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ABSTRACT

Both Lord (1967) and Cronbach and Furby'(1970) have shown
that there is no knowably correct method of analysis for data
from a nonequivaleﬁt control group design unlesé some assump-
tions are made. The assumption made in this paper is that of
a particular class of continuou® growth models. It is shown

—

that all.of the traditional mefhods of data analysis are
~

incorrect under much of this class of growth models. New
methods of data analysis are then developed based on maximum
likelihood estimation, jackknifing, and numerical analysis

\\\
techniques. {



This paper is concerned with estimation and hypothesis
testing of treatment effects in nonequivalent control group
design; (Campbell, 1969; Campbell & Stanley, 1966). A nonequi-
valent control group design is a gquasi-experimental design in
which the groups are formed by some method other than random
assignment. Both Lord (1967) and Cronbach and Furby (1970)
have argued that unless some assumptions are made there is no
knowably correct method for the estimation and hypothesis
testing of treatment effects_for these designs. 1In this paper
it is'assumed that, in th;izgfggce of treatmené effects,
natural growth conforms to a-particuiar class of continuous
growth models.

This class of continuous growth models can be expressed

symbolically as, for all times t, V
Yo, (t (t) Yi.(t, ) + h (t) + (t)
. = g. ‘Y. . . a.
138 = 95 13771, 3 3
and ’ (1)
* .—
.j(t) = Yij(t) + eij(t) i 3=1,2,...,3

4
where J 1s the number of groups in the design;

gj(t) and hj(t) are continuous functions;
aj(t) represents the population treatment effect

for the jth group; .

tl is an arbitrary time point;
j

and *
Yij(t)’ Yij(t)’ and eij(t) represent the true scores,

i\§¥~ observed scores, and errors of measurement, respecti&ely,
for the ith individual in the jth group, on the measure.

- ' of interest.




(in progress). She showed that ANOVA of Index of Response

Further assumptions are: ) : \
(1) Cléssicai measurement theory holds. That is, for each
time t, Y;(t) and ej(t) are uncorrelated and E(eij(t)) =0 .
and (2) freatment effects are additive.
Notice that for this class of growth models, the correlation
within each group between true scores at any two points in time
is +1 . Further, notice that any number of groups are allowed

*
under this class of growth models and that gj(t)'Yij(t) + hj(t)

represents natural growth for these models. Finally, notice

that thg treatment effects, as defined by the aj(t)'s in the

'Y
system of equations (1) are not the same as the usual defini-

tion of treatment effects. Let a(t) be the grand mean of the

aj(t)'s. The usual definition of a treatment effect is given
by aj(t) - a(ti. Although it might be argued that this class

of growth models is extremely restrictive, the authors (Blumberg
& Porter, 1981) have shown that, in fact, a wide variety of
natural growth patterns are included in this class (e.g.
differential linear growth, exponentiai growth, and logistic
growth). , |

The appropriateness, under the class of growth modelé
described by the system of equations (1) of currently avail-
able methods of data analysis has been explored by Blumberg

J

with K = g(t) (Cox,11958), ANOVA of Standardized Change Scares-:

with reliability correction (Kenny & Cohen, 1980)" and ANOVA

. L3

t6‘
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of True Resgidual Gain Scores (Cronbach & Furby, 1970) yield
unbiased estimates of differences in treatment effectscand

correctly test whether or not these differences are statis-

tically significant when the system of equations (1) reduces .

to ' . .
Y* * .
ij(t) = g(t) Yij(tlj) + h(t) + aj(t)
_ *
and * *
oY.(t) = oY(t) for all j
’ 1
where o; (t) representg the standard deviation of the true
J

scores for the jth group.

Further, ANOVA of Raw Residual Gain Scores (Cronbach & Furby,
1970) and ANCOVA provide‘unbiasgd.estimates of.gifferences
inltreatmenf effects and‘corréctly test for’noﬂzéro differencés

N
when

* *
.Yijxt) g(t?'Yij(tL.) + h(t) + aj(t)

J

* * ’ . ]
on(t) = og(t) ) for all j

-~

and
no errors of measurement are present in the data.

Other special situations were also found where one or
more of the existing analysis strategies provide unbiased

estimates of treatment effects and appropriate significance
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' testing procedures. Nevertheless, none of the conventional

‘appfoaches to analyzing data from nonequivalent %ontrol group
designs -are appropriate when natural growth conforms to the

system of equations (1) unless the gj(t)'s are all equal and

the hj(t)'s are all equal. It should be pointed out here that

~

the method of Embirical Bayes Estimation (Bryk, Strenio, &
Weisberg, 1980; Strenio, wéisberg, & Bryk, in press) seems to
be a very promisiﬁg approach for the analysis of data arising
from the application oﬁ nonequivglent control group designs
'under a wide variety of conditions,’ The method of Empirical
Bayes Estimation, howeveg, requires that the variance-covariance
matrix of the true scores be non-singular. When the system of »

, .
equations (1) is assumed, this varianceTcovariance matrix becomes ¢
singular and hence the method of Empirical Bayes Estimation can-

.

not be used for the class of continuous growth models being

3
considered *here.

Hence,” there is a need for‘new methods of data analysis
which can provide point and interv4l estimates of and appro-
priate hypoéhesis testing procedures\for treatment effects
under the class of continuous growth models considered here.
It is, however, not possible to de?¥elop methods which will
work for the entire class of continuous growth models since

the hj(t) and aj(t) terms are confounded. Thus, when consider-

ing methods for estimating and testing treatment effects, assuming

natural growth as defined in the system of equations (1), it is

4
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necessary to distingugsh between the follewing possibilities

16{ the hj(t) terms: 5 .

(a) the exact natures of: the hj(t)'s are known (i.e.,

2

- = 4. L - o3 .
hy(t) = 3-t, hy(t) = 4-£% + %, ..., hy(t) = logy(5-t7 + 1));

(b) the functional forms of the hj(t)'s are known (i.e.,

. L2 ok '_ .3 .
£, hy(t) = kyot? + koot?, ..., hy(t) = logyo(k,-t> + 1),

hy(t) =k 2 3

1
where kl,'kz, k3, and k4 are unknown real-valued constants);

and
(c) for each time t' the hj(t)'s are equal to some common |

value, say h(t) (i.e., for each t, hl(t) = hz(t) = ,,. = hJ(t)

= h(t)).

f
i
I

4

The discussion of methods of data analysis for each of the above
possibilities can be further broken down into six cases according*

to wheéher the exact natures of the gj(t)'s are known, the

functional forms of the g{?%)'s are known, or nothing is known
about the gj(t)'s qnd according to whether or not errors of

measurement are present (see Figure 1). ~

The remainder of this pgpér will present anélysis procedures
to be used for cases 2, 4, .6, 8, 10, and‘12 (see Figure 1), since
these are the cases which are likg}y tg occur for data arising
from educatiopal research settings. Cases 14, 16, and 18 are
also of interest, but the procedures to be used in these cases

are sufficiently different that they merit a separate piece.

]

<



K Functional forms
g4 (t) 's known of Nothing known
gj(t)'s known about gj(t)'s
.. No .. Errors of NoO @ .Errors of No Errors of
Errors of Measurement Errors of Measurement Errors of Measurement
Measurement Present Measurement Present Measurement Present
7 * >
h™. '
J(t)'s Case KCase Case Case Case C?se
k
nown 1 2 3’ 4 9 10
Functional forms Case Case Case Case Case Case
of
hj(t)'s known 5 6 7 8 11 12
[
\
hj(t)Eh(t) Case Case Case Case Case Case
13 14 15 16 17 18
\ C ¢
Figure 1

i Subcases of the general growth model

~
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Procedures have also been developed for the cases where no

erkors of measurement are present. The interested reader is

referred to.Blumberg (in progress) for the procedures for the
e T , .
cases pot to be discussed, here.

Overview of theé Procedures

h Y

Each of the procedures to be discussed is a variation of

a several stage method. At the first stage, estimates are
. ;

obtained for the unknown constants (i.e., parameters) in the

$

functional form expressions for the gj(t)'s and/or hj(t)'s.

-

The method used to obtalin the estimates’ of the parameters in
3

the functional forms' expressions for the gj(t)'s ang/or hj(t)'s
£
is the samé whether one is estimating the parameters for the
y gj(t)'s% for the hj(t)'s; or’ for both the gj(t)'s and hj(t)'s.

L}

’ C . . . . .
Hence, the discussion’of the first stage will be done in
general. The second stage concerns the'espimation of treatment

effects (i.e., the aj(t)'shin equation (1)), given the estimates

'3 v
jobtained at the first stage and the particulars of the case of

interest. Hence for this second stage, each of the cases must
be discu&sed separately. The third stage concerns methods for -
interval estimation and hypothesis testing of both treatment

effects and diéﬁerques in treatment effects. These methods .

’ are the same for qll'thé cases, once estimates of the aj(t)'s

-
t 4

have been obtained. Therefore, the diséussion of the third

stage will be done' for all § cases simultaneously. ..

-
. ~
. . 1
R . .
-~ Fd . ’

) . - . 1N
Q ) . . 'y
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Stage 1l: Estimation of theAgj(t)'s and hj(t)'s

: |
The methods developed at étage 1l depend upon knowledge of

each individual's .scores on several pretests. Denots._the times

of the pretests for the jth group by t t, , t, , .., t

1.' ‘2. . ).
j j j (P35
e

where pj is the number of pretests. Hence, for the jth group,

the system of eguations (1) can be rewritten for the pretest times

(remembering that aj(t)E()for all pretest times) as

~
* *
Yij(tkj) = gj(tkj)°Yij(tl_) + by (g, )
. J J
and N (2) )
. *
Ylj (tkj) = Yl] (tkj) + elj (tkj) H k=1r2r-~er H

/ -i=1,2,...,Nj

where Nj is the number of individuals in group j.

Stage 1l.is divided into two substages. At the first

substage, estimates of the g

) j(tk.) s and hj(tkj) s'are ob-

J

tained. At the second substage, the estimages of the gj(tk )'s
: J

and hj(tk )?s are used to obtain estimates of the unknown con-
j .

stants in the functional form expressions of the gj(t)'s )
’ ) . .

and/or hj(t)'s.




For simplicity, the j subscript will be ‘dropped for the
remainder of the discussion of stage 1, since the estimation of

the unknown constants in the functional form expressions for

the gj(t)'s and hj(t)'s is done separately for each of the J .
groups. Dropping the j subscript from equation (2), -
* * h
Yi(tk) = g(tk)'Yi(tl) + (tk) (3)
and
(€) = Y, |

Equation (3) represents.a lihear structural (Madansky, 1959;
Moran, 1971) or functionél relation (DeGracie & Fuller, 1972;

Lindley, 1947), where g(t,) and h(t,) are the slope and

* ) . £ % *
Yi(tk)—lntercept, respectively, of the Yi(tk) on Yi(tl) >
regression line. There are several approaches that have been

developed for finding estimates of the g(tk)'s and h(tk)fs.

Thelfpproach that is to be usge here is maximum likelihood

estimation.

-, s »

Estimation of the g(t,)'s and h(tk)-'s

For a design with p pretests the system of eguations

v

represented by equations (3) and (4) can be described pictorially

as in Figure 2. T




{

[

e (t))————>Y (£]]

% .
Yk e elt )

\ “
Y*(t)l ' (t)
e
p’ 2
Figure 2
Pictorial representation of the structural rélation,
The sys£em can be‘written in vector form as
e = ' h ' (5
Yi(tk) = g(tk) Yi(tl) + (tk) .. (5)
and '
" *
Yi(tk) = Yi(tk) + ei(tk) L ' (6)
i5
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Maximum likelihood requires expressions for the means, variances,
and covariances of the observed variables under considera-

tion. Taking the mean on both sides of eguation (5) gives

- uY(tk) = gt ) Y(tl) + ht)) (7)

where uY(tk) is the Qézfﬁzfgé\means. The variance of Y(tl)

is given by

.

2 L 2 2 : |
oY(tl) = [OY(tl)] + Oe(tl) . (8) <;

where oz(t) represents the variance of the errors of measure-

ment at time t. The variance of X(tk) is given by

~

-

+ — . v
2 _ 2 * 2 2
og(t,) = (gt )] [OY(til)] + oo () (9)

) |
for k=1,2, ... , p . The covariance of Y(tk) and Y(tl).is ’
.given by ;

_A' * 2 > (10)
Oy tte)v(t. ) - GlEIloy(t )]
k 1
The cévariance of Y(tk) and Y(tk,), where k,k'.= 2,3, ... , p
and k # k', is given by
. . ]
» (11)

= g(t,)- ot 2
OY(tk)Y(t =9t ) gt ) [cy(tl)]

k')

/
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- Cdnsider tﬁe system of equations (7);(8),(9),(10), and
(11) as one large system of equations. The maximum likeli-
hood approach rgquires that this system be identifiable. A.
system of eqﬁations is said to be identifiable if and only
if each of the unknown paramethers ‘on the righ£ hand side
of the system can be expressed in terms-of the unknown
parameters on the left hana side of the sjstem. For the
models of continuous growth being considered here, the
unknown parameters on the left hand side are uy(t;), w,(t,),

. uY(tp) and the —Rigill— parameters in the variance-

’

. , -7 .
covariance matrix of Y(tl)’ Y(tz), e 4 Y(Fp). The unknown
' i

parameters on the right hand side are glty), glty)s v o
gt ), h(t,), hity) ht ), for(e)12, 02(t)), o2(t,)
P! 277 370 et p’’ Y'U1 "Te 71! TetT2"!

vy oz(tp«r
(11) is identifiable if and only if p > 3. When p > 3, the
LISREL program (Joreskog & Sorbom, 1978) can be used to
obtain the maximum lik&lihood estimates of the parameter: Qh
the right hand side. When p = 2, additional assumptions‘kugt

be made in order that+the system of equations is identifiable.

N

Estimation of the Unknown Constants

Once the’ estimates of the g(ty)'s and h(tk)'s are ob-

"

tained, eétim;Z;;>of the unknown constants/iﬁ/gﬁg‘ﬁgﬁeral
- :
R ' o* g .

), and oz(tp). The system of equations (7) to

)
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functional form expressions for g(t) amd h(t) can then be
compﬁted. For simpiicity, the discussion here will be in
terms of g(t). The method ko be used for ﬁ(t) is analogous.
/ The method for defermining estimates for the unknown
constants in the expression for g(t) is dependent upon the
functional form of g(t). For sake of illustration, consider

the following two examples,

-3
a polynomial form: g(t) =1+ I cd-(t -t )d i (12)
a=1 ' :
and :
% (bt :
an exponential form: g(t) = b‘c t_tl) + (1 —b) . (13)
s
Polynomial Form /

. The object of the method to be described is to:determine

the values of c., ¢ and Cjy in the polynomial from knowledge ]

1 2!

P : T ) .
of the g(tk)'s, where the g(tk)'s are the estimates of the

th) 's obtained using the maximum likelihood approach. For

=
~
»,

simplicity, assume that‘p ® 5, t1 =0, t, =1, t, = 4, t4 = 5, and

te = 7. The method to be described will work for any p > 4

and for any set of values for ?he tk's. Substituting t1 =0,

t, =1, t, =4, t

2 3 = 5, and .t = 7 into equation (12)

5

4

»
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14

l 4+ c, +c. +c

g(l)

1 2 3
gf4) =1 + 4c1 +\16c2 4 64c3 '
\ (14)
g(5) =1+ 591 f 25c2 + 125c3
and ] ot
g(7) =1 1{:7c1 +,43c + 343c3

I

% , . , )
But, the values of g(l), g(4), g(5), and g(7) are unknown.
Therefore, the* maximum likelihooq estimates are used instead.

. l T
Replacing g(1), g(4), g(5), and g(7) by §(1), §(d), G(5,
and g (7). in the system of equations (l14) yields
o

l +c, +c. +c

z 1 2 3 .
— . AN
g(4) =1 + 4c1 + 16c2 + 64c3
(15)
N _ 1
g(5) =1+ 5¢c, + 25c, + 125c,
and '
X
g(7) =1+ 7cy + 49c, + 343c,. N

The method of least squares is then used to obtain esﬁim@tes

-

of Cir Cy and C3 from the system of equatiéns (15). .~

Exponential Form

The object of the method to be described in this sub-
$ .

section is to determine the values of b aﬁd c in equation (13)

. )
from knowledge of the g(tk)'s. The method to be described




will work for dany p > 3 and for any set of values for the

' . I~ .
. tk's. Recall that the g(tk)'s were already determined at

- 15 ) ] \
. /\
the first subctage. Next, the values of the tk's and g(tk)'s
' { |
. are substituted into equation (13) to yield a new system of |

equations analogous to system (15). For sake of illustration,

o
let p=4, t, =0, t, =1, t

2 = 4, and t, = 5. Substituting
r

3 4

these values into equation (13) yields

g(l) = bc + (1 — b)
- @ = b.c? 4+ (1 ="b) (16)
and o~ .
¢ §(5) = bec> + (1 = b)

Estimates of b and ¢ are then derived from the system of

equations (16) using a combination of the numerical analysis

-

techniqﬁes of least squares and the Newton-Raphson method.

<
. >
’ !
i . A
.

12’y

Ay

= 4
! Stage 2: Point Estimation of Treatment Effects

The discussion of the determination of the, point .
estimators of treatment effects will be discussed separately
for each ca;E, since the process is slightly different in

each case.

i
!
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Case 2 estimates

For case 2 the exact natures of the gj(t)'s and hj(t)'s

are assumed known. Unbiased point éstimators of the treats=

L
ment effects are given directly by
S0 = T T (E. 7 + h
a.(t) = Y. (t) — (t) . (t + h.(t
j 3 .(gj( ) KJ( lj) J( )]
Notice that for this case, stage 1 is skipped completely.
Case 4 estimates
Case 4 assumes the exact natures of the hj(t)'s are
known but that only functional forms of the g.(t)'s are
— \‘\\ TN J ‘

P

known. Recall that at stage 1, estimates Qé{s obtained for

[}

the unknown constants in the functional form ekpressions for

the gj(t)'s. F%gvigg jth group, let §j(t) denote the

function formed by substituting these estimates of the
constants into the general functional form expression for °

gj(t). Point estimators of treatment effects are then given

by ! .

~
dj(t) = Yth) - {§j(t)'Yj‘(tl.5' + hj(t)]
J

Case 6 estimates

: N
. Case 6 assumes that the exact natures of the gj(t)'s

are known but that -only the functional forms of the hj(t)'s
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are known. Analogous to case 4, for the jth group, form

2

a new function, called ﬁj(t), by'substituting‘the éstimates

of the unknown constants that were obtained in stage 1 into

the functional form éxpression for hj(t). Point eEtimators ’

of treatment effects are then given by

' N _ -
¢ a.(t) = Yj(t) - [gj(t)°Yj(tl_) + Hj(t)]

J 5

Case 8 estimates

. I
Case 8 assumes that only the functional forms of both
the gj(t)'s and'hj(txlg are known. For this'case, point

»
()

estimators of treatment effects are given by

o .
aﬁ(t) = YthS - [aj(t)-Yj(tl_5 + ﬁj(t)]
J

»

where the Qj(t)'S\and Hj(tJ's are as defined previously.

N =
Case 10 estimates .

\

!
Case 10 assumes that the act natures of the hj(t)'s
] .

,are known and that nothing is kjown about the gj(t)'s.

Define a new variable, Wij( Yij(t) - hj(t). Then, the

-

system of equations (1) can be rewritten as

A
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o
i}

| | |
1.) +aj(t) :

' J
and (17)

: *
L(E) W, . (¢t
g5 (£) W (

r"
]

*
wij(t)\+ eij(t) . '
Notice that the system 5f equations (17) is, for each j, a

*
linear structural relation with a slope of gj(t) and a Wj(t)—

]

intercept of aj(t)l “Hence, for any particular time t, esti-
mates of gj(t) and aj(t) can be obtained directly by using

maximum likelihood techniques, with Wj(t ) as the inde-

J

1
pendent variable and Wj(t) as the dependent variable. \Et

should be recalled here that in order to compute the maximum
likelihood estimates in situations where there are only one
independent and one dependent variable, it is necessary to

make additional assumptions. The maximum likelihood estimates

of the aj(t)'s are considered to be the stage 2 est{q;tes and

——
are labelled aj(t)'s.

Case 12 estimates

Case 12 asstmes that only the functional forms of the

Qj(t)'s are known and that nothing is known about the gj(t)'s.
In this case a new variable is formed by defining Uij(t) =

Yij(t)]— ﬁj(t), where Hj(t) is defined as in case 6. The

® . -




\

method described for case 10 is then used to obtain “the
N ‘
@.(t)'s by replacing the Wi.(t)'s of case 10 with the
J ) ' . J » ) <‘\ » ~
1 N 2
Uij(t) S. ‘ -

19

1)

In developing the point estimators of the treatment
effects it was assgmed that for_any particular nonequivalent
control group design, the known infoimation about the growth
curves for each gf the J groups belonged to the same case.
Since the determination of the point estimators is done
éeparatel? for each group) insisting that all of the groups
belong to the same case is overly restrictive. Hence, it
will be assumed\for the remainder of this paper that for each
of the J groups, the known information about the growth curves
allows the data analyst to pléce each of the grouﬁs into one.

- o~

of the cases 2,4,6,8,10, or 12. Once this is done, the ﬁj(t)'s

are derived separately for each group by using the methods
given in this stage 2 section for the case to which the e

group's growth curves belong.

Bias of the Point Estimators

The pfocedures used to determine the -point estimators
of the treatment effects.involved the use of maximum likeli-

hood estimation at either stage 1 and/or stage 2, except for

e
/

case 2 type gro&th curves. It is well known that maximum

~

[ 4

likelihood tec¢hniques often lead to biased estimatoréﬁ These

LS




[}

« .
estimators are, however, usually consistent (Patel, Kapadia,

& qup, 1976) and asymptotically efficient (Bickel,s& DoksumL
1977). Further, functions Qf consistent estimates are élso
usqally consistent estimators. The asymptotic properties

of the point estimaéors for treatment effects derived here
for the various cases have not been studied in much detaili\\

Further. study of the asymptotic propefties is needed.

Stage 3: Interval Estimation and Hypothesis Testing

In order to develop interval estimation and hypothesis
testing procedures it is necessary to have estimates of the

variances of the aj(t)'s. The method the authors have chosen

to use to obté;n estimates of the desired variances is jackknifing
(Quenouille, 1956). The method ofjjackknifing was chosen for
two reasons. Firgl, it is the only practical method of ob-
taining variances for estimators that are ﬁormed by the use
of a several-stage process such:as:those developed here.
Second, and more important, the{psé of jackknifing usually
leads to new pointestimators,@&ichhave a reduction in bias
over the original point estimators, when the oriéinal esti~-
mators are biased.
Thé tec;nique of jackknifing begips by drawing a random

sample from a specified populéti%h. Let N denote the number

of subjects in the sample. The N subjects are then divided




;

into m disjoint subsets, each of size —%— . Let y'be the. . ‘

. ’

parameter of interest and ?‘be an estimator of Yl Further, - !
) 6“\\

Y

) . ’ o
let ?T be the value of 9 when all N subjects are used, and 1; " e

let ?(2) be the value of 9 when the subsample of size N — —g;,

where the fth subset has been deleted, is used.

Next define Jz(?) by

3, @) =0T - w09 e=l,2,000

\
and 'define J(%) by

=y

1 m

J(g) = _E_.QE J (9 .
=1

An estimate of the variance of J(9) is given by (Tukey, 1956)

m ) .2
I3, ()% T(4)]
2 _ A=1

m-1

Think of m as being fixed. Then as N approaches infinity,

—%— also approaches infinity. Gray andASchhcgny (1972) have

/. [J3(9) — v]

shown that is asymptotically distributed

+

2
Sz . .

(as —%— -+ ®) as a random variable with m — 1 degrees of

freedom.
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The estimators of interest here are the o,(t)'s from

v A Y [

stage 2. To apply the -jackknifing technique, first divide

the Nj subjects from the jth group into mj distinct subsets.

/-\. o~
Next,; define a(%)(t) to be the value of the -estimator, a. (t),
. J . J Y
when the 2th subset is deleted from the sam%;e,for the jth ’
/UQ')\ .
group. Onrce the © 3 (t) 's have been computed, new estimators -
of the a.(t)'s are given by
] P
— = mJ ’
J(@.(£)) = —2— I J,(&.(8) (18)
J mj L=1 L. =3
&
/ \\\“~\
/(er; 1
J(@Hm@)-m—l)-m) ‘
2773 ) /J—:'n(\‘/ 3
/1
Interval estimatfon and hypothesis tegting prpcedures are (\
available by observing that ' . ) '
P
vm. e [J(a.(t)) — a.(t)]
J J J
2
/S5 £
is asymptotically distributed as a random variable with a
Student's t distribution with m, — 1l degrees of freedom %
‘ mj /\
P
I3 (8) - 3(a, ()12
g=1 - ‘ ]

where fsg(t))j'=
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An approximate (f'— a)% confidence interval for aj(t) (and

hence, an a-level, test for nonzero aj(t)) is then‘'given by

i
.
)

/(Sz(tﬂ).
- J ]

—— . )
J(aﬁ(t)) i-tmj_l(l - —5—) /ﬁ;

The estimation and hypothesis testing of differences in
treatment effects are also of interest. A point estimator of

aj(t) - aj,(t), for two groups j and j', can be given by

P P — ——
J(dj(t)) - J(aj,(t)) where J(aj(t)) and J(aj,(t)) are defined

by equation (18). An approximate (l1—a)$% test of the hypothe-

sis of nonzero differences in treatment effects is accomplished

N .
by performing an ANOVA on the Jz(aj(t))'s. Notice that the

unit of analysis for the’ ANOVA being performed here is the

disjoint subsets formed in order to do the jackknifing and

. /\
that the dependent variable is Jz(aj(t)).

/ﬁ\;) Summary .:::

/
1
In this paper point estimation, interval estimation, and
hypothesis testing procedures were developed for both treatment

effécts and differences in treatment "effects when

™~
h.(t .(t
j)+ 5(8) + ag(e)

-~ *
Yij(t)

*
gj(t)°Yij(tl

and

%*
Yii08) = ¥iale) + et
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The only additional assumption needed was that for each of the
J groups either the exact nature of or the functional form of

hj(t) was known. Hegpe, techniques were developed which are

applicable for a variety of natural growth situations where

none of the presently available data analx§is methods can be

~

employed.
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