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Latent trait theory has become an increasingly popular area for research
and application in recent years. Areas of application of latent trait
theory have included tailored testing (McKinley and Reckase, 1980), equating
(Marco, 1977; Rentz and Bashaw, 1977), test scoring (Woodcock, 1974), and
criterion-referenced measurement (Hambleton, Swaminathan, Cook, Eignor, and
Gifford, 1978). While many of these applications have been successful,
they are limited to areas in which the tests used measure predominantly one
trait. This limitation is a result of the fact tlrat most latent trait
models that have been proposed assume unidimensionality, and require tests
that have one predominant factor. Because of this, in many situations
latent trait models have not been successfully applied. For example, im
achievement testing the goal is not.to measure a single trait, but to
sample the content covered by instruction. Therefore, most latent trait
models ate inappropriate since tests designed for this purpose generally o
cannot be considered to be unidimensional. ,
Even when the goal is to measure a single trait, if dichotomously scored
items are used no® generally accepted method exists for forming unidimensional
item sets, for determining the dimepsionality of existing item sets, or for
testing the fit of the madel to tHe data. o )

An alternative to trying e':'.t.per Lo cqonstruct unidimensional item sets
or to fit a unidimensional model to already existing item sets is to develop
a multidimedsional latent trait model. Several sujh mod€ls have been
proposed (Rasch, 1961; Samejima, 1974; .Sympson, 1978; Whitely, 1980), but
.little research has been| done on them. Some work has been completed on the
estimation of the parameters of the multidiménsionfl_Rasch model (Reckase; '
1972), and the Whitely mbdel (Whitely, 1980), but no extensive research has
been completed on the chhracteristics and properties of any of these models. . |
The purxpose of this paper is to present the results of research on the .0
characteristics and properties of the multidimensional Rasch model. ‘

Method - ‘
Design T "’ s, ' /

The general design df this research was to start with the most simple |
formulation of the multidimensional Rasch model, and then to investigate |
increasingly more complex versions of the model. At each stage the properties . |
of the model ‘'were investigated, and the reasonableness and usefulness of {
the model explored.’ This was done primarily by simulating test data to fit \

' A o™ 1
Paper presented at the annual meeting of the National Council on Measurement |
in Education, New York, March, 1982. This research was supported by Contract : }
Number N0014-81-K0817 from the Personnel and Training Research Programs of

the Office‘of Naval Researc@. .




the particular form of the model being investigated, and analyzing that
data in an -attempt to assess how well 'the characteristic¥ of the data match
the characteristics of real data. .

The most general formulation of the model investigated in thif research
is the model described by Rasch (1961). This model is given by: ¢

= 1 -

Y(® 3 ,_ci)

-P(XIej,Gi) exp[?(x)'ej + ‘#(x)'c'i + ><(x)ejci +p(x)], (1)

.
v ’

where 6. represents the ability parameters for Person j, 0. is the- difficulty
parameteér for Item i; P(x|6., 0.) is the probability of reSponse x to Item .
i by Person j, ¢, ¢, X, andJp ate scoring formulae which are functions pf x
. only and y(8., 0.) is a normalizing constant necessary to make the probabilities
sum to 1.0. JIn drder to dpply this model to multidimensional data, 6., o,,
¢ and ¢ are interpreted as column vectors, ¢(x) 6. and Y(x) 0. are i&terﬁreted
"as inner products of vectors, X(x) is interpreted is a matrix, “and 8, "x(x)o.
is ixMerpreted as a homogeneous bilinear form in the elements of 6. 4nd 0.
(Rasch, 1961). The more simple formulations of the model used in this
research were obtained by eliminating different terms from the model statement
by setting the appropriate scoring ctions equal to zero. . :
]
For each model statement that was obtained, simulation test data were
generated to fit the model. Using the known parameters and model statement,
predictions were made as to the dimensionality of the data and the character-
istics of the items. Analyses were then performed on the simulation data
"in order to 'test the Predictions. If it were found that 3 model statement
could not be used to generate realistic data, in terms of either dimensionality
or item charactgristics, then the model was rejected, and a different model
Statement was investigated. This involved altering which terms of the -
. general model (Equation 1) were retained, and which were zeroed out. In

some cases, all of the terms in a particular rejected model statement were
retained, and one:or more additional terms from the general model were

added. The models.that were obtained were labeled as the vector model, the
product term model, the vector and Product, term model, the reduced vector

and product term model, and the item cluster model.

-~

Analyse$’

’

4

The first analysis performed on the simulation data for any model
statement was a factor analysis. Factor analysis, in this case, is not
.being used as a means of validating the models, but as a‘means of determining
. whether the data generated from the modals have characteristics similar to
those of rkal test.data. All of the.factor analyses performed in this
research were performed using the principal components procedure on phi .
coefficients, When the obtained and expected dimensionality did not match,
follow-up analyses were performed in an attempt to determine why the obtained
‘dimensionality was different from what was predicted.

Follow-up anleses included plotting the true item parameters against - >~
the factor loadings and against traditional item statistics suach as proportion-

¢
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- correct difficulty values and point biserial discrimination values. These ’
analyses were performed using both the unrotated factor loading matrix and ’
the factor loading matrix rotated to the varimax criterion. The purposes ,
’ of the analyses were two-fold. One purpose was to determine whether the

obtained factor structure of the data was a result of the model statement,

the values used for thg model parameters, or both. The second purpose was .

to facilitate interpretation of the model parameters and to determine \

whether the model yielded items with reasonable charaéteristies: In many

cases it was necessary to generate additional data, using différent values- ‘

for the parameters of the model, in order to answer specific questions

about a particular model statement. ' . . |
|
\

A final analysis performed on each model statement involved an afiempt
to predict, if a model statement were rejected, what changes would yield a
more acceptable model. What was acceptable was defined not only in terms
of whether the simulation data factor structure was realistic, but also in

terms of whether the model parameters had reasonable and useful interpre- .
tations. : .
LTy
' Results .ot -

|
|
|
|
J
\
{ - ' |
|
|
\
‘ |
Vector Model - |

The first model that was investigated was a simple vector parameter~
model. The x(x)ejcri and p(x) terms were eliminated, yielding the model

given by . . .
l -, < ” . !
R(xlej,ci) = _??3;T§17:exP(¢(x)$j + ¥(x)o,), €2)
, &

[ A . A ¢

where all the termslare as defined for Equation 1, and 8, .5 ¢ and ¢ are
vectors. This model was selected first because it appé%rld to be a straight- -

forward extension of the unidimensional Rasch model (Rasch, 1960) to the
multidimensional case. The expectation was that data generated according
to this model would have a dimensionality that would vary with the number .
of elements in the parameter vectors. For instance, when data were ECnerated'
using two elements in both the item and person parameter vectors, it was

i expected that the' data would yield 2 two-factor solution when factor analyzed.
This was not the Ease, however. Regardless of the number of elgments in
the parameter vectors, this model would yield one predominant factor. This
was true regardless of what the actual values of the parameters were, or
what values were used in the scqoring functions. N

-

Table 1 shows the first three eigenvalues from a typical principal
. component solution for the vector model. As can be seen, there is a dominant
first factor, with two minor factors. Table 1 also shows the uarotated
- factor loading matrix obtained for this particular data, as well as the
. proportion-corregt difficulty and the ifner product of the item parameter

vector and 'scoring function 'for each item. As can be seen, the two minmor
factors are difficulty factors, :

\

”
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Insert Table 1
Once it was ascertained that the vector model would not‘yield gulti-factor
data, it was not difficult to determine why. Equation 2e¢can be written as

¥ .
1 3 exp(qj +8,), . 3

(8

?I
P(x|0,,0,) ¢
jii j’oi

! ¢

-
where a. = ¢(x) 8, and B, = (x) 5. . Equation 3 is the unidimensional

Rasch mddel, withJinner ﬁroducts OL vectors. as parameters. Therefore,
regardlessYof what valueé the model parameters take on, the model is still

a unidimensional model. The factor analyses typified by the solution{shown
in Table 1 serve as an empirical demonstration that the vector model is a
unidimensional model. It can also be empirically demonstrated that the
inner, preducts of the scoring function agpd Parameter vectors serve as
parameters for the model. Figure 1 shows a plot of proportion-correct
difficulty by the innegmmroduct of the scoring function and item parameter
vectors. As can be se!; there is an almost perfect relationship between
the inner products and the proportion-correct scores. . When data were
generated using the unidimensional Rasch model, yiﬁh the inner products

from the two-dimensional model as parameters, the exact same plot was

obtained. Figure 2 demonstrates that the same was true for the person
pParameters. - -

Insert Figures 1 and 2 . :

Product Term ﬁodel

.

It wasyclear from the results so far reported that using parameter
veGtors in an otherwise unidimensional model did not make it-a multidimensional
model. Therefore, at this point the vector model was rejected as a multidimen-
sional model. The next model that was investigated had only the 8. “Y(x)o.
term in it. This model was investigated next because it involved dore th%n'
simple inner products of scoring and parameter vectors, But was more simple
than using both inner products and the ej'x(x)oi term. :

When 8. and 0. are vectors, X(x) must be a matrix. The term 6.0,
represents 3 matri¥ of Products of all possible pairs of the elements®in
the Gj and 0, Vectors. For two-dimensional 8. and o, vectors,

\‘L
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? , g :
: , The x(x) matrix, then, is a scoring matrix having an element for each
| p element of the ﬁ.oi midtrix. If the X(x) matrix for the matrixin Equation 4

: vere . J ' P S

. 7’
‘ . . ’ . 1 0 ' |
3 . * = ‘ ‘(S)
| oo LK@ =0g 1 '

“for a particular response x then the numerator of the mddel statement for
/that response would he exp(8,0; + 8,0,). It is clear from this that by
selectively using zeros in the y(x) matrix, various combinations of 6. and
0. elements can be selected. Varying the values of the nonzero elemedts in

X(x) assigns different weights to different combinations. Thus, the product
term model, given by :

L | ‘ A 1
1 . '
P(xlej,ci) = W exp(s‘j x(x)a,), (6)

<
-~

is a very rich model in terms of alternative formulations of the model that
are available. Unfortunately,/when data were simulated using some of these
alternatives, a serious problem’was discovered with the model. Regardle'ss

of which formulation of this model was used, and regardless of what values
were taken on by the item parameters, the item proportion-correct difficulties
were all approximately .5. A closer examination of the product term model

indicates why this occurred. Using the item parameters shown in Table 2, .
data were generated using . . .

for a correct response, and

[

for an incorrect. response; This'yields a model given by .

1 T .
. Y(ej,ci) ex?(ej1°11'+ ejz°12) for a correct response,

/ P(xlej’oi.) = e ' r - ’ (9..)
-t .- ‘Y(ej’oi) exp(e;]lo‘:tl - 9120121 otherwise,

ﬁﬁﬁﬁﬁ
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where the 6 and o terms are elements in the 6 and O vectors. From Equation - .
9 it can be seen that the item parameters are similar to the discrimination
paraméter in the unidimensional two-parameter logistic (2PL) model-set out

by Birnbaum (1968): In fact, if written as

B4 hd

|
- 1
P(x = 1]9 »0,) = —L exp[o' ®,, +0) +0,.(6... + 0] : ;
TR 14741 27752 7 P (10) |

9 ’ * i
|

g

the model is essentially a two-dimensional two-pérameter logistic model
with both of the difficulty parameters equal to zero for all items. Because
the data used for Table 2 were generated using a bivariate N(0,1) distribution

of ability, a difficulty parameter of zero yielded a predicted proportion-correct
difficulty of .5. - '

.
.

The role of the item paramaters ag'discrimination parameters in this
model is indicated by comparing the item parameters shown in Tabile 2 with
the rotated factor loadipg matrix, also shown in Table 2. Table 3 contains
the correlations between the item parameters and the factor loadings in -
Table 2. As can be seen in Table 3, there was a reldtionship between the
item parameters and factor loadings (r = .69 for oy with Factor 2, r = .82
for 0, with Factor 1). A principal components analysis of phi coefficients
yielded evidence that use of two item parameters resulted in a two-dimensional
model. The first éigenvalues obtained for the data generated using the
item parameter values in Table 2 were 7.1, 2.5, and .9. Further evidence
is given by the plot shown in Figure 3. This is the plot of the item point
biserials by the sum of the item parameters. Since the item point biserials
are the correlations of the items with total test score, instead of with

- 8cores-on-gach dimension, the factors are essentially{summed. As can be
-seen in Figure 3, there is a-3trong relationship between the item point ,

biserials and the sum of the item parameters (r = .82). -

L )
1

o

v o . Insert Taple 3 .

Insert Figure 3

/e )

“Vector and Product’ Term Model - - . . . .
. ﬁEe vector model that was investigated first was essentially a uni-

dimensional madel that corntained a difficulty parameter (the inner product
Y(x)o,) as the only item parameter. The product term model is a multi-

dimensional model that. contains discrimination parameters as the only item
parameters. In order to obtain a multidimensional model which contained a
difficulty parameter, the vector and product term models were combined. A

combination, of these two models is given by Equation'l (with or without the
p(x) term), which i? the’ Beneral Rasch model, 0

Table 4 shows the item parameters used to generate data to fit the .
general Rasch model, as well as the rotated factor loadings pbtained from .
the first two factors from the principal components agalysis of phi coefficients.

"The*first three eigenvalues from:the solution are 5.26, 2.28, and 1.07.

i ' .
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Initial analyses indicated that this model could be used to model multidimen-

- sional data, and that item difficﬁltips.ﬁere ot constant (see Table 4).
However, these analyses also indicated that ﬁ: was not realistic to use the
same item parameters in both the parameter vegctors and the product term.

The problem is clearly shown by Table 5, which contains the correlations of

the item parameters with the item proportion-correct difficulties and item .

point biserials. As was the gase with the vector model, the-inner product

Y(x) ‘0, defined the difficult ~parameter. The correlation between Y(x) ‘g.

and -theé proportion-correct scoras was r = .98. The Y(x) ‘0. term was also

the discrimination parameter, having a correlation of r = .89 with the item

point biserials. The problem is that, because $(x) ‘0. was both the difficulty

and discrimination parameteg,'the proportion=correct Scores and point

biserials had a correlation of r = .94. That is not a very realistic
situation. o . . ’ '
L]
Insert Tables 4, 5

Reduced Vector and Product Term Model

Since the initial analyses of the genmeral Rasch model indicated that
parameters should not appear in both the parameter vectors and the product
term, the scoring functions were altered so that parameters appeared in one

. or the other, but not both. .Ig order to facilitate this, additional elements
were inserted into the item parameter vector. -The .resulting model is given
by .. : ’ '

- -

[

’ . l .
P(x = =L
(x llej,oi) Y(ej’°1) exp(oil +o,* UiSle + °14°jz)’ (11)

where the 8 and 0 terms are again scalars. 34

The first three eigenvalues obtained from the pPrincipal components
‘analysis for this model are 5.39, 1.30, and .99. Table 6 shows the item
parameters that were used to genmerate the, data, as well-as the obtained '
rotated factor loadings. Table 7 shows the correlation matrix for the item
parameters, loadingsw~and traditional statistics.

.

Insert Tables 6, 7

The results of the factor analysis of these data iﬁ&féate that a
dominant first factor is present. However, there was a secénd component
present in the data which was strongly related to the item parameters (r =
.87 for 03 and Factor 1, r = .87 for 04 and Factor 2). The item parameters -
in the product term, then, were related to the -factor loadings, while the
sum of the item parameters in the vector term behaved as a difficulty ]
parameter, having a correlation with the proportion-carrect difficulty of r
= :98, There was not a significant correlation between the item difficulty
and point biserial values (r = .12). The sum of .03 and 04 had a correlation
cof r = .96 with Ehe item point biserials. - )

)



The analyses of the model set out in Equation 11 jindicate that it has
many desired characteristics. The rotated factor loadings are highly
related to the item parameters in the product term, the item difficudty is
highly correlated with the sum of the item parameter vector elements, and
there is no correlation between item difficulty and item discrimination.

. .

o One problem that does exist with the data that were generated is that

they have one predominant factor. From the factor analysis results it

would not be difficult to conclude that the data had only one factor. One $
possible reason for this is that so many of the items ‘had large values for ' h
both of the item parameters in the product term. 1In order to test ‘this,

dat3 were generated for the set of item parameters shown in Table 8. As

can be seen in Table 8, the first eight ‘items-have large values for 03 and

small values for o, while Items 11 through 18 have large values for 04 3und

small values for G3. Items 9, 10, 19, and 20 have equal values for O; and

04. Table 8 also contalns the rotated fadtor loadings obtained for these
data. . - . ’

N
’

Insert Table 8

The first four eigenvalues from the principal componénté'énalysis .
obtained for these data are 3.12, 1.77, 1.08, and 1.01. As_can be seen, ‘
the second component is now larger. When data were generated'using th?
item parameters.shown in Table 9, the second factor was even greater. The
eigenvalues from the principal components ‘analysis for these data are 2.49,
2.28, 1.05, and 1.03. As can be seen, when using the item parameters from
Table 9 to generate data, there are two factors of approximately equal
magnitude present in the data. ‘ . s

{ -

Insert Table 9

Item Cluster Model . .
' . ®
Although' the reduced vector and product term model appears to adequately
m%del multidimensional data, the presence of the product term seriously
complicates parameter estimation, since separation of the item and person ’ .
Parameters is not possible through conditional estimation. Because of e

¥
4  this, one more model that does not have a product term was investigated. ?ﬁ
This model: is the item cluster model. :

One of the reasons the item Vector model, given by Equation 2, does
not adequately model multidimensional data is tgat no information about the
different dimensions ig preserved in the item score when the item is dichoto-
mously scored. The elements for the different dimensiops are summed, and

the sums are treated as parameters. If it were possible to score /the
dimen§§ons separately, then the vector model might be @ble to model multi-
dimensiggal data. This requires, however, polychotomous. item scoring.
Scoringqgh\item on each dimension would require 2" response categories,

where n is 'the number of dimensions. Unfortunately, most test data are not
scored polychotomously. '

An alternative to having polychotomous item scoring is' to consiger
more than one item at a time. If two dichotomously scored items are' clustered

.
)
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together, and the cluster is treated as a single unit, then thé cluster Has -
22 or .4 response categories - (0,0), (0,1), (1,0), and (1,1). The model
given by Equation 2 can then bé applied, with the exception that the o
vector now has two elements, both representing the same cluster. Essentially
each item is considered to be unidimensional, and what 'is modelled is a two
item, two-dimensional test. It'would probably be best to treat the entire
test as a cluster, but if more than a few items are on the test, the . . |
computations become impractical. . - )

. . |

The proceduré by which this model ‘was investigated is as follows. For

the two-dimensional case, item parameters were 'selected for 20 items. ' ) .
These parameters are shown in Table 0., The items were paired so that , {
Items 1 and 2 formed Cluster 1, Items 3 and 4 formed Cluster 2, aad so on
until 10 clusters were formed. For each cluster there were four response

categories, which were scored as follows: . ’ . ~
L ~ -~
- a) (0,0) for incorrect -on both items; | '
b) (0,1) for first item incorrect, second item correct; ! |
c) (1,0) for first item correct, second'item incorrect; | .
and d) (1,1) for both items correct. . o

This is ‘essentially treating the two items in a given cluster as in&ependent.
Table 10 contains the unrotated factor léadings for the first two principal/
components, and the first four eigenvalues are 3.61, 3.06, 1.33, and 1.21.

b7

) i _Insert'TabLe 10 —

As can be seen, the simulation data were tréqted as 20 items, rather
than as 10 clusters. The eigenvalues listéd ‘above indicate that there were
two roughly equal components in the data. Table 10 shows that the first
component was defined by the items that were placed first in the cluster,
and the second component was defined by the items that were in the second
position in the cluster. Consistent with the‘scoring funttions, there were
two equal independent factors. - . P .

In order to demonstrate thdt -the factors need not be independent, the
Same item parameters were used to generate data using the following scoring

functiogs: | .

‘ L4
’

a) (0,0) for both items incorrect;
b) (.1, .9) for first item incorrect, second item correct;
c) (.9, .1) for first. item correct, second item incorrect;
‘and d) (1,1) for both items correct. P N

The principal components analysis of phi coefficients for this model yield
six factors with eigenvalues greater than ome [2.46, 1,83, 1.09, 1.08,

1.01, 1.00}. Table 11 shows the unrotated factor loadings. As. can be

seen, there are still two factors present in the data. However, the factors
ate no longer defined only by the items in the corresponding position in
?heccluster. The first component is a general factor, while the second
component disCriminates between the items in the first and second positions
in the cluster. Clearly these two sets of items are not independent.

P

. .
b -
.
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- . | :> ‘ fnsert Table 11 ) '

Discussion
- \
The use ‘of simulation data to study the characteristics of a model
* . , before applying it is perhaps atypical of research on latent trait models.
It is not unusual in this area to adopt a molel, derive estimation procedures,
and apply the model without ever going through the process this study has
. employed. 1In this study this approach has been taken for two main reéasons.
First, it was felt that when dealing with multidimensional latent trait
models much of the common knowledge about latent trait models might no
. longer-apply. It was felt that considerable research was necessary in
) * order to gain an understanding of how these models work and what the model
Parameters represent before they could be applied. This belief has been
borne out several times in this study by findings indicating that the
models were not behaving in the anticipated manner.

-

A second reason for taking this approach was that it seemed impractical
. itp attempt to develop estimation procedures for some of these models.

Specifically, the general model set out by Rasch has a very large number of
Parameters. It seemed impractical to try to estimate all of them, and it
was hoped that research on the model could help simplify the problem, by
eliminating some terms of the model and by discovering restrictions on the
values the parameters could reasonably take on. With these goals in'mind,
the“results of this study will now be discussed.

Vector Model .

The most simple formulation of the general model that was investigated
was the vector{model. This model is simply the unidimensional Rasch model,
- but with vector¥ for parameters instéad of scalars. This model was found

to be totally inadequate for modelling multidimensional data. When data
were generated according to this model, the resulting data were unidimensional,
with item characteristics determined by the inner produet of the item

™ parameter vectors and scorilig functions. From this it follows that ghis
model would fit multidimensional data no better than a unidimersional model

, having parameters equal to the inner products from the vector mgdel.

4
¢

Product Term Model

Because of its slight similarity to- the 2PL model; it was felt that *
the product term model would be better able to model multidimensional data.
It was anticipated that the item parameters in the product term would
behave as discrimination indices, and that is just how they did behave.
Unfortunately, without the vector terms in the model there were no terms
| ° v

[ N
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playing the rolé of’difficulty parameters. The data generated for this . - '
model had items of constant difficulty, which does not seém ‘very realistic. ‘o
"From this it was concluded that this model would be useful only for modelling

items of constant difficulty," and-when items have varying difficulties this

model is imappropriate,

Vector and Product. Term Model

. Based on the findings for the vector model and the product term model, .
it was hypothesized that a combimation of the two models would be necessary
to model items that were both multidimensional and 6f nonconstant difficulty.
Analyses of thé vector and product term model “indicated that it would model
multidimensional data:, .and that it would model items of varying difficulty.
However, it was also found that, 3s long as the item parameter vector
elements appeared both in the vector terms and in the product term, the .
item difficultieg'and disciminations would be highly gorrelated. Since ’ .
this is rarely the case, it was concluyded that this model would be useful |

;only in a very limited number of circumstances :
. o

Reduceh Vector and Product Term Model ) .

.

—

In order to correct the problems with the vector and product model, it
was clear that a given item parameter vector element should appear only in
the vector term or the product term, but not both. It was anticipated that
similar problems might exist if the person parameter vector elements occurred
in both the, vector term and the product term, so the same correction was l
made for the person parameters as was made for the item parameters.

?The resulting model appears to'be quite successful at modelling realistic -
multidimensional data. It is capable of modelling correlated as well as N
independent factors, and the item parameters are readily interpretable.

The only real problem there seems to be with this model is with the estimation
of the parameters. Although there are fewer parameters. to estimate than is
“the case with the general model, there are still a fair nudber to estimate.
Moreover, it appears that there are no .observable sufficient statistics for
the. parameters 'in the product term. These problems ‘do not make estimation

of the model parameters impossible, and probably not even impractical-. C .o
However, they do make estimation more difficult. o PR
¥ I3 - ) L]
- . ‘ T a
Ifem Cluster Model L
) N L . R \
N The item cluster model was proposed as an” alternative to the vector -

model. This model does not involve a product term, but it still can success- -
fully model multidimensional data. However, it does idvolve clustering "
items, which gives rise to a number of new problems, For instance, as yet B,

it is unclear what the effect is of different combinatiohs of items, or - -
§haeher all’ items should b? clustered with the same item. Preliminary

investigations seem to indicate that the optimal clustering procedure is to )
cluster all items on 3 subtest with one item taken from a different spbtest. T

As of yet, however, np cl;gr’results are available. While this model!shows
c9nsiderable proTiSe, its usefulness is not well established, and may be
*limited in the types of circumstances in which it can be'applied.

12
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>Summary and Conclusions ) ’ . \\\x,'

. The purpose of this study was to investigate the usefulness of the
general Rasch model for multidimensionyl data. Several formulations of the
model, varying in complgRrity, were inv stigated to determine whether they
could successfully model realistic mulf\idimensional data. Also investigated

. was whether the parameters of the modeld could be readily interpreted.
. Models investigated included: a) the vecwor model ;ub) the product term
model; c) the vector and product .term model; d) the reduced vector and
product term médel; and, e) the item cluster model. :

Of.the models jinvestigated, all but the reduced vector and product
term model and the Atem cluster model were rejected as incapable of reasonably
.. +modelling realistic multidimensional data. The item cluster model appears
to be a useful model, but its applicationms may be limited in scope. The
" reduced vector and product term model was found to be the most capable of
modelling realistic multidimensional data. Although the estimation of the
parameters of the reduced vector and product term model may be more difficult

. than it would be”for other models, this model appears to be the model that
is most worth pursuing. ’

. I3
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Table 1
) .
i Principal Component Factor Loadings Based on *
Phi Coefficients-with the Sums ‘of the. Item Parameters .
. and Observed Proportion Correct for
M-Di;nensional Vector Rasch Model.
bl’. 'O'BSERVKD ) . FACTOR LOAJ‘)INGS
v PARAMETERS DImCUI.T_Y ~ FACTIOR 1 » FACTOR 2 FACTOR 3
1 89 1 lgg .69 - C,29 -.10
2 -089 030 > ., 0‘73 009 -022
3 . 43 * .59 .59 - J4b .12
IS g P . N - .
4 2.02 . 89 - .33 . .45 . .52 -
: 5 ' .59 . .64 .58 .45 .12
6 -9 .28 T .03 -.23
7 -1,44 .19 .70 RS & -.11
8 047 060 .75 .02 -022
-9 -1.05 . .25 Te1 -.39 W11
10 -1076 014 -49 - . ‘045 034
11 .98 ! 71 ~.15 -.19
12 . 2,58 .93 .49 .46 © .28
13 -1.31 .21 .58 -.4b .19
14 1.22 075 071 025 -019
15 -.64 T 35 .67 . -.35 -.01
16 .05 .52 70 . -.14 N
17 ° -2033 008 041 -0‘43 .44
18 : -.54 .38 .67 -.30 . -.05
~
19° -.60 .37 J1. -.29 -.05
Y20 . 2.26 ) .53 .43 .19
L] / ’
Elgenvalue 7.9 ‘ 2.22 1.04




Table 2
I, 3 . ) :
Item Parameters, Proportion Correct Scores, and Factor Loadings
from a Varimax Rotated Principal Components Sdlution on
Phi Coefficients for the Product Term Model

i
i

-

c ' c P ‘Factor I Factor II
« 1 2 )

81 1.54 .50 T2 .30
. 1.56 .51 .49 .16 .77

36 .63 " .50 .51 .20 1

L
L]
w—

.56 1.62 .49 .76 - .19

.16 .59 .53 55 -.01

. 1.46 .39 ©49 .08 .76

21 - 1.49 .52 .75 . _ .07
.35 28 ¢ T sy - .28 T35 \
.33 .88 .52 .65 .16 S
.30 1.90 .50~ .80 '3 .04
.53 .61 .50 .62 © .36
1.03 1.71 .50 °, 72 L .37

1.09 ¢ .38 .52 a6 .69

.
ot

2.01 o Leh. .50 a9 .80
22 .70 .53 53 13
.57 46 51 .30 ‘ .52 -
1.70 .79 .50 .30 .72
.50 88 ° .50 61 .20
31 45T .50 .40 .2 :

.02




- Table 3 " E .
. Intercorrelation Matrix for Item Parameters, Itep Statistics,
) and Factor Loadings for the Broduct Term Model -

.’

1

Variable Ul 02 ) Ul + 02 ?actor 1 PFactor 2 P-Value Pt.-Big.

Factor 1

Factor 2

P-Value

fQPt. Bis. .
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S R - Table 4 «
\ |
Item Parameters, Propogtion Correct Scores, . .
and Rotated Factor Loadings for . *
. the Vector and Product Term Model
, i
Item c

. 1 g, ' P Factor 1 Factor 2 -~




3

Factor' 2

Table 5

Intercorrelation Matrix for Item Parameters, a
Rotated Factor Loadings, and Item Statistics , N |
. for the Vector and Pngguct Model -
Vatiable o, 9 o, + 0, "Factor 1  Factor 2 P-Value Pt. Bis. =° »
’: ’ - L2
. ¢ P
5, : - .13 .76 .49 .69 .75 .68
oé ¢ -

9, + 0, (¥(x)0)

Factér 1

~

P-Value

Pt. Bis.

~.




- . Table 6 . . al H:¢

, Item Parameters and Rotated Factor Loadings
for. the Reduced Vector and Product Model

\.Item ol 9, 03 %, Factor 1 Factor &
oo . .
1. .206 -.503 .373 .997 .51 .01
2 -.164 .888 1.205 1.832 .60 .32
3 - 448 261 766 "*.876 .34 .36 L
4 8l -.008 1.321 1.714 .55 .34 |
, 5 111 -.908 | 1.344 1.216 .41 .42
6 -.947 044 1.758 1.694 .46 .51 N
T - =490 111 .687 .738 .40 26
g .553 -.502 347 1.454 ! .07
9 -.344 639 1.307 127 Zo 64 , _
10 -.257 .303 .851 .824 C .26 .39
11, -.069  -.542 (472 404 T L22 .25 |
12 .779 .432 .392 - .656
13 -6l 571 .578 1.2512
14 -.140  -1.032 .3;4 1.066
15 -.705 .081 .821 .480
16 -.386 -.164 1.912 244
17 -.154 066 1,193 .537
18 474 .249 (1.385 © 1.287
\19 .438 ~.210. 1.320 1,110
20 .29 190 1.636  1.492
R 20
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Table 7

Intercorrelation Matrix for Item Parameters,

Item Statistics, and Factor Loadings for

the Reduced Vector and Product Model

e

s’

Variable Ul + 02 03 0{4 03 + 04' Factor .1 Factor 2 P-Value Pt. Bis.
oy + o, - .04 .20 .16 A1 .05 .98 .18

, | ‘ . ‘ .
o, . - .15 .76 -.25 .87 .02 .70
(J4 - .76 87 . -.27 15 ..76
04 + 9, = 40 - 40 .11 ' .96
Factor 1 - , =65 . T .08 .48
Factor 2 | - .04 .36
P~Value ;. - W12

! ~
ve . w - R N
Pt. Bis, ) . - :

. / )
Ca {

21




I Table 8

Item Parame't’:ez:s and Rotated rFac.:tor Loadings * / (
. for the Reduced Vector and Product Model * ~ }
' : !
. ‘ ' | , -
Item 9 7, 94 ) 9 -Fa‘g:tor 1 Factor 2 |
1 ©.206°  °=.503 850 .10 | .42 -.05
2 -.164. .888 .900 .200 .48 .03 !
3. 448 .261 .950 .250 . .80 .10
. 4 o~814 -008 y.ooq 300 46 | .08
’ 5 111 ~.908 .1.050 .250 .53 .04
’ 6 -.947 . 044 1.100 | T.200 .49 .10
- > 7 Zus0 an 1150 Jiso - .50 . .05
8 .553 -.502 "1.200 100 ".s§‘~r -.06 - -
: 9 346 639 500 .500 .28 - .23 -
§ 0 " -.287 .303 .700 700 36 .26
BT 069  -.542 .150 850 - .07 hag .~
12 .779 432 200 .900 .06 44
13 -.611 .571 250 . .950 .06, .52 -
14 L1400 -1.032 .300 1.000 .10 45 o
. 15 -.705 - .081 . ,250 1.050 ~ .06 .48
) " 16 -.386 _.164 200 1000 | 09 . 153 ,%
17 -.154 046150 1.150 .03 /.55
'18 ATl 269 .100 1,200 . =-.07 - 63
19 438 | -.210" :‘ ,700 .700 .37 : .32

20 .294. 1907 v..500-  .500 - .31 {.26




Table 9 ‘/

Item Parametefs for the Reduced
Vector and Product Model




Unrotated Factor'Loadings‘on First

1

Table 10 °

7

S—

“Two Principal Components

for the Independent Two-Dimensipnal Item Cluster Model

-

-
Item ) . Factor 1 Factor 2 . Par;2232fs.
r | .56 Y% .00 .893
2 .02 .65 -.850
3 .66 -.02 -.892
4 .01 - " .66 §,~69o
5 .64 ) .00 430
"6 02 .19 3.200
7. «33 ~.04 2.‘(‘)16|
8 C .07 22 3,310
9 .61 -.05 594
10 ;00 .69 470
i .66 .01 : < £.913
12 .06 .55 1.220
13T 58 -.01. -1.437
w \% 400 .58 ~1.260
15 © .65 -.07 467
16 .04 .62 .880
17 7 .66 -.04 ) -1.048
18 -.02 .64 -.970
19 .56 .07 -+ =1,760
20 .01 ! .42 ~2.140

T,
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1 \
" Table 11
\
) Unrotated Factor Loadings on First Two Principal Components

.o - for the Dependent Two-Dimensional Item Clusfer Model .
- ‘R .

.
. ’ ’ 13 '
: ~ t . i .
{ . . 1
. . .
!
.

Factor 1 Factor 2

2 | L .33 : ' -.36
‘ 3y ' .38 2%
’ 4, : ' .33 o ~.33
' | 5 ° 41 | 20
6 \ 25 . , , .24
7 .36 ' .16
g , ° - .10 | . =35
I 9 . .40 ' .33
10 ‘ SR .26 . -.39
11 o L wr .30
‘12 .32 \ -.38
. 13 .37 ¢ .20
14 o 32 - | ' ‘3.43 -
. 15 O s . .28
16 ' .28 [-.36
17 '.44(> ' .28
’ , 18 - L .28 ) -.37
19 S 43 10
: 20, | .20 . ; Y
| L ’
|
- N ~
‘ o5 ' \
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Figure 1
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Relationship Between the Proportion Correct and the Inner Product of
the Item Parameters for Twenty Items Generated Using a Two-
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4 Figure 3 _ . ~ )
Relattonship hetween the Sum of the Item Parameters ?
and the Point~Biserial Discrimination Index ;
,\ . for 20 ltems Generated Using the Product Term Model |
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