are explored.

2.2 Generalized Design Effect Methods

Rao and Scott (1981) considered the asymptotic distribution Jf Wald -

Ftatistics based on SRS covariance matrices for teStiqg general hypotheses..

of the form

Ho: Ga(g) = 0, a=1,2,....A
where P can be vieQed as the nétional response‘distribﬁtion for a Specified
NAEP exercise. This vector of ‘universe 1eve1vproportions cnprespiuts to
the P(d) domain specific iﬁémvfésbonée'proportions introduced earlier with

P(dr) denoting the domain or subpquiation proportion selecting the coded

<
'

response Qpﬂfdﬁ r = 1,2,.:.,(R-1).. Since ‘the P(dr) sum to one over all R

mutvalily exclusive respdnse levels, only.(quj of the parameters is required

" to fully characterize the response: distribution. While Rao and Scott's

res@lté‘fdcus on the single population pfoblem, they can be extended simply

2
]

the extended vector

T T T T
PP=<P (1), ..., R@,...,BD?>

[

o

Letting .
N H_(B) = 3G, (B)/3E
= [96_(R)/3B(11), .'. . . . . .; 3G, (E)/3R(D,R-1)]

denote the vector of partial derivatives of -Ga(g): with respect to the
D(R-1) elements of P, the population of-response proportions, then

=7=




A

P S
x2 (6) = G [HV(SRS) H'I G
SRS P .

is the SRS based Wald statistic for testiﬁg the hypothesis .that the vector

~

of A functions QT = [Gl(g), e, GA(g)] are simultaneously zero with H

denoting the matrix of all partial derivatives H(P) evaluated ;t P =
Interest in the SRS based xz'stgtistig stems from the simple computational
form for~§P(SRS). The simple random sampling covafiance matrix for.é is
approximated as a block diagonal matrix with (R-1) by (R-1) blocks of the

form

V,(SRS) = {diag [B(d)] - B(¢) B (d)}/m(d)

Y >

where m(d) is the doﬁain_d sample size and diag [é(d)] is the.(R-l) by
(R-1) diagonal matrix with diagonal elements E(dr). This SRS- based qovari-
ance &atfix is formed simply from the weighted domain P-values and the
observed’domain‘sample sizes. For the typical NAEP analysis of correct

responses with R = 2, -

V,(SRS) = B(d) [1-B(d))/m(d)

and GP(SRS) is a D sy D diagonal matrix with the Gd(SRS) quantities on t?e
diagonal. Under the null hypothesis Ho: G(P) = &,
26) T 3 5
o s Tak et
wheFé tﬁb"éés are the eigenvalues of
[H V,(SRS) H')™ [H v, (0ES) H']
1 > . .(. > 6; > 0, the xza's are independent X% (single degree of freedom
chi-squared) random variables and 6oa is the value of‘éa.gnder Ho .-
Rab,and Scott point out that the 6;3 can be interpreted as design

~

~effects of linear combinations La of the components of H P. Letting %a

.2

¢

-




Lo

denote the a-th eigenvalue of

a

-1
' \ : Vp(SRS)™ Vp(DES)

then the & eigenvalues can be bounded by the A eigenvalues as follows: 5
o
Aa 2 6a - AD(R-I)
for a =1, ..., A, since the La are particular linear combinations of the

P(dr)’s. Using a result in Anderson and Das Gupta (1963), Rao and Scott

establish more precise boundsvfor the Ga in terms of the"Aa;'namely,

Aa 2 6a 2 AD(R-I)-A+a )

This inequality is useful for specifying an alternative to the following‘,x2

. .

test statistic proposed by Rao—and~Scott(R&S); = -

|
-y

2 = 2 s
Xgss (&) = Xsps (€) /O

<

1

A : ' ‘ e
2 : .
z [603/66'] Xa '
a=1

where & denotes an estimate of the mean eigenvalue S, with\,m\the}éa depict-

&}

ing eigenvalues of

*

A A ‘T-l A A A-T
[H VP(SRS) H'] [H VP(DES) H']
Since the estimation of the 6a and associated & require knowledge of the

full design based covariance matrix, there is no real utility in using this
approximation when one Could just as well-use the appropriate design based

‘Wald statistic. Using the sharp bounds for Ba’ one notes that & 6 lies

a

between the average of the A 1argest Aa's and the mean of th% A smallest

£

.Aa's. This implies that & ‘should get close to A  as the number of G,

functions (A) approaches D(R-l). With A = D(R-1) independent G& functions

such that H is nonsingular it is clear that 6§, = A, If thesA 's show

B

little variation, so that the mean of the A largest and A smallest A's are

»
~ A ~
.

similar, then one can ‘also expect that & = A. The advantage of using A,

El

- 15
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instead of 6 to adjust®Chi-Square X2

~

SRS((_;) is the ease of estimating A, .

We note that

Vp(SRS) = BIK-DIAG [{dieg [B(d)] - B(d) B(d) }/m(d)]

is block diagonal with blocks comprised of the domain specific multinomial

covariance matrices VP(d)(SRS).' Therefore, extending results of Rao and

Scott one .obtains

A, = . trace {Vo(SRS)  V,(DES)} / D(R-1) ‘ :
D - ~ | N -1~ .
T E trace V) (SRS) | Vp(qy (PES) / D(R-D).
) D R-1 . - _
= $ £ V(dr|DES) m(d) / P(dr) D(R-1)
. d=1 r=1 ) .
' D R-1° . -
= 5 5 [1-P(dr)] DEFF (dr) / D(R-1)
d=1 r=1 ‘ =
where .
BEFF(dr)’ = ‘6 (dr|DES) / {ﬁ(dr) [1-§(dr)] / m(d)}

is the design effect for the‘celi proportion P(dr).

. Returning to the NAEP correct-incorrect response pattern (R=2), A,
simplifies to

o A _—
. A, = 3 DEFF (dr) / D,
' : d=1

-~

“the mean of the domain specific design effects. This result follows from -

the'diagonallform for

Vp(SRS)T = diag [m(d)/{B(d) [1-B(d)]}]

~

In either case, the generalized design effect A, is a simple function of A

9

domain P-value design effects. When the design effects for subpopulation
P-values, P(dr), are published then A, can be formed without knowledge of

1(3"

o
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the design based covariances between response. porportions P(dr) and P(d’r’)
from different subpopulations (d#d;). In the following chapter, numerical

comparisons' of the adjusted SRS based X2 statistics’

2 . v2 \

and the agsociated design based X%Es(g) Wald statistics ‘are explored.
To .model the effects of sample design features like stratification
clustering and'unequalbweighting on the ngst) statistic, one can develop

<

a model for the generalized deéign effect matrix
-1 ’
VP(S$S) VP(DES) e
Consider, for example, a two-stage design with S primary frame units (PFU's),
say schools, with M(s) secondary units (stﬁdents) in the s-th PFU such
s | ~ "
that X M(s) = M. A with replacement selection of n primary sampling units
s=1
“ (PSU's) is first made with single draw probdbilities ¢(s) = [M(s)/M].
A subsequent with replacement simple random sample of m second stage units
is then drawn from each sample PSU. For a single ugiversal domain, Rao and
Scott display the following partitioning for
. q . T’ |
2 6(s) (B, - B)(B, - B) /um

VP(DES)
s=1

VP(SRS) + (m-1)

= VP(SRS) [T + (m=-1)R]

where ¢(s) = M(s)/M is the fraction of all students who attend school s;
ey | » o
ES = [Ps(l), c e, ?S(R 1)]

t

is the vector of (R-1) response option proportions for students in school s,

and
o S O |
R = {diag (P) - PP} I ¢(s)(Bg - RI(Bg - B)'
s=1

= \

-

_1>1' 1 7 B .




is the matrix analbgue of the intra-cluster correlation coefficient with P
denoting the universe level vector of (R-1) response option proportions.

With this partitioning one can show that the eigenvalues of

VP(SRS)-IVP(DES) [I + (m-1)R]
have the form

A,
a

[1+ (mfl) p,]
where P, is the a-th largest eigehyalue of the intracluster corrélation
matrix R. Rao and Scott call these P, quantities generalized measures of

homogeneity, analogous to the intracluster correlation p. For the simple

goodness-of-fit hypothesis Ho: P = EO , the simplé random sample (SRS) x2

can be written as

\
K

(R-1) .
2 ¢ - [ -

a=1 -

where the xg are singie degree of freedom central Chi-square variables.
For a portable value of P, useful for modeling A, = [1+(m-1)p ] in compar-

able samples with diffefing cluster sizes m, one could use

~

(A.=1)/(m-1)

R-1 ~ ~
[{ 2 [1-P(r)]DEFF(r)/(R-1)}-1]/(m-1).

r=1

An extension of this séif-weighting, two stage, with replacement model for .

A, to a NAEP type design with effects for unequal weighting, stratifica-

tion, and clustering is presented in the following section. These results
are used to display the effect of sample design features on SRS based Wald
Statistics for testing the fit of linear models

}!6: G(E) = XB;

18
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‘and lineat hypotheses regarding ‘the model parameters f; that is:

°

4

Ho: Cg = ¢.

N

hN
~

2.3 Design Effect Models for P-Value Covariance Matrices = ° N

To develop a désign efgect model for the covariance matrix of a vector
P of D National Assessmeﬂt domain P-values; e consider a three stage
design with n county sized pr;yary sampling units selected from a'universg
of N such,_tunits where the random frequency of selection for primary frgme
uﬂit PFU(B) is n(L). Tpesgrn(z) are akin to the A(2) random selection
indicators féf without replacement samples where‘A(B) is . when PFU(2)
belongs to the sample and zero~otherwiSe. The n(zj are allowed to assume
values greater than 1 so as to accomodéte so-called self-representing or
certainty units. Following Chromy (1979), one can use these random selec-
tion frequencies to characterize a_class of probability propgrtional to
size (PPS) selection échemes including PPS with replaceﬁent, PPS without

replatément, and PPS minimum replacement (PMR). The PPS nature of these

selection schemes implies that

@

E{n(2)} = Ea(2) = ns(2)/s(+)

~ N 06 (2)

where s(£) is a size measure knowﬂ for each primary frame unit PFU(L) and

N
s(+) = z s(2)
: 2=1
is the univere level aggreé%te size measure. For the NAEP design, the -
size measure s(2) is typically the estimated PFU enrollment for the 13-year-

old target, -population. For with replacement selections, the n(2) are. .

multinomial frequencies with

v

19




: E{n(£)n(2)} = n(a-1)4(2)(2")

when 2#2'. 'For without replacement PPS designs n(£) = A(i); the zero-one

selection indicator, and

E{a(2)n(£')} = n(2L')

\

with n(22') denoting the joint inclusion probability for the frame units

{ @ .

'PFU(R) and PFU(L'). For Chromy's probability»hinimum replacement (PMR)

design
In(2)-En(2)|=In(2)-n¢(2)] < 1.

Specifically, for PMR designs

Pr{n(2)

Int[n$(2)]+1} = Frac [n¢(£)]
and ‘

Pr{n(2) = Int[n¢(2)]} = 1-Frac [n$(2)]

where Int(x) denotes the integer parﬁ of x and Frac(x) depicts the frac-
tional part of x. The PMR feature allows multiple selection from certainty
units with n¢(£)>1 such that ﬁﬁe number of hits n(£) is derived by randomly

rounding the En(£) = n¢(2)_propor£ional to size allocations up or down.
. o ™~
The sampling variance function for this class of selection schemes has been

parameterized in terms of variance &ad covariance components by Folsom

'(1980) utilizing double draw probabilities

 E{n(2)[n(2)-1]}/n(n-1) if 2=2'
vo0(RL) =
E{n(2)n(£')}/n(n-1) if 2#2'
These - double draw probabilities ¢(22') and the associatéd single draw

probabilities ¢(£) were dervied by Folsom as the expectations of single

draw sampling unit indicators Az(i) that take the value 1 when n(2)>0 and
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<0

\=. N -

-’ -

il

©

Y




0 ‘ )
R = a8 ap

1)

| G5 W S5 G GV G SE o 09 SO a8 Mo O @

.y

selected primary frame unit PFU(Z) is randomly assigned primary sampling
unit (PSU) label i with i ranging from 1 to n; otherwise Az(i) = 0. With
}he labels assigned as a {andom permutation of the digits 1, . . ., n, one

A

can show that .

‘ o E{Az(i)} = ¢(2) f;r all i
and

E[A(DA, (1)) = 0(82") for all iti’

,where expectation is taken over repeated samples and repeated random PSU

label assignments. The single drawiindicators have, the additional proper-

ties . .
N

N 5 OAL(i)
=1 2

1}
—
1

for all i, and

14

n(2),..

n
2 A, (1)
2=1 2

These results lead to the following ¢(£) and ¢(22') summation identities:

&

‘ N e
500 = 1
“ 2:1 )
and )
N | N
Ioa(ee') = EfA,, () I A (i)

2=1" . 2=1 .
= EfA,, (1))
= 0(27).

In the following subsection, the single draw indicators are used to define

©

unbiased single draw variates in terms of the following single PFU ratio

type estimators

- 21 -
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~

y(2) = s(+) 1(£)/s(®)

= Y(2)/¢0(2)

where

8

T _ - '
X('Q) T [Y"ll(z)’ LS Ydr(z)’ .. -‘) YD(R_I)('Q)]

dehotes a row vector of D(R;l) PFU totals and-the superscript T denotes
matrix transposition. -In the illhstratibn above, Ydr(B) will denote the

- 5

(dr)-th element of the vector Y(£) spzcifying the number of age eligible

domain d students. attending school in PFU(L). who would give response oﬁtion

.
- - N " L -

r to a particular NAEP item.

|
i

2.3.1 Sigg}e Stage Covafiaﬁfé Matrix Models - S e e : e

o

To develop a design effect representatiodator the covariance matrix of

o

a three-stage design statistic we begin byAdeveloping single stage results.

"

o

Extending Folsom's (1980)'single stage results to vector valued statistics,
we consider the corresponding vector valued single draw variate-
< N

v(i) = 3 A (i) y(&),
£2=1

3

p— . - v - ¢ .
" N

with y(2) denoting the single PFU ratio type estimator Y(2)/¢(2) defined
previously. »V

| . ,
| . Now, one can show that each single draw sample variate y(i) is an

unbiased estimator of the universe totaleY(+); that is,

a

N
E{y(i)} = 2 E{A (1)} y(&)
| : =1 :
; = X Y8 . .
| 2=1 R N
o : =‘g(+) for all i. .




i
|
|

Ly Tyt @1 = B 2 A G [y} L Ay, () [y)-¥®]17]
- ~ ~ - 2=1 ~ ~ ~ ~

Siwilarly, the covariance matrix for each y(i) is

N N

o

£2'=1
. N ) ' T
=E{ 2 Az(i)[x(2)71(+)][x(R)-X(+)] }
2=1 .

since .

. A (5) ‘when £ = 2 ,
A1) Ay () = P
0 when £ # 2'.

Taking the expectation over repeated samples and PSU label assignments (E)

o

I R ]
inside the summation, one obtains

‘ -k - - . -‘q ~ “ O‘ - - !
- | - o
. . ]
537
'
B

o . B .
‘.l' o8 a8 l...’l1'il"‘ l-l'
Lo .

. |
3, (BSU) = 3 0(2) [x()-Y ()1 [x(-X®)]T.
2= .

1

The cross-covariance matrix between y(i) and y(i') is derived similarly as

N N
R(PSY) = E{ I 3 Ay(DA, G-I xED-YM1Y
y 2=1 2'=1
N N ‘ . : T
=2 T o) [y(@)-Y() ]y (2)-Y ()i~
2=1 2'=1
for all i#i'. The fact that the single drawn samble variates have common

‘covariance and cross-covariance matrices, provides a simple classical

derivation of the variance for the mean of the single draw variate vectors

23
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i
L

‘.N n
, [ 2 Az(i)]X(B)/n¢(2)
2=1 i=1 .

N R
2 n(2)Y(2)/En(2).
° , 2;1 ¢" @

o

Notice that in the recast version y becomes the standard Hansen-Hurwitz

< (1943) estimator for a PPS. with replacement selection. For a without
replacement PPS sample with En(2)=m(L), i is the Horvitz-Thompson (1952)
estimator. For the intermediate PMR designs, i is Chromy's (1979) esti-

mator. In terms of the common covariance and cross-covariance matrices

.‘zy(PSU) and'ZRy(PSU),,thg covariance matrix for i is

V (PSU) = = (PSU)/n *+ (n-l)iR (PSU) /n u
9 y y
) = 5, (BSU) [I+(n 1R (BSD)]/n
with !
) -1
Ry(PSU) = Zy(PSU) xiRy(PSU)

" defining the cross-correlation matrix and I denoting the D(R-1) by D(R-1)
idéhtity matrix.

The following alternative expressions for Zy(PSU) and ZRy(PSU) make

it easy to see that the form for V_(PSU) developed above is equivalent to
' y - . . .
the Yates-Grundy. (1953) type variance expression presented in Chromy for

this general class of designs:

o

° : ‘ N N ‘ .
‘ E,(PSU) = 3 3 0(2)0(2") [y(®)-y2) 1 [x(2)-y2)1 /2
2=1 2'#2 . , 3
and
8 ° ‘ N N

SR(PSU) = 3 3 [0()0(2)-0(22)) [x(R)-y (@) [g(®-3@)1"/2 .

£=1 2'#4

.
.
-y ‘II. ‘...' ‘ll.l‘ |l." '!l}* 'i'; ..l. ‘ll‘ I.I'
» R - T e
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Weighting these component matrices together as indicated ‘in V_(PSU) leads to .

:
[
-

Y S -y
« N N :__'\,_‘ . "" ’ T )
.‘ V_(PSU) = = 3 [0(2)¢(2')-(n-1)¢(22")/n] [y(2)-y(2'yiiy(@)-y(2")]7/2
i vy 2=1 2'#2 ‘ v ) - - » o
N N B (O N (CAD N (¢ NS (€30 INPSRENNS
V;,(PSU) = 2512§¢2 [En(2)En(2 )-En(2)n(2 )] { En(z) = En(,Q')% {En(z) = En(zv)} /2.

When the PSU selection scheme gives all pairs of primary frame units £ and

Lol

2' a chance of being represented in the sample so that En(2)n(2') > 0 for

all 2 # 2', the alternative component matrix expressions suggest unbiased

~

%«

estimators
S (PSU) = 5 3 [n(2)n(2')/En(2)n(2')]6(2)0(L')8(22')5(L2")" /2
v 2=1 2'#2 o .
and a 3
(fA N . ) . . T
SR (PSU) = 3 3 [n(2)n(2')/En(2)n(2')][6(2)0(L')-¢(L2')]16(L")6(22')"/2
. 4 2=1 2'#2 -
with-
6(22') = [y(2)-y(£")].

For a multi-stage sample such as the NAEP design, the PFU vector totals
x(Q) imbeded in the;definitibn of our Q(RQ') quantities must be estimated
based on s;cond'and subsequent étages of samplingf The unbiased est%ma;ion
of stageQSpecifié compoﬁent matrices\is complicated by this prdces;. The
following secﬁion develops the three stage covariance matrix model for the

A~ I3

‘vector valued total estimator Y(+). ' o

~ .

2.3.2 Three-Stage Covariance Matrix Models for Estimated Totals

For a three-stﬁge NAEP type design where c schools are selected for a

given package in each sample PSU and m’students- are selected for, package

-19- 25 o . . | : '
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N
\

assignment in each sample school,, random selection frequencies §(%s) and

ox

q(QSt) characterize the number-of selections 6f school s in PFU(2) and the

number of selections of student t in school (£s). For NAEP sample designs,

the school and student level selections are without replacemest. The

school selections are. made with probability proportional %o estimated age

a
- . B

class enrollmeqt,‘say A(2s); .that is

o

E{€(2s)|n(2)=1}

¢ A(2s)/A(L+)

c ¢(sl2).

-When muitiple hits are allawedbon the primary frame units, n(£) > 1 inde-

 ¥

|
t

1

b

se . ; ) l

i

-~ —pendefit féplicated samples of ¢ schools are drawn from PFU(Z). . .

' The . second stage conditional double draw probabilities are defined as

E{£(25) [£(2s)-11}/c(c-1) if s=s'
E{£(2)E(2s')}/c(c-1) if sfs'
= 0 (ss']2)

Elhg, (10)Ag . (i3 1Ay (1)=1) =

where Azs(ij) is 1 ifu£(25)>0 and school s in PFU(2) is randomly assigned

(M

sample school label (ij) given Az(i)=1. The third stage sample is a simple

random selection without replacement so that

E{m(2st)|£(Ls) > 0} = m/M(Ls)

mo(t|Ls)

with equal single draw probabilities}¢(tl£s) = M(ils)"1 where M(£s) denotes

the number of age eligible students in school list uanit SCH(Rs). The

conditional’ double draw probabilities at the third stage are .

E{Azst(ijk)Azst,(ijk')lkz(i)Aﬂs(ij) =1} 'l/M(Rs)[M(Rs)-I]‘if ;#t'

o(tt'|Ls)

il
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[

.and otherwise ¢(ttl2s) = 0 since for without replacement sélectigns

.. .‘E'p - R . \, . . . -
Azst(le) Azst(hik ) = 0; that is, the student list unit g can ‘not bg
labeled both sample student k and k' since student list unit t can be
selected only once. With these definitions, a three stage single draw
variate is defined as

, N S(2) M(2s) , '

y(ijk) = = .2 I oy (ijk) Y(&st)/e(Ist)

0 2=1 s=1 t=1 : e
with the three stage single draw indicator uzst(ijk) defined as the prodﬁcﬁ“*”“
of .the stagewise indicators )

a,  (13k) o= Ay (1) Ag (1J) Azst(le)'- '

The corresponding three stage single draw probability is-defined analogous- -

ly; that is,

e (i5K)} = 6(2st) = 6(2) 0(sI2) o(ties). -
gst .

With these definitidns, it is not difficult to see that

N S(2) M(2s) : = -
E {y(ijk)} =2 2 z Y (2st) » s

2=1 s=1 t=1

= Z(+++5‘
for all sample students STU(ijkj where X(;++) is the universe total of the .
response Vgctor Y(&st) with.D(R-1) elemeﬁts_of the form

| | _ d (Bs*) = X (2st) Y (Bst)

where X (BSt) takes the wvalue one when student 113t unit SLU(Bst) belongs
to subpopulatlon domaln d and zero otherwise. The covariance matrlces for

these threé stage 31ng1e draw varlables can be derived 31mp1y u31ng cond1-~

plonal expectatlons. For example, consider
\ e ! . R . T
¥
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E{[y(ijk) - Y+ [y(ijk) - Y++9)1T) 5, (BSU) + 3 <(SCH) + 2 (STU)

Cov [y(ijk)} ,

¢

where

|
|

B U

N OS(2) . M(8s)
2 (STU) = 2 X ¢(2s) Z ¢o(t)|2s) ly(Lst)
v 2=1 s=1 t=1 . ~

3 T
y(2s )] [y(2st) - y(2s )]
with the school list unit mean y(2s.) defined as

_ M(&s)
Y(2s,) = I o¢(t]2s) y(&st) |
t=1 ) ' >

]
e

(2s4) / 6(2) 8(s]2)
(25+) / 6(2s)

o]

For NAEP type designs with simple random Selectiqns at the third.stage one

v

‘ ' .obtains the simplified form

2 N S(2) 2 !
5 (STU) = M(++) 3 5 | g(égi)
y 2=1 s=1

] ZY(RS)

where 6(2s) = M(2s)/M(++) denotes the school list unit (2s) fraction of the

total student population count M(++). The covariance matrix for school,
F ‘ :

list unit (£s) is

5, (45) = [diag {n(85)} - m(2s) 7(2s)']

with .
s L M(2s)
: n(es)T = 5. y(est)T/mMees)
t=1

a

= [nll(Rs), cei ?dr(Rs),..:., nD(R_l)(Rs)]
: - ) T ‘ ‘ .
"  denoting”%hewvéctor'ode(R-l)‘cqllgpfobortiOné.for schodi\list unit (Qs);~s

"The ' dr-th cell in odur éxample denotes membership in domain d and item

o

re§ponse group r. : . 28
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The school stage covariance matrix component has the form-

N S(2)

I(SCH) = 3 00 I 8(s18) [yls.)-y(2.)] [y(s,) - y(e.)1"
y =1 iy % R

© with

N

£Y(25+)/0(2) 0(s12) - X(2++)/0(2)}

a » = uen (285 res) - (5 1)

(x(2s)) - y(2, )]

where 6(2) = M(2+)/M(++) denotes the fraction of student age eligibles in

PFU(2). If the relative size measure

0(2s) = [S(2)/S(+)] [A(2s)/A(EH)] c

3

M(2s)/M(H),
then the sample is self-weighting since
¢(Lst) = ¢(2s)/M(&s) = 1/M(++)
and the total inclusion probability for student 1;st unit SLU (&st) is.
n(2st) = ncm ¢(2st) = nem/M(++),

a constant for all nsm sample.students. In this simpljified case

2 N M(2s) ‘ T
I (STU) = M(++) -2 £ 6(&s) {diag (n(2s)] - n(2s) n(2s) "}
y 2=1 =1 ,
and
.2 N S(2)
3 (SCH) = M(++) = 2 6(&s) [n(2s) - n(2)] (n(2s) - n(2)]
y 9=1 s=1

R

. The general form of the PSU level covariance component matrix is’

- N '
Z, (BSU) = 2 (%) [y(2 - y(..)) Lye ) - y( )]
2_. - .

With‘ b

ly@@ ) - y(, )1 = M(++) ¢ [ u] n(e) -} . l.i~=£¢‘




For a self-weighting sample

~ 2- N N ‘T
“ Iy, (PSU) = M(++) 2 6(2) [n(e)-n] [x(2) = z]".
=1

In general, one notes that

[

- e wwm

| Cov([y(ijk)] Zy (PSu) + Zy (SCH) + Zy (STU)

N S(2) M(%s)
2tz 2 o(est) [yest) - y(, )] [g@st) - y(, )]
2=1 s=1 t=1 , ' . .

T

N S(2) M(2s) - 7 ) T
- Z X X Y(8st) Y(2st) /¢(2st) - Y(++t) Y(++4)
2=1 s=1 t=1 ' , v .

]

) N S(2) M(2s) IR TV T
ME(++) {2 £ 5 Y(&st) Y(&st) /M(++)° ¢(&st) -}
. ) 2=1 s=1 t=1 ' '

2 B
2-(ToT). : .
y( ) .

When the sample is self-weighting with

= o = e =™

|

B(2st) = 1/M(++),
the common covariance matrix for each i(ijk) is

2 :
Zy (TOT) = M(++) {diag [n] - n =

o
i

Ty,

~

. . T ' 2, i .
Notice that in the self-weighting case, Zy(TOT)/M(++) is .the SRS with
replacement multinomial covariance component matrix.

Various cross-covariance components can be define for the three-stage

single draw variables. -These cross-covariance components are derived as

i

follows: ) _ , |

o

Cov [y(ijk); y(ijk')] = Cov [y(i..)] +E Cov [y(ij)l* ~ - * -+ 4

- S L “PSU SCH A

L - s EV"E?. Coi,.'[x(ijﬁ);thijk‘)]f S '
S . " psuscH sTU.- .. T L

5. (PSU) + 5 (SCH) + SR (STU
 (BSU) + 3, (S0 + Ry (STU)
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where : .
y(ij.) = E {y(ijk)|PSU, SCH} i .
- STU - .

denotes the conditional expectatlon of \y(ijk) over repeated student selec-

tions and label 3551gnments g1ven the PSU and school selections and 1abe1
assiguments. The conditional expectation over” school and student ‘selecgtion
and label assiggment of x(ijk) given the PSU selection and 1abe;1ing is
similarly demoted by | | | |

y(i..) =E E {y(leIPSU}
SCH STU

The matricesJZy (PSU) and Zy (SCH) were defined previously, and

N S(2) M(2s) M(Zs) : T :
JR_(STU) = 3= 2 ¢(2s) 2 z Q(Rst)g(Rst) /M(2s)[M(2s)-1]
v 2=1 s=1 t=1 t'=l
with ] e o
Q(Rst)i= [y(2est) F.X(QS,)]. . B

M(2s) [Y(&st) - q(2s)]/0(Ls).

With further manipulation the following form for the between student within

school Cross-covariance matrix is obtained

-2 N S(2)

SR (STU) = -M(++) X I |
v p=1 s=1 PES)

2 g o .
T2 ) 5 (as)/IMAs)-1]
recalling that

Zy(RS) ='{diag [E(Rs)] - n(RS) n(RS) }

Turning to the between school w1th1n PSU cross- covaxlance matrix one obtalns

[

Cov [y(i3K)5 x(ij 'k!T] = Cov [y, )] + E. Cov [y(ii. SR C R ’.‘ o

apSU - PSU SCH
. o (Psu)“+ ZR (sewy: . e
' with : o T ’ f; B ',: o . . e
N S(2) S(2) .
SR (SCH) = 5 ¢(2) X 2 ¢(ss']|2) 6(82s) Q(RS')
y 2=1 © s=1 s'= i




where

6(2s)
¢(2s)

(L)

SYOL IO} \

Q(BS) M(++) {[5=5 n(2s) - [

Finally, the between PSU cross-covariance matrix is defined as. follows

<@

Cov [y(ijk); y(i'i'k)] = 3 o(22')y 8(8) 8T
2=1 .
= ZRy(PSU) ;
- where
8(8) = [y(2.) - y(.. )]
IPRION )
- { [¢(2) (2) E}°

Armed with the covariance and cross-covariance component definitions

specified above, one can derive the covariance matrix for

_ n c m ’ _ ' *
Y= 2 & I y(ijk)/ncm,
i=l j=1 k=1

the three-stage analogue of the general class of‘with replacement and PMR

. I3
3

single stage estimators. The covariance matrix for y is

Cov [y] = 2 (PSU) [I + (n-1) Ry (PSU)]/n + % "(SCH) [I + (c- 1) Ry (SCH) ]-/nc
(oTU) 11+ (m-1) Ry (STU) ]/ncm.

A design effect version of this model can be formed as follows:

Coviyl = {2 (SRS)/ncm} W {I+ (ncm-1) A (PSU) R (PSU)
+ (cm 1) [A (PSU) {T - R, (PSU)} + A (scn) R, (scn)]
y (m 1) [A (scn) {I - R, (SCH)} + A (STU) R, (QTU)]}
vhere . ISR
. NN
W= Zy(SRS) Zy(TOT)

The une.jual weighting effect; é}
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with

. i .
Zy(TOT) Zy(PSU)

a_(PSU) =
Y( )
=z The within PSU clustering effect;
-1 . o
R_(PSU) = 2_(PSU 2R_(PsSU
Y( ) Y( ) y[( 1)
’ = The PSU stratification and PMR selection effect;
-1 .
A _(SCH) = z_(TOT) ~ % (SC
¢ ) "Y( ) vt H) -
= The within school clustering effect;
R_(SCH) = Z_(SCH) 2R_(SCH
 (SCH) = 2, (SCH)- IR (SCH) |
= The school stratification and PMR selection effect;
- hd -1 )
A _(STU) = & (TOT 2 _(STU
Y(~ ) Y( ) 2 ( )
= [I - a_(PSU) - A _(SCH
[ y(BST) = Ag( )] |
= Betw:en student within school fraction of total variation;
and o e L
. -1 ‘ .
R_(STU) = 2 _(STU 2R_(STU
Y.( ) v ) vt )

1)

The effect of without replacement studeat selection.

As suggested above, the cross-cova;ianqe matrices accouﬁt for bothbthe
effects .of minimum replacement (PMR) or without'feplacemeht selections and
;tratification. The effect of explicit and implicit stratification is
expressed thrqugh the sampling expectétioh of selection frequency prodgcts,
E n(2) n(2'), and associated double draw probabilitiés, ¢(22'). Recalling
the YaLes-G?undy form of the PSU level variance fuﬂctioh |

V_(PSU) =3 = [EQ(Q)En(z') - En()n(2)] d(28") d(ee)T/2
v 2=1 2'#8

P

r

3

1

d(22). = {1()/En(8) - X(2')/En(2)} ,

it is ‘clear that explicit stratification,would imply the ‘independence of

%

selection frequencies n(%) and n(2') for PFU's in different strata. This

o9

33 N
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independence would cause the between PSU contrast*s: g(22') in V;(PSU) to -

iy




~

drop out since En(2)n(2') = En(2) En(2'). Therefore, while the V-(PSU)

L]

-

" variance expression and the var1ance~c0var1ance component analogue are not

written in the familiar stratified form, they reduce to such a form when
the [én(z) En(2') —'En(zjn(z')] coefficients are set to zero for the be-
tween stratum terms. With Chromy's sequential PMR zone selection scheme,
implicit stratification effects are achieved by purposively ordering the
frame listing so that proximate units are:expected to be more alike than

distant units in terms of the survey outcome measures. The .reduction in

- sampling Variance associated with the effect of implicit stratification is

reflected in the Yates-Grundy variance' form by a tendency for the coeffi-

s

- cients

[En(2) En(2') - En(2)n(2')]

to. approach zero as the distance between frame units £ and %' increases.

i

The variance-covariance"component representationtfor V;(PSU) displays the
combined effect of minimum replacement selection and implicit stratifica-
tion in the form [1 + (n-1) Ry(PSU)]. For a scalar statistic this express-

ion reduces to [1 + (n-l)py(PSU)] where py(PSU), the common correlation

among the n single draw variates y(i), is expected to be increasingly

negative as the efficacy of the implicit stratification improves.

2.3.3-'Design Effect Model for the NAEP P-Value Covariance Matrix

The design effect model developed for the linear statistic x, the

vector. of estimated do ain by item response category totals Y(dr), can be
-

extended to the vector/P of D(R-1) response category proportions considered

\

prevlously by applylng the Taylor Series linearization technique 1mp11C1t

<

: 1n the sectlon 2:2 treatment of generallzed desxgn effect methods ' Begln

\

“t

' by lettlngﬂ

34
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- 'variates . . . . . . 7 S . Lo

Wi - . . « . . L

Gd [Y(+++)] = ¥(dr)/ % ¥(dr) = P(dr)
- r~ ) - r=1 @

‘and let H, denote the 1 X D(R-1) vector with elements

: hdr(uv) = éP(dr)/aY(uv)

The elements of Edr have the following form

(1 - P(dr)]/X(d) if u
Edr = - P(dr)/X(d) if u
0 ot@erwise

in-n
[=V =¥
Y]
=]
[=Vy=¥
< <

)
]

h S
KR

where
R
X(d) = Z Y(dr)
r=1
Letting gT = (Hyyy - - Egr’ - e E%(R-l)) defining the matrix of

partial derivatives of P with respect to the elements of Y(+++) where the T
superscript denotes matrix transposition, then
=1 4T
'VP(DES) =H Qov[x] H . ‘
The expression for the design based covariance matrix of P stated above can

now be used along with the three-stage component represantation for Cov [yl

to produce an analogous componen} representation for VP(DES). This is

accomplished by defining analogous covariance and cross-variance matrices
‘for each stage as. follows: . o
3, (STAGE) = H 2 (STAGE) i’

and T
ZRP(STAGE) =H ZRy(STAGE) H

with STAGE assuming the PSU, SCH, and STU levels for the NAEP design.

An alternative form of the Taylbr series linearization that procvides

explicit definitions for the component mapfices is. to define linearized

N o @ BN . . s A o L Vo




z(ijk)

= H y(ijk) |
o N s Mas)
| | . i 251 Szl tz1 a,  (1jk) z(&st)
where .
z(2st) = H y(2st)

='H Y(2st)/o(2st) .
= M(2s) g(ﬂst)/¢(2)¢(8.25
The Z(&st) = Ei(Rst) véctors.defiébd above have elements of the form
Z4,(25) = X (2st) [¥ (2st) - P(dr)]/X(d) o |
récalling that Xd(RSt) is the one-zero indicator for domain d membership
and Yr(RSt) is the one-zero indicator for response:category r. Using»}he
linearized three-stage singie dréw variates z(#st) in piace of the x(Rst)
vectors in the Zy( ) ‘and/ ZRy( ) definit%pﬁé &ieldS' Zz( ) and ZR;( )
matrices such. that |
ZP(STAGE) = ZZ(STAGE) =H Zv(STAGE) ET

and

SR (STAGE) IR, (STAGE) = I, (STAGE) B
In terms of ﬁhese quantities, the school lével population mean vectors
‘ ) M(Ls)
: z(2s) = Z z(2st)/M(&Ls)
. : . t=1 ,

have elements

zdrxzsm) xd(2s+)[Pdr(2s)'- P(dr)]/X(d) ¢(2s)

&) (23) [p~ (23) - P(dr)]/6(2s)

where Pdr(2§) is the proportlon of domain d members of school list unlt
(23)'that-woulq'give item response optlon r and 8 (25) is the fractlon of

all H;mainﬂd\memﬁqrs atteqﬁing thool in school 1ist unit (Zs){ The PSUi.

level mean vector

e ) é?é;
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‘.‘ . - o . : - 5(2)
’ Soz(e, ) = o(sIf)z(8s.) .

o s=1 ‘
has elements

3

X (e++) [Py (2) -..P(dr)]/X(d)‘p(,Q)
6,(2) [Py (2) - P(dr)]1/¢(2) . o

2gp(2..)

|
i
|
|
'
If one lets DC(RS) denote a D(R-1) by D(R-1) dlagonal matrix with the
. (dr)-th eleinent Cdr(zs) = ed(,Qs)/‘p(,Qs), then the school ‘1eve1 mean vector
. of 1ineafized variates 1is “
z(2s,) = Dp(2s) (B(2s) - E]

. Defining IC)C(,Q) with (dr)-th element C‘d (L) =6 (;Q)/¢(2), a similar form for
: : the PSU level mean vector is obtalned namely )
. | S 2(2 ) = Dé(z)[g(z)-g] . o o
When no members of\domain d attend school list unit SCH(2s), then Bd(RS) =0
' and Pdr(,?,s) = 0. Similarly, if no members of doinein d attend school in
. pfimni‘y frame unit, PFU(2), then .Bd(2) = 0 and Pdr(,é) =

~ In terms of these linearized variate vectors, the stage specific
' covariance matrices have the form N
. N S(2) M(2s)
|
!
|
|
|

33 e(s) I (z(est)-z(es)) [z(est)-z(es )1T/M(zs)
2=1 s=1 t=1 ) o

ZP(STU) .

[

1

o
©

N S(2) M(2s) . T' e
5 3 0(2s) I- z(8st)z(&st) /M(Ls)
2=1 s=1 t=1 ‘_

2

N S(2) o T o ]
-z 2 ¢(RS)5(RS,)5(RS,) . ' '

2=1 s=1 . ) . ‘, o ' .
‘ Lettlng D (RSt) d‘enote a- D(R-l) by D(R-l) dlagonal matrlx with elements,'

[y

6 (RSt) = X (RSt)/X(d), the between student covariance matrix becomes




©

N S(2) M(2s) o . ‘ T ‘
2 (STU) = £ 2 3 D, (2st)[Y(2st)-P] [L(2st)-P] D, (2st) M(Ls)/¢d(Ls)
P 2=1 s=1 t=1 O - -7 ~ e .

- I 2 0 0(8s)Dp(2s)[B(2s)-RI[E(2s)-R] Dy (£5) e
2=1 s=1 , ' ’

where the (dr)-th element of X(Rst) is Yr(RSt), the one-zero indicator for
item response category r. The between school within PSU covariance matrix

is
' B
@ N S(2) .

5, (SCH) 5 0(2s)[z(es )-z(2, ) 1lz(s )-z(2 1T

]
M

=1 s=1

N s(2)
2 ¢(2s)z(2s )z(2s,
=1 s=1

)T

]
M

N T
- 5 eWaz(e, Dz, )T .
2=1

Therefore

N S(2) A T
R ZP(SCH) = 3 I ¢(2s)D.(2s)[P(2s)-P] [P(2s)-P]" D,.(2s)
2=1 s=1 ¢ ~ T ~ X

N
- 2

$(2)D; (2) [B(2)-R) [g(z)-g]Tnc(z) :
9= -0 ‘

1

2
The between PSU covariance matrix is

.
. .
. o . ‘ . X
.l ob U 69 09 O O o e

N .
S5 (SU) = 3 08 [z(2,)-2(, )] (22, )-z(, 1"
2=1 ~ ~ ~ ~
[ N T .
‘ ' = I 60 z(2, )0z(2,)
_ o ’ . , R 2:1 ‘ oo r‘ g
. -S‘iﬂc.e. . ' T’" - S ' N ) ' \ ) f .\ . |
ST z(,.) = £ 68 z(2, ) ' A .
voe=1 ’
“A
38 3
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-3 ¢d(2) (B(®) - Bl =
2_

Therefore, with the ¢ weighted mean of the linearized vectors z equlvalent

to the null vector, the between PSU covariance matrix can il be written as

o

5_(PSU) = z 00D (1) B(W-P] (BW-RITD.(2) . - ' N
P 2=1 ¢ A e : )

.Combining these results, one obtains the following expression for the total

covariance matrix

Cov [g(ijk)] 2,(T0T)

-z (BSU) + Z,(SCH) + Z(STU) =~ A o

N S(2) M(Rs) -
z 2 3 D (2st)[Y(2st)-E] (Y(2st)-P] D (23t)M(23)/¢(2s)

£2=1 s=1 t=1 _6 ) .

I

Letting W(2st) = M(£s)/[ncmdp(Ls)} denote the sample weight or inverse

N

selection probability for student (&st), one can recast ZP(TOT) as a block

diagonal matrix with blocks of the form
N S(£) M(£s)

‘nem {2 X 2 W(2st)X (zst)[Y(zst) “R(d)] [Y(2st)- P(d)] /X(d) 1
: 2=1 s=1 t=1

~d
.ZP(TOT)

nem W(d)£(d) {diag [BW(d)J-EW(d)g(d)ng(d)gw(d)T+gﬁd)g(d)T}/Em(d)'
where “ : | , l ' o ‘ QL;

oy shMes) SR

. . .. Wdy= oz 2 2 W(2st)X (Rst)/X(d) o ‘

2—1 S 1 . t=1 : . . 7 ' i ¥

is’ the average welght for all domaln d members in the un1verse and

f(d) = Em(d)/X(d)

o Miad

- =33-




a

is the expected sampling'fraction for domain d with

. N S(2) M(gs) : .
oo . Em(d) =.3 = $ [ncm ¢(2s)/M(2s)]X (2st) : ]
271 521 =l _

L,_ : g N S(2) M(2s) ‘ L

. = I z I W(gst) xd(zst)'
. 2=1 s=1 t=1
denoting the expected domain d sample size over repeated - samples. The
PW(d) vectors represent the weighfed.universe level response option distri-

. . [}
. bution for domain d members; that is

3

N S(2) M(&2s):
PW(d) = 2 Iz Z W(est) X (Bst)Y(Bst)/w (+++)
o 221 s=1 . t=1
with Wd(+++) denoting the universe level weight sum for domain d members .

For a self-weighting sample with common weight

2

W(gst) = MCQS)/ncmv¢(BS) ' ‘
= M(++;Ancm
one observes that
W(d) = M(++)/ncm
) . £(d) = nem/M(++)
and

PW(d)’=

czru

(d)

For a self- welghtlng design one notes therefore that Z (TOT)/nsm deflned on

3 page 34 assumes the with replacement 31mp1e random sampllng multlnomlal
.53. <Y i

vform; that is. o .
g e T R
: Z (TOT)/ncm = fdlag [B(d)] - P(d)P(d) }/Em(d) —_—
with the expected’ domaln sample size spec1f1ed as

Em(d)

ncm X(d)/M(++)

ncm nt(d)

| 40
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For the typical multi-stage PPS sample design utilizing approximate size

arithmetic mean W(d) for nonnegative variables.

measures, the unequal weighting effect is defined as

r

&y = Vp(SRS) ™' Z,(T0T)/nem .
The‘matrig“&P is block diagonal with blocks

w (d) = W(d) E(d‘){aiég [.P(d)]-Pkd)P(d)T-}-l { diag [PW(d)]-PW(d)PS’q__)

- p(@pw(d)T + @@ 1 .

o

When a correct-incorrect dichotomous response distribution is considered,

the domain d effect of unequal weighting &P(d) can be recast in the follow-

o

ing form

wP(d)

B

W(d)E(d) [PW(d)-2PW(d)P(d)+P(d)2]/P(d)[1-P(d)] ‘

- W(d)E(d) {[PW(d)/P(d)] + [1-PW(d)]/[1-P(d)] - 1} .

Recalling that f(d) is the subpopulation d mean of the inclusion probabili-
ties n(&st) = W(Bst)-l, the product of the average weight'W(d) and phe

expected domain d sampling fraction f(d) can be written as

W(d) £(d) = W(a) * W (d)

where
Wy (d) = l/f(é) 7
. " N S(2) M(2s) 1 -1
= = Z W(est) Xd(zst)/rX(d)]

2=1 s=1 t=1

is the universe level harmonic mean of the W(#st) weights for domain d

.members. Noting that the W(Bst)'weights are nonnegative quantities, it is

clear that W(d)f(d) 2 1 éince the ha}monic mean W(d) is less than the

Q

a

2.3.4 Estimates for Composite Covariance Matrix Components

To produce estimates for the thfee-stage covariance matrix components
defined in the preVious section, one can begin by building a consistent
i -35- 41
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3
.

. , estimator for ZP(TOT). Note that

—— i

S i
.2 22X, (ijk) W(ijk)/m(ijk) ]
= i=1 j=1 k=1 d ‘
;v W(d) = n .« m 4
' [Z 2 22X (ijk) W(ijk) ]
i=1 j=1 k=1

is a consistent ratio estimator for’ﬁ(d) and that

A . n ¢ m
f(d) =m@d) + [ £ = = X, ((ijk) W(ijk) ]
i=1 j=1 k=1

is similarly a consistent estimator for f(d). Therefore , - ©

m
Al 2 X (ijk) W(ijk)2 ]
2 i=1 j=1 k=1 ¢
‘ COWDEW@) = ma) [ p
[ = 3 = Xa(ijkj w(ijk) 12
i=1 j=1 k=1 .

nmMpg
nmMn

b 3

]

consistent sample eétimator a(d)%(d)!is equivaient.to theaququél weighting
design effect ﬁ;oposed by Kish (1965) and 6thers. The derivation presepted
hefé shows that there is an additional term in the unequal weighting effect
that .contrasts the universevleQel weighfed mean of the correct response
ind;cator, PW(d), with the "subpopulation propor;ion correct P(d). This
,additionaljuneéual weighting factor
Q(d) = {[BW(Q)/B()] + [1-PW(d)]/[1-B(d)] - 1}

is less‘thén“one‘when P(d) 2 0.5 and-PW(d) > P(d). - When PW(d) > P(d), this
.imflies that~ﬁ1(d);> Qo(d) where'ﬁl(d) denbtes the universe ievel mean of
the weights for domainkd members who.reSpond correctly and Qo(d) isﬂthe

corresponding mean for domain d members who respond incorrectly. Therefore

-Q(d)‘< 1 when the harmonic mean of the inclusion probabil%ties for domain~d

members who respond incorrectly is greater than the harmonic mean inclusion

~ . n‘ w?
]

|
|
{
|
|
i

A

is a consistent estimator for the associated unequal weighting factor. The
/ : .

‘.

{
|
|
i
'
i
i
H
§

|1

9

- U o8




probability for those domain d members who would respond correctly; that is

f

- . . . D) P . . »
f . - .

W e

&

for P(d) 2 O.SL;Q(&) < 1 when the‘sample design overrepresents domain d

~members who "would réspond incorrectly to the item. For items with

‘P(d) < 0.5, 'Q(d) is less than one when PW(d) < P(d) which 1mp11es overfﬁf

representatlon of domain d members who would respond correctly For the

NAEP design whe;e schools in low income inner city areas are- over-

" represented, there will be a féndency for overrepresentation of persons who.

~would respond incorrectly. The effect of this overrepresentation on the

Q(d) quantities should not be expected to counterbalance the rather substan-

A

t1a1 unequal weighting de31gn effects. The total population value of WE is™
around 1.35 for a single NAEP package sample. Consider for example an item
with P = 0.55 and PW = 0.95, then Q= 0.838 and w, = 1.13. Consistent

sample estimates of the PW(d) can be formed using\the squared weights

N

W(ijk)%2 to compute the weighted proportion giving responée option r as

n C
bR} z W(ijk)2 X (1Jk) ' (1Jk)

A z oz k
PW(dr) = { ELIELEEL . 'y

I I IWEjk2X (1Jk)
i=l j=1 k=1

s

Utilizing these consistent estimators for Q(d), f(d), and PW(dr), a con-

sistent estimator for the domain d block of ZP(TOT)/ncm is

‘:lg(TOT)/ncm = W(A)F) s SW, (d) /m(d)

where

SWp(d) = { diag [PH()] - PUOR@T R@PY(@DT + p@r@T )

These considerations lead to the consistent estlmator for, Z (TOT)

%P(TOT) = ncm BLK-DIAG {W(d)f(d)Sw (d)/m(d)}

-37- 43 | | .




While one can produce Taylor-Series approximations for the separate

stagewise covariance and cross-covariance matrices ZD(STAGE)‘and 3R_(STAGE), -
p " o ’ . r

where . STAGE reprééents a generic design stage assuming the.levels PSU,_SCH

(school), and STU (student) for the NAEP design,vsuch.approximations re-

quire the calculation of the PSU and school level double draw probabilities
?

d(2L') and ¢(ss”|2). On the other hand, simple analysis of variance type

estimators exist for the following composite component matrices

a Sp(STU) £ Z,(STU) - 2R, (STU)
Sp(SCH) = 2,(SCH) - ZR,(SCH) *+ ;RP(STU) o
Sp(PSU) = 3,(PSU) - ;RP(SCH_) + IR, (STU). .

These composite component matrices are relatively easy to estimate and

" provide the necessary ingredients for parameterizing the following design

w

effect version of the P-value covariance matrix model:

Vp(DES) = V,(SRS) by [1 + (ncm-1)R,(0) + (cm-1)R,(PSU) + (m=1)R,,(SCH) ]

where
by = VP(SRS)-I_ 3, (T0T)/nsm
- -1
RP(O) = IP(TOT) ZRP(PSU)
_ -1
0 RP(PSU) = ZP(TOT) SP(PSU)
o -
., ’ RP(SCH) = ZP(TOT) SP(SCH)

The composite component definitions above also lead to the following useful

identity

ZP(TOT) ZP(PSU) + ZP(SCH) + ZP(STU)

ZRP(PSU) + SP(PSU) + SP(SCH) + SP(STU)Q'
This identity combined with the consistent estimator for ZP(TOT) and the

Taylor Series ANOVA estimators for SP(PSU), SP(SCH), and SP(STU) provide a

8- 44
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consistent estimate for the component ZRP(PSU) due to primary stratifi-

. . i e
s 1
v
. f . «.

cation and without replicement (or PMR) selection; that is,

ZRP(PSU) = [ZP(TOT) - SP(PSU) - SP(SCH) - SP(STU)]

=

The SP( ) matrices are estimated usihg the Taylor-Series linearized single
draw variaté vectors
‘N S(2) M(82s) .

2(ijk) = =z Ia, t(ljk) 2(8st)
: !2=1 s=1 t=1

s

where the (dr)-th element of g(zst) has the form

M(Bs) X (Bst) [Y (2st)- P(dr)]/X(d) o(Ls)

zdr(gst}

ncm W(Bst) X (Bst) [Y (2st)- P(dr)]/X(d)

with P(dr) and X(d) denoting sample estlmates for the correspondlng popula-

~tion parameters. Recall that W(Bst) “M(2s)/ncm ¢(2s) is the gample welght

for student listing unit SLU(&st). In terms of the g(lgk) 11ﬁearized
single draw variate vectors, one computes the following ANOVA type matrix

of mean squares and cross-products: _ . “y

n C m

T pST = 2 2 3 [;(ijk)—;,(ij,)]' (z(iik)-2(i5 )1 /nc(m-1)
1—1 j=1 k=1 ' _ ) e

v

with 2(ij.) denoting the school level sample mean vector

2(ijk)/m . u ‘
k=1 ‘ .

M3

8(ij ) =

The corresponding between school within PSU mean square matrix is
n ¢ A

MS,(SCH) = I I [z(ij.) - 2Gi.)1(EG4.) - 2(i.1Y / n(e-1) S
i=1 j=1 ~ - - - | '

-39~




.with-

z2(ij )/c .
The between PSU mean square matrix is

'MSP(PSU) =

n ’ . T .
2 31, )80, )T/ (@-1)
i= :

1

noting that the overall mean of the z(ijk) vectors is the null vector.
. . ~ . Al

In terms of the single draw variate vector covariance and cross co-

variance matrices defined previously, it is not difficult to show that

- E { MSP(STU)} = SP(STU3 = [ZP(STU)-ZRP(STU)]
‘ E {MS,(SCH)-MS;, (STU) /in} = sP(st) = [ZP(SCH)-iRP(SCHHZRP(STU)]
and ' _
S E {MSP(PSU)-MSP(SCH)/C} = SP(PSU) = [ZP(PSU);ZRP(PSU)+ZRP(SCH0]

The composite component model and associated component estimators for

K]

the P-value covariance matrix VP(DES) have obvious extensions to the trans-

-
~

formed P-value case. With H denoting the matrix of partial derivatives of

g(g) with respect to the elements of'g evaluated at P = P, then

£4(T0T) = K Z,(ToDK
éG(s:TU) = H S,(sTU) K
;G(§CH) = H S,(SCH) K" S
5,(PSU) = H S,(SCH) H'
-and .
IR (PSU) = (TOT)-S, (PSU)-S;(SCH)-S, (STV)

~

With the simple random sampling covariance matrix estimatorvfor.g(g)'

depicted by ~ ~ o~ A
' VG(SRS) =H VP(SRS) H ,
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the corresponding unequal weighting matrix &G and the composite correlation

-

matrix analogues ﬁG(O), ﬁG(PSU), and.ﬁG(SCH) have' the same form as the
original P-vélde cémpdnent matrix estimators with G replacing P-in the
defining equations. | |
Abstraight forwarq extension of the Taylor_Sefies iinearizétion argu-
‘meﬁt applied to »g(é) provides an analogous ﬁmcdel for the désign based

covariance matrix of

A ~

“IxTv, (srs) g

qes]
1

= [xTGG(SRS)’lx]

M(SRS) G ,

the SRS based weighted least squares estimate for the G(P) = XB linear

model coefficients. Whilebone might initially question the use of the SRS

based covariance matrix in the definition of § above, recall that use of

VG(DES) implies full knowledge of the design based P-value’ covariance
matrix VG(DES) which in turn provides for calculation of design based Wald

statistics; that is to say, if one use VG(DES) in the definition of B then
- A o ‘ : .
no extension of R#6 and Scott's approximate methods are required. Returning

to our SRS based B, one can further consider a matrix of estimated contrasts
CB. ‘s far as the first order Taylor Series linearization is concerned CB
is equivalent to a linear transformation of the originil vector P of domain

P-values; that is

~

CB % [CM(SRS) H] B .

~

N o
The corresponding Taylor Series component estimators have the form

~ AA ~ AA T

ZCB(TOTJ = (CMH) ZPTTOT) (Cgﬂ)




~ AA A AAT

Sc(STU) = (CHH)S,(STU) (CHE

v

~

. o T
SCB(SCH) = (qm;)sp(scn) (Cg)_

and

- - T3 ) w

-
-~

SCBﬁPSU)

- (CHH)S, (PSV) cm? .

~

where g‘is shorthand notation for‘g(éRS). Fof a NAEP style three-stage

>
~

design, the generalized design effect-matrix for CB is therefore of the

form

D_EFF(Cé) {c[xTvG(SRs)'lx]'lc‘}'1-{(c1-ﬂ~{)v (DES) (CH) "}

P

&CB[I+(ncm-1) RCB(6)+(cm41) RCB(PSU)+(m-1) Reﬁ(SCH)].

2.3.5 Asymptotic Distribution of SRS based NAEP Wald Statistics

The partitioging of the generalized design effect matrix for CB devel-

-

oped in the previous section leads to the following representation for the

asymptotic distribution of the SRS based Wald statistic ‘

™M

| ngs(cs) = J,a[1+(ncm-1)pa(o)‘+(cm-1)pa(psu)+.(m-1)pa(sc11)]x§ -

a=1

where the X: are independent single degree of freedom chi-square random
variables with coefficients defined in terms of the left and right hand
eigen vectors of DEFF(CB), say L and R, and the component matrices &CB,

RCB(O),ARC‘(PSU), and RC (SCH). Specifically,'if ga is the a-th row of L

B B

and Ea,is the a-th column of R, then the.generalizgd effects of unequal

weighting, stratification, PMR selettion, and clustering are defined as

: | . 42 48
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t )

lI)éa = ga lI)C_B,",I,Efa } . . : - _
_ pa(oi ={ g I&CﬁRcalglia i &a - _ - .
pa(PSU),: { g; [@CBRCB(PSU)] r, 1+ &a‘ .
and ’ o, ' ) -
- e , ; : pa(éCH).='{ 2, [chRcﬁ(SCH)] £, ! +‘@a_.

¥

For uﬁstratified PPS with replacement selections at each stage of sampling,
the ZRP( ) cross-variance component matrices are'null so that the com-

posite components SP( ) equal the corresponding. covériance'(components
ZP( ). . In this case simple single:degree of freedom contrasts CP and more’

A

4

. . .

complex siﬁgle degree of freedom contrasts Cf will have positivevdesign
A RN .

effects of the form

DEFF(CéA) - J)CB [1+(cm=1)py g (BSU)* (m=1)p g (SCH) ]

since the cluster correlations

1

pCB

(STAGE) = {(CMH) ZP(TOT)(CMH)T}-I{(Cnﬂl ZP(STAGE)(CMH)T}

must be nonnegative. This follows from the féct that the ZP(TOT) and

ZP(STAGE) mgtfices are all positive definite and

ZP(TOT) = ZP(PSU) + ZP(SCH) + ZP(STU)-..

As indiéated earlier, the &P matrix for the R = 2 correct-incorrect response
pattern case is a D x D diagonal matrix with elements &CB taking the form

i’

0 . ‘
= q2{P(d)[1-P(d)]/m(d)} wy(d)
- _ =1 .
Wep ~ D , : | .
2 q%P(d)[1-P(d)]/m(d) :
d=1

-

where 44 denotes the d-th element of CMH. Notice that &CB is a weighted

average of the &Ptd) quantities with the weights qﬁP(d)[l-P(d)]/m(d) all
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positive and the w,(d) all expected to exceed 1. Therefore, one should
J. p expec | .

R

expect J)Lﬁ;to exceed 1
While one shquld therefore expect design effects for single degree of -
‘freedom P-vaiue contrésts to exéeed 1 fop unstratifiedAwitn replacement
clustef samples, the sendencyifof the PSU and SCH tschool).stage'specific
covariance matrices Z ( ) to ﬁave positive covariance terms for domains d
~and d' that are‘typlcally represented in the same schools and PSUs will
cause contrasts among-such domain P-values to have smaller cluster correla-’
‘tions than observed for the separate domain P-values.‘ Lepkowski and Landis;
(1980) examining dasa fnom the Health Examination Survey (HES) and a 1974
UnlverS1ty of Michigan Survey Research Center Omnlbus (OMNI) Survey, ob-
served this tendency for the DEFF of P- value contrasts to be substantlally
smaller than the DEFF of individual P=-values. The size of the proportional
reduction in an average contrnst DEFF relative to the average P-value DEFF
was 60 percent for the HES and 9 percent for the OMNI snrvey. _The‘siZe of
the propo;tionalh renuction fa;ters observed by iepkowski and Landis
depended bﬁ‘the magnitude of the avefage P-value DEFF. For HES where the
P-value DEFF's averaged 3.91, an overall 60 percent reduction was observed.
For the OMNI survey whefe the P-value DEFF's averéged 1.10, the overall
propnrtional reduction for_cpntrasnvDEFF's was 6n1y 9 percent. A similar
tendene§ for the proportional reduction to vary with tne menn'P-value DEFF
was observed across dependent variates within tne two surveys. .
For designs with stratification and -without-replacement or PMR selec-
tions at the various stages, the general expressions for the conposite
‘ eomponents contain crqss-covariance matrices ZRP(PSU) and ZRP(SCH) that are
expected to be negative defini;e. In this general case, the PSU and SCH

Fd

o . . T . .
correlation coefficients

C o 00

A

i

-

| '
e .




I

Peg (BSL) = {ETZP(PSU)[I-RP(PSU)].S + ST»ZRI;(SCH)E} + {qTZPFTOT)gf

"

< . Ly
° .

= [804(PSU) - Lq(sCH)]

and

~ peg(scH) = {ETZP(SCH) ["l-rR:ﬁ(;SCH»)]fq + ETZRP(STU)E-} s .{STZP(,TO.T.)S},

lécn(SCH) CCB(STU)]
may be negative if the combined stratification and W1thout replacement or
PMR selection effects CCB from the subsequent stage swamp the clustering
effects &, . The general case also has the primary stage stratlflcatlon

Cp

and without replacement or PMR selection effect

pep(®) = fa' Ip(BSV) a}/{a 5, (T0T)a}

L (PSU) |
which is expecteq to be negaeive and which has a large coefficient (nsm-1)
in.the desién effect expression. "

.The.emnifical results in chapter 3 of this report shon that for simple
constrasts among'NAEP P-nalues and for weightedjleast squares coefficients,
a substantial fraction of the design effects are léss than 1. Lepkowski
and Landisaaléo observed nunerous contrast DEFFs less than 1. In fact, -the
OMNI data had menn contrast bEFFs for .the ten dependent vnriables they
explored ranging frem 0.75 to 1.19 with an average of 0.99. In such

instances, the SRS based chi-squared statistics are smaller and less sig-

nificant than -the design based chi-square. While one might attribute some

of these DEFF wvalues less than 1 to negative bias in the design based
Taylor Series ‘variance approximation, we feel that the incidence of such

cases is too great to be totally explained in this fashion. Furthermore,
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~

the variance formula used with the Taylor Series linearization to produce

~

-the estimates of V_(DES) used in this report would overestimate the vari-
3 E
X . .

ance of a linear statistic since it assumes that primary units were selec-
v .

ted two or three per stratum with replacement, when in fact they were.f

selected without replacement. Specifically, the linearized single draw
variates are formed separately by ﬁrimary stratum h such that

24, (hijk) = M(hij) X (hij) [Y_(hij) - P(dr)]/X(d) ¢(hij)
'where_¢(hij) = ¢(hi) ¢(jlhi) denotes the nonresponse adjusted single draw
probability for sample school j of sample PSU(i) based on n(h) = 2 or 3 PSU

selections from primary stratum h and c(hi) school selections from sampile

PSU(hi). The PSU level averages

[

c(hi) m(hij) .
z(hi, ) = % 2 z(hijk)/c(hi) m(hij)
=1 k=1

are then formed with m(hij) dénotihg the number of package respondents from

sample schoolu(hij). The P-value covariance matrix is then estimated by
the between PSU within stratum mean square PP
~ H n(h) ~ ~ ~ -~ ’ T
Vp(DES) = 2 X [z(bi, J-z(h,, )] [z(hi, )-z(h )] /«0(h)[n(h)-1]
h=1 i=1
H ) .
= 2 MSP(PSUIh)/n(h)
=1
where )
~ n(h) - ) .
z(h )= % z(hi )/n(h) ‘
i=1

7

is the primary stratum-h mean of the linearized single draw variate vector.

If the within stratum h primary selections had been with replacement, then
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the variance estimator above would be unbiased for a linear sta;istit like

i
i
ta
i
1
i
i
i
i
{

the vector of domain by response option totals Y(+). Since the NAEP pri-
\ : 7

maries were selected without replacement, the stratum h effect of without

replacement selection, namely ZRy(PSUIh), is not accounted .for. This

matrix is expected to be negative definite so that its exclusion from.the-s——==—"=

variance function will enlarge the variance of any contrast.

.

In the Year 13 NAEP primary sample‘where?sequentiai‘PMR selections
were made from a judicously ordered primary frame, the pseudo-strata férmed
by pairing neigﬁbérihg_selectioqs down the ordéred listing should also lead
to some‘positive bias in the variance approximation due to ignoring the.

deeper implicit stratification. .To explore this issue further one could-

I3

contrast Wald statistics based on the Taylor Series covariance matrix

estimacor with Wald statistics derived from Balanced Repeated Replication

£

(BRR) covariance matrix estimators. Krewski and Rao's (1979) small sémple
comparisons of TSL and BRR variances for combined ratio estimators suggeétsd

‘that TSL generally has a negative bias while BRR has a positive bias under

the model
Y(hi) = a(h) + B(h)X(hi) + e(hi)
. . with
E [e(hi)[X(hi)] = 0 .
and " S o ; . .

E [e2(hi)|X(hi)] = ahX(hi)t :

Rao and Krewski show that the absolute bias comparison favors. TLS when

A

t £ 1. When t = 2, the BRR variance estimators have smaller absolute bias. ° -

In terms of mean-squared error, the results of Krewski and Rao (1979) and

-

G & G & &0 e = =

Frankel (1971), suggest that the TSL variances are generally more accurate

O
R

estimators. On the other hand, Frankel (1971) and " Campbell and Meyer

(1978) show that in reasonably small samples BRR maylproduée more robust

+

- | o3
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inferences in terms of achieving the desired significance level. Direct

TSL and BRR comparisons would shed some light on the TSL negati%e'bias

potential. Unfortunately such comparisons were beyond the scope of the

»

current project. ‘

R

< ) : . . v N .
the intercept parameter and zero-one indicator variables for parameters

- associated with the levels of student's race, sex, parent's education, and :

With the regression model parameterizéd such that (XTX) is nonsingular, the

2-l~—Testing Balanced Fits Via Dummy Variable Reggeséioniwmxw

o

An alternative mode of analysis for exploring the effect of‘domain

B

classifiers on the Yr(RSt) zero-one. correct response indicators has been
referred to as’ "Balanced Fitting" by NAEP analysts. This approach utilizes

dummy variable regression models of the form ,

o

¥ _(2st) = X(2st) B,

where the row vector X of independent yvariables includes a leading 1 for -

type of community.where.the school  is located. The proper  sample desigm

L Q

based analysis for testing the significance of such regression coefficieyfé'

v 2

has been specified by Folsom (1974). The universe level 1gast-s§uares.

solution for the vector of regression coefficients B is specified in terms

of the universe level left-and right hand sides of the so-called normal

equations; namely i

) L T N S(2) M(2s) ,

™) = 3 3 3 x(est)Tx(st)
! .
and ‘ : T : R :
T N oS(0) M) o o
XY= z =z 2 X(2st) Y(&st)

2=1 s=1 t=1

)

4

B vector is defined as

oo e -
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z

with ( )-1 denoting matrix inversion.

In term§ ofwthe balanced three Stage analogue of the NAEP design

) explored in the previous sections, the unbiased sample estimators for the
' b

left and right hand sides are formed from. the following single draw vari-

ates
(*x). ., = 2 Séz) M(gs)a (ijk)u(zs)x(zst)TX(zs£)/¢(zs)
Cidk gy sm1 em1 U8t ~ "
and
T N S(2) M(2s) .
(x y)ijk = 3 =z zl azst(ijk)M(zs)g(zst) Y(2$t)/¢(2$)».

) 2=1 s=1 t=

The corresponding unbiased estimators are formed as the sample means

T n ¢ m . '
: (x'x),,,= 2 X I (xx). /ncm
" i=1 j=1 k=1 J ;
and .

n-c om .
: X 2 (x-y).jk/ncm .

T
(x'y) i
i=1 j=1 k=1

The assﬁciated samplé estimator for the vector of regression coefficients is
B= a0l
To'approximaté the sampling variancé of é,'the folioWing Taylor ,series
1ineari;ed variéte was defived independently By Folsom (1974) and Fuller- _
s : , o P

(1974): .

% Q(&st)

&%)t x(est)T east)
\—-/ . )

where
e(fst) = [Y(&st) - X(2st)B]

denotes the prediction error or deviation from regression for student list

unit- (2st). The corresponding list unit single draw variate vector -is
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q(2st) = M(25)Q(Lst)/¢(Ls) .

Substituting these linearized single draw variate vectors for the z(2st)

vectors used previously to define the ZP(STAGE) covariance and ZRP(STAGE)

. ° », ~

cross-covariance component matrices for the vector P of estimated domain

P-values, one obtéins‘an analogous set of ZB(STAGE) covariapte and ZRB(STAGE)

cross-variance components. Recalling the general form for the total -co-

variance matrix,ZB(TOT), one can,show that

-

o 1.1 N s M(2s) T | S
(IO = MGH)(X X)) {5 3 L(2s) I X(2st) X(#st)e(2st)?} (X X)
o 2=1 s=1_ . t=1 : , |
where |

E(es). = (M(2s)/M(++)] + 6(2s)

This result derives from the fact that

‘

t N S0 M@&s) .
q(,..) = 2 Z ¢(2s) 2 q(2st)/M(2s) = ¢,
~ 2=1 s=1 t=1

~with ¢ depofiqg the null vector. For a self-weighting sample with L(2s) =1
fof all (ﬁs), the total chariance cémponent m%tfix ZB(TOT) is equivalent
to the simple random sampiing covariance matrix
) T -1 N S(2) M(2s) T T -1
ZB(SRS) = M(++) (X' X) {251 s§1 t§1 X(2st) X(2st)e(2st)?} (X'X) .

Th%zestimated linearized variate for B is defined as follows

dest) = M(2s) (x'x)]1, X(2st) r(2st)/0(2s)

with
r(2st) = [Y(2st) - X(2st) B]
denoting- the. observed sample residuals.  Composite component matrices

SB(PSU), SP(SCH), and SB(STU) are estimated from the analogous ANOVA type

L
a
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matrix

~

Mmean squares MSB(PSU), MSB(SCH), and MSB(STU). These B mean-square

matrices are defined by analogy with the corresponding MSP matrices using

2

q

N S(2) M(2s)
a(ijk) = = = I o
~ g=1 s=1 t=1 ISt

(ijk)q(est)

in place of the 2(ijk) linearized single draw variate vectors.

A consistent estimator for ZB(TOT) is obtained by recasting ZB(TOT) in

a form involying the sample weights W(2st) = M(&s)/ncm ¢(£s); that is,

where

is the

is the

is the

effect

by

N S(2) M(8s) .
ncm { 2 2 S W(gst)q(fst)q(gst) '}
2=1 s;} t=1 ~ ~

ZB(TOT)

- N S(2) M(8s) T
fw M2(#+) { 2 by 2 W(Qst)g(zst)g(zst) JW(+++)}
2=1 s=1 t=1 :

. N S(2) M(gs)
W(+++) = 2 2 Z w(gst)
2=1 s=1 t=1 :

universe weight sum;

W = W) /M)
universe level average weight, and

f .= ncm/M(++)

overall sampling fraction. As before, the unéqual weighting design
p .

is estimated by ,
~n n cC m n cC m 4
fw =ncm 3 ¥ 2 W(ijk)2/[ 2 = I W(ijk)]? .
i=1 j=1 k=1 i=1 j=1 k=1

Thy matrix inside of curley brackets, say SWB(TOT) is estimated consistently

"'n c c m

~ m A A n .
\yB(TOT) = 3 3z z W(ijk)zg(;jk)g(ijk)T/ S 2 I W(ijk)2

i=1 j=1 k=1 i=1 j=1 k=1

o7
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where .
Q(iik) = (x' 0, X ik r(ijk)
.

is the estimated Taylor Series linearized variaﬁe without the division by
our single draw probability ¢(2st) = ¢(2s)/M(2s).
The sImple random sampling covariance matrix ZB(SRS)/M(++)2 is simi-

larly approximated by ¢

~ n [of m - -~ ~ T L. C . m
Sp(SRS) = X I EW(ijk)Q(ijk)Q(ijk)'/ I I I W(ijk) .
. i=1 j=1 k=1 ~ ~ i=1 j=1 k=1 °

Notice that SWB(TOT) is the weighted sample mean of the vg(ijk)g(ijk)T

matrices using squared weights W{ijk)2? while SB(SRS) is the comparable

>

weighted average based on the original sample weights. For the statistic

~

B, the effect of unequal weighting

=
]

- -1
ZB(SRS) ZB(TOT)

is estimated by

AAA

2 -1
£S5 (SRS) ™" SWy (TOT)

: o

~

The generalized design effect matrix for B has another component that
arises from the typical model based least-squares analysis. Assuming that
TN Yoo g
(WG (EjK) = [W(ijk)]* X(KB + e(ijk)
withverrors having zerd expectation.and common variance 02 conditional on
the given set of X(ijk) and W(ijk) variables, ordinary least-squares theory

~

produces -our weighted B coefficients, and the model based covariance matrix

- - T "1 a2
Vy(MOD) = (x°x)7.. 82

where

~52-"
S i
. N
. . ~

Y

K

' |
“ ' ‘
l ‘

1

\




.o

o

n (o4 m
82 = I 2z 2 Wﬁijk)r(ijk)z/(ncm - p)
i=1 j=1 k=1 °

is the residual mean square of the w* transformed variables. Recognizing
that

{ SW(L0X (130X (02 (10T

nsm V(SRS) = M(++) (x0x) "1
: ik |

with the total student-population size M(++) estimated by

M(++) = Z W(ijk),
ijk

one can write the estimated model effect as . ) -

~

A -1" ‘ .
MB VB(MOD)‘ VBgSRS)

o

[ (ncm-p)/nem] { = W(ijk)gT(ijk)g(ijk)r(ijk)z/ﬁwz}(XTX)tT.
. ’ijk .

where

omz = 5 W@jk)r(ijk)?/ = W(ijk)
ijk ' ijk

is the weighted residual mean square. Under the model where E{r(ijk)?} = 0:
for large samples, the model expectation of MB given the sample will be
approximately 1.

For a set of linear contrasts among the B coefficients, say CB, one

can define corresponding component matrices

_ T
SCB(STAGE) =C SB(STAGE)C
. T
ZCB(TOT) =C ZB(TOT)C
_ T
ZCB(SRS) =C ZB(SRS)C
and
R _ T
VCB(MOD) =C VB(MOD)C .

<

These components lead to an estimated generalized design effect matrix of

the form

15
O
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DEFF(CE) = MCB CB[I+(ncm 1)R (O)+(cm~1)§CB(PSU)+(m-1)§CB(SCH)]

where -
RCB(O) = [I-RCB(PSU) R (SCH) R (STU)]
and
_ 3 -1
RCB(STAGE) = ZCB(TOT) SSB(STAGE) ]

With these results, one can again write the asymptotic distribution of the

ordinary least squares model based test statistic as

~ A
- a a a
Wiop(CB) ~ 2 Mep(a)icy () [1+(nem=1)pG; (0)+(em=1)pGp (SU)* (m-1)pGp (SCHD 3

where the X: are .independent single degree of freedom central chi-square

variables and the coefficient components are of the form

Mep(a) = {£Mepr,}

weg(a) = {gaMCBwLB al T Mep(a)
a Co_ . - ’
P25 (STAGE) = {QaMCBwCBRCB(STAGE)Ea} Mg ()i g (a)

where &a is the a-th row of the left hand eigenvectors of DEFF(CB) and L,

o

is the a-th column of the corresponding right-hand eigenvectors.

The empirical results presented in chapter 3 for NAEP balanced fit

. < : v
parameters suggests that the design effects for these statistics are gen-
erally greater than one. We suspect that the extra model effect components

MCB(a) contribute substantially to this result.

2.5 Inference for NAEP Package Means

. X .
In "‘order to increase the precision of subgroup comparisons, NAEP
analysts have turned to averages of single exercise 'P-values. Averaging

across exercises (e) within packages (indexed by u) should reduce “the

60
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R

) -

variance inflating effect of stochastic response errors. Averaging exer-

Ccises across packages has  the potential to substantially reduce sampling

errors, since each distinct package contributes a nonoverlapping sample of

approximately 2,600 students.

Recalling the definition of an estimated

NAEP P-value presented in section 2.1, a within package average across

cexercises labeled & =1, 2,

. E(u) can be written in terms of the

weighted mean of a. student level probortion correct variable. Witthue(hijk)

@

denoting the torrect incorrect response indicator for exercise e of package

u from sample school j of PSU(i) as administered to sample student (hijk)

in primary stratum (h), the weighted package u mean for domain d is

o

.,

~ E(u)-
P (@) = I R

d)/E (u)

H n(h) cu(hij mu(hij)

{z z
h=1 i=1

b2 b2 Wu(hijk)xd

j=1 _ k=1

E(u)

iR 3 Yy (hijk)/EW)]1/X, (D)

e=1

"where. mu(hij) denotes the number of package u respondents from the j-th

cooperating package u school from PSU(hi) with j ranging over cu(hi) such

~

schools. The denominator of Pu(d) is the package u weight sum for domain d

members .

[

~

To estimate the design based covariance matrix for the vector P(u)" =

(B,.(1), - - -,

level P-values

are used to form

~

oE(u)

Y (hijk) = I ¥ (hijk)/E(u)

e=1

linearized variates
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nau(BidE) = M (hif)Xy (hijl) (Y, (hijk)-B, (d)1/X (d)e (hi])

n(h)c, (hidm, (hij)W, (hif)Xy (hijk) (¥, (hijk)-B," (4)]/X,(d)

-

These linearized variates lead to the following Taylor Series covariance

matrix estimator based on the paired ®ith replacement PSU selection model

- H '
VE(DES) = 3 Msg (h)/n(h)
h=1

where . : ' :
u n(h)A ) ) . T '
°: MSF(h) = izl [Eu(hi..)fEu(h..1)I[Eu(hi..)-gu(h...)] /[nCh)-1],

is the primary stratum h contribution to the covariance matrix. To produce

° the PSU(hi) level mean vectors gu(hi")’ }hé student level vectors of D

>

linearized variates

~ . T A P ‘A . s _ A oy .

g (hijk)™ = [, (hijk), . . ., {i, (hijk), . .~ Hpy (hijk)]
are first averaged over the mu(hij) students responding to package u in
kcooperating écﬁool (hij) and then these 'school level mean vectors are

averaged over the cu(hi) cooperating schools from PSU(hi) that are assigned

package u.

o

To allow, for the consideration of item P-value averages extending

g
across packages’, say

w

- U .
P (dy= 2 P (d)/u, .
.o u-
u=1 .

. ’ =
the full covariance matrix for the extended vector '

ST LT S o T N

P = [g(l) s e e e g(u) y e e g(U)]

- of package level domain means is required. This extended covariance matrix

can 'be produced simply by extending the PSU level linearized vector means
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N

to include subvectors for each package u involved in the average; that is,

one defines

T

R R

u

. ~ . T
(hi ), . . ., EU(hl..) ]
and forms VP(DES)by substituting g(hi..) and g(h...) for the associated

package specific vectors in the definition of VE(DES). Note that the

~

vector of D cross-packagé means is a simple linear transformation of the P
vector of the form

~

= CP

~

o

with the d-th row of C having the form
? ¢(d) = [§,(d), . . C g, (), .. ., g, (@1/u

where'gu(d) is a (1 x D) row vector with a 1 in position d and zeros else-

) -
whére. The estimated design based covariance matrix for P is therefore

~

° . o T
V5(DES) = CV,(DES)C .

~

The simpie random sampling covariance maffix,VF(SRS) for P is
diagonal with d-th diagonal element
~q U
Vp(SRS) = { £ s2(d)/m (d)}/U?
° u u .
u=1
.where . : . .
. ' H n(h) cu(hi) mu(hij) , .
si(d) = £z 2 )3 wu(hljk)xdu(hle)[Yu.(hlqk)-Pu.(d)] /X, (d)

h=1 i=1 j=1 k=1

is the estimated subpopulation d variance of the Yu.(hijk) students level

: N 3 .

proportions correct. Recall that Xu(d) is the package u estimate of the

universe count of students in subpopulation d.

™
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The chi-square adjustment factors proposed by Rao and Scott based on

the average eigenvalue of the generalized design effect matrix

°

DEFF[P] = vl-,(SRs_)'1 V5 (DES)
have the form .
- D 2
AVED[P] = 5 DEFF[P(d))/D
v 4=l

-

[3a =1

were DEFF[%(d)] is the design effect for the d;th element of
In addition to thé weighted least squares/Wald statistic type analysi;
directed at th; §~vector, balanced fit type analyées directed at cross-
exercise and cross-package:means have been pursued. For these analyses,
the student level P-values Yu.(hijk) for all the U package samples involved
in the cross-package average were used as the dependent variables in a pair
of main effect regréssion models. For a fully interactive regressidn.model
including for example race, Se;, and parents education, the model based
predicted values for each race by sexrby pérents education cell (c) would

have the form of a weighted combined ratio mean

o

U ) ,
, . | El hf.kwu(hiJk)xuc(hle)Yu.(hle)
Y(c) = { &= ’UL }
3 3 W (hijk)X (hijk)
o u=1 hijk " He-
U. . u o~
={ Zz X, ()P (c)/ 2 X (c) 3
u=1 . u=1

<

where Xu(c) is the package u sample estimate of the univeise level student
count for subpopulation c¢. The main effect balanced fit models yield

reduced model approximations of the combined ratio means Y(c). The (DES)
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- \ .
covariance matrix for the main effect parameters fit to these student level

P-val .es were obtained using the design based regression?proceduges des-

cribed in section 2.4. The corresponding covariance matrix apblicable for

a standard model based regression analysis were obtained by runnirg the
. - . . 1

transformed variables wu(hijk)%Yu.(hijk) and wu(hijk)égu(hijk) through an

ordinary least squares package yielding

~

-1
ag?
e

-GE(MOD) = (x'%) .

where 62 is the residual mean square among the transformed Y variates and
e N B
T -1 . . ;
(x"x) denotes the inverse of the weighted sums of squares and cross

products matrix forming the left-hand sides of the normal equations.

-

.
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3. EMPIRICAL INVESTIGATION

v

3.1 Analysis Items and Subgroups
Intially, five NAEP exercises per age class were selected for analysis
from the Year 09 Mathematics Assessment. One item was selected from each

of the following five content objectives:.

-
numbers and numeration,
variables and relationships,
size, shape, and position,
measurement, and
other topics.

Mmoo w>

<

Copies of the selected exercises are included in Appendix A. Each‘i;em was
recoded one for correct and zero for incorrect. An additional score was
defined for each sEudent as.the proportion of the items analyzed on a
package that the student  answered correctly. This score was analyzed
within each age class to form three mean scores for analysis.

Four domain or subgroup defining variables were also selected. These

were, with their corresponding levels:

Sex Race
Male ' White
Female ‘ Other

Type of Community (T0C) Parental Education (PARED)
Extreme Rural Not High School Graduate
Metro ' High School Graduate

Other Post High School
3.2 Anélzses ]

The ultimate goal of this study was to compare sample design based
analyses of NAEP data with those assuming a simpie random sample. This was
done separately for two anaiytic methods. The first analytic method that
will be discussed is the Wwald statistic/weighted least squares approach.
This will be followed by a discussion of the work done for the balanced

fits anélyses. ~ s
| 0. 06
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Aruitoxt provided by Eic:

v

The Wald statistic/weighted least squares approach, described earlier

&

in section 2.1, proceeds by first estimating a vector of domain statistics
and its corresponding covariance matrix. Various hypotheses concerning

this vector can then be evaluated. Two vectors of domain means were formed

for each of the 15 item scores and the three mean scores. The first vector

contained 12 elements corresponding to the complete cross-classification of

Race, Sex and Parents Education'(PARED). The second vector was derived

e

from the cross-classification of Sex, Type of Community (TOC) and PARED and

%

was of length 18. ©For the 15 item scores, these vectors consisted of
simple ‘proportion correct p-values. Two covariance matrices were then
estimated for each vector. One based upon the actual sample design and the
other assuming a simple random sample of students; The details of the

estimation process were provided in Chapter 2.

G

3

At this point several exercises were excluded from the study because
their eétimated eovériance matrices were singular’ Eor the Race*Se;*PARED
cross-classification only item NO317A was excluded. However, for the
Sex*TOC*PARED cross-classification it was necessary to exclude items
N0227A, NO317A, N0323A; T0224A, and SdlZlA.’

A linear model was éhen fitted, via weighted least squares, to each of
the remaining domain mean vectors. For the Race®*Sex*PARED domain cfoss-
classification vectors the model contained the main effects of Race and
Sex, a linear éffect of PARED -and the foﬁr possible two- ;nd three-way
interactions among these three effects. The Sex*TOC*PARED domain classifi-

cation model had the same form except that TOC was substituted for Race.

These models were fitted two ways -- one weighted with the design based

i

covagiance matrix and the other weighted with the simple random sampling
1

covariance- matrix. The lack of fit of each model and the significance of

- ’ N | =61~ 67
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each'effect in the model was then assessed. These tests are labelled one
throughlelght in Tables 3-1 and 3-2.

Jn%addltlon, nine other hypotheses were consxdered and are labeled
%

nine thfough 17 in Tables 3-1 and 3-2. These hypotheses were tested via

direct contrasts of the domain means. The tests labeled-"average, (numbers

c

10, 11, ?2 and 13) average the effect over the combined levels of the other

1

two varihbles. On «the other hand, the "nested" tests (numbers 14, 15, 16
and 17) test for all the indicated simple effects being simultaneously null
over the éomhinedslevels of the other two variables.

Three\test statistics were entertalned for each hypotheS1s The £irst
&

A

test was a\Wald statistic ch1 squared based upon the actual NAEP sample

i o .
design. A second Wald statistic chi-squared was also calculated assuming a

simple rand?m sample of students. Finally, the ‘simplé random sampling
chi-squared #as adjusted as shown in section 2.2 by diyiding by the average
design effe%t to obtain the third test’ statistics. These three test
statistics wére calculated for each hypothesis for 14 NAEP items and three
mean Sscores for the RaceﬁSeanARED cross- classification, as well as for 10
NAEP 1tems pﬂus three mean scores for the Sex* TOC“PARLD Cross= class1f1cat10n

I
All of these test statistics are showu in Appendlx B along with thelr

associated slgnificance levels assuming that each 'has a chi-squared d1str1-:

i
bution. Theftest numbers in Appendix B correspond to those in Tables 3-1
{

and 3-2. f : : .

2

Turnlng now to the balanced effectsy analyses, the 15 NAEP items plus

.

three age 7elated mean scores d1scussed earlier were studled As noted ih’

’
=

Chapter 2,§the balanced effects methodology is used 1n'a«regression-settihg”

A

to assessrthe significance of a particular effect after.adJustlng for the

_other factors in the model. For th1s portion of the study, each of the

i | . \
NAEP item scores and three mean scores were-regressed on two models. One

i
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R o
Table 3-1. Hypothesis Tests for the Race*Sex**PARED Cross-
Classification ’
Test Number - - . d.f. Description
Linear Model Tests L

1 4 Lack of fit

2 1 Race

3 1 - Séx

4 . 1 PARED linear

5 1 ‘ . Race*Sex .

6 1 - Race*PARED linear

7 1 Sex*PARED linear

8 1, Race*Sex*PARED linear

Contrast Tests o

9 o1 ; All cells equal
10 - -1 . Average Race.effect
11 1 . Average Sex effect
12 . "2 Average PARED effect
13 1 Average PARED linear ‘effect
14 6 Nested Race effect «
15 6 Nested Sex effect
16 8 o Nested PARED effect :
17 4 / o Nested PARED linear effect

/

' R
M

a
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, l Table 3-2. Hypothesis Tests for the Sex*TOC*PARED Cross- -
' Classification ’
' ' Test Number d.f. Descfiption
‘ Linear Model Tests )
l - 1 6 Lack of fit
2 1 Race
. 3 2 TOC
4 1 PARED linear
' 5 . 2 Sex*TOC
o . 6 ° 1 Sex*PARED linear )
' ‘ 7 2 TOC*PARED linear .
8 e 2 Sex*TOC*PARED linear
Contrast Tests ' . . y
' 9 17 ° All cells equal
10 1 Average Sex effect
' 11 2 Average TOC effect
I ‘ 12 2 Average PARED effect
13 1 Average PARED linear effect
‘ 14 9 Nested Sex effect
_ 15 12 Nested TOC effect
_ 16 12 Nested PARED effect
17 6 Nested PARED linear effect
: Pos
el
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modél contained the main effect of Sex, Race and PARED, while the other
contained the main.effect of Sex, TOC and PARED. ' The three partial F-tests
for each effect in the model controlling for the“déher two effects were
then considered for each modél and mean or item score.

Each model, and hence each F-test, was fitted in three different ways

for comparison. One approach employed the sampling weights and the Taylor

-series variance estimation technique discussed in section 2.4. This yielded

striﬁg design based significance tests. Test statistics were also obtained
using a standard regression package (the GLM>pr6cedure of SAS) ignoring
both the sémple design ,and the sampling weiéhts. This approach produces
biased estimates of the regression coefficient, as well as producing’infer-
ential statistics under inappropriate standard regression assumptions.
Finally, a weighted veréion‘of the SAS GLM procedure was used.” This process
p;dperly incorporates the sampling weights to produce the correct statisti-
cally consistent estimates of the regression coefficients while still
appealling to'inappropriate standard regression assumptions for iﬁference.
Since the statistical package used for this last p&rtion of the balanced
effects analysis uses unweighted sample counts te calculate its degrees of
freedom, the analyses so obtained are equivélent to those thét would have

resulted from first scaling the sampling weights so that they summed to the

-unweighted sample size and then using a statistical package that used the

sum of the we{ghts as its total degrees of freedom. The balanced effect
F-tests along with their significance or probability levels are presented

in Appendix C.

3.3 Results

3.3.1 Wald Statistic/Weight Least Squares

The design effects (DEFFs) for. each domain p-value and“mean score used

in the Wald statistics/weighted and 1eastISquares analyses are summarized

v ]

o




Aruitoxt provided by Eic:

in Tables 3-3, 3-4, and 3-5. Each table preéents the minimum, median,
maximum and mean DEFFs for a particular NAEP item or mean score 3Cross the
levels of the indicated domain defining cross-classification’ (i.e.,
Race*Sex*PARED or. Sex*TOC*PARED) . The design effects reported in these
three tables are consistent with previous NAEP K experience and tend to
average around 1.4. Also; as discussed in‘séction 2.2, the mean DEFF's
given in the last column bf each table are the exact quaﬁtities proposed by
Rao ‘and Scott (1981) and fellegi (1980) for adjusting simple random sampling
(SRS) based Wald Statistics chi-squareds to reflect the effects of the
sample design. ' These are the adjustment factors used in the subsequent
discussioﬂl

As was noted in section 3.2, two differeht methods of ;halyses or
hypothesis testing often used by researchers was considered within the Wald
statistic/weight least squéres context. The first fitted a linear model to
the estimated domain statistics. Relevant hypotheses were then tested via
contrasts qf the estimated linear modgl parameters. The parameters were
estimated weighting inversély proportionél to the SRS covériance matrix of
the domain statistics to obtain the SRS test statistics. _Another set of
farameter estimates waé obtained by weighting by the inverse of the design

based covariance matrix and the asymptotically correct test statistics were

calculated. The second method 6f analysis evaluated’hypotheses via direct

contrasts of the domain statistics. Again this was first accomplished

using the SRS covariance matfix to obtain the SRS test statistics, and was
then repeated using the design based covariance matrix to obtain the
asympotically correct tests. -Results in the rest of this secgtion will be
presented separ-tely for these two modes of analysis (i.e., contrasts of

linear model coefficient and contrasts of cell means).
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|
Table 3-3. NAEP Item Design Effects for the Race * Sex * PARED
\ Cross-Classification ' |
ﬂ ;
NAEP - © Mipimum Median Maximum Mean ' ;
Item DEFF - DEFF DEFF DEFF |
NO222A .79 1.23 : 3.08 1.48 l ‘
NO227A .80 1.36 1.94 1.40 . )
NO305C .62 - 1..39> 1.93 1.35 A
NO323A 59 1.27 - . 1.67 1.14 l
TO105A A .91 1.50 2.84 1.63 |
TO110A .56 1.26 | 2.38 1.43 l
o T0203A .99 : 1.72 ‘ 2.29 ' 1.66 ' .
T0223A .69 113 To2.32 } o128
TO224A 1.00 1.31 : 2.82 1.47 | l
SO0108A .63 . .94 ' 1.99 1.11 -
S0117A .61 1.17 2. 44 S 1.23 .
S0121A .39 ' 1.09 3.71 1.37
S0206A -2 1.25 3.44 1.40 l
S0225A .59 | .84 1.83 .99 .
Average .71 1.25 2.48 1.35
|
| i
| i
|
| 1
7’3 “ -
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‘Table 3-4. NAEP Item Design Effects for the Sex * TOC * PARED
Cross-Classification ‘

P
|
i
| . NAEP Minimum Median Maximum Mean
l Item DEFF DEFF DEFF DEFF
l NO222A 21 1.17 2.49 1.25
' o NO305C .37 1.53 2.21 1.35
_ TO105A | .49 1.40 4.32 1.61
l TO110A .64 1.28 3.02 1.31
. T0203A .27 1.36 4.46 1.62
. T0223A .68 1.14 2.10 1.25
. S0108A . A 1.03 2.01 1.14
SO117A .35 1:11 2.14 1.14
' : S0206A - .48 1.53 4.17 1.66
. S0225A .47 .93 2.37 1.04
' Average .44 1.25 2.93 1.34
|
1
|
|
L
i
1
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Table 3-5. Mean Scores Design Effects

@ Minimum

Median Maximum - Mean
Model/Age . DEFF DEFF DEFF DEFF
RACE*SEX*PARED
9-year-olds .57 1.45 3.32 1.50
13‘-;-_year-olds .78 1.31 2.33 1.46
. 17-year-olds .49 1.09 2.57 1.16
Average .61 1.28 2.74 1.37
SEX*TOC*PARED )
9-year-olds .80 1.52 3.47 1.66 _ ' |
13-year-olds .59 1.50 3.57 1.66 o
17-year-olds .75 1.30 2.61 1.45 |
: ERA) 2.0V £.01 24 |
|
Average .71 1.44 3.32 1.59 ' |
. |
7’5 |
Q -69- '
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For each hypothesis test entertained in this ‘portion of the investiga-

tion, the ratio of the SRS based Wald statistic to the asympﬁotically
correct sample design based Wald statistic. chi-squared was caiculated.
These ratios are another measure of the effect of the sample design and are
referred tovin the remaining tables as hypothesis test design effects. Two
issues will be addressed by way of tﬁese test DEFFs. First, an indication
of the ordinél relationship between the th ﬁest statistics will be ;ought.
That is, does the SRS statistic tend to be generally smaller or lafger than
the dgsign based chi-squared? Second, are the test DEFFs fairly;constant,
at least within an itemvor mean score? This second point is important if é
simple multipliéatiye adjustment' to the SRS test statistics is ﬁo be
successful.b'Tables 3-6, 3-7, 3-8, present a summary of -the test DEFFs for
each mean or item score for the indicatedv cross-classification. The
miniguam, median, maximuq}and mean gést design effects are shown separately
for linear model coefficient contrasts (test numbers 1 through 8,in Tableg
3-1 and 3-2) and cell mean contfasts (test numbers 9 through 17 in Tables
3-1 and 3-2).

The ‘most striking feature of these three taﬁles is the extreme

instability of the test DEFFs for linear model coefficients. In virtually

every case the mean is far greater than the median, indicating a skewed

‘distribution with a long right -hand tail. It appears that adjhsting the

SRS tes£ statistic for thé linear model coefficient contrasts will not
prove fruitful because of the extreme range they cover. This may result
from using_the SRS cova}iance matrix to estimate .the linear model parameters
for the SRS test statistic. This process does not properly account for the
correlated nature of the domain statistics and leads to less precise

estimates of the model coefficients. Conversely, Tables 3-6, 3-7, and 3-8
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Table 3-6. Hypothesis Test Design Effects by NAEP Item for
the ‘Race * Sex * PARED Cross-Classification

Contrast of Linear

- . .

[y

NAEP Model Coefficients Contrast of Cell Means
Item Minimum Median Maximum Mean Minimum Mediaq Maximum Mean
N0222A .04 .82 5.42 1.41 .19 .74 1.81 .88
NO227A .00 .57 900.26 112.96 .23 .02 1.60 .88
N0305C .09 .57 18.69  3.88 .62, .33 2.40 .38
NO323A .00 .48  1.08 .57 .51 .08 2.01 112
TO105A . .32 .99 15.73  4.02 A .16 1.98 .27
TO110A .16 .63 1.72 .81 .56 .18 2.18 .19
T0203A .10 .86 2.29 1.03 .53 .51 2.21 .50
T0223A .49 .10 1284.87  45.21 .72 11 1.63 .10
T0224A .80 .68  34.09 9.05 .65 .10 2.41  1.27
S0108A .03 .71 . 47.13 7 6.47 .55 .84 1.50 .93
S0117A .19 .59 3.62 .97 .53 .75 1.75 .00
S0121A .00 .47 26.19  3.91 .60 .95 2.23 .19 *
S0206A . .59 .51 2.67 1.58 .59 .10 2,09 1.12
502254 234 .65  2.33 .87 .43 92 1.09 .84
Average | .23 .12 96.15 13.77 517 .06 1.92 12
77
-71~
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Table 3-7. Hypothesis Test Design Effects by NAEP Item for
the Sex * TOC * PARED Cross-Classification

Contrast of Linear-

NAEP Model Coefficients ContrastaofACell Means
Item Minimum Median Maximum Mean Minimum Median Maximum Mean
N0222A .48 428  $5.14 11.51 11 48 v 2.82 .75
NO305C .10 1.08 190.09 29.98 .19 .97 1.81 .89
TO105A .04 .60 6.97 1.70 .13 .39 3.23 .98
TO110A .37 .76 1.57 .80 19 .55 3.41 .84
T0203A .14 .bb 3.93 .91 .27 1.08 1.84 .93
T0223A .22 1.23 10.30 2.40 .45 .86 1.13 77
S0108A .02 .14 64 .22 .10 .36 2.62 .73
S0117A 46 .97 2.80 1.22 .03 .36 2.46 ,.70
S0206A .11 47 1.27 .54 .10 . .64 1.27 .59
S0225A .05 75" 2.98 .98 .23 .45 1.43 .60
Average .20 1.07 k27.57 5.03. .18 .61 2.20 .78

- 72~
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Table 3-8. Hyp~-hesis Test Design Effects for Mean Scores

) Contrast of Linear Model Coefficients’ Contrast of Cell Means
Model/Age ‘ Minimum Median ngimum Mean Minimum Median Maximum . Mean
Raée*Sex*PARED

9-year-olds .11 .22 ~3.74 .85 .29 .91 1.67 1.00
13-year-olds .09 1.86 7064.23 885.11 .59 +1.19 2.23  1.26
17-year-olds .00 143 1.16 .56 ';39_ - 1.08 1.32 .89

Average .07 ¢ .84  2356.38 295.51 .43 1.06 1.74 1.05

Sex*TOC*PARED

9-year-olds .23 .39 1.39 .55 .19 .62 2.53 .91
13-year-olds . .05 .50 "1.96 .74 .17 .72 2.87 1.09

17-year-olds .02 ©.65 223.55 28.54 .03 .50 1.27 .53

Average .10 51 75.63 9.94 13 61 2.22 .84

L&
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indicate that the éell mean contrast hypothesis test design effects tend to
be more symetrically distributed over a narrower range than their linear
model ;ounterpaits. However, they still exhibit eno;gh variation on both
sides of unity to make a simple multipicative adjustment questionable.

As indicated earlier, theoretical considerations suggest that the mean
design gffecgs presented in Tables 3-3, 3-4 and 3-5 may provide serviceable
adjustments to the SRS test statistics. This conclusion is drawn into

questlon by comparlng the standard mean DEFFs in these three tables with.

the average test DEFFs for cell mean contrasts in Tables 3-6, 3-7, and 3-8.

Almost without exception the mean test DEFFs are less than their correspond-

-

ing p-value DEFF average. In addition, the mean hypothesis test DEFFs are
generally near unity or less while the standard mean DEFFs are generally
much greater than unity. This implies that dividing the SRS test statistic
by the mean design effeét will produce a test that is generally much too’
conservative. In fact, the adjustment sugges}ed Ey Rao and Scott (1981) or
Fellegi (1980) is in the wrong direction for the examples preéented here.

The hypothesis test design effects are further summarizea in Table 3-9

_through 3-12. These four tables dfsplay the distribution of the test DEFFs

over NAEP Items or mean score for each of the hypothesis tests shown in

Tables 3-1 and 3-2. As was noted before, the linear model tests are very

unstable. An interesting observation for the cell mean contrast test DEFFs
is the distinct relationship between the number of degrees of freedom
(d.£f.) for the test and mean test_DgFF. The larger d.f. tests have the
smaller mean test DEFFs. The relationship is almost deterministic. The
minimum, median and maximum test DEFFs also follow’this~distinctﬂfelation-

ship. This observation is surprising in light of the eigenvalue inequality

presented in section 2.2. This inequality indicates that as the number of

~74- o0 - . °




Table 3-9. Hypothesis Test Design Effects for NAEP Items by Test Number
for the Race * Sex * PARED Cross-Classification

E

i)

i

Test .
Numbers « d.f. Minimum Median - Maximum Mean '
Linear Model Tests ’
1 4 .72 .95 2.23. 1.09 '
2 1 .31 .97 26.19 2.88
3 1 .14 .59 900.26 86.14
4 1 .66 1.17 18.69 2.41 ' |
5 1 .01 .58 17.38 2.59
6 T 1 .00 .64 12.10 2.20
7 1 .00 A 55.51 10.16
8 1 .04 .56 15.73 2.67 ,
Average ' .24 .74 131.01 13.77
Contrast Tests . '
9 11 .19 .64 1.18 ’ .72
10 1 1.07 1.62 2.41 1.71 8
11 1 ©.82 1.25 2.06 1.38
12 2 .74 ~1.15 2.40 1.34
13 1 .51 1.10 2.09 1.22 .
14 6 A 1.10 1.94 1.07 '
15 6 .43 .70 1.12 .74
16 8 .37 .72 1.64 .80
17 b L2 .95 2.23 1.09 '
Average _ .59 1.03 1.90 1.12 .

¢

-
.
- - . \
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' Table 3-10. Hypothesis Test Dezign Effects for NAEP Items by Test Number
- ‘ / for the Sex * TOC* PARED Cross-Classification
' Test ) 3 ,
Numbers d.£f. Minimum Median Maximum ‘Mean
' o ~
' Linear Model Tests ) i v
. 1 6 17 52 . 1.3 - .78 -
2 1 .09 .97 190.09 20.03
S 3 2 .11 .66 55.14 6.30
l A 1 .62 .77 . 3.85 1.11
5 2 < .02 ° .58 12.47 2.65 o
6 1 .04 .80 45.56 6.48 : a
7 2 .05 .69 4.42 1.00 *
; 8 | 2 : .03 .62 . 11.62 1.87 .
Average . .12 .70 40.59 - 5.03
' . Contrast Tests
: 9 17 .03 16 .50 19
10 1 .35 .77 2.82 .98 -
11 . 2 .32 1.31 3.237 1.53 .
12 2 .57 .85 1.38 .92 M
13 1 .41 1.05 3.41 1.34 '
: ‘ 14 9 .13 .36 1.08 . .45
15 12 J11. .24 .45 .27 :
16 12 .14 54 1.13 .55 )
' | 17 6 17 .52 1.53 * .18
‘ Average - .25 .64 1.73 .78
L 82 ~1
- \) . | _76_ . i - Ob |
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Table 3-11. Hypothesis lest Design Effects for Mean Scores by Test Number .:'
for the Race * Sex * PARED Cross-Classification
Test a ) o ‘ ) 4 oo . '
Numbers d.f. Minimum Median Maximum” Mean .
Linear Mod"el Tests
-1 4 .29 1.15 -1.83 1.09 '
2 1 .41 .46 3.74 1.53 ,
3 1 .09 .15 1.16 .47
4 1 1.01 1.06 1.90. 1.32 .
5. , 1 .00 .21 3.46 1.22
6 1 .22 42 7064.23  2354.96
7 1 .01 .11 7.91 2.68
- 8 7 o1 .20 .28 1.88 .79 .
Average .28 .48 885.76 295.51
Contrast Tests . : '
9 11 .42 .76 .81 . .66
10 1 ¢ 1.23 1.67 2.23 1.71 ° {
11 1 .79 1.19 1.36. 1.11.
12 2 1.08 1.49 1.71 1.43
13 1 .91 1. 08 1.37 1.12 v
14 6 . .97 1.13 1.32 1.14 '
o 15 6 .49 . .59 .76 .61 g
16 8 .40 N .76 .61
17 4 .29 1.15 1.83 ¢ L.09 ' ;
" Average .73 1.08 1.35 -1.05 u
? ' "% i "’
, Only thiee observations.
3 B i
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Table 3-12. Hypothesis Test Design Effects for Mean Scores by Test Number
for the Sex * TOC * PARED Cross-Classification

Test * W% %
Numbers . d.f. Minimum - Median Maximum Mean
Linear Model Tests
1 6 .54 - .64 .69 .62
2 1 .02 .05 .26 .11
3 2 .31 .61 .82 .58
4 1 .19 47 1.39 .68
5 2 .23 .58 1.96 .92
6 1 .26 1.32 223.55 75.04
7 2 .16 .53 1.24 .64
8 2 .26 1.11 1.44 .94
Average @ .25 .66 30.17 9.94
Contraét fests o .
9 17 .03 .17 .43 .21
10 , 1 .50 .72 1.17 .80
11 2 1.27 2.53° 2.74 2.18
12 2 - .66 .85 1.35 . +95
13 1 .62 .86 2.87 1.45
14 9 .34 - .61 .89 .61
15 12 .19 .21 .51 .30
16 12 ‘ .22 © .48 .60 .43
7 6 54 .64 -69 262
Average T .49 : .79 1.25 .84
“Only three observations. - ;
P
84 '

-78-




contrasts simultaneously tested (i.e., degrees of freedom) increase the

oy

- mean test DEFF should approach the mean design effect if the adjustment to
the SRS test is effective. However, the exact opposite relationShip’is.

observed. As the d.f. increase the mean test DEFF tends to depart further

-t

<
- ) . . . o, _
ol . o0 P = ¢ TP O Gy 2 B e eSS Np el W aa
h . e v R ’ ’ ) .

from the mean DEFF. This casts further doubt on the appropriateness of the
mean DEFF adjustment\. | ‘ - o

The Wald statistic/weighted least squares data was also analyzed by
considering the tables in Appendix D. This appendix presents contingency
tables of the ngﬁber of tests which were either accepted or rejected at :he
five percent signiﬁicance level by the sémple design based test versus
either the SRS test or the adjusted_SRS test. Recall that the adjusted
téest was ob'tained byqdividing the SRS test statistic by the appropriate
mean design effect given in Tables 3-3; 3-4 or 3-5. All three test
staéistics were compared against the chi-squared distribution ‘with the
appropriatq degrees of freédom. Appendik D was(}further summarized byd
calculating’the fogr iditional percents of reaching an opposite _.onclu-

sion for each contingency table which are reported in Tables 3-13 through

3~16. The "last column of the téble for cell mean contrasts of NAEP items

]

(Table 3-13) indicates that the SRS tests are aétuqlly too conservative.

?

©

This seems to be especially apparent for the Sex*TOC*PARED cross-classifica-
tion. Approximately 15 percent of. the Race*Sex*PARED and 32 percent of the
Sex*TOC*PARED hypotheses accepted by the SRS test should have been rejected.

[

Conversely, approximately‘ten percent of the hypotheses accepted ‘by the

e

asymptotically correct sample design based test were rejected by the SRS

test. This implies that while the SRS test tends to be overly cénservative,

v o \

it does not follow that any hypothesis rejected by the SRShtesE would be

rejected by- the sample design based test. In addition, note that tlie

o - o

b

v

-79; - 85
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. Table 3-13. Conditional Percent of Contrast Design Based (DB) Tests Versus Alternative
. Tests (AT) Reaching an Opposite Conclusion for NAEP Items

! . Cross- Alternate Rejected bs; AT Accepted by DB Accepted by AT Rejected by
. Classification Test given accepted given rejected given rejected DB given
o by DB by AT by DB accepted by AT

Race*Sex*PARED

SRS .
‘9~-year-olds 10.0 13.3 18.8 14.3
13-year-olds 7.1 3.4 9.7 18.8
17-year-olds 6.3 3.6 6.9 11.8
All ages 8.0 5.6 10.5 14.8

én Adjusted - .

! 9-year-olds 5.0 7.1 18.8 13.6
13-year-olds 7.1 - 3.6 12.9 23:5
17-year-olds 0.0 0.0 10.3 15.8
All ages. 4.0 2.9 13.2 17.2

Sex*TOC*PARED
o ﬁ ‘

9-year-olds 0.0 0.0 38.5 50.0
13-year-olds 18.2 8.0 8.0 . 18.2
17-year-olds 10.0 4.3 15.4 30.8
All ages 11.5 5.4 17.2 32.4

¢ a Adjusted : . ’ ‘ .
9-year-olds 0.0 0.0 o 61.5 61.5 ’ -

p 13-year-olds 0.0 0.0 28.0 38.9

17-year-olds 10.0 4.8 ¢ 23.1 40.0
All ages,, 3.8 2.3 32.8 45.7

=
¢

. L s
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Téble 3-14. Conditional Percent of Contrast Design Based (DB) Test Versus
Alternative Tests (AT) Reaching an Opposite Conclusion for Mean Scores

Cross- Alternate Rejected by AT Accepted by DB Accepted by AT Rejected by
Classification Test given accepted given rejected given rejected DB given
. ‘ by DB by AT by DB ° ‘accepted by AT -
Race*Sex*PARED ' - .
E .
9-year-olds 0.0, 0.0 0.0 0.0
13-year-olds 0.0 0.0 0.0 0.0
17-year-olds 0.0 0.0 0.0 0.0
All_ages 0.0 0.0 0.0 0.0
é‘g Ad]'qsted
1 9-year-olds 0.0 0.0 14.3 33.3
13-year-olds . 0.0 0.0 0.0 0.0
17-year-olds 0.0 0.0 0.0 0.0
All ages 0.0 0.0 5.0 12.5
Sex*TOC*PARED
SRS v
9-year-olds 0.0 0.0 14.3 33.3
13-year-olds 33.3 14.3 0.0 0.0 .
17-year=colds 0.0 0.0 0.0 0.0
All ages 12.5 5.3 5.3 12.5 o
Adjusted
9-year-olds ' 0.0 0.0 42.9 60.0
13-year-olds 33.3 - 25.0 50.0 60.0
-, 17-year-olds ‘ 0.0 0.0 33.3 40.0
All ages 12.5 8.3 42.1 53.3
83 89
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Table 3-15. Conditional Percent of Linear Model Design Based (DB) Tests Versus Alternative Tests (AT)
Reaching an Opposite Conclusion for NAEP Ttems ‘ :

Cross- Alternate Rejected by AT - Accepted by DB .cAccepted by AT Rejected by
Classification Test given accepted. given rejected given rejected DB given
by DB . by AT by DB - accepted by AT

Race*Sex*PARED

SRS |
. 9-year-olds 3.8 16.7 16.7 3.8
13-year-olds 16.7 23.5 18.8 13.0
17-year-olds 3.4 10.0 18.2 6.7
‘0 All ages - 7.6 18.2 18.2 7.6
. .
et Adjusted
: "9-year-olds © 0.0 0.0 16.7 3.7
'0 13-year-olds - 12.5 21.4 31.3 19.2
“17-year-olds 3.4 10.0 . 18.2 6.7
All ages 5.1 13.8 24.2 9.6 .
Sex*TOC*PARED
- SRS
9-year-olds 8.3 33.3 50.0 15.4
13-year-olds 11.1 22.2 50.0 30.4
17-year-olds . 16.7 14.3 40.0 44 .4
ALl ages 11.9 19.2 4.7 31.5 ]
Adjusted . <
9-year-olds 0.0 0.0 75.0 20.0
13-year-olds 0.0 ‘ 0.0 57.1 30.8
17-year-olds 16.7 15.4 45.0 47.4
All ages 4.8 - 10.0 52.6 33.3
. . e .
4
. 91 :




Table 3-16. Conditional Percent of Linear Model Design Based (DB) Tests Versus Alternative Tests (AT)
Reaching an Opposite Conclusion for Mean Scores

Cross- Alternate Rejected by AT . Accepted by DB Accepted by AT ' Rejected by

Classification Test given accepted given rejected given rejected DB given

by DB ) by AT by DB accepted by AT

Race*Sex*PARED

SRS -
9-year-olds 0.0 ~ 0.0 60.0 50.0
13-year-olds 0.0 0.0 0.0 : 0.0
17-year-olds 0.0 0.0 33.3 16.7
All ages 0.0 0.0 4b.0 22.2
i - Adjusted -
tw 9-year-olds 0.0 0.0 °60.0 50.0
13-year-clds 0.0 0.0 0.0 0.0
17-year-olds 0.0 0.0 33.3 _ 16.7
All ages 0.0 0.0 40.0 22.2
© Sex*TOC*PARED -
SRS . .
9-year-olds - 0.0 50.0 100.0
13-year-olds 0.0 0.0 20.0 25.0
17-year-olds 20.0 -~ 33.3 33.3 ., 20.0
All ages 12.5 9.1 37.5 . 46.2
9-year-olds - 0.0 ' 87.5 ) 100.0
13-year-olds 0.0 0.0 60.0 \ 50.0
a 17-year-olds, 0.0 o.o 7 733.3 16.7
All ages 0.0 0.0 ' © 68.8 . , 7.9 ,
92 ‘ -— S 83
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too often.

conservatism “observed

kY

for the SRS test is exaggeraﬁed for the adjusted

test. This is a further reflection of the previous observation that the

°

mea design effect is too large of an adjustment to divide the SRS test

statistic by. The same observations can be made for the contrasts of NAEP -

N

mean scores (Table 3-14). However, the results are less dramatic. In

addition Tables 3-15 and 3-16 present the results for the:linear model

Ed

Because of the defiéienciesApreéented previously for_this’

«

based tests.

mode of analysis, these two tables are ‘presented for completeness’ only.

z

3.3.2 Balanced Effects : o .

As nofeduin sectioﬂ 3.1, the balanced effects analysis proceeded by
fitting two different linear models to the data and then assessing the’

significance of each term ‘n the model after accounting from the remaining

terms. These tests-are preseated in Appendix C. .As was done for the Wald

statistic/weighted least square data, contingency tables were formed of the

number of tests which were either accepted or rejected at the five percent
significance level by the sample design based test versus either the sampl-
ing weighted standard regression test or the unweighted standard regression

test. Again, the contingency tables were further summarized to yield Table

A

3-17. This table presents the four conditional percents “of reaching an

4

opposite_conclusion for each contingency table. The first column of this
table indicates that both of ;he'non-sample design based testing procedures

are far too liberal. These two procedures tend to reject about 20 peréent

© £l




Conditional Percent of Balanced Effects Design Based (DB) Test

Table 3-17.
Versus Alternative Tests (AT) Reaching an Opposite Conclusion
, Rejected by AT Accepted by DB Accepted by AT Rejected by -
Alternate given accepted given rejected given rejected DB given
Test by DB by AT by DB accepted by AT

Unweighted
9-year-olds 17.6 21..4 15.4 12.5°
13-year-olds 22.2 - ,08.7 00.0 00.0
17-year-olds- 08.3 - 05.3 00.0 00.0
All ages 15.8 10.7 03.8 05.9
Weighted.

-9-year-olds 23.5 25.0 07.7 07.1
13-year-olds 22.2 08.7 00.0 00.0
17-year-olds 25.0 15.0 05.6 10.0
All .ages .- 23.7 ~15.3 03.8 06.5

=
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4. COMMENTS ON NAEP DATA AND GOCUMENTATION

.

Two main problems were -observed with the data or documentation. First

of all, the. documentation- contains ah extensive description of the NAEg'
sample desigﬁ and indicates thét this design should be Eqnsidered when
‘analyzing the data. Unfortunately, the.documentation does not indicété howl'
this design is reflected in the data. The variable ISVARES is listed as
the variance estimation code, but no 1nd1cat10n is given aslhow to- 1nterpret,
this variable. Since this wprk was done at RTI, we were able to determine -
hpw this variable relates ﬁo/the sample design, e.g. strata and pfimary]

-

sampling units. The second item that we would have found useful was" a

machine readable key for scoring the exercises.
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NAEP Exercises
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120 .
noj| -
100
0
80
70
60
_ o
40 .
. 30 ‘
20 |
o )
)
-|o @
-20

" What temperature is shown on this thermometer?

-10°

- 5°
50

0000

10°

|

AeDZINZZ9I9 L 2

o

I'don’t know.

Age Class 1

Package 2 - ,
Variable Name: NO0222A
NAEP No.: 5-D.1322

Content Area: Measurement

Unweighted Percént Correct: 79.09

DO NOT CONTINUE

UNTIL TOLD TO DO SO.
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R <27. : 3900 +| | =6000
[ ] S
t; , \\.
:—. ’ ! . \\
: ’ Which one of the following is CLOSEST to the E‘n“mb\gr that goes in the box? . .
F‘. - . X S~
——. \\\ ¢
l: . ' ,1000 . ' i T~
': > 3000
— < O 5000
- ‘ > Idon’t know. ' . ,
— .
: Age Class 1 =~ B . . °
o Package 2 ) :
b Variable Name  NO227A
NAEP No. : 5=B22745
l__ Content Area: Variables and relationships
¢ Unweighted Percent Correct: 23.14
:o D
| ——— @ ¢
l___ —
a.
— GO
.—'. ’ <D
— = 10; DO NOT CONTINUE
_ =) UNTIL TOLD 10 DO 80
) ® ([ | -
®. D ) ’ o
A U22T 1A 91912 0 A-3 ' _ . -
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e

& . l ._
—e |
= | N
- 5. A. Whichislonger? .
e
. » .
= o 2 feet Age Class 1 »
— ‘ : Package 3 .
e — 1 yard Variable Name: N0305C l
-— - NAEP No.: 5-E10003 ' '
' e e , ~ Content Area: Other Topics C
- o , - Unweighted Percent '
S > ldon’t know. Correct: 79.98 -
SR B. Which is heavier? .
- > 17 ounces o
- > 1 pound | '
- < I'don’t know. '
: C. Which holds more water?
:_ 3 pints o
: D 2 quarts l
- > Idon’t know. | .
e = '
—. aw ' :
—_e e ’
- = STOP | DO NOT CONTINUE '
:. - g UNTIL TOLD TO DO S&.
_ o) ' )
= 102 i
© 5:D10811429:1.2.3 A-4
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Sarah baid $1.20 for 6 bottles of cola including the bottle deposit. If the

: . - o deposit on.each bottle is 5 cents what is the cost of each bottle of cola?

ANSWER

Age°Class 1 .
—— : Package 3
' : Variable Name NO317A
- NAEP No. : 5-460942 E
Content Area: Numbers and Numeration . :
Unweighted Percent Correct: 1.80 , -

103 DO NOT CONTINUE
- UNTIL TOLD TO DO SO.

3508060608

EMC 5.A60942.919-1,2,3 .A‘S_




lb ¢ . ' :
—e |
_ D
- . . . o . .
e 23. A. Which figure is OPEN? ) '
. | | S X
-— ‘ - ‘ Age Class 1 : '
—-— Package 3 o
— Variable Name: NO323A B
. NAEP- No. : 5-C12411 l '
p— Content Area: -Shape, Size and .
e — : Position ;
| e ™ Unweighted Percent '
-— Correct: 95.37 :
- = . £
ﬁ_ C, ; I
& |
—— ! . X
- i ’ - D, ) .
— :
- |
e > @don’t know. ' :
- B. Which figure is CLOSED? - !
_—
-— " r _ ]
i
jp— i : @ . - ‘
. — | . '
— ] fa— l ‘ l . ‘
Z- ! = D - i
-_— | ' . ]
§ ! : o .
- ' ' . |
-~ : :‘\ () '
- (—») o
—. 4 lJ el @ ' :
-® (e
—— (=)
T e - DO NOT CONTINUE = '
- ° > [.don’t know. UNTIL TOLD TO DO SO.
-— - s D -
> )
EIK\[C LR A-6 1 04 . ' |
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A 3900 + = 6000

Which one of the followiny is CL(‘)SEST to the number that goes in the box?

< 1000 | A 3
= 2000

= 3000 »

= 5000 TR

> Idon't know.

Age Class 2

Package 1

Variable Name: TO1l05A

NAEP No.: 5-B22745

Content Area: Variables and Relationships

Unweighted Percent Correct : 64.53
0 .

!

L3

I

awm

~

¢ -
: . I R . . - h L, O K B .
o i . "

¢
I

i

N “
4
- - - - - - - - - - ® - - - - - - — -
’ . . . -

100000008000

DO NOT CONTINUE
% UNTIL TOLD TO DO SO.
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What is the weight of this bag of candy? ) " t
D 225¢g I
CD more than 225 g -
> lessthan 225 g —
> Idon't know. 0 . —rom
\ Age Class 2 s
Package 1 A
_ Variable Name: T0110A R
. NAEP No.: 5-D20922 ——
, Content Area: Measurement . K
¢ Unweighted Percent Correct: 72.54 : .t _t ,
0 —
: 3
o) - 9 . — !
) \ . . i
<o oomme
(@xw) o i
o ‘i
(@i DO NOT CONTINUE "
o) ] i UNTIL TOLD TO DO SO. |
'D‘:.'USV.!'.’~'.H!)-1 ¢ . o . _A-8 | e .y_ !
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3.  What does 5 of 9 equal? ‘
3 _ —_
. 5 _ , i —
o . 0 —
~ -
; —_—
. VNV R g —
] -__
. . —
‘ < --
' : Age Class 2 pui—
: Package 2 —
' : .7 Variable Name: TO0203A —
NAPE No.: 5-C20006 —
R ' Content Area: Shape, Size and Position ——
. i Unweighted Percent Correct: 47.72 . —
l ° —
. —
| / ) T—.
! .=
L oD R
.= == | | / =
' T D (Z) ) ' “ / ® -2
) (@xw] : : I
) D (aw) =
] = = = \ —
, o o DO NOT CONTINUE e ¢
- @ ) UNTIL TOLD TO DO SO. =
0 o ' o =
- ERIC aganrn ‘ | ’
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23.

- > 5 miles .

Kate averages 10 miles per hogr on her bike. At this r"a'te how far will she

travel in 5 hours?

W

™ 2 miles

15 miles

(-
c> 50 miles
(-

More information is needed to solve this problem.

0

c> Idon’t know.

Age Class 2

Package 2

Variable Name: TO0223A
NAEP No.: .5-E20941
Content Area: Other Topics

Unwe.ighted Perceat Correct: -

86.27

‘g «

O

ae'a@aaaaua

~E20941.910-1.20

STOP f

DO NOT CONTINUE
‘UNTIL TOLD TO DO SO.
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Sarah paid $1.2(5 for 6 bottles‘of cola including the bottle deposit. If the

deposit on each bottle is 5 cents what is the cost of each bottle of cola?

ANSWER

Age Class™2.
- Package 2 -
Variable Name: TO0224A
NAEP No.: 5-A60942
Content Area: Numbers and Numeration
Unweighted Percent Correct: . 22.24

o

10006606000

>
o
=
<&

<
o
&=

>

(X

(X

[ 3D) .

f— ~ { DO NOT CONTINUE
: : : UNTIE*TOLD TO DO SO
= ,

109




Coo

N

!

1

i
[}

6. A car traveled eight kilometers in five minutes. At this speed, how many

KILOMETERS could it travel in one hour? . .

ANSWER

Age Class 3
Package 2 L8
Variable Name: S0206A
NAPE No: 5-C50014

“ Content Area: Shape, Size and Position
Unweighted Percent Correct: 54,40

v@g @CD ) . B

D anlan) 4

[@x»] [@x»] 2 - 1 B

) o -, . . _ .

- Ju - 1ip DO NOT CONTINUE '
py P . ) UNTIL TOLD TO DO SO.

=) ) A-12 ~
DO2542-129-2.3 '-w\'u ° ' .
CHOO14-2,4 3 . o
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.
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Sarah paid“$1.20 for 6 bottles of cola includling thé bottle deposit. If the.

deposit on each bottle is 5eents-what-is-the-cost-of-each-bottle-of-cola?

ANSWER

Age Class 3

Package 2 :
Variable Name: - SO225A
NAEP No.: 5-A60942

. Content Area: Numbers and Numeration

Unweighted Percent Correct: 44.06 ' ' e

o

N lullululiy |T1:| PP T

(e oD
(e (sl ams)
() OD
L ) O
() e
o D () i
() N (e 1 11 : )
N e D “4 DO NOT CONTINUE
o o (o) F UNTIL TOLD TO DO SO.
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Betty set the timer to run for 40 minutes. It had run for 15 minutes when she
discovered it should have been set to run for 50 minutes. Where should she
reset-the timer now to correct the mistake? - ‘ A
B ANSWER
Age Class 3 i
Package 1 ] f
Variable Name: S0108A u ;
NAEP No: ' 5-D94043 ' :
Content Area: Measurement :
Unweighted Percent C:rrect: 61,29 ,
|
) !
(2o DD K
‘D OO :
o oo
= =nlan v
) ) . . -
o - 115 } DO NOT CONTINUE
g — Lo o 4Le UNTIL TOLD TO DO SO. -
@ N = ' . -
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17 3900 +[ | = 6000 o -

-

) Which one of the following is CLOSEST to the number:that goes in the box?

™ ™.

= 1000
IR — 2000
F | = 3000
e = 5000
G 5 > I[don’t know.
' t Age Class 3 ' - ' A
- Package 1 _ . \ .
—— Variable Name: SOl117A
NAEP No.: 5-B22745 ) »
. Content Area: Variables and Relationships "
— Unweighted Percent Correct: 85.66
- \q, I
D
() :
(@)
= . | ) DO NOT CONTINUE
P e ' - UNTIL TOLD TO DO SO.
D A-15
5-BeL745-919-1,2,3




—.

:o 21. The lost dog is small and black.
—. | o ‘

. A. Iilséeasmall brown dog, then
— < it might be the lost dog.
- > it must be the lost dog.

— [don’t know.

b o e

|

k4

! B. Iflseea smallr,r blézék“dog, then

— it might be the lost dog.

—> it must be the lost dog.

— Idon't know.

~ Age Class 3
Package 1
Variable Name: S0121A
. .NAEP No.: 5-E50248
o .Content Area: Other Topics
' " Unweighted Percent Correct: 95,82

. i

i (e

i ()

: D
® D

@' a
e ) )
e 1 l 4
L] o
- — | .

(::‘ B EAUZAN-919-1.2.3 - .
= ' A-16 . -

o

‘ ' . — it could not be the lost dog.

—> it could not be the lost dog.

DO NOT CONTINUE
UNTIL TOLD TO DO SO.
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Appendix B
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Table B-1. NAEP Item Waid.Statistic Chi Squareds for the Race*Sex*PARED
Cross~Classification

s v

- CHI 'SQUAREDS SIGNIFICANCE LEVELS

: NAEP . B
s ITEM TEST DESIGN DESIGN
. NUMEER NUMBER D.Fe BASED SRS ADJUSTED BASED . SRS ADJUSTED
N 2224 1 -4 £.49 6e76 4,55 «0752 «1491 «3363
N1222A 2 1 0.12 0.10 Cen7 7298 7512 7947
MN:222A 3 1 o 1.54 8.21. Oa14 3085 05477 « 7077
N“222A 4 1 2.20 . 1.89 1.28 1377 «16R7 «2587 ’
NW222A 5 1 0.45 1.32 0.89 5627 2503 3454
.o NY222A 6 1 2.06 t.09 Sa06 «1514 «7653 «8065
' N 2224 7 1 4,72 0.82 0.55 .0299 3650 «4573
po222A a 1 Ne32 - 1.76 1.18 5691 1849 02767
. NI222A 9 11 94,83 17,58 11.84 0600 <0919 «3760
R N"2224A 19 ‘1 0657 (.99 0s67 00090_ «3281 o H14A5
N N. 2224 11 1 29 t.16 Pall 7632 «6849 «7391
M 2224 12 2 7.12 5.28 3.55 .4285 «071a 1691
N2224A | 13 , e 1 1.64 1.40 .94 «2006 «2373 3322
. NT2224 . 14 6 9,31 692 L 4466 +1570 +3282 . .588C
Ni222A 15 6 7.36 4416 2489 «2885 «6549 .8332
MF222A 16 8 21,77 11.41 7.68 0054 «1797 4651
N'2224 : 4 H449 6476 4455 °3752 1491 3363
N"227A 1 4 4405 - ,3.02 2.186 «3987 «5539 «7053
N 2274 2 1 3.68 ° 3,93 2,81 «fi550 3474 « 0935
1227A 3 1 0e 50 0.73 £e52 9773 «3933 « 4700 :
N22T7A - 4 1 68434 50677 36e32 #0206 «5000 « 000U
N.227A 5 1 1.24 $e59 0.36 2663 4808 «5511
N227A 6 o 0,21 0.00 CeO 6439 9944 9953 *
M.227A 7 1 q.ss Gad5 Ca.04 5535 .8158 «8438
N227A 8 1 1. 82 2.54 V.39 «1799 «4618 5337
Nt227A .9 11 598,22 138,12 98.7Y9" «0060 0000 s 0G0
NU22T7A 10 1. 15.29 24444 . 17,48 £0001 ..2000 05060
ni227A 11 i) 2.11 2445 1.75 1466 = L1178 «1853
NT227A 12 2 45,56 " 46438 33,17 00090 0000 . 0000
MN227A w137 1 .69 0.64 Ue 46 «4390 «4232 4982
N22TA 14 o6 22.70 28.13 26.12 *e 0009 <0051 <0026
N 2274 15 6 10.15 5405 3.61 «1185 «5379 « 7294
ND2274 H 8 T 148,85 54,76 39.16 20000 «DC0U « 0060
NC2274 17 4 4475 3.92 2.16 «3987 «5539 «7059
NC3USC 1 4 13,81 16.47 12,21 0579 «H024 - L0158 PR
N730SC 2 1 . 2413 0.66 049 - «1445 «4149 4826 T
N3309¢C 3 \ H 1.33 6.23 0.17 <2488 «6307 6783
. N"3GSC 4 1 Gl 06 1.20 6.89 «7996 2724 «3446 3
N30SC 5 1 C.48 1.30 Ge22 - <878 . «5857 6388
N-355C 6 1 Ge31 2.91 2.16 5791 0883 «14189 5
N2305C 7 1 1.11 0.10 0.07 «29148 7549 «7881 '
N130SC 8 1 0,73 - 0,37 0.28 - 3935 - L5408 «5984 ;
N“3G05C 3 1 140,11 106.54 79.01 «00609 .0000 0000
NZ3USC 10 1 C:13449 26662 ° 19.74 0002 «0000 °  .00C0G T
N-365C 11 1 Uedd .58 0.43 5088 4457 «5113 ;
N~“305C - , 1 2 2499 7.18 5.33 «2237 0276 « 2698 ;
NI305C i3 1 1.80 3.0% 2.26 1794 0806 1325 £
N7305C 19 6 87.93 7C.44 52,24 .0000 .0090 « 0000 P
\( - Nr3CSC 15° 6 3.97 2.44 . 1,8} 6812 8749 9362 1
© N3305C “16 8 17,60 27.92 20,71 .0301 «d005.  ,0980 :
Q N-305C 7 q 13.81 16047 12421 #0079 «0024 + 0158

2

w3

”uJSﬁil wi B o &8 e -ap o ap OB 6 -as e
oo oc | NG ! X . - s . i e




- - - . * . N .

Table B~1l. (continued)

CHI SQUAREDS SIGNIFICANCE LEVELS
NAEP .
ITEM TEST GESIGN DESIGN
NUMEER NUMBER DeF o BASED SRS - ADJUSTED BASED SRS ADJUSTED
N“323A 1 4 1.76 1.99 1.66 «7805 «7549 7982 -
N.3234A 2° 1 10.67 1l.24 9.85 (011 0508 «0017
N.323a 3 1 Ne79 g.12 0.1C «3751 «7294 e 7462
N 3234 4 1 €eld 6e17 5.40 « 0132 0133 «0201
N-3234 5 1 Ge29 L. 08 0.07 «5919 «T824 « 7961
N 3234 6 1 10611 - 6480 5495 «0015 «0L91 « 0147
N 3234 7 1 3,22 8400 0.00 6364 «9893 «9897
MNU3234A 8 1 v Se27 0.98 0.07 6032 £7775° « 7914
N.3234 9 11 22446 26448 23.19 «0211 « 0055 « 01656
NA32e3a 10 1 cube51 13.10 11.47 . «0107 « 0003 « 0007
N 3234 11 1 Net? be49 Ge43 4925 «4649 #5134 -
NC'323A 12 2 6e27 - 7403 6el6 N436 «0298 « 0461
- N°323A 13 1 fell 0G0 0.00 «9639 9743 «9753
N"323A 14 6 11,64 16464 13457 « 0704 «6107 « 0233
N 323A° 15 6 5452 5437 " 4470 «4789 4977 = 45833
M°3234A 16 8 11.97 - 9,31 * © 8415 01527 . <3566 «4186
N“3234A 17 4 1e76 . 1.90 1e66 <7885 « 7549 « 7980
TLIUSA T 4 Se8D 6.73 4014 . 02143 «1509 «3878
T-1°54 2 1 16440 8451 5423 «J013 «0035 «0222
T.1154 3 1 tel15 TS Led3 «TGUS «8139 «8535
T 154 4 1 " 48451 56409 34448 « 0000 0003 . #0000
T:114754 5 1 Ge 03 0.01 0.01 «8639 «9224 «9391
Tr1US5A 6 1 0ehl Col1 0.07 9254 «7448 ° +7985
T 154 7 1. Ce23 Ca12 0.38 6286 «7253 - 7829
TI1054A 8 1 Gehl 0.11 Gel7 «9319 7347 « 7905
TrR10SA 9 11 314,21 179.88 110,57 <0000 «0003 <0006 .
T11)54A 10 1. 24047 45,21 27479 « 300 " «3G00 «0300
T/l(;SA 11 lu 1.24 2.44 - 1.50 02663 01179 02202
T1452 12 2 39422 58407 35.7C « 0000 «3000 « 0062
T.1654A 13 1 1.05 2.04 . 1425 «3059 «1535% «2631
TUIUSA 14 6 114455 49,98 30472 «6000 0009 0000
TLICSA 15 6 683 To41 4.56 «3373 L2844 .6018
T:1.54 16 8 91,33 82.79 50489 «0000 °~ L0002 « 0000
Tr1454 17 3 5480 6¢73  AelA o 02143 «1569 ~ .3873
TL11064 1 4 7 4452 6483 4479 - . 43404 «1451 <3097
. TR1104 2 s 1 15442 26454 18460 «0301 «00690 «0000
TH1114 3 1 20495 ° 3.32 2433 0000 0682 1263
T5110 4 1. 29.37 2514 . 17462 «0000 0000 +0000
T.1104 5 i 14410 4020 2495 6002 « 0404 « 0861
TJ1154 6 1 8467 10469 7449 * 40032 <0011 2062
TI1104 7 1 30487 8406 5465 « 0000 «0045 | 40175
Tr1104 8 1 14407 Seb4 3.95 G302 «0176 « 0463
T71164 9 11 = 97.28 96454 6768 «0000 - L0000 «0000
Tr"11724A 10 1 20457 44 .85 J1.4p «0000 «0000 «000¢
TL1i54 11 1 2477 2469 1.85 « 6959 «1042 «1737
TL1104 12 2 14421 21.31° 14.94° « 6008 «0000 L0006
Tr1154A 13 o 1 Ne21 Be25 ‘0ey7 6466 .  «6179 6762
T213CA 14 6 A5.16 S4.61 38.28 «00CO «0000- - T.0000
T21104 15 6 44439 24478 1737 «0000 - 400J4 . 0085
. TH110A 16 8 - T0e17 43,90 30.77 «0000 «0000 «30G2
Q T1104 17 4

‘ 4452 683 4,79 «3404 " 21451 « 3097
ERIC '
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HEHMHEHI'
@ 1

NAEP
ITEM
NUMBER

T"233A
T.2534
T(2L
1'273A

CTT20%A
T 2134
72334
T°2034A
12034
Tr202A
Tr2L3aA
T 253A
T°233A
1124934
T:203A
T(233A
T 20347
T 2234A
T7223A
Th223A
T.223A
T 2234

Tr223A°

172234
Tr223A
T 2234
~Ti223A
72234
T 2234
T 2254
T 223A
Tr223A
T.2234
TTe23A
12244
T.224A
12244
T 2244
T 2244A
Ti2244
T 224R
Ti2244
T3224A
Th2244
T(2244
TC224A
To224A
T02244
TL2244
TC224A
T3224a

1

‘Table

VEST

NUMBER DeF e

D Gl N

e - -
N DS~

e

-t
CONDP LRIy OS

-
(<)
-
D DO O 0 R s b s bt pd bt s bt b 2a B D D N O R bt b 2t b s bt e e b e B B D ON e RO S e e e e e B

B-l..

&

{(continued)

)
o

CHI SGUAREDS

DESIGN
BASED

0.97
1.54
5.72
13.32
3-@7
20482
2023
Ne 46
394.74

35,87

3.59
13.99
Ge24
43.51
43442
530602
6097
11.92
2.13
2. 02
Q.sl
0.59
l.“g
(.10
De57
61.54
14463
3.28
8.18
3.98
3T.66
9.17
24,434
11.92

10.67

0.09
0.03
18,04
:‘.'10
9,85
UeiS
1.93
245,65
29.35 .
0.13
21.37
0.60
75,95
15,22
76.96
15467

SRS

1.46

1.36
480
3G.49
2468
12460
1.80
.05
209,24
49,39
T+40
30.86
Ce36
84.27
48.40

- 54457 -

l.46
8.63
1.05
4.+89
5446
520
0.91
563
5432
69413
23.85
12.11
J.61
41.91
677
29.27
8.63
8451
0.13
Let0
22.91
1465
'9-20
1.70
2.04
201.04
70.86
0.27
23454
0.68
115.41
15.44
50.40
8551

~

ADJUSTED

0.88
0.82
2.90

'18.40

1.62
1.57
1.09
0.93

126427

29.8%
4e47
18462
0.21

- 50485

29.21
32.93
J.88
6e72
0.82
3J.81
4426
44,05
0.71
4436
4414
5386
1858
.21
9.43
2.81
32465
527
6eT2
5477
0.13
0.27
15.55
l.12
6e2t
1.15
1.38
136443
48.09
0+18
15,97

0e46 .

78432
10.“8

34,20 °

577

SIGNIFICANCE LEVELS

DESIGN
BASED

«9149
»2150
» (1168
»6303
»0554%
»1199
»1351
s 4962
« U0
«0009
»0582
« 0009
v6222
«5UUD
+0000
« 00090
«91493
«C189
«1440
»8958
e 0446
284435
«2226
«7507
04495
$ V0
» 0001
«5967
#0167
»04861
«0000
e1643
«0020
. +2183
«0306
o T6EA8
»8694
»0000
» 7576
« 0317,
«B8234
«1648
«0000
«0C00
7142
+0000
+4395
.0000
-e0186
- «0000
° ¢ (306

SRS

«8332
«26432

+0285 -

0000
1615
«1069
+1799
8261
2UU0D
$£000
0065
«0000
+5579
0000
00030
.030¢

.8332°
L0711

23054
0271
«0194
«0226
«3399
«0179
0211
+0002
«0000

$0623
» U574
.0000
«3429
6003
L0711

.-e0746
«6616

«5272
«COU0
«1983

0024

1926
«1532
«0000
«0000

0000
0104

.0000
«0171

20000

«0746

ADJUSTED

9277
#3645
+ 9888

0000
42033

e2104
«2975
+ 8645

« 0000
<0000
« 0345
0001
«6431.
.0000
«G001
«G001 .
#9270 -
«1513
« 36556

L0510

. 0391
. 0401
«399%
$ 0367
. 0418
£ 5009
.000¢C
. 6441
.0089
.6935
.0000
. 0036
.1513
2167
.718%
« 6024
L0001
.2893
.0125
.2831
«2393

. «00C0

«2000

. . ' .
oS o s o0 ap OB 8 .
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" Table B-~1. (continued)

CHI SQUAREDS SIGNIFICANCE LEVELS
NAEP .
1TEM . . DESIGN DESIGN ’
NUMBER 313 CDeFa 7. BASED ADJUSTED BASED ADJUSTED

PR
7.65 Sel12 | 1051 2753
30.47 13.21 » 0000 .0053
1.14 0.15 «2852 . 7031
27.46 1854 «3500 .60C0
040 0.05 .8688 8314
2425 0.06 01337 .8083
.0 . 0.17 29494 6787
345 0.27 5036 «6017
. 154.91 163,23 «00GLO «GO0U
51.82 " 69.98 «0000 ' 0000
27438 21.63 0000 A
022 0e11 6363 7385
73.31 . 79.32 T 300D «00GYH
9.33 7.11 «1557 3111
46.29 301115 «(B00 «00C1 -
7.65 1051 #2753
9.55 o _ . e2183
Se03 o L0277
2.74 . 2847
9,13 v 0265
3,34 <4755
t.01 : +8433
2.56 . o . 2968
2.81 3 4 4071
136.21 0300
26.75 «9G02
). . «8558
10.42 ) 0227
Ue 3l ) 8963
65467 . 0000
T.04 ; ] «8)52
44 .33 : : ) «0142
9.55 e .2189
1.01 c «8002
0ol 6219
1447 T e 5 T 61753
Ue84 " «9560
0e16 X 9003
3.74 i ; 7399
) «5760
1.92 1965
. 0682
©3276
"e5399
8292
.4884

SN1GBA
SU1C8A
S 1iBA
Si128A
S 1C8A
S 108A
‘ST1UBA
S$"1784A
S:178A
Sh108A
S71r8A
$'1384
SS108A
5C106A
5 1VHA
S‘1{8A
ST158A
Su117A
S"117A
SY117A
ST117A
S$31174A
SI117A
S"117A
S73117A
S'117A
ST117A
S°117A
SHI1TA
ST117A
SU1TA
S(L17A

C5C11TA
"S3117A
SI1214A
S2121A
SN1214
S01214A
ST121A
$ 1214
S~ 1214
Sr121A
SC121A
$r1214
SL121A
SL121A
S3121A
Sh1214A
SC121A

e T w 'SU121A . © «8036C

T Q a : - © «8002
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o '  Table B-1. (continued) :

CHI SQUAREDS SIGNIFICANCE LEVELS

. NAEF N
s« ITEM TZSY T T DESIGN ) DESIGN
NUMBER NUMBER D.F. BASED SRS ADJUSTED BASED , SRS ADJUSTED
‘e

S206A 1 4 0.89 1.07 0.77 «9257 .8987 . 9431
St2{6A 2 1 ) 14,43 11,52 3422 . 0C01 «£007 £ 0041
S°2C6A 3 1 566 11.61 8.28 0173 L0007 . L0040
S'2.64 4 1 AN.44 L48,10 34,33 0002 . .0007 £ 0002
SI2U6A 5 1 e te25 0. 45 U.32 16283 »5631 5715
S 206A 6 1 1.65 t.98 0.77 .1992 03234 24041
S°266A 7 1 1.67 3.82 02473 «1964 « 0565 . 0985
SH206A 8 1 .12 0,33 0.23 «7269 «5681 06297
S5206A 9. L1 683,82 406,62 290421 0000 0G0 00097
S i206A 10 1 713,81 116.97 83.48 «G0CO «000¢ « 000U
S1206A 11 1 13.64 15.02 10.72 « 0002 0001 . 0311
S'2i6A 12 2 +,32 47,25 v 33.72 « 6000 0003 « 1000
SS206A i3 ‘ 1 (.%8 (.16 0.11 «7825 . L69(1 . 7362
S 1296 A 14 6 131,82 127.38 . 90,91 L0060 L0000 « 0002
S 206A 15 6 36.50 23,76 16.96 w0000 «0006 « 0094 .
ST206A 16 8 122.81 84,94 60e62 5000 «00090 « 0000
52964 17 4 v (.89 1.07 0.77 9257 «8987 . 9431
$"2254A 1 4 12.29 10406 10.16 . 0153 . 0395 0378 '
§4225A 2 1 1.70 3.96 - 4401 1719 « 0465 « 0454

© 512254 3 ? 1 0.75 0.52 0.53 «3859 4698 L4675
Si225a 4 1 2C .49 26.47 26:74 +01090 «000¢ L0000
$72254A ) 1 3,80 2,05 2.07 . 0513 «1522 .15€C1
$4,225A 6 1 8433 2.80 - 2.83 . 0039 .0943 « 0925
S:22%5A 7 1 1.73 ci62 0.63 .1883 4300 4277
Si225A 8 1 1.21 0,73 0.74 2719 «3921 3895
$"2254A ] 11 516457 311,19 314443 « G000 L0003 000D
S12254 10 1 85429 91,22 952417 ° 0000 0009 « 0030
S2225A 11 1 18413 16467 16.84 «0060 0000 0300
S$12254A 12 2 25,68 26472 27400 «0006 « 0003 0000 -
72254 13 1 6et5 7.08 7.15 « 0099 .0078 . 0075
SN2254 14 6 104,31 113.36 114,55 G000 «0000 0000

- §0225A 15 3 62455 26463 26,491 ° .0C00 .0002 0002
Sr22sa 16 8 111.85 ST.14 57.73 .0000 .0000 . 0030
S12254A 17 4 12.29 10.06 10.16 0153 +0395 0378 .
4 g
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S Lo . . . . . wr .. . . It
L . N i . F

" Table B-2. NAEP Ttem Wald Statistic Chi Squareds f£or the Sex*TOC*PARED , ,
S Cross-Classification _ ' .

'
v

CHI SQUAREDS . SIGNIF LCANCE LEVELS
CNAEP : -
ITCH TEST ' DESIGN CESIGN ‘ :
NUMBER NUMBER DeFe BASED SRS ADJUSTED BASED SRS  ADJUSTED .
“Nv2228 1 6 15,78 7.50 5.98 #0150 «2769 £4256 -
N222A 2 1 Ge27 0.81 0.65 6922 TAT4. 4218
N'2224 3 2 Ue03 1.46 l.16 +9869 4826 +5595
Ni2222 4 1 4.76 4413 3.29 0291 0422 7 L0697 °
NT222a 5 2 Ue33 4414 3.30 «8471 $1263 .1922 : v
N 2224 6 1 fie51 2.13 1.€9 .4732 «1448 .1931 ’
NT222A 7 2 (.18 0% 80 Deb4 «9134 46700 «7268
Mr222A .8 2 .34 3.99 3.18 L8421 .1358 L2937
N"222h 9 17 272.17 30469 24,46 « 0000 .9218 «1075
N.222A 14 1 Te 01 t.02 0.01 +9398 «8991 «9299 ‘
N 2224 11 2 2,93 2.76 2.20 - L2310 #2513 «3325
N 22zA 12 2 15.62 10.29 8.2 «0004 £ 0058 « G165
h2224 13 1 16,92 5625 © 4.18 «3010 o220 U409
NT222A° 14 9 37.64 13.70 . 10.92 £ 0080 +1334 2814
N 222a 15 12 87.61 17.06 13.60 20039 L1472 .3271 ’
Ni222L 16 12 24,49 17.69 14.09 4 .6180 »1255 «2947
N222A 17 6 £.78 7459 5.98 « 0152 «2769 £4256
N-3isC T 1 6 14450 22405 16.28 » 3245 0012 « 0123
M°375C ? 1 Lol 1.16 0+85 «9378 »2820 «3553
M.3L5C 3 2 5.29 ' 0455 0.41 0716 »7579 .8149
N N 3'BC T % 4 1 3439 5.06 3.73 «3656 0245 «0533
M3.5¢C 5 2 15,28 1,73 | 1.27 o GLUS 24218 .5288
N~325C 6 1 Te i3 1.18 0.87 ° .8722 £2175 « 3568
N'3(5C 7 2 3.69 1.92 0.76 #1581 #5995 e 6854 .
© N 3TSC 8 2 2.71 1.35 1,08 «3663 «5089 $6073 . »
N 345C 9 17 248.08  “47.01 34470 20000 «G201 . G368 3
N:335C 10 1 (+49 059 Uedn . 4847 4822 «5091
: N.30SC 11 2 T 0.81 0.59  .8910 «6686 «7429
N 355C 12 2 , T.42 - T419 5e31 « €245 20275 .07C4 .
N°315C 13 1 “ Colt - 0,13 0.1% » 7366 « 1167 » 7553
N3305C .14 9 23474 6470 4,95 S U139 +6681 .8383
N,3(5C 15 12 108,11, 23.¢08 17,04 + 3000 «0270 .1481
N'3735C 16 12 @ 66427 38415 28.16 $OLGC 00801 -~ 40052 .
N-305C 17 6 14.50 22405 16428 - 0245 .0012 .0123
710654 1 . 6 1949.59 | 33.11 20.55 «UL0B 20000 « 0022
71554 2 1 15454 1.44 0.89 $ 0301 .2301 «3444
T 1C5A .3 2 5483 5492 3.68 "e0543 «i1517 «159%
TI105A 4 1 14,451 55.83 34466 .0001 «0000 «0000
T1054 5 2 lie85 5.91 3,67 ¢ 46546 .0521 . 1597
T21354 6 1 1a.27 6.52- "  0.32 « G302 04712 #5703
o Tu1754 7 2 10469 | 1.48 9,92 0548 24779 « 6329
" TU1L5A 8 2 . Sefi2- 6463 4,11 «0R12 « 0363 .1278 -
151054 9 17 1103.92 156436 a7.06 .0200 <0000 «0000
Tr1054, 10 1 2.93 4,24 2.63 « 0867 20394 L1047
T11¢5A 11 2 2,84 9,19 5.70 2413 #5101 .0578
Ti1eSa 12 2 49474 67.02 41.60 . 0000 <0008 «0003
. TZ105A 13 1 e 06 n.10 0.06 +8056 7547 «8056
TTI1058 14 9 234,58 30.39 18.87 0000 20004 ° L0264
T21L5A 15 12 117.33 45.94 28.52 «0000" 20000 ¢ L0045
TI1G5A 1¢ 12 354,06  124.54 - 77,30 206000 «0000 #0000
TE1CS5A 17 6 190,59 33.11 20.55 «0000 «0000 2022 ’ 2 .

o _
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S ITEM
NUMBER

T22L3A
T7203A
12634
72134
T 2234
T 2224
Ti2234
T 2234
Ti2234

T1223A
T 2234
12834
L 223A
Tr2234
Ti223A
12234
Tr223A
122234
742234
Ti2234
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Table B-2.

o

DESIGN
BASED

Qllg
Ua13
16.68
25066
7.36
2047
5457

7.57,

445,48
14021
31.12
27.54

G063
35.32

183.60

40020
4.19
11.78

2.69

12,96

© . 56415
©£a35

\T‘lq}
7528
f,.fls
525.61
Se44
9439
39.69
Ue23
38,83
55445
147.27
11.78
24 .96
1.86
{'e 96
S.48
2.05
(‘.ql
2-67
359
106,90
*a 05
1.53
12.49
983
22455
47.94
37.83
24 .56

(continued)

CHI SQUAREDS

SRS

2-09
Ce21
1619
1750
2.73
2-58
4.68
- 3435
82.67
5.14
31,90
18.15
D-ll
19.42
41.33
26490
= 2.09
5473
1.93
5.19
51,33

-1e 37

0.06
5469
Lal2
142434
6000
Ca73
50015
(a3l
41.92
18435
91.34
Se73
13I69
250
Jeb1
6.52
p.qﬁ
4427
3437
2.°~
53.68
ie34
1-039
1.0.71

3.77°

1621
21.63
42460
13 69

ADJUSTED

a
ie60
0.16 |

12.32
13.36
2.093
1.97
3.57
2.56
63411
3.93
24435
13.85
UOGB
14,82
31.55

20.54"

1.50

3e53
Ue64

o 3428

3le62
0.85
"qu
3¢50
c.‘37
87.70
Ja70
0.45
390.90
0.19
25483
11.30
56428

3«53

10.92
2.00
2.88

5.26

0-36
Je41
2469
1.63
‘2.82
0.03
1.11
BISQ
0I62
12.93
17.25

33.98

10-92

- oh o e e - y B -

“~

SIGNIFICANCE LEVELS

o DESIGN
BASED

<6514
.7135
0002
0000
CU252
c1164
$0617
(0227
.+ 0000
0202
e
<0000
8595
0001
0520
0501
«6514
$0671

1012
«0015 "

« 000G
<8397
#5143
« 1262
« 7683
LUH00
0197
#8210
R
«6339
‘w0000
"«0000
. 0000
0671
“e3303
w1724
6179
#0192
3597
.5198
«2634
w1661

408
8244
4652
« 0320
« 3511
#0073
» 0000
. 0002
.0303

ADJUSTED

«9523
«6879
0621

03

«3521

« 1604
16747
2773
«000¢0
20475
20000
7753
« 0959
0016
« 0576
«9529
«7396
«4248
«2021

+ 46551

«8492
«1735
«9637
«)545
» 7997
« 3000
6602
«0022
«5030
« 00060
« 7355
«0908
«1576
23653
«9225

+8337

« 6650
«2699
4428
0005
.8519
5744
0140
.4318
.1687
1403
.0007
.0908‘

.

[
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Table B-2. (continued)

CHI -SQUAREDS N SIGNIFICANCE LEVELS

¢ HAEP

ITCM 1z ST DESIGN DESIGN
NUMBER NUMBER DeF o BASED SRS ADJUSTED BASED SRS ADJUSTED _
S 112084 1 6 41.38 13.94 12.27 #0000 0303 0562
S 1C8A 2 1 ° 4457 051 0.45 ¢ 46258 4762 *5033
$T1084A 3 2 54,99 9.75 8.58 «6000. 0076 « 9137
R S 1484 4 1 121.52 T77.37 68499 1117 « G000 0350
$.1684 5 2 Ba4l 0417 0.15 0149 9194 .- ,9287
S 1LEA 6 .1 2432 Ge19 0.17 01274 06601 «6793
81044 7 2 3Ne22 ¢ 11494 10.51 - o000 0026 D352
- S*1084 8 2 4491 0.16 0414 « 0859 «9226 +9315
S*1u8A -9 17 1085428 112.83 99,319 3300 #0000 «200¢
S 1(84 13 3 3.00 1.08 0495 0832 22993 3302,
$H1084 11 2 2469 7.04 6e29 2609 0296 0452
S"1384A 12 2 56630 77456 68426 SLHGY 000G 3000
S 1%8a 13 1 2.28° 1.43 1.26 01344 2317 °2619
Sul QA 14 a . 23419 Belb 716 .0058 *5204 6203
ST108A 15 12 111,57 33.51 29.49 0000 .N008 +9033
S*128A . 16 12 193,45 98454 86473 0000 200050 « 0000
S ‘1.8A 17 6 41438 13.94 12.27 0000 0303 ° 0562
$°117A -1 6 18447 28.19 24472 . 0052 .« 3001 + 0004
S'1174 2 1 1677 6e31 553 G010 0129 .3187
N S'1174 1 2 8425 3.8% 3.35 0161 $1476 .1862
S 117A 4 1 39.17 22.74 19.94 #0050 #0000 0000
SO0117A 5 2 816451 1144 10.03 « 0003 00633 « 00656
ST117A 6 1 Z2e 02 Eebb 4.96 *1551 o174 « 2260
S:11TA 7 2 2,03 2.52 2.21 «3619 +2838 +3315
ST117A .4 2 Se42 1018 8.92 * 0665 fUi62 .0115
$°1178 9 17 2562463 72484 63487 0000 0003 © L0u00
S1174A 10 1 7.21 4481 3486 G073 #3358 . 45453
S .117A 11 2 9.95 3.17 2.78 0069 #2051 * .2493
S 1174 12 2 48e63 27.68 26,27 20000 20000 ..0002 <
S 1174 13 1 Gol2 0.05 0405 .B842 +8194 «8337
ST1374 L4 9 48,86 12,29 10.78 2« 0000 1974 02914
S 117A 15 12 261402 35.78 31437 90500 00604 #0017
S 1174 16 12, 179,17 644990 56490 #0300 #5600 0000
,S:117a 17 6 18447 28.19 24,72 «0052 0001 « G0 0N
Sst2u6h 1 6 T.72 9.81 589 ° 42599 #1330 «4355
ST206A 2 1 2744 3.71 2.23 #0000 0542 *1357
$.206A 3 2 2.29 1.94 1.16 3184 «3797 . +5590
S 2064 4 1 214411 880‘87 53.38 009‘00 «0000 « 0003
ST206A 5 2 32441 15.24 9.15 #3050 «0005 #0103
S 2064 6 1 216490 1.85 1011 060 1733 02913
S 2G6A 7 2 4475 2445 1447 °1320 02931 *4785
$12064A 8 2 27.79 13.26 7.96 ~0U0D 0013 » 0187
T5l2064A 9 17 26964013 293469 176440 "+ 0000 - «CA00 200060
ST2LRA 10 1 6436 538 3.23 .0038 .0243 e0721
S'2U6A 11 2 Ge30 9435 0.21 «8612 +8385 +B8995"
S:2064A 12 2 127.86 83.99 50.45 . 0000 L+ 0000 « 0000
$°206A 13 1 0.38 0434 0.20" +5384 5592 «65(8
S%256A 14 9 178.38 51424 30.78 «0000 .0000 +0003:
S 12364 15 12 361.28 37.89 22.76 .0000 #0062 . 0298
$C206A i 12 1763483 240.56 144..49 e0000 0000 + 0000
Q SH2U6A 17 6 Te72 9.81 5489 2590 . e1330 «4356
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S1225A

S 2254
572254
ST225A
v 52254

<
-

TE ST
NUMBER

“
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‘Table B-2. (continued)

DeF &

-
RN E e RN P O = N =N

[y

~

DESIGN
BASED

7.7
Fe20

e 16479

95,410
1.22
675

2062
1.09
592472
19.46
1.78
57413
1.61
59,45
24494
233474
7.70

4]

o

CHI SQUAREDS : °
SRS ADJUSTED
7.20 6.90
7460 0.57
1.84 1.77

48418 46.18
1452 1446
3.78 3.62
1.06 1,02
1.55 1449

133.88 128.31
6086 6eS5T .
2455 .45

37.96 45,97
0.66' 006'3

27.55 26441
6e26 6e02

105.97  101.56
7.20 690
W
A
124

<

DESIGN
BASED

«2611
«6544
«0003
«NCGO
«5435
«LU9
e300
«579¢6
«000C
«C00D
«4098
«00C0
«2049
«3000
«0151
«0000
«2611

©

SRS

«3331
«4397
«3979
e4672
«U518
«5883
4606
00
<0088
«2789
«0U00
«4161
«0011
«8022
«0000
«3031

SIGNIFICANCE LEVELS..

o . B

o

ADJUSTED

+3395
«4693
$4134
. 0090
.4823
.0570
+6014
+4757
. 0000
N104
#2941
<0000
09260
L0018
«9160
<0000 .
+3305

- . . . .
A o .. ;
. . R ) ‘ ‘
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Table B-3. Mean Score Wald Statistic Chi Squareds for the Race*Sex* PARED
Cross—Classification :

CHI SQUAREDS SIGNIFIZANCE LEVELS

o NEEP . -
ITENM TEST DESIGN DESIGN
NUMBER NUMBER DeF e BASED SRS ADJUSTED BASED SRS ADJUSTED
- AGE“9 1 q 54,14 15.88 10.59 +0500 0032 «3315
, AGE 9 2 1 N.93 3.47 2.31 23353 «0626 .1282
“ AGE 9 Oy e Ted1 189 0.72 074 22976 ° 23949
AGE 9 4 1 18463 35,40 - 23.62 UL 0C00 T LO0U0 w0000 o oo e
“ BGETY 5 1 2.59 - 0.55 0.36 1373 4597 - .54%3 . .
AGE.9 6 1 4459 1.53 0.69 +0321 #3102 L4072
AGE™® 7 1 . 5.88 8.63 0.42 0153 4215 5169
AGE .9 8 1 2.179 0.57 0.38 « 7946 4498 25371
AGE (¢ 9 11 204452 165465 110,52 +0006 . 0000 0000
AGE 19 10 1 28.64 47.86 31.93 . L0002 +N0GO £ G000
AGE™9 il 1 1410 1.59 1.00 2938 02209 «317%
AGE 99 12 2 32.26 48,17 32414 000D 00600 #0006
AGE .9 13 ¢ 1 522 4.74 3.16 L0223 0295 » 0753
. AGE 9 14 6 76410 74.36 49,61 _e00060 +000G0 TG
AGE .9 15 6 Sev9 3.86 L2457 5324 26962 28603
AGE .9 16 8 83,20 63.1) . 42,10 0000 +0000 20000
aGE 9 17 4 54,14 15.88 10.59 «30G0 0032 + 0315
£GE13 1 4 1.74 3.19 2.18 7827 5273 .7021
AGEL3 2 1 59,33 24,52 . 16.81 L0000 20000 _ LUS00
AGEL3 3 1 Ne16 Ge02 0.01 «6899 439023 «9191
AGE13 4 1 97,02 103,15 70.70 +0300 +0000 0002
AGE13 5 " 1 Del? 0.58 0.40 6819 20447 . 252693
AGEL3 6 1 C.09 0,01 0.01 «9990 9184 9324
AGE13 7 1 Gel13 0.21 0.15 «8694 6437~ .7018
AGE13 8 1 0o 02 0.03 0.02 8345 +8556 .8803
AGEL3 9 11 609,23 462433 316.88 «08000 +0000 «6000
AGEL3 10 1 75.43 168.38 115.41 5301 2000 3000
AGE13 11 1 T 1.24 1.48 1.01 22651 02239 *314)
AGE13 12 2 61.34 104,64 71.72 + 3000 0000 « 3000
AGEL3 13 1 t.20 V.28 0.19 6539 5992 e6635 .
AGEL3 14 6 159,30 180,27 123.56 LOL00 0009 s0005
© AGE13 15 6 31.93 18.71 - - 12.82 0300 20047 « 0453
£GE13 16 8 226451 151.74 124.09 - .0J00 0000 00090
AGE13 17 4 1.74 3,19 - 2.18 .178217 5273 7021
AGELT 1 4 2.80 3,22 2.717 +5924 5215 5973
" AGELNT 2 1 5701 24.96 21.45 "2 GGGO +0000 0000
AGE1T 3 1 2.44 2.83 2.44 1181 .0923 .118%
AGEL17 q 1 81.54 82.43 70.84 U000 +0000 S0002
AGELT 5 1 Ne4 £ed0 3.00- *7661 9841 +9852
AGELT 6 1 4,68 1.96 1.69 0306 «1610 1938
AGE1T 7 1 0.06 V.00 0.0V 8144 +9829 «9841
AGE17 8 1 Ve 49 Jel4 0.12 . 4840 .7096 « 7293
AGELT 9 11 1735,18 732.85 629.82 500 +0000 20060
AGELT 10 1 211,290 261.44 224,68 « 0000 0000 #0800
AGE1T 11 1 24,29 19,16 ~ 16447 ~ +0000 .0000 - 0000
AGE1T 12 2 74.93 80.89 69.52 0300 <0000 #0000
AGEL? 13 1 2.217 2.44 2,10 1319 1180 21473
AGE17 14 6 223,217 294,93 253.47 20000 L0000 . 0000
AGE17 15 6 55.23 26.99 23.20 L0500 0001, 20007
AGE17 16 8 356480 142,30 122.30 20600 +05000 «0000
4 © 2480 3.22 2.77 5924 5215 «5973
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MAEP
1TEM
NUMRER
AGE 39
AGE 9
AGE 29
AGE L2
AGE (9
AGE 29
AGE 39
AGE *9
AGE 9
AGE 39
AGE"T9
AGE 9.
AGE"9
' AGE’9
AGEZ9
AGE "9
AGE 59
AGE13
AGE13
AGEL3
AGE13
AGE13
AGE13
AGE13
BGEL3
AGE13
AGE13
AGE13
AGE13
AGE13
AGE13
AGEL3
AGE13
AGEL3
AGELT
_AGE17
AGELT
AGE17
AGE3T
AGELT
AGE17
AGE1T7
AGE17
AGELT
AGELT
AGE17
AGE17
AGE17
AGEL1T7
AGE17
AGEl7

EMC

. . v .
Hﬁﬂﬂﬂﬁﬂ llll. ‘lll' .Ill' 'l.l. 'III. 'l.l' 'Ill. 'IIII .III. .III. .lll. IIIII
’ d
. . ) \ oo .

Table B-4.

o

~ e

~Cross- Classification ”
I - T CHI SQUAREDS , SIGNIFITANCE LEVELS
TE'ST DESIGN “ DESIGN
NUMBER " DeFe BASED SRS ADJUSTED, BASED SRS. ADJUSTED
1 [] 22453 14,36 Be67 «J0180 «0259 «1933
2 1 7«75 2404 1.23 « 0654 «1531 «2678
3 2 9.16 755 4056 «0102 «0230 «1024% .
' 1 37.40 - 52409  31.45 L0000 <6000 .00090
S 2 11446 2465 le6D «J3032 «2658 ¢4493
6 1 13.51 3.49. 2011 - «0002 -2 0619 «1468
7 2 12.04 633 JeB82 «0024 0822 e148C
8 2 22448 Se93¢ Je58 «0000 «0515 «1668
9 17 274445 118.98 71.84 «0000 «0000 <0000
10 1 Ne01 .01 0.01 «9308 "e9252 «9418
11 2 1657 396 2439 «4569 «1379 «3023
12 2 42496 5793, 34496 «8000 «3000 « 0000
13 1 10.69 657 Je96 «5011 «0104 « 3465
14 b 22444 13.76 8431 «(J76 «1310 «50232 .
i5 12 128446 24493 15.05 <0600 «0152 «2385
16 12 17384 104.41 63404 «0000 «0000 « 000D
17 6 22453 l“o;ﬁ B8e67 .0010 «0259 - 01933
1 6 25092 13691 8438 «0J02 "« 0306 «2116
2 1 3«87 bel9 Del2 «0491 - «6609 «7335
3 ? 39.2% 12429 Te40 «C000 «95021 0247
4 1 259409 139.61 - B84.09 «N300 «2000 «0000
5 2 1.54 3.1 1.81 e4633 02219 «4038
6 1 1.21 1.59 0.96 02720 s 02067 - « 3271
7 2 39.49 628 Je78 «0000 «0433 «1513 \
8 2 Jel2 3046 2.08 «2104 «1774 «3528
9 17 1586404 274484 165455 <0000 «0000 «00306
10 1 2439 1.72 1.03 01222 «1903 «3094
11 2 S5.88 ° 16012 9,71 « 0528 0003 «0378
12 2 159426 135.15 8le41 «G005 +u009 Lo 0200
13 1 o Cefl 0.03 - Ded2 «9135 «854¢C «88649
14 Q 29459 26423 15.80 . <0005 «0019 «0712
15 12 66024 34.03 20.50 «0000 «0007 «0583
16 12 451430 215.98 130.10 <0000 «0000 «0000
17 (3 25492 13.91 8438 ¢ 0232 «0306 «2116
1 [] , 9.01 6423 4029 «1732 «3977 «6373
2 » 1 1.84 Ce03 0.02 «1753 «86AY «8874
3 2 T30 (FLLN 3«05 «U260 «1089 02172
4 1 94762 182.14 125443 «0000 «0000 « 0000
] 2 1795 1C.35 Tel3 «0001 «0056 «0283
6 1 Do} 1.22 D.84 «941:1 e2696 «3596
7 2 3013 3487 . 2466 «208B8 «1445 «2639
ﬂ 2 5415 Te40 5.69 “ed763 «0248 « 0783
9 .17 117C8.46 35066 241449 @ «0000 «00038 .0000
10 1 10.61 Se34 Je68 <0011 «0209 « 0552 126
11 2 . 217 2475 1,89 «3379 e2534 «3885
12 2 27608 181.79 125.19 «0G00 «J000 « 0000
13 1 €. 05 OD.04 0.23 . «B8314 «8437 «8703 °
14 9 129.18 43.21 T 29.76 <0000 «00600 ° 6005
15 12 112.17 23405 15.87 «C000 «0273 «1971
16 12 1389407 305493 210.68 «0000 «0000 0000
17 [] 9.01 T 6e23 4.29 «1732 «3977 «6373
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Table C-1. Balanced Effect F-Tests for 9-Year-Olds

o

NO222A
Sex
Race
PARED

N0O227A
Sex
Race

0 ‘ PARED

N0222A
"Sex
TOC
PARED

N0227A
Sex
e
PARED

NO305¢C
Sex
Race
PARED

NO317A
Sex
Race
PARED

NO323A
Sex
-. Race
" PARED

: - NO305C
Sex
- TOC

'NO317A
Sex
TOC
PARED

L "PARED

d.f.

F

Design Based
Prob

(30 denominator d.f.)

i

i
L‘»Jr—lr—l

w N

N —

N~

N~

o

[e )W)

.77
.76
.84

.21
15.
39.

19
76

.89
.66
.27

.95
76
.72

.79
.32
.60

.01
.88
.09

47
41
.49

21
.14
.20

.02
.19
.03

.39
.01

.01

@

.15
.00
.00

.35

.52

.00

.17
.08
.00

.19
.00
.00

.91
.03

.12

.23
.00

.03

.15
.33

.00

.89
.82
.13

Unweighted
F Prob

Weighted

F

Prob

(2457 denominator d.f.)

0.98 .32 -
12.66 . .00
1.64 .18
1.05 .31
22.27 .00
15.75 .00
1.10 .29
0.30 .74
2.64 .05
0.98 .32
2.89 .06
19.25 .00
0.85 .36
126.34 .00
'10.69 .00
0.06 .81
290, .09
4.00 .01
0.06 .81
80.81 - .00
3,93 .01
‘122 27
. 6.97 . .00
14.09 .00
0.05 .82
1.55 .21
4.27 .01
125

0.82 .37
5.33 .02
- 2.76 .04
1.85 .17
14.64 .00
17.94 .00
0.95 .33
0.54 .58
3.62 .01
1.64 .20
3.23 .04
20.81 .00
1.99 .16
126,25 .00
14.83 .00
.04 .85
2.18 .14
3.93 .01
1.62 .20
61.15 .00
2.94 .03
2.67 .10
.3.45 + .03
-16.87 .00
.05 .82
.83 ‘44
3.99 .01
(continued)
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RS

o " Table C-1. (continued)

&

X

0 o Design Based Unweighted Weighted ®
d.f. - F Prob - F Prob " . F Prob
30 denominator d.f.) (2457 denominator d.f.)

" NO323A
Sex 1 .1.80 .19
TOC 2 0.07 .93
PARED 3 3.95 . .02

-5 .70 2.04 .15
.21 .11 0.31 .73
.15 .00 3.81 ..01

AN O

l Mean - (30 ‘denomindtor d.f.): (4895 denomipétor d.f.) .
: Sex 1 , ?2.91 .10 0.26 .61 2109 ".15
: . ‘ ~ Race 1 ‘80.95 .00 133.84 .00 103.89 .00

PARED 3 26.08 .00 23.75 - .00 27.93 .00

Sex 1 2.81 . .10 . 0.28 .59 2.02 - .15
TOC 2 1.66 .21 4.25 - .01 ©3.30 . .04
7

PARED 3 27.98 .00 32.23 .00 34.12 . .00

laey

5 .
ABA) s . T
whE A . -
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Table C-2. Balanced Effect F-Tests for 13-Year-Olds

T0105A
Sex
Race
PARED

' TO110A
~ Sex

Race |
PARED

TO1054
~Sex
TOC
PARED

. TO110A
Sex
TOC
PARED

T0203A
-Sex
Race
PARED

T0223A
Sex

Race |

PARED

TO224A
Sex
Race .
PARED

TO203A
- Sex
TOC

+. PARED. .

T0223A
Sex
TOC
PARED

d.f.

Design Based

- -A.L-l

°

,F Prob
(30 denominator d.f.)
1 1.85 .18
1 24.27 .00
3 . 54.98, .00
1 13.89 .00
1 14.49 .00
3 7.10° .00
1 1.68 .21
2 2.87 .07
3 56.33 .00
1 19.01 .00
2 17.79 .00
3 11.74 .00
1 18.72 .00
1 27.94 .00
3 19.81 .00
1 0.01 .92
1 22.27 .00
3 7.95 .00
1 4.93 .03
1 81.61 .00
3 24.04 .00
1 17.37- .00
2 0.05 .95
3 38.50 .00
1 0.01 .93
2 1 0.16 .85
3 16.66 .00

Unweighted Weighted
F Prob Fr Prob
| . (2416 denominator d.f.)
2.91 .09 2.65 .10
65.93 .00 44.76 - .00
29.21 .00 35.58 .00
11.95 .00 12.66 .00
60:12 .00 52.20 .00
9.86 .00, 9.30 .00
2.13 .14 2.12 .15
0.98 .37 - 8.23 .00
42.81 .00 43.05 .00
12.23  ..00 - 13.63 .00
14.46 .00 29.00 .00
16.29 .00 14.09 .00
26.60 .00, 46 .80 .00
76.78 .00 62.74 - .00
25.10 .00 27.72 .00
0.82 .37 0.01 .92
79.67 .00 46.15 .00
6.9Q .00 9.28 .00
7.77 .01 9.12 .00
87.00 .00 70.14 00
12.42. .00 14.Q2 .00
"22.75 .00 - 42.33° .00
1.50 .22 T 0.33. . .72
41.09 .00 44.29' . .00.
0.43 .51 - . 0.01 .94
2.89 J06 0.33 72
15.58 .00 17.32 .00
(cpntinued)
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, _Table C-2. (continued)
De'sign Based Unweighted Weighted
d.f. F Prob F . Prob F ‘Prob
T0224A _
Sex 1 4.04 .05 6.45 .01 8.02 .00
TOC 2 1.02 .37 5.92 .00 2.10 .12
PARED 3 35.0% .00 25.80 .00 . 27.30 .00
Mean (30 denominator :i.f.) (4849 denominator d.f.)
~ Sex 1 13.87 .00 16.94 .00 22.17 .00
Race 1 59.41 .00 294.95 .00 224.55 .00
PARI?:'D- ‘ 3“ 57.31 .00 60.97 .00 68.98 .00
Sex 1 14.70 .00 15.45 .00 21.41 .00
TOC 2. 10.47 .00 11.80 .00 20.44 .00 -
PARED 3 81.71 .00 - 106.12 - .00 108.98 .00
7




o

Table C-3. Balanced E<fect F-Tests for 17-Year-0Olds

=

C
o . q .

Design Based Unweighted Weighted

d.f. F Prob . F Prob F Prob .
S0108A ‘ (30 denominator d.f.) (2288 denominator.d.f.) .
Sex 1 5.46 .03 6.07 .01 " 4.63 .03
Race 1 57.77 .00 111.52 .00 89.05 .00
PARED 3 12.11 .00 9.93 .00 10.66 .00
501174 “ | l '
Sex 1 0.28 .60 0.10 .75 0.35 .56
Race 1 '28.03 .00 - 86.78 .00 75.18 .00
PARED 3 = 12.30 . .00 ' 9.24 .00 8.30 .00 I
S0121A . : o
Sex 1 3.47 .07 2.39 .12 5.66 .02 ° '
Race 1 1.11 .30 0.95 .33 1.65 .20 ' l
PARED 3 1.24 .31 1.87 .13 1.55 .20
S0108A
Sex 1 4.99 .03 . 5.25 .02 3.56 .06
TOC 2 1.12 .34 5.14 .01 3.09 .05
PARED 3 34.05 .00 27..61 .00 25.79 .00 , '
S0117A
Sex 1 0.38 .54 0.15 .70 0.40 .53 ~
. TOC 2 1.89 17 1.84 .16 1.69 .19 l
PARED 3 17.01 .00, 23.20 .00 18.86 .00
. S0121A ‘ _ _ . . -
. Sex 1 3.40 .08 2.25 .13 5.40 .02 '
TOC . 2 2.09 .14 1.06 .35 1.60 .20
PARED 3 1.12 .36 - . 1.89 .13 2.00 .11 ’
50206A S , .
Sex 1 " 17.93 .00 20.70 .00 19.28 .00 -
Race 1 76.02 .00 111.94 .00 120.39 .00 : ‘
PARED 3 34.91 .00 25.50 .00 27.88 . .00 '
S0225A : . '
Sex 1 30.22 .00 " - 18.22 .00 /. 23.10 .00 .
Race 4 121-.03~ .00 77:23 . .00 86.55 .00 , ‘
PARED -- 3 27.81 .00 17.50 .00 . 22.25 .00 T
FRREE B R . . . K B . . .‘l . - ’ ! ' . ’
" 80206A . " . N L Lo ' l.?' .
. .Sex.’ 1 ©22.23 .00 o 27.48 .00 23.39 .00 - K
* TOC 2 0.22 . .81 0.57.° .57 0.43 .65 ‘
. PARED 3 32.75 .00 -~ 51.61° .00 55.71 .00 ' :
(continued) l
132 _ l
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. e Table C-3. (continued)
B " Design Based Unweighted - ~ Weighted , |
l » “d.f. F Prob F ° Prob . - F Prob
~ 50225A , ,
Sex 1 32.82 .00 $23.59 .00 27.07 .00
' TOC 2 0.23 .79 1.39 .25 0.45 .64
. PARED 3 7 37.05 .00 - 34.75 .00 41.03 .00
l‘ Mean (30 deno‘minatorvd.f.) ) . (4562 denominator d.f-.)
_ Sex 1 - 23.40 .00 18.80' .00 » . 19.91 . .00
Race 1 76.56 .00 ©270.28 .00 297.57 .00
l PARED 3 28.58 .00 31.23 .00 37.90 .00
‘ Sex 1 26.86 .00 23.43 .00 - 20.41 .00
: : TOC 2 5,34 .01 0.71 .49 6.25 .00
' > PARED k3 32.90 .00 176.10 .00 84.79 .00
c-7 '




Appehdix D

Contingency Tables of Wald Statistic Sample De31gn Based Tests.
Versus Alternative Tests Accepted and Rejected at the 5%
Significance Level

A e providea by eric




'9-Xear-olds

13-year-olds

17-year-olds

Table D-1.. Design Based
for the Race

Aébept
Reject
Total

Accept
Reject
Total

Accept
Reject
Total

Accept
Reject
Total

Design Based

Desigg Based

Design Based

Design Based

Versus SRS Linear Model Tests of NAEP Items
*:Sex * PARED Cross-Classification

Total
26

32

Total
23
17

40

Total
30
10
40

Total
79
33

112

-~

P

e

(<]
-
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I3

9-year-olds
. Accept «
Adjusted Reject
Total
13-year-olds
Adjusted- Accept
Reject
Total -
{
17-year-olds
. Actept*
Adjusted Reject
Total
All Ages
. Accept
Adjusted Reject

Total

Desigﬁ Based

.Accept Reject

26 1
0 5
26 6

Design Based
Accept  Reject

21 5
3 11

24 16

Design Based

Accept Reject

28 2
19
29. . 11

Design Based
Accept Reject

75 8
4 25

79 T 33

v

» Table D-2.  Design Based Versus Adjusted Linear Model Tests of NAEP Items
for the Race * Sex * PARED Cross-Classification

.o

Total
27
5
32

Total
26
14
40

Total
30

- .10

40

Total
83
29

112




3
{b
ol -

Table D-3. Design Based Versus SRS Contrast Tests of NAEP Items for E—
the Race * Sex * PARED Cross-Classification I
_ N cemm— e ' T ) - PP .'
9-year-olds . ' :
‘ 3 Design Based ) .
» Accept Reject. Total
Accept 18 37 21 L.
SRS Reject 2 .13 15 l
Total 20 16 36 .
13-year-olds "
N S Design Based .
. : Accept Reject - Total : '
Accept 13 3 16 - o :
SRS Reject 1 28 . 29 :

Total 14! 31 45

E
N

17-iear-olds .
v ' ‘ Design Based
+ Accept =~ Reject  Total .
. Accept 15 2 17
. SRS Reject 1 27 28
Total’ 16 - 29 45

AN
N,

»
N

All Ages
Design Based

Accept Reject Total
Accept $ 46 8 54
Reject ., 4 68 - 72
Total 50 76 126 \

sRs

4

=)
[}
~
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Table D-4. Design Based»Versus‘Adjusted Contrast Tests of NAEP Items -

for the Race * Sex * PARED Cross-Classification.

9-year-olds
DesignkBased
Aczept  Reject Total

L Accept 19 . 3 22 i
Adjusted  posect 1 13 14
Total 20 16 36

13-year-olds
) Design Based

Accept Reject " Total

. " Accept 13 4 17
Adjusted Reject 1 .27 28

Total 14 31 - 45

17-year-olds
Design Based
Accept Reject  Total

P Accept 16 3 19
Adjusted  posect 0 26 26

Total 16 29 45

All Ages
Design Based

. * Accept Reject Total
Accept . 48 10 58

Adjusted  poject 2 66 68
Total 50 76 126




Table D-5.

Sex * TOC * PARED Cross-Classification

De31gn Based Versus SRS Linear Model Tests of NAEP Items for the

9-year-olds

SRS

13-year-olds

SRS

<

17-year-olds

SRS

All Ages

SRS

Atcept
Reject
Total

Accept
Reject
Total

Accept

Reject -

Total

Accept
Reject
Total

Design Based

.Accept ' Reject
11 2
"1 2
12 4

Design Based

Accept Reject
© 16 7
2 7
18 14

Design Based

Accept Reject
10 . 8
2 12
12 . 20

=

Design Based

Accept Reject
37 17
5 21
42 38
139»
D-6

rTotal

13

16

Total
23

32

Total
18
14
32

Total

54
26
80

+

o3

-
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Table D-6. Design Based Versus Adjusted Linear Médel Tests of NAEP
Items for the SEX * TOC * PARED Cross-Classification

9-year-olds

. Accept
Adjusted Reject
’ Total
lg-zear-olds
. . Accept
Adjusted Reject
Total
17-year-olds
L Accept
Adjusted Reject
Total
All Ages )
Accept
Adjusted Reject
Total

~

Design Based. )
Accept Reject  Total

12 3 15
0 .1 1
12 4 16

Design Based

* Accept Reject Total
18 8 26
0 6 6
18 14 32

Design Based

Accept Reject . Total
10 9 19
2 11 13

12 20 32

Design Based

Accept Reject Total
40 20 60
2 18 20

42 38 80
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Table.D-7. Des1gn Based Versus SRS Contrast Tests of NAEP Items for the
Sex * TOC * PARED Cross Classification -

9-year-olds

Design,Based

‘ Accept Reject - Total - .
: Accept 5 -5, 10 ‘
SRS Reject 0 8 8
Total 5 13 18

13-Xear-6lds
. Design Based
Accept Reject Total

: ' Accept 9 "2 11
- : "§§§ Reject 2 23 25

Total 11 25 36

17-zear?olds

'Design Based

.- ) Accept Reject Total

: ~ Accept 9 4 13

. 7 . ' SRS Reject 1 22 23
‘ Total’ 10 26 - 36 - .

Gii 0N 5D S S O G R G G N A R D m O O Em e

All Ages
Design Based
) Accept Reject Total
- Accept . - 23 11 . 34
SRS Reject -3 53 . 56
Total 26 64 90
14,
£
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Table D-8. Design Based VersuszAdjusted Contrast Tests of NAEP Items
for the Sex * TOC * PARED Cross-Classification

- 9-year~olds

Adjusted -

13-year-olds

Adjusted

17-year-olds

Adjusted'

All Ages

" Adjusted:

Accept
Reject
Total

Accept
Reject

Total

Accept

Reject
Total

Accept

Reject

Total

Design Based

Accept Reject
5 8
0 5
5 13

Design Based ™

Accept Reject
11 7
0 18
11 25

Design Based

Accept Reject
g '
1 20
10 26

Design Based

Accept Reject:
25 21
1 43
26 64

- Total

13

18-

Total
18 -
18
36

Total
v 15,
21
36

Total
46
44
90




I l .
Table D-9; Design Based Versus Adjusted Linear Model Tests for Mean Scores
for the Race * Sex * PARED Cross-Classification l
9-year-olds
Design Based E
° Accept Reject  Total
. Accept 3 3 6
Adjusted  p . oct 0 2 2 I ,
' Total 3 5 8 -
v13-year-olds -
Design Based -
. Accept Reject Total '
. Accept 6 ’ 0 6
Adjusted  p ject 0 3 2
Total 6 2 8 ' )
17-year-olds" . '
. Design Based
Accept - Reject Total :
. Accept 5 1 6 .
Adjusted  peject - 0 2 2
Total 5 3 8 .
All Ages '
~_ Design Based '
Accept  Reject Total -
. Accept 14 4 18
Adjusted Reject 0 6 6
Total 14 10 24,
143 -
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. Table»D-lbf ‘Design Based Versus SRS Linear Model Tests of Mean Score% o
for the Race * Sex * PARED Cross-Classification
9-year-olds
Design Based -
- Accept Reject Total
' Accept 3 3. 6 )
§E§ . Reject: 0 L2 2 N
" Total 3. 5 "8 - .
13-year-olds.
Design Based
Accept Reject  Totdl
Accept 6 0 6
. 8RS Reject 0 2 2
Total - 6 : 2 8
17-year-olds
: Design Based
Accept Reject Total
_Accept 5 1 6
SRS Reject 0 2 2
Total 5 3 8
All Ages
' Design Based :
Accept Reject Total J
Accept 14 4 18
SRS Reject 0 .6 6
Total 14 10 24




Table D-11. Design Based Versus SRS Contrast Tests of Mean Scores '
“for the Race * Sex * PARED Cross-Classification : I
9-year-olds R , l .
i _Design Based T s : : ;
_ Accept Reject . Total T L
B ; Accept ' 2 0 2 - — ,
e e e :~§B—§ REjECt ) 0 7 7 . o~ l; N
Total . .2 7 .0 . bt
13-year-olds o
: . Design Based : ,
. Accept Reject Total I
o ' Accept 3 0 .3 o
b 3RS Reject 0 6 6 :
Total 3 6 9 . ' |
17-year-olds _ , : l
o Design Based o '
. Accept Reject Total '
Accept 2 0 .2 , , l
. SRS Reject 0 7 7 : . :
Total 2 7 9 ,
" All Ages. : :
) Design Based : l
) Accept Reject Total
Accept 7 0 7 '
SRS Reject 0 20 20 __
Total 7 20 27 .
, o
| 14; 1
D-12 . ;
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Table D-12.

¢
L8

1

-4

‘Design Based Versus AdJusted Contrast Tests of Mean Scores
for the Race * 3ex * .PARED Cross- C13351f1cat10n .

-~

?

3

B

. 4 : REEE 4 L ’ S : : D

'9-zear-olds-

13-year-olds

Adjusted

- 17-year-olds

Adjusted

Adjusted
All Ages
Adjusted

X3

Acceﬁt

_Reject
Total

‘Accept

Reject

‘Total

Accept
Reject
Total

Design- Based
Accept Reject
A 1

0 6

2 7

ﬁesigg Based

Accept Reject
3 0 -
0 6
3 6

_ Design Based

Accept Reject
2 0
0 -1
2 7

ﬁesign Based

Accept Reject
7 - 1
0 . 19
7 20

R

C e+ 146

bp-13

Total

Total

Total
8
19

- 27

o+




‘Table D-13. Design Based VersustSRS*Linear Model Tests of ‘Mean Scores
for the Sex * TOC * PARED Cross-Classification

Q-Qear-olds : . . -

Désign Based
‘ . Accept Reject  Total
Accept’ 0 4 4
SRS Reject 0 4 4
Total 0 8 8

13-year-olds
' Design Based : X
Accept Reject Total

Accept 3 1 - 4 :
SRS Reject 0 4 4 ,

Total . 3 5 8

- 17-year-olds

Desigh Based
Accept Reject  Total

Accept 4 1 5
SRS Reject 1 2 3 )
Total 5 3 8 -

All Ages -
Design Based :
- " Accept Reject Total
- : . Accept 7 6 13
SRS Reject 1 . 10 11
. Total 8 .16 24




for the Sex *

W

~

" ® Table D-14. Design Based Versus Adjusted Linear Model Tests of Mean Scores
TOC *.PARED Cross-Classification

--All Ages

9-¥ear-olds

Adjusted

Q

13-year-olds

Adjusted

17-year-olds

Adjusted

Adjusted

) Accept

Reject
Total

Accept
Reject
Total

Accept
Reject
Total

Accépt
Reject
Total

Design Based

Accept Reject

0
>0
0

7
1
8

- Design Based

Accept Rejec

-3
0 [
3

Design Based

3
2
5

[y

Accept Reject

5
0

5

1
.
3

<

Design Based

Accept Reject

8 11
0 5
8 . _16

148

D-15

Total
7
1
8

Total

Total

Total
19
5
24

[




Table D-15. Design Based Versus SRS Contrast Tests of Mean Scores for the
Sex * TOC * PARED Cross-Classification ' I
9-year-olds . V ¢ l
- _Design Based '
Accept Reject Total
Accept ~ : 2 1 3 »
§§_S " Reject 0 .6 6 l .
Total 2 7 9
13-year-olds , . '
. : Design Based
- Accept Reject  Total l
Accept 2 0 2 o
s, SRS Reject 1 6 . 7 ’
Total 3 6" - 9 .
17-year-olds , .
Design Based S
Accept Reject Total
Accept 3 o -+ 3 l
SRS Reject 0 6 -6 0
Total 3 6 .9 '
All Ages - '
Design Based l
Accept Reject  Total :
Accept - 7 1 : 8 ‘
SRS Reject 1 18 19 l
. Total 8 - 19 27
0 l |
149 B
. ‘ /
D-16 '

|
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Table D-16. Design Based Versus Adjusted Contrast Tests-of Mean Scores
for the Sex * TOC * PARED Cross-Classification

-

. 9-year-olds :
. ' Design Based
Accept Reject Total
s Accept 2 3 5
Adjusted Reject 0 4 , 4
7

Total. 2 . 9

'13-year-olds
' ~ Design Based i
Accept “Reject Total
. Accept 2 3 5 .
Adjusted Reject -~ 1 -3 4

Total 3 6 9 .

17-year-olds , ' S -
‘ . Design Based '

- © °  Accept Reject Total . L
_ . Accept 3 2 .5
l Adjusted Reject -0 4 L4

Total’ 3 6 9

All Ageé -
Design Based
Accept Reject ° Total
. Accept 7 8 15
Adjusted  peject - 1 11 12

, Total, 8 19 £ 27

o -

e
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Appendix E

Contingency Tables of Balanced Effects Sample Désign
Based Tests Versus Alternative Tests Accepted and
Rejected at the 5% Significance. Level .
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Table E-1.

9-year-olds

. Unweighted

Weighted

13-year-olds

Unweigh;ed

Weighted

17-year-olds

waeighted

.

Weighted

Accept
Reject
Total

Accepﬁ-

Reject

Total

Accept
Reject

Total °

Accept
Reject
Total

Accept
Reject
Total

Accept
Rejegp
Total

Design Bésed

Accept Reject
14 2
3 11
17 13
" Design Based
Accept Reject
13 1
4 12
17 13

Design Based

Accept Reject
7 00
2 21
9 ) 21
Design Based
Accept Reject
7 -0
2 21
9 21

v

Design Based

Accept Reject
11 \ 0
1 - 18
12 18
Design Based
Accept Reject
9 v 1
3 17
12 18
1572

Design Based Versus Alternative Tests for
Balance Effects

Total
16

.14
30

Total
14
16
30

Total
23
30

Total

23
30

Total
11
19

© 30

Total -
10

20

30

v
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All Ages -

Unweighted

" Weighted

Accept

Reject

Total

. Accept

Reject
Total

Table E-1. gcontinded)

Désign Based

Accept Reject Total

32 ; 2 34

6 - 50 56

38 52 90

Design Based

Accept Reject Total

029 2 31

9 50 59

38 52 90

Q
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