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Cognitive Considerations in Display Design

Introduction

' Human information processing of CoMplex visual displays has .

emergedt,as a problem to be reciconed with in recent years. A large

variety of displaY's are encountered daily by People, products of our

technological revolution. As examples of such displays we can think

of computer graphics, flow diagrams, radar and sonar scopes'and the

like.

The simple graph is probably the most,commonly encountered exam-

ple of such visual displays yet it has received only intermittent

attention by the human factors community (cf. MacDonald-Ross, 1977r

Schutz, 1961a,.1961B; Vernon, 1952, Washburne, 1927). Graphs are
4

found in most of the materials we read today, spanning technical books

and journals to recreational magazinds. This abundance has probably

made most people take graphs for granted, but they are indeed dispThys

which must be designed. They must be constructed using principles and

tools .common to all display design problems.

Traditional display destgn has focused mainly on the properties

400

of the display which makes the information 'more perceptually accessi-
.,

ble to the person processing it. Properties such as brightness, con-

trast, texture, siie and the like are all display variables affecting

how- the information is detected and discriminated by the visual sys-

tem. For example, without adequate contrast a person could not separ-
'

ate displayed material from background.' Within a psychophysical

framework it is poscible to investigate systematically the effects of

these display properties iDn our ability to identify the symbols of the
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display (cf. Shurt2eff; 1980 for a nice consolidation of this litera-

/1

ture).

There is another aspect to.the displAr design problem, apart from

legibility considerations, which must be addrLssed, and as yet has not

been to any*iubstantial degree. Tle problem is that odbe the informa-

tion gets inside the person, so to speak, it must be interpreted to

effect a response, whetherit 1o4, overt, such as answering a question,

or simply an integration into existing cbgnitive structures: Legibil-

ity, per se, does not guarantee that information will be successfully

communicated. Whije the form of the simbols may be quite clear, their

meaning may remain obscure and liable to misinterpretation. The

a.

source of the misinterpretation must.lie in the properties of the

display, as read by a person with.specific ,knowledge and goals. Tra-

ditional psyegophysical research, which views &he person as a measur-

ing instrument, does not provide an adequate framework for systema-

tically investigating the interaction between these higher-order vari-

ables.

Instead we must turn to a more cognitive .frameWork which views

the person as a processor of information. Within this framework; the
le

display properties are mentally represented in data structImes and

processes operate on these structures, transforming and manipulating

them so that eventually we come to understan&the :1...ommunicated infor-

mation. Each process takes time 'and resources to perform its appro-

priate function, and a fundameatal assumption of cognitiOn is that

increases in processing times implicate increased cognitive effort.

Since prosumablY there is a finite amount of resources available to

accomplish these functions, processes needing additional,e*ffort will

(reduce the amount available for other *operations. This in turn will
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.increase the likelihood of error, and consequently, 4cipmmunication:

,
. -

Thus it is poible .t.Co inVesti4ate, certain design alternatives within'
. ,

thig framework using cognitive effort as a design criteriOn.
%

There will, in turn, be
N.

two factors that influence thg amount of

effort necessary to'extract a given piece,of information from a dis-

play. lhe first such factor is the correspondence -between the-display

properties used to represent the information and the properties enco--

ded by the person. There #re many different ways of representing the

same information,graphically.- However, there may be only a few ways

in whioh correct interpretation follows naturally. Any other design

alternatives will result jn greater processing effort. The second-.

factor is a person's knowledge- of the correspondence. Thus a given

piece of information can be correctly represented in the display but

A

the person may lack the appropriate kno01edge structures to detect the

to

correspondence and consequently, process it efficiently. This lack of

efficiency results in increased effort. In this investigation, I

assume that the second factor is nonoperative, i.e., the appropriate

structures exist. Consequently the investigation addresset the first
4

factor only. That is, we want tp choose the display properties in

such a way_that the least.amount of effort is needed to process the

desired information.

BOW do we accomplish this objective? I think that we must begin

by Considering the graphical repiesentation of information from the

observer's point of view. That is, when we encounter graphic dis-

playsi we seem to look at them in certain ways and not others. There

seems to be some Irt of 'natural' perceptual representation driven by

the display .properties themselves. It is this 'datar-driven' descrip-

tion that we, as designers, must determine Since, in all likelihood,

c

a



the conceptual iliformation it carries is the information ext?acted

4 most easily. Thus one objective of this investigation is to determine

this 'data-driven' description and to look, at.,,iome processing conse-

guenCes associated with it.

Discovering the Display Properties,

I will refer to the di:splay properties.thh are mentally repre-

sented by an obserlier as encoding features of the display. This is

the perceptual information found in the data strudtures alluded to

, earlier. Garner (1978) has identified two general types of display

e-
properties which can serve as encoding, features: component prol5erties

and wholistic properties.

Component properties are called attributes. GSrner defines

attributes as properties which help define a stimulus but do not de-

note the stimulus. For example the attributes of the following'object

(11) are fdrm, size, brightness and-position. There are two major

types of attributes: dimensions and features.

A dimension is a variable attribute'of'a si_mulus such that if

the dimension exists for the stimulus it exists at some positive level

and these alternative leyela are mütually-exclusive. For instance if

hue is a dimension of a stimulus thenA.he stimulus must exist at some

particular hue, such as red or green and if the stimulus is red then

it cannot be green and viOe versa. Note that a zero level can be a

positive level on a dimension as with zero brightness.

A feature is an attribute of a stimulus that either exists or

does not exist, but if it exists it is defined on a single level only,

the alternative level"being the absence of the feature. An important '7

property of a feature is that it can be remoVed from a stimulus with-

-out otherwise affecting the rest of the stimulus. For example the

t)
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bottom horizontal line of an upper case E is feature and it can be

removed (F) without affecting the rest of the stimulu,s. Note that the

zero level of a feature implies its absence.

Wholistic properties are those aspects of a stimulus 'which are

not perceived analytically (i.e., in terms of component parts) but

nonetheless are perceived directly. One particular type of Wholistic

property defined by Garner which we will find useful as a display

preperty is a configural property or configuration. A configurat%

has properties 'that emerge from the stimulus as a consequence of'in-

teractions And interrelationshipS between the componentS parts. These
4

'emergent' properties exist in addition to, not instead of, component

properties but results indicate that-when they exist emergent proper-
.

ties dominate perception, overriding the component properties which

create them (Pomerantz and Garner, 1973).4 Configural properties are.

also diffe'rent from the component properties which define them. For

example the following stimulus:.

is defined by relations between the horizontal and vertical position

of a sequence of dots (component parts) but, as is intuitively obvi-
,

ous, configures so as to form the appearance of a line haying the

property of lcukvedness' which is certainly different from the proper-

ties of the component parts. Other examples of configural properties

include symmetry (A ), repetition (//////////), intersection ( X )

as well as other higher order prope'rties.

Methodology

It is possible to analyze a simple display for its encoding fea-

tures, b6. they dimensions, features Or configurations using measures
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0 obtained from the selective attention paradigm (Egeth, 1967; Garner

and Felfoldy, 1970). In this pAradigm the subSeCt is presented with,

stimUli varying along two attributes (usually diAnsions) .4nd is re-

quired to classify (or respond to) each stimulUs according to one
*

attribute 'while ignoring the other. Figure 1 shows a'typical set of

stimuli .generated from two dimensiOns each exidting at two levels.

One type of task requires the subject to,classify stimili varying

-

along one dimension, the other dimension held constant at a particular

levelt. Any row or column of Figuie 1 would'satisfy this task require-

ment. This is called the univari,pte or discrimination eask since the

subject must simply discriminate between the levels of ttie relevent
.e

c
Aimension. A secdnd type of task called .tlie gating br filtering task

(Posner, 1964) must be performed whenThoth dimensions are operative0

and the subject must classify On the basis of one of. the dimensions

(al vrs a2 or b1 vrs b2), ignoring the ottier. Of interest is the.
classification performance (time or errors) of this orthogonai con46

.tion relative to performance on the univariate condition. If stimuli

are classified more slowly when the irrelevant dimension is orthogon-

ally varied than when it is held constant, orthogonal interference

results. Ibis means that the irrelevant attribute interferes with our

ability to selectively attend to the relevent attributes. 'Another way

of inte'rpreting this-is to say that it is not possible to 'filter' out

the irrelevent dimension. On the other hand if no difference In clas-

sification speed between orthogonal and dhivariate tasks is found, it

ip concluded that selective attention to the relevent attribute is

possible.

INSERT FIGURE 1 HERE

Using the selective attention paradigm, then', I will operation-

ally define an encoding feature of a display as that display property

2
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which allows,selective attention. A 'justification for this,)pased on

the cognitiVeamework introduced,:is the following. In claSsifica,-

tioil.tasks, the experimenter, in telling,a person-how to respond, sets

a response basis. That is, the person is told to represent the stima-

lus in a certain'way-and thus must try to look-at the set of stimuli

in terms of this stored representation. When `a stimulus is encoun-

tered it must be perceptually represented. IE tIlis representation is

the same as the response basis then simply locating the correct value,

on the relevent basis is sufficient for a correct responses(classifi-

cation). If on the other hand this representation is different from
3 0

the response basis then additional resources are needed to 'tle,ansform°

so its correct vAlue can be obtained. Presumably this increased

effort will require'greater processing time resulting in a failure of

selective attention. in the univariate condition such a reparsing is

unneceasary since any disAriguishing display property can be used.

Therefore I win. equate success of selective attention with minimum

cognitive effort for this task.

Empirical evidence in support of this claim is provided by re-

search on the processing of multidimensional stimuli. This research

has demonstrated quite convincingly that the experimenter defined

aspects of a stimulus are not necessarily the same aspects represented

by the subject (Garner, 1974; Pomeranti, 1981; Garner and Felfoldy,;4.
1970). For example Garner and Felfoldy (1970) had subjects sort decks

of stimulus cards containing circular Munsell patches varying along

the dimensions of value and chroma. They observed orthogonal inter-
'

ference for this pair of dimensions. The assumption here is that

these are the attributes represented by the observer.. Suppose these

attributes are not the encoding features of this stimulus, but instead

II
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the encoding features are shape and the integrated percept color.
. &

-

Using th've attributes as the basis for_classification, Gottwald &

Garner (1972) fourid no evidence of orthogonal interference. Addition-
.

atly,,the perceptual grouping reseaich (Pomerantz, 1981, Pomerantz and
A

Garner, 1973) has shown that if comporient properties configure then it

is the configural properties which become the encoding features, not

the.component parts. For example, asing pairs of elements differing

in the direction of curvature of each element,.e.g. (), ((, )), )(,

- Pomerantz and Garnet (1973)- found failure of selective attenfiorrto

the individual elements. tm the other hand, the following stimuli,

show no sucla failure. Note that Whi.le both sets of
4

stimuli have the same elemental properties, the relationships between

these.properties in the first set produce- additional bonfigural pro-
.

perties such as smmetry, closure etc.which seems'to dominate. If

classification were based on-such properttes then evidence supporting

selective attention may exist.

Investigating the Encoding Features of Graphs

Thus far, I have introduced a cognitive framework which I feel

can be used tb design more communicatively effective displays. This

framework allows.us to factor into the design process how people in-
,

terpret the information found in graphic displays and what display

properties ,are responsible for this interpretation. Additionally the

framework provides us with a performance measure useful in assessing

alternative designs, cognitive effort. Drawing upon concepts from the

psychology of'perception., I then describe those propertAes of dis-

plays, features, dimensions and configurations, which can be mentally

represented and thus serve as a basis for response. Finally, I intro-

duce a methodology that can beused to determine which display proper-,

a



a. ,yies ardactually being-represented,.using cognitive.effort as a cri-

tetion, as well 4s g processin g'justification'for its ise.

Now thisaoioethodology is diretted towaids the study of a specific

display, the simple graph.. Graphd'are an integral-part of the Commu-

hic4ion process today, and hence a poorly'jesigned graph could have
46,

dire consequencein a wide rangelpf fiq.ds. Thus there is a real

need for design wftn repect'to these'displays. AdditionallOthe

.
N..:

properties of graphs Ell- simple eXterisions of the basic stimulPs con-
*

.

&

cepts found in the perceptual li. terature'allowing us to build uponN....f. .

4existing theory and methodology. Finally, since the properties of
. . r,

these displays do not chanae over time, their properties can be effi- ,

. -
-

ciently controlled and manipulated. ThiS makes them ideal tools for

study.

Suppose we are given the four basic graphic displays shown in

Figure 2. The first display is defined by pairs of lines on two L--

shaped frameworks; the second display is defined by a pair of lines

on a single L-shaped, framework; the-third and fourth displays are

defined by pairs of,pnconnected and connected paints respectively on

L=Staped frameworks. Note that the L-shaped framework constitutes a .

feature Of the di-splay since its removal does not affect theremaining

aspects which are the dimensions on which the 'objects are defined.

Formally we can define these dimensions as the height of each point of
,t

the pair: 'Thus we should be able to classify stimuli generated from

different values of these dimensions on the basis of either. Using.

these dimensions as the...response basis, then; if sp-...cess of selective

attention is evidenced for.;-ly of these displays then the height of

each paint w6uld constitute an encOding feature.'

INSERT F4GURE 2 HERE



However, the heights.of each.poiht are not the only properties

. 'that can perceptually define the four displays, 'In Figures 2A and 2B

the objects may not be te points at all, but instead the potnts may
411.i

be rgnored in favor o he lines connecting them to the ramework. In

'at

this case we,coulh define the displays in terms of the height of the

lines xather than- the hgight,of the points. Similarly, as we move

from left to right across the.displays the defining properties. may

.
begin to shift from.the height of each line or point, dependingvon the

-

display, IO properties,refMcting the relationships between the pair,

'culminating in.slope ahd overall height of the pair (see Figure'2D).

Again using the selective attention task, we can establish whether

these properties are in fact encoding features by using them as a

response basiS and measuringr'the amodnt of interference for each dis-

play.
*

Processing ConsequenCes

The strategy for determining the encoding features of asgiven

display should be fairly evident from the discussion thuS. far. First,

...

the dispVy is analyzed for its potential informatiA on conveying pro-
,

.
.

per:ties. For example, using the displays of Figure 2,'the properties

.

chOsen'for investigation are the heights of the indiyidual objetts (be.

they points or line's) and the slope and overall heightAod the pair.

Second, th'ese properties serve as the response basis for a olassifi-
:

cation task. That is., each display is classified With respect to both

sets of'dimensions. Then,,using the selective attention paradigme.the

magnitude of interference between orthogonal and univariate gonditions

is deteimined. If there is no difference in performance between these .

conditions we conclude that the dispiay properties chosen-are in fact

the encoding features.

4



4
What happens if the display properties we choose to represent the

information are not the encoding features? ,For example, suppose that

slope and height are not the endoding,features for any of the displays
%

shown in.Figure 2. Would we expect the 7.-Mount of interference (re-
-,

flecting.the amount of additional effort needed) to be the same for

each display with respect to this response basis? The justification

for using the selective attention task, which I presented, earlier

would imply that the amount of interference will vary depending on how.

similar the perceptual representation is to the\response basis.

A proposed processing model which could account for varying

p.mounts of interference is shown in Ffgure 3. When a visual stimulus

is encountered it is represented perceptua_ly by its encoding fea-

tures, whether they be dimensions, features or configurations. This

perceptual representation forms one input to a similarity based

'match' prOcess. The other input comes from-a stored representation

of the response basis set by the experimental context. Similarity is

being used, in the sense of Tversky (1977). That is, the similarity

between " and 'b' is some 'matching function' of both common and,

distinctive properties of a and b. The matching function measures the

degree to which two objects overlap and will vary monotonicallY as a

function of common properties shared by a and b as well as the dis-

tinctive properties specific to each. For example E would be more

similar to F than to I because E and F have more common features than

E and I. Thus the match is based on some function of the number of

properties the two representations have in common and by how much they

differ. If the two representations share many properties a relatively

quick decison can be made and a response generation process can

begin. dn the other hand if the two.representations share relatively



few properties then additional processes are necessary to reparse the

perceptual representation to effect a match. This reparsing will

result in more processing resources and hence greater processing

times.- This increase in time will be evidenced as orthogonal inter-
,

ference. Note that this model puts the locus of interference in post-

perceptual processing which is more consistent with late mode structu-

ral attention theories (Deutsch & Deutsch, 1963; Norman, 1968).;

INSERT FIGURE 3 HERE

Therefore, using both height of each object and slope and overall

height of,the pair as the response basis it is possible, using the

selective attention task, to assess this degree of interference hypo-
.a

thesis. As- we move from left to right across the displays it seems

intuitively apparent that the displays start sharing properties more

common to the response of basis slope and overall height then height

of each object. Similarly, as we move from right to left the opposite

.
occurs, that is more properties common to the heights of each object

and less properties common to slope and overall height of the pair.

Since greater mismatch between encoding features and response basis

means greater reparsing is necessary, we should expect greater

amounts of interference evidenced as we move from left to right with-
,

,classification is based on heights of each point Or line while the

same would be true as we moved right to left with classification based

on slope and overall height of the pair.

Using a speeded classification task, a taSk commonly used in

selective attention research, the first experiment will test whether

any of the above display properties are in fact the encoding features.

Additionally the degree of interference hypothesis will be assessed

using the resulting interference magnitudes.
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EXPERIMENT 1

Method

Subjedts

/°
Sixteen coworkers at CSI/Datacrown served as subjects in this

experiment. Performance measuees on one subject were not included in

subsequent analyses because, under some experimental conditions, these

measures were excessively large (greater than ± 30) relative to the

treatment means. As a consequence'they were considered outliers and

discarded.

Stimuli

Two sets of stimuli, corresponding to two response sets, were

used in Ahis experiment. They are shown in Figure 4 and Figure 5..

Each set consisted of four different types of stimuli, 1) Pairs of

vertical lines, centered on separate L-shaped frameworks, spaced 2'cm

apart, 2) Pairs of vertical lines, centered on a single L-shaped

framework, spaced 5 mm 4aft, 3) pairs of unconnected pdints, centered

on, a single L-shaPed frameworkt spaced 5 mm apart, and 4) pairs of

connected points, centered on a single L-shaped framework, spaced 5 mm

'apart.

INSERT FIGURES 4 and 5 HERE
-

The dimensions used to generAte the first set of stimuli were

defined in terms of the pair of lines or points. The dimensi6ns were

the slope of the pair (0.25 or 0.45) and the overall,height\of the

pair (1.27 or 1,52 cm). The overall height was defined in terms of

the mi43iptiDetween the pair. The dimensions used to generate' the

second set of stimuli were defined in terms of the component proper-

ties of the objects. These dimensions are the height of the left line

or point (4.95 or 5.97 mit) and the height of the right line or point

(7.24 or 8.72 mm).
C7



The two values of slOpe used in this experiment were,chosen so as' .

not to make the length of the left and right lines of stimulus type 1

in Figure 4"unduly large or small. Such conditions could occur for

-thistimulus type because the spacing between lines 'is much greater

, than spacing for the other stimulus iypes. As,a result a much greater

char* in vertical-length is necessary to generate the same slope as

the other stiMblus types. ghe heights used in the, second stimulus set

were obtained by constr.ining themajor diagonal of Figure 1 (a1b1 and

a2b2) to,have a slope of 0.45, one mill%diagonal element fa2b1) tO

have a :slope of 0.25 and constraining the difference in levels along

'both heighe dimensions to be 5 just-noticeable-differences (JNDs)

usrng. Ono's J1967) differential sensitivity index.

'For,both response sets and within each of the four stimulus types

there were decks of 32 cards generated in accordance With four experi-

mental-conditions; two univariate conditions and two orthogonal condi-

tions. Each deck contained an equal number of cards relevant to that

condition. -Forexample when slope was the relevant dimension the

univariate condition consisted of a deck of 32 'cards, 16 of which

defined the pair of lines or points at an ori ntation of 0.25 and

another 16 whith defined the pair at an orientation of 0.45. The

overall height dimension was held constant,at 1.52 cm for this condi-

: tion. Similiarly when overall height wa the relevent dimension., 16

cards defined the pair at a height of 1.27 cm and 16 cards defined $he

pair at 1.52 cm, slope held constant at 0.,25. When:the defining

dimensions were height of left object and height of right object, the

irrelevant dimension was held constant at 7.24 and 5.97 mm.respect-
.

-ively flOr the univariate condition. In the orthogonal condition- a
c-

deck was made u ot. 8, cards each frOm the four,stimuli which could
P

I b



exist as a result of the cqmbination of two dimensions each having two
i.

levels (each cell in Figure 1 )'.

The process of generating the stimulus card's was semi-automated

using a Tektronix 4662 inte'raCtive digital plotter driven bY PLbT 10

software. Standard,sheets of 27.9'x. 35.6 cm (11x14 in) Bristol Board
3

'were partitioned into a 6x3 giid pattern,'each grid being 5.6 cm

wide x 80 cm high. The plotter was scaled such that 2.54 cm (1 in)
; A

mapped into 10 display units. Centered within each grid, the Parti-
.

9

cular stimulus alternative was drawn in black ink. Eighteen such

stimuli were drawn per sheet. The stimuli were theh manually cut out,
-

the top left corners clipped to avoid any potential upside,down mixup

(and additionally to-facilitate error checking), and became part of

the appropriate deck. Two decks per' condition were generated in this

way.

Procedure

Subjects were required to sort the deck of, 32 cards into two

pile's corresponding to the two levels of the relevent dimension;

Exemplars of each classification level were placed on the table in

front of the subject. Each subject was Lld the purpose of the exper-
,

iment, handed a deck of cards and told to sort them into two piles

consistent With the targets as quickly as possible but without making

errors. Time to sort .a.ch deck was measured to the nearest one hun-

dreth second using a Model 54035 (Lafayette Instrument Co.)- clock/

counter. The clock was-started by the experimenter when the first

caia left the deck and stopped when the jast card was.pla-ed on one of

the piles. Upon completion of the task the subject was told the sort-

ing time. The sorted cards were then set aside for purposes of deter-

mining errors, and the next deck was.given to the subject. Within



each -conditiob subjeip sorted the deck of cards two times, the first

sort representing practice and not considered in the analyses.
1

Design

Thirty-two different conditions were generated by combinations of

two.response sets (slope/height, height of left/height of right),

four types of graphs (lines on two frameworks, lines-on one framework,

points unconnected, points connected) and four tasks (two univariate/

two orthogonal). Each subject participated-under all conditions.

Subjects sorted conditions correspondin§.to one response set first,

were given a five-minute break and then sorted conditions correspond-

ing to the other set. Response set one occurred firat for half of the
A

a

subjects while response set twq, occurred first for the other half.

Within each set grder of,presentation of the sixteen conditions was
A

,balancpa over the sixteen subjects in a Latin square arrangement. An

experimenti session lasted about 1.5 hours.

Data Analysis

06articular interest in this experiment, were two sets of a
41,

priordplanned comparisons. One family of sixteen orthogonal contrasts ,

tested the magnitude of interference, i.e. differences in means

between orthogonal and uniliariate tasks for each pair of dimensions

under eaCh graph type and response set were tested. The other family

of,twelve nonorthogonal contrasts tested the degree of interference

effect. Differences in meang, averaged over both dimensions, between

orthogonal and univariate tasks for one graph type were contrasted

with equivalent differences'for the other graph types within the spe-

cific response set. ,The results of these tests will be couched in

terms of confidence intervals since it is felt that this approach not

only allows one to test the specific hypothesis under Consideration



but also to gauge the strength of Ay inference made as a result by

noting the,width of the interval.

In addition, note that-as the number of comParisons increase the

likelihood of at east one Type I error (i.e. reject Ho when it is

true) increases. For example, if we did sixteen independent signifi-

cance tests, each at the 0.05 level , the probability of at least one

Type I error would be 1-(.95)16 = 0.56. This value is termed the

error rate per family. Since inferences drawn from results of this

experiment are based on the family as a whole, using p = .05 for each

individual test, would make the findings somewhat tenuous and not

readily reliable since spurious results would be expected in'over half

the replications. For this experiment the error rate per family was

chosen to be 0.20 resulting in a family confidence coefficient of

0.80. 'This confidence coefficient means that if the experiment is

repeated, Say, 100 times then we would expect the same sixteen confi-

dence intervals in 80 out of the 100 replications. This family confi-

dence"coefficient results in a significance level per comparison of

about 0.02 for the twelve nonorthogonal contrasts. For the family of

sixteen orthogonal contrasts, however the significance tests, and

hence the confidence intervals, need not be equally weighted (Myers,

1979 Chapter 2). It is only necessary that the,sum of the indtvidual

a level per comparison add to the error rate per family or 0.20.

Preliminary results from a pilot study using the four graph types with

the response set consisting of height of left vrs. height of the

righe classification showed.that, of the graph types showing potential

interference effect, the greatest power was needed in assessing

effects for bars:on one framework. Differences in means for this

graph type showed significance at approximately p = .03 while the



other grapk types, showed significant effects at p < :001: For this

family of contrasts, then, the a level used to test interference

effects for lines onlone framework for both response sets was set at

0.03. The remaining graph types all were tested at a significance

level of 0.007 such that the overall error weight was 0.20.

Results and Discussion

The positive correlation coefficient (r=0.18, p<.00l) between

time and errors indicates an absence of any speed-accuracy tradeoff

'which would otherwise qualify interpretation of the of the data.

However plots di variances against means for both sorting times and

errors indicated variance stabilizing transformations.were necessary

. for both these measures. It was found that a logorithmic transforma-

tion for times and a square root transformatiOn for errors were suffi-

cient to induce spherical distributions for both measures. Thus all

times and errors to be presented will be expressed in logs and square

roots respeCtively.

Times

The logarithm of sorting times in seconds averaged over subjects

is.rshown in_Table 1 for each graph type, response set nd task.' Also

shown is the magnitude of interference, A, defined as the difference

between the orthogonal and univariate sorting task.

1For a repeated measures design there is no appropriate errbf term
frbm which the significance of the four way interaction of Response

Set x Graph Type x Task x Subject can be tested since each cell has a

sample of size one. However a single df test developed by Tukey
(1949) provides a means of evaluating a particular form of this in-

teraction. This test involves further analyzing the interaction sums
of squares inton two components, one which represents the interaction

component distributed on 1 df, the other representing error distri--

buted on the remaining dfs. For this data F(1,125)=0.83, p>.25 indi-

cates the interaction component is not significant implying the mean

square provides an independent estimate of the error variance.
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INSERT TABLE-1 HERE

Table 2 shows confidence intervals for the preplanned orthogonal
t

comparisons testing the sixteen interference magnitudes found in Table

1. Any intervall not encloSing zero implies a reliable difference

between the means of the two sorting tasks. The tabled results show

that for the response set height Of left/height of right, selective

attention (i.e., no interference),was possible only for the graph type

symbolized by the,pair of vertical lines on two L-shaped,frameworks.

Thus it appears .that the encoding features for this stimulus are in

terms of its qomponent parts (the individual heights) while for the

other graph types, these part$ interact to produce other defining

properties.

INSERT TABLE 2 HERE

-

The succesi of selective attention for'the pair of lines on two

frameworks' and the failure of selective attention for the pair of

).ines on one framework may be a consequence of the proximity of these

lines to one ahother. Pomerantz and Schwaitzberg (1975) showed that

the magnitude of interference diminished as the spacing between two

elements (left and right parentheses)was increased and disappeared

entirely at a 4-deg Of visual angle sepapation. The separation-be-

tween the pair of lines on two frameworks, at a viewing distance of 28

cm was 4.1-deg while that for the lines on one frameworkwas about 1-

deg. Thus it is quite likely that the proximity of the lines on one

framework induces an encoding in terms of the pair as a perceptual

unit. Further support for this likelihood.is'provided by the success

of selective attention for the pair of lines on one framework when

"classification is based on the overall height of the pair (contrast

L12 in Table 2).
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/n a. similar vein the encoding of pairs of unconnected points the

pairs of connecteepoints.is in terms of-some (relationship between the

pair. -These properties of these graph types seem to configure such

that slope and overall height become the dominant properties.' This is

evidenced by the success of selective attention when classification

was based on these properties, while failure of selective attention
A

resulted when classification was based on the individual heights of

the points. For both of these displays, then, we can conclude that

the tncoding is in terms of the slope and height of the pair of

points.

Finally, note that within the response set of slope and overall

height, the confidence intervals,.show an interference asymmetry

(Garner, 1974) far two graph types: This means that selective atten-

tion was evidenced for one dimension of the pair but not the other.

For the pair of lines on two frameworks, when classification was based

on overall height failure of selective attention was evidenced but not

so for classification based on slope. However inspection of the stim-

uli used for tIlis graph type, shown in Figure 4, suggest that the

source of the,asymmetry may be the particular dimensional values

chosen to represent this graph type. Note that the two stimuli having

the greatest slope also have the smallest height of the left line and

largest height of the right line. Contrasts Ll & L2 imply that we

represent this graph type in terms of the individual heights of each

line. This means that when we look at this graph type it is in terms

of the individual heights initially. This makes these extreme values

quickly, noticeable since presumably they keep calling attention to

themselves. Since the response basis makes ambiguous the attention
, .

allocation policy, both extreme values should be noticed equally of-
t



ten. Thus, for example in the univariate condition where clatsifica-

tion is based on stimulus lc or ld (see Figure 4) a basis of, say,

extreme (left or right)/other would be sufficient. Syilarly such a

basis would be sufficient to classify stimulus la/lc vrs stimulus

lb/ld (the orthogonal condition) and no interference would be eviden-

ced as is the case. ,This'suggests that there may be a tendency to use

the encodin4 features at a respoilse basis whenever possible.

Just the bpposite asymmetry was evidenced for the pair of lines

on one framework, i.e. failure of selective atteAtion when.classifi-

cation was based on slope and success of selective attention when

classification was based on height. Since the confidence interval

(contrast L11) encloses a value whose true magnitude is much greater

than zero (relative to the marginal lower bounds of other contrasts),"

,
pis interference effect is not tenuous and the height of the lines

confounds our perception_of slope with this graph type. This in turn

+.

implies that wd may not mentally represent this graph type in terms of

the slope of the lines but instead, for example, by some aspect asso-

ciated with the differences in heights of the lines.

Post hoc comparisons (Scheffe, 1959) of the interference magni=

tudes within each graph type showed no reliable difference in means

between either of tlit two component propertiet or the properties de-

fined in terms of the pair. For example, there were no difference

between the height of left and,height of right response for any parti-

Cular graph type nor were there any differences between slope and

overall height. Thus for each graph type within the appropriate re-

sponse set the interference magnitudes were averaged together and

these average magnitudes are plotted in Figure 6. The figure clearly

shows a monotonic increase in the amount of interference as we move'

a
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from pairs of lines on two frameworks, having the greatest matghl''to

the response basis, to connected pdints, having thegreatedt mismatch

tlo the 'respsnse basis, when classification is based on the component
a

properties. Conversely a monotonic decrease is apparent'when clasi-
.

fication is on the,basis. of properties defined" terms of the pair,

which produces the,opposite matchigg characteristiCs.

INSERT FIGURE 6 HERE

Table 3 shows the confidence intervals of the preplanned compari-
.,A

sons testing'this degree of interference effegt [Garner, (1970) uses

the term degrees of integrality]. Considering the response set" height

of left/height of right, the average interference for the connected Ag

points is higher than averages for any of the remaining graph types.

Contrasts involving differences between 'the other graph types were not

significant with respect to the 'family,.but less conservative tests

(p=d05) shOw that both lines on one framework and unconnected points
4

result in greater amounis of interference than lines on two separate

frameworks. For the response set slope/height, contrasts show that

lines on two separate frameworks result in greater amounts of inter-

ference than either connected or unconnected points, whilelines on

one framework yield greater airerage amounts of interference than on-

.1

nected points.

INSERT TABLE 3 HERE

The monotonicity of interference magnitudes as the degree of

presumed mismatch between encoding features and response basis in-

creases suggests that it is possihle in principle to assess different

design alternati.ves for a given piece of information uding cognitive

effort as a criterion. For gxample, if we want to convey, conceptual-

ly, the 'trend' of one variable (increasing or decreasing) over some



diScrete ''rer,ge' of andther variable, this information should be rep-
.

iesented graphically bY connected points. As we have shown;_such a

graphical representatitin results in the least amount of effort for its

perceptual processing. -lhe ,Ost preferred design using a single

framework representation would be the bar graph, On the other hand,

if me want to convey, conceptually, the 'level' of one variable'(high

or low) for a certain value of the oither variable using a single

framework graph, the bar graph is tpe preferred design from a process-

ing viewpoint.

Selective Attention'Considerations

\ Using the selective attention paradigm, I Stated earlier that it

might be possible to use the data from this experiment to.further

elabordte on some of the theories And models.on which the paradigm is

based- For instance, the fact'that some of the contrasts,shown in
4

Table 3 are reliably different indfcates a very important consequence

concerning selective attention. That is, selective attention is not

an all-9r4hone affair. The monotonic relationship between-interfer-

ence magnitude and degree of mismatch seems to be'more consisfent with

sharecrcapacity theories of atiention (Kahneman, 1973; Norman and

Bobrow, 1975). These theories posit the prime deteiminant of task

difficulty is governed by the allocation policy of resources (atten-

tion). One model, based on this theory, has beenproposed by Dykes and

Cooper (1978). They suggest that orthogonal interference could be due

to the misallocation of attention. Assuming a fixed amount of atten-

tion that must be shared amongst all incoming signals, if attention is

misallocated to the irrelevant attribute then less attention can be

directed to the relevent attribute. This, then, is evidence by ortho-

_

goheflinterference.

40
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I.-feel that.while this aSsumption can aCcoUnt for processing

t
i 1

er rs (as we see in the next section), it is someidhat hard pressed,
. -------..

as it stands, to account for incteases inNimes. As Norman.& Bobrow

(1975) suggest, attention is a resource.to be allocated to a cognitive

task. As more resource* are applied to a task then presumably better

performance results. However the allocation of more processing re-.

sources will require more processing time. Thus the allocation of

less attention (resource) to the relevent dimension aS Dykes and

Cooper suggest will not produce an increase in time. Instead, as I

have suggested, orthogonal interference arises from the iincreased

attention necessary to reparse the pgrceptual representation; the

resultant of a post-perceptual match process.

Errors

Table 4 presents the results of the experimen"-terms of the

transformed error scores. That is, square root errors averaged over

4

subjects.are presented for graph.type, response set and task. How-

ever, in contrast to sorting times, these mean values are tempered by

individual differences.2

INSERT TABLE 4 HERE

The significance of this high crder Subject-X Treatments inter-

.

action means that while the group of subjects showed the overall pat-
.

tern of results found in Table 4, this relative pattern differs mark-

edly for some individuals, The data shown in this table, though,

2Tukey's test shored a significant component of the four way inter-

action involving subjecis,and the three. other variabies, F(1,125) "=

3.9, p<.25. In testing this effect we want to guard against making a

TypeJI error, i.e., ,we do not want to cOnclude no interaction when

,in fact it exists. This protection is accomplished by increasing the

probability of,mAing a Type Iwerror, oelevel of significance.
Tukey suggests an a level of 0.25.

20 4.



suggeSts a potential source of this interaction lies irv.the dis6rimin-
i

ability difference betwen
4

left/height of right). Scheffe's 195 ) post hoc comparison of the

univariate t'asks for this response set showed a reliable difference

between the mean transformed errors for sorting based on the height of

the left (1.47) and those for the height of the right (0.583). No

such difference was found between univariate tasks for the other res-

ponse set. Additionally, visual inspection of the subject data for

the graph type symbolized by the unconnected point, for example,

showed that, while no subject made more errors in the univariate task

than the orthogonal.tasks when classification is based on 'the height

of the right attribute, four sübjects did So when classification was

based on the height of the left attribute. Similar effects were not

atypical among other graph iypes as well. Thus differences in discrim-

inative ability among subjects to the attributes for the different

graph type and reponse sets may be the potentiarsource of the inter-

action.

Data-limited errors. In this'experiment, errors,may be more of a

consequence of what Norman and Bobrow (1975) refer to as data-limited

processes. Data- ited processes result in performance which is

independent of proces4ing resonrces such as attention. They depend,

instead, only on the quality of the input data signal or the quality '

of the representatistored ih memory. Consider the type of task we

44
are asking subjects to,do: absolute judgements. 'Absolute judgement

tasks not only require the subject ,to mentally represent the informa-

tion but also to compare this repre entation with a representation

stored in memory. . The quality of input data, such as its co2-.

trdst, proximal size, duration, etc. .can affect our representation of



the input. However, these factors are not responsible in this case.

What is responsible seems to be the quality of'the memory trace which

depends on both the number of items held in memory and their discrim-

inability, and as we have suggested, discrimination is exteedingly

difficult. Further support for data-limited considerations is eviden-

ced by the magnitude of the corxelation coefficient between time and

errors, r=0.18. Note that while this coefficient is statistically

.significant3, its magnitude implies only 3% of the vartance in errors

is accounted for by differences in times. If, as we assume in the

previous section, differences in times are due to differences in pro-

cessing resources, the lack of a meaningful correlation coefficient

suggests processes affecting accuracy are different from those affect-

-ing latencies. Data-limited processes bear important considerations

in display design, and it is these types of processes fo which tradi-
,

tional display design has addressed itself.

Resource-limited errorS. However, the pattern of errors in Table

4 appear.to be somewhat similar to the pattern found for sorting -

times,:k.e-. an increasing amount of interference as the degree of

mismatch between encoding features and response basis increases.

Since we have assumed sorting times reflect a resource-limited process

(i.e. , the amount of attention allocated), we can attribute some

resource consequence to errors as well. It might be that errors are

resource-limited up to a point, and then become data-limited. For

example, suppose less than sufficient, resources than are necessary are

allocated to the correct input in an absolute judgement task as Dykes

and Cooper (1978)'suggest.

-
3The significance of this coefficient is based on 478 degrees of free-

,

dom. This large number of degrees of freedom provide relatively
large power to detect even a very.small change from zero.

20



Since the activation and maintenance ct the _stored representation

and match process are all resource demanding operations associated '

with this input, there is less resources to allocate among theme

Thus, we might have only a partial.match or a match based on a more

degraded representation, but in either case the likelihood of error

increases and this likelihood is independent of data quality. .

In this experiment, we assume a fixed`amount of attention

(kahneman 1973) and further that all the attention which can beallb-

cated to tile task is allocated.4 One way less attention can be-

allocated to th correct response basis, then, is if more of it is

allocated to mental operations involving some other aspect ofthe

task. These other operations could involve a reparsing of the input

description so that the appropriate input can be compared With the

stored representation. Such a reparsing would be necessaryif the

encoding features are in fact different from the response basis.

Further evidence suggesting that the encoding features of a

stimulus are not necessarily the response basis is provided by the

pattern of errors. Multidimensional scaling studies (Shepard, 1964;

Handel & Imai, 1972, Somers & Pachella, 1978), demonstrate that stimuli

which do not differ in terms of their encoding features are best des-

cribed in terms of their overall similarity structure Euclidean
.

metric). This means that perceived differences between any two stimu-

li depend on relations between level; of the underlying dimensions.

In other words, the dimensions interact. -On the other hand, stimuli

4The relative discriminabilities of the stimuli used in this experi-

ment impose a very capatity
/demanding operation on the subjects.

Debriefings at the end of each session indicated that all subjects.

foUnd the task very difficult and had to really concentrate-to See

the difference.



1

differing in terms-of-their encoding.feature show'no such. interaction

(i.e., are characterized by a city-block,metric). NOte that the stim-
-

uli used in our experiments differ on levels of two dimensions (i.e.

height of left/height of right or slope/overall height). Thus if the

stimuli to be compared, albeit a mental comparison, do not differ in

terms of their encoding featureS t13en we should see some evidence of

interactiOn bgtween the dimensions. A procedure called lo9it analysis

(.Goodman, 1972; Theil, 1970) allows -us to test'for interaction effects '

using the confusion matrices5. It was found that for the eight graph

types showing orthogonal interference (see Table 2), only one (lines

,on one framework, classification by height of right) failed to show a

_significant interaction effect, x2(1)=0.830,,p<.36. However, this

--,condition resulted in the lowest frequency of errors relative*to all

others, decreasingthe power to detect this interaction. Conversely,

it was found that for'the eight graph types not showing interference

onlY one '(Onconnected points, classification by orientation) ,showed a

r4Spicifically we want to know, for a given level (high or low) of the

re event dimension whether the pattern of errors (i.e., cell frequen-

ci s) is influenced by the level of the irrelevent dimension (high or

lo ). The dependent variable was dichotomized to correct classifica-
ti n/incorrect classification,resulting in a.2 x 2 x 2. contingency

ta le. Thus the usual ANOVAkIlramework, which assumes that the depen-

de t variable is continuous and normally distributed is not applic-
ab e in this case. However, a class of procedures developed by
Go dman (19710) and others (Bishop, et al., 1975) allow qualitative

information to be analyzed with the same degree of sophistication
that was once reserved for quantitative data. Specifically, the
proCedures examine the effects of a set of categorical predictor
variables on the log odds of a binary dependent variable similar to
thelway in which predictor effects are evaluated in traditional ANOVA

designs. Just as in ANOVA designs, the dependent variable is parti-

tioned into a.set of main effects 'and interactions,'but the partition
is in terms of the natural logarithm of success to failure (log odds)

for _each leVel of the independent variable rather than the mean. A

likelihood Chi-square statistic is then used to evaluate any speCific

effects in the model.

u



significant interaction, x2(1)=11.5, p<Aol. This condition, though, I

was the only one which had no errors for a particular combination of

relevant/irrelevant dimensions. Thus, apart from a pair of matrices,

orthogonal interference did show dimensional interactions, while no

interference showed no such interactions as expected.

Tb elucidate t, nature of the interactions, log-odds plots6 ire

presented next to the confusion matrices associated with graph types

showing interference. These matrices and plots are represented in.

Figure 7. The dimensional interactions are clearly evident from the

plots. Consider for example Figure 7A showing misclassifications for

lines on one framework when classification is based on the height of

the left line. When this dimension exists at a low level, greater

misclassification results when the irrelevant dimensions exist at a

high level than when it exists at a low level. However, just the'

opposite is true for a high level defining the relevant dimension

(hence the interaction). Comparing the four stimuli associated with

6Log-odds plots are obtained by plotting the natural logarithm of the

odds being in one category of the dependent variable. Thus for any

combination of the two dimensions the odds of misclassification are

calculated by dividing the number of errors by the number of correct

responses. For example, for Figure 7A, if the relevant dimension

(height of left line) is at a low level arid the irrelevant dimension

(height of the right line) is also at a low level, the odds of mis7
classification is 9/111=0.081 and the log-odds is -2.512. Log-odds

are computed for each combination in the same fashion and when these

values are displayed, Figure.7A results.
lbe graph is easily interpretable if several points are remem-

bered. First, when two values are equally likely the odds are 1 and

the log-odda are 0. Thus, any 16g-odds above 0-indicates that the

probability of the numerator,- in this case misclassification,,is
greater than that for the denominator, correct classifications, while

log-odds less than zero implythe converse. Secondly, the higher the

'point cn' the graph, the moref.likeAy misclassification results. More-

over, since points of ecival heights imply equal log-odds, changes in

the slope of the line or equivalently when the line is not parallel

to the abscissa, an effect is identified. Similarly an interaction

between dimensions-occurs when the pairs of lines are not parallel.



this graph type (see Figure 5), the pattern of misclassification imply

that stimulus G2A is most confused with stimulus G2C and stimulus G2B

is most confused with stimulus G2D. Suppose some aspect associated

with differences in heights of the lines using the left line as a

reference point represents an encoding feature, the overall height of

the pair representing another. Since these aspects will' keep calling

attention to themselves, and as we have already seen discrimination on

the basis of the height of the left line is exceeding difficult, there
%

may be a tendency to use them for classification if possible. For

example, it appears quite easy to contrast stimulus G2A,and stimulus

G2D on.the basis of overall height and similarly stimulus G2B and G2C

on the basis of the difference between heights. However, it is not as

easy to distinguish stimulus G2B and G2D or stimulus G2A and G2C on

the basis of either of these features under forced pace conditions.7

In this caSe a reparsing of the perceptual description is likely and

this requires attention, some of which was initially allocated to

maintaining the trace associated with these two stimuli. This reduc-

tion in attention should result in a less then optimal comparison

involving these stimuli. Thus more confusion should result between

these pairs as is the case. Note, too, that the same type of inter-
-

action occurs for this graph type when classification is based on .

orientation which is not an encoding feature (see Figure 7G).

INSERT FIGURE 7 HERE

7Not coincidently these pair of stimuli differ from each other in
terms of one dimension only, while the less confused stimuli differ
on both dimensions. Both Eriksen & Hake ,(1955) and later Lockhead
(1966) hive shown that stimuli differing on two or more dimensions

are mcire accurately identified than stimuli differing on one dimen-

sion provided the defining dimensions are not the encoding features
(Garner & Lee, 1962).

IP



The other graph types in this response set (with the exception of
b.

one) show a pattern of errors that is m'arkedly different. For exaT-

ple, consider both height of.left/height of right classification for

the graph tyPe symbolized by the connected points. The log-odds plots

-

show that the greater likelihood of errors occurs when the relevant

and irrelevant components exist either at both low levels or at both

high levels. In terms of the stimuli comprising this group (see

Figure 5) this means that stimuli,.G4A and G4D are most often confused.

Suppose the slope of the line keeps calling attention to itself, i.e.,

an encoding feature. With respect to such an encoding'feature stimuli

G4A and G4D differ.on only one dimension, height, whereas any other

pair differ on both height and slope. Using the same considerations .

as before, more confusions should result between the pair. We might

also expect the same pattern for the unconnected points since our

results shOwed no reliable interference effects when Classification

was based on orientation and height. However, while Figure 6a shows a

similar pattern to the connected point, Figure 6c is not consistent

with this expectation. In fact, Figure 66 shows a pattern similar to

that for the lines on one framework. The47fact that the amounts of

interference between these graph types is in fact different (see Table

3), though, suggests that how we represent the pair of unconnected

points may be somewhat different than our representation of the con-

nected-points. It may be that the pair of unconnected points is rep-

resented in'a way that is intermediate between the lines on one frame-

work and connected points and may be modified depending on the demands

of the task. This flexibility may thus manifest itself in q)i., we use

the representation accounting for the disparate interaction results

between the connected and unconnected points.



DISCUSSION

The results of this experiment provide initial justification for

considering display design issues using a cognitive framework. Simply

considering those properties of the display that make the information

accessible, while nebessary, is'not sufficient for effective graphic

communication. As we have seen, how a person perceptually interprets

,the information represented graphically is determined, in part, by the

display format we choose. If this format is not compatible with the

to be presented'information, results show that classification errors

increase which in turn means greater likelihood of miscommunication at

higher levels of processing.

Thus,the properties of the display which influence its format

must be chosen with respect to the observer's point of view. That is,

when a perSort_looks at a graph, for instance, there seems to be a

'natural' encoding of certain of its properties, whether they be

dimensions, features, or configural properties. These properties,

called encoding features, are mentally represented with little cogni-

tive effort on the part of the person; If we assume that the percep-

tual representation leads directly to a conceptual interpretation at a

deeper level of processing (Craik and Lockhart, 1972), then certain

types of conceptual information should likewise follow naturally.

Turning this problem around, then, for a given conceptual message we

wish to,communicate, there may exist a graphical format that leads

'naturally' to its extraction. Any other format will require a repar-
.

sing or elaboration of the perCeptual representation corresponding to

r,

this format, and, as the results imply, requires greater processing

effort and more time.



Thus it becoMes possible in-principle to 'maximize' the likeli-

hood of correct interpretation for any message we wishto communicate

by representing the specific Conceptual message to be communicated

using encoding features which correspond to it.

In the next experiment this optimality assumption is tested using

the display types shown in Figure 2 and a discrete reaction time (RT)

task. For each display type, mathematical scales and values on these

stales will be added. Thj.s will result in,a set of paired observa-

tions, where the first member can be either a particular value of the

independent vabiable or a pair of values. For example if the graph

symbolizes the price of gold over months, months constitutet the inde-

pendent variable. We.can then talk about a particular month; say

January, or a pair of montht, January vs. February. The second member

of each pair can be a.ratio value (e.g., "twice as high"), an absolute

value (e.4.<$150/ounce"), a level (e.g., "high"), or a trend (e.g.,

"increasing") defined on the dependent variable. Thus it is possible.

to 'set' the subject conceptually by asking a particular 'tonceptual

question', which contain certain of these pairs. Thp subject then

extracts from the graph the information necessary to answer the ques-

tion and the time it takes 'to answer is recorded. Presumably the

conceptual question sets a response basis at the perceptual level of

analysis. Therefore, for a given display, if the conceptual question

\

induces a representation other than that defined by the encoding fea-

tures a default visual description),.increased RT to the ques-

tion answering task can be expected foe the reasons outlined earlier.
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TABLE 1

Transformed sorting times (sec) as a function of graph type,-

response:set and task .

Gaph Type * Response

Task

Univariate Orthogonal A Contrast

Lines on. two . Height of left .1.393 1:403 0.01 L1

..jrameworks Height of right 1.376 1.389 0.013 L2

Lines on or;le Height of left 1.385 1.421 0.036 L3

framework Height.of right 1.344 1.378 0.034 L4

Points ' ,H41ight of left 1.443 1.489 0.046 L5

unconnected Height of right 1.345 1.436 0.041 L6

Points lipight of left 1.413 1.494 0.081 L7

connected Height of right 1.344 1.421 0.077 L8
.

0.

Lines on two Slope 1.414 1.427 0.013 L9

frameworks - Height 1.421 1.513 0.092 L10
I

Lines on ones.
,...

framework
Slope
Height

1.399
1.347

1.450
1.371

0.051
0.024

L11
L12

Points Slope 1.393 1.396 0.003 L13

unconnected Height 1.388 1.406 0.018 - L14

,Points Slope ' 1.396 1.389 -0.a7 L15

connected Height 1.380 1.355 -0.025 L16

..e

'V

4
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TABLE 2

Confidence intervals, t-statisiics and significance
levels for preplanped paired comparisons of selected

means (LOGT/ME) involving the three way interaction of

graph type x response wet x task

a

Contrast A Confidence Interval* t-statistics a

Li -0.02841,40.048 -2.7 .0067

f.42 0.013 -0.02541,40.051 2.7 .0067

L3 0.036 0.00541,40.065 -2.2 .03

L4 0.034 , 0.00341,40.065 2.2 .03

L5 , 0.046 0.00841,40.084 -2.7 .0067

L6 0.041 0:0034L40.079 2.7 ..0067

:

L7 0,081 0.0434L40.119 -2.7 .0067

L8 0.077 0.03941,40.115 2.7 .0067

L9 , 0 .013 -0.02541,40.051 -2.7 .0067

L10 , 0.092 0 .05441,40.130 2.7 .6067

L11 0.051 0.02041,40.082 -2.2 .03

L12 0.024 -0.00741440.055 .03

L13 0.003 -0.03541,40.041 .0067

L14 0.018 -9.03541440.041 2.7 .0067

L15 -0.007 -0.04547.440.031 -2.7 .0067

L16 -0.025 -0.06341,40.013 2.7 .0067

Ms Graph Type X Response Set X Task X Subject = 0.0015

*If interval encloses zero, then nonsignificant.



TABLE 3

Confidence intervals,* for preplanned'comparisons of
selected contrasts testing the degree of interference

for graph type respnse set

Contrast A Confidence Interval

1/2(L3+L4)-1/2(L1+L2) 0.024

1/2(L5+L6)-1/2(L1+L2) 0.032

1/2(L7+L8)-1/2(L1+L2) 0.067

1/2(L5+L6)-1/2(L3+L4) 0.008

1/2(L7+L8)-1/2(L3+L4) 0.044

1/2(L7+L8)-1/2(L5+L6) 0.035

1/2(L9+L10)-1/2(L11+L12) 0.015

1/2(L9+L10)-1/2(L13+L14) 0.042

1/2(L9+L10)-1/2(L15+L16) 0.068

1/2(L11+L12)-1/2(L13+L14) 0.027

1/2(L11+L12)-11/2(1,15+L16) 0.053

1/2(L13+L14)-1/2(L15+L16) 0.026

t(t) = 2.356

S(s) = 0.014
p = 0.02,

- 0.00941,40.057

0.0041,40.065

0.03441440.100

- 0.02541,40.041

0,01141,4077 f

0.002(1,40.068

-0.01841,40.048

0.00941,40.075

.03541,40.101

0.00641,40.060

0.020(1,40.086

- 0.00741,40.059

ON.
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TABLE 4

Transformed errors as a function of graph type,
response set and task

41

Graph Type

Lines on two
frameworks

-

,Lines on one
framework

Points
unconnected

Points
connected

Lines on two
frameWorks

Lines on one',
framework

Points
unconnected

' 1

Points,
conneCted

Response

Task

Uhivariate Orthogonal Contrast

At--e

Height of left 1.426 1.426 0.000 Ll

Height of right 0.856 0.839 -0.017 L2

Height of left 1.093 1.456 0.362

Height of right 0.476 0.831 0.355 L4

Height of'left 1.876 2.172 0.296 L5

Height of right 0.522 1.153 0.631 L6

Height of left 1.471 2.060 0.539 L7

Height of right 0.476 1.348 0.972 L8

Orientation 0.821 0.820 -0.001 L9

Height 0.990 2.299 1.309 L10

Orientation 0.986 1.577 0.591 L11

Height 0.255 1.047 0.792 L12

Orientation 0.910 1.283 0.373 L13

Height 0.731 0.938 0.207 L14 -

Orientation 0.899 ' 0.932 .0.033 L15

Height 0.824 1.136 0.312 L16

51


