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Towards an Algebra for Analyzing Causal Relations
Frederick S. Ellett, Jr.

David P. Erieson

/) U.C.L.A.

' - ABSTRACT <,

A major part of the paper investigates the relationships among
correlation, partial correiation, and various c;nceptions of- causation.
TQo widely used ruleg of causal inference are explicated. It is argued
that for each of the onceptions‘of causation tﬁe causal inference
rules, which use par¥ial correlations, are invalid.

Another part of the paper explicates the basic principles of path
analysis and structural equation analysis. It is shown that these
approaches are.subject to three different but impoﬁtant problems.

The final, major part tentatively develops an alternative approach
(the conditional probability approach) which uses conditional probabil-

ity and not correlation as the key concept. It is shown that the C.P.
approach can avoid the shortcomings and prdb]ems of such approaches as

causal modeling and-path analysis. It is also shown that it provides

plausible cemposition and decomposition rules as well as a plausible

measure of causal strength.

In a supplemental section, we present the theorems which hold for

dichotomous systems under two sets of assumptions and the theorems which”

hold for continuous systems under two sets -of assumptions, theorems

+

where the probabi]istiC’cqnception of causation is employed.
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" Towards an Algebra for,Ana1yiing Causal Relations

I. ' Introduction:

Educators often make assertions about causal re1atiens among vari-
ab]es. Indeed, there are compelling arguments for holding that scien-
tific analysis and policy formation must be concerned with causation.

Th1s paper tentatively develops an a1gebra for analyzing causation.
It develops a measure of causa] strength and composition and decomposx-
tion rules for dichotomous systems which have important advantages over
and are not subject to the various problems of sueh approaches as causal
modeling and path ana1ysis. |

A major part of the paper investigates the relationships among
correlation, partial corre]at{on, and various conceptions of causation.
Two widely used rules of causal inference are explicated. It is argued
that for each of the conceptions of causation the causal inference
rules, which‘use partial correlations, are'inya?id.

Another part of the paper exp1icates the basic principles of path

~analysis and structural equation analysis. It is shown that these

approaches are subJect to three different but 1mportant problems.

The final, major part tentative]y develops an alternative approach

(the conditional probab111ty approach) which uses - cond1t1ona1 probabil-

ity and not correlation as the key concept. It is shown that the C.P.

approach can avoid the shortcomings and‘prob1ems of such approaches as
causal modeling and path analysis. It is also shown that it provides
p1ausib1e composition'and decomposition rules as well as a plausible

measure focausa1 strength.
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In a supplemental section; we present the theorems which hold for

i

dijchotomus systems under two sets of assumptions and the theorems which

hold for continuous. systems under two sets of assumpt1ons, theorems

where the probabilistic concept1on of causat1on is employed.

11. Disagreements about the Nature of Modeling

’Causa1 modeling is quickly growing {n popularity among researchers
in the social and behavioral sciences. Already a well-accepted heuris-
tic and analytic instrument in economics, sociology, and biology, eausa1 '
modeling is now being strongly pnemoted intpsychoiogy and educatjon as

well (see Bentler, 1980, for an overview of past:.and recent develop-

“ments). Causal modeling techniques travel under a variety of names-—-

multiple regression analysis, linear structural equation analysis,

simultaneous equation methodology, path analysis, dependence analysis,

“covariance structural analysis, and simply, structural analysis. For

many the 1ntent is to model the causal re]at1onsh1ps between variables

so as to obtain.the best n£it" with the data. Inc]uded in this are the-

tasks of identifying relevant variables and determining the direction of

causality between those variables. Furthermore, especially -in the case
of path analysis, the attempt js made to estimate the numerical value of
the coefficients.once a model has been specified..

The techniques of causal modeling have now reached a high degree‘
of statistica1 sophistication. But in this paper. we ‘shall provide a

treatment of the logic of causal inference. Thus, rather than dwelling

upon purely technical problems, estimation or measurement jssues, our

focus is upon the substantive or theoretica] interpretation of causa]

s

models.
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One might- respond that causal modeling has nothing to. do w%th
causat1on Indeed, -in an influential paper on fallacies in “statistical
inference, Guttman (1977), going beyond the well- known "“correlation does
not imply causation" (pp. 97-98), also states, "causal analysis does not

analyze causes". (pp. 103-104). And in a review of Kenny (1979), Steiger

1

(1980) concludes:

nCausal analysis," then, seems to be, in an 1mportant

.sense, a misnomer. | jpear structural relations ana]ys1s

js a more modest, but more appropr1ate description...Since .
necessary and sufficient conditions for testing "causality"

from correlations have not yet been proposed, we may

ruh the risk of deluding the uninitiated (and perhaps

ourselves as well) when we call such model-fitting

’ ,“cauSa] analysis." (p. 404)

Furthermore, in an important review'essay; Bent]ef (1980), following

Guttman, claims:

Obviously, it is not necessary to take a stand on the
meaning of "cause"...The word "cause" is meant to
provide no philosophical meaning, beyond a shorthand
designation for a hypothesized unobserved process, SO
that phrases such as "process" or " system" modeling
would be viable substitute labels for "causal" modeling.
In such a definitional context, one need not worry
about the criticism that "causal analysis does not
analyze causes." (p. 420)

-

But it is important to note that Guttman (1977), in his paper at
1east provides few grounds for his views, about deriving causal inferences

from corre]at1ona1 data or about the non-causa1 nature of causal modeling.




Not all proponents of causa1'mode1ing agree with Guttman. Rather, many
are explicit about rendering a causal interpretation'of causal modeling.
Sewell Wrightb(1921), the deveioper of path analysis, was merely one of
the first to argue for the causal interpretation. Simon, in his paper
on spurious correlation concluded, "hence corfe]ation js proof of causa-
ijZ?on if we are willing to make the assumptions of time precedence and
non-correlation of the error terms" (1957, pp. 42-43). Blalock, follow-
ing Simon, concurs, " . .a method for {nferring caus$1 relationships from
correlational data...involves sets of.prediction from céuéa] models
where certain comb1nat1ons of corre]at1ons can be expected to di sappear"
(1972, p" 51). Duncan (in Blalock 1971; originally published in 1966)
also supports the causal ‘interpretation. uo1dberger js most explicit,
"In a structural equation model each equation ‘represents a causal 1ink
rather than a mere empirical association" (1973, p. 2). Asher (1976)
and'Keﬁny (1979) are but two further proponents éf a causé] interpreta-
tion of causal modeling.
There appears to be, then, a sizeab]e.disagreemenp'about the causal
nature (or lack there of) of causal modeling.
Yet regardless of this disagreement; ﬁany researchers do agree on
various rules of 1nference that provide the foundation for model specifi-
cation, determ1n1at1on of direction among var1ab1es, ‘and the.correlation .
coefficient. We formu]ate two of these rules in Section V. For many
researchers advanc1ng a causal interpretation of causal modeling, the
two rules are recognized as rules of causal inference. In Section VI we
formulate another, broader set of rules of inference. Thus in the main

" body of this paper we shall explore the validity of these rules for

drawing causal inferences. 0ur remarks on th1s issue of validity do not

X9FSE/B
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necessarily generalize to the work of those who disavow the causal

interpretation of causal modeling.

I11I. The Scientific and Practical Importance of Causation

It might be thought that it,makes 1itt1e difference Whether we ren-
der a causal 1nterpretat1on to our causal models. Perhaps very little
is at stake. In that case, caut1on wou]d favor a non-causa1 1nterpre-
tation; there would be no need, then, to WOrry about the va11d1ty of
gggggl 1nference rules. To the contrary, we think a good deal is at
stake. First the ?og1ca1 status of the social sc1ences is at stake
Second, also at stdke is ‘whether socia] science findings, using causa]
mode11ng methods, have any clear 1mp11cat1ons for social policy.

In the first case, many believe that central tg the enterpr1se of
science is covering law explanation. And the sc1ent1f1Fa search for
such laws is the search for causal laws. Whatever else their differences,
a majority of thinkers in the social sciences and philosophy of science
agree upon this po{nt (among social scienti§ts see, for example, Campbell
and Stanley (1966), Chomsky (1968), Cronbach dnd Meeh (1955), Cook and
Campbe 1l (1979) Hicks (1979), S1mon \1957) Skinner (1953), ‘and Suppes
(1970); among ph11osophers of science see, for example, Giere (19/9),
Hempel (1967) Lakatos (1970), Nagel (i%61), Popper (1972) Rudner
(1967), Sa]mop §w1th contributions by Jeffrey and Greeno (1971) and
Smaft (1963)). This notion of causal explanation is quite différent
from that in merely predictive systems in which researthers are inter-
ested in the proport1on of variance of variable Y "explained" by var1-
able X. It is one thing to know that X pred1cts Y; yet it is qu1te

another thing to know that X causally explains Y. If X merely predicts ’

X9F SE/B




.

“

Y, then we have no way of knowing whether X and Y are oausaiiy related

or whether their co-variation..is due to other variables (hence the
concern of Simon and others with spurious correlation).

This is perhaps why Simon, Biaiock; Goldberger, Asher, Duncan, et

“al. are prepared to give a causal 1nterpretation of causal modeling.

')
The causai 1nterpretation resuits not from a 1ack of caution, but from

‘an understanding of the central role of causal expalantion in science.

-

Without the attempt to derive causal inferences from our causal nodels,
we lose sight of the fact that a major aim of the social sciences, iike
the natural sciences, is to ekpiain phenomena--that goes beyond descrip-
tion and prediction. And here we must state that we agree with Simon, |
Biaiock Goidberger, et al. on the importance of causai explanation in
the social sq1ences. No matter how difficult the task, we do need a
methodology for causal analysis in those areas of social research in ‘
which the strict experiment cannot be performed For this reason, it is
important to assess how well the proposed ruies of causai inference
enable us to legitimately draw such 1nferences from correlational data.
On the other hand, there is nothing wrong with predictive systems
of causal modeling. They, too, are a wholly iegitimate form. of social
science inquiry. However, if researchers are interested in developing a
social science that conforms to the aims, rules,-and canons of the
physical and tife sciences--physics, chemistry, biology, and medical
science--then we must strive for more than prediction. We must strive,
as well, for causal expaiantion. Predicticn is an important aim. But
if it is taken to be the sole interest of social science inquiry, W
should recognize that non-causai predictive systems of causal modeling

represent a form ‘of soc1a1 science inquiry quite different from its

b
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cause-seeking counterpart. For this form has different aiﬁs, ru]es,n
canons, and results than that of the natural sciences. It represents a
different vision of what the social sciences are or ought to become.'

But there is a more practical second, point related to the first.
Without causal exb1anation, the findings of the social and behavioral
sciences have few clear implications for po]fcydinterventions. For
policy simply is the attempt to intervene and change the world's estab-
lished causal structure and its sequence of events. Predictive relation-
ships, however, since they tell us nothing firm about how'the causal
structure of the world actually is, provide a limited basis for illumi-
nating effective strategies. At best, they may'he1p us to rule out
certain strategigi should they happen to actﬁa]]y coincide with the
causal structure of the world.

Thus, the capacity of social science to play a major role in social
change is predicated upon the ability to reveal the prevailing causal
structure. This is a task that causal explanation can perform. For
once, we understand‘how.ghings do, in fact, work, we are aT§o in a far
stronger position to alter the structure in way? deemed more beneficial
to social existence.

For these two reasons alone--for the sake of explanation and the
practical re]eQance ot'the.socia1 sciences;-the task of elﬁcidating and
testing the rules of causal infereﬁce in causal modeling is important.
In so doing, the five most plausible underétandings of causation will
receive separate attention. As we shall see, each conception of cause
yields different results as we probe the various rules of causal inference

that relate correlation, partial correlation, and causation.

X9FSE/B ' . 1 |
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IV. Preliminary Remarks

In sections V, VI; and VII of.this’papér we shall be concerned with
the widespread'vieys on the underlying logic of causal inference for
systems where the ;ariab1es are dichotomus. In section IX we presenf
our results for syé%ems where the variab]es are continuous.

One view of the logic of causa] jinference is that the 1og1c for
systems with cont1nuous var1ab1es js the same as the logic for syStems
with dichtomus var1ab1es. H. Blalock, for example, has put forward such
a view (1971, 1972). In sections V, VI, VII we sha]] investigate the
rules of inference which employ the conception of partial correlation
used bylsuch people as Blalock.

Other rules of causal inference, however, have been developed pri-
marily for systems with dichotomus Qariab]es. These rules have been
orovided by P. Kendall and P. Lazarfeld (1950), E. Nagel (1961),

H. Reichenbach (1956) and P. Suppes (1970). In what follows in sections V,
VI, and VII, we show, for example, that the partial correlation as

defined by Blalock does not go to zero as the rules of causal influence
claim it should. It can be shown that if the B]a]ock parti§1 correlation
does not go to zero, then the Kehdall-Lazarsfeld and Nagel partial
correlation and the Suppes kind of partial correlation do not go to

zero either. Hence, by ‘showing that the rules which use Blaiock's

partial correlation are invalid, one also shows the rules advanced by
Kendall and Lazarsfeld, Nagel, and Suppes are a1§o invalid. wé present
these argumeﬁts in detail e'Isewhere.1 .

Our general inquiry, then, is’not confined to such writers as
H. Simon (1957) or Bja]ock. Rather,‘it extends to cover the entire

gamut of causal modeling methods which employ various rules to make
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causal inferences wﬁere the system has variables which‘£ake on a continuous
range of values. 'In'fhe literature much as been made about the yarious
strengths and weaknesses of Simon's and Blalock's models which rely upon
non-standardjzed:coefficients and regreséion analysis, on the one hand,
and the structural equation model approach which relies upon standardized
céefficientg/;nd path analysis (see, e;g.; Wright, 1960; Blalock, 1971;
Go]dberger, ‘1973; Duncan 1975; Asher, 1976) . The aT1egéd advantages of
the structural equation model approach are that it makes possible the
estimation of the numerical values of the path cvefficients--and in so
doing the estimation of the magn1tude or strength of the causal 11nks--and
that as Bentler (1980) notes, it can eas11y handle mode1§\§1th "latent"
or unmeasuned variables. Whatever d1fferences there are, then, between
Simon-Blalock and path analysis are primarily those of which measure to

use rather than a difference in models and underlying rationa'le.2

e
Indeed, Asher (1976, pp. 29, 34-35) claims that, in terms of modeIﬁ
specification and determination of the direction of causality, both
require the same inyeétment in assumptions. And, since we are not
concerned with méasb}kment or estimation issues (e.g., with the measure-
ment of unobservab]evﬁariab1es), but oﬁ]y with whether causal mode]ing

methods can, <in theory, validly test causal hypothesis,our comments

should prove to be genecral. In section IX we present our results for
3 '

causal systems where the variables are continuous.

The 1a§t point cancerns presentation. For simplicity's sake, we
shall develop here our results for the dichotomus case in sections V, VI
and VII. Hence,"ﬁe shall discuss the fourfé]d'poiﬁ; correlation, # (phi),
where the two variab]és can take on only two va]ﬁes: 1 when present;

3

0 when absent. Given a 2x2 table the relationship between X and Y can
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. be represented as follows:
X; =0, if X is absent in occurrence i.
X; = 1, if X is present in occurrence 1.
Yif- 0, if Y is absent in occurrence i. ‘
. «
Yi =1, if Y is present in occurrence 1’f
Also let: . )
) .
. ¢ a = the probability of an occurrence i where X. = 0and Y, =1
b = the probability of an occurrence i where Xi =1 and ?i =1
¢ = the probability of an occurrence i where X; =0 and Y; =0
d = the probability of an occurrence i where Xi =1 and Yi‘= 0

The occurrences can be arranged in a Zx2 table .of this form:

a b ¥ present

c d . Y absent

4 -t
X absent X present <~

The phi correlation coefficient between the scores in the population
y
under study is:

: bc -~ ad
Pyt
[(ath)(c+d)(a+c)(b+d)] %

The partial correlation between X and Z with Y "held constant" is:

_ ] 2 o
Prur PRy Py /10 fixy).u £y

Notice that the partial correlatioh is zero if and only if the numerator

ey

te;ﬁ is zero. (This is the conception of partia]ncorre]ation used by V

~ such writers as Blalock.) .
Again, we have developed results and theorems for cases where the

variables are continuops (where the regular Pearson produet moment -

»

correlation is used); We presénf, without our proofs, these general
&

results in the Supplement, section IX.
-~ :
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V. Purported Analyses of "Cause" and the

Rules Using Partial Correlations

V.A. Two Rules of Causal Inference

In this section we will consider several purported analyses of
cau§ation and the relationships among each analysis, correlation, and
partial corre'lation.2 We employ Blalock's basic framework in which he
discusses four'conceptiOAS of causation.

Let us begin by formulating the inference rule (R.S.B) which appears
to be accepted by many social scientists. It is a straightforward
%nterpretation of Simon's remarks (1957).3

Rule S.B... Given standard assumptions,4

_ if the corre]ation.fiz between-X and Z is high

positive (or negative) and the partial corre]ationJsz’y

between X and Z with Y "held constant" is zero, then

either a) Y is an intervening variable--the causal effect
of X on Z (or vice versé) operates through Y;

or b) Y is a common cause of X and Z--the correlation
between X and Z is "spurious."

Notice that rule $.B. is a confirmational or an inductive rule.

That is, rule S.B. purports to able to establish that certain causal
relations exist from inferences built on correlations (or some other
statistic) among the variables. There is another kind of rule of causal

inference which we shall call falsificationist. A falsificationist rule

postulates that certain causal relations exist and it then sets out to
use the statistics to valsify the hypotheses. The rule C.S.B., which we

forpulate next, is a falsificationist rule. Path ana]ysis and structural

X9FSE/B i _ ‘ 1
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equation approaches are also fa1sifica§jonist. (See section VI below).
(We believe that certain kinds of falsificationist's rules are va1id in
certain situations. See section VII.)

Let us formulate an inference rule (R.C.S.B.) which appears to.be
more widely accepted than Rule S.B. It fits Blalock's remarks that
causal inferences don't prove causal relations, rather they rule ;ut or

reject causal re]ationsi?

Rule C.S.B... Givgn standard assumptions,
if either (a) Y is an intervening cause vafiab]e
(the causal effect of X on Z, or vice versa, operates
- fhrough Y) or (p) Y is a common cause of X and Z; then
the corre]ation.f&z between X and Z is high positive (or
_negative) and the partial corre]ation‘faz’y between X and

Z with Y "held constant" is zero.
Notice that these rules assume that Y is either an intervening

variable between X and Z or Y is a common cause of X and Z, but not
both. (In Section VI, VII, and the Supplement the assumption is relaxed.)

6ur point is that given thiS'assumptionA(and assumptions about the o
"outside causes"), the two rules of causal inference are invalid for

certain conceptions of causation.

V.B. Causes as Necessary Conditions: ' Type 1

Consider some familiar examples of causation. The striking of a
match causes it to ignite or a person drinking a poison causes him or

her to die. Of course, were oxygen not present or were the match wet,

jt would not ignite. And if;an antidote were administered, the person

would not die. These examples suggest that to talk about the causal

X9FSE/B | - |~




_ conditions for any change is to talk about those changes that are neces-

13

“

sarymjor its occurrencg._ Were those conditions not to occur, the change
in qdestion would not occur. .

Given that a causal condition X of'any change Y is a necessary
condition of the change Y, what follows about the correlation between X
and Y? First, it fof]ows that a = 0. For when X = 0, then Y =0 because
X is a necessary condition for Y; there wf]] be no cases where X = 0 And

Y = 1. JF%V simplifies to the “ollowing:
Py = [b/(b+d)];5[c/(c+d)];5.

But, it a]so fo]]ows that whenever d is non-zero and whenever X is

necessary for Y, no determ1nate (pos1t1ve) va1ue of the correlation can

be deduced. Any va]ue ofjv high or low, 1s 1og1ca11y compat1b1e w1th . - o

the fact that X is a necessary condition “for Y! (Note, however, thatjp

must be non-negative.)

On the other hand, given only that a = 0, it does not follow that X
is a necessary con&ition for Y. It could turn our that X is merely
correlated with fhe actual causal condition, but played no role in the
causation. It is quite possible that no match ha; evermignited except
in the presence of some gravitational force, yet the_présencé of such a
force is not causally necessary for the ignition of the match.

The important point to note.in such cases as.the match and the
quaffed poison is that any positive value, high or low, of'the]?cmrre-
1atiop is compatible with the fact that X js causally necessary forbY.
The actual value will depend upon the number of occurrences of such
events as the match's being wet, the oxygen's being absent,.ahd the

antidote's being administered, and so on.

[
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Given the analysis that causes are necessary conditions, what can
be shown about the causa1‘inference rules which relate correlation,
partial corre1atidn, and a conception of causation?

It is easy to find cases which invalidate rule S.B., cases whe%e
the corre]at1on_f& is high (pos1t1ve or negat1ve) and the partial
corre]at1on~f&2’ is (near) zero, but where it does not follow that Y is
an intervening cause or a common cause of X and Z. Suppose Y is a

necessary condition for Z, but X is not necessary (nor sufficient) for

Y. Here some subset of not-X causes Y. Since there is no causal path

from X ta Y, Y is not an intervening variable (and it isn 't a common
cause either). Here the antecedents of rule S.B. are sat1sf1ed but the
consequences are not.

’Given that rule S.B. is invalid, it might be hoped that rule C.S.B.
js valid. Unfortunately, rule C.S.B. is also invalid. Suppose Y is a
commén, necessary cause of X and Z.6 Consider tﬁe‘common cause Y where

we have the following correlation tables:

o 25 X 0o 25 1 o0 5 12
50 25 not X 50 25 not Z 75 0 notZ
not Y Y not Y Y not X X

Here the antecedents'of'ru1e C.s. B' are satisfied, but the partia] cor-

relation betweén X'and Z with Y "held constant" does not go to zero.

(Fonr',fxz # ﬂ(y -\Pyz. Remember, the numerator of £z y 15_&Z fxy .Fyz

V.C. Causes as Sufficient Conditions: Type 2

Let us consider another set of familiar examples of causation. For
example, d1sturbances on the sun ccuse radio wave interference on earth

or the exp]os1on of an atom bomb’ causes a bu11d1ng to co]]apse "Here we

#
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have the feeling that no matter what else happens, the sun's disturbances

wouid cause radio wave 1nterference and the bomb's biast would collapse

- the building. These examples suggest the View that a cause is sufficient

N

for its effect. In more general form, to say a set of conditions/js a

cause is to say that the set of conditions is sufficient for the effect.

Blalock, for one, apparently argues that a cause js a sufficient

condition for the event: -

According to Bunge, one of the essential ingredients in
the scientist's conception of a cause is the idea of
"producing", a notion that seems basically similar to
that of forcing If X is a cause of Y, we have in mind

—

v —— S ————

hang in Y. Thus, although constant conjunction may
be a part of one's definition of causality, conjunction

is not sufficient to distinguish a causal relationship
" from other types of associations. (1972, p. 9; emphasis
in the original) o

Two important points need to be made here. First, it is unfortunate

that Blalock never attempted to give any independent explications of

"producing” or “forcing". For examnle, he might have attempted to link

producing to human manipulability or to examples such as the bomb blast
where the forcing is very evident. On the other hand, it is easy to see
how difficult it is to model the forcing notion with statistical concepts.
Second, constant conjunction fer Blalock comes to the view that all X's

are followed by Y's, yet he clearly distinguishes constant conjunction

from causation. Thus, Blalock appears to be committed to the view that

to say X is fhe cause of Y is to say X is-sufficient for Y. This view
is compatibie:with the way Blalock goes about "finding" causes (1972,
Chs. II and III).

X9FSE/B 1 '
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Further support of-tﬁis'interpretation js provided by Simon's
>(1957) more formal analysis of causation. "In that paper Simon expli-
cates a version of what has been termed the "covering law' or hypo-
thetical-deductive model of scientific explanation. The model can be
briefly specified as having the form:.

. \ X:D Y
- X

Ty
Where X=Y is a general law specifying that if X occurs, thenff occurs
and X specifies jnstantiations of fhe'initia] conditions and Y the
effect. In other words, Simon provides a sufficient-condition analysis
of causation.7 It is not unreasohab1§ to be]iéve that Blalock simply
took it over from Simon.

At any rate, if causes are a sufficient condit{on for their effects,

we cannot infer the existence of X from the presence of Y. There can be
a plurality of causes of Y, each sufficient, but none necessary for Y.

But, suppose now that X does cause Y. What follows about the correla-

tion between X and Y? First, it follows that d=0. For when X = 1,

Y=1 becédse X is sufficient for Y. Hence, there will be no cases

where X =1 and Y = 0. Given that d =0, then P becomes:
f- [b/(a+b)T% & [c/(a+c)]?

Buv it can then be determined that when a is non-zero and X is suffi-
cient for Y, no determinate value, high or low, of theJP correlation can
beVAeduced. The value ofjp depends on the actual number of occurrences
in the 2x2 table ce]]s;-on the numbers a, b, and c. Any ‘(positive)
value _off is logically compatible with the fact that X is sufficient

for Y.

XOFSE/B
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On the other hand giNen that d.= 0, it does not follows that X is
a sufficient condition for Y. It could turn out that X is mere]y corre-
lated with Y.

It is easy to find cases which invelidate rule S.B., cases where
the corre]atioan& is high p051tive (or negative) and the partial
corre]ation_f;Z’ js (near) zero, but where it does not follow that Y is
an intervening sufficient cause or a common sufficient cause of X and Z.
Suppose that X is a sufficient cause for Y but Y is neither neceésary
nor sufficient for Z. Here some subset of notY causes Z. Since there
is no causa] path from Y to Z, Y is not an intervening variable (and it
jsn't a common cause either).’ Here the antecedents of rule S.B. are
satisfied, but the consequences are not.

Rule C.S.B. is 21so invalid. - Suppose Y js a common sufficient-cause
of X and Z. Consider the common cause Y where we have the following

correlation tables:

0 50 Y [ 100 50 100 50 yA
200 50 notY - 150 0 notlZ 100 50 not Z
not X X not Y Y not X X

Here the antecedents of rule C.S.B. are satisfied, but the partial

correlation between X and Z with Y "held constant" does not go to zero.

For0=p,, # Py >

Of course, there are several problems with attempting to analyze

causation as a suffic1ent condition One counter example to the analysis

is the fact that the presence of fire is sufficient for the presence of

oxygen, yet sure]yvthe fire d1d not cause the presence of oxygen
Furthermore, if X is a sufficient condition for Y, then any other state

S of the world which occurs can be conjoined with X so that X and $ are

XSFSE/B . ‘ o
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sufficient for Y. For example, if frustration were sufficient for
aggression, then frustration\and‘Antarctiéa's being cold would also be
sufficient for aggression. C]ea;ly, however, Antarctica p]ays no causal
role ie aggression. Hence, there are difficulties with the view.tha£
causes are sufficient conditions. )

Even‘given Blalock's preferred interpretatioehof causation as a
sufficient condition “we have shown that any posifﬁve-va]ue (high or
low) of the corre]at1on}9 is logically compatible with the fact that X
caused Y. We have also shown that the two widely held causa] inference

rules are invalid.” It remains to be seen whether the method will prove

more adequate with our three remaining understandings of cause.

V.D. Causes as Necessary and Sufficient Conditions: Type 3

-

The Type 1 analysis of cause jnvolves a restrictive notion of what

a cause is. For examp]e, it would rule out the possibility that there
m1ght be a p]ura11ty of causes for a certain effect in which each cause
is sufficient for (or increases the probability of) an effect, but none
of which is necessary. (For instance, there are many ways of causing a
person's death or of bringing about academic achievement, but not a one
and only way.) And we heve seen there are problems with the Type 2
analysis. But perhaps it is still poss1b1e to hold that if X causes Y,
then X (or the totality of necessary cond1t1ons for Y) is necessary and
sufficient for Y. Such an ana]ysis was widely held in the 1950s and
early 1960s.

Suppose, then, that "X is the cause of Y" means "X is a necessary

and sufficient condition for Y." F%rst, notice that a = 0, for when X =

X9FSE/B
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0, Y ='0vbecause X is necessary (there tan be no cases in which X =10
and Y = 1). Second, notica that d = 0, for when X =1, Y =1 because X
is sufficient for Y (X cannot ='1 énd Y = 0). Given that a = 0 and

d =0, the corre]ationf equals 1. .

It should be pointed out, of cOurse, that given a correlation of 1,
we cannot directly infer that X caused Y. X and Y can be perfectly
corre]ated but not causa]]y related, if X and Y are the unalterable
consequences of some th1rd event Z; X could be the side effect of a
virus (Z) and Y the disease.

At this point, using correlations as a method in causal inguiry
appears to be justified. If the view of causation is sound, then it is

.a necessary condition that the cqrre]ation be 1. Although it does not
necessarily prove causal re]atidnships, one can use this as a test to
reject causal claims.

However, given our previous arguments and examples, it follows that
rule S.B. is invalid here, too. But rule C.5.B is no longer susceptible
to the counterexamples of the previous sections. When a cause is a
necessary and a sufficient condition, it follows that the correlation
f&z is high il) and that the numerator of the partial corre]ation.faz’y
is zero. Except for the practical difficulties encountered in finding
such causes, it appears the position is theoretically sound. ‘But as we
shall see, other difficulties quickly arise.

Blalock (1972, p. 31) has anticipated this analysis of causation
which states that strictly speaking cases of type 1, type 2, and type 4
(causes as neither necessary nor sufficient conditions; to be discussed

" below) can all be redu;ed to necesséry and sufﬁicient ;onditions. This?‘

can be done, he maintains, by‘the device of re-defining what is included

X9FSE/B v , ‘ 5




under X and Y. As we have already noted, however, B1a1oek'has mostly
espoused and applied the view that causes are mere]y sufficient condi-
tions. Furthermore, he strongly relies (197%; pp. 40, 68-69, 73-76) on
what may be termed "the pr{ncip1e of deereasing conre1ation" which
states that when X causes Y and Y causes Z, one can expect the corre-
lation between)x and Z to be smaller than that between X and Y or Y and
Z. But the problem is that this principle is app]icab1e only if there

be other causes for Y and Z. Thus, in his many exemplifications of

Simon's model, Blalock has implicitly assumed that a cause X of Y need

not be the only cause of Y, that X is not necessary for Y. (If a cause

N weré”necessafy”and”gufficient’for“TtS'effect;”theJﬂw:orre1ation wdu]d

be 1.) BTa]ock has. apparently presented incdnsistent views.

Even were Blalock to present specific arguments and procedures for
reducing all cases to those of type 3, a major theoretical difficulty
attends the claim that causes are necessary and snfficient conditions.
For an adequate analysis of causation should be able to distinguish
cause from effec;. "X is the cause of Y" should not entail "Y is the
cause of X"; the causal reTationship is an asymmetric one. Yet if X is
sufficient for Y, then Y js necessary for X; and if X is also necessary

for Y, then Y is sufficient for X. If "X is the cause of Y" means "X is

necessary and sufficient for Y", then it also follows that Y is the

cause of X. Thus the asymmetry of the causal relationship has been

violated. Therefore, this analysis of causation is inadequate.
Blalock is aware of this difficulty. And like most other writers

on causal modeling (e.g., Asher, 1976 and Kenny, 1979), he has noted

that because‘tempqra] sequenEes-are also asymmetrical, time precedence

of one variable over another might help to resolve the direction of

XOFSE/B ' - o

B .




21

causation. But, unlike most other writers, Blalock is less comfortable
with the time seqhence-gives-you-causal-asymmef?y-view. He is explicitly
aware that the forc1ng or producing 1dg§ is not contained in the notion
of temporal sequences. Thus, he argues that our conception of causa11ty
should not depend on témpora1 sequences, except for the impossibility of
an effect preceding its cause (1977, p. 10).. Blalock, we think, is
ma1n1y correct ofgthis observat1on HoweVer cause is understood, it
cannot be part of the definition of cause that it temporally precede its
effect. This has imp11cat1ons for ordering var1ab1es in a model. But
even Blalock appears to violate this caveat when he later seems to |
employ temporality to distinguish cause and effect (1972, p. 43).
Counterexamples to the temporal-sequence condition fall into two sets.

By all reason, the first set--contemporaneous causes and effects--is the

larger. For exampie, when a locomotive is pulling a caboose and the two
are tightly coupled, the motion of the locomotive is suff1c1ent for the
motion of the caboose. Once primary inertia has been overcome, the
motion of the caboose is also sufficient for the motion of the locomo-
tive. But here they move at the same time. Furthermore, plentiful
examples of th1s sort might be drawn from psychology and education.

The seéond set of counterexamples are more exotic since they involve
effects which partly at least, precede their causes in time. Evidently,
many phys1c1sts believe that this is what occursﬁ¥1th certain highly
charged sub-atomic ‘particles in a cloud-chamber. Many ph11050phers of
science have also avoided ruling out, a Eﬁigﬁi: the possibility of
"backward causation " (See, e.g., Sayre, 1977 and Dummett and Flew,

1954).

o X9FSE/B R ‘ o -
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One last example is instructive. The change in atmosﬁheric condi-
tions is regularly associated with the falling barometér, although it
is the change in atmosphere that causes the storm. Here, both the
atmosphgric and barometer changes temporally precede the storm. Hence,
the difference between regular association and causal relationship is
not merely a matter of temporal sequencep

Yet more troubling for the Simon-Blalock procedures, even in a case
such as this, one cannot use the partial correlations to distinguish
cause from spurious causeI For though all the pairwise cbrre]ations are
1, the partial correlation is undefined. The difficulty is that the
denominator of the partial correlation is zero. Hence, the ruie C.S.B.
is actually invalid afterall. Blalock (1972; PpP- 87-89); recognizes
this problem of multicollinearity and admits that there are no defenses
available (1972, pp. 87-89).

Thus, such a view of causal inference does ﬁot allow us to distin-
gu%sh spurious from causal relations in general, given a type 3 view of
cause. This is unfortunate since actual cases in the social and beha-
vioral sciences are likely to be many times more recalcitrant than the
 barometer example. But then agéin, the conception of cause as necessary
and sufficient condition is probably the least plausible one that we
have examined; We turn to type 4 cases wh%ch may prove to be a most
plausible understanding of causatibn. It is also the conception held by

many social scientists.

V.E. Causes as INUS Conditions: Type 4

For one reason or another-most social scientists have rejected the

conceptions of causation which treat causes as a sufficient condition or

\
v
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which treat causes as a necessary condition for some event E. Social
scientists are inclined to hold that such invariable and close relation-
ships between a cause and its effect are not 1ikely to be found in
socia]linquiry. (For examp]e,[see D. Heise, 1975)

The use of such strategies as causa]Jmodeling br path analysis can
be reconstructed by using either the conception of causation as an
INUS-condition or the conception Qf causation as probabilistic causa-
tion. In this section we consider the validity of the two rules when
the former conception is used; in the next section we consider the
validity of the rules when the latter is used. ‘

The INUS conception of causation holds the following. To say that
X is thé cause of Z is to say that X is an insufficient but nonredundant
part of a set of conditions which is unnecessary but sufficient_foﬁ»Z{“
Thus, wherever. there is a plurality of causes of Z, and whérevef a
conjunction of conditions which inc]udés X is sufficient for Z,‘X will
turn out to be an INUS condition .of Z, (Heise, 1975;‘M56kﬁe, 1974). In

more abstract terms, it may turn out that all cases of (AX or WB) are

also cases of Z. It can be seen that an INUS conception of causation

requires that strict determinism be true locally, that there be suffi-
cient conditions of Z. —

Given that X causes Z means that X is an IﬁUS caﬁses of Z, what
follows about the correlation between X and Z? For simp]icl&y, let's
assume that Z can be sufficiently-caused by [(X and C) or W]. “Coﬁsider
the terms in the 2 x 2 correlation table. First, it follows th;t d is

3 .
not zero, for X is not sufficient for Z. Together X and C bring about

Z, but when notC occurs with X, then notZ occurs. Thus, it fo]Jows'that ~
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Qﬁis not zero and that the ratio b/(b+d) equals the nuﬁber of occur-
rences of (X and C) divided by the number of -occurrences of X. 'Second,
it follows that a is not zero, for~X N's not necessary for Z; W can also
bring about Z. It is’ a]so possib]e that notW occur with notX and hence
that not Z oEcur At any rate, the rat1o a/(a+c) equals the ratio of
the number of occurrences of (notX and W) divided by the number of
occurrences of notX. Therefore, when X is an INUS cause of Z, the terms
a, b, and d are non zero and it is poss1b1e for c to be non-zeto also.
Furthermore, the ratios d/b and c/a can take on values such that_pXz
ranges from high positive to high negative. A]so;Jf;z can equal zero °

.
~.

when d/b equals c/a.

1

Given the analysis that % causes Z means that X is an INUS cause of

Z, what can be shown about the causal inference rules which relate

correlation, partial correlation a?d the INUS conception of causation?

It is easy to find cases wh%ch jnvalidate rule S.%., cases. where
the co}re]athn_fal is high (positive or nggative) anq the partial
corre]ationijaz’y is (near) zero,'but where it does not follow that Y is
an intervening cause between X and Z nor that Y is a common cause of X
and Z. (Remember that the numerator of -pxz y equals _sz fxy Joyz’
the partial is zero if and only if the latter quantity is zero.) Suppose
Y is an INUS cause of Z but ihat X i; not on INUS cause of Y. Consider

the INUS cause Y where we have the following correlation tables:

% o0 Y. - 108 1221 30 92
RS ) — e “
24120 NotY 3 8 Notz 90 30 NotZ |
NotX X NotY,. Y NotX X
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Here the antecedents of the rule are sat1sf1edJ9 is high bositive (.5)
and the partial c:onr'lr'ela’uon“f?z’y is zero) but Y is not an 1nterven1ng
cause between X and Z (nor is Y a common cause of X and Z). (For .
= P Which equals g o gy, = [(-96)/(96° 144)%7.[(-72)/(96° 144)‘5] )
Given that rule S.B. is invalid, it might be hoped that rule C.S.B.
is Va]ih. Unfortunately, rule C.S5.B. is also invalid. There are cases
where“f;z = 0 and where the partial ccrrelation is zero, but there are
also cases where the partial correlation is not zero. Suppose X is an
INUS cause of Y and Y is an INUS cause of Z. Consider thé fo]]oWing

correlation tables:

25 75 Y - 50 50 Z 62.5 37.5 1Z
75 -25 NotY « 50 50 NotZ 37.5  62.5 NotZ
NotX X - © NotY Y | NotX X

Hencef , which is large negative, does not equal fxyffyz’ forfyz”
equals zero. Thus, even though Y is an intervening INUS-cause between X
and Z, the part1a1 corre]at1on.f& 2.y is not zero.

There are cases where Y is an jntervening INUS-cause between X and
Z and wheref z is nonzero but the partial correlation ﬂ(z,y is zero,
but there are also cases where the part1a1 correlation is not zero.

Suppose X is an INUS-cause of Y and Y is an INUS- cause of Z. Consider

the fo]]owing correlation tables:

25 75 Y 162/3 B3 I 25 25 12

J5 25 Noty 83 1/3. 66 2/3 NotZ 75 75 NotZ

NotX X Nty Y " NotX X
XOFSE/B - . 5
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Here_P 2 which is zero, does not equal ny ‘fﬁ, , both of the latter
terms are nonzero .Therefore, Y is an intervening INUS cause but the
partial corre]ation“f;z,y is not zero.

Given these two kinds of counter examples, then, it follows that
~ when Y is an intervening INUS cause of X and Z the rule é.S.B. js invalid.
Difficulties also arise for the rule C.S.B. when Y is taken to be a

common INUS cause of X and Z. Consider the following corre]atioﬁ tables:

o 15 2 25 50 1 25 50 X
125 0 NotZ 75 50 Notz 75 50 NotX
Notx X ' NotY Y NotY Y

Hereif;Z, which equals 1, does not equalJP;y-Jéyi; the latter correla-
tions afe both less than 1. In order for Y to be a common INUS cause of
X and Z there must be some other factor(s) which is (are) a cause of X
otherwise Y couldn't be an INUS cause of X. S1m11ar1y,,there must be
some other factors which is (are) a cause of Z; otherwise, Y couldn't an
INUS-case of 7. The counterexample above assumed that the other factor
_is also an INUS common cause of X and of Z;'but other kinds of counter?
examp]es are eas11y constructed without this assumption. At any rate,
~ given these counterexamples, it follows that when Y is a common INUS
cause of X and of Z, it need not be the casewﬁhatgp'z js high (positive
or negat1ve) and that the partial corre]at1on“f;z, ijs zero. Therefore,
“the rule C.S.B. is 1nva11d

" There are, of course, severa] prob]ems with the analysis of causa-
tion as an INUS cond1t1on First, suppose Y is an INUS cond1t1on of Z

‘Then Y is part of factor which has the fo]]ow1ng form: C-Y or W. If Y

js an INUS conditon of Z, then so is C. -But usually we se]ect only one
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of these INUS conditions and call it the cause. At best, fhen the
INUS-analysis of causation is incomplete.

Second; suppose that Y is an INUS cause of Z and that X is an INUS
cause of Y. In such a situation, z is an insufficient but nonredundant
parﬁ of a set of conditions which are unhecessary but sufficient for Y.
That is, Z is an INUS condition of Y. But if a cause js merely an INUS
condition, then in this situation it follows that Y is the cause of -Z
and that Z is the cause of Y. Surely this is an unacceptab]e.fesu]t;
for the causal re]ationship js an asymmetric one. An adeouate analysis
of causation shou1d be able to distinquish cause from effect. Since the
| ana]yses‘of causation as an INUS condition does not, it is not an ade-
quate analysis. ° . o : o , Q' | |

Again, one might be tempted at this point to add temporality to the
INUS condition analysis. After all, tempora] sequences are also asymmetri-
cal; time precedence of one variable over another might help to resolve
the direction of causation. But, we have previously seen in our dis-
cussion of cause as-a necessary and sufficient condition (Section v.D.)
that the temporal sequence condition is subject to serious counter-
examples. Thus, it cannot=be used to save the INUS analysis of cause
from this defect : : ‘ .

stin, there is one fina] prob]em for the ana]ysis of causation as
an INUS condioion. An INUS condition Y is part of a se£ of conditions
which is unnecessary but sufficient for Z. Thus; in order for Z to have
an INUS condition, some set of condiﬁions'must be sufficient for Z. One
: might say that 1oca11y, at 1east determinism is true. But many uritefs
have argued that modern phySics and bio]ogy use a conception of causation-~

probabiiistic causation--which rules out such 1oca1 determinism In

X9FSE/B

e
=




28

such situations, W is a probabilistic cause of Z even thsugh W does not
belong to a set of conditions which is sufficient. In particular, many
writers have held that P(Z/W)>P(Z). We consider probabilistic causa-
tion in detail in section V.F. | |

Given that there are intelligible applications of the concept of
Apibbébi1{stit causation, then the analysis of causation as an INUS
condition is unacceptable as a general analysis. It may turn out,
however, that there are several related but uistinct conceptiqhs of
causation. Perhaps the INUS condition analysis is adequate for one of
these conceptions_of causation. We leave this issue to andtheiAtime.

We must notice in passing from causation as an INUS condition to
probabilistic causation, that there se;ms to be room for an INUP ana]y-‘
sis of causation. Y is an INUP cause of Z if Y is neither a sufficient
nor a probébi]istic cause buf is a nonredundant part of a set S of
conditions which is an unnecessary but a probabi]istic cause.of Z.
Although Y does not “influence" Z by itself, the set S, which has Y as a

nonredundant part, does "influence" Z. We leave consideration of INUP

conditions to another time.

V.F. Cause as Probabilistic-cause: -Type 5
A probabi]jstic cause can be partly understood by contrasting it'to

the familiar no£ions of necessity and sufficiency. ‘Roﬁghly; to say that

_ 'X is a probabilistic cause of Y' is to say 'X causes Y even though X is

insufficient and often unnecessary for Y.' 1In more formal terms, mahy

writers have he]d that P(Y/X)>'P(Y) In other words, it has beén he]d

that the presence of X lncreases the probab111ty that Y will occur.
Now many may f1nd that the not1on of probab111st1c causat1on,

rather than teem1ng with plausibility, 1s h1gh1y problematic. Somehow,

XSFSE/B | ‘ | S
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it might be maintained, the notion 'X causes Y' must be reducible to
necessary or sufficient cohditions or both: Thus, Mackie's (1974,
p.;62) notion of én INUS condition (as discussed in V.D.) appears tb be
a special instance of a probabilistic cause, but jt is really merely
part of a sufficient condition. To say that 'X causes Y' is to say that
'X is an insufficient but necessary factor in a set of conditions that
are unnecesgary, but sufficient for Y.' In other words, X belongs to a
set of’conjuncts in a series of disjuncts, none of which are necessary,
but all of which are sufficient for Y. " For example, the effect is
brought about if XC or AB or LM... Thus,, with greater spec1f1cat1on we
obtain jnvariable causal relations (if we are able to specify all of the \
disjuncts, the entire set would be necessary as well as sufficient for
Y). An INUS condition requires that strict determinism be true. A
probabilistic éause does not require this. '

.But sugh=a hoped-%or reduction to invariabi]ify in all cases appears
to be more a matter of faith than- being faithful to the facts. From

medical research, we know that a var1ety of substances cause cancer even

“though only a small percentage of those exposed contract the disease.

%

In quantum mechanics, indeterminancy and, hence, probabilistic causation
plays an importanf'ro1e. And given the kind of creatures that human
beings aré, it is very likely that the hotion of pfob§b11istic cause has
a large role to play in the social and behavioral sciences. To hanker
after a reduction to invariable causal relations fs, as Suppes argues,
as point]ess‘as it is unjustifigd (}970, bp. 7-8). (For other major
tréatmenps of probabilistic céusatioﬁ, see Good, 1961-62; Reichenbach,

1956; and Salmon, 1980). - .
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But now, assuming the conception of causation as probabi]istic
cause, what follows for cur standard methods? Following arguments

similar to those involving INUS cause, it can be seen that X causes Y |

is compatible with any value of thef cdrre]ation. In such cases, the

value, high Hr low, of'theJﬂ correlation cannot be used to defend causal
claims, nor can it be used to reject causal claims. Not only may the

value of the correlation be high (or low) and positive (or negative) it

Amay also be zero!

There are several kinds of counterexamples to show that when proba-
bilistic causation is involved the rul. “.B. is invalid. There are
cases wherejzxz is high negative and the partial corre]at1on.f&z’y is
zero, but where Y is neither an intervening cause between X and Z nor is
it a common probabilistic cause of X and of Z. Also, there are cases

where_f&z is high positive and the partial corre]at1on‘/§z’y is zero,

but where Y is neither an intervening cause nor a common cause. Suppose

Y is a probabilistic cause (.125) of Z but that X is neither a sufficient

cause nor a probabilistic cause of Y. Considér the following correla-

tion tables:

125 L3752 .40 .00 . .45 .05

————— | ————————

375 .125 NotZ .10 .50 Noty .15 . .35 NotZ
NotX X NotX X NotY Y A
Here P is high positivé and % =.sz =fxy'fyz = (.816)"(612), but Y

{s not an 1nterven1ng cause between X and Z, for X is not a cause of Y!

(And Y is not a common cause e1ther ). G1ven these counterexamp]es,
§

. then, rule S.Bz is 1nva11dﬂ

!
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Counterexamples cé}.be found which also inva]idaté rule C.S.B. wheq
. causation is analyzed as brobabi]istic causation. There‘are cases where
‘jayz = 0 and the partﬁai corre]atidnJﬁ;z’y'is %Fno, but there are cases
wherer = 0 and the partial correlation is not zero. Suppose X is a
probab111st1c cause (.5) of Y, Y is a probab111st1c cause (.5) of Z;
suppose that notX is a probabilistic cause (.5) of ¥ gnd notX is a prob-
ab111st1c cause ( 75) of Z. (For there {s a hidden fourth variable
which never occurs when either X or Y occur and wh1ch is a probab111s+1c

cause of Z.) Consider the following corre]at1on tables:

25 .25 Y 25 .25 1 ' 375 .125 2
.25 .25  NotY 25 .25 NotZ 125  .375 NotZ
NotX X - Noty Y NotX X '

Here sz #f!fy '.Pyz’ even though Y is an intervening probabilistic. ’

cause. .
'Theré are also cases where Y is anaintervenihg proﬁabi]istic cause
(between X and Z) where./zz is noﬁiero ang'the partial corre]atioan&z’y
is zero, but there are also cases where the partial correlation is non-
zero. Suppose X is a probabilistic cause (.5) of Y, Y is a probabilis-
tic cause (. 5)'of Z, and notX "is a pfobabi]isitic cause (.5) of Z. (For
there is a hidden fourth variable which never occurs when X or Y occur

~ and which is the probabilistic cause of Z. ) Consider the following

correlation tables:

0 .25 Y .25 .125 1 : .25 .125 1-

50 .25 MNoty . .50 .125 MNotZ . .25 .375 NotZ
Notx = X o Moty Y i '\'NotX X |

5

Here_f&z ¢.J§y ‘ng even though Y is an 1nterven1ng probab111st1c cause.

This set of counterexamp]es assumed on]y that Z had more than one probabilis-

tic cause!
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Difficulties also arise for ru]evC.S.B. when Y is taken to be a
probabilistic common-cause of X and Z. Although there are several kinds
of counterexamples, the most striking is the following. Suppose Y
causes X nith probability .5; Y causes Z with probabi1ity .5; but Y
causes (X or Z) with probability 1. (Consider the cese of a coin toss
or the case of radigective decay.in nonoverlapping time~interne15.)
Consider the following correlation tables:

25 0 2 0 .25 z . 0 .25 X

50 .25 NotZ 50 .25  NotZ 50 .25  NotX

NotX X . NotY Y  NotY Y

In such cases, the}correiationde will always be nezative. And since Y
is a necessary probabilistic cause for X and a necessary probabilistic
cause for -Z, fyx" and/ will always be p05itive Thus,fxz #_&y .Pyz‘
In this kind of case, only Y is available to serve as the common cause
of X and Z, but Y doesn't cause X and Y in an "independent" manner.
Thus, when causation is conceptuaiized as probabi1istic causation,
a conception which is used by many social scientists, both the ru1e S.B.
_and the rule C.S.B., which involve partial correlations are shown to be’
jnvalid rules of cabsa] inference. In particular, X can be a probabilistic
cause of Z and the correlation be high (or low) positive (or negative)
or zero. Furthermore, the partial corre]ations being zero is neitber a
sufficient nor a necessary condition for Y's being an intervnning cause

between X and Z or for Y's being a cofmon-cause of X and Z

: VI."ProbiemS'with Peth Ana]ysis/Stnuctufai Equation'Approaches
In the previous sections it has been shown that-the causal infer-

ence rules S.B. and C.S.B. which 1ink correlation, partial correlation '

i
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‘and é conception of causation are invalid for certain cbnceptions of
causation (given certain assumptions about the error variables). Of
particular importance i; the findiné that if Y is an intervening causal
factor between X and Z, or if Y is a common cause of X and of Z, but not
both, then itbcan be shown that the partial corre1ation‘jaz’y need not
go to zero when the probabilistic or INUS conceptions of causation are
employed. * | | -

In our discussion up to.this point, however, it has been implicitly
assumed that Y is an 1nterven1ng cause or a common cause, but not both.
Many have c1a1med 1hat approaches such as S1m0n Bla]ock causal modeling
also makes such an assumption (Asher, pp. 19-20). At any rate, it is
‘now time to relax the assumption and consider cases where a cause X has
both direct and indirect effects oh Z. N

It has been argued that one virtue of approaches such as path
analysis and of structural equation models is that they allow one to
consider causes}which~have both direct and indirect effects. (Asher,
pb. 32-35; éeé h]so Duncan, 1975.)

Before we relax our assumption, however, notice that when there are "

no causes which have both ditect and indirect effects, the path analysis/

structural equation approaches lead to a similar analysis as the Simon-Blalock

causal modeling approaches. kThus, as we have shown in the previous
sections, both >1mon B1a1otx causa] mode11ng and path analysis/~ structural
v equations give the wrong answers for certaln concept1ons of causat10n

‘given certain assumptions about the “error“ variables.

The results of Sections IV and V show that where the probabilistic
or the INUS conception of causat1on is used and where one assumes the

pairwise mathematical expectations of the "outside" causes (or error
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variables) are zero, thektwo rules are invalid because the partial
correlation need not go zero. We have also derived the result that
where the probabilistic or the INUS conception of causation is used and

where one_assumes the pairwise correlations of the outside causes (or

"error variables) are zero, it can be shown that the partiaf!corre1ation
is zero where X causes Y and Y causes Z, but the partial correlation
need not equal zero where X is a commcn cause of Y and Z.

Thus, suppose we are considering a single chain where X causes Y
and Y causes Z. Contrary to the views of P. Lazarsfield and P. Kendall,
E. Nade], Patrick Suppes, and Hans Reichenbach, we have found that the
partial correlation need not go to zero if the pairwise‘expectations are
zero. We have found that the partial correlation must go to zero if the
pairwise correlations are zero. ‘

In the remainder of this section we will use the probabilistic con-

~ ception of causation and we shall assume that the pairwise correlations
of the cutside causes are zero. Given these assumptions we shall show
that such approaches as path analysis and/or'structura1 equation models
give the wrong ansWers. (In the Supplement we present the general |
results for dichotomus and continuous cases for both the assumption that
the pairwise expectations of the outside causes are zero and the assump-
tion that the pairwise correlations are zero.)

Approaches s1m11ar to path ana1ys1s and structural equat1on analy-
s1s, then, c1a1m that they can handle. causes which have both direct. and
“indirect effects Furthermore, such approaches claim that they can then
‘compare the magn1tude of the d1rect and indirect effects wh1ch would

identify the operative (or under1y1ng) causal mechanisms. (For example,

see Asher, esp. p. 32f; Duncan, 1975, ch. 3, 4.)

Cac
co -
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Also, thefe are several equivaTent path analysis tachniques which
‘enable one to decompose the correlation between any two variables into a
sum of simple andvcompound paths. Some of these compound péths will bé
causally (6r substantively) meaﬁingfu] indirect effects while others may
not be (Asher, p. 32). Whether a compound path is causally meaningful
depends on both the equations and one's theory or model of the causa]
processes Path-analysis and structural equat1on approaches are bas1ca11y

falsificationist; they hypothesize a causal structure and see 1f the

observational consequences conform to it. (See, for example, DunCaﬂ; )

1975, p. 47). ' 1 .
Suﬁﬁose X is a probabilistic cause of Y (with probabi]itycuazand
that Y is a pr'obabi]ilstic cause of Z (with probability§). Suppos;e also
that X is-a probabilistic cause of Z (with pr?bability‘f). Thus, X is
both a d1rect and 1nd1rect cause of Z. We want to shbw that the basic
-equations developed by path ana]ys1s and structural equation approaches
do not apply to this causal system. The basic set of equations is the

. N
fo]1g¥1ng (see Asher, pp. 32-33; Duncan, pp. 51-53):

f%g%%= ¢ . .. . ()
Pxig" S B v pcf | .. ()
which can also be written’ :
ng.“ = o(o@ + 3‘ A . (bl)
J@yz -‘fyy e Jf&y dg cf .»(c)
which can also be written | '

6 - (G )
fyi&; _€+ 0(" f(o-:g | . . (Cl)
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In these equations,«,(3 ,f are supposed to represent the magnitidues of
causal 1nf1uence of one variable on another _For examp1e ol is supposed
to represent the magnit::de of causa] influence of X on Y.

For the, moment we'll only be concerned with the magn1tude of the
direct causa] influence of X on Y--i.e.,X. Given the suppos1t1ons made

<.

above .path ana]ys1s/structura1 equation approaches claim that th1s

magmtudeo( should equa'I‘ny€ R [ beheve this is a serious ‘mistake.

Remember, we are suppos1ng that the correlation between the out-

‘side cause" of X and the "outside cause" of Y is zero, and that one is

using the probab11|st1c c0ncept1on of causation where X is the proba-

K4
bilistic cause @9 of Y. Given these assumptions, we have found that

p . Gy
Sxy” Ox
where Py is the probab111ty of the "outside cause" of Y. (Note also

= (K)(1-P)) ,

thatAthe expectation of the outside cause is P .) Unless PZ =0, it is
not the case thatf’xy g%—- equalse(, wherecL1s ‘the probab111st1c cause
of Y by X. Hence, the path ana1ys1s/structura1 equation approaches do
not apply, un1ess P2 = 0!

Furthermore, suppose for the moment that X is a suff1c1ent condi-

tion of Y. Whenever X occurs, SO does Y. G1ven that there are other -

(outside) causes (R 5 of Y, however the express1on.‘9x'y g%L- will

H

change if we vary the probab111ty of R 5 even though X rema1ns a suffi-
cient condition for Y. Surely th1s is a doub]y absurd - resu]t. First;
if X is suff1c1ent for Y, then it ought to take on the maximum, magn1tude

\

for causal 1nf1uence (i.e.;: 1) Second X s cau;a] 1nf1uence on Y ought .'

| to be independent of the other causa1 1nf1uences on Y Given that path

“analysis/structural equation approaches lead to such prob]emat1c results,

they must be rejected‘as unjustifiable.

X9FSE/B
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There are, however, further problems for the path analysis/structural

equation approaches.

Problem 2. Suppose X is a probabilistic cause (.5) of Y, yet if X

doesn't lead to Y, then it leads to Z. But X never leads to both Y and

1. Suppose also that Y is a probabilistic cause (1.0) of Z. Again,
then X is both a direct and indirect cause Z. For simplicity, suppose

also that no other factors cause Y and that no other factors cause Z.

Consider the fo110wing correlation tables:

0 .67 1 .33 .33 2 0 .33 Y
.33 . 0 Notl .33 0 NotlZ .33 .33 Not Y
Not X X : Not Y Y . Not X X

If one followed the path ana]ysis/structqra] equation approaches in this

-

situation, one might expect

fxy% = o = 12 : e (4)

fxz% =g+ § = (1/2)- 1 +1/2 =1 <)

PG = 6 +votef = 1 +(1/2)r2) = 5/4 .. (i)
L

But if we calculate the appropriate correlations and variances for the

left hand side we get

12 = 1/2 | ...Gh
1 =afr § o= 1 - : LG
V2 =@ +f = 5/ ...(_1'1'1'1')

Thugi\the path analysis/structural equation approaches lead to absurd
results. Clearly, the equations one derives from such approaches do not

hold for such a causal system, a system which involves probabilistic

causation.
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Problem 3. Suppose that X is a probabi]istic cause (.5) of Y and
that X is also an (independent) probabilistic cause (.5) of Z. Suppose
also that Y is a probabilistic cause of (1.0) of Z. Suppose there are
no other causes of Y, and no other causes of Z. Consider the following

correlation tables:

0 .50 Z 0 .33 Y .17 .33 7'
.33 .17 Not Z .33 .33 Not Y .50 .0 Not Z
Not X X Not X X Not Y. Y

The path ané]ysis/stfuctura] equation approaches would lead one to

expect that: -

ol =% .. (V)
51 + % = 1 )

Pl

PXZ% = oLo@ <+ j‘ =
fyz-g.i = E + cL'f = 1 + %% = 5/4 . (vi)
v

But, if we calculate the appropriate correlations and variances for the

left hand sides, we get:

5 = & =y . | ... ivh
3/4 = oprg =1 )
3/4 = =5/4 i)

e + ol §

Thus, the path analysis/structural equation approaches again-lead
to absurd results. Clearly, the equations do not hold for such causal

systems that involve probabilistic causation.

e
o
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Given these difficulties and problems with the basic logical struc-

ture of these approaches, we conclude that such approaches to causal

~analysis-(onucausalﬁinference).arewunjustifiablevfor,probabi]istjc_

causation (and for INUS causatio?). Accounting for the variance between
variables is one task; determining the degree of causal influence of one
variable on another variable is a quite different task. (In the Supplement
we present our general theorems for probabilistic causation which set

out the proper relations).

VII. An Alternative Approach (The Conditional Probability Approach)

Here we would like to outline an apprdach to causal analysis (or
causal inference) which we shall call the conditional probability-approach.
This approach gets its name from the key role played by conditional
probabilities--for examp]e,{P(Y/X). It can be shown that the C.P.
approach affords us decompositon rules; it can also be shown that it
affords us c0mppsition rules for a wide range of cases. In particular,

it can handle causes which have both direct and indirect éffects.

.

~Finally, it gives a quite‘p1ausib1e measure of one variable's causal

influence on other.

Although the\C.P. approacﬁ offers a rich and rather straight for-
ward approach to mény different kinds of causal systems, here we shall
show how C.P. can réso1ve the three prob]ems which lead to the downfall
of path analysis. In doing so, we shall lay out some of the maih prin-
ciples and formulas of the C.P. approach. (Note:‘ Here we shall assume
the pairwise expectations of the outside causal variables are zero.)

Let's consider problem one. Suppose X js only a direct cause of Y,

but that there are other causes of Y. (Suppose also, as above, that X
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js a direct cause of Z and that Y js a direct cause of Z).' In such a

situation, the C.P. approach maintains that the magnitude of X's causal

J
1nflueﬁEé*ﬁh”Y“Tswgfven“by~the~cond%t%cna}«probabilityMR(¥IX)T»~lnMsuchw“ww,u,

a situation, the conditional probaﬂi]ty is unaffected by the number or

the strength of other causes of Y. Unlike the term_f&y%% which equa1§;
P(Y/X) - P(Y/notX), the conditional probability P(Y/X) remains unaffected
b& changes in the other causes of Y. Furthermore, the conditional.
probability can take on values from 0 to 1. It can take on the value 1
when X is a sufficient condition for Y or when X is a prdbabi]istic

cause (1.0) of Y. ~Thus, the conditional probability gives us the correct
maxiwum‘va1ue when X is sufficient conditionlfdr Y or when X is probabilis-
tic cause (1.0) of Y. No£ice also that when one is using the probabilistic
or the INUS-conception of causation, the correiation.f&y can be zero

even where X is a cause of Y. Conditional probability is not susceptible

to this problem either. Principle: The causal link from X to Y should

be assigned the magnitude P(Y/X). Thus, the C.P. approach easily resolves

problem one.
Let's consider problems 2 and 3. This group of problems divides

into two classes of problems. Problem 2 belongs to a class of problems

Problem 3 belongs to a class of problems

jnvolving pure-"or"-systems.

involving puré-"and"-systems. we shall clarify these terms as we proceed.

Up to this date, researchers have been most unclear about the

distinction between pure-or-systems‘and pure-and-systems. Indeed, we

can show that there is an entir2 continuum of systems which 1ie between

the pure-or-system and the pure-and-system extremes. We'1l discuss the

continuum in another paper.

158
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The pure-or-system is a causal system where X is a probabilistic

| .
cause (P) of Y and X is a probabilistic cause (1-P) of Z, but where X

never leads to both Y and Z on a §1ngle occaston. — Roughty,in-this————-— |
system X always leads to Y or Z, but never both. Modern phyéics can
supply us‘with many examp]eé of this type of setup. For example, when

an excited electron decays from the hiéher energy levels to the lower
levels, there will be nonzerb probabilities that the electron will go to
certain lower levels. Yet the electron can decay to only one of those
lower levels; it can't go to two (or more) levels at once. Perhaps the
radioactive decay of an atom into disjoint tiﬁg/;;:era1s js another
examp]e;' (PhysicistsAc1aim the atomic structure of the substance causally

1}

explains such outcomes.)

'Thehpure-and-system is a causal systemvwhere X is a pfobabi1istic
cause (P) of Y and where X is also an (independent) probabilistic cause
(Q) of ;; Here X can lead to the occurrence of both Y and Z.. This
situation is analogus to a situation where two coins are tossed at the
same time but where they don't interfere with each other's outcomes.

The first coin, a blue-red coin, has the probability (P) of coming up
blue while-the second coin, a black-white coin, has the probability Q)
of coming up black. Here a tossiné of the coins can lead tova black-blue
outcome. -

Problem 2 above involves a pure-or-system where X is a probabi-
listic cause (P = .5) of Y, and if X doesn;t cause Y, then it causes Z
(and vice versa). But * never leads to both Y and Z. Furthermore, Y is
a probabilistic cause (Rf= 1.0) of Z. Hence, X is both a direbt and

indirect cause of Z. As we have argued above, the strength of eéch

causal link in the system should receivé the magnitude equal to the
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conditional probability of the 1ink's variables. Thus, the 1ink from X

to Y receives the value equal to P(Y/X) = P = .5; the link from Y to Z

receives the value equal to P(Z/Y) = R = 1.0; and the Tink from X toZ
receives the value P(Z/X) =Q=1-P = 5. In suéﬁ’gzéausa1 system, it
can be shown that the overall causal influence of X on Z is given by the

'fOTT’OWTl‘TQ{:fﬁf‘mufla‘: T

) [P(Z/X)]or = P(Y/X)®P(Z/Y) + P(Z/X) =P R + (1-P).
Given the numbers above, [P(Z/x)]or = (.5)(1) + (.5) = 1. Notice that

this formula for the overall causal influence of X on Z (in a pure or-
system) has the abpropf;;£e 1limiting values as the strengths of the
causal links vary and that the link from Y to Z receives the maximum
value 1 which is appropriate for a probab111st1c cause (1.0). For
example, if the strength of this 1ink from Y to Z were reduced to O,
then the strength of the overa]] system reduces to the strength of the
remaining 1ink, 1-P. And if P were then to gb to 1, both the 1link /
strength of X on Z and the overall strength would go“to zero. As another
example, if R were to remain fixed at 1 but P were to go to 1, then the
strength of the link from X to Z would go to zero yet the overall strength
of X on Z would remain at the maximum, 1. ‘ ‘
The formula given above suggests the principle that the strength of
a causal 1ink be given by the conditional probability of the 1ink's two
variables and that the strength of a path with two links be given by the
product of the strengths of the two 1inks. Thus, the link from X to Z
should receive the value P(Z/X) (1-P) while the path from X to Y toZ
should receive the va]ue P(Y/X)°P(Z/Y) Indeed, this result can
be shown to generalize. Thus, the C.P. approach in this k1nd of situa-

tion gives the appropr1ate magnitudes of both the direct causal influ-

ence of X on Z and the “indirect causa] 1nf1uence of X on Z
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For illustration, consider this system. Here, X is a probabi]istic‘

cause (P = .33) of Y; if X does not lead to Y, it leads to W (and vice

- yersa):- ~Bu1%X—-neveMeads—to~both—v¥~and~wﬁ-iunthenmane,;x«iswarpmhahilj L

tic cause (R = 1.0) of Z and W is a probabilistic cause kS = 1.0) of Z.

Given the C.P. approach, the causal link from X to Y ;Hou1d equal

PCY/X) = P = .33; the link from X to W should equal P(W/X) =q = 1 - P = .67;
the link from Y to-Z should equal P(Z/Y) = k = 1.0; and the link from W

to Z should equal P(Z/W) = $ = 1.0. In such a causal system, it can be

shown that the overall causal influence of X on Z is given by the following

u formula:

7

T LP/N)],, = POV/X)SP(Z/Y) + POW/X)P(Z/W) = PR + (1-P)°S.

Given the numbers above, [P(Z/X)]or =(.33)e1 + (.67)°1 = 1. Again,
notice that this formula has the appropriate 1imiting values as the
lstrengths of the causal jinks'véry. For example, if R goes to zero and
S goes to zero, then the overall causal strengfh goes to zero while the
causal link from X to Y reméfns,at P.

Prob]emv3 above involves a pure-and-system. X is a probabilistic

.cause (P = .5) of Y and X is also an (independeﬁt) probabilistic cause L

(Q = .5) of Z. Notice that Q need not equal (1-P) here. Furthermore,
(Y ‘and not X) is a probabilistic cause (R = 1.0) of Z. Given the C.P.
approach, the causal link from X to Y should equal P(Y/X) = P = .5; the
Yink from X to Z should equal P(Z/X) =Q = .5;.and the link from Y to Z
should equal P(i/Y) =R =1.0. In'such a causal system, it can,bé shown
that the overall causal influence of X on Z is given by the following

formula:

X9FSE/B




a4

/

) [P(Z/X)]a’ = P(Y/X)- p(z/Y) + P(Z/X) = P(Y/X)P(Z/Y)P(i/X).

= PpeR + Q - PsReQ.

Given the numbers above, ‘fPfZ/X)] = ¢.5)e(1) + (.5) - (.5)()() =
Notice that this formula has the appropr1ate limiting va]ues as the
strengths of the causal links vary. For example, if P, R, and Q all
become 1, then the overall strength is 1. The'C.P. approach giveskthe
correct answer even in cases where there are two (independent) paths to
Z which are sufficient! |

It is important that one comp;re the formyla for overall causal
strength in a pure-or-system with the formu]é/i;r the overa11 strength
in a pure-and-system. In the pure-or-system, the strengths of the two
paths from X to Z simply add up to give the overall causal strength. In
the pure-éhd-system, the strengths of the various»paths‘from X to Z do
not add up to give the overa]] strength. Although the formula for
overall strength in a pure-and-system conta1ns the sum of the strengths
of the two paths, an quantity equal to the product of the strengths of
the two paths must be substract;d from the sum.

Thus, we have shown that the C. p. approach can avoid the problems
and d1ff1cu1t1es which beset the path analysis/structural equation

approaches. And, it can give a plausible rendering of the strength of a .

‘causal link and a plausible account of. the strengths of both direct

causes and indirect causes (causal paths). And most jmportantly, the
C.P. approach can produce simple formulas which express the magnitude of
the overall causal influence of X on Zas a function of the magnitudes

the causal links and paths which the theory or model asserts to exist

from X to Z.

X9FSE/B
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The principles, formulas, and other findings which we‘have pre-

sented here are but part of those we have developed for the conditional

probabTTity—apprUachT“~NUt'oniy"tan—the’CTPT—appruach“handTe”catnﬁfr~~~"--'~w~—v
systems w1th more than two paths, the approach can also handle cases

which fall into the continuum of cases which range from the pure-or-s

ystem to the pure-and-system. It can even handle systems which have

both or-aspects and and-aspects. Furthermore, because of the limiting
pr&perties‘of the principles and the formulas, it can handle mixed

causal systems in which there are several diffefent kinds-of causation

(say, probabiiistic causation and sufficient causation).

We ‘trust we have been able in this short sbace to presen£ a plaus-
ible and viable a]ternativégapproach to such.prob1ematic approaches as
path analysis or structura]Jequation methods. We believe that there are
good reasons for holding that the conditional probabi1itj approach'éan
provide an algebra for analyzing causal Systems, an algebra with both
decomposition and compos%tion rules. (In the Supplement we present our

| general conditional pVobab111ty theorems which .hold for d1chotomus and

- continuous cases under tWO sets of assumptions about the "outs1de causes"

of the systen.)

VIII. Conclusion

A

As as have shown, then, the two rules of causal inference under-
lying causal modeling are invalid for the five conceptions of causat1on
The w1de1y held rule S.B. and ru]e €.S.B., which relate correlation,
partial corre1at1on and a concept1on of causation, are subject to counter-
examples. Since structura1 equat1on mode]s and/or path models share the

most important assumptions (especially concern1ng the part1a1s) with
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Simon and Blalock, our results appear to generalize to those who try to

make causal inferences. And difficulties for such approaches as path

analysis and/or structural equaiiOﬁ‘méthcdsmextend—beyondw%hesemcaseswoiq;mw,“,W

causal systems in which a cause is a direct cause or indirect cause, but

P

not both at once. The inability of the Simon-Blalock method to handle
causal systems that hypothe;ize causes as haQ%ng direct and indirect
effeqts on the same variable strongly 1iﬁit§‘the usefulness of that
method. A11 things being equal, theoretical and practical considera-
tions favor any alternative that can adequately handle both kinds of
_systems. The allgged superiority of the other apbrdaches rests, in
part, on their claim to be able to handlg such situations. We have
shown, -however, that even in situatibns where a cause has direct and
iﬁdiregt effects, the path ana]ysis/étructﬁra] equation methods yie]dr'
jncorrect solutions. |

In sum, then, the major weakness in the ‘expanding literature of
| bausa];iﬁference is_sufficient1y cksar. Though measurement and identi-
fication problems remaigs it is the foundations for deriving causal
inferences from "causal models" that require critical scrutiny. For
without:vaIidity here, measurement issues surely become secondary. of
course, one alternative is simply to fall back on non-causal, predictive
systems of causal modeling. Then, we need not worry about the Qa]idity
of any newly proposed rules of causal inference. (Though the'examina-
tion of predictive systems of causal modeling has been beyond our focus,
we should remember fhat many of these approaches share the two inference
rﬁ]es with the causa1~interpretation version. Given the general kinds

of problems encountered by the two rules relating correlation and par-

tia1'corre1ation’in the causal version, we should not be surprised to

@
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find that merely predictive Systems have problems here, too.) But, such

a step would be to re]inquish'the goals of.exp1anation and strong policy

“relevance for the social sciences. At present; this seems—too targe a— — = —
step to take. For, despite our disagreements with Simon, Blalock, |
Asher, Duncén, Go1dberger,vand others, we share a similar vision of what
the social sciences should be. There simply is no recourse from re-think-
ing the rules of causal inference from the foundations up.

As we have mentioned (pp. 33-34), we believe shat a major problem

. ' with any correlation - based approach to causal analysis suffers from

the 'same major difficulty. They all contain too much irrelevant infor-

e mation that masks and modulates the true nature of causal processes in
the world. The overall result of using correlations, as we have seen

throughout, is wrong answers. For this reason, we are convinced that

Blalock is wrong when he,states, “It is the regression coefficients

which give us the laws of science® (1972, p. 51; emphasis in the original).
Similarly, we do not think that path analysis or structural equations

methods will yield the "laws of nature." No amount of tinkering can
_overcome the difficulties we hav; uncovered if the basic problem is ip
inherent in the notion of correlation. |

Furthermore, we have shown that in attempting causal ana]ysfs, it

is vitally impoftant for researchers to concern themselves with the
substantive interpretation of cause. . It cannbp be brushed aside as an
unimportant issue. The varidus'results, as we‘have seen, depend upon

our understanding of what a cause is. On the other hand, we must be

cautious about any attempt to reduce the notion of cause to any single

understanding. The likelihood is that causes in the world are of vari-

ous sorts; some may be necessary for their effects, some sufficient,

Q ' - - |
« X9FSE/B B | 5a |




48

some necessary and sufficient, some INUS conditions, and others--perhaps

a majority--probabilistic. Attempts to reduce 'cause' .to any ope of

these understandings have ended in fallqre;'T5FWTﬁWEVE?thHSETjCOUFtEh'““‘T”W*
examples can be marsha]ied; _Given this state of affairs, it is also
likely that causal chains are compogéd of different types of causes;
they are miggg chains.8 This points to the requirement that our causal
analysis methodology--if it is to be successful-must be able to handle
such complexity. It is clear that our present methodo]ogy cannot.
Thus, we require an approach to causal analysis that is far more
delicate and precise in detecting and dissecting éausa]'networks. It‘

must be an approach that (1) is non-correlational and (2) can handle

~ causal systems containing mixed chains. We tentatively believe that the

conditional probability approach that we have outlined can do precisely

X9FSE/B

that. Our success in dealing with‘three complex cases that path analysis/
structural equation ahproaches could not handle is an auspicious begignihg.
It remains for us to show that the conditional probability approach can
handle a wider range of cases and different types of systems as well.
Towards this end, we have a1ready made’progﬁess: If laws be possible at
all in the social sciences, the conditional probabilities may give us

the laws of nature. If so, we shall have a methodology for causal

analysis that is at once more simple, more subtle, and far more powerful®*
than those we now possess. We shall have’an algebra for analyzing

causal relations. |

(In the Supplement we present our general conditﬁona] probability

theorems which cover both dichotomus and continuous cases under two sets

of assumpfions about the "outside causes" ‘of a ‘system which involves

probabilistic causation.)

o




———~A~u~m~u~n—“dlcbotomuswuarlables to _continuous? We think yes. In this section, we

IX. Supplement (General Conditipna] Probability Theorems)

Is it possible to extend the conditional probability approach from

will merely present (and not prove) the general theorems of the cond1-

tional probability approach.

IXA. Dichotomus Variables

First, 1et us brief1y introduce notation used in thé two diqpotomus
situations. We'll assume, 1) that X is probabilistic cause of Y (with
probability (b + d)), 2) that Y is a probabilistic cause of Z (with
probability @ ),.and 3) that X is a probabilistic cause of Z (with
probability (a + b)).w Roughly, the system can be specified in the
following way: |

the probability of Y and Z, given only X, equa]s b;

the probabi]ity of Y and not Z, given only X, equals d;

the probability of not Y and Z, given only X, equals a;

the probability of not Y and not Z, giveﬁ only X, equals c;

and the probability of Z, given only Y, equals é? . We also assume

‘ 4
that there are outside causes, V2 of Y and ¥3 of Z (where X equals Vl).

We also have the following:
The prabability of Y, given X and not sz equals b + d;
The probability of Y, given X and VZ’ eqba1s 1.

Similar remarks hold for the "additivity" of the other outside causes.

IXA. Dichotomus Variables; Pairwise Expectations of (Vl‘ vz,.v3) zero

Given that the pairwise expectations of the outside causes are

zero, the following can be shown.

X9FSE/B ' L
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ELY = b'+ d ) ‘ ....(Sl)
i 5 GRS _ - .
.EE = at+tb+ d@ ,(52)
2
EX
EYZ _ PZ@ }+ Pie(b+dg ) ...(s3)
z o .
EY P, + (b+d) Py
(Heve, P, is the probability of V; = U, P, is the probability of V,, and
P3 is the probabi]ity of V3.)". ' i - .
Special Case 1 (a + b = 0; simp]e chain)
By . 4, EXZ . d@ and EYZ = € .
2 2 : 2
EX EX - EY

Thus, 'E}z - (LX_! EYZ
Z |
EX | EX2 EY2 .

' Special Case 2 (b =0, a =1-d; a pure-or-system)

_E-)-(-—Y- = d; V -E—X-Z = ’ a +ed; .E..Y—Z. = @ ° =
EX? EX % ) .

Special Case 3 ((a+b) (b +d)=b; a pure-and-system)

EXY —  peq; X o (aeb)+ (b + d)- (b+d)(a + b)@
EXZ Ex? | -
and EYZ _ ¢ b(1-BPy
. N L N
v 2 ‘ . ‘
EY P, * (b +°d) Py
o X9FSE/B - 5y ‘




51

IXA2. Dichotomus Variables; Pairwise Correlations of (Vl’ V2, V3) zero

Given that the pairwise correlations of the outside causes are

zero, the following can be shown:

_ny% =(b+d)e (1-P) . . (s4)

fxz& = (1-Py)[a + b +dg - (a+b+d)-geP,] ...(s5)

‘fyzgﬁ = ((l-P )(1-P )((1 -(a+b +d)P1)[P2e -Q((a +b + d)P]P2 -dPl))
. + aeP,P, + bP1]

12
- aPy [P, + dP; - (a+b+dPP,])) divided by
I, + (b dP(1 - PYIE[L - Py - (b + dIPy(L - Py)]

..(s6)

Special Case 1 (a + b = 0; simple chain)

yx % = d(1- Pz), 27 62 - (1- P3)(‘1-P2)d€;
y

| f%% = ("'Pa) @-
Thus,’fXZ = fxy 'K/z

IXB. Continuous Variables

Let us briefly introduce notation used in ghe two continuous variable
situations. Here the regular, continuous case; Pearson Product moment
correlation is used. We'll assume that X is:the probabi1istic cause of
Y's being AX with probability (b + d) and of Y's being zero with proda-
bility 1 - (b + d), that Y is the probabilistic cause of 1's being BY -
with probability é? and of Z's be1ng zero with probability 1 - (? ;

and that X is a probabilistic cause of Z's being CX with probability

(a + b) and of Z's being zero with probability 1 - (a + b). Roughly,
the system can be specified in the following way: o

e X9FSE/B . ’ by ‘ o
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The probability of Y's being AX + Vg, given X and Vy, equals b + d;
the probability of Y's being V2, given X and V2, equals 1 =(b + d);
the probability of Z's being CX + V3, given X, V2, and V3, equals
(a + b)(1-8); .

the probability of Z's being CX + ABX + BV, + V3, given X, Vy, vé,

equa]sea; and so forth.

As before, we assume that there are outside causes of V2 of Y and V3 of

Z (where X equals Vl)‘

IXB. Continuous Variables; Pairwise Expectatiohs of (Vl, V2, V3) zero

Given that the pairwise expectations of the outside causes, Vl,V2

and V3 are zero, the following can be shown:

EXY = (b + d)A . ...(s7)
3G

EXZ _ (b+d)EAB + (a+b) L ... (s8)
Ex2

«

Bz _ gs * Ac-b-(sx2 ...(s9)
EY2 : ev?) '

épécia] Case 3 ((a + b)(b + d) = b; a pure-énd-system)

'

(b + d)-é?- AB + (a+b)C

EXY = (b+rdA ; EXZ =
ex2 ' EX? - .
X9F SE/B o e e
) . ' QD LV -9 “,' B
& ' HER ,. . w‘ : :.d_- .,:
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Cand E2 es +  (a+b)h + DA EX?

Ey2 Ey2

IX. B.2 Continuous Va}iab1es; Pairwise Correlations of (Vl’ V2, V3)
zero | )
Given that the pairwise correlations of the outside causes, Vl’ V2

and V3 are zero, the following can be shown:

-

6‘9 -~ r
fxyz; = (b+ d)A ...(s10)
fxz%;z' = (b+ d)A@" B+ (a+b) ...(s11)

fyz%‘g = @B+ (EXDacy - g_EX)ZAC(a +b)b+d)  ...(s12)
Y . Oy .

Special Case 1 (a+ b = 0; simple chain)

= 62 - .
fxy%y; fxa 2 dAeB,

and Pyzg‘{: = @B
Thus’_;pxz = .nyfyz.

Special Case 4 (b = 1,@ 1; a determ1mst1c linear system)
fxy%( = A
'fxz%i AB + C;

Rl - +'Ac(93)z.

Oy

I

Thus, the conditional probability approach can -handle causal systems
which jn\;olve probabilistic causation. The approééh can handle both
dichotomus and continuous variables under the assumptiop that the pairwise
expectations of the outside causes are zero Land\ under the assumpfion
that the pair‘wis; correlations are zero. Notice also that the gond{tiona1

probability approach gives the appropriate answers when the probéﬁih‘ties

limit to determ1mst1c suff1c1ency (Special case 4.) ° e

' X9FSE/B
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Notes

!

Mhe two critical steps in establishing these results are the
t . .

and replace the requirement thatJ‘&z y be zero with the requirement
N ’
that § be zero, where sz

XzZ,y WY
P(X/Y)*P(Z/Y) and P(XZ/not Y) = P(X/not Y)*P(Z/not Y). (2) It can then

equals zero if and only if P(XZ/Y) =

be sho@n that ifJsz’y is not equal to zero, then sz,y is not equal to
zero. For a detailed discussion see Ellett and Ericson (1982).
2E]sewhere we compare and contrast in detail the Blalock kind of
partial correlation approach with the approaches of H. Reichenbach
(1956) and P. Suppes (1970). There, we establish that if Blalock's

partial correlation is not zero then neither are the "partial correla-

tions" used by Kendall and Lazarsfeld (1950), Nagel (1961), Reichenbach

and Suppes. (See footnote 1.)

3Actué]1y, it if far from difficult to estimate the regression
coefficients of each equation, as Blalock argues (1967). So, this is
hardly a problem for Blalock. (It is also claimed that, for ex§mp1e,
path analysis can handle causes which have both direct and indirect
effects, whereas the Simon-Blalock approach assume the, cause is either a
direct ar an indirect cause but not both. When a cause is either a
common cause or an intervening cause but nqt both, the épproaches give
the same result. In theAfirst part of this essay we argue that in such
situations they give the wrong result. In the latter barf of this essay
we argue that, for example, path analysis gives the wrong results in the

other situations as weli.. See Section VI.)

following. (1) Kendall and Lazersfeld, Nagel and Suppes take rule C.S.B.

’




4One of the important assumptions is that any "outside“ factors
also causing Y, or causing Z, are such that the pairwise mathematical
expectations between these noutside" factors are zero. In sections Iv
and V, our examples satisfy this assumption because we have constructed
cases where such (dichotomus) variables or factors never co-occur. In
the ‘supplement IX, we present our results for systems with dichotomus

variables and for systems with contintous variables under the assumption

that the expectations are zero and under the assumption that the correlations
are zero. ! | |

5In a more tethnica] paper (in preparation) we discuss the problems
concern1ng defensibility of the key assumpt1ons For examp]e, the assumption
that the error terms be uncorre]ated with the predictors or with each

other.

6To be more precise, rule C.S.B. js invalid because there are no

cases where Y is a common necessary cause of X and Z, given the assumption
that the pairwise expectations of the outside causes are zero. The

tables we presented here have assumed that’ the pa1rw1se correlations ef
the outside causes are zero. Thus, they show the rule €.S.B. is invalid

under both sets of assumptions.

.7 v
There is a major problem with Simon's analysis. Though he recog-

nizes that causes are asymmetric with their effects (if X causes Y, it
cannot be that not--Y causes not- X), Simon's use of the predicate calculus
containing "material implication"” (::)vcomm1ts him to saying that not-Y
causes not-X. For X2 Y is equivalent to notY:j notX via the rule of

1og1ca1 inference called modus tollens. See also Simon's use of the

"truth tables" which 111ustrates the comm1tment (1957, pp- 58-59).
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ol

8 >
Consider the following mixed case involving probabilistic and

sufi‘icient causes. It might be imagined as something 1ike a pinball

\

machii\e. Here X and Y are mutually exclusive, exhaustive, and equiprob-

‘able results from W (the probabilistic cause), whereas X or Y is suffi-

cient for Z (Z = X or Y), and where W occurs with twice the frequency

as not-W. For then,ﬂwz =1 but‘ﬂ(Z = 1/2. -

O
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An Overview of "Towards an Algebra for

‘Analyzing Causal Relations"

F.S. Ellett, Jr. & D.P. Ericson

UCLA
Educators of all types make the fo]]owing kind of assertions: "A
part1cu1ar teaching method causes the students to learn." But what can

it mean to say ‘that one kind of event (or thing) causes another kind of
event? This is a ph1losoph1ca1 question, " for it is concerned with the
conceptual analysis of*' causation.' Suppose now that we have an. (ade-
quate) analysis of 'causation. ' What rules of inference can be validly
used to test hypotheses. about the causal relations between events (or
variab]es)? This is also a ph1losoph1ca1 quest1on, for 1t is concerned

with the 1 091 of causal inference--with establishing that certain rules.

/

are sound and valid.
Inlthis essay we address ourselves to these twd/genera1 but impor-
tant philosophical questions : (1) What is a p]adsib]e analysis of ‘
causat1on ? and (2) what rules of causal inference are valid? As we;
show in the paper, an answer to the question about valid rules of infer-
ence depends on one's analysis of causation. Furthermore, we consider
" several of the widely used rules of causal inference. We conclude thet
in general these rules are invalid.” To be more specific, we consider

the partial-correlations rule used by Simon and Blalock, the "partial-

correlation" rule used by Kendall and Lazarsfeld, E. Nagel, H. Reichenbach,

and P. Suppes, and the.ru1es associated with path analysis and structural

\ |
' equation methods. Again, we conclude that in general these rules are
invalid. N
[
O ' ‘ ; [
: X7FSE/E - { )




In the time that remains we'll present more of the details about

the methods and conclusions of our paper. In doing so we'll present an

\

overview and outline of the paper.,

As we've already noted, educators often make asserfions about the
causal relations among events or variables. Indeed, we believe there
are compelling arguments for holding fhat §cientific ana}ysis and policy
formation must be concerned with causation. In an early section of the
paper we present some of the major reasons for holding these views.about
the importance of causation.

The next part of the paper 1nvest1gates the ré]at1onsh1ps among
corre]afion, partial correlation, and various analytical conceptions of
causation for dichotomous variables. Here we consider the Blalock-Simon
partialzcorrelation rule and the partial-correlation ru]e/advanced by
Kendall and Lazarsfe]d Nagel, and Suppes. Roughly, the partial corre-
lation rules assert that for intervening var1ab1es or common causes
certain partial correlations must go to zero. In other words, the
partial corrg]ation;s being zero (or not) provides a test of the causal
hypothesis.

In this part of the paper we also present five philosophical
"theories" of the analysis of causation. We refer each of these pur-
porteé analysis as a conception of causation. The five conceptions of
causation are:

1) a cause C is a necessary condition for E.

2) a cause is a suff1c1ent condition

3) cause is a necessary and suff1c1ent condition

4) cause is an INUS condition

and 5) cause is a probabi]istic cause.

X7FSE/E




The first three of these should be fémi]iar to you. Perhaps the
last two are not so familiar. So let us briefly explain them. An
event C i§ an INUS cause of E if the.event C is an insufficient but
non-redundant part of a set of condition; which is not necessary, but
which is sufficient for E. Hence, the label I.N.U.S.,.Here's an exam-
ple. = Striking a match is an ]NUS cause of the match{s flame because the

str1k1ng also requires oxygen s being present and the match's being dry

to have its effect. Yet, striking the match is not the only way to ge®

it to light. Thus, striking the match is an INUS-cause.

Not1ce that it is qu1te p]aus1b1e to hold that teaching is an
INUS-cause of student's learning. Clearly teaching isn't sufficient and
in most cases the child must have the requisite background know]edge and
be trying to learn. '

‘Thus, if C is an INUS-cause of E, than C is part of a set of condi-
tions which is sufficient for E. In the paper we show that an event C
can be an INUS-cause of E and the correlation between C and E can be
negative or zero!

The fifth conception of causation is called probabilistic causation.

One of the earliest writers to advance such a conception was P. Suppes.
In many ways, the "mathematics" of a probabilistic causation is similar
to those of an INUS-causation. If C is a probabilistic cause of E,
however, it does not follow that C is a paft of a'set of conditions
which is sufficient for E. Probabilistic causation applies to the

case where there is genuine indeterminism. Here, an example will help
clarify the term. Suppose an atom has an electron at one of its higher
energy levels. Then there are f1n1te probabilities that the electron

will "decay" or fall to.various other levels, but, as some physicists

X7FSE/E . g
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maintain, there is no set of conditions which determines the 1e9e1 td
which the electron will hecay. We are not saying, of course, that there
are such cases of probabilistic causation in physics or education. We
are only saying it is a perfectly inée]]igibfe and 1egitimate‘conception
of causatidn.

At any rate, in the paper we show that C ban be a probabilistic
cause of E and the correlation between C and E can be negative or even
zero. You will recall that when one of the first three conceptions of
causation is used, the correlation must be positive. ‘So INUS-causation )
and probabilistic causation behave differently from the first three
conceptions of casuation.

Our investigations of the relationships among correlation, partial
correlations, and conceptions of causation conclude that for‘each of the
conceptions of causation the partial-correlation rules are invalid.

We have spent time here today elucidating the conceptions of INUS-
causation and probabilistic causation for two reasons. First, we believe
that educators are not adequately aware of them, but they should be.
Second, the next parts of the papek primarily employ the concept of
probabilistic cause, although our results atso hold for INUS-causation.

The next major section of the paper explicates the basic principles
of path analysis and structual equation methods. Indeed, as many people
have said, path analysis and structural equation methods have, in many
ways, rep]aced‘the earlier approaches associated with Simon and Blalock.
We show however, that when the variables are dichotomus and where pro-
babilisitc causation is involved, path analysis and structural equation
methods give the wrong answers. In other words, path ana]ysis and
structural equation methods present rules of causal inference which are

- _

invalid.
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At this point it may be helnful to distingufsh among three different
kinds of probability-statements which can be about a causal system which
involves probabilistic causation. First, a causal system (or moée]) is
partly constituted by certain variables. ~Let us call them X, Y, and Z.
Now the variables X, Y, and Z will be distributed in various ways in the
population. Such distributions give us the first kind of probability
statements. Of course, we have ohly samples of the general population.
This gives rise to those probability statements involving measurement
error and estimation, and so on. This is the second kind of probabi]ity
ctatement. We trust these two kinds of probability statements are quite
familiar. But, notice that so far we have said nothing about the nature
of the causal relationships among variables X, Y and Z. Perhaps X causes
and Y causes Z and also X directly causes Z. Here X is a direct and
indirect 6ause of Z. This is, of course, a further specification of the

1

causal relations among the variables X, Y, and Z. Indeed, this is the

kind of basic system which path analysis and structural equation methods

claim they give a better analysis than the éimon-B1alock approaches.
Yet, a further kind of specification is still required. For as we

have shown there are five different conceptions of causation. It is our

belief that path analysis and structural equation methods must conceive

of the causal relations between, say, X and Y to be causation as suffi-

ciency. - But, in the paper, we show that one can conceive of the causal
re]ationévamong X, Y and Z as probabi]istic-causation. This is what
gives r{se to the third kind of probability statementvconcerning the
system under investigation. |
Furthermore, and chis is the important point, when one conceives of

the causal relations-amoung the variables as probabi]istic-causation,
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then the rules and pr1nciples‘éSSoc%ated'With path dﬁé]ysisfand:stnuc-

tural equation methods are 1nval1d ' ' ‘
B
At thjis point the attentive 11stener 1s W]le]}_to fee] uneasy. ’

L2%

_Afteré]], the listener might think; d1dn t E]]etn and Ericson. say they

were dealing only withrdichotomqs'yariab]gg@ WHitAabout.systems with

continuous \/ariables7 And whdt is the genéra] impor}aﬁce of these find-,
A

£

4ngs? F1na11y, perhaps E]]ett and Ericson have done a typ1ca] ph110*

sophical Job in exposing the prob1ems and errors in current methods but

can they offer any constructive-views about what shou]d be.: dbne7 ‘“"‘f
i
We have answers to all three of the atfent1ve-d1stenerrs questions.

- -

First, there are indeed pecularities with causal.systems with dichotomus
variables. But, we have extended our resu]tsito causal systé%s with -
cont%nuous variables. For causal cystems yith continuous variables we
have found that path analysis and structura]lequapion,methodst when .
probabilistic causation is inVOlved,-§§ill gire thé Qrggg ahswers. In
such cases, their rules of causal inference are invalid. o

Second, the general importance of our findings is that rules of
causal inference need not be restricted to cause as sufficiency. They
can be extended to systems where there is INUS-causation or probabilistic-

causation. And it is 11le1y that such concept1ons of causat1on "will

fit" educational phenomena Reca]] our earlier remarks that teaching

‘may well be an INUS-cause.

Thirdly, and finally, it is true that we have been critical of many
of the current writers who are concerned with methods af causal inference.
we do believe that current methods ate severely limited. But, we do
share'their commitment to tryiné to find those methods and rules of
causal hypothesis testing which can yield xgljgvinferences.

T
X7FSE/E




' .‘\‘ . . '/
T e . And, toward the ‘constructive end of finding rules and methods’ for

ana]yziggk}he causal .relations, in the paper we have presented methods

Q ) \ . o-- 3 3 . .
and .equations for causal systems which involve probabilistic causation.

+

. We believe these methods and equations articulate valid rules. of inference,
R f : "
- ~ - valid rules of inference for both systems with dichotomous variables and

¢
fon Jygtems with cont1nuous variables.

s 4

. We believe a who]e ngw d1mens1on of causal ana]ys1s has been opened.
¢

. We hope §ou 11 explore this dﬁmens1on with us. (
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