DOCUMENT RESUME N

J
. ED 221 213 4 . IR 010 388
AUTHOR . Glasner, Ingrid D.; Hayes, Philip J
TITLE Automatic Construction of Explanatign Networks for a
. Cooperative User Interface,.)
INSTITUTION Carnegie-Mellon Univ., Pittsburgh, Pa.

SPON§ AGENCY™

Advanced Research Projects Agency (DOD), Washington,
D.Cl)

REPORT 'NO CMU-CS-81-146
* PUB DATE Nov 81

CONTRACT ,F33615-81-K-1539 " .

NOTE 20p.; Paper presented to the Joint Conference on
Easier and More Productive Use' of Computing Systems
(Ann Arbor, Mfi, May 1981). Proceedings of the

R Conference will be published as a special issue of
- - ACM SIGSOC Bulletin. - . o 5
f 3

EDRS PRICE *hﬂﬁl/PCOI Plus Postage. ‘) . :

*Computer Programs; Computer Science; Databases;

DESCRIPTORS
. .Digital Computers; *Man Machine Systems; *Online

Systems; *Programing

., IDENTIFIERS *User Aids - \

[] \
This paper-is concerned with providing automatically
geperated online explanations to the user of a user ‘interface or
"tool" about what the interfacé can and cannot .do, and what-
parameters or options are available or required with a given command.
The COUSIN interface system, developed at Carnegie—Mellon, supplies a~
cooperative tool-independent user interface for toéols whose objects,
\operations, input syntax, and display formats are declaratively"
represented in a "tool descriptidn" database. Explanations are"
produced automatically from this database 'in a single uniform style,
taking the form of a fine-grained, tightly linked network of text
frames supported by a 20G menu-selection system. Exactly what
information ‘the net byilding (NB) program extracts from a tool
description and the format in which this infqrmation is presented in
the text frames is controlled by a second declarative database calied
the "aspect description” database. The declarative nature of aspect
description makes it easy to adapt NB to changes in and extension's to
the tool description formalism, and to experiment with the structure
of the'explaMation network. A description of how the appropriate -
network frame can be found and displayed in response to specific
explahation requests from the user is provided. (Author/ESR)

3

ABSTRACT

¥
¥
~ - r
g .
B ‘ .
-

* Reproductions supplied by EDRS are ‘the best that can be made *

* ‘ from the original document. *
********ﬁ**

-
- v

s

ERIC

IToxt Provided by ERI |

-

b

-

ED221213

U.S. DEPARTMENT QF EDUCATION }

NATIONAL INSTITUTE EDUCATION N

. EDUCATIONAL RESQURCES INFORMATION . .
CENTER (ERICH .
& Ths documens has Deen reproduced as

tecerved from the peison OF 01GamMZaLON

ofrg nItng it
- Minot chenges have been made to Mprove) s
- feprocucton quality

Ponts of wew of opinions stated in thes docu
- ment do not necessarty represent otficiat NIE . .
~ POSIDON Of pORCY

.
~
*

AUTOMATTN CONSTRUCTION OF

expANATION NETHORKS FOR A
. J ' COOPERATIVE usek TNTERFACE ‘
o])

by '

)

Ingrid D. vlasner »

’ M
' N

’ ‘ and ‘) //

Philip J. Hayes R

A
e

3

Rol1o038¢

o
-
—C
@)
o)

:,‘EK

Aruitoxt provided by Eic: . .

~ .. A '

. . _ "~ CMU-CS-81-146
-’ .
A . ’

»”~

* yAutomatic Construction
of Explanation Networks
for a‘Cooperatlve User Interface.
» * ’ ad
Lo
ingrid D. Glasner and Philip J. tiayes

t
. . November, 1981

Abstract ' -

] -
. ' - N~

This paper is concermned with providing automat:cally generated on- Jine explanations'to the *
user of a functional computer subsystem or too/ abod’t what the tool can and cannot go, what
parameters and options are available or required with 4 given COmmand etc.. The
explanations are given_through the CousiN interface system which provides a cooperative
tool-independent user interface for tools whose objects, operations, input syntax, display
formats, etc. are declaratively represented in a tool description data base. The explanations
are produced automatically from this data base, with no_incremental effort on the part .of the
tool designer, and in a single uniform style for any tool that uses CoUSIN as its interface. The
explanation facility takes the forn® of a fine-grained, tightly linked network of text frames
. supported by the ZOG menu-selection system Exactly what information the net building
program, NB, extracts from a tool description, and the way in which this information is
formatted in the text frames is controlled by a second declarative data base called the aspect
description. The declarative nature of the aspect description makes it easy to adapt NB to
changes in and extens;ogs to the tool description formalism, and to experiment with the
structure of the explanatn n network. We also describe how the appropnate network frame\J
can be found and dusplayed inresponse to specifi¢ explanation requests from the | yser .

—e

-~ -

To appear in:
Proc. oT a, ’Conf on Easier and More Productive Use of Computmg Systems, AnnArbor, May, 1981,
which will be published as a special issue of ACM SIGSOC Bulletin.

\

»

This research was sponsored by the Defense Advanced Research Pro;ects Agency (DOD), ARPA
Order No. 3597, monitored by the Air Force Avionics Laboratory Under Contract F33615-81 K-1539.
The views and conclusions,contained in this document are those of the authors and should not be
mterpreted as representing the official pohcues, either gxpressed or implied, Jf the Defense Advanced
Research Projects Agency or the US Government. .

- . 1 ' / .

1. Introduction - : :

Interfaces to interactive computer Systems often appear mflexlble and uncooperatwe to their users.
_.The cousin' pro;ect at Carnegie-Mellon |s engaged m a wnde ranging program of research to
produce more graceful and Cooperative user interfaces. Our work includes research on more flexible
and robust parsing techniques [2, 6}, c@mmunication mechanisms that are .both natural and efficient
[4], and a number of other topics_(see [‘1,'5, 7)) including the subject of this paper: explanation

facilities.. -
K V4 N .

In order to appear cooperative, any user interface must be prepared to offer its user explananons of
what it can and cannot do, which command the user-should issue to get a particular task done, wh/at
parameters and options are available with a guven command, etc.. It is these kinds of stat:c .
explanations that we will be concerned with here.” Other, dynamic types of explanation, such as what
command an interface is currently performing, what kind of information it expects the user to input
next, what was the result of 2 command issued two hours ago, are equally vital for a coop@rative

. interface, but will not be covered in this paper. . .

The most commort approach to static explanation facilities in the relatively small proportion of”~
 interactive systems that provide them at all has been to use canned text messages. Such messages
are either written into the-system bﬁﬁe system designer specifically for iﬁteractive use as in the SOS
editor [11], or extracted by an indexing scheme from an on- hne version of the system manual as in the
RdMail eleotromc mail system [9], or the CMULisp system [3] However, the structure of explanatnons
provided this way jis often. too grainy, so that the user must search through irrelevant material to get to
the information he actually needs. and insufficiently mteﬂmked, so that the user may be un;ble to
Iosate the informétion he needs even if he has found a related piece of&nf'ormation see [5] for a good
example of thlS Much more fine-grained and closely interlinked explanations are necessary.
Happily, the overall approach to interface constructnon adopted in the COUSIN system forms an
excellent basis for the provision ofdsuch explanatnons. Moreover, the approash allows such
explanatons’to be constructed automatic;ally from information that thg.interface_ ;eeds in -
any 'case for ofher purposes, thus providing an interacti\(é system with.an explanation facility for

zero incremental effort on the part of the interface designer.

Automatic construction of explanation facilities with COUSIN is ;Sossible because COUSIN is
» y . N c e N
independent of the particular functional subs;gtem or tool being interfaced to. In order to use the

CousIN interface, all relevant information about a gi\;en subsystem must be represented in a

<+ ~ ’

1cousru 18 @ new acronym. previous publications describe the system as a gracefully interacting interface.

-~

declarative data base called a too/ description. This information includes all the commands and
object types that the tool deals with, their parameters end components with filler types and defaults,
therr ilput Syntax and display formats, plus other information,sless important for our purposes, about
the tool's operation. Usmg this mformatlon CousSIN can accept commands from the user, check them '
for vahdity, fi in defaults, correct some errors and ambiguities, interact with the user to correct the
others, and finally transmit the corrected command to the underlying system. More importantly for
our purposes, this informatian, possibly sUppIerq{tented by text strings to explain the purpose of
commands and object types, is just what is needed to construct a fine-grained and highly

interconnected static explanation facility f'or{my tool represented by such a tool description. \

In what follows, we describe a program, called MB, for automatically constructing a static
explanation facility from a tool description. The resulting explanation facility is a network of text
frames that the user is able to traverse as he wishes using the ZOG nienu-selection system [10].
Which information i1s extracted .from the tool description, and in what format it is presented in the text
frames 1s controlled by a second declarative data base we call the aspect description. The
representatron of this meta- Ievel information in declarative format makes the NB,program very easy to
adapt to changeglr\ or extensions to the format of the tool description formalism. Because the
CousiN project is highly experimental, such changes occur frequently. The following sections
descnibe in turn the tool description formalism, the organjzation of the explanation network derived
from it, the way in which this net\;/ork is constructed, and the way in which the apqropriate"network
"node may be found automatically in‘response to a specific request for help bylthe‘trser(We conclude

-

with a discussion of some more problematic requests for explanation.
7 :

- -

2. The Tool Description '

As mentioned above, a particular functronal sub-system, or tool/, is characterized tor the COUSIN
interface program by information about the types of objects it manlpulates and the operatlons or
commands 'can perform. Thrs |qfonnatron is stored in the too! description, a declarative data base
provided by the tool system designer. Given the tool description, the cousIN interface is able to parse
the user's commands, check them for validity, fill in defaults, correct some errors and ambiguities,
interact with the user to correct the others, and finally transmit the corrected cornmand to the
underlying tool system. The tooI description consists of schemas, one for each object type dealt with

by the tool, and one for each operatlon that the tool can perform

’ .

Object schemas are "declarations” of the types of data object that the tool knows how to deal with.

The following 1s a partial schema for the object type, Message, of an electronic mail system that we

- . .

A}

4

‘.
- ’

have been-using as an example tool for COUSIN.

[.StructureType: Object
ObjectName: &Message
Components: -

[Sender: [FillerType: &Person ComposeAs$: CurrentUser]
Recipient: [Ft]]erType &Perspn Number: OneOrMore]
Copies: [FillerType: &Person Number: NoneOrMore] <
Date: [FillerType: &Date ComposeAs: CurrentDate]
Subject: [FillerType: &Uninterpreted Number: NoneOrOne]
Body: [FillerType: &Uninterpreted Number:NoneOrOne]
After: [FillerType: &Date UseFor: DescriptionOnly]
Before: [FillerType: &Date UseFor: DescriptionOnly]

1. -

Syntax: .

[SynType: NounPhrase
Head: (message note {(?piece ?0f mail>)

PostMod: (

<%From tSender> s
<%To tRecipient>

{%CopiesTo tCopies>

{%Dated tDate> "

{%About tSubject>

{%After tAfter>

{%Before tBefore>

(%Between tAfter. and tBefore>

) —
1 .
_ The precise details of this slot and filler style of notation are not important for present purposes. The
points to note are that the Components property Ylist grves each of the components of the structured
object, &Message, and for each of these COmponents the type of object supposed to fill that
component plus any defaults etc. that are relevant. The Syntax property list says that a message can
be descnbed by a noun phrase in which the head noun is chosen from the specified list of words and
patterns of words (denoted by an?Ie brackets), and which can be fo|10wed by any of the descriptive

cases given - percent means word class (defined elsewhere), and up-arrow refers back to one of the
components of Message. Othér information contained in an object schema, but not shown here,

includes display formats for the object, and information on how to resolve a descriptfon into an

instance. The formalism can also describe primitive object types i.e. those that have no components,

and classes of object types. . . N

A tool descrniption schema for an operation includes a specification of its parameters and the syntax
of c8mmands requesting execution of the operation. The following example is the schema for the

"Forward operation from the same example electronic mail tool system. =] -

A

LTS

[StructureType: Operation’
OperationName: &Forward
Parameters:)
[Message: [FillerType: &Message]
Recipiént: [FillerType: &Person Number: OneOrMore]
Forwarder: [FillerType: &Person MustBe: CurrentUser]
] ' .
Syntax: -
[SynType: Imperative
Verb: (forward send mail (pass on))
Object: <{tMessage>
Cases: <%To tRecipient>

1

1

The interpretation of ther notation is similar to the example above. Using this schema, COUSIN can

<

determine whether a command specifies all required parameters of the operation, default any missing
optional slots, and check on the appropriateness of those parameters that are given. Operation
schemas also contain descriptions of output formats, how to transmit an operation request to the tool,

and what to do after the operatiqn is finished.

~

For further details of the tool description and of the way it is used by the CousiN interface, the
2
readgr is referred to [1]. ‘ .

.

The classes of information in the two examples above are all that are needed to produce a basic
static explanatign network from a tool description. However, t'o‘ give more complete explanations
about the tool system objects and operations, tool descri’ptio’ﬁ schemas could also contain additional
textual information put in for this specific purpose. This information might include text explaining the
purposes behind certain objects or operations, examples of object descriptions and instances, etc..
Since the tool destription schemas are regresentea as lists and property lists in our implementation,
augmentation of the schemas with- explanatory ﬁejds is straightforward. We have not used
supplementarif textual fields in our current implementation, but Section 4.1 discusses how such
additional information could be incorporated into the explanations we currently produce.

. /) N ‘ -

There are many similarities between ‘the structure of objects and that of operations, and in
particular a correspondence between ‘the components of an object and the parameters of an
operation. This similarity is exploited by our program, NB, for constructingj an explanation “facility
from a tool description, so in the discuésion that follows to avoid saying "object or operation” and
"component or parameter” too much, we will refer to objects and operations collectively as too! items
or just as items, and we will refer to the components or paraméters of a tool item as its slots. Note that '
while a slot name is unique within a particular item, the same name may.be used for slots in more than

L4
’

-

one‘item (e.g. the Forward, Answer, and Delete operations in our example tool all have Message

parameters). This fact cannot be ignored in constructing an explanation facility, because of possible
questions like "lIs there g default for the Message parameter?”. For this reason, when we talk of a

. ~
slot, we will often be referring to the collection of all slots with the given name.

3. The Structure of an Explanation Network

As mentioned in the introduction, the program N_B produées an explanation facility' for an
interactive functional subsystém or tool from a declarative description of that tool in the formalism we
have just described. Thié explanation facility is in the form of a net of text frames that the user can
traverse as he wishes by use of the ZOG [10] menu-selection system. The advantages of haviné the
explanation facility produced automatically are clear. Since the tobl designer must provide the tool
descniption 1n any case in order make use of the COusIN interface system,(his tool will be éugmented
with an explanation faciIiEy with no extra effort on his part. The choice of a network of text frames for

the explanation facility requires some justification. .

One obvious alternative to cconstructing ‘a net of text frames is to construct responses to help
requests "on the fly”. The same techniques could be used to extract the needed jinformation from the
data’base, and responses could be tailored to the specific question asked, instead of being selected
from a predetermiﬁed set of text frames. While th}s approach may be unavoidable sometimes (see
Section 5.3), it has serious efficiency problems. Extracting the required information from the tool
dlescriptnon proves to be quite an expensive operation, and a practical interface cannot afford to make
its user wait too long for responses to his questions.. In addition, such an approach does not help the
user to obtain information related to the ex_planatiori elicited by his last question. If each question is
answered separately, there are no easy ways to “poke around” a topic. This violates the ;;oal of

. ;

interlinked explan‘ationsﬁestablished in the introduction. .
1

Since the explanatioﬁ facility is intended to be used interactively, the structure of the net of text
frames can and should be much richer than the structure of a printed manual gontaining the same
information. Printed documents, being composed of chapters and paragraphs, have a hierarchigcal
structu‘re, appropriate for describing, domains in which there is a hierarchy of cohcepts. Cross-
references, pointing to concepts on different "paths"” or in higher levels of the hierarchy, are legal,
but access to information via cross-references is done in a way distinctly different from access via

_hier.archical links, which is the "preferred® way.

The inherent structure of atool system usually does not conform to a strictly h}erarchical discipline.

If we chose "is-component-of" as one of the basic hierarchical relations between tool items, each "is-

4

fillertype-of" connexion would be a cross-reference. The explanation facility is, therefore, structured

as a true network, providing a variety of semantically mea'riingful connexions, of equal priority,

between the information units it contains.] ' ' .

In the remainder of this section we present the structure of explanation networks from an abstract =
point of view, discussion of the prograrﬁ that congstructs them fror"ﬁ/ a tool description is deferred until
3

Section 4. * ,)

/

3.1. Nodes in the Net '
The units of information in the explanation fa/c\\:ility, i.e. the nodes in the explanation network, ldo not
contain as much information as the schemas in the tool description. In line with the goal set in the
introduction, we have chosen a finer granularity in order to be able to answer a user’s questions more
=succinctly, and to avqid presenting him with a confusingly Iarge amount of mformatlon all at once.
There are two basic kinds &f information units in the net, containing aspect mformatlon and context

{‘

There is an information unit for each relevant aspect of each tool item. For our current system,

aspects of a (cofnpound) object type include the structure of instances of this type, the syntax of

.,- ‘'

information, respectively.)

corresponding descriptions, th% possible uses of such objects as components or parameters, etc..
Aspects of an operation include its parameter list, the syntax of requests to perform it, the effect of its

execution, etc. An aspect is thus not the same as a tool description field, but rather is determined
pragmatically as a group of facts about a tool item that fit naturaily together from a user’s point of
vnew As described in more detanl in Section 4.3, the NB program uses a declarative data base called ,,
an aspect description to determme for which aspects of a tool item it should construct information

units. This level of indirection adds significantly to the flexibility of the NB program.

‘For each slot mentioned in the tool description, there is an inféfmation unit foy each of its contexts,
i.e., for each of its meanings asa compone’nf of an object or as a parameter of an operation. These
information umts descnbe the propertles of the slot in the specmc context: its filertype, its default

value, whether it is mandatory or optlonal {for parameters), etc.. Examples of mformatnon units are

givén in Section 4.

2y Co

3.2. Edges in the Net

L] ‘ t .
BRach tool item and slot name may thus give rise to one or more information units. These

information units may be linked together by various types of binary relations which constitute edges in

the explanation network. Edges may run befween information units associated with different tool

’

items or slots, or between units associated with the same item or slot.

-~

’ ~ -
Direct connexions between information units for different tool entities exist in correspondence to
certain semantic re’lations batween the tool items they describe. These relations are called simple

semantic relations. The standard simple semantic relations, existing in any kind of tool, are the

-

following:

e "is-component-of" (between a compound object type and each of its components)

¢ "is-parameter-of” (between an operation and each of its parameters)

-

o "is-fillertype-of” (between a slot and its'ﬁllertype)

~ .
For a spegjfic tool system, there may be additionl simple semar(nt relations. This depends«on

whether there are additional kinds of tool items e.g., classes of object types, and semantic¢ relations
involving them, e.g., “is-miember-of”; it also depends upon which of the semantic relations existing in

the tool domain are considered mportaht enough to represent by edges in the net (instead of by
sequences of edges, or not at :—._lll). Because which edges are produced is speciﬁed declaratively in
the aspect description (see Section 4.3)kit\ is easy to experiment with different combinations of edge
types, and to provide extra edge types for tool descriptions with more informatién withrout changing

the basic NB program.
v - * rd
For each item and each slot, one of the corresponding information. units, called the entity’s base
unit, is distinguished as being the unit that provides the primary information about it. There are edges
from the base unit to each of the remaining information units for the same entity. Conversely, each
information unit contains a reference to its base unit. This implies that all information units describing

the same entity are accessible (possibly indirectly) from each other, and each of them can be

-

accessed via the entity’s base unit. " .

-
.

4. Automatic Construction of arExplanation Network : .
In this section, we turn to the QUestnon of how the explanation nétwork for a glven tool is actually
constructed from its tool description.. To simplify bur task, and to avoid needless duphcatlon of effort,

- we chose to build networks in a way that allowed use of the well-developed software support of the ‘

’ 2 L]

ZOG system.
4.1. Implémentation of an Explanation Network as a ZOG Net -

ZOG [10] is a rapid-response, largé-network, menu-selection system for man-machine
communication also developed at Casnegie-Mellon. In ZOG-nets, information is chunked into frames,
1.e., portions of text small enough to be displayed as a whole. on avideo terminal. In addition to the
actual information, each frame contains a menu of options from which th‘e user can select the next
topjg and thus' the next frame to be shown. Frames are identified internally by unique frame
identifiers, but the user refers to frames by selecting their content. Thus, ZOG 'l‘s well suited to

handling networks like ours in,which connexions between frames are semantic. *
ﬁ—

The ZOG system accepts files Tontaining descriptions of frames using the BH formalism {8}, and
uses these descriptions to produce the actual frames with appropriate indexing and interconnexions.
For each frame, the external BH format indicates the Iéy'éut and contents of the ;hformation part of the
frame, ;;Ius the frames to which it should be coqnected and short text sﬁrings‘ to describe the
connexions. The internal representation_of frames and frame connexions, the mechanism for actually
displaying the frames on the screen, and the implementati(on of othe'r operations on the net are

hidden from the producer of the external net description.

In the implementation of an explanation network as a ZOG net, each information unit is represented
by a frame (or several frames, depending on its size). Here are some examples of the frames

constructed by NB for our example’tool system frpm its tool description. Fir'ét, a frame for the

structure aspect of'the object type, Message: © .

.) . °
" MESSAGE (GENERAL STRUCTURE)
/ . .

Objects of type Message have components: e
| T T :
o « TT7 Sendér T)
' 2. Recipient !
3. Copies .
’ 4. Date n “-
. 5. Subject N -
6. Body . ‘

D. how is’a Message described?
U. how-is a Messagd used? -

-
N

.« ¢ L] o

This frame, together with a line of general options not shown, takes up a co'rhplete display screen®.

- ’
2In the complete cousi System, the frames are actually shown in one window or pane of alarger screen.

>
-

-~ 1]

When the .user selects another fréme,by typing 1, 2: 3, 4,5 6, D, or U, this féme is replaced by the
one corresponding to the-digit or letter typed, e.g. typing '1' results in the display of a frame
‘ describing the Recipient component of a Message: -

RECIPIENT (in Message) . i N

The Recipient ctomponent of object Message
contains one or more objects of type Person.

F. about object type Person
0. about object type Message
M. about other-meanings of Recipient

Note that this frame is not the same as the frame for Recipient as a parameter of the operation,

Forward: .
- A b ‘.
RECIPIENT (in Forward) » 7
-
The parameter Recipient of operation Forward.
contains one or more objects of type Person. .
F. about object type Person L

0. about operation Forward
M. about other meanings of Recipient

- . .

Typing 'M’ to either of these Recipient frames would, however, dispiay the base frame for the
Recipient slot, which lists both of these frames, together with similar frames for all other valid contexts
@

of the Recipient slot. .

v .

All of the text in all of these frames is generated automatically from prestored word panems;ﬁlled
out by slot-and item names extracted from the tool ldescription.‘ The, screen layouts are also
prestored, and are subject to the conventions of the undeérlying ZOG system. In addition to the types
of 'frame shown, the frames generated by the present system include frames giving the abstract
syntax for each tool rtem and frames showing in which other objects (operatlons) an object appean:s :
as a component (parameter). Another interesting possibility, not yet implemented would be frames

giving example inputs for each object and operation; we believe these examples could be derived

, automatically from the abstract syntax and vocabulary specifications. .
1 .) ~ ’
.. The example tool description we have been using ¢cc conta’&‘! only information that is also needed by

other parts of the COUSIN mterface’ A more complete explanation network y0uld result from the
addition of mformatnon describing e. g the purpose of various-tool items. The design of NB makes
such anextension easy. It would simply be necessary to define a new aspect for the tool description,

.say Purpose, and modify the aspect description (see Section 4.3) to accomodate this extra aspect. In

-

. 1
this way, it would be stra.lghtforward to translate an extra property in the tool description schema for
Message:

Purpose: ‘@§able the transfer of some text (the Body) from a Sender
to one or more Re€ipients, with extra copies to the users
specified “in Copies.”

s

into corresponding extra lines in the Message frame above (or in a supplementary frame), prefaced by

"The purpose®of a Message isto ...".

Supplemer'mng a tool description formalism with these kinds of slots for inforrﬁation in the form of
prose has.an additional benefit. It offers a very structured way for the tool designer to ddcument parts
of his system, ‘and the ways he intends them to be used. This approach to doc;Jmentation also
requires less effort from the tool designer because he can let the NB program take care of integrating

his individual comments into, what is essentially, a carefully structured, on-line manual.

4.2. NB - the Net Building Program

Our program to c_onstruct explanation networks from a tool description is called NB for Net Buifder.
NB operaies off-fine from the rest of the COusIN system. It takes a tool description as input] and from
it produces a ZOG net which can be used as an interactive explanation facility for the tool in question.
NB itself does not interact with the edq user of the cousin interface. The choice of the ZOG system
as the support for the explanation network means that all that NB actu:—:tlly has to do is to produce the

_ BH file corresponding to the network it wants to construct. All the actual displays, and all the
. necessary bookeeping operations are handled by the ZOG system. NB's task then reduces to:

e extracting the information for each frame from the tool description and translating it into
the form in which it is to be displayed, agd .
o specifying the connexions between frames (see Section 3.2 for alist o} connexion types).

?
NB is composed of a hierarchy of functional modules which produce different levels of detail of the '

network. There are three main levels in this hierarchy:

1. functions for building the net

2. functions for building a frame, includihg: -
{ e aspect modules (one for each kind of aspect)

v

e context modules (one for object contexts and one for operation contexts) /

» -

3. functions for building frame components

The functions 6f jevel 1 take care of the bookkeeping necessary for correctly -connecting the

-

frames built. In addition to the actual frames, NB produces four lists of indexing information:

two Base Lists assoc;a'lmg each tool item and slot name with the frame,identifier of lts
base umt and
/ P X 4
" two Frames Lists associating each xtem/aspect pair and each slot/context panr with the
frame identifier of the corresponding aspect unit or context unit.

-

Besides being necessary for the action of NB. these lists are also important in finding the correct text

A

© mee . e

frame with which td-answer sp&mc help requests from thé user (see Section 5.1).

-

The Ievel 2 functions are executed for each gspect of.ea_ch tool item and for each context of each
slot name. They.pick the appropriate pieces of information from the tool description and call
functions o‘f level 3to produce the app;cpriate BH output. This BH representation for the explanation
net 1s then con]piled into a ZOG net, ready for use as the ‘explanation facility for the interactive tool

from whose description it was derived. .
) 4.3. The Aspect Description

‘As,mentioned earfier, NB does not produce frames for each possible aspectof eath tool item in the

tool description. It chooses. only those aspects for which there is an entry in a second declaratlve

data base called the aspect description. This arrangement msulates NB from changes in or additions
to the tool description formalism; only the aspect descnpﬁ’“n and not the code for NB need be
modified in such curcumstances An aspect description, then, does not provide information about a
specific tool like a tool descnptloin, but rather gives "meta-information”, about the tool description NB
is given to process and about the form of thé explanation network to be constructed from it. In

particular, it answers the following questions:

i e What kinds of tool items (e.g. objects, operations, primitive objects) are there?)

e About which aspects of each tool item should the system give explanations?: l.e., for
which aspects should NB construct corresponding infprmation units in the.explanatlon

network?

-

o How is the-information to be extracted from the tool description?
o Which fields of which tool description schemas should be used? -

e What level 2 function of NB will produce the frame'for a given aspect?

-
-

An aspect description is composed of schemas, one for each type of tool item. An aspect schema
for a specific item type contains sub-schemas for each information unit to be derived from that kind of

tool item and incorporated into the net produced by NB. In our example system, the aspect schema

\

L 12

.

for the Object item type contains sub schemas for Structure, Description, and Uses. Each of these
sub-schemas indicates from which fields in the description of its own and other object types its

information unit is derived. It also gives the name of the functional module from level 2 of NB that

- - does the actual building, plus some other information used to construct the resuiting frame. Hereis

an abbreviated version of the aspect schema for items of type Object.

[Entity: Object . -
Structure: [Module: BuildStruct
OwnFields: (Components)
. Crossrefs: (Description Uses)
! ‘ SelChar: "S"

Description: [Module: BuildDescr
' OwnFields: (Syntax DescrExamples)
’ Grossrefs: (Structure)
SeiChar: "D" " .

Uses: [Module: BuildUse .
Otherfields: [Object: (Components)
\ Operation: (Parameters)

. Crossrefs: (Structure Description)
. . Se1Char: ."T" - . -
©] . /
It indicates information units are to be constructed for the Structure, Description, and Uses aspects of
all.tool description items of type Object, using the NB level 2 functions, Buildétruct, BuildDescr, and
BuildUse}’respedtively. Thg fields of Object items from which these functions are to obtain their
information are given by OwnFields, or ip the case o\f Uses by OtherFields, which says in this case that
all Operations and other Objects must be searched for uses of the object. CrossRefs and SeiChar are
used in the obvious way for setting up the links between the three information units constructed for

~

each item of type Object. Naturally, the information in the aspect description depends heavily on the
format of the tool descrippon. For instan'c/e, if there was a UsedAs field in the tool description of each
.item of tybe Obiject, e.g. in the case of Message something like
UsedAs: [ParameterOf: (Forward Reply)]’
then the corfespon&ing portion of the aspeci description for Object could be >

Uses: [Module: NewBuildUse .
. OwnFields: (UsedAs)
Crossrefs: (Structure Description)
- SelChar: "T"

]

\
with function NewBuildUse being much simpler than BuildUse. So there i$ a certain tradeoff between

the size of the tool description and the amount of information to be provided by the tool designer on

13
N t

o

the one hand, and the complexity of the aspect modules and of the net building process,ori the other.

While the aspect description itself s declarative, there is non-declarative informat‘ioq associated
with it in the form of the NB function names in the Module fields. ‘The aspect description‘would
iﬁsulate NB from changes in and extensions to the tool description formalism even more if that
mformatnon was also made declarative, 1.e. if the information to be extracted from the specified fields
of the tool descnptnon was itself specified declaratively, along wnth the way it was to be incorporated
into the Fesultmg net frames Of course, NB would still need to provide functions to interpret such
declarative specifications, but -ts actual code could be completely independent of any particular tool

-

descriptidn format. We intend to pursue this line of research in the future.

-

5. Using an Explanation Network
Now.that we have discussed how an explanation network is constructed from a tool description, we
turn to an examination of how thie cousin interface can use the network to respond to a user’s
interactive requests for explanations. Presently, CousiN uses the network in a way that requires the
~user‘to expend an unnecessarily large amount of effort to obta:in the explanatior{ he desires.
However, we also describe a way for CousiN to use the net more intelligently, so that a user will have

to expend less effort to find out what he wants to know.

’

The net access mechanism currently used by CousiN requires the explanation net to have a

distinguished ro;? frame a;d a set of index frames. The root frame points off to a genefal help frame
which‘explains how to move around in the ZOG network, and to two sequences of index frames, one
for tool items, and the other for tool slot names. The index framet{m turn point off to the base frames
for, each of the tool,items and slot names. The root and index frames are, of coyrse, produced
automatically by NB. When the user asks for help, CousiN switches to ZOG mode and displays the
root frame, from where thé user himself, by making appropriate selections, has to find his way to the

frame containing the desired information.

This way of handling help requests requires only minimal invol'vement on the part of the parsing

component of cousiN: the parser only has to identify help requests as such, without analyzing them
further. Also, the explanation component of COusIN does not need to know anything about the net -

ZOG can be made to display the root frame automatically each time the net is entered. But obviously,

~

this mechanism is far from being cooperative or graceful, since all the W(i:>hfs to be done by the

user, through stepwise selection of the right frame.

A more adequate reaction by the explanation facility of cousiNn would be to display directly the

-

-

: 16

14
v

aspect or context frame that provides the information asked for. We have designed a mechanism to
do this. It depends on the Base and Frames lists produced by NB in the course of constructing the
explanation net (see Section 4.2). The Base lists associate each tool item and slot name with its base
unit frame, and the Frames lists associate each item/aspect pair and each slot/context pair with the
corresponding aspect unit frame or context unit frame. The way in which these lists can be used to
pro(ﬁde access to the appropriate frame depends on the type of explanation requested We
distinguish three types of request. simpie and indirect which can be answered by a single frame of the
network, and complex which cannot.

5.1. Simple Requests])
A simple request i1s a question for which the answering frame can be found by direct lookup in the

«Base lists or Frames lists. This means that the subject inquired about must be one of:
Il
e an aspect of anitem
) e a contgxt of a slot

* basic information about an entity.

The following are examples of simple requests (with the answer frame indicated in brackets):

What does a message look like?
[Structure aspect of object type Message]

Where do messages occur?
- * [Uses aspect of object type Message]

What parameters ang needed forward a message? s .
[Parameters aspéct of operation Forward] -

(in the dialogue context of being prompted for the parameters of operation Forward)
What does ‘recipient’ mean?
[Recipient as parameter of operation Forward]

What is a message?

[basic information about object type Message] -
»

While it would be possible for a tool designer to anticipate all these types of requests and include /

rules to parse them in the grammar for recognizing commands and object descriptions (see Section 2

for éxamples of how this grammar is specified in the tool description), it appears unnecessary to

impose this extra burden on him. The grammar descriptiob must, in any case, be preprocessed into a

form more sgﬂgble fo. the flexible pattern-matching parser [6] used by COUSIN, and it appears feasible

to modify the preprocessor to supplement the grammar rules it produces with rules to tecognize
.) . -

-~

1y / °

N

explanation requests. This'would not only free the tool designer from having to be concerned with all

the different forms that help requests csuld take, but would also mean that the forms of input

recognized as help requests would be uniform across all tools using the CouSiN'interface.

Since we have already provided through the aspect description a way of insulating the net building
program, NB, from changes in or extension to the tool description formalism, it would be only logical -
to provide the same degree of insulation to the gram;nar preprocessor. This would involve providing
grammar patterns fo;“each. information unit that the aspect description instructs NB "to produce. The
grammar patterns for a given information unit would recognize requests for éxplanation which are
best answered by display of 'that unit. This arrangement would also ensure that the simple
explanation requests that could be handled would correspond exactly to the ir;formation available in

the explanation net.

5.2. Indirect Requests j‘

The concept of simple reduest does not cover all kinds of help requests that a user might come up
with. Consider a qu&sﬁon‘like: _ -
' *How do / spec}fy the recipient of the forwarding opération?
It can be answered By displaying the Description aspect frame fo.r'Person (since Person is the filler
type for the Recipier{t parameter of .operation Forward). But in the quéstion itself, the object type
Person is not mentioned at all; it is identified by making use of the simple semantic relation "is-
fillertype-of" (cf. Section 3.1). If all the explanation facility could do wa;s to look in the Frames or Base
lists for items or aspects mentioned directly in requests for explanations, the user would have to
decompose his question into a sequence of two simple requests:

What is the filler type of the Recipient parameter of Forward?
[Answered by-displaying the frame for Recipient as a parameter for Forward] -

-~

_How can I specify a Person? s

This does not create the impression of a cooperative interface.
. ' >
This problem can be solved by allowing the user to specify tool items by chains of slot
specifications of Iehgtt; two, as in the example above, or greater, as in: ' ’
. How do | specify the ﬁost of the recipient of the message in ‘resend?)
Questions with such chains of slot specifications are c_:alled indirect requests for eg(planation, and
should beﬂ'incl;_;ded in the coverage of fﬁe automatically produced grammar discussed in Section 5.1.
In. general, we expect to be able to accomodate within this grammar all questgions,‘?ut the most

obscure, that canbe answered by displaying a single frame of the explanation network.

5.3. Complex Requests

While simple and indirect requests for explanation can be answered by displaying a single frame of
the explanation network, this is not true in general:

Which components of a message are of type mailbox?

There is no single frame in the explanation network we have been considering that shows all
components of Message together with detailed information about their filler types. Thisis a reflection
of our pninciple of mak'ing information units very small, in order to avoid bothering the user with more
information than he a_ctually asked for. But whatever organization were chosen for the net, there

would inevitably be questions whose answers were not contained in a single frame.

If the answer to the above question is to be a single frame, the explanajidﬁ facility would have to
create this frame dynamically. However, it is unclear how this could be done in a style consistent with
the other frames in the net, and in any case, constructing the frame may result in an unacceptably
long delay in answering the question. An alternative is to produce the answer in the form of a single
text string, However, this will result in two radically different kinds of responses to requests for
explanation, and such non-uniformity, especially if it cannot be predicted by the user, is probably
undesirable. A third alternative is for the explanation facility to determine which frames in the
explanation net would contribute to the answer of a complex question, inform the user that more than
oné frame is involved, and provide a simple mechanism to allow him to examine each qf the frames at

his leisure. The production of answers to complex questions is a research topic we intend to pursue.

6. Summary

This paper has been .c':éncemed with providing an explanation facility for an interaqti\}e subsystém
or t0o/ to answer such “static" questions as what the tool can and cannot do,'what parameters and
options are available or required with a given command, etc.. We addressed the problem in the
context of \the cousin interface system which provides a cooperative tool-independent user interface
for tools whose objects, operations, input syntax, display formats, etc. are declaratively represented in ,
a tool description data base. Our approach was to construct the explanation facility automatically
from this data base, thus allowing the facility to be produced with no increméntal effort on the part-of
the tool designer, and in a single uniform style for any tool using Cousin as its interface. The résulting
explanation facility took the form of a network of text frames supported l\)y the ZOG menu-selection

system. This format allowed us to meet our goals of fine-grained and closely interlinked explanations.

The network of frames was producéd from a tool description by the net building program, NB. Exactly

what information NB extracted from the tool description, and exactly how this information was

formatted in the text frames was controlled by a second declarative data base called thé aspect

P

17

description. The declarative nature of the aspect description made it easy to adapt NB to changes'in\
and extensions to the tool description formalism, and to experiment with the"structure of the
explanation network. We also showed how the appropriate network frame could be accessed in

response to specific explanation requests from the user.

Acknowledgments

Don McCracken and George Robertson showed us how to interface to the ZOG system, and gave

us useful insights into exploiting its considerable power to best advantage.

References

-

1. Ball, J. E. and Hayes, P. J. Representation of Task:-Independent Knowledgé in a Gracefully
Interacting User Interface. Proc. 1st Annual Meeting of the American Association for Artificial
Intelligence, Stanford University, August, 1880, pp. 116-120.

2. Carbonell, J. G. and Hayes, P.J. Dynamic Strategy Sele'qtion in Flexible Parsing. Proc. of 19th
Annual Meeting of the Assoc. for Comput. Ling., Stanford Uriversity, June, 1981, pp. 143-147.

3. TOPS LISP. Carnegie-Mellon University (fomputer Science Department, 1978.

4. Hayes, P. J. Anaphora in Limited Domain Systems. Proc. Seventh Int. Jt. Conf. on Artificial
Intelligence, Vancouver, 1881, pp. 416-422. -

5. Hayes, P. J., Ball, J. E., and Reddy, R. "Breaking the Man-Machine Communication Barrier.”
Computer 14,3 (Marcﬁ 1981). -

6. Hayes, P. J. and Mouradian, G. V. Flexible Parsing. Proc. of 18th Annual Meeting of the Assoc. for
Comput. Lingl, Philadelphia, June, 1980, pp. 97-103.

7. Hayes, P. J., and Reddy, R. An Anatomy of Graceful Interaction in Man-Machine Communication.
Tech. report, Computer Science Department, Carnegie-Mellon University, 1979.

8. Newcomer, J. BH - A General Information Organization Program. Carnegie-Mellon University
Computer Science Department, 1976.-

-

9. RdMail Message Management System. Carnegie-Mellon University Computer Science
Department, 1980. ,

10. Robertson, G., Newell, A., and Ramakrishna, K. ZOG: A Man-Machine Communication
Philosophy. Tech. Rept., Carnegie-Mellon University Computer Science Department, August, 1977.

11. Son of StopGap (SOS). Carnegie-Mellon University Computer Science Department, 1978.
Originally developed at Stanford Al Lab; the help facility was added at CMU.

