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Cognitive Considerations in Display Design

v

¢t
£ " . - Introduction

2
» Human information processing of complex visual displays has -

o ,}

emerged as a problem to be reckoned with in recent years. A large
variety of displays are encountered daily by people, prqdhcts of our

technological revélution. As examples of such displays we can think

of computer graphics, flow diagrams, radar and sonar sqopeS”and the

like. }

3

The simple graph is probably the most commonly encountered. exam-
ple of sué% visual displays yet it hgs received only intermi%yent
attention by the human factors community (cf. MacDonald-Ross, 1977;:

Schutz, 1961a,.1961B; Vernon, 1952, Washburne, 1927). graphs are

L

found in most of the matérials we read today, spanning technical books

& ~

ané journals to recreational magazineds. This abundance has probably

made most people take graphs for granted, but they are indeed displays
which must bé designed. They must be constructed using principles and
L 4 o
tools common to all display design probléms.
“ <
' V4

Traditional display design has focused mainly on the properties

N ) ‘ -

of the display which makes the information ‘more perceptually agcessi-

ble to the person processing it. ' Properties such as brightness, con-
trast, texture, size and the like are all display variables affecting

how the information is detected and discriminated by the visual sys—
. . - & " )

tem. For example, without  adequate contrast a person could not separ-
ate displayed material from background.’ Within a psychophysical

2

framework it is poseible to investigate systematically the effects of

) . ’fw—
these display properties bn our ability to identify the symbols of the
: . .. L4

.

B . “ R
- Ll

5
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source of the misinterpretation must lie in the properties of the

- s - ‘ .
\ -

display (cf. Shurtieff; 1980 for a nice consolidation of this litera-

<.
“

ture). ¢ ’

" There is another aspect to .the display design problem, apart frbm

*

legibility considerations, which must be addré;sed, and as yet has not

re -

been to any'shbstantial degree. Tnp problem is that ofte the informa-
. . .
tion gets in¢ide the person, so to speak, it must be interpreted to

effect a response, whether ‘it b& overt, such as answering a question,
- ~N

or simply an integration into existing cognitive structures; Legibil-

ity, per s€, does not guarantee that information will be successfully
~ -
communicated.” While the form of the symbols may be quite clear, their

meaning may remain obscure and liable to misinterpretation. The

-

a
display, as read by a person with. specific knowledge and goals. Tra-

>

ditional psyeRhophysical research,. which views +the person as a measur-
ing'instruhent, does not provide an adequate framework for systéma-

-~

tically investigating the interaction between these higher-order vari-

% &>
ables. =

Instead we must turn to a more cognitive framework which views

the person as a processor of information. Within this framework, the

>

display propergiesuare mentally represented in data structures and
.v‘ o

.

processes operate on, these structures, transforming and manipulating

them so that eventually we come to understand’ the tommunicated infor-

mation. Each process takes time-and resources to perform its appro-

priate function, and a fundamental assumption of cognition is that

increases in processing times implicate increased cognitive effort. -

Since presumably there is a finite amount of resources available to

k]

accomplish these functions, processes needing additional+effort will

¢reduce the amount available for other ‘operations. This in turn will
B , " . »

e

“
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~the display properties themselves.

"efficiency results in increased effort. 1In this investigation, I

. a s P o . .
- o ‘
increase th% likelihood of error, and ?onsquently, ﬁisgpmmunication:
Thus it is posgible'to inbeS§idateJcert;in design alternatives withinf
: . - 5 . . .
thié frame;ork using cogniti;e effort as a design‘c;iteridn;
. -

There will, in tﬁrn, be  two factors that influencé the amount of

effort necessary to ‘extract a given piece. of information from a dis-

-

play. ‘fhe first such factor is the correspondence between thé display s

-

properties used to represent the information and the properties enco- -
ded by the‘person. There gre many different ways of representing the o

same information-graphically.. However, there may be only a few ways

in whigh correct interpretation follows%naturglly. Any other design

A »

alternatives will result in greater processing effort. The second-

factor is a person's knowledge of the correspondence. Thus a given

4
v

piece of information can be‘correctly fepresented in the display but
A
the person may lack the appropriate knowledge structures to detect the

- ‘ ] * N
correspondence and consequently, process it efficiently. This lack of ?

-

w

assume that the second factor is nonoperative, i.e., the appropriate
structures exist. Consequently the investigation addresses the first

£

factor oniy. That is, we want to choose the display properties in

a

such a waytthat the leasts amount of effort is needed to process the

- .
‘ . v ~

"desired information.

How do we accomplish this objective? I think that we must begin

by considering the graphical reptesentation of information from the
observer's point of view. That is, when we encounter graphid dis-

plays, we seem to look at them in certain ways and not others. There

»

seems to be some sfrp of 'natural' perceptual representation driven by
' 3 LY t

It is this 'datasdriven' descrip-

L

tion that we, as designers; must detgrmfﬁe since, in all likelihood,

R4

o
~
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‘

the concep&ual iqformatibn it carries is the information extracted

most easily. Thus one objective of this investigation is to detérmine
- 3 . .

this 'data-driven' description and to look atygome processing conse-
A ,

quences associated with it. o

. . >- . 5
Discovering the Display Properties

I will refer to the diéplay properties .th®t are mentally repre-

sented by an observer as encoding features of the display. This is

153

the peroeptual information fquid in the data strucdtures alluded to

earlier. Garner (1978) has identified two general types of display
. - ‘

properties which can serve as encoding features: component properties

“ .

and wholistic properties. .

-

Component properties are called attributes. Gdrner defines

[y

attributes as properties which help define a stimulus but do not de-

. q
‘ .
note the stimulus. For example the attributes of the following-object

LN

_

N N

(E) are form, size, brightness and-position. There are two major
-t ’
#

-

types of attributes: dimensions and features.

A dimepsion is a variable attribute of a si .mulus such that if
.
the dimension exists for the stimulus it exists at some positive level
and these alternative levels are mitually exclusive. For instance if
4 R -~
hue is a dimension of a stimulus then .the stimulus must exist at some

particular hue, such as red or green and if the stimulus is red then
‘ 6

« ?

it cannot be green and vice versa. Note that a zero level can be a

- v

positive level on a dimension as with zero brightness.

A feature is an éttribute of a stimulus that either exists or
) oy )

does not‘éxist, but if it exists it is defined on a single level only,

the alternative level ‘being the absence of the feature. An important *

property of a feature is that it can be removed from a stimulus with-

-out otherwise affecting the rest of the stimulus. For example the
& . »

ey
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bottom horizontal line of an upper case E is feature and it can be

removed (F) without affecting the rest of the stimulug. Note that the
g

zero level of a feature implies its'absence._ : ‘ .
" . R . 3
Wholistic, properties are those aspects of a stimulus ‘which are

.
v

not perceived analytically (i.e., in terms of component parts) but
:' - -

- .
nonetheless are perceived directly. One particular type of wholistic

property defined by Garner which we will find useful as a display

preperty Es a configural property or configuration. A configurati&g \

‘ *

i .
has properties ‘that emerge from the stimulus as a consequence of ‘in-

teractions and interrelationships between the components parts. These
4

'emergent' properties exist in addition to, not instead of, component

’

properties but results indicate that-when they exist emergent proper-

ties d?minate perceptioh, overriding the component propertiés which
create tﬁem (Pomerantz and Garner, 1973).« Configural properties are,
also diffefenp from the component propertieé which define them, For
example the following Ztimulusu

2
[}

is defined by relations between ‘the horizontal and vergical position

4 : "
.

of a sequence of dots (component parts) but, as is intuitively obvi-

ous, configures“so as to form the appearance of a line having the
’ ‘ [
property of lcurvedness' which is certainly different from the proper-

ties of the component parts. Other examples of configural properties

include symmetry (A ), repetition (//////////): intersection ( X )

as well és other higher order properties.

r &

. ot

Methodology
It is possible to analyze a simple display for ité encoding fea-

tures, be: théy dimensions, features or configurations using measures
: ’ . M ’
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obtained from the selective attention paradigm (Egeth, 1965; Garner

¢

and Felfoldy, 1970). In this pgradigm the subjecCt is presented with
- L] ‘.'( ¥ - “
stimuli varyiné along two attributes (usually dinfénsions) and is re-

. -

quired to classify (or respond to) each stimulus according to one

attribute while ignoring the other. Figure 1 shows arﬁypical set of
- ’ ~ * -
stimuli .generated fram two dimensions each exidting at two levels.

One type of task requires the subject to classify stim"i varying

élong one dimension, the other dimension held constant at a particular

_level. BAny row or column of Figure 1 would satisfy this task require-

ment. This is called the univarjate or discrimination task since the

subject must simply discriminate between the levels of tﬁe relevent
L b

' L4 e " . . . .
dimension. A second type of task called 4he gating or fl}terlng task

<

(Posner, 1964) must be performed when:both dimensions are operative {

and the subject must classify on the basis of one of. the dimensions
(al “vrs a2-or\p1 vrs b2), ignoring the other. Of interest is the ‘

classification performance (time or errors) of this orthogonai'cond¥=

-

\
tion relative to performance on the univariate condition., If stimuli
b .
g ~ .

are classified more slowly when the irrelevant dimension is orthogon-

ally varied than when it is held constant, orthogonal interference

results. This means that the irrelevant attribute interferes with our

" -~

ability to selectively attend to the relevent attributes. “Another way

a

of interpreting this.is to say that it is not possible to 'filter' out

the irrelevent dimenston. On the other hand if no differgnce 'in clas-

sification speed between orthogonal and tnivariate tasks is found, it
is concluded that selective attention to the relevent attribute is

possible.
INSERT FIGURF 1 HERE

Using the selective attention paradigm, then;, I will operation-
¢ 4

4 .
ally define an encoding feature of a display as that display property
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[

‘which aXlows -selective attention. A -justification for this,\based on
- - R . -, “ . .

the coéniti(ﬁmﬁrbmework introduced, :is the following. In classifica=

. e
wn

tion .tasks, the experimenter, in teliingté ‘person”how -to
7

a

a response basis. That is, the person is told to represénf the stima-~-

lus in a certain way-and thus must try to look at the set of stimuli

7
[

in terms of this stored representation. When a stimulus is encoun-

tered it must be perceptually represented. If this representation is
' ”
the same as the response basis then simply locating the correct value

on the relevent basis is sufficient for a correct response, (classifi-
’

cation). If on the other hand this representation is different from

'S

- Pvd
the response basis then additional résources are needed to 'tfansform'

.
-

. L L@ R
it so its correct v&lue can be obtained. Presumably this increased

b : .
effort will ré@uire'greater processing time resulting in a failure of

. ’
.

selective attention. In thé univariate condition such a reparsing is

*

unnecegsary since any distinguishing display property can be used.

Therefore I will equate success of selective attention with minimum

cognitive effort for this task. . ot

émpirical evidence in support of this claim is provided by re-

»
search on the processing of multidimensional stimuli. This research

has’ demonstrated quite convincingly that the experimenter defined

-

aspects of a stimulus are not necessarily the same aspects represented
LY

by the subject (Garner, 1974; Pomerantz, 1981; Garner and Felfoldy,

£Y

LI <

1970). ' For exampie Garner and Felfoldy (1970) had subjects sort decks

-
1

of stimulus cards containing circular Munsell patches varying along
* . .

the dimensions of value and chroma. They observed orthogonal inter-

-

ference for this pair of dimensions. The assumption here is that

these are the attributes represented by the observer.. Suppose these

»

attributes are not the encoding features of this stimulus, but instead
. »

respond, sets,
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the encoding features are shape and the integrated percept color, "

dsiné Eh@se attributes as the basis for_classification, Gott&ald &

) . . . 4 . H
Garner (1972) found no evidence of orthogonal intqfference. Additien-

aYly,.the perceptual qtouping'resgafch (iomerantz, 1981, Pomerantz and
i L3 L) 4 - .

Garner, 1973) has shown that if comporent properties configure then it

is the configural properties which become the encoding features, not
. - e

the .component parts. For example, umsing pairs of elements differing

’ -~

in the direction of curvature of each element, e.g. (), (G )y ){,

Pomerantz and Garner (1973) found failure of selective attention’ to
' T
the individual elements. 'On the other hand, the following stimuli,

(v, (=~ )v ™) show no such failure. Note that while both sets of
ry : . ‘ 4

stimuli have the same elemerrtal properties, the relationships beﬁween

i
LY

.these properties in the first set produce additional tonfigural pro-

-~ v v
B ¢

perties such as symmetry, closure etc which seems to dominate. If

. L .

classificafion were based on-such properties then evidence supporting

v

selective attentjon may exist.
L2

[

Investigating the Encoding Features of Graphs

Thus far, I have introduced a cognitive framework which I feel
can be used tb design more communicatively effective displays. This

framework allows.us to factor into the design process how people in-

¥
.~ ’ ~

terpret the information found in graphic displays and what display -

>
»

properties are responsible for this interpretation. “Additionallf the
. N ; 3

- -

. . .
framework provides us with a performance measure useful in assessing

alternative designs, cognitive effort. Drawing upon concepts from the

v

psychology of* perception, I then describe those properﬁtgs of dis-~

plays, features, dimensions and configurations, which can be mentally

PO

represented and thus serve as a basis for response. Finally, I intro-

duce a methodoelogy that can be' used to determine which display proper-—,
- . L4

"

I

Y

B

-

«
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tieés are actually being -represented, -using cognitive effort as a cri- _ .
° o . d , R

g . tefion, as well as a processing’ justification for its dse.

-
)

" Now thisibethodology is directed towafds.the study'of a.specific
| display, éhe simplé gr;ph.-_Graéhs”are an inéegrallpaft‘gf ;he COmm;—
Tica;ion process todaxi and hence a:pooriy'pesigned graph'coula have
d}ré cénseéuence%ﬂin a wide Fangegpf fields. .Thus th;re is a real
nee%yfor design wfth.reépéct‘to these'displéys. Additionallx’th;, ‘ T e
’ ' grope;ties of éraéhs are simple‘eiteﬁSioA; of ghe basic stimulhs.cén—

: . ' cepts found in the peréepiual li%graturefallowing us to build hponlw4’ .
to. éxistinq theory ané ﬁgtp;dology.' Finally, siﬁce éh? properties of B .
. these d{splays do not chﬁnge over time,.their p;operties é;n be effi- a -

- -

ciently controlled and manipulated. This makes them ideal tools for

n . -

study. 4 -

. Suppose we are givén the four basic graphic displays shown in

Figure 2. " The first display is defined by pairs of lines on two L-- | N
SR .

- shaped frameworks; the second display is defined by a pair of lines

. on a singlé_L—shapéa\framework; the. third and fourth displays are .

. 2
: | T
: defined by pairs of unconnected and connected points respectively on

o

“

Llékaped frameworks. Note that the L-shaped f}amework constitutes a .

xfealure of the display since its removal does not affect the' remaining

1 aspects which are the dimensions on which the objects are defined.

Formally we can define these dimensions as the height of each point of

the‘pair: “Thus we should be able to cléssify stimuli generated from .

- different values of these dimensions on the basis of either. Using.

these dimensions as theeresponse basis, then) if suzcess of selective
. ) i : » - )
attention {s evidenced for /1y of these displays then the height of

M ’

. each point wéuld constitute an encoding feature.- B

ot »

INSERT FIGURE 2 HERE -

- r . <% 4
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: However, the heighﬁs,of each. point are not the only grbpérties

. v

_Tthat'can'perceptually define the four displays.. ‘In Figures 2A and 2B

> ~
.

the objects may not be the points at all, but instead the pozhfs may

- !

be: ignored in favor of Ahe lines connecting them to the framework. In

. . : P - i .
this case“weacqula define the displays in terms of the height of the

" Iines ;athe;'xhan;the height, of the points. Similarly, as we moveé

14
4

~— - & ' \
from left to right across the.displays the defining properties. may

begin to shift from. the height of éach line or point, dependingvon the

display, to propertiesqrgﬁlécting the relationships between the pair,

*culmipating in sibpe ahd overall Héight of the pair (see Figure 2D).

- &
Again using the selective attention task, we ‘¢an establish whether
. : , =, k)
these properties are in fact encoding features by using them as a
- e H . o

response basis and measuring-the amount Qf interference for each d%s—

- ¢

play. ’ NS . .
= » ES -

Processing Consequences

»

s i P
The strategy for determining the encoding features of asgiven

display should be fairly evident from the discussion thué far. First,

*

the dispkfy is analyzed for its potential'inform;tion conveying §ro—
LNk 2 ‘

perties. For example, using the displays of Figure 2, the properties
chosen’ for lnéestigation are the heights of theé indiyidual objeéts (be~

they points or lines) and the slopé and overall heightfgf the pair.’

. 4 [} [}
Second, these properties serve as the response basis for a classifi-

’

cation task. That is, each display is classified with respect to both

sets of dimensions. Then, using the selective attention paradigm, the

-

magni tude of intqéferehce between orthogonal and univariate conditions

. L4 + -
is determined. If there is no difference in performance between these

k)

‘conditions we conclude that the display properties chosen- are in fact

- .
.- o

the enéoding featufes. .
. - : . »

-
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What happens 1f the display propertles we choose to represent the

informatlon are not the encoding features? For example, suppose that
- 39 L O
slope and height are not the enbodingyfeagﬁres for any of the displays
td a
¢ 2 . - ®
shown in: Figure 2, Would we expect the Aamount of interference (re-

flecting the amount of additional effort needed) to be the same for
z []

each display with respect to this response basis? The justification

for using the selective attention task, which I presented, earlier

would imply that the amount of interference will vary depending on how,
: . \»\\ %
similar the perceptual representation is to the\response basis.
N .

A proposed‘krocessing model which could account for varying :
Al . R

Y

amounts of interference is shown in Figure 3. When a visual stimulus

.

is encountered }t is represented‘perceptuagly by its enégaing_ﬁea—
tures, whether they be dimensions, features or confiéurations. This
perFeptuai represéntation forms Sne input to a similarity based
'match’ prbceﬁf. The other input comes from.a stored representation
of the response basis set by thé experimental ngtext. Similarity is
being used in'the sense of T;ersky (1977)s That is, the similarity
between 'a' and 'b' is some 'matching function' of both common and
distinctive pEoperties of a and b, The matching fuﬁction measuresvthe
degree to which two onects overlap and will vary monotoniéall? as a
function of commén pioperties shared by a and B as well as the digl‘
tinctive propertieé spegific to each. For exampie E wopld bé‘more
similar to F thaa to I because E and F have more common features,ghan
E and I. Thus thevmatch is based o;'some function of Fhé number of
properties the two repreégntations have iniéommon and by how much they
differ. If the two representations share many propertieé a relatively

quick decisson can be made and a response deneration process can

begin. On the other hand if the two representations share relatively
. ¢ ?




O

ERIC

Aruitoxt provided by Eic:

'

Y ,
]

few properties then additional processes>are necessary to reparse the

perceptual representation to»effecf a match. This reparsing will v

=S
a

result in more processing resources and hence greater processing

times. This increase in time will be evidenced as orthogonal inter-
- N -~

ference. Note that this mod€l puts the locus of interference in post-
perceptual proceséing which is more consistent with late mode structu-
ral attention theories (Deutsch & Deutsch, 1963; Norman, 1968). '

- INSERT FIGURE 3 HERE

<

Therefore, using both height of each object and slope and overall

height of the péi; as the response basis it is possible, using the
4

selective attention task, to assess this degree of interference hypo-
2 -

hd a

thesis. As we move from left to right across the displays it seems

-

intuitively apparent that the displays start sharing properties more
common to the response of basis slope and overall height then height

N
of each object. Similarly, as we move from right to left the opposite
~

. occurs, that is more propertiés common to the heights of each object

and less properties common to slope and overall height of the pair.

Since greater mismatch between encoding features and response basis

Fa

means greater reparsing is necessary, we should expect greater

amounts of interference evidenced as we move from left to right with
% o -

‘¢1assification is based on heights of each point or line while the

same would be true as we moved right to legt with classification based
on slope apé{PVérall height of the pair:

Using a speeded classification task,;a task commonly used in
selective attention research, the first experiment wili test whether
any of the above dispiay groperties are in fact the encoding features.

Additionally the degree of interference hypothesis will be assessed

using the resulting interference magnitudes.

*

5 | l G * {
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EXPERIMENT 1
- -

I

Method N
. Subjeéts . » - . ‘ ¢

hRS

Sixteen coworkers at CSI/Datacrown served as subjects in this

» . ¥y
4

experiment. Performance measures on one subject were not included in

subsequent analyses because, under some experimental conditions, these

+ measures were excessively large (greater than % 3g) relative to the

treatment means. As a consequence 'they were considered ocutliers and

discarded. * n »”
Stimuli . . . u

i

Two sets of stimuli, corresponding to two response sets, were

used in ,this experiment. They are shown in Figure 4 and Figure S.:

Each set consisted of four different types of stimuli, 1) Pairs of

F
¥

‘vertical lines, centered on separate L-shaped frameworks, spaced 2 cm

apart, 2) paiif of vertical iines, centered on a single L-shaped

framework, spaced 5 mm 555}t, 3) pairs of unconnected points, centered
on a single L-shaped framework, spaced 5 mm apart, and 4) pairs of

connected points, centered on a single L-shaped framework, spaced 5 mm

‘apart. ‘ -

INSERT FIGURES 4 and 5 HERE

The dimensions used to geﬁeraﬁe the first set of stimuli were |

defirned in terms of the pair of lines or points. The dimensi®ns were

.

+ .thé slope of. the pair (0.25 or 0.45) and the overall, height ‘of the

pair (1.27 or f,52 cm). The overall height was defined in terms of

the midpoint between the pair, The dimensions used to generate' the

*

second set of stimuli were defined in terms of the component proper-
“ties of the objects. These dimensions are the height of the left line
or point (4.95 or 5.97 mm) and the height of the right %ine or point

3

(7.24 or 8.72 mm). ‘ i




T v

[ i -

. . . . N N N 1S ¢
* The two values of slope used in this experiment were‘chosen so as - -

not to make the lenéth of the left and right lines of stimulus type 1

e

; ' in Figure #*unduly large or small. Such conditions could occur for

N

this-stimulus type because the spacing between lines ‘is much gréatef L.

. than spacing for the other stimulus €ypes. As a result a much greater

-

change in verticgl'length is necessary to generate the same slope as

e

-

. the other stimulus types. &The heights used in the. second stimulus set

were obtained by constr=ining the ‘major diagonal of Figure 1 (albl and
a2b2) to-have a slope of 0.45, one miﬂqﬁbdiagonal &lement (a2bl) to -

~.’> , ! ': Q-] . X ) .
- have a slope of 0.25 and constraining the difference in levels along -

e ‘Both height dimensions to be 5 just-noticeable-differences (JINDs)
usi%g~ Ono's ,(1967) differential sensitivity index.

‘For-.both response sets and within each of the four stimulus types NS

there were decks of 32 cards generated in accordance with four experi-
. Tk

mental -conditions; two univariate conditions and two orthogonal condi-
~. -

~
-

. ‘tions. Each deck contained an equal numbei of .cards relevant to that

“
-

"condition. ~For ‘example when slope was the relevant dimension the ‘

univariate condition consisted of a deck of 32 ‘cards, 16 of which

defined the pair of lines or points a% an ori-ntation of 0.25 and
. ©
another 16 which defined the pair at an orientation of 0.45. The
. i ' -~
overall height dimension was held constant at 1.52 cm for this condi-

tion. Similiarly when overall height was the relevent dimension, 16

. cards defined the pair at a height of 1.27 cm and 16 cards defined %he

pair at 1.52 cm, slope held constant at 0.25. When. the def%ning

*

. dimensions were height of left object and height of right object, the

irrelevant dimension was held constant at 7.24 and 5.97 mm.respect-
. , ]

sively £br the'univariate condition. In the orthogonal condition a
. - 5 v

deck was made 'up of. 8 cards each from the four,stimuli which could
L ! . ) .

Aruitoxt provided by Eic: . ’ - . -
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‘were parti

w ' .-

. ) . . . . ‘o -
exist as a result of the combination of two dimensions each having two

-

lévels (each cell in Figure 1. -

-

[ ' .
?he process of generating the stimulus cards was semi-automated

- -

using a Tektronix 4662 intéraégive digital plotter driven by PLOT A0 -

'softwafe. Standard, sheets of_27.9'X'35.6 cm (11x14 in) Bristol Board

3

ltioned into a 6x3 grid patlern,‘eéch grid being 5.6 cm

wide x 8,3 cm high. The plotter was scaled such that 2.54 cm (1 in)
o § : > kY

mapped into lo'display-units. Centered within each grid, the parti-

2

«

cular stimulus alternative was drawn in black ink. Eighteen such

a

stimuli were drawn per sheet. The stimuli’ were then manually cut out,

B

the top left corners clipped to avoid any potential upside, down mixup
. “ . ) '\ .
(and additionally to ‘facilitate error checking), and became part of

the appropriate deck. Two decks per' condition were generated in this

-
-~ K

wayYs

Procedure

Subjects were required to sort the deck of 32 cards into two
’ -

piles correspanding to the two levels of the relevent dimension:

Exemplars of each classification level were placed on the table in

t ’ -
front of the subject. Each subject was told the purpose of the exper-

a

iment, handed a deck of cards and told to sort -them into two piles

i

consistent with the targets as quickly as possible but without maEing
) o
errors. Time to sort gach deck was measured to the nearest one hun-

dreth second using a Model 54035 (Lafayette Instrument Co.) clock/
» . ! B

v
-~

counter. The clock was -started by the experimenter when the first f

card left the deck and stopped when the last card was.pla~ed on one of
the piles. Upon completion of the task the subject was told the sort-

ing time. The sorted cards were then set aside for purposes of deter-

i

‘ mining errors, and the next deck was given to the subject. Within

L4 -, 2
v .

L d . 3

1, . S
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each -condition subjgi‘s sorted the deck of cards two times, the first

sort representing practice and not considered in the analyses.

Design - .

- .

€

Thirty-two different conditions were generated by combinations of

two-responsevgets (slope/height, height of left/height of right),

four types of graphs (lines on two frameworks, lines  on one framework,

-

points-unconnected, points cdnnected) and four tasks (two univariate,

1
“

two orthogonal). Each subject participated-under all condi tions.

Subjects sorted conditions corresponding:to one response set first,

were given a five-minute break and then sorted conditions correspond-

3 "

ing to the other set. Response set one occurred first for half of the

h\
a

subjects while response set twg occurred first for the other half.

was
. 4
balanced over the sixteen subjects in a Latin square arrangement.

Within each set grder of presentation of the sixteen conditions

An

experimental se§§ion lasted about 1.5 hours.

Data Analysis

[ 4
Gg/;articular interest in this experiment, were two sets of a

-

prior .planned comparisons.: One family of sixteen orthogonal contrasts .

-

tested the magnitudé of interference, i.e.  differences in means

[
e

between orthogonal and univariate tasks for

each pair of dimensions

under each graph type and response set were tested., The other family
p A

of .twelve nonorthogonal contrasts tested the degree of interference

»,
.-

effect. Differences in meanS, averaged over both dimensions, between
orthogonal and univariate tasks for one graph type were contrasted

with equivalent differences 'for the other graph types within the spe-

cific response set.

”

- The results of these tests will be couched in

terms of confidence intervals since it is felt that this approach not

only allows one to test the specific,pypopheSis under'cqnsideration

.

~
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* true) increases. For example, if we did sixteen ihdependenf signifi-

cance tests, each at the 0.05 level , the probability of at least one

o .
> c . &

) t R "
but alsc to gauge the strength of aﬂy inference made as a result by
noting the ,width of the interval. ’
o, N 3 o
In addition, note that-as the number of comparisons increase the

v

likelihood of at least one Type I error (i.e. reject Ho when it is

Type I error would be 1-(.95)16 = 0.56. This value is termed the .

.

error rate per family. Since inferences drawn from results of this RN

- 3 i

experiment are based on the family as a whole, using p = .05 for each

individual test, would make the findings somewhat tenuous and not

readily reliable sincte spurious results would be expected in'over half
& E ' .

the replications. For this experiment the error rate per family was

.

chosen to be 0.20 résulting in a family confidenée coefficient of

a

0.80. 'This confidence coefficient means that if the experiment is

repeated, ‘say, 100 times then we would expect the same sixteen confi-

=

dence intervals in 80 out of the 100 replications. This fémily confi-

dence” coefficient results in a significance level per comparison of

about 0.02 for the twelve nonorthogonal contrasts. For the family of

[

sixteen orthogonal contrasts, However the significance tests, and

hence the confidence intervals, need not be equaliy weighted (Myers,

v
-

1979 Chapter 2). It is only necessary that the.sum of the individual .

& level per comparison add to the error rate per family or 0.20.

Preliminary results from a pilot study using the four graph types with
the response set consisting of height of left vrs. height of the ' K

right classification showed that, of the graph types showing potential
) ! -
interferenca effect, the greatest power was needed in assessing

«

effects for bars,on one framework. Differences in means for this

graph type showed significance at approximately p = .03 while the

L 4

. ly *

t toi,
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other graph types, showed significant effects at p < .001. For this

© 3

. family of contrasts, then, the a level used to test interference

effects for lines on:one framework for both response sets was set at
) .

0.03. The rémaining graph types all were tested at a significance

level of 0.007 such that the overall error weight was 0.20.

Results and Discussion

The positive correlation coefficient (r=0.18, p<.00l) between

- 1y

time and errors indicates an absence of any speed-accuracy tradeoff
" which would otherwise qualify interpretafion of th; of the data.
However plots of variances against means for both sorting times and
errors indicatédcvariance stabilizing transformations -were necessary
. for both these measures. It was found that a logorithmic transformé—

tion for times and a square root transformation for errors were suffi-

cient to induce spherical distributions for both measures. Thus all

times and errors to be presented will be expressed in. logs and square
‘ ~

réots respedéively.

Times

The logarithm of sorting times in seconds averaged over suﬁjects
isrshown in_Table 1 for each graph tyée, responge set and task.l Also
shown is the magnitude of interference, A, defined as the éiffergnce

» -

between the orthogonal and univariate sorting taske.

lpor a repeated measures design there is no appropriate error term
from which the significance of the four way interaction of Response
Set x Graph Type x Task x Subject can be tested since each cell has a
sample of size one. However a single df test devéloped by Tukey
(1949) provides a means of evaluating a particular form of this in-
‘teraction. This test involves further analyzing the interaction sums
of squares intor two components, one which represents the interaction
component distributed on 1 df, the other representing error distri-~
buted on the remaining dfs. For this data F(1,125)=0.83, p>»+25 indi-
cates the interaction component is not significant implying the mean
square provides an independent estimate of the error variance.
. ; .

~
Vs

o
<




INSERT TABLE 1 HERE

Table 2 shows confidence intervals for the preplanned orthogonal.
t . .

E}

comparisons testind the sixteen interference magnitudes found in Table

hd c

1. Any interval not enclosing zero implies a reliable difference

between the means of the two sorting tasks. The tabled results show
. - . . >

that for the response set height of ldft/height of right, selective

attention (i.e., no interference), was possible only for the graph type
. .
symboiized by the, pair of vertical lines on two L-shaped ,frameworks.

.
rd

Thus it appears that the encoding features for this stimulus. are in

%

terms of its component parts (the individual heights) while for the

other graph types, these parts interact to produce other defining
o8 . '

properties. . . _ . ,

-

INSERT TABLE 2 HERE

The success of selective attention for the pair of lines on two

\

frameworks and the failure of selective attention for the pair of

lines dn one framework may be a consequence of the proximity of these

3

lines to one ahother. Pomerantz and Schwaitzberg (1975) showed that

o

the magnitude of interference diminished as the spacing between two

4

elements (left and right parentheses) was increased and disappeared

<
. ©

entirely at a 4-deg of visuzal angle separation. The separation-be—.

tween the pair of lines on two frameworks, at a viewing distance of 28

. @ !
cm was 4.1-deg while that for the lines on one framework was about 1-

-

deg. Thus it is quite likely that the proximity of the lines on one

framework induces an encoding in terms of the pair as a perceptual

»

unit. Further supporf fo; this like€lihood' is  provided by the success

of selective attention for the pair of lines on one framework when

‘classification is based on the overall height of the pair (contrast

L12 in Table 2).

d 4

.,
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In a similar vein the encoding of pairs of unconnected points the

pairs of connected points is in terms’ of “some «¢elationship between the

pair. These prppetties of these graph types seem to configure such

that slope and overall height become the dominant properties.” This is

evidenced by the success of selective attention when classification

Y .
was based on these properties, while failure of selective attention
resulted when classification was based on the individual heights of
the points. For both of these displays, then, we can conclude that

the encoding is in terms of the slope and height of the pair of

pOintS .

Finally, noté that within the response set of slope and overall

v R

height, the co;fidence intervals‘show an interference asymmetry
(Garner, 1974) for two graph types: This means that selective atten-
tion was evidenced for one dimension of the pair but not the other.
For the paff-qﬁ lines on two frameworks, when classification was/based
on overall height failure of selective attention was evidenced but not
so for classification based on slope. However inspectién of the stim-
uli used for this graph type, shown in Figure 4, suggest that the
source of the asymmetry may be the particular dimensional values
chosen to represent this graph type. Note that the two stimuli having
the greatest slope also have the smallest height of the léft line énd
largest height of the right line.“ Contrasts L1 & L2 imply that we
represent this graph type in terms of the individual heights ofaeach
line.‘ This means that when we look at this graph type it is in terms
of the individual heights initially. This makes these extreme values
quickly noticeéble since présumably they keep calling attention to
themselves. Since the response basis makes ambiguous the attention -

allocation policy, both extreme values should be noticed equally of-
. R ‘

21
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ten. Thus, for example in the univariate condition where classifica-
A 3

“tion is based on stimulus 1¢ or 1d (see‘Figure 4) a basis of, say.

*
.

extreme (left or right)/other would be sufficient. S%Filarly such a

basis would be sufficient to classify stimulus %a/lc vrs stimulus

"

1b/1d (the orthogonal condition) and no interference would be eviden-

. . 4
ced as is the case. _.This suggests that there may be a tendency to use

B

the encodingd features a% a respoﬁse basis whenever possible.

"Just the opposite asymmetry was evidenced for the pa%r of lines

. on one framework, i.e. failure of selective attention when classifi-

cation was based on slope and success of selective attention when

.

‘classification was based on height. Since the confidence interval

\d Al

(contrast L11) encloses a value whose true magnitude is much greater

than zero (relative to the marginal lower bounds of other contrgsts)p'

. this interference effect is not tenuous and the height of the lines

confounds our perception.of slope with this graph type. This in turn

. "
implies that we may not mentally represent this graph type in terms of
the slope of the lines but instead, ‘for example, by some aspect asso-

ciated with the differences in heights of the lines.

Post hoc comparisons (Scheffe, 1959) of the interference magni-

-

tudes within each graph type showed no reliable difference in means

between either of tqf two component properties or the properties de-

-

fined in terms of the pair. For example, there were no difference

between the height of left and.height of right response for any parti-

¢

éulaf graph type nor were there any differences between slope and

overall height. Thus for each graph type within the appropriate re-

133

sponse set the interference magnitudes were averaged together and

these average magnitudes are plotted in Figure 6. The figure clearly
!

shows a monotonic increase in the amount of interference as we move’
. 1 4

e

i




from pairs of lines on two frémeworks, having the‘greatest ma té to

t

the response basgs; to connected pdints, having the "greatest mismatch
éo the respanse basis, when classification is based on the component

é

properties. Conversely a monotonic decrease is apparent when classi-

<

fication is on the ,basis of properties defined in terms of the pair,
. [] > 3’ N

F 4 o

which produces the opposite matching characteristics. !

e

. - INSERT FIGURE 6 HERE ( .

e . Table 3 shows the confidenceyinte£vals of the preplanned compari-
s :

. -
.

. u sons testingrthis degree of interference efféct [Garner, (1970) uses
, .

tﬁe term degrees of iﬁtegrélity]. Considering4the response set‘beight
B M "',‘ .

of left/height of right, the average interference forkthe connected &

points is higher than averages for any of thé remaining graph types.

Contrasts involving differences between the other graph types were not
> . . =

significant with respect to the 'family,.but less conservative tests

-

(p=:05) shaw.tpat both lines on one framework and unconnected points
= i

result in greater amounts of interference than lines on two separate
framewofks. For the response set slope/height, contrasts show that

lines on two separate frameworks result in greater amounts of inter-

ference than either connected or unconnected points, while'.lines on

“

one framework yield greater‘aVerage dmounts of interference than con-
. y <

nected points.

L]

. ) INSERT TABLE 3 HERE ®

The monotonicity of interference magnitudes as the degree of .
% )

presumed mismatch between encoding features and response basis in-

. - creases §ugges¢s that it is possible in principle to -assess different

.

. . ' - (] . A- . . . .
design alternatjives for:a given piece of information using cognitive

effort as a criterion. For example, if we want to convey, conceptual-

- ¢

.

ly, the 'trend' of one variable (increasing or decreasigg) over some

we -

Aruitoxt provided by Eic:
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discrete ‘rarge' of ancther variable, this information should be rep-
resented graphically by cqnnectedvpoints. As we have_§hOan;such a

- ,
graphical represangati%n results in the least amount of effort for its

,

perceptual processing. Thé qust preféﬁ:ed“design using a single 'y

~
framework representation would be the bar graph, On the other hand,

if .we want to convey, conceptually, the 'level';of'one variable (high

or low) for a certain vaipe of the other variable using a'single :
@ . 4 . '

framework graph, the bar graph is the preferred design from a prqgess— ,

,

*ing viewpoint.

Selectivé Attention' Considerations : )

Using thé'selgptive attention paradigm, I stated earlier that it
¥ - -

<
.

might be possible to use the data from this experiment to.further

elaboréte‘on some of the theories and models:on which the paradigm is

based.. For instance, the fact that some of the contrasts shown in ¢
.. ]

Table 3 are reliably different indicates a very important consequence

concerning selective attention. That is, selective attention is not

an ail-gr‘hone affair. The monotonic relationship between interfer-

ence magnitude and'degree of mismatch seems to be 'more consistent with
’ R LY
shared capacity theories of attention (Xahneman, 1973; Norman and

Bobrow, 1975). Thgse theories posit the prime Qeteéminant of task
difficulty is governed By éﬁe allocation'policy of resources (atten-
tion). One modell based on this theory, has beenproposed by Dykés and
Cooperv(1978). They suggest that orthogonal interference could be due

to the misallocation of attention. Assuming a fixed amount of atten-
e 4 u

tion that must be shared amongst all incoming signals, if attention is

misallocated to the irrelevant attribute then less attention can be

directed to the relevent attribute. This, then, is evidence by ortho- /

gohaf}&nterference. . O

\4.» ~

4
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. . ! .
) I-feel thatiwhile this aSsumptionlcan aécount for processing
‘ i : " . o :
errgrs (as we see in the next section), it is somewhat hard pressed, -
. ,, ‘ S . ~_
as it Stands,ﬂto account for {ncteases'in§¥imes. vAs:Norman'& Bobrow

¥

(1975) suggest, attention is a resource.to be alloégted to a cognitive

“task.  As more resource§ are applied to a task then presumably better.

performance results. However the allocation of more processing re-

-« e
v .

sources will require more processing time. Thus the allocation of

less attention (resource) to the relevent dimension as Dykes 2pd
] > .

»

Cooper suggest will not produce an increase in time. Instead, as I

.

have suggested, orthogonal interference arises. from the ingreased
attention necessary to reparse the pgrceptual representation’ the

resultant of a post-perceptual match process.

3 . iy
Errors

. Table 4 presents the results of the experiment in terms of the

transformeq‘error scores. That is, square root errors ageraged over

subjects are presented for graph type, response set and task. How-
ever, in contrast to sorting times, these mean values are tempered by

»

individual differences.?2

INSERT TABLE 4 HERE

L
»

The significance of this high frder Subject -X Treatments inter-

.

action means that while the group of subjects showed the overall pat- v

3] .
tern of results found in Table 4, this relative pattern differs mdark-

edly for some individuals, The data shown in this table, though,'

4

< ’

2mykey's test shoyed a significant éomponent of the four way inter-
action involving subjects,and the three- other variaﬁies, F(1,125) =
3.9, p<.25. In testing this effect we want to guard against making a
Type .I1 error, i.e., we do not want to conclude no interaction when
in fact it exists. This protection is accomplished by increasing the
probability of making a Type I%error, or*level of significance. )
Tukey suggests an g level of 0.25.

e
®
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i suggests z potential source of this interaction lies in'the discrimin-

/ | - i

ability difference between
. - [

N . .
left/height of right). Scheffe's (195%) post hoc comparison of the

- univariate tasks for this response set showed a reliable difference
et ? .
Y . .

between the mean transformed errors for sorting based on the height.of

the left (1.47) and those for the height of the right (0.583). No

such difference was found between univariate tasks for the other res-

R A ponse set. Additionally, visual inspection of the subject data for
. the graph type symbolized by the unconnected point, for example,

showed that, while no subject made more errors in the univariate task
than the orthogonalftasks when classificafion is based on the height

of the rlght attrlbute, four subjects d1d ‘é0 when classification was

based on the helght of the left attrlbute.- Slmllar effects were not

atypical among other graph types as well. Thus differences in discrim-
inative ability among subjects to the attributes for the different
> ~ = .

‘graph type and reponse sets may be the poEential'source.of_the inter-

a

action,

A —— e

Data-limited errors. In this’experiment, errors,may be more of a

¢ 4
L] -

consequence of what Norman and Bobrow (1975) refer to as data-limited
processes. Data—liS}ted processes result in performance whlch is -
-
1ndependent of processlng resourges such as attentlon. They depend,
<@

instead, only on the quaiity of the ipput data gignal or the quality * o

e g _ ) . . '
of the representatiohbstored ifi memory. Consider the type of task we

s B "
are asking subjects to do: absolute judgements. ‘Absolute judgement

-~

wl
u;&

tasks not only requlre the subject to mentally present the informa-
tion but also to compare thls representation with a representation

. . - ol o
stored in memory. - The quality of input data, such as 1ts con-.

’

trast, proximal size, duration, ete. can affect our representatipn of

)
ay ;
.

EI{I(j 4 ’ : 237’ <-'J‘ . B (, _fJ'

: Il . 5 . .
A FuiText provided by Eric - - o I3 . - -




." 4 . . I ’ S

v

-

L)
the input. However, these factors are not respon51b1e in thlS case.
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What is responsible seems to be the quality of “the memory trace which

depends on both the number of items held in memory and their discrim-
inability, and as we have suggested, discrimination is exceedingly

difficult. Further support for data-limited considerations is eviden-

ced by the magnitude of the correlation_coefficient between time and

" errors, r=0,18., Note that while this coefficient is statistically

Y
€

significant3L its magnitude implies only 3% of the variance in errors

is accounted for by differences in times. If, as we assume in the
previous section, differences in times are due to differences in pro-
cessing resources, the lack of a meaningful corref;tion coefficient

suggests processes affecting accuracy are different from those affect—

“ing latencies. Data-limited processes bear important considerations

in display design, and it is. these types of procesées £o which tradi-

tional disblax\design has eddressed itself.

.o & : .
Resource-limited errors. However, the pattern of errors in Table

‘ -

4 appear  to be somewhat similar to the pattern found for sorting -

a
\

times,  if.e. an increasing amount of interfefence as the degree ef
mismatch between encoding features andzresponse’beSis increases.

Since we have assumed sorting times reflect a resource-limited proceee
(i.e:, the aﬁount of attention allocated);.we can ettribute some
resource consequence to e;rors as well. It mighﬁ be that errors are
reseurce-limitea up to a point, and then become data-limited. For
exeﬁple, supéose less than sufficient resources than are necessary are

allocated to the correct input in an absolute judgement task as Dykes

and“Coeper (1978) 'suggest.

3The significance of this coefficient is based on 478 degrees of free-

dom. This large number of degrees of freedom provide relatlvely
large power to detect even a very small change from zero.

¢

a

=
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'Since the activation and maintenance of the stored representation
o oLnee M= gk RRver T At Tes T e T TR EE

1 K N

and match process are all resource demanding operations associated .

’

with this input, there is less resources to allocate among tﬁem(
7 . .
Thus, we might have only a partial.match or a match based on-a more

wdegraded representation, but in either case the likelihood of error
o .

increases and this likelihood is independent of data quality..

In this experiment, we assume a fixed® amount of attéh;ioh

<

: ~ : . -
(Kahneman, 1973) and further that all the attention which can be allé-

cated to tR®e task is allocated;“ One way less attentioﬁ can be”

2

allocated to the correct response basis, then, is ig more of it is

-

allocated to mental operations invglving some other aspect of the

task. These other operations could involve a reparsing of the input

description so that the appropriate input can be compared with the

stored representation. Such a reparsing would be necessary-if the
- N p )

encoding features are in fact different from the response basis.

Further evidence suggesting that the encoding features of a

st%mulus are not necessarily the response basis is provided by the

-

pattern bf errors. Multidimensional scaling stgdies (Shepard, 19?4;

Handel & Imai, 1972, Somers & Pachella, 1978) demonstrate that -stimuli

3

» . : \ 0] -
which do not differ in terms of their encoding featvres are best des-

cribed in terms of their overall similarity structure {i.e., Buclidean

Y

mepric).{ This means that perceived differences between any two stimu-
1i depend on relations between levels of the underlying dimensions.

In other words, the dimensions interact. -On the ‘other hand, stimuli

v

bThe relative discriminabilities of the stimuli used in this experi-
ment impose a very capacity’demanding operation on the subjects.
Debriefings at the end of each session indicated that all subjects.
found the task very difficult and had to really concentrate- to See

the difference. : 4
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differing in terms of their encoding. féature show no such interaction

i
H

(i.e., are characterized by a ciéy—block;metric). Note that the stim-
@ Y

u%i used in our experiments differ on levels of two dimensions (i.e.

height of lefé/he@ght of right or slope/overall heiqht). Thus if the

stimuli to beAcompared, albeit a mental comparison, do not differ in

terms of their encoding features then we should see some evidence of
interacﬁfon between the dimensions. A procedure called logit analysis

(Goodman, 1972; Theil, 1970) allows us to test’ for interaction effects

using the confusion matvices>.

It was found that for the eight graph

types showing orthogonal interference (see Table 2), only one {lines
<
.on one framework, classification by height of right) failed to show a

-

significant interaction effect, x2(1)=0.830,;p<.36. However, this

~* condition resulted in the lowest frequency of errors relative“to all

others, decreasing the power to detect this interacpiod. Conversely,

it was found that ﬁor“the eight graph typesbnot showing interference
- ; : -
only one (GUnconnected points, classification by orientation) showed a

«

|
|
|

.

5Sp cifically we want to know, . for a given level (high or low) ‘of the
relevent dimension whether the pattern of errors (i.e., cell frequen-
cies) is influenced by the level of the irrelevent dimension (high or
low). The dependent variable was dlchotomlzed to correct classifica-
tign/incorrect c1a551f1cat10n resulting in a’ 2 x 2 x 2 contingency
tahle. Thus the usual ANOVAmframework, which assumes that the depen-
dent variable is continuous and normally distributed is not applic-
ablle in this case. However, a class of procedures developed by
.Goodman (1970) and others (Bishop, et al., 1975) allow qualitative
information to be analyzed with the same degree of sophistication
that was once reserved for quantitative data. Specifically, the
probedures examine the effects of a set of categorical predictor
var%ables on the log odds of a binary dependent variable similar to
the! way in which predictor effects are evaluated in traditional ANOVA.
de51gns. . Just as in ANOVA designs, the dependent variable is parti- |
tioned into a.set of main effects ‘'and interactions, but the partition
is in terms of the natural logarithm of success to failure (log odds)
for each level of the independent variable rather than the mean. A
likelihood Chi-square statistic is then used to evaluate any specific
effgcts in the model. _ /// .

b P
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significant interaction, x2(1)=11.5,'p<.bo1. This condition, though

was the only one which had no errors for a particular combination of

-
3

relevant/irrelevant dimensions. Thus, apart from a pair of matrices,

- -

orthogonal interference did show dimensional interactions, while no
£ . o
interference showed no such interactions as expected..

<

To elucidate t: * nature of the interactions, log-odds plots® are

presented next to the confusion matrices associated with graph types
showing interference. These matrices and plots are represented in.
Figure 7. The dimensional interactions are clearly eviqent'from the

plots. Consider for example Figure 7A showing misclassifications for

v

"lines on one framework when classification is based onlthé height ‘of

the left line. When this dimension exists at a low level, greater

misclassification results when the irrelevant dimensions exist at a

high level than when it exists at a low level. Howaver,“just the’

]

opposite is true for a high level defining the relevant dimension
. N '

(hence the interaction). Co@paring the four stimuli associated with

" -

6Log—odds plots are obtained by plotting the natural logarithm of the
odds being in one category of the dependént variable. Thus for any
combination of the two dimensions the odds of misclassification are
calculated by dividing the number of errors by the number of correct
responses. For example, for Figure 7A, if the relevant dimension
(height of left line) is at a low level and the irrelevant dimension

" (height of the right line) is also at a low level, the odds.of mis—
classification is 9/111=0.081 and the log-odds is -2.512., Log-odds
are computed for each combination in the same fashion and when these
values are displayed, Figure-7A results.

The graph is easily interpretable if several points are remem-
bered. First, when two values are equally likely the odds are 1 and
" the .log-odds are 0. Thus, any‘lqg-oqu“ab0ve O-indicates that the
probability of the numerator, .in this case misclassification,’is
greater than that for the denominator, correct classifications, while
log-odds less than zero imply the converse. Secondly, the higher the
‘point cn the graph, the more likely misclassification results. More-
over, since points of equal heights imply equal log-odds, changes in
the slope of the line or equivalently when the line is not parallel
to the abscissa, an effect is identified. Similarly an interaction
between dimensions occurs when the pairq‘of lines are not parallel.

AT o 3i

>

LN

o




e . -

. this graph type (see Figure 5), the pattern of misclassification imply
. .

1]

. .

that stimulus G2A is most confused with stimulus G2C and stimulus G2B

is most confused with stimulus G2D. Suppose some aspect associated

with différénces in heights of the lines using the left line as a

reference point represents an encoding feature, the overall height of

the pair representing another. Since these aspects will' keep calling

attention to themselveé, and as we have already seen discrimination on
the basis of thetheight of the left line is exceedingldifficult, there

may be a tendency to use them for classificationm if possible. For

example, it appears Qquite easylto contrast stimulus G2A and stimulus

G2D on- the basis of overall height and similarly stimulus G2B and G2C
on the basis of the\dffference.between heights. However, it is not as
easy to distinguish stimulus G2B and G2D or stimulus G2A and G2C on

. the basis of either of these features under forced pace conditions.”

In this case Q;reparsing of the perceptual description is likely and
s this requires attention, some of which was initially allocated to

mainﬁaining the trace associated with these two stimuli. This reduc-
tion in attention’should result in a less then optimgl,comparison
involvihg“these stimuli. Thusvmore conf&sion should result between
these pairs as is the case. Note, too, thaf the same type of inter—'

action occurs for this graph type when classification is Sasqd'on

orientation which is not an encoding feature (see Figure 7G).

INSERT FIGURE 7 HERE -

TNot coincidenﬁly these pair of stimuli differ from each other in
terms of one dimension only, while the less confused stimuli differ
e on both dimensions. Both Eriksen & Hake ,(1955) and later Lockhead
(1966) have shown that stimuli differing on two or more dimensions
are more accurately identified than stimuli differing on one dimen-
sion provided the defining dimensions are not the encoding features
(Garner & Lee, 1962).
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The other graph types in this response set (with the'exception of
' o, '

one) show a pattern of errors that is markedly different. For exam-

<

ple, consider both height of left/height of right c¢lassification for
the graph type symbolized by the connected points. The log-odds plots

show that the greater likelihood of errors occurs when the relevant

<

and irrelevant components exist either at both low levels or at both
high levels. In terms of the stimuli comprising this group (see

Figure 5) this means tha£ stimuli‘G4A_§nd G4D are most often confusedf
Suppose the slope of the line keeps calling attention to itself, i.e.,
an’encoding feature. With respect to such an encoding feature stimuli
G4A and G4D differ.On only one dimension, height, whereas any other
pair qiffer on both height and slope. Using th? s;me considerations .
as ﬁefore( morevcpnfusions should”result betw;en the pair. We might

also expect the same pattern for the unconnected points since our
-

results shbwe§ no reliable interference effects when classification
\ M .

was based on orientation and height, However, while ?igure 6d shows a

similar pattern to the connected point, Figure 6c is not consistent

-

with this expectation. In fact, Figure 6¢ shows a pattern similar to

that for the lines on one framework. The’fact that the amounts of

interference between these graph types is in fact different (see Table
3), Fhohgﬂ, suggests that how we represent the pair of unconnected .
points may be somewhat different than our representation of the con-
nected- points. It may be:that the paierf unconnected points is rep-
resented in‘a way that is intermediate between the lines on one frame-
work and éonnected poiﬁgs and ma§ be modified depending on the demands
of the task. This flexibility may thus manifest itself in h@v we’x}seA '

the representation accounting for the disparate interaction results

between the connected and unconnected points.
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. DISCUSSION

.

¢

1

The results of this experiment provide'initial justification for

considering display design issues using a cognitive framework. Simply

3

€

considering those properties of the display that make the information

- . s

accessiblé, while ngbessary, is’ not sufficient for effective graphic
communication.. As we have seen, how a person perceptually interprgts
.the information r?presented graphically is determinéd, in part, by the
display format Qe choose. If this fofmat is not compatible with the
to be presented ‘information, results show that.classification errors
increase which in turn ;;ans greater likelihood’of miscpmmunicatiOn at
higher levels of'processing.

Thus,thé properties of the display which influence its format

must be chosen with respect to the observer's point of view. That is,

when a person_looks at a graph, for inStance, there seems to be a
! o

‘natural' encoding of certain of its properties, whether they be

%

- ‘dimensions, featgres, or configural properties.. These properties,

_called encoding feagures, are menta)ly represented with little quni—
tive effort on the part of the person. If we assume that the percep-

’

tual representation leads directly to a conceptual interpretation at a
deeper level of processing (Craik and lockhart, 1972), then ceitai;v
types of conceptual information should likewise follow naturally.
Turning this problem around, then, for a given conceptual message we
wish to.communicate, there may exist a graphical format that leads
'naturally' to its extract%on. Any other format will require a repar-
sing or elaboration of the perbeptual represen£ati0n correspondinglto
) . 1t
this format, and, as the resg}ts imply, réquires greater processing

effort and more time.

\)‘ . * ’ . ‘ »
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Thus it becomes possible in "principle to 'maximize' the likeli-

_hood of correct interpretation for any megsage we wishcto communicate

by representing the specific conceptual message to be communicated

B AN .
using encoding features which correspond to it.

In the next experiment this optimalitytqséumption is tested using

the display types shown ih Figure 2 and a discrete reaction time (RT)
}ask. For each display type, mathematiéal scales and values on these
stales will be added. This will result in:a set of paired observa-

tions,vwhére the first member can be either a particular value of the

independent vabjiable or a pair of values. For example if the graph

‘symbolizes the price of gold over months, months consﬁitute%;the inde~

pendent variable. We .can then talk about a particular month;, say
[ . < -
January, or a pair of months, January vs. February. The second member

” y

of each pair can be a ratio value (e.g., "twice as high"), an absolute
value (e.d-'\:?150/ounce"), a level (e.g., "high"), or a trend (e.g.,
"increasing") defined on the dependent variable. Thus it is possible.

to 'set' the squect conceptually by asking a particular *conceptual

.

question', which contain certain of these pairs. The subject then

extracts from the graph the information necessary to answer the ques-
&
tion and the time it takes to answer is recorded. Presumably the

S

-.conceptual gueStion sets a response basis at the perceptual level of

analysis. Therefore, for a given display, if the conceptual queétion

N
induces a representation other than that defined by the encoding fea-

- %
tures ‘(i.e., a default visual description),-increased RT to the ques-

tion answering task can be expected for the reasons outlined earlier,

g

L .
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* Not significant.
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TABLE 1

\
-]

Transformed sorting times (sec) as a function of gréph typelff
response ‘'set and task : .

v

Task
— 2

Graph Type » ° Response Univariate Orthogonal A Contrast *

 Lines on two -, Height of left .1.393 1.403 0.01 L1
. yframeworks Height of right 1.376 - 1.389 0.013 L2

Lines on one Height of left 1.385 1.421 0.036 L3
framework Height of right 1.344 1.378 0.034 L4
Points * . Hdight of left 1.443° 1.489 0.046 L5
, unconnected ~ Height of right 1.395 | 1.436 0.041 L6
Points '~ Height of left - | 1.413 1.494 0.081 L7
connected Height of right 1.344 1.421 0.077 | L8
- * 4 . T
Lines on two - Slope .. 1.414 - .1.427 0.013 L9
frameworks - Height . 1.421 1.513 0.092 L10
Lines on one._  Slope . © 1.399 1.450 0.051 L11
framework Height 1.347 1.371 0.024 L12

pPoints Slope «. T 1.393 1.396 0.003 L13
unconnected Height . 1.388 1.406 0.018 - L14

. ) . o &
Points Slope ' 1.396 1.389 -0.007 L15
connected ot Height . 1.380 1.355 -0.025 L16
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. . . TABLE 2
3 : * 7‘ 3 - .
’ Confidence intervals, t-statistics and significance
levels for preplansed paired comparisons of selected
means (LOGTIME)‘idvolving the three way interaction of
graph type x response. get x task

' : . ' : o S <
Contrast A Confidence. Interval* t-statistics . a
L1 ,0201 -0.028<L£0.048 L ~2.7 .0067
. L2 0.013 -0.025<L<0.051 2.7 .0067 ?
L3 0.036 0.005<L<0.065 T o~22 .03 ,
. L4 0.034 . 0.003<L<0.065 2.2 .03 o
L5 . 0.046 0.008<L<0.084 ' ~2.7 .0067
L6 , 0.041 0:003<L<0.079 2.7 .+0067 ’
L7 0,081 0.043€L€0.119 S ~2.7 % L0067
) L8 - ) 0.077 ‘0.039<L<0.115 2.7 . .0067
< ' -
L9 - ©.0.013 -0.025¢L<0.051 ~2.7 .0067
L10 . 0.092 0.054<L<0. 130 2.7 .0067
L11 0.051" 0.020<L<0.082 ~2.2 < .03
. L12 , 0.024 ~0.007<L<0.055 2.2 .03
L13 0.003 ~0.035¢L<0.041 ~2.7 .0067
L14 - °  0.018 ~0.035<L<0.041 1 2.7 .0067
L15 . -0.007 -0.045<L€0.031 ~2.7 .0067
L16 -0.025 -0.063<L<0.013 : 2.7 . .0067 '

Ms Graph Type X Response Set X Task X Subject = 0.0015

. ".,
*If interval encloses zero, then nonsignificant.
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TABLE 3. >

v o

Confidence intervals,* for preplanned ‘comparisons of
selected contrasts testing the degree of interference
o for graph type respnse set '

Contrast ‘ LA Confidence Interval
1/2(L3+L4)-1/2(L1+L2) - 0.024 _ —0.009<L<‘0.'057t
1/2 (L5+L6)=1/2(L1+4L2) .  0.032 " 0.001<L<0.065

1/2(L7+L8)=1/2 (L1+L2) 0.067 0.0;4<L<0.100

1/2 (L5+L6)-1/2 (L3+L4) | 0.008 -0.025<L€0.041

| 1/2(L7;L8)—1/2(L3+L4)  0.044 . 0,011<L<077 /
1/2(L7+L8)~1/2 (L5+L6) 0.035 0.002<L<0.068
1/3(£9+L105$?/2(L11+L12) " 0.015 -0.018<L<0%048
1/2(L2t510)—1/2(n13+L14)‘ " 0.042 0.009<L<0.075

. 1/2(L9+L10)~1/2(L15+L16) 0.068 .035€L<0.101

- 1/2(L114L12)=1/2(L13+L14) 0.027 0.006<L<0.060
1/2(L11+L12)~1/2(L15+L16) 0.053 0.020<L<0.086
1/2(L13+L14)~1/2 (L15+L16) 0.026 -0.007<L<0.059

t(T) = 2.356
s(f) = 0.014
P = 0.02, S
' ‘\‘ B
.
’ 1 . [ 4
+ &
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TABLE 4 =

Transformed errors as a function of graph type,

54

response set and task

Task
Graph Type Response Univariate Orthogonal A Contrast
Lines on two Height of left | 1.426 1.426 0.000 L1
frameworks ° Height of right 0.856 0.839 -0.017 L2
. . _ ,

. Lines on one Height of left 1.093 1.456 0.362 L3
framework " Height of right = 0.476 0.831 0.355 L4
Points Height of left - 1.876 2.172 0.296 L5
unconnected Height of right 0.522 1.153 0.631 L6
Points Height of left 1.471 - 2.060 0.539 L7
connected _ Height of right 0.476 1.348 0.972 18
Lines on two Orientation .0.821 0.820 -0.001 L9
frameworks Height 0.990 2.299 1.309 L10

‘Lines on one’_  Orientation 0.986 1.577 0.591 L1
framework ™~  Height 0.255 1.047 0.792 L12
Points ' Orientation 0.910 | 1.283 0.373 L13
unconnected Height 0.731 0.938 0.207 L14 -
Points Orientation 0.899 ' 0.932 .0.033 L15
connected Height 0.824 ) 1.136 0.312 L16




