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Latent trait theory has become an increasingly popular area for research
and application in recent years. Areas Of application of latent trait
theory have included tailored testing (McKinley and Reckase, 1980), equating
(Marco, 1977; Rentz and Bashaw, 1977), test scoring (Woodcock, 1974), and
criterion-referenced measurement (Hambleton, Swaminathan, Cook, Eignor, and
Gifford, 1978). While many of these applications have been successful,
they are limited to areas in which the tests used Feasure predominantly one
trait. This limitation is a result of the fact thzt most latent trait
models that have been proposed assume aaidimensionality, and require tests
that have one predominant factor. Because of this, in many situations
latent trait models have not been.successfully applied. For example, ia
achievement testing the goal is not.to measure a single trait, but to
sample the content covered by instruction. Therefore, most latent trait
models ate inappropriate since tests.designed for this purpose generally
cannot be considered to be unidimensional.
Even when the goal is to measure a single trait, if dichotomously scored
items are used no*generally accepted method exists for forming unidimensional
item sets, for determining the dimensionality of existing item sets, or for
testing the fit of the model to tali data.

4
An alternative to trying either Xo construct unidimensional item sets

or to fit a unidimensional model to already existing item sets is to develop
a multidimedsional latent trait model. Several suqh models have been
proposed (Rasch, 1961; S'amejima, 1974;.Sympson, 1918; Whitely, 1980), but
little research has beenldone on them. Some work has been completed on the-
estimation of the paramelpers of the multidimensioTl.Rasch model (Reckase-,
1972), and the Whitely mbdel (Whitely, 1980), but no extensive research has
been completed on the c4racteristics and properties of any .of these models.
The purpose of this paper is to present the results of research on the
Characteristics and properties of the multidimensional Rasch model.

Method-

Design

The general design Of this research was to start with the most simple
formulation of the multidimensional Rasch model, and then to investigate
increapingly more complex versions of the model. At each stage the properties
of the model'were.investigated, and the reasonableness and usefulness of
the model explored: This:was done pritharily by simulating test data to fit
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the particular form of the model being investigated, and analyzing that
data in an,attempt to assess how well the characteristicg of the data match
the characteristics of real data.

The most general formulation of the model investigated in thiT research
is the model destribed by Rasch (1961). This model is given by: .

.P(x18 ,a ) = 1

,a
11 + 4)(x)-a + X(x)f) a + P(x)))

i (1)

where 8. represents the ability parameters for Person j, a..is the-difficulty
liarametar for Item P(x10., a.) is the probability of ieiponse x to Item .

i by Person j, 0, 0, x, and p are scoring formulae which are function& f x
only and y(8.1, a.) is g. normalizing constant necessary to make the probhbilities
sum to 1.0. 3In Order to Apply this model to multidimensional data, 8., ai,0 and are interpreted as column vectoi", 0(x)"8. and tP(x)"a. are iaterpreted
as inner products of vectors, x(x) is interpreted a. a matrix,land 8.'xCx)a

.

is ipliprpreted as a homogeneous bilinear iorm in the elements of 8. ahd a. 1
(Rasch, 1961). The more simple formulations of the model used in this 1
researai wexe obtained by elimiaatadifferent terms from the model statement
by setting the appropriate scoring ctions equal to zero.

For each model statement that was obtained, simulation test data were
generated to fit the model. Using the known parameters and model statement,
predictions were made as to the dimensionality of the data and the character-
istics of the items. Analyses were then performed on the simulation data
in order to'test the predictions. If it were found that a model statement
could not be used to generate realistic data, in terms of either dimensionality
or item charactgristics, then the model was rejected, and a different model
,statement was investigated. This involved altering which terms of the'
general model (Equation 1) were retained, and which were zeroed out. In
some cases, all of the terms in a particular rejected model statement were
retained, and oneor-more additional terms from the general model wereadded. The models.that.were obtained were labeled as the vector model, the
product term model, the vector and product term 9odel, the,reduced vector
and product term model, and the item cluster model:

Analyset.

The first analysis performed on the simulation data for any model
statement was a factor analysis. Factor analysis, in this case, is not
.being used as a means of validating the models, but as ameans of determining
whether the data generated from the modals have characteristics similar to
those of real test.data. All of the,Jactor analyses performed in this
research were performed using the principal components procedure on phi .
coefficients. When the obtained and expected dimensionality did not match,
follow-up analyses were performed in an attempt to determiae why the obtained
'dimensionality was different from what was predicted.

Follow-up anlyses included plotting the true item parameters against
the factor loadings and against traditional item statistics such as proportion-
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correct difficulty values and point,biserial discrimination values. These
anal4ses were inrformed using both the unrotated factor loading matrix and
the factotloading matrix rotated to the varimax criterion. The putposes,
of the analyses were two-fold. One purpose was to deterMine whetherthe
obtained factor structure of the dal.a. was a result of the model statement,
the values used for thq model parameters, or both. The second purpose was
to facilitate interpretation of the model Rarameters and to determine
whether the model yielded items with reasonable charaCteristics. In many
cases it was necessary to generate additional data, using diffA.ent values.
for the parameters oT the model, in order to answei specific questions
about a particular model statement.

A final analysis performed on each model statement involved an attempt
to predict, if a model statement were rejected, what changes would yield a
more acceptable model. 1.ihat was acceptable wa's defined not only in terms
of whether the simulation data factor structure was realistic, but also in
terms of whether the model parameters had reasonable and useful interpre-
tations.

Results

Vector Model

The first model that was investigated was a simple vector parameter--
model. The x(x)0.a. and p(x) terms were eliminated, yielding the model

J 1given by

1 expo(xY'Pj AxYbi),Pe(x18:1,ai) 7 yoya.i). + (2)

where all the termslare as defined for Equation.1, and 04, ai, 0 and are
vectors. This model was selected first because it appdarid to be a straight-
forward extension of the uaidimensional Rasch model (Rasch, 1960) to the
multidimensional case. The expectation was that data generated according
to this mo'del would have a dimensionality that would vary with the n4mber
of elements in the parameter vectors. For instance, when data were ienerated .
using two elements in both the item and person parameter,vectors, it was
expected that thedata would yield a two-factor solutionyhen factor analyzed.
This was not the case, however. Regardless of the numbet of elements in
the parameter vectors, this model would yield one predominant factor. This
was true regardless of what the actual values of the parameters were, or
what values were uaed in the ac4ring functions.

1 Table 1 shows the Hist three eigenvalues from a typical principal
component solution for the vector model. As can be seen, there is a dominant
first factor, with two minor fac.tors. Table 1 also shows the unrotated
factor loading matrix obtained for this particular data, as-well as the
proportion-correct difficulty and'the inner produft of the item parameter
vector and 'scoring function Ifor each item. As can be seen, the two minor
factors are difficulty factors

4
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Insert Table 1

Once ii was ascertained that the vector mOdel would not yield Tulti-factor
data, it was not difficult to determine why. Equation 2*can be written as

ti 1
exp(a +

eJ ai) YCei ,ai) i (3)

where a. = 0(x)"6. and pi = *(x)-6.. Equation 3 is the unidimensional
Rasch m;del, with3inner products oi vectors.as parameters. Therefore,
regardlesOof what yalues the.model parameters take on, the model is still
a unidimensional model. The factor analyses typified bythe solution4shown.in Table 1 serve as an empirical demonstration that the vector model is a
unidimensional model. It can also be empirically demonstrated that the
inner,products of.the scoring function aqd parametee vectors serve as
parameters Ior the model. Figure 1 shows a plot of proportion-corredtdifficuay by the innemproduct of the scpring function and item parametervectors. As can be sell!, there is an almost perfect relationship between
the inner products and the propoition-correct stores.. When data were
generated using the unidimensional Rasch model, yiilh the inner products
from the two-dimensional model as parameters, the exact same plot was
obtained. Figure 2 demonstrates that the same was true for the person
parameters.

Insert Figures 1 and 2

Product Term Model

It wassclear from the results so far reported that using parameter
vectors in an otherwise unidimensional model did not make it-a multidimensionalmodel. Therefore, at this point the vector model was rejected as a multidimen-
sional model. The next model that was investigated had only the
term in it. This model was investigated next because-it involved ;ore than
simple inner products of scoring and parameter vectors, Milt was more simple
thanusingbothinnerproductsandthe6-x0.0a.term.

When6.anda.are vectors, X(x) must be a matrix. The term 6.a
i

.

represents A matrx of products oi all possible pairs of the elemen its n
1

] 1

the 6. and a. vectors. For two-dimensional 6 and a. vectors,1
1

81a1 81a2

. i

0
2
a
1.

0
2
a
2

(4)
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t?'The x(x) thatrix, then, is a scoring 'matrix having an element for each
element of the 0.a.s matrix. If the x(x) matrix for the matrix,in Equation 4J 1 .were

, [3.

X (x) 0

I.

..(5)
3.

%for a particular resnonse x then the numerator of the mbdel statement for
)that response would toe exp(01a1 1:.02a2). It is clear from this that by
selectively using zeros in the x(x) matrix, various combinations of O. and
a. elements can be selected. Varying the values of the nonzero elemeats in
xtx) assiins different weights to dilferent combinations. Thus, the product
term model, given by

1 'p(xlevai) = exp(ej-x(x)ai),
(6)

is a very rich model in terms of alternative formulations of the model that
are available. Unfortunately,/when.data w'ere simulated using some of these
alternatives, a serious problem was discovered with the model. Regardless
of which formulation of this model was used, and regardless of what values
were taken on by the item parameters, the item proportion-correct difficulties
were all approximately .5. A closer examination of the product term model
indicates why this occurred. Using the item parameters shown in Table 2,
data were generated using

for a correct response, and

0 1

for an incorrect response: This'iyields a model given,by

1
y(e a )

P(xlevai)

exp(ejlail.+ ej2ai2) for a correct response,

exp(ejlail - evai2). otilerwise.

6

(7)

(8)

(9)
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where the 6 and a terms are elements in the e and a vectors. From Equation
9 it can be seen that.the item parameters are similar to the discrimination
parameter in the unidimensional two-parameter logistic (2PL). model.set out
by Birnbaum (1968): In fact, if written as .

>,

P(x = 1(6i,a1) 1 exp[a;1(6ji + 0) + a
i2

(e
j2 t 0)], 0:0)

the model is essentially a two-dimensional two-parameter logistic model
with both of the difficulty parameters equal to zero for all items. Because
the data used for Table 2 were generated using a bivariate N(0,1) distribution -
of ability, a difficulty parameter of zero yielded a predicted proporti9n-correct
difficulty of .5.

The role of the item parameters as discrimination parameters in this
model is indicated by comparing the item parameters shown in Table 2 with
the rotated factor loadipg matrix, also shown in Table 2: Table 3 codtains
the correlations between-the item parameters and the factor loadings in
Table 2. As can be seen in Table 3, there was a rel4tionship between the
item parameters and factor loadings (r = .69 for al with Factor 2, r = .82
for a2 with Factor 1). A principal components analysis of phi coefficients
yielded evidence that use of two item parameters resulted in a two-dimensional
model. The first eigenvalues obtained for the data generated using the
item parameter values in Table 2 were 7.1, 2.5, and .9. Further evidence
is given by the plot shown in Figure 3. This is the plot of thedtem point
biserials 1:)r the sumof the item parameters. Since the item point biserials
are the correlations of the items with total test score, instead of with

_scores- on-each dithension, the factors are essentiallyisummed. As can be
-seen in Figure 3, there is a-Strong relationship between the item point
biserials and the sum of the item parameters (r = .82).

Insert TOle 3

Insert Figure 3

and Product-term Model-Vect

1

e vector model that was investigated first was essentially a uni-
dimensional model that codtained a difficulty parameter (the inner product
111(x)ai) as the only item parameter. The product term model is a multi-
dimensional model that. contains discrimination parameters as the only item
parameters. In order to obtain a Multidimensional model which contained a
diffixulty parameter, the vector and product term models were combined. A-
combination,of these tw:(;:dels is given by Equation'l (with or without the,
p(x) term), which is th neral Rasch model.

Table 4 shows the item parameters used to gerierate data to fit the
general Rasch model, as well as the rotated factor loadings p...12tained irom
the firit two factors from the principal components aRalysis of phi coefficients.
'Thefirst three eigenvalues frorathe solution are 5.26, 2.28, and 1.07.
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Initial analyses indicated that this model could be used to model multidimen-
sional datNand that item difficultips.vlere ot constant (see Table 4).

j

However, these analyses also indicated that 't was not realistic' to use the
same item parameters in both the parameter v ctors and the product term.
The problem is clearly shown by Table 5', which contains the correlations of
the item arameters With the item proportioR-correct difficulties and item
point biserials. As was the case with the vector model, the-inner product
tli(xr.ai defined the difficulty;parameter. The correlation between Iii(x)"ai
and the proportion-correct sebres was r = .98. The tis(x)"ai term was also
-the discrimination parameter, having a correlation of r = .89 with the item
point biserials. The problem is that, because Iii(x) a. was both the-difficulty
and discrimination parameter,*the proportion.:corredt icores and point
biserials had a correlation of r = .94. That is not a very realistic_
situation.

1
.,.

Insert Tables 4, 5

Reduced Vector and Product Term Model

Since the initial analyses of the general Rasch model indicated that
parameters should tot appear in both the parameter vectors and the product
term, the scoring functions were altered so that parameters appeared in one
or the other, but not both. Jo order to facilitate this, additional elements
were inserted into-the item parameter vector. -The xesulting model is given
by

P (x .116 a). 1 exp (0 + 0 + 0 6 0 )y(e 'a ) i2 i3 j1 i4 J2j

where the 8 And a terms are again scalars.
g,

The first three eigenvalues obtained from the principaL components
'analysis for this model are 5.39, 1.30,5 pnd .99. Table 6 shows the item
parameters that were.used to generate the.data, as well'as the obtained
rotated factor loadings. Table 7 shows the correlation matrix for the item
parameters, loadings -and traditional statistics.

1 Insert Tables 6, 7

The results of the factor analysis of these data ilidicate that a
dominant first factor is present. However, there wai a sec4nd component ,

present in the data which was strongly related to the item parameters (r =
.87 for a3 and Factor 1, r = .87 for a4 and Factor 2). The item Parameters
in the product term, then, were related to the-factor loadings, while the
sum of the item parameters in the vector term behaved as a difficulty
parameter, having a correlation with the proportion-correct difficulty of r= ;98, There was not a significant correlation between the item difficulty
and point biserial valdes (r = .12). The sum of .a3 and a4 had a correlation
eof r = .96 with the item point biserials. s
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The analyses of the model set out in Equation 11 .indicate that it has
many destred characteristics. The rotated factor loadings are highly
related to the item parameters in the product term, the item difficulty is
highly correlated with the sum of the item parameter vector elements, and
there is no correlation between item-difficulty and item discrimina.tion.

One problem that does exist With the data that were generated is that
they have one predominant factor. From the factor analysis results it
would not be difficult to conclude that the data had only one factor. One
possible reason for this is that so many of the items tad large values for
both of the item parameters in the product term. In order to teat this,
data were generated for the set of item parametera shown in Table 8. As
can be seen in Table 8, the first eight'items.have large values.for a3 and
small values for a4 while Items 11 through 18 have large values for (74 3..nd
small valued for O. Items 9, 10., 19, and 20 have equal values for 63 and
a4. Table 8 also contagns the rotated fadtor loadings obtained for these
data.

Insert Table 8

The first four eigeavalues from the principal compontnts analysis
obtained for these data are 3.12, 1.77, 1.08, and 1.01, As,can be seen,
the second component is now larger. When data were generated.using the
item parameters.shown in Table 9, the secopd factor was even greater. The
eigenvalues from the principal 'components 'analysis for these data are
2.28, 1.05, and 143. As can be seen, when using the item parameters from
Table 9 to generate data, there are two factors of approximately equal
magnitude present in the data.

Insert Table 9

. Item Cluster Model

Although-the reduced vector and product term model appears to adequately
multidimenSional data, the ilresence of the product term seriously

complicates parameter estimation, since separation of the item and person '
parameters is not possible through conditional estimation. Because of
this, one cnore model that does not have a product term was investigated.
This model is the item cluster model.

Ohe of the reasons the item Vector model, given by Equatioh 2, does
not adequately model multidimensional data is taat no information about the
different dimensions is preserved in the item score when the item is dichoto-
mously scored. The elements for the different dimensios are summed, and
the sums are treated as parameters. If it were possib e to score!the
dimen4ons Separately, then the vector model might be ble to model multi-
dimensi al data. This requires, however, polychotomo item scoring.,
Scoring a item on each dimension would require 2 response categories,
where n is the number of dimensions. Unfortunately, most test data are not
scored polychotomously.

An alternative to having polychotomous ited scoring is-to consider
more than one item at a time. If two dichotomously scored items are clustered

9

:



together, and the cluster is treated as a single unit, then thecluster has
22 or,4 response categories - (0,0), (0,1), (1,0), and (1,1). The 'model
givemby EquatiOn 2 can then be applied, with the eXception that the a
vector now has two elements, both representing the same cluster1. Essentially
each item is considered to be unidimensional, and what:is modelled is a two
item, two-dimensional test. It,would probably be best to treat the entire
test as a cluster, but if more than,a few items are op the test, the
computations become impractical.

The procedure by which this moderwas investigated is as follows. For
the two-dimensional case, item pariMeters were'selected for 20 items.
These parameters are shown in Table O. The items were paired so that
Items 1 and 2 formed Cluster 1, Items 3 and 4 formed Cluster 2, aod Ao on
until 10 clusters were foimed. For each cluster there were four response
categories, .which were scored as follows:

- a) (0,0) for incorrect on both itemS;
b) (0,1) lor first item incorrect, seCond item correct;,
c) (1,0) for first item correct, seeond'item incorrect; /

and d) (1,1) for both items correct.

This is 'essentially treating the two items in a given cluster as independent.
Table 10 contains the unrotated factor loadings for the first two principal!
components, and the first four eigenvalues are 3.61, 3.06, 1.33, and 1.21.

Nur

,Insert Table 10

As can be seen, the simulation data were treated as 20 items, rather
than as 10 clusters. The eigenvalues listed"above indicate that there were
two roughly equal cempOnents in the data. Table 10'shows that the first
component was dekined,by the items that were placed first in the cluster,
and the secolid component was defined by the items that were in the second
position in the cluster. Consistent with the scoring functions, there were
two equal indePendent factors.

In order to demonstrate thPt.the factors need not be independent, the
same item.parameters were used to generate data usZhg the following scoring
functions:

a) (0,0) for both items incorrect;
b) (.1, .9) for first item incorrect, second item correct;
c) (.9, .1) for first,item correct, second item incorrect;

'and d) (1,1) for both items correct.

The principal components analysis of phi coefficients for this model yield
six factors with eigenvalues greater than one [2.46, 1.83, 1.09, 1.08,
1.01, 1.001. Table 11 shows the unrotated factor loadings. As.can be
seen, there are still two factors present in the data. Howiver, the factors
ate no longer defined only by the items in the corresponding position in
,heccluster. The first component is a general factor, while the second
component discriminates between the items in the first and second positions
in the clbster. Clearly these two sets of items are not independent.

1 0
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ilnsert Table 11 ;

Discussion

The use'Of simulation data to study the characteristics of a model
before applying it is perhaps atypical of research on latent trait models.
It is not unusual in this area to adopt a model, derive estimation procOures,
and ap;ply the model without ever going through the 'process this stu4 has
employed. In this study this approach has been taken for two main sgasops.
First, it was felt that when dealing with multidimensional latent trait
models much of the common knowledge about latent trait modelsmight no
longer.apply. It was felt that consideiable research was necessary in
order to gain an understanding of how these models work a4d what the model
parameters.represent before they could be applied. This belief has been
borne out several times in this study by findings indicating that the
models were not behaving in the anticipated manner.

A second reason for taking this approach was that ii seemed impractical
Ito attempt to develop estimation procedures for some of these models.
tSpecifically, the general model set out by Rasch has a very large number of
parameters; It seemed impractical to try to estimate all of them, and it'
was hoped that research on the model could help simplify the problem.by
eliminating some terms of the model and by discovering restrictions on the
values the parameters could reasonably take on. With these goals iwmind,
thg'results of this study will now be discussed.

Vector Model

The most simple formulation of the general model that was investigated
was the vectorimodel. This model is simply the unidimensional Rasch model,

-but with vectott for pat'ameters instead of scalars. This model was found
to be totally Oadequate for modelling multidimensional data. When data
were generated according to this model, the resulting data were unidimensional,
with item characteristics determined by the inner product of the item
parameter vectors and sco'riTig functions. From this it follows thatihis
model would fit multidimensional data no better than a unidimedOonal model
having parameters equal to the inner products from the vector model.

Product Term Model

Because of its slight similarity to- the 2PL model; it was felt that
the product term model would be better able to model multidimensional data.
It was anticipated that the item parameters in the product term would
behave as discrimination indices, and that is just how they did behave.
UnfOrtunately, without the vector terms in the model there were no terms.
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playing the role of aifficulty liarameters. The data generated for this .

model had'items of.constant difficulty, which does not seim'very realistic.
'From thii it was concluaed that thid model would be useful only, for modelling
items of constant difficulty,'and-when items have varying difficulties.this
model is inappropriate.

Vector and Product.Term Model

. Based on the findings for the vector model and the product term model,
it was hypothesized that a combivation of the two models would be necessary
to model items that were both multidimensional and of nonconstant difficulty.
AnalYses of the vector and prOduct term model-indicated that it'would model
multidimensional data.,,and that it would model items of varying difficulty.
However, it was also found that; as'long as the item parameter vector,
elements appeared.both in the vector terms and in the product term, the
item difficulties and disciminations would be highly correlated. Since
this is rarely the case, it was concluded that this model would be useful

,only in a very limited number of circdmstanced:

Reduce6 Vector and Product Term Model

In order to correct the problems with the vector and produce model, it
was clear that a given item parameter vector element should appear only in
the vector term or the product term, but not both: It was anticipated that
similar problems might exist if the person parameter vector elements occurred
in both the, vector term and the product term, so the same correction was
made for the person pardineters as was made for the item parameters.,

.The resulting model appears to'be quite successful at modelling realistic
multidimensional data. It is capable Of modelling correlated as well as
independent factors, and the item parimeters are readily interpretable.
The only real problem there seems to be with this model is with the estimation
of the parameters: Although there are fewer parameters-to estimate than is

-the case with the general model, there are still a fair nuMber to estimate.
Moreover, it appeari that there are no.observable sufficient, statistics for,
the.parameters'in the,product term. These problems'do not make estimation
of the model parametgrs impossible, and probably not even impractical%
However, they.do make estimation more difficult.

1

Item Cluster ModelC:"

The item cluster.model was proposed as driafternative to the vector
model. This model does not involve la product term, but it still can, success-
fully model multi'dimensional data. However, it dbes idvolve clustering
items,. Which gives rise to a number-of new prOblems. For instance, as yet
tit is unclear what the effect is of different combinations of items, or -(--

-'*hother all'items should bel blustered with the same item. Preliminary
investigations seem to indtcate that the optimal clustering procedure is to
cluster all items'on A sUbtest with one item taken from a different spbtest:
As of yet, however, np clear results are available. While this modelishows
considerable promise, its usefulness is not well established, and may be
limited ih the tlpes f circumitanCes,in which it Can be'applied.

.
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*Summary and Conclusion's

The purpose of this study was to investigate pie usefulness of the .

general Rasch model for multidimengion 1 data. Seireral formulations of the
model, varying in complpity, were inv stigated to determine whether they
could successfully model realistic mul idimihsional data. Also investigated
wag whether the parameters of the model could be readily interpreted.
Models investigated included: a) the vec'bor model;vb) the product term
model; c) the vector and product.term model; d) the reduced vector and
product term mhdel; and, e) the item cluster model.

Of.the models investigated, all but the reduced vector and product
term model and the'ltem cluster model were rejected as incapable of reasonably

.modelling realisV.c multidimensionar data. The item cluster model appears
to be a useful model, but its applications may be limited in scope. The
reduced vector and product t,erm model was found to be the most capable of `

modelling realistic multidimensional data. Although the estimation of the
parametirs of the reduced vector and product term model may be more difficult
than it would befor other models, this model appears to be the model that
is most worth pursuing.

? 3
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Table).

1

Principal Component Factor Loadings Based on
Phi Coefficients-with the Sumsfof the-Item Parameters

and Observed Proportion Corrct for
Two-Dimensional Vector Rasch Model.

SUMS OF ITEMITM4
PARAMiTERS

OiSERVED .

DIFFICULTy

?ACTOR LOADINGS

- FACTOR 1 FACTOR.2 FACTOR 3
,.

1 .89 .69 .69 .29 -.10

2 -.89 .30 .. ..73 .09 -.22

3 .43 . .59 .59 .44 .12

4 42.02 .:39
.

- .33 .45 . .52

5 .59 .64 .58 .45 .12

6 -.91' .2a .74 e. .03 -.23

7 -1.44 .19 .70 .-.11 -.11

8 .47 .60 .75 .02 -.22

9 -1.05 .25 761 -.39 .11

10 -1.76 .14 .49 . -.45 .34

.11
.98 .71 .71 45 -.19

12 2.58 .93 .49 .46 .28

13 -1.31 .21 .58 -.44 .19

14 1.22 .75 .71 .25 -.19

15 -.64 .35 .67 -.35 -.01

16 .05 .52 .70 . -.14 -.12

17 -2.33 .08 .41 -.43 .44

18 -.54 .38 .67 -.30 . -.05

19. -.60 .37 .71, -.29 -.05

1 20 - 2.26 .92 .53 .43 .19

Eigenvalue 7.94 2.22 1.04

15
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Table 2

.

Item Parameters, PrOportion Correct Scores, and Factor Loadings
from a Varimax Rotated Principal Components Sdldtion on

Phi Coefficients for the Fioduct Term Model

Item. a
1

a
2 'Factor I Factor II

1 .81 1.54 .50 .72 .30

' 2 . 1.56 .51 .49 .16 .77

3 .36 .63 .50 .51 .20
%

4 . .56 1.62 .49 .76 .19

5- .16 ..59 .53 :55 -.01

6 1.46 .39 .49 .08 .76
..

.
7 .21 1.49 .53 :75 .07

8 .35 .28
?-

.51 .2A .35

9 .33 .88 .52 .65 .16

10 .30 1.90 .50'4 .80 i

i

.04

, ,
11 .53 .61 .50 .42 .36

12 1.03 1.71 .50 ', :72
.

,.37

13 1.09 .38
's

.52
.

.14 ,69

14 2.01 .64. .50 .19 .80
0

15 .22 ".70 .53 .53 .13

16 . '.57 .46 .51 .30 .52 -

17 1.70 .79 .50 .30 .72
.

18 .50 .88 .50 .61 .20

,
19 .31 :45 .50 .40 .24

20
t

2.63 .22
. .

.50 .02 .84



Table 3
4

4

Inteecorrelation Matrix for Item PareMeters, Item Statistics,
and Factor Loadings for the Broduct Term Model

Variable a
1

a
2

a
1
+ a

2
factor 1 Factor 2 P-Value

a
1

.13 .76 .49 .69 .75 .68

.74 + .82 -.58 .72 .66 1
.

I

a 1+ a
2

.87 .09 .98 .89

Factor 1 -.18 .92 .96

Facto:i 2 .08

P -Value .94

Pt. Bis..

st

41,C4.

17
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Table 4

Item Parameters, Fropoltion Correct Scores,
and Rotated Factdi Loadings for
the Vector and Product Term Model

Item

1

2

3

'4

5

1 6

7.

8

9

10

11

12
.

13

14

15

.. 16

17

-*la

19

0

a
1

a
2 Factor 1 Factor 2

..230

.880

.900

.190

2.180

-1.920

..56

.77

.35

. .63

.73

.08

. .12

-.10

.

AI4 .71

-.900 -/710 .32 .39 -.22

-:640 .830 .52 .58 -.35

- .540 -1.040
Y

.16 .10. .31
,)

1.7301 -1.350 .54 .34 .65

.-940 .630 .69 .69 .21
.

.030,

;

-.110 .46 .56
.

. .11,

-1.610 , -.570 .13 i01 -.37

-1.170 1.260 .74 .75 .05

-.550 , -1.070 .17 .04 .22

-.420 -.480 .31 .32 -.01

.220 -.070. .53
Il .60 .15

.
.:

-:020 -1.670 .21 -.04 , .55

2.420 .370 .78 .61 .40

1.230 .400 .69 .68 .28

.250 .410 .58 .65 .08

.140 .760 .64 :67 -.10
.

-1.770 .550 .30 .27 -.60



Table 5

Intercorrelation Matrix for Item Parameters,
Rotated Factor Loadings, and Item Statistics

for the Vector and 1:)°,..,duct Model

I

Vatiable a
1.

a
2

a
1
+ a

2
Factor 1 Factor 2 P-Vilue Pt. Bis.

a
1

.13 .76 .49 .69 .75 .68

a
2

-
'-i

,74 .82 -.58 .72 ..66

..

al + a
2
(11)(x)a) - ,.87 .09 .98 .89

.'

Factor 1 -.18 .92 .96

Factor'2 .09 .11

P -Value
.94

Pt. Bis.

4

1 9



.Table 6

Item Parameters And Rotated Factor Loadings
for. the Reduced Vectorsand Product Model

.Item a
1

a
2

a
3

a
4

.Factor 1 Factor

. i

1 1 . .206 -.503 .373 .997 .51 .01

i -.164 .888, 1.205 1.832 .60 .32

.. _

3 .448 .261 .766 .876 .34 .36

.4 ..814 2.008 1.321 1.714
.

.55 .34

./

5 .111 -.908 1.344
-.

1.216 .41 .42

6 -.947 .044 1.758 1.694 .46 .51

7 - --.490 .111 .687 .738 .40 .24

4
8 .553 -.502 .

.

.347 1.454 .61 .07

,,-.

9 -.344 .639 1.307 , .127 -.06 .640e

.
10 -.257 .303 .851 .824 .26 .39

11 -.069 -.542 1472 .404 -.22 . .25

_12 .779 .432 .192 .656 .30 .13

i

13 -.611 .571 .578 1.252 .59 .13

..

$
.

14 -.140 -1.032 .334 1.066 .60 -.04

15 -705 .081 .821 .480 .07 ' .44

16 -.386 -.164 1.912 .244 .03 .71

17 -.154 .044 *1.193 .537 :16 .56;

18 .474 .249 1.385 1.287 .49 .44

.438 1.320 1.110 .42 .45-

.294 .190 1.634 1.492 .45 .49 :

-

e

4
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Table 7

Intercorrelation Matrix for Item Parameters,
Item Statistics, and Factor Loadings for
the Reduced Vector and Product Model

Variable a
1
+ a

2
a
3

a
3
+ a

4
Factor 1 Factor 2 P-Value Pt. Bis.

al a2 .04 .20 .16 .11 .05 .98 .18

i .

0
3 -

. .15 .76 7.25
_ .

.87 .02 .70

a
4 .- .76 .87 . -.27 .15 ,.76

a
3
+ a

4
..t

.40 ' .40 .11 :96

Factor 1 -.65 .06 .48

Factor 2 .04 .36

PlValue

.

Pt. Bis.

4.

21
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Table 8

Item Parameters and Rotated 'Factor Loadings
for the Reduced Vector and Product Model

4

Item a
1

a
2

a
3

a
4

Factor 1 Factor 2

1 .206; '-.503 .850 ..150 .42 -.05

2 -.164 .888 .900 .200 .48 .03

3. .448 .261 .950 .250 .50 .10

' 4 -,814 -.008 1.009 .300 .46
/

.08
-

5 .111 -.908 -1.050 .250 ..53 .04

6 -.947 .044 1.100 ..200 .49 .10

? 7
-.490 .111 1.150 .150 .50 .05

8 .553 -.502 1.200 .100. A8
, ,

-.D6

9 --34:4 .639 .500 .500 .28 .23
,

10 -.257 .303 .700 .700 .34 .26

11 -.069" -.542 :150 .850 .07 149

12 .779 .432 .200 .960 .06 .44

13 -.611
,

.571 .250 .950 .06, .52
i

14 -.140 -1.032 .300 1.000 .10 .45

15 -.705 .081 .250 1.050 .06 .48
J

16 -.386 -.104 .200 1.100 1 :09 . .53

17 -.154 .044 450 1.150 .03 ,.55

18 .474._ .249 .100 1.200 -.07 .63

19 .438. -.210 .700 .700 .37 .32
,

,

20 .294,_ .190 .500
,,

.500 .31 1.24



Table 9 4

Item Parameters for the Reduced
Vector and Product Model

/tem a
1

a
2

977 .258

2 .359 .728

-.322. .377

4 -1.289 1.128
*

5 -.613 .219

6 1.299 .797

7 .029

8 -.360 -.862

9. .769 -.487

10 -1.447 2.092

lf -1.252 -.243

12 -.778 -1.426

13 .668 -1.860

14 2.102 -.025

15 -.724 .968

16 1.230 -.535

17 ,260 -1.216

18 -1.092 -.432

19 ,-.994 1.479

20' -:206 -s525

a4

1.000 .000

. 000 1.600

1.000 .000

.000 1.000

1.000 .000

..000 1.000

1.000 .000

.000 '1.000

1.000 .000

. 000 1.000

1.000 .000

. 000 1.000

1.000 . \ .000

.000 1.000

1.000 .000

. 000 1.000

1.000 .000

.000 1.000

.000 .000

.000 1.000

23, I

1.



Table 10

Uarotated Factor Loadjngs'on First Two Principal Components
for the Independent Two-Dimensional Item Cluster Model

. .

Item Factor 1
$. ,

Item, ,

: 'Factor 2 - Parameetrs.

o

,

1'

2

3

4

5
e

6

7 .

9

10

11

12

--

13

14

15

16

17

18

19

20

.56 .00 .893

.02 .65 -.850

,.66 -.02 -.892

.01 . .66 p690

.64 .00 .430

..02 .19 3.200

,

,36 -.04 2.016

.07 .22 -3.310%
,.,

.61 -.05 .594

:00 ..69 .470
.2 .

.66 .01 7.913

.06 .55 1.220
./

.58 -.01 -1.47

40 .58 -1.260

01.65 -.07 .467

.04 .62 .880

.66 -.04 -1.048
.

.

-.02 .64 -.970

.56 .07

.42 -2.140.01
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\Table 11

Unrotated Factor Loadings pn First Two Principal Components
-for the Dependent Two-Dpmensional Item Cluser Model .

Item Factor 1 Factor 2

1 .40 ,//
.21

2 .33 -.36

'3 / .38 .24

4 .33 -.33

5 .41

6

.

.25

,

-..241

i .36 .16
.

8 , A .10 -.35
,

9 .40 .33

10 .26 -.39

11 .47 .30 .

12 .32

13 .37 ' .20

14 .32 =.43

15 .45 .28

16 .28 1-.36

17 .28

18 - .28 -.37

19 '.43 .10

20. .20 -.31

25
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Figure I

Relationship Between the Proportion ,Correct and the Inner Prodirct of
the Item, Parameters for Twenty Items Generated Using a Two-

Dimensional Vector Model
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Figure 2
A

Relationship Between the Raw Score
and the Inner Prodvct of the Ability Param ers

for Twenty Items Generated Using a Two-Dimensional ector Model .
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Figure

Relationship between the Sum of the Item Parameters
and the Point-Biserial Discrimination Index

for 20 Items Cenerated Using the Product Term Model
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