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Towards an Algebra for Analyzing Causal Relations

Frederick S. Ellett, Jr.

David P. Ericson

U.C.L.A.

ABSTRACT

A major part of the paper investigates the relationships among

correlation, partial correlation, and various conceptions of-causation.

)

Two widely used rul --of causal inference are explicated. It is argued

that for' each of the onceptions of causation the causal inference

rules, which usp 'par ial correlations, are invalid.

Another part of the paper explicates the basic principles of path

analysis and structural equation analysis. It is shown that these

approaches are subject to three different but important problems.

The final, major part tentatively develops an alternative approach

(the conditional probability approach) which use5 conditional probabil-

ity and not correlation as the key concept. It is shown that the C.P.

approach can avoid the shortcomings and prOblems of such approaches as

causal modeling and path analysis. It is also shown that it provides

plausible composition and
decomposition rules as well as a plausible

measure of causal strength.

In a supplemental section, we present the theorems which hold for

dichotomous systems under two sets of assumptions and the theorems which'

hold for continuous systems under two sets of assumptions, theorems

where the probabilistic conception of causation is employed.
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Towards an Algebra for Analyzing Causal Relations

I. Introduction

Educators often make aisertions,about causal relations among vari-

ables. Indeed, there are compelling arguments for holding that scien-

tific analysis and policy formation must be concerned with causation.

This paper tentatively develops an algebra for analyzing causation.

It develops a measure of causal strength and composition and decomposi-

tion rules for dichotomous systems which have important advantages over

and are not subject to the various problems of such approaches as causal

modeling-and path analysis.

A major part of the paper investigates the relationships among

correlation, partial correlation, and various conceptions of causation.

Two widely used rules of causal inference are explicated. It is argued

that for each of the conceptions of causation the causal inference

rules, which use partial correlations, are jnvalid.

Another part of the paper explicates the basic principles of path

analysis and structural equation analysis. It is shown that these

approaches are subject to three different but important problems.

lhe final, major part tentatively develops an alternative approach

(the conditional
probability approach) which uses conditional probabil-

ity and not correlation as the key concept. It is shown that the C.P.

approach can avoid the shortcomings and problems of such approaches as

causal modeling and path analysis. It is also shown that it provides

plausible composition and
decomposition rules as well as a plausible

measure of causal strength.

X9FSE/B
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In a supplemental section, we present the theorems which hold for

dichotomus systems under two sets of assumptions and the theorems which

hold for continuous. systems under two sets of assumptions, theorems

where the probabilistic conception of causation is employed.

II. Disagreements about the Nature of Modeling

.Causal modeling is quickly growing in popularity among researchers

in the social and behavioral sciences. Already a well-accepted heuris-

tic and analytic instrument in economics, sociology, and biology, causal

modeling is now being strongly promoted in psychology and educatlon as

well (see Bentler, 1980, for an overview of past and recent develop-

Ments). Causal modeling techniques travel under a variety of names--

multiple regression analysis, linear structural equation analysis,

simultaneous equation methodology, path analysis, dependence analysis,

covariance structural analysis, and simply, structural analysis. For

many the intent is to model the causal relationships between variables

so as to obtain the best "fit" with the data. Included in this are the

tasks of identifying relevant variables and determining the direction of

causality between those vat^iables. Furthermore, especially in the case

of path analysis, the attempt is made to estimate the numerical value of

the coefficients once a model has been specified.

The techniques of causal modeling have now reached a high degree

of statistical sophistication. But in this paper. we shall provide a

treatment of the logic of causal inference. Thus, rather than dwelling

upon purely technical problems, estimation or measurement issues, our

focus is upon the substantive or theoretical
interpretation of causal

models.

X9FSE/B



One might respond that causal modeling has nothing to do with

causation. Indeed, in an influential paper on fallacies in statistical

inference, Guttman (1977), going beyond the well-known "correlation does

not imply causation" (pp. 97-98), also states, "causal analysis does not

analyze causes" (pp. 103-104). And in a review of Kenny (1979), Steiger

(1980) concludes:

"Causal analysis," then, seems to be, in an important

sense, a misnomer. "Linear structural relations analysis"

is a more modest, but more aPpropriate description...Since

necessary and sufficient conditions for testing "causality"

from correlations have not yet been proposed, we may

ruh the risk of deluding the uninitiated (and perhaps

ourselves as well) when we call such model-fitting

"causal analysis." (p. 404)

Furthermore, in an important revieli/ essay, Bentler (1980), following

Guttman, claims:

Obviously, it is not necessary to take a stand on the

meaning of "cause"...The word "cause" is meant to

provide no philosophical
meaning,beyond a shorthand

designation for a hypothesized unobserved process, so

that phrases such as "process" or "system" modeling

would be viable substitute labels for "causal" modeling.

In such a definitional context, one need not worry

about the criticism that "causal analysis does not

analyze causes." (p. 420)

But it is important to note that Guttman (1977), in his paper at

least, provides few grounds for his views about deriving causal inferences

from correlational data or about the non-sausal nature of causal modeling.

X9FSE/B



Not all proponents of causal modeling agree with Guttman. Rather, many

are explicit about rendering a causal interpretation of causal modeling.

Sewell Wright (1921), the developer of path analysis, was, merely one of

the first to argue for the causal interpretation. Simon, in his paper

on spurious correlation concluded, "hence correlation is proof of causa-

___
tion if we are willing to make the assumptions of time precedence and

non-correlation of the error terms" (3957, pp. 42-43). Blalock, follow-

ing SiMon, concurs, "...a method for inferring causal relationships from

correlational data...involves sets of prediction from causal models

where certain combinations of correlations can be expected to disappear"
"

(1972, p. 51). Duncan (in Blalock 1971; origin.ally published in 1966)

also supports the causal interpretation Gnldberger is most explicft,

"In a structural equation model each equation'represents a causal link

rather than a mere empirical association" (1973, p. 2). Asher (1976)

and Kenny (1979) are but two further proponents of a causal interpreta-

tion of causal modeling.

There appears to be, then, a sizeable disagreement about the causal

nature (or lack there of) of causal modeling.

Yet regardless of this disagreement, many researchers do agree on

various rules of inference that 'provide the foundation for model specifi-

cation, determiniation of direction among variables, 'and the.correlation

coefficient. We formulate two of these_rules in Section V. For many

researchers advancing a causal interpretation of causal modeling, the

two rules are recognized as rules of causal inference. In Section VI we

formulate another, broader spt of rules of inference. Thus in the main

body of this paper we shall exOlore the validity of these rules for

drawing causal inferences. Our remarks on this issue of validity do not

X9FSE/B r")."
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necessarily generalize to the work of those who diSavow the causal

interpretation of causal modeling.

III. The Scientific and Practical Importance of Causation

It might be thought that itImakes little difference whether we ren-

der a causal interpretation to.dur causal models. Perhaps very, little

is at stake. In that case, caution would favor a non-causal interpre-

tation; there Would be no need, then, to worry about the validity of

causal inference rules. To the contrary, we think a good deal is at

stake. First the logical status of the social sciences is at stake.

Second, also at stalce is whether social science findings, using causal

modeling methods, have any clear implications for social policy.

In the first case-, many believe that central to the enterprise of

science is covering law explanation. And the scientifilca search for"

such laws is the search for causal laws. Whatever else their differences,

a majority of thinkers in the social sciences and philosophy of science

agree upon this point (ambng social scientists see, for example, Campbell

and Stanley (1966), Chomsky (1968), Cronbach and Meehl (1955), Cook and

Campbell (1979), Hicks (1979), Simon (1957), Skinner (1953), and Suppes

(1970); among philosophers of science see, for example, Giere (1979),

Hempel (1967), Lakatos (1970), Nagel (1961), Popper (1972), Rudner

(1967), Salmon (with contributions by Jeffrey and Greeno (1971) and

Smart (1963)). This notion of causal explanation is quite different

from that in merely predictive systems in which researchers are inter-

ested in the proportiOn of variance of variable Y "explained" by vari-

able X. It is one thing to know that X predicts Y; yet it is quite

another thing to know that X causally explains Y. If X merely predicts

X9FSE/B



Y, then we have no way of.knowing whether X and Y are causally related

or whether their co-variation is due to other variables (hence the

concefn of Simon and others with spurious correlation).

This is perhaps why Simon, Blalock, Goldberger, Asher, Duncan, et

al. are prepared to give a causal interpretation of causal modeling.

The causal interpretation results not from a lack of caution, but from

an understanding of the central role of causal expalantion in science.

Without the attempt to derive causal inferences from our causal Models,

we lose sight of the fact that a major aim of the social sciences, like

the natural sciences, is to explain phenomena--that goes beyond descrip-

tion and prediction. And here we must state that we agree with Simon,

Blalock, Goldberger, et al. on the importance of causal explanation in

the social sciences. No matter how difficult the task, we do need a

methodology for causal analysis in those areas of social research in

which the strict experiment cannot be performed. For this reason, it is

important to assess how well the proposed rules of causal inference

enable us to legitimately *draw such inferences from c)rrelational data.

On the other hand, there is nothing wrong with predictive systems

of causal model,ing. They, too, are a wholly legitimate form of social

science inquiry. However, if researchers are interested in developing a

social science that conforms to the aims, rules,-and canons of the

physical and life sciences--physics, chemistry, biology, and medical

science--then we must strive for more than prediction. We must strive,

as well:for causal expalantion. Prediction is an important aim. But

if it is taken to be the sole interest of social science ingdiry, we

should recognize that non-causal, pi'edictive systems of causal modeling

represent a form of social science inquiry quite different from its

X9FSE/B



cause-seeking counterpart. For this form has different aims, rules,

canons, and results than that of the natural sciences. It represents a

different vision of what the social sciences are or ought to become.

But there is a more practical second, point related to the first.

Without causal explanation, the findings of the social and behavioral

sciences have few clear implications for policy interventions. For

policy simply is the attempt to intervene and change the world's estab-

lished causal structure and its sequence of events. Predictive relation-

ships, however, since they tell us nothing firm about how the causal

structurq of the world actually is, provide a limited basis for illumi-

nating esffective strategies. At best, they may.help us to rule out

*
certain strategies should they happen to actually coincide with the

causal structure of the world.

Thus, the capacity of social science to play a major role in social

change is predicated upon the ability to reveal the prevailing causal

structure. This is a task that causal explanation can perform. For

once, we understand how. things do, in fact, work, we are also in a far

stronger position to alter the structure in ways deemed more beneficial

to social existence.

For these two reasons alone--for the sake of explanation and the

practical relevance of the social sciences--the task Of elucidating and

testing the rules of causal inference in causal modeling is important.

In so doing, the five most plausible understandings of causation will

receive separate attention. As we shall see, each conception of cause

yields different results as we probe the various rules of causal inference

that relate correlation, partial correlation, and causation.

X9FSE/B
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IV. Preliminary Remarks

In sections V, VI; and VII of this paper we shall be concerned with

the widespread views on the underlying logic of causal inference for

systems where the Variables are dtchotomus. In section IX we present

our results for systems where the variables are continuous.

One view of the logic of causal inference is that the logic for

-

systems with continuous variables is the same as the logic for systems

with dichtomus variables. H. Blalock, for example, has put forward such

a view (1971, 1972). In sections V, VI, VII we shall investigate the

rules oeinference which employ the conception of partial correlation

used byCsuch people as Blalock.

Other rules of causal inferenCe, however, have been developed pri-

marily for systems with dichotomus variables. These rules have been

provided by P. Kendall and P. Lazarfeld (1950), E. Nagel (1961),

H. Reichenhach (1956) and P. Suppes (1970). In what follows in sections V,

VI, and VII, we show, for example, that the partial correlation as

defined by Blalock does not go to zero as the rules of causal influence

claim it should. It can be shown that if the Blalock partial correlation

does not go to zero, then the Kendall-Lazarsfeld and Nagel partial

correlation and the Suppes' kind of partial correlation do not go to

zero either. Hence, by showing that the rules which use Blalock's

partial correlation are invalid, one also shows the rules advanced by

Kendall and Lazarsfeld, Nagel, and Suppes are also invalid. We present

these arguments in detail elsewhere.
1

Our general inquiry, then, is not confined to such writers as

H. Simon (1957) or Blalock. Rather,,it extends to cover the entire

gamut of causal modeling methods which employ various rules to make



9

causal inferences where the system has variables which.take on a continuous

range of values. 'In'ille literature much as been made about the various

strengths and weaknesses of Simon's and Blalock's models which rely upon

non-standardized'coefficients and regression analysis, on the one hand,

and the structural equation model approach which relies upon standardized

coefficients and path analysis (see, e.g., Wright, 1960; Blalock, 1971;

;oldberger,'103; Duncan 1975; Asher, 1976). , The alleged advantages of

(:: the structural equation model approach are that it makes possible the

estimation of the numerical values of the path coefficients--and in so

doing the estimation of the magnitude or strength of the causal links--and
.

r\
that, as Bentler (1980) notes, it can easily handle models With "latent"

or unmeasured variables. Whatever differences there are, then, between

Simon-Blalock and path analysis are primarily those of which measure to

use rather than a difference in models and underlying rationale.
2

I ,

f
Indeed, Asher (1976, pp. 29, 34-35) claims that, in terms of mode

specification and determination of the direction of causality, bo h

require the same investment in assumptions. And, since we are not

concerned with measnrpment or estimation issues (e.g., with the measure-

ment of unobservable variables), but only with whether causal modeling

methods can, tn theory, validly test causal hypothesistour comments

should prove to be general. In section TX we present our results for

causal systems where the-variables are continuous.

The last point cdpcern; presentation. For simplicity's sake, we

shall develop here our results for the dichotomuS case in sections V, VI

and VII. Hence, we shall discuss the fourfold point correlation, 0 (phi),

where the two variables can take on only two values: 1 when present;

0 when absent. Given a 2x2 table the relationship between X and Y can



be represented as follows:

X. = 0, if X is absent in occurrence i.

X. = 1, if X is present in occurrence i.

Yi.,= 0, if Y is absent in occurrehce i.

Y. = 1, if Y is present in occurrence i.

Also let:

10

a = the probability of an occurrence i where Xi = 0 and V. = 1

b = the probability of an occurrence t where Xi = 1 and Yi = 1

c = the probability of an occurrence i Where Xi = 0 and Yi = 0

d = the probability of an occurrence i where X. = 1 and Yi = 0

The occurrences can be arranged in a4x2 table df this form:

a b 'V present

Y absent

- t

X absent X present

The phi correlation coefficient between the scores in the population

under study is:

0 bc ad

[(a+b)(c+d)(a+c)(b+d)] h

The partial correlation between X and Z with Y "held constant" is:

h

rxz ,y= lAyly z
11(y).(llyz)]

Notice that the partial correlation is zero if and only if the numerator
"^4

te4 is zero. (This is the conception of partial correlation used by

such writers as Blalock.)

Again, we have developed results and theorems for cases where the

variables are continuops (where the regular Pearson product moment -

correlation is used). *We present, without our proofs, these general

results in the Supplement, section IX.

coo

/
11
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V. Purported Analyses of "Cause" and the

Rules Using Partial Correlations

V.A. Two Rules of Causal Inference

In this section we will consider several purported analyses of

causation and the relationships among each analysis, correlation, and

partial correlation.
2 We employ Blalock's basic framework in which he

discuSses four conceptions of causation.

Let us begin by formulating the inference rule (R.S.B) which appears

to be accepted by many social scientists. It is a straightforward

interpretation of Simon's remarks (1957).
3

Rule S.B. Given standard assumptions,
4

if the correlationAz between-X and Z is high

positive (or negative) and the partial correlationAP4 xz,y

between X and Z with Y "held constant" is zero, then

either a) Y is an intervening variable--the causal effect

of X on Z (or vice versa) operates through Y;

or b) Y is a common cause of X and Z--the correlation

between X and Z is "spurious."

Notice that rule S.B. is a confirmational or an inductive rule.

That is, rule S.B. purports to able to establish that certain causal

relations exist from inferences built on correlations (or some other

statistic) among the variables. There is another kind of rule of causal

inference which we shall call falsificationist. A falsificationist rule

postulates that certain causal relations exist and it then sets out to

use the statistics to falsify the hypotheses. The rule C.S.B., which we

formulate next, is a falsificationist rule. Path analysis and structural

X9FSE/B
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equation approaches are also falsificaVonist. (See section VI below).

(We believe that certain kinds of falsificationist's rules are valid in

certain situations. See section VII.)

Let us formulate an inference rule (R.C.S.B.) which appears to be

more widely accepted than Rule S.B. It fits Blalock's remarks that

causal inferences don't prove causal relations, rather they rule out or

5
reject causal relations

Rule C.S.B... Given standard assumptions,

if either (a) Y is an intervening cause variable

(the causal effect of X on Z, or vice versa, operates

through Y) or (b) Y is a common cause.of X and Z; then

the correlationAz between X and Z is high positive (or

-negative) and the partial correlationp zy between X and
x,

Z with Y "held constant" is zero.

Notice that these rules assume that Y is either an intervening

variable between X and Z or Y is a common cause of X and Z, but not

both. (In Section VI, VII, and the Supplement the assumption is relaxed.)

Our point is that given this assumption (and assumptions about the

/I outside causes"), the two rules of causal inference are invalid for

certain conceptions of causation.

V.B. Causes as Necessary Conditions: Type 1

Consider some familiar examples of causation. The striking of a

match causes it to ignite or a person drinking a poison causes him or

her to die. Of course, were oxygen not present or were the match wet,

it would not ignite. And if an antidote were administered, the person

would not die. These examples suggest that to.talk about the causal

X9FSE/B
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conditions for any change is to talk about those changes that are neces-

sary for its occurrence. Were those conditions not to occur, the change

in question would not occur.

Given that a causal condition X of any change Y is a necessary

condition of the change Y, what follows about the correlation between X

and Y? First, it follows that a = O. For when X = 0, then Y = 0 because

X is a necessary conditioR for Y; there will be no cases where X = 0 and

Y = 1. Ay simplifies to the 7ollowing:

pxy = [b/(b+d)21[c/(c+d)21.

But, it also follows that whenever d is non-zero and whenever X is

necessary for Y, no determinate (positive) value of the correlation can

be deduced. Any value off, high or low, is logically compatible with

the fact that X is a necessary condition for Y! (Note, however, thaty

must be non-negative.)

On the other hand, given only that a = 0, it does not follow that X

is a necessary condition for Y. It could turn our that X is merely

correlated with the actual causal condition, but played no role in the

causation. It is quite possible that no match has ever ignited except

in the'presence of some gravitational force, yet the presence of such a

force is not causally necessary for the ignition of the match.

The important point to note in such cases as the match and the

quaffed poison is that my positive value, high or low, of they corre-

lation is compatible with the fact that x is causally necessary for Y.

The actual value will depend upon the number of occurrences of such

events as the match's being wet, the oxygen's being absent, and the

antidote's being administered, and sb on.

iBFSE/B
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Given the analysis that causes are necessary condition's, what can

be shown about the causal inference rules which relate correlation,

partial correlation, and a conception of causation?

It is easy to find cases which invalidate rule S.B., cases wheie

the correlationAz is high (positive or negative) and the partial

correlation P is (near) zero, but where it does not follow that Y is

xz,y

an intervening cause or a common cause of X and Z. Suppose Y is a

necessary condition for Z, but X is not necessary (nor sufficient) for

Y. Here some subset of not-X causes Y. Since there is no causal path

from X to,Y, Y is not an intervening variable (and it isn't a common

cause either). Here the antecedents of rule S.B. are satisfied but the

consequences are not.

Given that rule S.B. is invalid, it might be hoped that rule C.S.B.

is valid. Unfortunately, rule C.S.B. is also invalid. Suppose Y is a

common, necessary cause of X and Z.
6 Consider the common cause Y where

we have the- following correlation tables:

0 25 X

50 25 not X

not Y Y

0 25 Z 0 25 Z

50 25 not Z 75 0 not Z

not Y Y not X X

Here the antecedents of rule C.S.B. are satisfied, but the partial cor-

relation between X and Z with Y "held constant" does not go to zero.

(For, f j? .
Remember, the numerator of 17 is! - .)

xz xy yz
xz xy yz

V.C. Causes as Sufficient Conditions: Type 2

Let us consider another set of familiar examples of causation. For

example, disturbances on the' sun cause radio wave
interference on earth

or the explosion of an atom bomb causes a building to collapse. Here we
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have the feeling that no matter what else happens, the sun's disturbances

would cause radio wave interference and the bomb's blast would collapse

- the building. These examples suggest the view that a cause is sufficient

for its effect. In more general form, to say a set of conditions,is a

cause is to say that the set of conditions is sufficient for the effect.

Blalock, for one, apparently argues that a cause is a sufficient

condition for the event:

According to Bunge, one of the essential ingredients in

the scientist's conception of a cause is the idea of

"producing", a notion that seems basically similar to

that of forcing. If X is a cause of Y, we have in mind

that a change in X is followed by or associated with a

change in Y. Thus, although constant conjunction may

--be a part of one's definition of causality, conjunction

is not sufficient to distinguish a causal relationship

from other types of associations. (1972, p. 9; emphasis

in the original)

Two important points need to be made here. First, it is unfortunate

that Blalock never attempted to give any independent explications of

_"producing" or "forcing". For examnle, he' might have attempted to link

producing to human manipulability or to examples such as the bomb blast

where the forcing is very evident. On the other hand, it is easy to see

how difficult it is to model the forcing notion with statistical concepts.

Second, constant conjunction for Blalock comes to the view that all X's

are followed by Y's, yet he clearly distinguishes constant conjunction

from causation. Thus, Blalock appears to be committed to the view that

to say X is the cause of Y is to say X is.sufficient for Y. This view

is compatible with the way Blalock goes about "finding" causes (1972,

Chs. II and III):

X9FSE/B
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Further support of-this interpretation is provided by SimOn's

(1957) more formal analysis of causation. In that paper Simon expli-

cates a version of what has been termed the "covering law" or hypo-

thetical-deductive model of scientific explanation. The model can be

briefly specified as having the form:

XZ, y

X

Where XnY is a general law specifying that if X occurs, then Y occurs

and X specifies instantiations of the initial conditions and Y the

effect. In other words, Simon provides a sufficient condition analysis

of causation.
7 It is not unreasonable to believe that Blalock simply

took it over from Simon.

At any rate, if causes are a sufficient condition for their effects,

we cannot infer the existence of X from the presence of Y. There can be

a plurality of causes of Y, each sufficient, but none necessary for Y.

But, suppose now that X does cause Y. What follows about the correla-

tion between X and Y? First, it follows that d=0. For when X = 1,

Y = 1 because X is sufficient for Y. Hence, there will be no cases

where X = 1 and Y = 0. Given that d = 0, then.? becomes:

= fb/(a+b)]1/2 [c/(a+c)]1/2

Bu it can then be determined that when a is non-zero and X is suffi-

cient for Y, no determinate value, high or low, of they correlation can

be deduced. The value of/depends on the actual number of occurrences

in the 2x2 table cells--on the numbers a, b, and c. Any -(positive)

value ofjp is logically compatible with the fact that X is sufficient

for Y.

X9FSE/B
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On the other hand, gtven that d.= 0, it does not follows that X is

a sufficient condition for Y. It could turn gut that X is 'merely corre-

lated with Y.

It is easy to find cases which invalidate rule S.B., cases where

the correlationyn is high positive (or negative) and the partial

correlation is (near) zero, but where it does not follow that Y is

xz,y

an intervening sufficient cause or a common sufficient cause of X and Z.

Suppose that X is a sufficient cause for Y, but Y is neither neceSsary

nor sufficient for Z. Here some subset of notY causes Z. Since there

is no 5ausal path from Y to Z, Y is not an intervening variable (and it

isn't a Common cause either). Here the antecedents of rule S.B. are

satisfied, but the consequences are not.

Rule C.S,B. is albo invalid. Suppose Y is a common sufficient-cause

of X and Z. Consider the common cause Y where we have the following

correlation tables:

0 50 Y 100 50 Z 100 50

200 50 not Y 150 0 not Z 100 50 not Z

not X X not Y Y not X X

Here the antecedents of rule C.S.B. are satisfied, but the partial

correlation between X and Z with Y "held constant" does not go to zero.

(For 0 =Az Av.4z> O.)

Of course, there are several problems with attempting to analyze

causation as a sufficient condition. One counter example to the analysis

is the fact that the presence,of fire is sufficient for the presence of

oxygen, yet surely the fire did not cause the presence of oxygen.

Furthermore, if X is a sufficient condition for Y, then any other state
4

S of the world which occurs can be conjoined with X so that X and S are

X9FSE/8
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sufficient for Y. For example, if frustration were sufficient for

aggression, then frustration and Antarctica's being cold would also be

sufficient for aggression. Clearly, however, Antarctica plays no causal

role in aggression. Hence, there are difficulties with the view-that

causes are sufficient conditions.

Even given Blalock's preferred interpretation of causation as a

sufficient condition, we hMie shown that any positive value (high or

low) of the correlationf is logically compatible with the fact that X

caused Y. We have also shown that the two widely held causal inference

rules are invalid. It remains to be seen whether the method will prove

more adequate with our three remaining understindings of cause.

V.D. Causes as Necessary and Sufficient Conditions: Type 3

The Typel analysis of cause involves a restrictive notion of what

a cause is. For example, it would rule out the possibility that there

might be a plurality of cauies for a certain effect in which each cause

is sufficient for (or increases the probability of) an effect, but none

of which is necessary. (For instance, there are many ways of causing a

person's death or of bringing about academic achievement, but not a one

and only way.) And we have seen there are problems with the Type 2

analysis. But'perhips it is still possible to hold that if X causes Y,

then X (or the totality of necessary conditions for Y) is necessary and

sufficient for Y. Such an analysis was widely held in the 1950s' and

early 1960s.

Suppose, then, that "X is the cause of Y" means "X is a necessary

and suf icient condition for Y." First, notice that a = 0, for when X =

X9FSE/B



19

0, Y = 0 because X is necessary
(there-Can be no cases in which X = 0

and Y = 1). Second, notica that d = 0, for when X = 1, Y = 1 because X

is sufficient for Y (X cannot ='1 and Y = 0). Given that a = 0 and

d = 0, the correlationfequals 1.

It should be pointed out, of course, that given a correlation of 1,

we cannot directly infer that X caused Y. X and Y can be perfectly

correlated,.but not causally related, if X and Y are the unalterable

consequences of some third event Z; X could be the side effect of a

virus (Z) and Y the disease.

At this point, using correlations as a method in causal inquiry

appears-to be justified. If the view of causation is sound, then it is

a necessary condition that the correlation be 1. Although it does not

necessarily prove causal relationships,, one can use this as a test to

reject causal claims.

However, given our previous arguments and examples, it follows that

rule S.B. is invalid here, too. But rule C.S.B is no longer susceptible

to the counterexamples of the previous sections. When a cause is a

necessary and a sufficient condition, it follows that the correlation

Az is high (1) and that the numerator of the partial correlation 0
j xz ,y

is zero. Except for the practical difficulties encountered in finding

such causes, it appears the position is theoretically sound. 'But as we

shall see, other difficulties quickly arise.

Blalock (1972, p. 31) has anticipated this analysis of causation

which states that strictly speaking cases of type 1, type 2, and type 4

(causes as neither necessary nor
sufficient conditions; to be discussed

below) can all be reduced to necessary and sufficient conditions. This'

can be done, he maintains, by the device of re-defining what is included
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under X and Y. As we have already noted, however, Blalock'has mostly

espoused and applied the view that causes are merely sufficient condi-

tions. Furthermore, he strongly relies (1972, pp. 40, 68-69, 73-76) on

what may be termed "the principle of decreasing correlation" which

states that when X causes Y and Y causes Z, one can expect the corre-

lation between)X and Z to be smaller than that between X and Y or Y and

Z. But the problem is that this principle is applicable only if there

be other causes for Y and Z. Thus, in his many exemplifications of

Simon's model, Blalock has implicitly assumed that a cause X of Y need

not be the only cause of Y, that X is not necessary for Y. (If a cause

were-necessary and sufficient for its effect, the/correlation would

be 1.) Blalock has,apparently presented inconsistent views.

Even were Blalock to present specific arguments and procedures for

reducing all cases to those of type 3, a major theoretical difficulty

attends the claim that causes are necessary and sufficient conditions:

For an adequate analysis of causation should be able to distinguish

cause from effect. "X is the cause of Y" should not entail "Y is the

cause of X"; the causal relationship is an asymmetric one. Yet if X is

sufficient for Y, then Y is necessary for X; and if X is also necessary

for Y, then Y is sufficient for X. If "X is the cause of V" means "X is

necessary and Sufficient for Y", then it also follows'that Y is the

cause of X. Thus the asymmetry of the causal relationship has been

violated. Therefore, this analysis of causation is inadequate.

Blalock is aware of this difficulty. And like most other writers

on causal modeling (e.g., Asher, 1976 and Kenny, 1979), he has noted

that because'temporal sequences are also asymmetrical, time precedence

of one variable over another might help to resolve the direction of
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causation. But, unlike most other writers, Blalock is less comfortable

with the time sequence-gives-you-causal-asymmeth-view.
He is explicitly

aware that the forcing or producing idqo is not contained in the notion

of temporal sequences. Thus, he argues that our conception of causality

should not depend on temporal sequences, except for the impossibility of

an effect preceding its cause (1977, p. 10). Blalock, we think, is

mainly correct o4this observation. HoweVer cause is understood, it

cannot be part of the definition of cause that it temporally precede its

effect. This has implications for ordering variables in a model. But

even Blalock appears to violate this caveat when he later seems to

employ temporality to distinguish cause and effect (1972, p. 43).

Counterexamples to the temporal-sequence condition fall into two sets.

By all reason, the first set--contemporaneous causes and effects--is the

larger. For example, when a locomotive is pulling a caboose and the two

are tightly coupled, the motion of the locomotive is sufficient for the

motion of the caboose. Once primary inerti.a has been overcome, the

motion of the caboose is also sufficient for the motion of the locomo-

tive. But here they move at the same time. Furthermore, plentiful

examples of this sort might be drawn from psychology and education.

The second set of counterexamples are more exotic since they involve

effects which, partly at least, precede their causes in time. Evidently,

many physicists believe that this is what occurs with certain highly

charged sub-atomic particles in a cloud-chamber. Many philosophers of

science have also avoided ruling out, a priori, the possibility of

"backward causation (See, e.g., Sayre, 1977 and Dummett and Flew,

1954).
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One last example is instructive. The change in atmospheric condi-

tions is regularly associated with the falling barometer, although it

is the change in atmosphere that causes the storm. Here, both the

atmospheric and barometer changes temporally precede the storm. Hence,

the difference between regular association and causal relationship is

not merely a matter of temporal sequence.

Yet more troubling for the Simon-Blalock procedures, even in a case

such as this, one cannot use the partial correlations to distinguish

cause from spurious cause. For though all the pairwise correlations are

1, the partial correlation is undefined. The difficulty is that the

denominator of the partial correlation is zero: Hence, the rule C.S.B.

is actually invalid afterall. Blalock (1972, pp. 87-89), recognizes

this problem of multicollinearity and admits that there are no defenses

available (1972, pp. 87-89).

Thus, such a view of causal inference does not allow us to distin-

gu'ish spurious from causal relations in general, given a type 3 view of

cause. This is unfortunate since actual cases in the social and beha-

vioral sciences are likely to be many times more recalcitrant than the

barometer example. But then again, the conception of cause as necessary

and sufficient condition is probably the least plausible one that we

have examined. We turn to type 4 cases which may prove to be a most

plausible understanding of causation. It is also the conception held by

many social scientists.

V.E. Causes as INUS Conditions: Type 4

For one reason or another.most social scientists have rejected the

conceptions of causation which treat causes as a sufficient condition or

X9FSE/B



23

which treat causes as a necessary condition,fo0 soMe event E. Social

scientists are inclined to hold that such invariable and close relation-

ships between a cause and its effect are not likely to be found in

social inquiry. (For example,fsee D. Heige, 1975)

The use of such strategies as causal modeling or path analysis can

be reconstructed by using either the conception of causation as an

INUS-condition or the conception of causation as probabilistic causa-

tion. In this section we consider the validity of the two rules when

the former conception is used; in the next section we consider the

validity of the rules when the latter is used.

The INUS conception of causation holds the following. To say that

X is the cause of Z is to say that X is an insufficient but nonredundant

part of a set of conditions which is unnecessary but sufficient for Z.

Thus, wherever there is a plurality of causes of Z, and wherever a

conjunction of conditions which includes X is sufficient for Z, X will

turn out to be an INUS condition of Z, (Heise, 19151 Mackie, 1974). In

more abstract terms, it may turn out that all cases of (AX or WB) are

also cases of Z. It can be seen that an INUS conception af causation

requires that strict determinism be true locally, that there be suffi-

cient conditions of Z.

Given that X causes Z means that X is an INUS causes of Z, what

follows about the correlation between X and Z? For simplicipt, let's

assume that Z can be sufficiently-caused by [(X and C) or W]. Consider

the terms in the 2 x 2 correlation table. First, it follows that d is

not zero, for X is not sufficient for Z. Together X and C bring about

Z, but when notC occurs with X, then notZ. occurs. Thus, it follows that
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b is not zero and that the ratio b/(b+d) equals the number of occur-

*

rence,s of (X and C) divided by the number of .occurrences of X. .Second,

it follows that a is not zero, for X,Is not necessary for Z; W can also

bring about Z. It is'also possi,ble that notW occur with notX, and hence

that not Z oCcur. At any rate, the ratio-a/(a+c) equals the ratio of

the number of occurrerices of (notX and W) divided by the number of

occurrences of notX. Therefore, when X is an INUS' cause of Z, the terms

a, b, and d are non zero and it is possible for c to be non-zero also.

Furthermore, the ratios d/b and c/a can take on values such thatyxz

ranges from high positive to high negative. Also,Az can equal zero °

when d/b equals c/a.

Given the analysis that X. 6uses Z means that X is an INUS cause of

Z, what can be shown about the causal inference rules which relate

correlation, partial correlation and the INUS conception of causation?

It is easy to find cases which invalidate rule S.8., cases. where

the correlation/0n is high (positive or negative) and the partial

correlation4za is (near) zero,*but where it does not follow that Y is

an intervening cause between X and Z nor that Y is a common cause of X

and Z. (Remember that the numerator of4z,y equalsAz *4a, so

the partial is zero if and only if the latter quantity is zero.) Suppose

Y is an INUS cause of Z but that X is not on INUS cause of Y. Consider

the INUS cause Y where we have the following correlation tables:

X9FSE/B
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Here the antecedents of the rule are satisfied4z is high positive (.5)

and the partial correlation4z,y is zero), but Y is not an interveling

cause between X and Z (nor is Y a common cause of X and Z). (For .5

=Az which equalsAy .jeyz = [(-96)/(96'144)1/2).[(-72)/(96'144)1/2].)

Given that rule S.B. is invalid, it might be hoped that rule C.S.B.

is vali. Unfortunately, rule C.S.B. is also invalid. There are cases

where4z = 0 and where the partial ccrrelation is zero, but there are

also cases where the partial correlation is not zero. Suppose X is an

INUS cause of Y and Y is an INUS cause of Z. Consider the following

correlation tables:

25 75 Y 50 50 Z 62.5 37.5 Z

75 -25 NotY 50 50 NotZ 37.5 62.5 NotZ

NotX X NotY Y NotX X

Hencejlxz, which is large negative, does not equalAyAz, for.6z,

equals zero. Thus, even though Y is an intervening INUS-cause between X

and Z, the partial correlation g, Z y
is noi zero.

X ,

There are cases where Y is an intervening INUS-cause between X and

Z and wherefyz is nonzero but the partial correlationvecz,y is zero,

but there are also cases where the partial correlatipn is not zero.

Suppose X is an INUS-cause of Y and Y is an INUS-cauie of Z. Consider

.the following correlation tables:

25 75 Y 16 2/3 33 1/3 Z 25 25 Z

75 25 NotY 83 1/3, 66 2/3 NotZ 75 75 NotZ

NotX X NOtY Y NotX X
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Herepn, which is iero, does not equal 10 al, , both of the latter
xy yz

terms are nonzero. .Therefore, Y is an intervening INUS cause but the

partial correlation AP is not zero.
w xz,y

Given these two kinds of counter examples, then, it follows that

when Y is an intervening INUS cause of X and Z the rule C.S.B. is invalid.

Difficulties also arise for the rule C.S.B. when Y is taken to be a

common INUS cause of X and Z. Consider the following correlation tables:

0 75 .Z 25 50 Z 25 50 X

125 0 NotZ 75 50 NotZ 75 50 NotX

NotX X NotY Y NotY Y

HereAcz, which equals 1, does not equal4y.Atz, the latter correla-

tions are both less than 1. In order for Y to be a common INUS cause of

X and Z there must be some other factor(s) which is (are) a cause of'X

otherwise Y couldn't be an INUS cause of X. Similarly, there must be

some other factors which is (are) a cause of Z; otherwise, Y couldn't an

INUS-case of Z. The counterexample above assumed that the other factor

is also an INUS common cause of X and of Z, but other kinds of counter-

examples are easily constructed without this assumption. At any rate,

given these counterexamples, it follows that when Y is a comilon INUS

cause of X and of Z, it need not be the case_thatAz is high (positive

or negative) and that the partial correlation p is zero. Therefore,
xz,y

the rule C.S.B. is invalid.

There are, of course, several problems with the analysis of 'causa-

tiOn as an NUS condition. First, suppose Y is an INUS condition of Z.

Then Y is part of factor which has the following form: C4Y or W. If Y

is an INUS conditon of Z, then so is C. .But usually we select only one
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of these INUS conditions and call it the cause. At best, then the

INUS-analysis of causation is incomplete.

Second, suppose that Y is an INUS cause of Z and that X is an INUS

cause of Y. In such a situation, z is an insufficient but nonredundant

part of a set of conditions which are unhecessary but sufficient for Y.

That is, Z is an INUS condition of Y. But if a cause is merely an INUS

condition, then in this situation it follows that Y is the cause of-Z

and that Z is the cause of Y. Surely this is an unacceptable.result,

for the causal relationship is an asymmetric one. An adequate analysis

of causation should be able to, distinguish cause from effect. Since the

analyses of causation as an INUS condition does not, it is not an ade-

quate analysis.

Again, one might be tempted at this point to add temporality to the

INUS condition analysis. After all, temporal sequences are also asymmetri-

cal;,time precedence of one variable over another might help to resolve

the direction of causation. But, we have previously seen in our dis-

cussion of cause as a necessary and sufficient condition (Section V.D.)

that the temporal sequence condition is subject to serious counter-

examples. Thus, it cannot,be used to save the INUS analysis of cause

from this defect.

Still, there is one final problem for the analysis of causation as

an INUS condition. An INUS condition Y is part of a set of conditions

which is unnecessary but sufficient for Z. Thus, in order for Z to have

an INUS condition, some set of conditions must be sufficient for Z. One

might say that locally, at least, determinism is true. But many writers

have argued that modern physics and biofogy use 0 conception of cauiation7

probabilistic causation--which rules out such local determinism. In
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such situations, W is a probabilistic cause of Z even though W does not

belong to a set of conditions which is sufficient. In particular, many

writers have held that P(Z/W)>P(Z). We consider probabilistic ciusa-

tion in detail in section V.F.

Given'that there are intelligible applications of the concept of

probabilistic causation, then the analysis of causation as an INUS

condition is unacceptable as a general analysis. It may turn out,

however, that there are seVeral related but oistinct conceptions of

causation. Perhaps the INUS condition analysis is adequate for one of

these conceptions of causation. We leave this issue to anothei time.

We must notice in passing from causation as an INUS condition to

probabilistic causation, that there seems to be room for an INUP analy-

sis of causation. Y is an INUP cause of Z if Y is neither a sufficient

nor a probabilistic cause bui is a nonredundant part of a set S of

conditions which is an unnecessary but a probabilistic cause of Z.

Although Y does not "influence" Z by itself, the set S, which has Y as a

nonredundant part, does "influence" Z. We leave consideration of INUP

conditions to another time.

V.F. Cause as Probabilistic-cause: Type 5

A probabilistic cause can be partly understood by contrasting it to

the familiar notions of necessity and sufficiency. Roughly, to say that

'X is a probabilistic cause of Y' is to say 'X causes Y even though X is

insufficient and often unnecessary for Y.' In more formal terms, many

writers have held that P(Y/X),PP(Y). In other words, it has been held

that the preAencesof X increases the probability that Y will'occur.

Now many may find that the notion of probabilistic causation,

rather than teeming.with plausibility, is highly problematic. Somehow,
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it might be maintained, the notion 'X causes Y' must be reducible to

necessary or sufficient conditions or both. Thus, Mackie's (1974,

p. 62) notion of an INUS condition (as discussed in V.D.) appears to be

a special instance of a probabilistic cause, but it is really merely

part of a sufficient condition. To say that 'X causes Y' is to say that

'X is an insufficient but necessary
factor in a set of conditions that

are unnecessary, but sufficient for Y.' In other words, X belongs to a

set of conjuncts in a series of disjuncts, none of which are necessary,

but all of which are sufficient for Y. For example, the effect is

brought about if XC or AB or LM... Thus, With greater specification, we

obtain invariable causal relations (if we are able to specify all of the

disjuncts, the entire set would be necessary as well as sufficient for

Y). An INUS condition requires that strict determinism be true. A

probabilistic cause does not require this.

But suph=a hoped-for reduction to invariability in all cases appears

to be more a matter of faith than being faithful to the facts. From

medical research, we know that a variety of substances cause cancer even

,though only a small percentage of those exposed contract the disease.

In quantum mechanics, indeterminancy and, fience, probabilistic causation

plays an important role. And given the kind of creatures that human

beings are, it is very likely that the notion of probabilistic cause has

a large role to play in the social and behavioral sciences. To hanker

after a reduction to invariable causal relations is, as Suppes argues,

as pointless as it is unjustified (1970, pp. 7-8). (For other major

treatments of probabilistic causation, see Good, 1961-62; Reichenbach,

1956; and Salmon, 1980).
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But now, assuming the conception of causation as probabilistic

cause, what follows for our standard methods? Following arguments

similar to those involving INUS cause, it can be seen that X causes Y (

is compatible with any value of the, correlation. In such cases, the

value, high:w low, of their correlation cannot be used to defend causal

claims, nor can it be used to reject causal claims. Not only may the

value of the correlation be high (or low) and positive (or negative) it

may also be zero!

There are several kinds of counterexamples to show that when proba-

bilistic causation is involved the rul_ is invalid. There are

cases whereAz is high negative and the partial corre1ation4z,y is

zero, but where Y is neither an intervening cause between X and Z nor is

it a common probabilistic cause of X and of Z. Also, there are cases

whereAz is high positive and the partial correlation4z,y is zero,

but where Y is neither an intervening cause nor a common cause. Suppose

Y is a probabilistic cause (.125) of Z but that X is neither a sufficient

cause nor a probabilistic cause of Y. Consider the following correla-

tion tables:

,.125 .375 Z .40 .00 .45 .05

.375 .125 NotZ .10 .50 NotY .15 .35 NotZ

NotX X NotX X NotY Y

Here fin is high positive and
1/2 =.19xz fx af = (.816)*(612), but Y

is not an intervening cause between X and Z, for X is not a cause of Y!

(And Y is not a common cause eithei..) Given these.counterexamples,

theO, rule S.B. is invalid.
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,o

Counterexamples can be found which also invalidate rule C.S.B. when

causation is analyzed as probabilistic causation. There`are cases where

jplyz = 0 and the partial correlation4z,y is zero, but there are cases

where 4,
yz

= 0 and the partial correlation is not zero. Suppose X is a

probabilistic cause (.5) of Y, Y is a probabilistic cause (.5) of Z;

suppose that notX is a probabilistic cause (.5) of Y and notX is a prob-

abilistic cause (.75) of Z. (For there is a hidden fourth variable

which never occurs when either X or Y occur andivhich is a probabilistic

cause of Z.) Consider the following correlation tables:

.25 .25 Y .25 .25 Z .375 .125 Z

:25 .25 NotY .25 .25 NotZ .125 .375 NotZ

NotX X NotY V NotX X

Here.pxz 0,(6J7yz, even though Y is an intervening probabilistic

cause.

There are also cases where Y is an,intervening probabilistic cause

(between X and Z) whereAtz is nonzero and the partial correlationyn,y

is zero, but there are also cases where the partial correlation is non-

zero. Suppose X is a probabilistic cause (.5) of Y, Y is a probabilis-

tic cause (.5)1of Z, and notX-is a probabilisitic cause (.5) of Z. (For

there is a hidden fourth variable which never occurs when X or Y occur

andwhich is the probabilistic cause of Z.) Consider the following

correlation tables:

0, .25 Y .25 .125 Z .25 .125 Z.

.50 .25 NotY .50 ;125. NotZ .25 .375 NOtZ

NotX X NotY V' 'NotX X

Here Az 04.4z ei.en though Y is an intervening probabilistic cause.

This set of counterexamples assumed only that Z had more than one probabilis-

tic cause!

X9FSE/B



32

.

Difficulties also arise for rule C.S.B. when Y is taken to be a

probabilistic common-cause of X and Z. Although there are several kinds

of counterexamples, ,the Most striking is the following. Suppose Y

causes X with probability .5; Y causes Z with probability .5; but Y

causes (X or Z) with probability 1. (Consider the case of a coin toss

or the case of radioactive decay in nonoverlapping time intervals.)

Consider the following correlation tables:

.25 0 Z

.50 .25 NotZ

NotX X

0 .25 Z 0 .25 X

.50 .25 NotZ

.
NotY Y

.50 .25 NotX

NotY Y

In such cases, the correlationA2 will always be nejative. And since Y

is a necessary probabilistic cause fdr X and a necessary prlobabilistic

cause for-Z, yP and v10y
will always be po itive. Thus, p °P

x z
J XZ J XY yz

In this kind of case, only Y is available to serve as the common cause

of X and Z, but Y doesn't cause X and Y in an "independent" manner.

Thus, when causation is conceptualized as probabilistic causation,

a conception which is Lised by many social scientists, both the rule S.B.

and the rule C.S.B., which involve partial
correlations are shown to be

invalid rules of causal inference. In particular, X can be a probabilistic

cause of Z and the correlation be high (or low) positive (or negative)

or zero. Furthermore, the partial
correlatjons.being zero is neither a

sufficient nor a necessary Condition for Y's being an intervening cause

between X and Z or for Y's being a cohMon-cause of X and Z.

, VI. Problemv with Path Analysis/Structural Equation Approaches

In'the previous sections it has been, shown that, the causal infer-

ence rules S.B. and C.S.B. which link correlation, partial correlation
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and a conception of causation are invalid for certain conceptions of

causation (given certain assumptions about the error variables). Of

particular importance is the finding that if Y is an intervening causal

factor between X and Z, or if Y is a common cause of X and of Z, but not

both, then it can be shown that the partial correlation, need not
xz,y

go to zero when the probabilistic or INUS conceptions of causation are

employed.

In our discussion up to this point, however, it has been implicitly

assumed that Y is an intervening cause or a common cause, but not both.

Many have tlaimed that approaches Yuch as Simon-Blalock causal modeling

also makes such an assumption (Asher, pp. 19-20). At any rate, it is

now time to relax the assumption and consider cases where a cause X has

both direct and indirect effects on Z.

It has been argued that one virtue of approaches such as path

analysis and of structural equation models is that they allow one to

consider causes which have both direct and:indirect effects. (Asher,

pp. 32-35; see also Duncan, 1975.)

Before we relax our assumption, however, notice that when there are'

no causes which have both direct and indirect effects, the path analysis/

structural equation approaches lead to a similar analysis as the Simon-Blalock

causal modeling approaches. Thus, as we have shown in the previous

sections, both Simon-Blalock causal modeling and path analysis/ structural

equations give the wrong answers for certain conceptions of causation

given Certain assumptions about the "error" variables.

The results of Sections IV and V show that where the probabilistic

or the INUS conception of causation is used and where one assumes the

pairwise mathematical expectations of the "outside" causes (or error
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variables) are zero, the two rules are invalid because the Partial

correlation need not go zero. We have also derived the result that

where the probabilistic or the INUS conception of causation is used and

where one assumes the pairwise correlations of the outside causes (or

error variables) are zero, it can be shown that the partial correlation

is zero where X causes Y and Y causes Z, but the partial correlation

need not equal zero where X is a common cause of Y and Z.

Thus, suppose we are considering a single chain where X causes Y

and Y Causes Z. Contrary to the views of P. Lazarsfield and P. Kendall,

E. Nagel, Patrick Suppes, and Hans Reichenbach, we have found that the

partial -correlation need not go to zero if the Pairwise expectations are

zero. We have found that the partial correlation must go to zero if the

pairwise correlations are zero.

In the remainder of this section we will use the probabilistic con-

ception of causation and we shall assume that the pairwise correlations

of the outside causes are zero. Given these assumptions we shall show

that such approaches as path analysis and/or structural equation models

give the wrong answers. (In the Supplement we present the general

results for dichotomus and continuous cases for both the assumption that

the pairwise expectations of the outside causes are zero and the assump-

tion that the pairwise correlations are zero.)

Approaches similar to path analysis and structural equation analy-

sis, then, claim that they can handle.causes which have both direct..and

indirect effects. FurtherMore; such approaches claim that they can then

4

compare the magnitdde of the direct and indirect effects which would

identify the operative (or underlying) causal mechanisms. (For example,

see Asher, esp. p. 32f; Duncan, 1975, ch. 3, 4.)

,X9FSE/B



35

Also, there are several equivalent path analyFis tPchniques which

'enable one to decompose the correlation between any two variables into a

sum of simple and compound paths. Some of these compound c)ths will be

causally (or substantively) meaningful indirect effects while others may

not be (Asher, p. 32). Whether a compound path is causally meaningful

depends on both the equations and one's theory or model of the tausal

processes. Path-analysis and structural equation approaches are basically

falsificationist; they hypothesize a causal structure and see if, the

observational
coniequences conform to it. (See, for example, DunOiT,

1975, p. 47).

Suppose X is a probabilistic cause oi Y (with probabilityc4 and

that Y is a probabilitstic cause of Z (with probabilitye). Suppose also

that X is-a probabilistic cause of Z (with probabilityp. Thus, X is

both a direct and indirect cause of Z. We want to show that the basic

equations developed by path analysis and structural equation approaches

do not apply to this causal system. The basic set of equations is the

following (see Asher, pp. 32-33; Duncan, pp. 51-53):

tdir fxyt..(3 fxx

which can also be written'

6;

iyz'a 'fyy? PxY" f
454 9

which can also be written

X9F5E/B
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In these equations04,(34 are supposed to represent the magnitidues of

causal influence Of one variable on another. For example,c4is.supposed

to represent the magnitAe of causal influence of X on Y.

For the,moment we'll only be.concerned with the magnitude of the

direct causal influence of X on Y--i.e.,0(. Given the suppositions made

above,.path analysis/structural equation approaches claim that this

dr
magnitudea should equal 0 4-- .

We believe this is a serious mistake.
j xy

Remember, we are supposing that the correlation between the "out-

side cause" of X and the "outside cause" of Y is zero, and that one is

using the probabilistic conception of causation where X is the proba-
,

, 4
.bilistic cause 60 of Y. Given these assumptions, we have found that

67
p L = (00*(1-P 2

)
1.

where P
2

is the probability of the "outside cause" of Y. (Note also

that the expectation of the outside cause is P2.) Unless P2 = 0, it is
-

not the case that equals5, wherec(is the probabilfstic cause
XII

of Y by X. Hence, the path analysis/structural equation approaches do

not apply, unless P2 = 0!

Furthermore, suppose for the moment that X is a sufficient condi-

tion of Y. Whenever X occurs, so does Y. Given that there are other

(outside) causes (R
u

of V. however, the expressionA0a Xy
Will

change if we vary the probability of Rui even though,X eemains a sufft-

cient condition for Y. Surely this is a doubly absurd result. First;

if X is sufficient for Y, then it ought to take on the maximumcmagnitude

for causal influence (i.e.,_1). . Second, X's causal influence on Y ought

to be independent of the other causal influences on Y. Given that path

analysis/structural equation approaches lead to such problematic results,

they must be rejected as unjustifiable.

X9FSE/6
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There are, however, further problems for the path analysis/structural

equation approaches.

Problem 2. Suppose X is a probabilistic cause (.5) of Y, yet if X

doesn't lead to Y, then it leads to Z. But X never leads to both Y and

Z. Suppose also that Y is a probabilistic cause (1.0) of Z. Again,

then X is both a direct and indirect cause Z. For simplicity, suppose

also that no other factors cause Y and that no other factors cause Z.

Consider the following correlation tables:

0 .67 Z .33 .33 Z 0 .33 Y

.33 0 Not Z .33 0 Not Z .33 .33 Not Y

Not X X Not Y Y Not X X

If one followed the path analysis/structural equation approaches in this

situation, one might expect

= 0( = 1/2 ...(i)

= cKee + = (1/2). 1 + 1/2 = 1 ...(ii)

fxz2
= 5/4 ...(iii)

yyze = e = 4-(1/202)

But if we calculate the appropriate correlations and variances for the

left hand side we get

1/2 = 1/2

1 .= aq+ = 1

112 = (3 + t4.17 = 5/4

Thus, the path analysis/structural
equation approaches lead to absurd

result Clearly, the equations one derives from such approaches do not

hold for such a causal system, a system which involves probabilistic

causation.
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Problem 3. Suppose that X is a probabilistic cause (.5) of Y and

that X is also an (independent) probabilistic cause (.5) of Z. Suppose

also that Y is a probabilistic cause of (1.0) of Z. .Suppose there are

no other causes of Y, and no other causes of Z. Consider the following

correlation tables:

0 .50 Z 0 .33 Y .17 .33 Z'

.33 .17 Not Z .33 .33 Not Y .50 .0 Not Z

Not X X Not X X Not Y . Y

The path analysis/structural equation approaches would lead one to

expect* that:

fxy 5.64 = o = 1/2

Az = + f

fyz -62-4 = e at.

(rt

...(iv)

1 + h = 1 ... (v)

1. + ;5 h = 5/4 ...(vi)

But, if we calculate the appropriate correlations and variances for the

left hand sides, we get:

31
= c4. = 11

3/4 = ot. e 4- f = 1
(v1)

3/4 = e + al- = 5/4 ...(vil)

Thus, the path analysis/structural equation approaches againlead

to absurd results. Clearly, the equations do not hold for such causal

systems that involve probabilistic causation.
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Given these difficulties and problems with the basic logical struc-

ture of these approaches, we conclude that such approaches to causal

analysis (or causal inference) are unjustifiable for probabilistic

causation (and for INUS causation). Accounting for the variance between

variables is one task; determining the degree of causal influence of one

variable on another variable is a quite different task. (In the Supplement

we present our general theorems for probabilistic causation which set

out the proper relations).

VII. An Alternative Approach (The Conditional Probability Approach)

Here we would like to outline an approach to causal analysis (or

causal inference) which we shall'call the conditional probability-approach.

This approach gets its name from the key role played by conditional

probabilities--for example, P(Y/X). It can be shown that the C.P.

approach affords us decompositon rules; it can also be shown that it

affords us composition rules for a wide range of cases. In particular,

it can handle causes which have both direct and indirect effects.

Finally, it gives a quite plausible measure of one variable's causal

influence on other.

Although the C.P. approach offers a rich and rather straight for-

ward approach to many different kinds of causal systems, here we shall

show how C.P. can resolve the three problems which lead to the downfall

of path analysis. In doing so, we shall lay out some of the main prin-

ciples and formulas of the C.P. approach. (Note: Here we shall assume

the pairwise expectations of the outside causal variables are zero.)

Let's consider problem one. Suppose X is only a direct cause of Y,

but that there are other causes of Y. (Suppose also, as above, that X

)(9FSE/B



40

is a direct cause of Z and that Y is a direct cause of Z). In such a

situation, the C.P. approach maintains that the magnitude of X's causal

1

influence -On-r- fr given by-the-conditionaI probability P(Y/X).-- In suck

a situation, the conditional probabilty is unaffected by the number or

5
the strength of other causes of Y. Unlike the termixyo.i which equals

0(Y/X) - P(Y/notX), the conditional probability P(Y/X) remains unaffected

by Changes in the other causes of Y. Furthermore, the conditionals

probability can take on values from 0 to 1. It can take on the value 1

when X is a sufficient Condition for Y or when X is a probabilistic

cause (1.0) of Y. 'Thus, the conditional probability gives us the correct

maximum value when X is sufficient condition for Y or when X is probabilis-

tic cause (1.0) of Y. Notice also that when one is using the probabilistic

or the INUS-conception of causation, the correlationAy can be zero

even where X is a cause of Y. Conditional probability is not susceptible

to this problem either. Principle: The causal link from X to'Y should

be assigned the magnitude P(Y/X). Thus, the C.P. approach easily resolves

problem one.

Let's consider problems 2 and 3. This group of problems divides

into two daises of problems. Problem 2 belongs to a class of problems

involving pure-"or"-systems.
Problem 3 belongs to a class of problemi

involving pure-"and"-systems. We shall clarify these terms as we proceed.

Up to-this date, researchers have been most unclear about the

distinction between pure-or-systems and pure-and-systems. Indeed, we

can show that there is an entir2 continuum of systems which lie between

the pure-or-system and the pure-and-system extremes. We'll discuss the

continuum in another paper.

It;



The pure-or-system is a causal system where X is a probabilistic

cause (P) of Y hnd X is a probabilistic cause (1-P) of Z, but where X

never leads to both Y and Z on a siiigTe occasIon. Rougtrly;in-this-

system X always leads to Y or Z, but never both. Modern physics can

,

supply us with many examples of this type of setup. For example, when

an excited electron decays from the higher energy levels to the lower

levels, there will be nonzero probabilities that the electron will go to

certain lower levels. Yet the electron can decay to only one of those

lower levels; it can't go to two (or mire) level3.t once. Perhaps the

radioactive decay of an atom into disjoint tiflhintervals is another

example. (Physicists claim the.atomic structure of the substance causally

explains such outcomes.)

The pure-and-system is a causal system where X is a probabilistic

cause ( ) of Y and where X is also an (independent) probabilistic cause

(Q) of
;

Here X can lead to the occurrence of both Y and Z. This

situation is analogus to a situation where two coins are tossed at the

same time but where they don't'interfere with each other's outcomes.

The first coin, a blue-red coin, has the probability (P) of coming up

blue while the second coin, a black-white &)in, has the probability (Q)

of coming up black. Here a tossing of the coins can lead to a black-blue

outdome.

Problem 2 above involves a pure-or-system where X is a probabi-

listic cause (P = .5) of Y, and if X doesn't cause Y, then it causes Z

(and vice versa). But X never leads to both Y and Z. Furthermore, Y is

a probabilistic cause (R-= 1.0) of Z. Hence, X is both a direct and

indirect cause of Z. As we have argued above, the strength of each

causal link in the system should receive the magnitude equal to the

X9FSE/B
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conditional probability of the link's variables. Thus, the link from X

to Y receives the value equal to P(Y/X) = P = .5; the link from Y to Z

receives the value equal to P(Z/Y)-= R = 1.0; ana the link from X to 1--

receives the value P(Z/X) = Q = 1 - P = .5. In such4Causal system, it

can be shown that the overall causal influence of X on Z is given by the

following formu I a:

[P(Z/X)]or = P(Y/X) P(Z/Y) + P(Z/X) = P R + (1-P).

Given the numbers above, [P(Z/X)]or = (.5)(1) + (.5) = 1. Notice that

this formula for the overall causal influence of X on Z (in a pure-or-

system) has the appropriate limiting values as the strengths of the

causal links vary and that the link from Y to Z receives the maximum

value 1 which is appropriate for a probabilistic cause (1.0). For

example, if the strength of this link from Y to Z were reduced to 0,

then the strength of the overall system reduces to the strength of the

remaining link, 1-P. And if P were then to go to 1, both the link

strength of X on Z and the overall strength would go to zero. As another

example, if R were to remain fixed at 1 but P were to go to 1, then the

strength of the link from X to Z would go to zero yet the overall strength

of X on Z would remain at the maximum, 1.

The formula given above suggests the principle that the strength of

a caLisal link be given by the conditional probability of the link's two

variables and that the strength of a path with two links be given by the

product of the strengths of the two links. Thus, the link from X to Z

should receive the value P(Z/X) = (1-P) while the path. from X to Y to Z

should receive the value P(Y/X)0P(Z/Y) = Poll. Indeed, this result can

be shown to generalize. Thus, the C.P. approach in this kind of situa-

tion gives the appropriate magnitudes of both the direct causal influ-

ence of X on Z and the-indirect causal influence of X on Z.
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For illustration, consider this system. Here, X is a probabilistic.

cause (P = .33) of Y; if X does not lead to Y, it leads to W (and vice

versa). But X never leads to both-Y-and21-4urthermore, Y_ is-a probahilis:

tic cause (R = 1.0) of Z and W is a probabilistic cause 6 = 1.0) of Z.

Given the C.P. approach, the causal link from X to Y should equal

P(Y/X) = P = .33; the link from X to W should equal P(W/X) =Q = 1 - P = .67;

the link from Y to Z should equal P(Z/Y) = R = 1.0; and the link from W

to Z should equal P(Z/W) = S = 1.0. In such a causal system, it can be

shown that the overall causal influence of X on Z is given by the following

formula:

[P(Z/X)] = P(Y/X)+P(Z/Y) + P(W/X)*P(Z/W) = + (1-P).S.
or

Given the numbers above, [P(Z/X)]or =(.33)1 + (.67)1 = 1. Again,

notice tha't this formula has the appropriate limiting values as the

strengths of the causal links vary. For example, if R goes to zero and

S goes to zero, then the overall causal strength goes to zero while the

causal link from X to Y remains at P.

Problem 3 above involves a pure-and-system. X is a probabilistic

.cause (P = .5) of Y and X is also an (independent) probabilistic cause

(Q = .5) of Z. Notice that Q need not equal (1-P)-here. Furthermore,

(Y and not X) is a probabilistic cause (R = 1.0) of Z. Given the C.P.

approach, the causal link from X to Y should equal P(Y/X) = P = .5; the

link from X to Z should equal P(Z/X) =Q = .5;-and ttie link from Y to Z

should equal P(Z/Y) = R = 1.0. In such a causal system, it can be shown

that the overall causal influence of X on Z is given by the following

formula:

X9FSE/B
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[P(Z/X)]a = P(Y/X)P(Z/Y) + P(Z/X) P(Y/X)P(Z/Y)P(Z/X).

P R + Q - Pe R Q.

1
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Given the numbers above,l-Pt2/Xfla = 7:5)9(1) + (.5) - (.5)(1)(5) = .75.

Notice that this formula has the appropriate limiting values as the

strengths of the causal links vary. For example, if P, R, and Q all

become 1, then the overall strength is 1. The C.P. approach gives the

correct answer even in cases where there are two (independent) paths to

Z which are sufficient!

/
It is important that one compare the form la for overall causal

strength in a pure-or-system with the formul for the overall strength

in a pure-and-system. In the pure-wsystem, the strengths of the two

paths from X tp Z simply add up to give the overall causal strength. In

the pure-and-system, the strengths of the various paths from X to Z do

not add up to give the overall strength. Although the formula for

overall strength in a pure-and-system contains the sum of the strengths

of the two paths, an quantity equal to the product of the strengths of

the two paths must be substracted from the sum.

Thus, we have shown that the C.P. approach can avoid the problems

and difficulties which beset the path analysis/structural equation

approaches,. And, it can give a plausible rendering of the strength of a

causal link and a plausible account of the strengths of both direct

causes and indirect causes (causal paths). And most importantly, the

C.P. approach can produce simple formulas which express the magnitude of

the overall causal influence of X on Z as a function of the magnitudes

the causal links and paths which the theory or model asserts to exist

from X to Z.
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The principles, formulas, and other findings which we have pre-

sented here are but part of those we have developed for the conditional

probability-apprbach:--Not only -c-an-the-C-.1):-apprudar frandte Lausal

systems with more than two paths, the approach can also handle cases

which fall into the continuum of cases which range from the pure-or-s

ystem to the pure-and-system. It can even handle systems which have

both or-aspects and and-aspects. Furthermore, because"of the limiting

properties of the principles and the formulas, it can handle mixed

causal systems in which there are several different kinds of causation

(say, probabilistic causation and suficient causation).

We trust we have been able in this short space to present a plaus-

ible and viable alternative approach to such problematic approaches as

path analysis or structural equation methods. We believe that there are

good reasons for holding that the conditional probabilitY' approach can

provide an algebra for analyzing causal systems, an algebra with both

decomposition and composition rules. (In the Supplement we present our

general conditional probability theorems which_hold for dichotomus and

continuous cases under two sets of assumptions about the "Outside causes".

of the systeni.)

VIII. Conclusion

As as have shown, then, the two rules of causal inference under-

lying causal modeling are invalid for the five conceptions of causation.

The widely held rule S.B. and rule C.S.B., which relate correlation,

partial correlation and a conception of causation, are subject to counter-

examples. Since structural equation models and/or path models share the

most important assumpiions (especially concerning the partials) with
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Simon and Blalock, our results appear to generalize to those who try to

make causal inferences. And difficulties for such approaches as path

analysis and/or structural equadon mettludb -extendbeyondthese- case-sof_

causal systems in which a cause is a direct cause or indirect cause, but

not both at once. The inability of the Simon-Blalock method to handle

causal systems that hypothesize causes as having direct and indirect

effects on the same variable strongly limits the usefulness of that

method. All things being equal, theoretical and practical considera-

tions favor any alternative that can adequately handle both kinds of

systems. The allAged superiority of the other approaches rests, in

part, ori their claim to be able to handls such situations. We have

shown, however, that even in situations where a cause has direct and

indirect effects, the path analysis/structural equation methods yield

incorrect solutions.

In sum, then, the major weakness in the.expanding literature of

Causal inference is sufficiently clear. Though measurement and identi-

fication problems rematp it is the foundations for deriving causal

inferences from "causal models" that require critical scrutiny. For

without validity here, measurement issues surely become secondary. Of

course, one alternative is simply to fall back on non-causal, predictive

systems of causal modeling. Then, we need not worry about the validity

of any newly proposed rules of causal inference. (Though the examina-

tion of predictive systems of causal modeling has been beyond our focus,

we should remember that many of these approaches share the two inference

rules with the causal interpretation version. Given the general kinds

of problems encountered by the two rules relating correlation and par-

tial correlation in the causal version, we should not be surprised to
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find that merely predictive systems have problems here, too.) But, such

a step would be to relinquish the goals of explanation and strong policy

relevance for the social sciences. At present, thts-seems-tcro large-a --

step to take. For, despite our disagreements with Simon, Blalock,

Asher, Duncan, Goldberger, and others, we share a similar vision of what

the social sciences'should be. There simply is no recourse from re-think-

ing the rules of causal inference from the foundations up.

As we have mentioned (pp. 33-34), we believe that a major problem

with any correlation - based approach to causal analysis suffers from

the same major difficulty. They all contain too much irrelevant infor-

mation tfiat masks and modulates the true nature of causal processes in

the world. The overall result of using correlations, as we have seen

throughout, is wrong answers. For this reason, we are convinced that

Blalock is wrong when he states, "It is the regression coefficients

which give us the laws of science" (1972, p. 51; emphasis in the original).

Similarly, we do not think that path analysis or structural equations

methods will yield the "laws of nature." No amount of tinkering can

overcome the difficulties we have uncovered if the basic problem is

inherent in the notion of correlation.

Furthermore, we have shown that in attempting causal analysis, it

is vitally important for researchers to concern themselves with the

substantive interpretation of cause. It cannot be brushed aside as an

unimportant issue. The various results, as we have seen, depend upon

our understanding of what a cause is. On the other hand, we must be

cautious about any attempt to reduce the notion of cause to any single

understanding. The likelihood is that causes in the world are of vari-

ous sorts; some may be necessary for theiT effects, some sufficient,
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some necessary and sufficient, some INUS conditions, and others--perhaps

a majority--probabilistic.
Attempts to reduce 'cause',to any one of

these understandings have endea ihfarrure===for in every-case,, counter

examples can be marshalled. Given this state of affairs, it is also

likely that causal chains are compo'sea of different types of causes;

they are mixed chains.8 This points to the requirement that our causal

analysis methodology--if it is to be successful-must be able to handle

such complexity. It is clear that our present methodology cannot.

Thus, we require an approach to causal analysis that is far more

delicate and precise in detecting and dissecting causal networks. It

must be an approach that (1) is non-correlational and (2) can handle

causal systems containing mixed chains. We tentatively believe that the

conditional probability approach that we have outlined can do precisely

that. Our success in dealing with three complex cases that path analysis/

structural equation approaches could not handle is an auspicious beginning.

It remains for us to show that the conditional probability approach can

handle a wider range of cases and different types of systems as well.

Towards this end, we have already made.progress. If laws be possible at

all in the social sciences, the conditional probabilities may give us

the laws of nature. If so, we shall have a methodology for causal

analysis that is at once more simple, more subtle, and far more powerfult

than those we now possess. We shall have an algebra for analyzing

causal relations.

(In the Supplement we present our general conditional probability

theorems which cover both dichotomus and continuous cases under two sets

of assumptions about the "outside causes"'of a system which involves

probabilistic causation.)
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IX. Supplement (General Conditional Probability Theorems)

Is it possible.to extend the conditional probability approach from

--ditilotomus_variablesiA)J:ontinuous? We think yes. In_this section, we

will merely present (and not 'prove) the general theorems of the condi-

tional probability approach.

IXA. Oichotomus Variables

First, let us briefly introduce notation used in the two dichotomus

situations. We'll assume, 1) that X is probabilistic cause of Y (with

probability (b + d)), 2) that Y is a probabilistic cause of Z (with

probability (3 ), and 3) that X is a probabilistic cause of Z (with

probability (a + b)). Roughly, the system can be specified in the

following way:

the probability of Y and Z, given only X, equals b;

the probability of Y and not Z, given only X, equals d;

the probability of not Y and Z, given only X, equals a;

the probability of not Y and not Z, given only X, equals c;

and the probability of Z, given only Y, equals e . We also assume

that there are outside causes, V2 of Y and A/3 of Z (where X equals V1).

We also have the following:

The probability of Y, given X and not V2i equals b + d;

T6e probability of Y, given X and V2, eqUals 1.

Similar remarks hold for the "additivity" of the other outside causes.

IXA. Dichotomus Variables; Pairwise Expectations of (V
1'

V
2'

11/3) zero

Given that the pairwise expectations of the outside causes are

zero, the following can be stiown.
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EXY .*

EX2

EXZ

EX
2

b + d

a + b de

EYZ P2@ j+ P1. (b d e )
EY1 P

2
+ (b+d) P1

..,(s2)

...(s3)

50

(Here, P1 is the probability of V1 = W, P2 is the probability of V2, and

P3 is the probability of V3.)

Special Case 1 (a + b = 0; simple chain)

EXY

EX2

EXZ and EYZ =

EX
2 EY

2

1\)tThus , E Z (EX1EYZ
EX2

EX
2

EY
2

Special Case 2 (b = 0, a = 1-d; a pure-or-system)

EXY
= d; E

XZ EYZ
a +ed; = e .

EX EY22 2
EX

Special Case 3 ((a + b) (b + d) = b; a pure-and-system)

EXY EXZ
b + d; - (a + b).+ (b + (b+d)(a +

EX
2

EX
2

and EYZ

EY
2
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IXA2. Dichotomus Variables; Pairwise Correlations of (V
1'

V
2'

V
3
) zero

Given that the pairwise correlations of the outside causes are

zero, the following can be shown:

...(s4)PA = (b + d) (1P2)

(1-P3)[a + b +de (a + b + d)-e P2] ...(s5)

fxz2

,..pyzR
= (1-P )(1-P2)(1 (a + b +d)P1)[P2(t-(!((a + b + d)P3P2 -dP

1
))

+ a .1)
1
P
2

+ bP ]
1

aP
1

[P
2

+ dP
1

- (a + b + d)P1P20 divided by

2
+ (b + d)P1(1 - P2)] [1

P2 (b d)P1(1 P2)3

...(s6)

Special Case 1 (a + b = 0; simple chain)

= d(1-P2);

Thus,'Az = fxy tyz

IXB. Continuous Variables

(1-P
3
)(1-P2)de;

srxier)-(

Let us briefly introduce notation used in the two cOntinuous variable

situations. Here the regular, continuous case; Pearson Product moment

correlation is used. We'll assume that 1 is the probabilistic cause of,

Y's being AX with probability (b + d) and of Y's being zero with protla-

bility 1 (b + d), that Y is the probabilistic cause of Z's being BY

with probability e and of Z's being zero with probability 1 (3 ;

and that X is a probabilistic cause of Z's being CX with probability

(a + b) and of Z's being zero with probability 1 - (a + b). Roughly,

the system can be specified in the following way:
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The probability of Y's being AX + Vg, given X and Vg, equals b + d;

the probability of Y's being Vg, given X and Vg, equals 1 -(b + d);

the probability of Z's being CX + V3, given X, Vg, and V31 equals

(a + b)(1-);

the probability of Z's being CX + ABX + Mfg + V31 given X, Vg, V3,

equalsca; and so forth.

As before, we assume that there are outside causes of V of Y and V3 of

Z (where X equals V1).

IXB. Continuous Variables; Pairwise Expectations of (V
1'

V
2'

V
3
) zero

Given that the pairwise expectations of the outside causes, Vi,Vg

and V
3

are zero, the following can be shown:

EXY
= (b + d)A

EX2

EXZ (b + d)AB + (a + b)C

EX
2

B + AC 1EX2ii

EY
2 EY

2

Special Case 3 ((a + b)(b + d) = b; a pure-and-system)

EXY = (b + d)A ; EXZ = (b + d)13 AB + (a + b)C

EX
2 EX

2
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and EYZ eB + (a + b)C(b + d) EX2

EY
2 EY

2

IX. B.2 Continuous Variables; Pairwise Correlations of (V
1'

V
2'

V
3
)

zero

Given that the pairwise correlations of the outside causes, V1, V2

and V
3
are zero, the following can be shown:

D (5-9j-xydi = (b. d)A
,

...(s10)

fxzt:: = (b + sci)A(3. B + (a + b)C ...(s11)

jP24% ::: qt51,..
ACb (EX)2AC(6 + b)(b + d) ...(s12)

4);

Spetial Case 1 (a + b = 0; simple chain)

12 = dA; fo 1.71 = dAe;
J xy 6:(

J XZ6N

and n
yz

Thus jxz xyfyz .
Special Case 4 (b 1,e . 1; a deterministic linear system)

JPxA = A;

1))(4 = AB + C;

and yyz?,
B +'AC

Thus, the conditional probability approach can liandle causal systems

which involve probabilistic causation. The approach can handle both

dichotomus and continuous variables under the assumption that the pairwise

expectations of the outnide causes are zero,and under the assumption

that the pairwise correldiions are zero. Notice also that the conditional

probability approach gives the appr:oprTate answers when the probabilities

limit to deterministic sufficiency. (Special case 4.)

.X9F-SE/B . 9-
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Notes

1The two critical steps in establishing these results are the

following. (1) Kendall and Lazersfeld, Nagel and Suppes take rule C.S.B.

and replace,the requirement that2,y be zero with the requirement

that S be zero, where S equals zero if and only if P(XZ/Y) =
xz,y xz,y

P(X/Y).,P(Z/Y) and P(XZ/not Y) = P(X/not Y)tP(Z/not Y). (2) It can then

be shown that if,
z

is not equal to zero, then S is not equal to
x,y xz,y

zero. For a detailed discussion see Ellett and Ericson (1982).

2Elsewhere we compare and contrast in detail the Blalock kind of

partial correlation approach with the approaches of H. Reichenbach

(1956) and P. Suppes (1970). There, we establish that if Blalock's

partial correlation is not iero then neither are the "partial correla-

tions" used by Kendall and Lazarsfeld (1950), Nagel (1961), Reichenbach

and Suppes. (See footnote 1.)

3Actually, it is far from difficult to estimate the regression

coefficients of each equation, as Blalock argues (1967). So, this is

hardly a problem for Blalock. (It is also claimed that, for example,

path analysis can handle causes which have both direct and indirect

effects, whereas the Simon-Blalock approach assume the,cause is either a

direct or an indirect cause but not both. When a cause is either a

common cause or an intervening cause but not both, the approaches give

the same result. In the first part of this essay we argue that in such

situations they give the wrong result. In the latter part of this essay

we argue that, for example, path analysis gives the wrong results"in the

other situations as weli. See Section VI.)

L)
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4One of the important assumptions is that any "outside" factors

also causing Y, or causing Z, are such that the pairwise mathematical

expectations between these "outside" factors are zero. In sections IV

and V, our examples satisfy this assumption because we have constructed

cases where such (dichotomus) variables or factors never co-occur. In

the'supplement IX, we present our results for systems with dichotomus

variables and for systems with contimous variables under the assumption

that the expectations are zero and under the assumption that the correlations

8

are zero.

5
In a more technical paper (in preparation) we discuss the problems

concerning defensibility of the key assumptions. For example, the assumption

that the error terms be uncorrelated with the predictors or with each `

other.

6To be more precise, rule C.S.B. is invalid because there are no

cases where Y is a common necessary cause of X and Z, given the assumeition

that the pairwise expectations of the outside causes are zero. The

tables we presented here,have assumed that'the pairwise correlations of

the outside causes are zero. Thus, they show the rule C.S.B. is invalid

under both sets of assumptions.

7
There is a major problem with Simon's analysis. Though he recog-

nizes that causes are asymmetric with their effects (if X causes Y, it

cannot be that not--Y causes not-X), Simon's use of the predicate calculus

containing "material implication" (t)) commits him to saying that not-Y

causes not-X. For X:, Y is equivalent to notY: notX via the rule of

logical inference called modus tollens. See also Simon's use of the

"truth tables" which illustrates the commitment (1957, pp. 58-59).
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8
Consider the following mixed case involving probabilistic and

sufiicient causes. It mtght be imagined as something like a pinball

machine. Here X and Y are mutually exclusive, exhaustive, and equiprob-

able results from W (the probabilistic cause), whereas X or Y is suffi-

cient for Z (Z = X or Y), and where W occurs with twice the frequency

as not-W. For then,Aa = 1 butAz = 1/2.

.
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An Overview of "Towards an Algebra/ for

Analyzing Causal Relations"

F.S. Ellett, Jr. & D.P. Ericson

UCLA

Educators of all types make the following kind of assertions: "A

particular teaching method causes the students to learn." But what can

it mean to say that one kind of event (or thing) causes another kind of

event? This is a philosophical question, for it is concerned with the

conceptual analysis of*'causation. Suppose now that we have an (ade-

quate) analysis of 'causation.' What rules of inference can be Validly

used to test hypotheses about the causal relations between events (or

variables)? This is also a philosophical question, for it is concerned

with the logic of causal inference--with establishing tlyA certain rules

are sound and valid.

In thiS essay we address ourselves to these two general but impor-

tant philosophical questions : (1) What is a plausible analysis of

causation'? and (2) what rules of causal inference are valid? As we'

shOw in the paper, an answer tp the question about valid rules of infer-

ence depends on one's analysis of causation. Furthermore, we consider

several of the widely used rules of causal inference. We conclude that

in general these rules are invalid.' To be more specific, we consider

the partial-correlations
rule used by Simon and Blalock, the "partial-

correlation" rule used by Kendall and Lazarsfeld, E. Nagel, H. Reichenbach,

and P. Suppes, and the rules associated with path analysis and structural

\
equation methods. Agiin, we conclude that in general these rules are

invalid.
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In the time that remains we'll present more of the details about

the methods and conclusions of our paper. In doing so we'll present an

overview and outline of the paper.

As we've already noted, educators often make assertions about the

causal relations among events or variables. Indeed, we believe there

are compelling arguments for holding that scientific anajysis and policy

forMation must be concerned with causation. In an early section of the

paper we present some of the major reasons for holding these views about

the importance of causation.

The next part of the paper investigates the relationships among

correlation, partial correlation, and various analytical conceptions of

causation for dichotomous variables. Here we consider the Blalock-Simon

partial7correlation rule and the partial-correlation rule/advanced by

Kendall and Lazarsfeld, Nagel, and Suppes. Roughly, the partial corre-

lation rules assert that for intervening variables or common causes

certain partial
correlations must go to zero. In other words, the

partial correlation's being zero (or not) provides a test of the causal

hypothesis.

In this part of the paper we also present five philosophical

"theories" of the analysis of causation. We refer each of these pur-

ported analysis as a conception of causation. The five conceptions of

causation are:

1) a cause C is a necessary condition for E.

2) a cause is a sufficient condqion

3) a cause is a necessary and.sufficient condition

4) a cause is an INUS condition

and ,5) a cause is a probabilistic cause.
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The first three of these should be familiar to you. Perhaps the

last two are not so famil)ar. So let us briefly explain them. An

event C i an INUS cause of E if the event C is an insufficient but

non-redundant part of a set of conditions which is not necessary, but

which is sufficient for E. Hence, the label I.N.U.S. Here's an exam-

ple. Striking a match is an INUS cause of the match's flame because the

striking also requires oxygen's being present and the Match's being dry

.to have its effect. Yet, striking the match is not the only way to get

it to light. Thus, striking the match is an INUS-cause.

Notice that it is quite plausible to hold that teaching is an

INUS-cause of student's learning. Clearly teaching isn't sufficient and

in most cases the child must have the requisite background knowledge and

be trying to learn.

Thus, if C is an INUS-cause of E, than C is part of a set of condi-

tions which is sufficient for E. In the paper we show that an event C

can be an INUS-cause of E and the correlation between C and E can be

negative or zero!

The fifth conception of causation is called probabilistic causation.

One of the earliest writers to advance such a conception was P. Suppes.

In many ways, the "mathematics" of a probabilistic causation is similar

to those of an INUS-causation. If C is a probabilistic cause of E,

however, it does not follow that C is a part of a set of conditions

which is sufficient for E. Probabilistic causation applies to the

case where there is genuine indeterminism. Here, an example will help

clarify the term. Suppose an atom has an electron at one of its higher

energy levels. Then there are finite probabilities that the electron

will "decay" or fall to.various other levels, but, as some physicists
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maintain, there is no set of conditions which determines the level to

which the electron w91 decay. We are not Saying, of course, that there

are such cases of probabilistic causation in physics or education. We

are only saying it is a perfectly intelligible and legitimate conception

of causation.

At any rate, in the paper we show that C can be a probabilistic

cause of E and the correlation between C and E can be negative or even

zero. You will recall that when one of the first three conceptions of

causation is used, the correlation must e positive. So INUS-causation

and probabilistic causation behave differently from the first three

conceptions of casuation.

Our investigations of the relationships among correlation, par'tial

correlations, and conceptions of causation conclude that for each of the

conceptions of causation the partial-correlation rules are invalid.

We have spent time here today elucidating the conceptions of INUS-

causation and probabilistic causation for two reasons. First, we believe

that educators are not adequately aware of them, but they should be.

Second, the next parts of the paper primarily employ the concept of

probabilistic cause, although our results also hold for INUS-causation.

The next major section of the paper explicates the basic principles

of path analysis and structual equation methods. Indeed, as many people

have said, path analysis and structural equation methods hive', in many

ways, replaced the earlier approaches associated with Simon and Blalock.

We show however, that when the variables are dichotomus and where pro-

babilisitc causation is involved, path analysis and structural equation

methods give the wrong answers. In other words, path analysis and

structural equation methods present rules of causal inference which are

invalid.
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At this point it may be helpful to distinguish among three different

kinds of probability-statements
which can be about a causal system which

involves probabilistic causation. First, a causal system (or model) is

partly constituted by certain variables. 'Let us call them X, Y, and Z.

Now the variables X, Y, and Z will be distributed in various ways in the

population. Such distributions give us the first kind of probability

statements. Of course, we have only samples of the general population.

This gives rise to those probability statements involving measurement

error and estimation, and so on. This is the second kind of probability

statement. We trust these two kinds of probability statements are quite

familiar. But, notice that so far we have said nothing about the nature

of the causal relationships among variables X, Y and Z. Perhaps X causes Y,

and Y causes Z and also X directly causes Z. Here X is a direct and

indirect cause of Z. This is, of course, a further specification of the

causal relations among the variables X, Y, and Z. Indeed, this is the

kind of basic system which path analysis and structural equation methods

claim they give a better analysis than the Simcn-Blalock approaches.

Yet, a further kind of specification is still required. For as we

have shown there are five different conceptions of causation. It is our

belief that path analysis and structural equation methods must conceive

of the causal relations between, say, X and Y to be causation as suffi-

ciency. But, in the paper, we show that one can conceive of the causal

relations' among X, Y and Z as probabilistic-causation.
This is what

gives rise to the third kind of probability statement concerning the

system under investigation.

Furthermore, and chis is die important point, when one conceives of

the causal relations.among the variables as probabilistic-causation,

X7FSE/E
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then the rules and principles associated-with paih ahalysis'and,struc-

tural equation methods are invalid.

At this point the attentive listener is li'kely to feel'uneasy.

Afterall, the listener might think; diSi't Ellett and EriCson,say they

were dealing only with dichotomdS variables?. What about systems mith

continuous variables? And what is the general impor'tance of these find-,

dings? -Finally, perhaps Ellett ',;nd Exicson tave done a-typial philo-
. .

sophical job in exposing the problems and errors in current methods, but

can they offer'any constructive,views about whaSt should be'dorte?'.

We have answers to all three of the attentive,Jistener's questions.

First, there are indeed pecularities with causal systems with dichotomus

variables. But, we have extended our results-.to causal systems with

conti-ouous variables. For causal systems with continuous vari'ables we

have found that path analysis and structural equation.methods,, when.

probabilistic causation is involved, still give the wrong answers. In

such cases, their rules of causal inference are invalid.

Second, the general importance of our findings is that rules of

causal inference need not be restricted to cause as sufficiency. They

can be extended to systems where there is INUS-causation or probabilistic-

causation. Ahd, it is likely that such conceptions of causation "will

fit" educational phenomena. Recall our earlier remarks that teaching

may well be an INUS-cause.

Thirdly, and finally, it is true that we have been critical of many

of the current writers who are concerned with methods of causal inference.

We do believe that current methods atne severely limited. But, we do

share their commitment to trying to find those methods and rules of

causal hypothesis testing which can yield valid inferences.
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. And, toward the 'constructive end of finding rules and methods for

analyzirp. the caus-al xelations, in the paper we have prusented methods

and.equations for causal systems which fhvolve probabilistic causation.

, We believe these methods and equations articulate valid rules.of thference,

valid rules of inference for both systems with dichotomous variables and

co. for'41,ems with continuous variables.

We believe a whole new dimension of caUsal analysis has been opened.

We hope you'll expiore this drimension with us.

;


