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ABSTRACT

Both Lord (1967) and Cronbach and Furby (1970) have shown

that there is no knowably correct method of analysis, for data

from a nonequivalent control group design unless some assump-

tions are made. The assumption made in this paper is that of

a particular class of continuout growth models. It is shown i
---

that all.of the traditional methods of data analysis are

incorrect under much of this class of growth models. New

methods of data analysis are then developed based on maximum

likelihood estimation, jackknifing, and numerical analysis
. "---,

techniques. t
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J.

This paper is concerned with estimation and hypothesis

testin,g of treatment effects in nonequivalent control group

designs (Campbell, 1969; Campbell & Stanley, 1966). A nonequi-

valent control group design is a quasi-experimental design'in

which the groups are formed by some method other than random

assignment. Both Lord (1967) and Cronbach and Furby (1970)

have argued that unless some assumptions are made there is no

knowably correct method for the estimation and hypothesis

testing of treatment effects or these designs. In this paper

it is assumed that, in the ,abse ce of treatment effects,

natural growth conforms to a-particular class of continuous

growth models.

This class of continuous growth models can be expressed

symbolically as, for all times t,

Y..(t)=.(t)Y. .(t, ) + h.(t) + a.(t)
13 1;3 13 L.

and (1)

(t) = Y1.(t) + e(t) ; j=1,2,...,J
3 13

where J Is the number of groups in the design;

.(t) and h.(t) are continuous functions;
g3

a,(t) represents the population treatment effect

for the jth gtoup;

t
1.

is an arbitrary time point;

and Y..(t), Y..(t), and e..(t) represent the ,true scores,
13 13 13

observed scores, and errors of measurement, respectively,

for the ith individual in the jth group, on the measure

of interest.

1
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Further assumptions are:
\

(1) Classical. measurement theory holds. That is, for each

* .

time t, Y (t) and e
7
(t) are uncorrelated and E(e

ij
(t)) = 0 .

and (2) Treatment effects are additive.

Notice that for this class of growth models, the correlation

within each group between true scores at any two points in time

is +1 . Further, notice that any number of groups are allowed

*
underthisclassofgrowthmodelsandthat

19.

.(t) .Y..(t) + hj(t)

represents natural growth for these models. Finally, notice

thatttreatinenteffects,asdef.inedbythea.(t)'s in the
3

4
system of equations (1) are not the same as the usual defini-

tion of treatment effects. Let a(t) be the grand mean of the

The usual definition of a treatment effect is given
3

by a(t) - a(6. Although it might be argued that this class
3

of growth models is extremely restrictive, the authOrs (Blumberg

& Porter, 1981) have shown that, in fact, a wide variety of

natural growth patterns are included in this class (e.g.

di.fferential linear growth, exponential growth, and logistic

growth).

The appropriateness, under the class of growth models .

described by the system of equations (1) of currently avail-

able methods of data analysis has been explored by Blumberg

(in progress). She showed that ANOVA of Index of Response
J

with K = g(t) (Cox, 1958), ANOVA of Standardized Change Scores-

with reliability correction (Kenny & Cohen, 1980)" and ANOVA

r
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of True Regidual Gain Scores (Cronbach & Furby, 1970) yield

unbiased estimates of differences in treatment effects and

correctly test whether or not these differences are statis-

tically significant when the system of equations (1) reduces,

to

and

* *
Y.. (t) = g(t).Y.. (t ) + h(t) + ct. (t)
13 13 1. 3

3

Y. (t) = Y.. (t) + e.. (t)
13 13 13

a
Y

(t) = ay (t) for all j

where a (t) representt the standard deviation of the true
Y,

scores for the jth group.

Further, ANOVA of Raw Residual Gain Scores (Cronbach & Furby,
..,

(

1970) and ANCOVA provide unbiased ,estimates of differences
.

. .
<

intreatment effects and correctly test for nonzero differences
s,

when :

and

Y. " (t) "(t) 'Yi4(t1.." /1(t" ")J

a (t) = a (t)
Y.

for ail j

no errors of measurement are present in the data.

Other special situations were also found where one or

more of the existing analysis strategies provide unbiased

estimate's of treatment effects and approPriate significance

7
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testing procedures. Nevertheless, none of the conventional

approaches to analyzing data from nonequivalent lc
ontrol group

designs-are appropriate when natural growth.conforms to the

system of equations (1) unless the gj(t)'s are all equal and

the h.(t)'s are all equal. It should be pointed out here that

the method of Empirical Bayes Estimation (Bryk, Strenio, &

Weisberg, 1980; Strenio, Weisberg, & Bryk, in press) seems to

be a very promising approach for the analysis of data arising

from the application of nonequivalent control group designs

'under a wide variety of conditions, The method of Empirical

Bayes Estimation, however, requires that the variance-covariance

matrix of the true scores be non-singular. When the system of

equations (1), is assumed, this variance-covariance matrix becomes

singular and hence the method of Empirical Bayes Estimation can-
0

not be used for the class of continuous growth models being
A

considered4here.

Hence,- there is a need for new methods of data analysis

which can provide point and interv 1 estimates of and appro-

priate hypohesis testing procedure for treatment effects

under the class of continuous growth/klodels considered here.

It is, however, not possible to de/elop methods which will

work for the entire class of continuous growth models since

the la. (10 ,m1d a(t) terms are confounded. Thus, wfien consider-

ing methods for estimating and testing treatment effects, assuming

natural growth as defined in the system of equations (1), it is
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necessary to distinguksh between the following possibilities

-fb! the h,(t) terms:

Wtheexactnat'uresof'theh.(t)'s are known (i.e.,

h
1
(t) = 3.t, h

2
(t) = 4-t

2
+ 3.)t , , h (t) = log

10
(5*t

3
+ 1));

(b) thefunctionalformsoftheh.(t) 's are known (i.e.,
1

h
1
(t) = k

1
't

'

h
2
(t) = k

2
*t

2
+ k 3 .th , h (t) = log

10
(k

4
t
3

+ 1),

where k k2, k3, and k
4

4re unknown real-valued constants);

and

(c) for each time t, the hi(t)'s are equal to some common

value, say h(t) (i.e., for each t, hl(t) = h2(t) = .

= h(t)).

= h (t)

The discussion of methods of data analysis for each of the above

possibilities can be further broken down into six cases according-

to whether the exact natures of the g,(t)'s are known, the

functiomal forms of the
(3

.(t)'s are known, or nothing is kllown
3

about the (1 .(t)'s and according to whether or not errors of

measurement are _present (see Figure 1).

The remainder of this paper will present analysis procedures

to be used for cases 2, 4,.6, 8, 10, and 12 (see Figure 1), since
Airs

these are the cases which are likely to occur for data arising

from educational research settings. Cases 14, 16, and 18 are

also of interest, but the procedures to be used in these cases

are sufficiently different that they merit a separate piece.
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Subcases of the general growth model
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Pgooedures have also been developed for the cases where no

ertors of measurement are present. The intereSted reader is

referred to,Blumberg (in progress) for the procedures for the
410,,

cases ilot to be discussed,here.

Overview of the Procedures

Each of the procedures to be discussed is a variation of

a several stage method. At the first stage, estimates are

obtained for the unknown constants (i.e., parameters) in the

functional form expressions for the g (t)'s and/or h,(t)'s.
J

The method used to obtalin the estimates'of the parameters in

the functional forme expressions for the g (t) 's and/or h,(t)'s

is the salie wheth'er one is estimating the parameters for the

g7
.(t)'04 for the h,(t)'s, oefor both the g,(t)'s and h4(t)'s.

7

Hence, the discussion'of the first stage will be done in

general. The second stage concerns the-estimation of treatment

effects (i.e., the aj(t)'sjn equa.Lion (1)), given the estimates

!obtained at the first stage and the particulars of the case of

interest. Hence for this second stage, each of the cases must

. .

be discutsda separately. The third stage concerns methods for

interval estimation 'and hypothesis testing of both treatment

effectSt and diherenceS in treatment effects. These methods
7

arethesalnefor.411thecasestoriceestimatesOfthea.(t)'s

have been obtaingd. Therefore, the disLission of the third

stage will be doxle for all cases simultaneously.
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Stage 1: Estimation of the qj(t)'s nd hi(Ws

The methods developed at stage 1 depend upon knowledge of

each individual's .scores on several pretests. Deno0a_the times

of the pretests for the jth group.by t1 , t2 , t3., , t(p.).

7 7 7*

where P. is the number of pretests. Hence, for the jth group,

the system of equations (1) can be rewritten for the pretest times

(remembering that c(t)EO for all pretest times) as

and

4

where N is the number of individuals in group j.

Y..(tn, ) = g.(t, )Y..(t,
L

) + h.(t' )
13 . 3 x. 13 . 3 x.

1 7 7 7

(2)

*
Yij

x
(t.

3

) = Y.
j
(t
k

) + ej . (t
k

) ; k P=1,2,..., . ;

i
3

i=1,2,...,N.
7

Stage 1,is divided into two substages. At the first

substage, estimates of the g.(& )'s and hi(tk )'s are ob-
., 7 K4

J j

tained. At the second.substage, the estimatces of the g.(t )'s
3 k,

and h.(t, )1s are used to obtain estimates of the unknown con-
3 x.

7

stantsinthefurictionalformexpressionsofthe
gD
.(t)'s

and/or h
j
(Ws.

1 3.
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For simplicity, the j subscript will be'dropped for the

remainder of th.e discussion of stage 1, since the estimation of

the unknown constants in the functional form expressions for

the
g
.(t)'s and h.(t)'s is done separately fo ;. egch of the J
3 3

groups. Dropping the j subscript from equation (2),

and

Y. (t ) = g(tk):Yi(t1) + h(tk)
k

yi(fx ) = Y.(t
k

) + e.(t
k

) ; k=1,2,...,p .

(3)

(4)

Equation (3) represents.a. libear structural (Madansky, 1959;

Moran, 1971) or functionl relation (DeGracie & Fuller, 1972;

Lindley, 1947), Where g(t0 and h(tk) are the slope and

'*
Y. (t.

x
)-intercept, respectively, of the Yi(tk) on Yi(t1)

regression line. There are several approaches that have been

developed for finding estimates of the g(tk)'s and h(tk).'s.

Theipproach that is to be usici here is maximum iikekihood

estimation.

Estimation of the gi(tk)'s and h(tk)'s

For a design with p pretests the system of equations

represented by equations (3) and (4) can be described pictorially

as in Figure 2.
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e (t 1)
*

- >Y t

10

* .

p-1

\ ,

Figure 2

e(t
p -1

)

*
Y (t ) ( e(t )

P P

Pictorial representation of the structural relation,

and

The system can be, written in vector form as

* *
Y. (t ) = g(tk)Y.(t ) + h(t)
1 k 1 1

*
Y.(t ) = Y. (t.) + e.(t )
1 k 1 AK 1 k .

..

(6)

,

1

I

...

t

-

,
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Maximum likelihood requires expressions for the means, variances,

and covariances of the obseryed variables under considera-

' tion. Taking the mean on both sides of equation (5) gives

+ h(t
k

) (7)

where uy(tk) is the v tor of means. The variance of Y(t,1 )

is given by

2
a
Y
(t

1
)

* 2 2
= [a (t )] + a (t )

Y 1 e 1
(8)

where a 2
(t) represents the variance of the errors of measure-

e

ment at time t. The variance of
k

) is given by

2 2 * 2 2
ay(tk) = [g(tk)] .[ay(t1)] + ae(tk)

ir

(9)

for k=1,2, ... , p . The covariance of Y(t
k

) and Y(t
1
) ,is

given by
.

-. *
a
Y(t.)Y(t ) = g(tk)-(ay(t

k 1
,

(10)

The covariance of Y(tk) and Y(tk,), where k,k'.= 2,3, ... , P

and k k', is given by
. 4

0.- (11)
= g(t )-g(t )-(a

*
(t )3

2
a
Y(t

k
)Y(t

k'
) ., k k' X 1

(

f

I
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Cdnsider the system of equations (7);(8),(9).,(10), and

(11) as one large system of equationC The maximum likeli-

hood approach requires that this system be identifiable. A

system of equations is said to be identifiable if and only

if each of the unknown paramethers 'on the right hand side

of the system
(
can be expressed in terms-of the unknown

parameters on the left hand side of the system. For the

models of continuous growth being considered here, the

unknown parameters on the left hand side are py(t1)1 py(t2)1

Y(t
) an'd the p(p+1) parameters in the variance-

p 2

Covariance m7atrix of Y(t
1

Y(t
2
), , Y(t ). The unknown

,p

parameters on the riglk hand side are g(t2), g(t3),

g(t ), h(t
2
), h(t

3
), , h(t [a

*
(t

1
)]

2
, a

2
(t

1 e
), u

2
(t

2
),

p Y e

2
,

e
(t
p

), and a
2
(t ). The system of equations (7) to

4 e p

(11) is identifiable if and only if p > 3. When p > 3, the

LISREL program (Jöreskog & SOrbom, 1978) can be used to

obtain the maximum liklihood estimates of the parameters qb'

the right hand side. When p = 2, additional assumptions must

be made in order thatvthe system of equations is identifiable.

Estimation of the Unknown Constants

Once therestimates of the g(tk)'s and h(tk)'s are ob-
,

tained, etithates of the unknown constants the general
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functional form expressions for g(t) an'd h(t) can then be

computed. For simplicity, the discussion here will be in

terms of g(t). The mettiod 6 be used for h(t) is analogous.

( The method for determining estimates for the unknown

constants in the expression for g(t) is dependent upon the

functional form of g(t). For sake of illustration, consider

the following two examples,

and

3

a polynomial form: g(t) = 1+ E c .(t - t )

d

d=1 d
1

(12)

an exponential form: g(t) = b'c
(t-t

1
)

+ (1 JD) . (13)

so

Polynomial Form

The object of the method to be described is to.determine

the values of c
1

, c
2'

and c
3
in the polynomial from knowledge

r.,()f the g(t
k
)'s, where the g(t) 's are the estirclates of the

g(tk)'s obtained using the maximum likelihood approach. For

V
simplicity, assume that. p = 5, t1 = 0, t2 = 1, t3 = 4, t4 = 5/ and

t
5

= 7. The method to be described will work for any p > 4

and for any set of values for
k
's. Substituting t1 = 0,

t2 = 1 t 3 = 4 t = 5, and
5

= 7 into equation (12)
,4

yields
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and

14

g(1) = 1 + c
1
+ c

2
+ c

3

g(4) = 1 + 4c
1
+\16c

2
+ 64c

3

g(5) = 1 + 5c + 25c
2
+ 125c

3.1

g(7) = 1 4L7c1 +,49c2 + 343c3 .

But, the values of g(1), g(4), g(5), and g(7) are unknown.

Therefore, the maximum likelihood estimates are used instead.

Replacing g(1), g(4)1 g(5), and g(7) by g(1), g(4), g(5),

and g(7) in the system of equations (14) yields

and

c(1)

g(4)

g(5)

g(7)

= 1 + c
1

+ c
2
+ c

3

= 1 + '4c
1

+ 16c
2
+ 64c

3

(15)

= 1 + 5c
1

+ 25c
2

+ 125c
3

= 1 + 7c
1

+ 49c
2

+ 343c .

The method of least squares is 'then used to obtain esimates

of o
1,

c
2
and c

3
from the system of equations (15).

Exponential Form

The object of the method to be described in this sub-
/

section is to determine the values of b and c in equation (13)

from knowled4e of the g(t
k )'s.

The method to be described
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will work for any p > 3 and for any set of values for the

t
k
's. Recall that the g(t

k
)'s were already determined at

the first subEtage. Next, the values of the tk's and g(tk)'s

are substituted into equation (13t,to yield a new system of

equations analogous to system (15). For sake of illustration,

let p = 4, t1 = 0, t2 = 1, t3 = 4, and t

these values into equation (13) yields

and

g(1) = bc + (1 b)

5. Substituting

65 = b.c4 (1 '1D) (16)

g(5) = bc + (1 b) .

Estimates of b and c are then derived from the system of

equations (16) using a combination of the numerical analysis

techniqUes of least squares and the Newton-Raphson method.

Stage 2: Point Estimation of Treatment Effects

The discussibn of the determination of the. point

estimators of treatment effects will be discussed separately

for each since the process is slightly differe4t in

each case.

20
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Case 2 estimates

Forcase2theexactnaturesoftheg.(Wsandh.(t)'s
7 7

are assumed known. Unbiased point éstimators of the treat-

ment effects are given directly by

a. (t) = Y. (t) [g. (t)V. (t ) + h. (t)]
7 7 7 j 1 7

Notice that for this case, stage 1 is skipped completely.

Case 4 estimates

Cas"assurnestheexactilaturesofthell.(t) 's are
7

knownbutthatonly-1.4nctionalfocmsofthe
gJ
.(t)'s are

knbvel. Recall that at stage 1, estimates we7 obtained for

the Unknown constants in the functional form Oxpressions for

the gi(9's. F the jth group, let 4j(t) denote the

function formed by substituting these estimates of the

constants into the general functional form expression for

(4

.(t). Point estimators of treatment effects are then given
3

by !

dj(t) = Y. [4.(t)-Y7(t-7 + h.(t)]1 lj

Case 6 estimates

X
Case 6 as"sumes that the exact natures of the

(4

t ' s

3

are known but that 'only thb functional forms of the h,(t)'s
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are known. Analogous to case 4, for the jth grcAlp, form
7

a new function, called fi,(t), by.substituting the ettimates

of the unknown constants that were obtaineid in stage' 1 into

thefunctionalforrnexpressionforh.(t) . Point eStimators

of treatment effects are then given by

(1.(t)=Y.(t)--[g.(t).Y.(t)-1-1i.(t)]
3 1 .

Case 8 estimates

Case 8 assumes that Only the functional forms of both

the
'3

.(t)'s and h.(0.!... are known. For thisg-ase, point
3

estimators of treatment effects are given by

cL.(t) = [4i (t) Y3. (t1 . ) + (t)

where the .(t)'s-and li.(t4's are as defined previously.43

Case 10 estimates

Case 10 assumes that the act natures of the h,(t)'s

bare )crlown Wld that Dothing is 4own about the
'3

(t) 's.
3

Define a new variable, W..(
13

VP

Y..(t) h.(t). Then, the
13

system of equations (1) can be rewritten as



and

18

W..(t)=.(t).11..(t ) + a.(t)
13 - gJ 13 I.

W..(t) = W..(t) + e..(t) .

13 13 13

(17)

\\

Notice that the system Of equaticns (17) is, for each j, a

linear structural relation with a slope of g,(t) and a W,(t)-

intercept of aAt): Hence, for any particular tiMe t, esti-

mates of
g
.(t) and a.(t) can be obtained directly by using
7

maximum likelihood techniques, with W.(t
I

) as the inde-
3 .

pendent variable and W,(t) as the dependent variable. i It
J \.....,

should be recalled here that in order to compute the maximum

likelihood estimates in situations where there are only one

independent and one dependent variable, it is necessary to

make additional assumptions. The maximum likelihood estimates

of the a.(0's are considered to be the *stage 2 es mates and

4\
J

are labelled a.(t) 's.

Case 12 estimates

Case 12 assames that' only the functional forms of the

h. (0' s are }mown and that nothing is }mown about the
g

(t) 's.
-J J

In this case a new variable is formed by defining U..(t) =

j
Y.
i

(t) H-
j
(10, where 6.(t) is defined as in case 6. The
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method described for case 10 is then used to obtain-the

la,(Wsbyreplacingthell.j (t)'s of case 10 with the
J i

, *

U(t)'s.

In developing the point est,imators of the treatment

effects it was assFed that for.any particular nonequivalent

control group design, the known information about the growth

curves for each of the J groups belonged to the same case.

Since the determination of the point estimators is done

Separately for each group, insisting that all of the groups

belong to the same case is overly restrictive. Hence, it

will be assumed for the remainder oi this paper that for each

of the J groups, the known information about the growth curves

, allows the data analyst to place each of the groups into one,

of the cases 2,4,6,8,10, or 12. Once this is done, the la (t)'s

are derived separately for each group by using the methods

given in this stage 2 section for the case to *hich the

group's growth curves belong.

Bias of the Point Estimators

The procedures used to determine the-point estimators

of the treatment effects,involved the use of maximum likeli-

hood eStimation at either stage 1 and/or stage 2, except for

case 2 type growth curves. It is well known that maximum

likelihood teyhniques often lead to biased estimatorS.: These

-Jr 1)4
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estimators are, however, usually consistent (Patel, Kapadia,

& Owen, 1976) and asymptotically efficient (Bickel,& Doksuffil,

1977). Further, functions of consistent estimates are also

usually consistent estimators. The asymptotic properties

of the point estimators for treatment effects derived here

for the various cases have not been studied in much detail

Furthen study of the asymptotic properties is needed.

Stage 3: Interval Estimation and Hypothesis Testing

In order to develop interval estimation and hypothesis

testing procedures it is necessary to liave estimates of the

variarices of the 11.(t)'s. The method the authors have chosen

to use to obtain estimates of the desired liariances is jackknifing

(Quenouille, 1956). The method of jackknifing was chosen for

two reasons. Fira, it is the only practical method of ob-

taining variances for estimators that are formed by the use

of a several-stage process such ,as:those developed here.

Second, and more important, the use of jackknifing usually

leads to new point estimatorshichhave a reduction in'bias

over the original point estimators, when the original esti-

mators are biased.
4

The technique of jackknifing begins by drawing a random

sample from a specified popufatih. Let N denote the number

of subjects in the sample. The N subjects are then divided



21

N
into m disjoint subsets, each of size . Let y'be.the. .

parameter of interest and / be an estimator of y. Further,

let /
T

be the valild of / when all N subjects are used, and

let / (k) be the value of / when the subsaMple of size N

where the kth subset has been deleted, is used.

Next define J
k
(/) by

J
k
(/) = m./

T
(m-1)/ (9,)

and'define J(//) by

m
J(4) -±-* (?)

m k=1

; 2=1,2,..., m

Ari estimate .of the variance of J(/) is given by (Tukey, 1956)

rn

[J (?)'4-" J(1)]
2

9, t

2 k=1
S
J

=
m 1

Think of m as being fixed. Then as N approaches infinity,

also approaches infinity. Gray and Schucany (1972) have

shown that V,W(J(?) Yl is asymptotically distributed

(as + 00) as a random variable with m 1 degrees of

freedom.

26
4
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Theeqimatorsofinteresthereare's from
0

.

stage 2. To apply the-Jackknifing technique, \first divide

the N. subjects from the jth group into m, distinct subsets.
.J

Next,- defin'e (1(2) (t) to be the value of the estimator, a. (t),

when the Lth subset is deleted from the saiile ,for the jth

//",,
group. Oli)ce the a (t) 's have been computed, new estimators(24

of the a.(t)'s are given by
-,/

J(a.(t)) =

m.
1

? J,0(Cr4II))

mj L=1 J

(t)J(a.(t))=T11124.(t)-(r[1:4-1)'a.(t)
2, 3-

(18)

Interval estimation and hypothesis testing procedures are

available by observing that

IF-7-p(a.(t)) - a.(t))
3

(S
2

(t) ) .

J 3

is asymptotically distributed as 41 random variable with a

Student'stdistributionwithm.-1 degrees of freedom

m.

E [J(cL(tH c4.-J((t)) 2

2.

-
where (S

2
(t)).

J 3

3

s..
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Anapproximate(1--a)%confidenceintervalfora.(t) (and

herice,anct-leveltestforrionzeroct.(t)) is then'given by
A

J(a..(t)) +:t (1
2')m.

s j2

The estimation and hypothesis testing of differences in

treatment effects are also of interest. j; point estimator of

a,(t) - a (t), for two groups j and j', can be given by
7'

J(ar--(1.)) J(a
7'

aj(t)) where J( (t)) and J(a (t)) are defined
7

by equation (18). An approximate (1--a)% test of the hypothe-

sis of nonzero differences in treatment effects is accomplished

by performing an ANOVA on the J
k
(a

j
(t))'s. Notice that the

unit of analysis for the'ANOVA being performed here is the

disjoint subsets formed in order to do the jackknifing and

that the dependent variable is

Summary

In this paper point estimation, interval estimation, and

,hypothesis testing procedures were developed for both treatment

effects and differences in treatment-effects wheb

and

Y..(t)=g.M.Y..(t)"""(t)-""(t)13 13 1.
7

Y..(t) = Y..(t) + e..(t) .

13 13 13.
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The only additional assumption needed was that for each of the

J groups either the exact nature of or the functional form of

11.(t) was known. Hence, techniques Were developed which are

applicable for a variety of natural growth situations where

none of the presently available data analysis methods can be

employed.

4.

40
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