
ED 221 213

AUTHOR .

TITLE

INSTITUTION
SPONS AGENCY\

REPORT.NO
'PUB DATE
CONTRACT
NOTE

EDRS PRICE
DESCRIPTORS

IDENTIFIERS
1

ABSTRACT

4

DOCUMENT RESUME
4

IR 010 388

Glasner, Ingrid D.; Hayes, Philip (1
Automatic Construction of Explanatin Networks fOr a
Cooperative User Interface.
Carnegie-Mellon Univ., Pittsburgh, Pa.
Advanced Research Projects Agency (DOD), Washington,
D.C.
CMU-CS-81-146
Nov 81
F33615,r81-K-1539
20p.; Paper presented to the Joint Conference on
Easier and More Productive Use"of Comiuting Systems
(Ann Arbor, MA, May 1981). Proceedings of the'
,Conference will be published as a special issue of

, ACM SIGSOC Bulletin. .

1,0471/PC01 Plus postage.
*Computer Programs; Computer Science; Databases;
Digital Computers; *Man Machine Smtems; *Online
Systems; *Programing
*User Aids

This paper-is concerned with providing automatically
geAerated online explanations to the user of a user anterface or
"tool" about what the interface can and cannot,do, and what-
parameters or options are available or required with a given command.
The COUSIN interface system, developed at Carnegie-Mellon, supplies a-
cooperative tool-independent user interface for tbols whose objects,

koperations, input syntax, and display formats are declaratively'
represented in a,"tool descriptiln" database. Explanations are'
produced automatically frOm this database 'in a single uniform style,
taking the form of a fine-grained, tightly linked 'network of text
frames supported by a ZOG menu-selection system. Exactly what -

information the net btkilaing (NB) program extracts frpm a tool
description and the format in which this infqrmation is presented in
the text frames is controlled by a second declarative database calied
the haspect description" database. The declaratiim nature of aspect
description makes it easy to adapt NB to changes in and extension's to
the tool descri'ption formalism, and to experiment with,the structure ,

of the.explAttion network. A description of /row the appropriate,
network frame can be found and displayed.in response to specific
explanation requests from the user is provided. (Author/ESR)

^* Reproductions tupplied by EDRS are the best that can be made *

* from the original document. *

4a-

it

U.S. DEPARTMENT RE EDUCATION
NATIONAL INSTITUTE OIL EDUCATION

EDUCATIONAL RESOURCES INFORMATION
CENTER tERIC)

4, To4 dotvrnens Kas be4. feryopuoel as
reCteved from the peva!), or o.oernzanon
Ofrg hattod

Mnor cn.nges have Oe.e, made to ,mofove
feOodutt,on (loamy

Pouus of wo ophOhs stateO r th4 ClOOo
rrteht do not nocessamy reOreSeht offCfat ME

GOVoo o po4cv

AUTOMATA CONSTRUCTION OF

EXPA(NATION NETWORKS FOR A

COOPERATIVE usa INTERFACE

by

Ingrid D. Glasner

and

Philip J. hayes

CMU-CS781-146

ItAutbmatic Construction
of Explanaition Netw.orks

for aCooperative User Interface.
A

Ingrid D. Glasner and Philip J. Hayes

November, 1981

Abstract

This paper is concerned with providing automaticallytgenerated on-line explanations'to the '
t. user of a functional computer subsystem or tool abodt what the tool can and cannot vo, what

parameters and options are available or required with a given command, etc.. The
explanations are given through the COUSIN -interface system which provides a cooperative
tool-independent user interface for tools whose objects, operations, input syntax, display
formats, etc. are declaratively represented in a tool description data base. The explanations
are produced automatically from this data base, with no incremental effort on the part 6f the
tool designer, and in a single uniform style for any tool that uses COUSIN as its interface. The
explanatidn facility takes the fon+ of a .fine-grained, tightly linked network of text frames
supported by the ZOG menu-selection system. Exactly what information the net building
program, NB, extracts from a toot description, and the pay in which this information is
formatted in the text frames is controlled by a second declarative data base called the aspect
description. The declarative nature of the aspect description makes it easy to adapt NB to
changes .in and extensiops to the, tool description formalism, and to experiment with the
structure of the explanati6n network. We also describe how the appropriate network frame
can be found and digplayed in.response to specific explanation requests from the User.

'To appear in:
Proc: it, Conf. on Easier and More Productive Use of Computing Systems, AnnArbor, May, 1981,

sj which will be published as a special issue of ACM SIGSOC

This research was sponsored by the Defense Advanced Research Orojects Agency (DOD), ARPA
Order No. 3597, Monitored by the Air Force Avionics Laboratory Urider Contract F33615-81 K-1539.
The views and conclusions,contained in this document are those of the authors and slkould not be
interpreted as representing the official policies, either expressed or implied, the Defense Advanced
Research Projects Agency or the US Government.

1. Introduction
Interfaces to interactive computer systems often appear inflexible and uncooperative to their users.

The COUSIN' project at Carnegie-Mellon is engaged in a wide-ranging program of research to

produce more graceful and Cooperative user iNterfaces. Our work includes.research on Tore flexible

and robust parsing techniques [2, 6], cOmmunication mechanisms that are both natural and efficient

[4], and a number of other topics..(see [1, 5, 7]) including the subject of this paper: explanation

In ordef to appear cooperative', any user interfaCe must be prepared to offer its user explanations of

what it can and cannot do, which command the usershould issue to get a particular task done, wh)a.t
die

parameters and options are available with a given command, etc.. It is these kinds of static

explanations that we will be concerned with here." Other, dynamic tipes of explanation, such as what

, command an interface is currently performing, what kind of information it expects the user to input

next, what was the result oi a command issued two hours ago, are equally vital for a cooptirative

interface, but will not be covered in this paper.

the most commort approach to static explanation facilities in the relatively small proportion or

interactive systems that provide them at all has been to use canned text messages Such messages

are either wriften into the-system 451the system designer specificalty for interactive use as in the SOS

editor [11], or extracted by an indexing scheme from an on-line versiort of the system manual as in the

RdMail electronic mail system [9], or the CMULisp system [3]. However, the structure of explanations

provided this way .is often-too Veiny, so that the user must search through irrelevant material to get to

the information he actually needs, and insufficiently interlinked, so that the user may be unable to,
. .

locate the information he needs even if he has found a related piece of-information, see [5] for a good

example of this. Much diore fine-arained and closely interlinked explanations are necessary.

Happily, the overall approach to interface construction adopted in the COUSIN 'system forms an

excellent basis for the provision of such explanations. Moreover, the approach allows such

explanations"to be constructed automatically from information that the interface needs in

any case for other purposes, thus providing an interactive system with,en explanation facility for

zero incremental effort on the part of the interface designer.

6utomatic construction of explanalion facilities with COUSIN is possible because COUSIN iS

independent of the particular functiorial subsyitem or.tool being interfaceyo. In order to use the

COUSIN interface, all relevant information about a git;en subsystem must be represented in a

1cousth is a new acronym. previous publications descrjbe the system as a gracefully interacting interface.

1

2

declarative data base called a too/ description. This information includes all the commands and

object types that the tool deals with, their parameters and components with filler types and defaults,

their iriput syntax and display formats, plus other information"less important for our purposes, about

the tool's operation. Using this information, COUSIN can accept commands from the user, check them
c.

for validity, fill in defaults, correct some errors and ambiguities, interact with the user to correct the

others, and finally transmit the corrected command to the underlying system. More importantly for

our purposes, this information, possibly süpplertnented by text strings to explain the purpose of

commands and object types, is just what is needed to construct a fine-grained and highly

interconnected static explanation facility forry tool represented by such a tool description.

In what follows, we describe a program, called SIB, for autornatically constructing a static

explanation facility from a tool description. The resulting explanation facility is a network of text

frames that the user is able to traverse as he wishes using the ZOG nienu-selection system DO).

Which information is extracted from the tool description, and in what format it is presented in the text

I,
frames is controlled by a second declarative data base we call the aspect description. The

representation of this meta-level information in declarative format makes the N5program very easy to

adapt to changein or ,extensions to the format of the tool description formalism. Because the

COUSIN project is highly experimental, such changes occur frequently. The following sections

describe in turn the tool -description formalism, the organjzation of the explanation netWorli derived

from it, the way in which this network is constructed, and the way in which the appropriate netviork

node may be found automatically in'response to a specific request for help by thebser. We conclude

with a discussidn of some more problematic requests for explanation.

:4

2. The Tool Description N

As mentioned above, a particular functional sub-system, or tool, is characterized for the -COUSIN
.

. interface program by information about the types of. objects it manipulates and the operations or

commands ircan perform. This information is stored in the too/ description, a declarative data base

provided by the tool system designer. Given the tool description, the COUSIN interface is able tO parse

the user's commands, check them for validity, fill in defaults, correct some errors and ambiguities,

interact with the user to correct the others, and finally transmit -the corrected command to the

underlying tool system. The tool description consists of schemas, one for each object type dealt with

by the tool, and one for each operation that the tool can perform.

Object schemas are "declarations" of the types of data object that the tool knOws how to deal with.

The following is a partial schema for the object type. Measage, of an electronic mail systeth that we

4

6

,

4

,

,

3

have been-using as an example tool for COUSIN.

[.StructureType: Object
ObjectName: &Message
Components: -

[Sender: [FillerType: &Person ComposeAS: CurrentUser]
Recipient: [Fil.lerType: &Person Number: OneOrMore]
Copies: [FillerType: &Person Number: NoneOrMore]
Date: [FillerType: &Date ComposeAs: CurrentDate]
Subject: [FillerType: &Uninterpreted Number: NoneOrOne]
Body: [FillerType: &Uninterpreted Number:NoneOrOne]
After: [FillerType: &Date UseFor: DescriptionOnly]
.Before: [FillerTypec &Date UseFor: DescriptionOnly]

] ,

.-

Syntaxi'

[SynType: NounPhrase
Head: (message note <?piece ?of mail>)
PostMod: (

aFrom tSender)
aTo tRecipient> 0
aCopiesTo tCopies>
<%Dated tDate>'
<%About tSubject>
<%After /After>
<%Before tBefore>
<%Between tAfter. and tBefore>

The precise details of this slot and filler style of notation are not important for present purposes. The

points to note are that the Components property.list gives each of the components of the structured

object, &tvtessage, and for each of these components, the type of object supposed to fill that

cornponent, plus any defaults, etc. that are, relevant_ The Syntax property list says that a message can

be described by a noun phrase in which the head noun is chosen from the specified list of words and

patterns-of words (denoted by anile brackets), and which can be followed by arty of the descriptive

cases given percent means word class (defined elsewhere), and up-arrow refers baCk to one of the

components of Message. Other informafion contained in an object schema, but not shown here,

includes display formats for the object, and information on how to resolve a descriptfon into an

instance. The formalism can also describe primitive object types, i.e. those that have no components,

and classes of object types.

A tool description schema for an operation includes a specification of its parameters and the syntax

of crimmands requesting execution of the operation. The f011owing example is the schema for the

'Forward operation from the same example electronic mail tool system. -

6

4

4

StructureType: Operation'
OperationName: &Forward
Parameters:

[Message: [FillerType: &Message]
Recipient: [FillerType: &Person
Forwarder: [FillerType: &Person

Syntax:

Number:
Must Be:

SynType: Imperative
Verb: (forward send -mail (pass on))
Object: <Message>
Cases: aTo tRecipient>

OneOrMo re]

Current. User]

The interpretation of thee notation is similar to the example above. Using this schema, COUSIN.can

determine whether a command specifies all required parameters of the operation, default any missing

optional slots, and check on the appropriateness of .those parameters that are given. Operation

schemas also contain descriptions of output formats, how to transmit an operation request to the tool,

and what to do after the operation is finished.

For further details of the tool description and of the way it is used by the COUSIN interface, the

readvr is referred to N.

The classes of information in the two examples above are all that are needed to produce a basic

static explanation network from a tool description. However, to' give more complete explanations

about the tool system objects and operations, tool descriptiol schemas could also contain additional

textual information put in for this specific purpose. This information might include text explaining the

purposes behind certain objects or operations, examples of object descriptions and instances, etc..

Since the tool destription schemas are re9resented as lists and properglists in our implementation,

augmentation of the schemas with explanatory fields is straightforward. We have not used

supplemental; stextual fields in our cUrrent implementation, but Section 4.1 discusses how such

additional information could be incorporated into the explanations we currently produce.

There are many similarities between the structure of objects and that of operations, and in

particular a correspondence between the components of an object and the parameters Of an

operation. This similarity is exploited by our program, NB, for constructing an explanation "facility

from a tool description, so in the discussion that follows to avoid saying "object or operation" and

"component of parameter" too much, we will refer to objects and operations collectively as tool items

or just as items, and we will refer to the components or parameters of a tool item as its slots. Note that

while a slot name is unique within a particular item, the same name may be used for slots in more than

5

one'item (e.g. the Forward, Answer, and Delete operations in our example tool all have Message

parameters). This fact cannot be ignored in con,structing an explanation facility, because of possible

questions like "Is there 3 default for the Message parameter?". For this reason, when we talk of a
..,

sliM, we will often be referring to the collection of all slots with the given name.

3. TheStructu re of an Explanation Network
As mentioned in the introduction, the program NB produces an explanation facility for an

: -
interactive functional subsystem or tool from a declarative description of that tool in the formalism we

have just described. This explanation facility is in the form of a net of text frames that the user can
. traverse as he wishes by use of the ZOG [101 menu-selection system. The advantages of having the

explanation facility produced automatically are clear. Since the tool designer must provide the tool

descricition in any case in order male use of thecousiN interface system, his tool will be augmented

with an explanation facility with no extra effort on his part. The Choice of a network of text frames for

the explanation facility requires some justification.

One obvious alternative to constructing 'a net of text frames is to construct responses to help
c

requests "on the fly". The same techniques could be used to extract the needed,information from the

data'base, and response's could be tailored to the specific question asked, instead of being selected

from a predetermined set of text frames. While this approach may be unavoidable sometimes (see

Section 5.3), it has serious efficienCy problems. Extracting the required information from the tool
L

description proves to be quite an expensive operation, and a practical interface cannot afford to make

its user wait too long for responses to his questions. In addition, such an approach does not help the

user to obtain information related to the explanation elicited by his last question. If each question is
. _

answered separately, there are no easy ways to "poke around" a topic. this violates the goal of
i

, interlinked explanations established in the introduction.

Since the explanation facility is intended to be used interactively, the structure of the net of text

frames can and should be much richer than the structure of a printed manual containing the same

information. Printed documents, being composed of chapteis and paragraphs, have a hierarchical

structure, appropriate for describing, domains in which there is a hierarchy of cotcepts. Cross-
,

references, pointing to concepts on different "paths" or in higher levels of the hierarchy, are legal,

but access to information via cross-references is done in a way distinctly different from access via

.hierarchical links, which is the "preferred? way.

The inherent structure of a tool system usually does not conform to a strictly hierarchical discipline.

If we chose "is-component-of" as one of the basic hierarchical relations between tool items, each "is-
I

8 /

6

417

fillertype-of" connexion would be a cross-reference. Tpe explanation facility is, therefore, structured

as a true network, providing a variety Of semantically meaningful connekions, of equal priority,

between the information units it contains.

In the remainder of this section we present the structure of explanation networks from an abstract

point of view, discussion of the program that constructs them frorn a tool description is deferred until

Section 4.

3.1. Nodes in the Net

The units of information in the explanation facility, i.e '. the nodes in the ex9lanation network, do not

contain as much information as the schernas in the tool description. In line with the goal set in the

introduction, we have chosen a finer granularity in order to be able to answer a user's questions more

"Succinctly, and to avIcsl presenting him with a confusingly 'large amount of information all at once.

There are two basic kinds df information units in the net, containing aspect information and context

information, respectively.

There,is an information unit for each relevant aspect of each tool item. For our current system,

aspects of a (compound) object type include the structure of instances of this type, the syntax of

corresponding descriptions, the possible uses of such pbjects as components or parameters, etc..

Aspects of an operation include its parameter list, the syntax of requests to perform it, the effect of its

execution, etc. An aspect is thus not the same_as a tool description field, but rather is determined

pragmatically as a.groy.p of facts about a tool item that fit naturally together from a user's point of

view. As described in more detail in Section 4.3, the NB program uses a declarative data base called

an aspect description to determine for which aspects of a toot kern it should construct information

units. This level of indirection adds significantly to the flexibility of the NB program.

'For each slot mentioned in the tool descriOtion, there is an infOrmation unit for each of its contexts,

i.e., for each of its meanings at a component of an object or as a parameter of an operation. These

information units describe the properties of the slot in the specific 'context: its fillertype, its default

value, whether it is mandatory or optional (for parameters), etc.. Examples of information units are

given in Section 4.

.)

.4

A 7 4

3.2. Edges in the Net. c

Each tool item and slot name may thus give rise to one or more information units. These

information units may be linked together by various types of binary relations which constitute edges in

the explanation network. Edges may run between information units associated with different tool

items or slots, or between units associated with the same item or slot.

..
Direct connexions between ,information units for different tool entities exist in correspondence to

. certain semantic relations between the tool items they describe. These relations are called simple

semantic relations. The standard simple semantic relations, existing in any kind of tool, are the

following:

-

"is-component-of" (between a compound object type and each of its components)

"is-parameter-of" (between an operation and each of its parameters)

1 .
"is-fillertype-of" (between a slot and its fillertype)

For a spec,,ific tool system, there may be additionll simple semaJe relations. This dependson

whether there are additional kinds of tool items e.g., classes of object types, and semantiô relations

involving them, e.g., "is-niember-of"; it also depends upon which of the semantic relations existing in

the tool domain are considered important enough to represent by edges in the net (instead of by

sequences of edges, or not at all). Because whicl-; edges are produced is specified declaratively in
\

the aspect description (see Section 4.3) it is easy to experiment with different combinations of edge

types, and to provide extra edge types for tool descriptions with more inforrnatiOn without changing

the basic Nlii program.

For each item and each slot, one of the corresponding information, units, called the entity's base

unit, is distinguished as being the unit that provides the primary information about it. There are edges

from the base unit to each of the remaining information units for the same entity. Conversely, each

information unit contains a reference to its base unit. This implies that all information units describing

the same entity are accessible (possibly indirectlyj from each other, and each of them can be

accessed via the entity's base unit.

-. .

4. Automatic Construction of arrExplanation Network
jn this section, we turn to the question of how the excilanation network for a given tool is actually

I

constructed from its tool description.. To simplify bur task, ansi to avoid needless duplication of effort,

we chose to build networks in a way that allowed use of the we4-developed software.support of the

44

.....--

,

0

ZOG system.

4.1. Implementation of an Explanation Network as a ZOG Net

ZOG [10] is a rapidresponse, lar0-network, menu-selection system for man-machine

communication also developed et Camegie-Mellon. In ZOG-nets, information is chunked into frames,

i.e., portions of text small enough to be displayed as a whole on a video terminal. In addition to the

actual information, each frame contains a menu of options from Which the user can select the next

topic and thus the next frame to be shown. Frames are identified internally bY unique frame
4

identifiers, but the user refers to frames by selecting their content. Thus, ZOG is well suited to

handling networks like ours inwhich connexions between fa.mes are semantic.
.11Y"

The ZOG system accepts files 'containing descriptions of frames using the BH formalism 181 and

uses these descriptions to produce the actual frames with appropriate indexing and interconnexions.

For each frame, the external BH format indicates the lay-out and contents of the information part of the

frame, plus the frames to which it should be connected and short text strings to describe the

connexions. The internal representation.of frames and frame connexions, the mechanism ior actually

displaying the frames on the screen, and the implementation of other operations on the net are

hidden from file producer of the external net description.

In the implementation of an explanation network as a ZOG net, each information unit is represented

by a frame (or several frames, depending on its size). Hereare some examples of the Jrames

constructed by NB for our example'tool system from its tool description. First, a frame for the

structure aspect ofIthe object type, Message:

MESSAGE (GENERAL STRUCTURE)

Objects of type Message have components:

se-fidde
2. Recipient
3. Copies
4. Date
5. Subject
6. Body

D. how is'a Message described?
U. how-is a Messagd used?

This fiame, together with a line of general options not shown, takes up a cOmplete display screen2.

21n the complete COOSIN system, the frames are actually shown in one window or parie of a larger screen.

9

When the .user selects another frame,by typing 1, 2; 3, 4, 5, 6, D, or U, this fcme is replaced by the

one corresponding to the 'digit or letter typed, e.g. typing '1' results in the display of a frame

describing the Recipient component of a Message:

RECIPIENT (in Message)

The Recipient component of object Message
contains one or more objects of type Person

F. about object type'Person
0. about object type Message
M. about otherAleanings of Recipient

Note that this frame is not the same as the frame for Recipient as a parameter of the operation,

Forward:

RECIPIENT (in Forward)

The parameter Recipient of operation Forward.
contains one or more objects of type Person.

F. abobt object type Person
0. about operation Forward
M. about other meanings of Recipient

Typing 'M' to either of these Recipient frames would, however, display the base frame for the

Recipient slat, which lists both of these frames, together with similar frameS far all other valid contexts

of the Recipient slot.

All of the text in all of these frames is generated automatically from prestored word patterns filled

out by slot and item narries eXtracted from the tool description. The, screen layouts are also

prestored, and are subject to the conventions of the underlying ZOG system. In addition to the types

of 'frame shown, the' frames generated by the present system include frames giving the abstract

syntax for each tool item, and frames showing in which other objects (operations) an object appears

as a component,(parameter).. Another interesting possibility, not yet implemented would be frames

giving example inputs for each object aad operation; we believe tpese examples could be derived

automatically from the abstract syntax and vocabulary specifications.

The example fool description we have been using contain only information that is also needed byl

other parts of the COUSIN interface A more complete explanation network vould resillt from the

addition of information describing e.g. the purpose of various-tool items. The design of NB makes

such aNextension easy. It would s4mply be necessary to define a new aspect for the tool desCription,

.say Purpose, and modify the aspect description (see Section 4.3) to accomodate this extra aspect. In

, 4

',.....,

10

i

this way, it would be straightforward to translate an extra property in the tool description schema for

Message:

.
Purpose: *able the transfer of some text (the Body) from a Sender

to one or more ReCipients, with extra copies to the users
specified in Copies."

into corresponding extra lines in the Message frame above (or in a supplementary frame), prefaced by

"The purposebf a Message is to ...".

Supplementing a todl description formalism with these kinds of skits for information in the form of

prose has an additional benefit. It offers a very structured way for the tool designer to ddcument parts
_

of his system, and the ways he intends them to be used. This approactl to documentation also

requires less effort from the tool designer because he can let the NB program take care of integrating

his individual commentSinto, what is essentially, a Carefully structured, online manual.

4.2. NB the Net Building Program

Our program to construct explanation networks from a tool description is called NB for NetffiuI1der.

NB operaies off-line from the rest of the COUSIN system. It takes a tool description as inputnd from

tt produces a ZOG net which can be used as ari interaCtive explanation facility for the tool in question.

NB itself does not interact with the Old user of the COUSIN interface. The Choice of the ZOG system

as.the support for the explanation network.means that all that NB actually has to do is to produce the

BH file corresponding to the network it wants to construct. All the actual displays, and all the

necessary bookeeping operations are handled by the ZOG system. NB's task then reduces to:
,-

extracting the information for each frame from the tool description and translating it into
the form in which it is to be displayed, aid

specifying the connexions between frames (see Section 3.2 for a list of connexion types).

-.?

NB -is composed of a hierarchy of functional modules which produce different levels of detail of the
_

network. There are three main levels in this hierarchy:

1. functions for building the net

t
2. functions for Wilding a frame, including:

E aspect modules (one for each kind of aspect)

*context modules (one for object cbntexts and one for operation contexts)

3. functions for building frame components
;

r
The functions of level 1 take care of the bookkeeping necessary for correctly-connecting the

..

11
1

frames built'. In addhion to the actual frames, NB produces four lists of indexing information:

tWO Base Lists associaling each tool item and slot name with the frame.identifier of its
base unit, and -

g -e
two Frames Lists associating each item/asPect pair and each slot/context pair with the
frame identifier of the corresponding aspect unit or context unit.

Besides being necessary for the action of NEL-these lists are also important in finding the correct text

frame with which VI-answer spgific help requests from the user (see Section 5.1).

The level 2 functions are executed for each aspect of each tool item and for each context of each
4

slot name. They-pick the appropriate pieces of infoimation from the tool description and call

functions of level 3 to produce the appropriate BH output. This BH ispresentation -for the explanation

net is then compiled into a ZOG net, ready for use as the explanation facility for the interactive tool

from whose description it was derived.

4.3. The Aspect Description

,As.mentioned earlier, NB does not produce frames for each possible aspect of each tool item in the

tool description. It chooses, only those aspects for which there is an entry in a second declarative

data base called the aspect description. This arrangement insulates NB from changes in or additions

to the tool deScription formalism; only the aspect deddriPtkih and not the code for NB need be

modified in such circumstances. An aspect description, then, does not provide information abdut a

specific tool like a tool description, but rather gives "meta-information", about the tool description NB

is given td process and about the form of the explanation network to be constructed from it. In

particular, it answers the following questions:

What kinds of tool items (e.g. objects, operations, primitive objects) are there?

About which aspects of each tool item should the System give explanations?* I.e., for
which aspects should NB construct corresponding infprmation units in the:explanation
network?

How is the-information to be extracted from the tool description?

Which fields of which tool description schemas should be used?

What level 2 function of NB will produce the framelor a given aspect?

An aspect description is composed of schemas, one for each type of tool item. An aspect schema

for a specific item type contains sub-schemas for each information unit to be derived from that kind of

tool item and incorporated into the net produced by NB. fri our example system, the aspect schema

for the Object item type contains sub schemas for Structure, Description, and Uses. Each of these

sub-schemas indicates from which fields in the description of its own and other object types its

information unit is derived. It also pies the name of the functional module from level 2 of NB that

.. - does the actual building, plus some other information used to construct the resulting frame. Here is *

an abbreviated version of the aspect schema for items bf type Object.

1

a

[

]

Entity: Object
Structure: [Module: BuildStruct

OwnFields: (Components)
Crossrefs: (Description Uses)
SelChar:' "S"

.] .

Description: [Module: BuildDescr
OwnFields: (Syntax DescrExamples)
Crossrefs: (Structure)
SelChar: "D"

]

Uses: [ModUle: BuildUse
OtherFields: [Object: (Components)

OITTation: (Parameters),

]

Crossrefs: (Structure Description)
SelChar: ."T"

,

A

,

It indicates information units are to be constructed for the Structure, Description, and Uses aspects of

all.tool description items of type Object, using the NB level 2 functions, BuildStruct, BuildDescr, and
\

BuildUse..--, respeetively. The fields of Object items fiorn which these functions are to obtain their

information are given by OwnFields, or in the case of Uses by OtherFields, which says in this case that

all Operations and other Objects must be searched for uses of the object. CrossRefs and SelChar are

used in the obvious way for setting up the links between the three information units constructed for

each item of type Object. Naturally, the information in the aspect description depends heavily on the

.format of the tool description. For instanae, if there was a UsedAs field in the tool description of each

item of tyPe Object, e.g. in the Case of Message something like

UsedAs: [Parameter0f: (For.ward Reply)]

then the corresponding portion of the aspect description for Object could be

Uses: [Module: NewBuildUse
OwnFields: (UsedA,$)

Crossrefs: (Structure Description)
SelChar: "1"1

] \
with function NewBuildUse being much simpler than BuildUse. So there i a certain tradeoff between

the size of the tool description and the amount of information to be provided by the tool designer on

A

ea

13

the one hand, and the complexity of the aspect modules and of the net building process.on the other.

While the aspect description itself is declarative, there is non-declarative information associated

with it in the form of the NB function names in the' Module fields. The aspect description would

insulate NB from changes in and extensions to the tool description formalism even more if that

information was also made declarative, i.e. if the information to be extracted from the specified fields

of the tool descrii:Ition was itself specified decfaratively, along with the way it was to be incorpqrated

into the fesulting net frames. Of course, NB would still need to provide functions to interpret such

declarative specifications, but its actual code could be completely independent of any particular tool

description format. We intend to pursue this line of research in the future.

5. Using an Explanation Network
Now,that we have discussed how an explanation network is constructed from a tool description, we

turn to an examination of how tlie cousin interface can use the network to respond to a user's

interactive requests for explanations. Presently, COUSIN uses the network in a way that requires the

user to expend an unnecessarily large amount of effort to obtain the explanation he desires.

However, we also describe a way for COUSIN to use the net more intelligently, so that a user will have

to expend less effort to find out what he wants to know.

The net access mechanism currently used by COUSIN requires the explanation net to have a

distinguished root frame and a set of index frames. The root frame points off to a general help frame

which explains how to move around in the ZOG network, and to two sequences of index frames, one

for tool items, and the other for tool slot names. The index frameM, turn point off to the base frames

for, each of the tool, items and slot names. The root and index frames are, of coyrse, produced

automatically by NB. When the user asks for help, COUSIN switches to ZOG mode and displays the
A

root frame, from where the user himself, by making appropriate selections, has to find his way to the

frame containing the desired information.

This way of handling help requests requires only minimal involvement on the part of the parsing

component of COUSIN: the parser only has to identify help requests as such, withorit analyzing them

jurther. Also, the explanation component of COUSIN dOes not need to know anything about the net

ZOG can be made to display the root frame automatically each time the net is entered. But obviously,

this mechanism IS far from being cooperative or graceful, since all the wor has to be done by the

user, through stepwise selection of the right frame.

A more adequate reaction by the explanation facility of COUSIN would be to display directly the

.16

14

aspect or context frame that provides the information asked for. We have designed a mechanism to

do this. It depends on the Base and Frames lists produced by NB in the course of constructing the

explanation net (see Section 4.2). The Base lists associate each tool item and slot name with its base

urut frame, and the Frames lists associate each item/aspect pair and each slot/context pair with the

corresponding aspect unit frame or context unit frame. The way in which these lists can be used to

proOde access to the appropriate frame dqiends on the type of explanation requested We

distinguish three tyrJes of request. iimple and indirect which can be answered by a single frame of the

network, and complex which canpot.

5.1. Simple Requests

A simple request is a question for which the answering frame can be found by direct lookup in the

*we lists or Frames lists. This means that the subject inquired about mast be one of:

an aspect of an.item

a context of a slot

basicinformation about an entity.

The following are exam ples.of simple requests (with the answer frame indicated in brackets):

What does a message look like?
[Structure aspect of object type Message]

Where do message occur?
' [Uses aspect of object type Message]

What parameters ag.needed forward a message?
[Parameters aspect of operation Forward]

(in the dialogue context of being prompted for the parameters of operation Forwaird)
What does 'recipient' mean?

[Recipient as parameter of operation Forward]

What is a message?
[basic information about object type Message]

While it would be possible for a tool designer to anticipate all these types of requests and include

rules to parse them in the grammar for recognizing commands and object descriptions (see Section 2

for examples of how this grammar is specified in the tool description), it appears unnecessary to

impose this extra burden on him. The grammar descriptioil must, in any case, be preprocessed into a

form more suitable ft-Ji the flexible pattern-matchin9 parser [6] used by COUSIN, and it appears feasible

to modify the preprocessor to supplement the grammar rules it produces with rules to 'recognize

(

,

15

explanation requests. This'would not only free the tool designer from having to be concerned with all

the different forms that help requests amid take, but would also mean tliat the forms of input

recognized as help requests would be uniform across all tools using the couseinterface.

Since we have already provided through the aspect dekription a way of insulating tne net building,

program, NB, from changes in or extension to the tool description formalism, it would be only logical

. to provide the same &tree of insulation to the grammar preprocessor. This would involve providing
.

- grammar patterns fohach information unit that the aspect description instructs NB to produce. The

grammar patterns for a given information unit would recognize requests for explanation which are

best answered by display of that unit. This arrangement would also ensure that the simple

explanation requests that could be handled would correspcmd exactly to the information available in

the explanation net.

5.2. Indirect Requests

The concept of simple request does not cover all kinds of help requests that a user might come up

I.

with. Consider a question like:

"Hdw do I specify the recipient of the forwarding operation?

vs, '

It can be answered by displaying the Description aspect frame for"Person (since Person is the filler

type for the Recipient parameter of .operation orward). But in the question itself, the object type

Person is not mentioned at all; it is identified by making use of the simple semantic relation "is-

fillertype-of" (cf. Section3.1). If all the explanation facility could do was to look in the Frames or Base

lists for items or aspects mentioned directly in reque§ts for explanations, the user would have to

decompose his question into a sequence of two simple requests:

What is the filler type of the Recipient parameter of Forward?
[Answered by-displaying the frame for Recipient as a parameter for Forward]

.,-
How can I specify a Person? 4.

This does not create the impression of a cooperative interface.

This problem can be solved by allowing the user to specify tool items by chains of slot. .

specificationS of lehgth two, as in the example above, or greater, as in:

. How do I specify the host of the recipient of the message in resend?

Questions with such chains of slot specifications are called indirect requests for explanation, and

should beincluded in the coverage of re automatically produced grammar discussed in Section 5.1.

In. general, we expect to be able to accomodate within this grammar all questions, but the most

obscure, that can be answered by displaying a single frame of the explanation network.

,

, II

1 8

1

alp

16

5.3. Complex Requests

While simple and indirect requests for explanation can be answered by displaying a single frame of

the explanation network, this is not true in general:

Which components of a message are of type mailbox?

There is no single frame in the explanation iietwork we have been considering that shows all

components of Message together with detailed information about their filler types. This is a reflection

of our principle of making information units very small, in order to avoid bothering the user with more

information than he actually asked for. But whatever organization were chosen for the net, there

would inevitably be questions whose answers were not contained in a single frame.

. _

If the answer to the above question is to be a single frame, the explanatidn facility would have to

create this frame dynamically. However, it is unclear how this could be done in a style consistent with

the other frames in the net, and in any case, constructing the frame may result in an unacceptably

long delay in answering the question. An alternative is to produce the answer in the form of a single

text string, However, this will result in two radically different kinds of responses to reciuests for

explanation, and such non-uniformity, especially if it cannot be predicted by the user, is probably

undesirable. A third alternative is for the explanation facility to determine which frames in the

explanation net would contribute to the answer of a complex question, inform the user that more than

ori frame is involved, and provide a simple mechanism to allow him to examine each of the frames at

his leisure. The production of answers to complex questions is a research topic we intend to pursue.

6. Summary

A

*. A

This paper has been concerned with providing an explanation facility for an interactive subsystem

or too/ to answer such "static" questions as what the tool can and cannot do, what parameters and

options are available or required with a given command, etc.. We addressed the problem in the

context of the COUSIN interface system which provides a cooperative tool-independent us'er interface'

for tools whose objects, operations;input syntax, display formats, etc. are declaratively represehted in

a tool description data base. Our approach was to construct the explanation facility automatically ,

from this data base, thus allowing the facility to be produced with nO incremental effort oh the.part.of -
the tool designer, and in a single uniform style for any tool using COUSIN as its interface. The resulting i
explanation facility took the form of a network of text frames supported by the ZOG menu-selection

system. This format allowed us to meet our goals of fine-grained and closely interlinked explanations.
I .._

The network of frames was produced from a tool description by the net building program, NB. Exactly

what information NB extracted from the tool description, and exactly how this inforwation was

* formatted in ihe text frames was controlled by a second declarative data base called the aspect

..

'V 1 3 L

17

description. The declarative nature of the aspect description made it easy to adapt NB to changes'in

and extensions to the tool description formalism, and to experiment with the*structure of the

explanation network. We also showed how the appropriate network frame could be aCcessed in

response to ipecific explanation requests from tile user.

Acknqwledgments

Don McCracken and George Robertson showed us how to interface to the ZOG system, and gave

us useful insights into exploiting its considerable power to best advantage.

References

1. Ball, J. E. and Hayes, P. J. Representation of Task.Independent Knowledge in a Gracefully
Interacting User Interface. Proc. 1st Annual Meeting of the American Association for Artificial
Intelligence, Stanford University, August, 1980, pp. 116-120.

2. Carbonell, J. G. and Hayes, P. J. Dynamic Strategy Selection in Flexible Parsing. Proc. of 19th
Annual Meeting of the Assoc. for Comput. Ling., Stanford University, June, 1981, pp. 143-147.

3. TOPS LISP. Carnegie-Mellon University domputer Science Department, 1978.

4. Hayes, P. J. Anaph9ra in Limited Domain Systems.,Proc. Seventh Int. Jt. Conf. on Artificial
Intelligence, Vancouver, 1981, f:sp. 416-422.

.01

5. Hayes, P. J., Ball, J. E., and Reddy, R. "Breaking the Man-Machine Communication Barrier."
Computer 14, 3 (Marcft 1981).

6. Hayes, F. J. and MoLiradian, G. V. Flexible Parsing. Proc. of 18th Annual Meeting of the Assoc. for
Comput. Ling., Philadelphia, June, 1980, pp. 97-103.

7. Hayes, P. J., and Reddy, R. An Anatomy of Graceful Interaction in Man-Machine Communication.
Tech. report, Computer Science Department, Carnegie-Mellon University, 1979.

8. Newcomer, J. BH - A General Information Organization Program. Carnegie-Mellon University
Computer Science Department, 1976.-

9. RdMail Message Management System. Carnegie-Mellon University Computer Science
Department, 1980.

10: Robertson, G., Newell, A., and Ramakrishna, K. ZOG: A Man-Machine Communication
Philosophy. Tech. Rept. , Carnegie-Mellon University Computer Science Department, August, 1977.

11. Son of StopGap (SOS). Carnegie-Mellon University Computer Science Department, 1978.
Originally developed at Stanford Al Lab; the help facility was added at CMU.

T. 2o

