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The Roles of "Understanding"

in the

Learning of Mathematics

Abstract

It has long seemed possible to teach, and to learn, mathematics in

either of two distinct ways. One might be called "learning with

understanding," and tha other might be called "learning without under-

standing." [In fact, as this study shows, the situation is more compli-

cated than these two simplistic alternatives suggest.] Our society is

rapidly 4hanging in a direction that attaches more importance to the

various forms of mathematical competence possessed by various groups

of people; more effctrt is being expended to help more people learn more

mathematics; new media, such as CAI, micro-computers, calculators, TV,

and video discs, are coming into use; and the always-great pressure to

operate educational programs as cheaply as possible is becoming even more

intense. In such a situation, the prospect looms clear that "understanding"

may come to be thought of as an expensive luxury, and be cast aside as

non-essential.

Would this entail a substantial loss? The present inquiry, which

began on September 1, 1979 and was completed February 28, 1982, sought to

examine more closely what might be lost if "understanding" is deemed

superfluous -- or, from the opposite perspective, what might be gained if

"understanding" of most students could be improved.

What methods should such a study employ? From the traditions of

past work in mathematics education, one might expect an experimental

approach, with an experimental group taught with emphasis on understanding,

their performance then being compared to a group taught without such an

emphasis.

In fact, this is not what has been done. Instead, many students --

ranging from third graders working on arithmetical tasks, up to older

students who were studying calculus -- have been carefully observed, often

4



-2-

with the aid of tape recordings,_ and episodes have been identified

that seemed to indicate either a particular form of understanding, or to

indicate some form of lack of understanding (or the presence of misunder-

standing). The goal of these observations was, of course, to obtain

a large collection of examples that might serve to delineate the world

of "understanding," to help define what it means "to understand" and what

it means "not to understand."

As a second activity, these examples were put into various categories

to help determine what kinds of understanding seem to be important.

Finally, on a more fundamental level, the behaviors identified in

the examples have been related to some of the basic conceptualizations

of human information processing that have emerged from various recent

"cognitive science" studies.

SECTION ONE

I. The Method of Observation.

Data has been obtained from several sources, including the analysis

of student written work (on homework, class "seat work," or tests),

the analysis of student performance at computer terminals, the observa-

tion of classrooms, observing tutoring sessions, and interviews with

teachers and with various categories of "experts," but the main source

of data has been the task-based interview. In this procedure, a

student (or an "expert") sits at a desk, with paper, pen, and other
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materials if necessary; an interviewer presents a problem; the student

(or expert) attempts to solve the problem, under the agreement that he

or she will talk aloud as much as possible, explaining what they are

doing, why, what they are thinking about, etc. The interviewer may

participate with frequent interjections of questions or other remarks,

or may,say very little. After the "work" part of this interview is

over, the interviewer*. may ask the subject to explain more fully a few

points that seem obscure, or may ask the subject to review the entire

episode from memory, adding whatever components seem to deserve mention .

The entire episode is usually tape-recorded, and the interviewer usually

makes written notes during the session. In some cases there may be

an additional observer who also makes notes, as unobtrusively as possible.

The goal is to allow the subject to think about the mathematical

task in his or her usual, natural fashion, with as little distortion (from

the observation procedure) as possible. Of course distortion does occur,

but skillful interview technique seeks to minimize it.

At the end of an interview session, one thus has

i) a taped record of what happened

ii) the subject's written work (which we always
have done in ink, to avoid erasures)

iii) the interviewer's notes

iv) the observer's notes, if any

v) the subject's memory of the episode

vi) the interviewer's memory of the episode

vii) the observer's memory of the episode (if an
observer was present).

ft
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Unavoidably, some interviews take place without tape recording,

because mathematical behavior can occur anywhere -- at lunch, at a school

athletic event, while walking or driving, at a brief encounter in a

school corridor, etc. -- so some of the items on the above list will

sometimes not exist.

Where tapes do exist, we do not necessarily transcribe them. The

time required to make a good transcription of a 40 minute interviev

session can be over 50 person-hours of work. Routine transcription of all

tapes would not be feasible.

To make matters worse, within our experience only the interviewer

or observer can usually make a satisfactory transcription, although

typists can often make a first-approximation transcription.

Anyone who studies such tapes carefully will be struck by the

fact, hardly mentioned in the literature, that most of the information

is NOT coded in the choice of words themselves, and is consequently lost

if only words are transcribed. The main message is usually coded in nuance,

inflection, timing, pace of remarks, facial expressions, gestures, and

posture. Consider, for example, a transcription such as:

(1) Interviewer: ...and what do we have here?

(2) Student: Oh.

The possible meanings of such exchanges are not defined by the mere

written transcription of the words.

To be sure, good interview technique can attempt to reduce these

uncertainties. [The phrase "...and what do we have here?" was probably

a poor choice of words on the part of the interviewer. A better remark

might have been:

(1) Interviewer: For the sake of the tape recording, will
you please try to say what you just did?

[or "...how things now stand?"]

But exchanges of comparable ambiguity continue to occur, in part because

the interviewer.is constrained to try to distort the subject's normal

procedures as little as possible, and must convey the feeling of being

'interested, non-judgmental, etc.
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Perhaps the most trying demands imposed on interviewers are these

(i) To use a "poker voice" which does NOT give away

clues or cues;

(ii) To avoid "teaching" behavior intended to help the

subject out.

Of course, deliberate hints may be given, if they do not interfere

with that part of the task which is being studied in that specific

interview.

[As the preceding remark suggests, interviews usually have some sort

of a priori goal, established in the mind of the interviewer before the

interview began. But even in this respect there are trade-offs that

must be considered; most of the most important phenomena that we have

found were NOT anticipated beforehand -- as, for instance, the surprising

inability of students to make drawings or diagrams at the beginning

of working on a problem (which we discuss below). Hence, despite the

interviewer's initial goals, he must remain open to seeing unexpected

things. In particular, he must NOT allow the "efficiency" of his

interview procedure to mask important phenomena that he had not anticipated.]

II. The Basic question

We want to be sure that the reader sees clearly the basic question

we are considering. To be sure, as we study the matter we shall see

that it is more complex and more subtle than one might at first expect.

But the basic question itself -- at least at the outset -- is indeed

both simple and important. We look at several instances.

A. One of our studies (Davis and McKnight, 1980)dealt with a

third-grade girl, Marcia, who subtracted

7, 0 0 2

- 2 5
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5

\7., 01 0-12

2 5

5, 0 8 7

Marcia was convinced that she had performed the subu-action correctly.

Her teacher's efforts at remediation ultimately failed, and our own

efforts at tutoring probably fared no better.

What does this have to do with understanding? Our answer

will not be entirely clear until much further along in this paper,

because it depends upon a specific conceptualization of human

information processing, but we can sketch out the answer now so

that the reader will know what to be looking for.

1. First, we would say that Marcia did not understand the size

of these numbers. If you or I had, say, a truck or automobile

that weighed "about seven thousand pounds," if we removed something

that weighed 25 pounds, and if the truck then weighed "about five

thousand pounds," we would feel that either a miracle or an error

had occurred. -Those sizes don't work out correctly. "About

seven thousand," minus twenty-five, should still be "about seven

thousand." Marcia never responded to arguments of this type; we

would say she did noc understand the sizes of the numbers. [ttSeven

thousand".seems to have been merely verbal noise to Marcia, as

meaningless as "a trillion" probably is to most American citizens.]

2. Marcia seems not to have understood. that "borrowing" and

"carrying" operations are her written equivalent of "making change,"

as in getting ten dimes for one dollar, or ten pennies for one dime.

When Marcia wrote
6

.7s, 0 012

- 2 5

what she did, in effect, was to trade one one-thousand dollar

bill for ten one-dollar bills. She did not see the parallel

between such an act and what she wrote on the paper.
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3. Interviews with Marcia [all of the details are given in

Davis and McKnight, op. cit.] revealed that she was very skillful

in representing a numeral (such as 7,002) as an array of Zoltan

Dienes' MAB blocks. Use of this representation in this example

would have revealed Marcia's error clearly, and also showed her

how to correct the error. But Marcia refused to acknowledge

that MAB representations had anything to do with this problem!

4. One could summarize much of Marcia's behavior by using the

distinction between an algorithm (or specific "recipe"), and an

"intuitive idea." [In later sections, we shall define an "intuitive

idea" more precisely; thinking of "borrowing" in Marcia's example

as "making change" would constitute one relevant "intuitive idea"

that Marcia might have used, but did not.]

Roughly speaking, the distinction is as follows: suppose

I have some precise instructions written down on a piece of paper,

telling me how to find Mr. Wilson's Apple Farm. Suppose that I am

attempting to follow these instructions. At some point I encounter

trouble. (Perhaps a bridge is out, or I can't find the "red

barn" that the instructions tell me to look for.) I ask someone

for help. Suppose they tell me my written instructions are wrong,

anyhow. What I ought to do, instead, is ...

Do I abandon the written instructions and follow the speaker's

advice? Do I try to relate what he is saying to what is written

on the paper? Or do I ignore the speaker and keep trying to make

the written instructions work? In either of the first two cases

I step "outside" of the algorithmic procedure and try to relate

the procedure to something else (or even replace it by something

else). In the third case I reject the "something else," and

insist on following the algorithmic procedure.

Our interviews show that Marcia's behavior was typical. Third

and fourth graders are surprisingly devoted to algorithmic

behavior, and are reluctant to try to make use of additional

"outside" (or non-algorithmic) information. Clearly this is both

10
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a strength and a weakness -- if children did not work hard to

learn algorithms, present-day school curricula would be even

less effective than they presently are. On the other hand, Marcia's

commitment to the algorithm she is using stands in the way of her

learning to subtract correctly and reliably.

5. There is another sense -- an important one -- in which

Marcia doesn't understand. She does not see clearly what she

herself is doing. What has made remediation so difficult in

Marcia's case is that she believes

She has learned the subtraction algorithm carefully

and well (and she has, provided there are no zeroes in

"inside" columns in the minuend);

ii) She always gets correct answers by using this algorithm

(and she does -- again, provided there are no zeroes in

"inside" columns in the minuend);

iii) She is using the same algorithm for

7, 0 0 2

- 2 5

that she uses for, say,

1, 9 8 5

- 2 9 6 .

It is, of course, this third belief that causes the trouble.

But,unfortunately, one cannot really say whether Marcia is correct,

or not, in this belief. There areilwo possible rules that she

might be using:

a) When necessary, "borrow" from the next digit on the left

(in the minuend);

or else



-9-

b) When necessary, "borrow" from the nearest non-zero

digit on the left (in the minuend).

No case had previously arisen that would distinguish between these

two rules. (Indeed, the theory of "knowledge" which underlies our

work suggests that probably Marcia had not formulated her "rule" so

precisely that such a distinction could be described.)

Seymour Papert has emphasized that one reason you need a

"teacher" is to tell you what you are doing. Imagine a major

league home-run hittE ho happens to be in a slump. Does he need

to have a 13.atting coach tell him how to hit home runJ? Of course

not; by hypothesis he himself knows that better than anyone else

is likely to. Does he need someone to admonish him to stop doing

whatever.it is that he's doing wrong? Again, of course not. He

wants to hit home runs again, the way he used to. But -- if he

was hitting well then, and poorly now, then something has changed --

and he himself doesn't know what it is! He needs someone to

help him to analyze his sWing, timing, way of looking at

pitches, and so on, and try to identify exactly what has changed.

[This suggests a very promising line of remediation for Marcia,

Laid for many other students -- help them to see exactly where their

procedure is changing (or where the problem structure is changing),

so that a "correct" method suddenly yields some incorrect results.

In all of the literature, which includes abundant documentation of

unsuccessful attempts at remediation, we have not found one single

instance where this "show them what they are doing" strategy was

employed! It would seem well worth trying, especially where other

methods are failing.]

B. Erlwanger's "Benny." Erlwanger (1973) used task-based inter-

views to study the mathematical performance of 5th and 6th graders.

One sixth-grader, reported as "Benny," was found to convert

2
to a decimal as 1.2, and to convert other fractions to decimals

10

as follows:

0
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5

10
1.5

429
T-0-6 5.29

4
17. --p 1.5

and so on. Erlwanger .1.so found a fifth grade girl who wrote

.3 + .4 = .7

3. + 4. = 7.

.3 + = .7.

putting two decimal points in the same numeral! She had no idea

how large .7. actually is -- whether, for instance, it is "more

than 6" or "less than 1" -- but this did not strike her as peculiar,

inasmuch as she rarely understood the size of the numbers she dealt

with on arithmetic papers. (Erlwanger, 1974.)

C. Donald Alderman, Spencer Swinton, and Ja-les Braswell (1979 )have

reported the use of task-based interviews,and written tests, to

determine whether fifth-graders in certain (rather typical) schools

understood the arithmetic they were learning, in the quite specific

sense of being able to make up a meaningful problem to match a

mathematical statement such as



4 x 5 = 20.

The students were provided with graph paper, with a large collection

of cube-shaped wooden blocks, etc. Shading in a 4-by-5 rectangle

on the graph paper, or constructing a 4-by-5 rectangular array

of blocks, or writing either

or

4 + 4 + 4 + 4 + 4 = 5 x 4

5 + 5 + 5 + 5 = 5 x 4

-- any one of these -- would have constituted an acceptable answer.

(The students might, of course, have gone further, and said "You

want to buy four candy bars at five cents each," or "there are 5

school days in a typical week, so in 4 typical weeks there will be

twenty days of school" -- but none of them did.) In one class of

24 fifth graders, only 3 could give correct answers. Roughly

similar results were obtained when this same task was used in other

classes.

D. Dividing Fractions. The sceptical reader can confirm these

results for herself or himself. Use this task: "I will show you

a mathematical statement, and I want you to tell me some reasonable-

sounding story that would correspond to this statement." Now show

the subject

8+2

and explain that a "reasonable-sounding" story might be something

like "I have eight dollars in the bank. Every week I withdraw two

dollars. How long can this continue?" Or, alternatively, "I have

8 cookies, and you and I will share them equally. How many will

you get?"

Do a few practice problems, using only positive integers

(including the requirement that the answer must also be a positive

integer), to make sure that your subject understands the task

itself.

.4. 4



Now, show him

1

3

-12-

1
+ -2-

Unless your subject is professionally-connected to mathematics in

some way, it is very unlikely that you will get a correct story.

[Note that the story "We have n, third of a pie left. You and

I share it equally. How much do you get?" is NOT correct. It

corresponds either to

1

3

or else to

2

_91

Yet, according to most curriculum schemes, we all learned this

topic in the fifth grade, or thereabouts. Of course, most of us

did not understand it then, and -- what is far worse -- we did not

realize that we ought to have understood.

III. What We Are Saying

The background which underlies and motivates this study needs to be

distinguished from the study l'self. For our specific study of "behaviors

that indicate understanding" we have maintained the usual kinds of

scientific carefulness. For our discussion of the background, by contrast,

we make no "scientific" claims. Yet, while maintaining the distinction

between the study and the background, it is important to state clearly

our view of what that background is. We believe it deals with crucial

choices that now' face American education.

The background of the study could be described as follows.

A. Arithmetic is typically taught in the United States in what might

be described as a stimulus-response (SR) Mode. A student sees, say,

a flash card displaying

t.)
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4 + 3 =

and is expected to respond as quickly as possible by saying "seven."

What most of us probably learned in the fifth grade, as far

as dividing fractions is concerned, was the admonition to "invert

and multiply", i.e.,

2 3 2 5t 10

7 x 21 .

"10 ,
But ' hardly deserves to be called an "answer," considering

21

that we were probably not at all sure what the question was.

It is, of course, a "response."

This form of presentation is usually called "rote" teaching or

"rote" learning.

B. If students learn what might be called the "facts" of arithmetic,

by meaningless rote, there is very little likelihood that chey will

use their mathematics -- or be able to use it -- in real situations,

which are not typically initiated by a flash-card presentation of

symbols like

Indeed, real problems are often initiated by something which may not,

at first glance, seem at all mathematical.

C. Rote presentations are offensive to many mathematicians (or

other heavy users of mathematics), because they know mathematics, and

its applications, as a subject where interesting and subtle questions

are explored in searching -- and often daring -- ways. What should

2

3

f t
4')
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be? What are the logical constraints on the possible ways we

might define the product of two positive rational numbers?

Which attributes of positive integer multiplication are we most

eager to preserve, when we extend the system to the positive

rationals? Which meanings do we want to preserve?

D. It could be argued that we are introducing complexities that are

inappropriate to the cognitive level of students who are 8, 10,

12, 14, or so years old. Such a claim would be false. There

are great differences among students, and some students seem never

to reach a condition of serious intellectual curiosity about subtle

matters. But many students do. The fact is well established,

for example by the collection of filmed and video-taped lessons

accumulated by David Page's Arithmetic Pro ect, and by our

own Madison Project. These films show actual unrehearsed typical

"exploration" lessons, wherein a teacher works with a group of

students -- perhaps as young as 8-year-olds in the exploration

of some mathematical topic, such as the concept of function, or

the "square-brackets" function [x], or the concept of isomorphism,

or the system of 2-by-2 matrices, or area for shapes on a geoboard,

etc. The students are themselves the leaders in these explorations,

and the films document clearly how successful the students are,

and the quite evident gratification that many students derive

from these explorations.

Two decades of "new mathematics" experimentation have left

many questions unanswered -- including the basic questions of

"What mathematics do we want children to learn?" and "In what

sense do we want them to 'know' it?" -- but it can no longer be_
argued that the process of mathematical inquiry is beyond the

cognitive capability, or interest, of 8, 10, or 12-year-old

children. Too many films exist that refute any such assertion.

E. It could also be argued that the inappropriateness of rote

teaching of mathematics has been widely accepted within the
I
r. 1
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professional literature, at least for several decades. In support

of such a claim one could cite Brownell (1945), or Brownell and Sims

(1946), or Byers and Herscovics (1977), or a 1940 experiment carried

out by Katonah and analyzed by Osgood (1953), or a famous experiment

by Bransford and Johnson (1972), among others. Unfortunately, this

argument lacks force, for at least two reasons: first, one can also

find abundant evidence in the literature that the rote teaching

of mathematics has often been accepted as the standard way of

doing business; second, no matter what "the literature" shows, direct

observation of classrooms indicates that rote teaching is very

commonplace in the real world of schools.

F. It could also be argued that many teachers, and many text-

books, do attempt to present mathematics in one or another way

that might be called "meaningful." This is clearly true. It is

also true that only a small percent of all teachers are involved

in such activity -- random selection of classrooms for observation

usually fails to turn up any of them, though by good detective

work one can find a few such classrooms.

G. Rote teaching of mathematics has been defended on the grounds

that it fills an important economic and sociological need -- or

did so during the recent past. A few decades ago, this argumene

runs, industrial societies needed schools primarily as institutions

to provide safe, economical custodial care for children. Secondarily,

for a sizeable number of students the future held routine work on

an as. mbly line or in an office, where enduring boredom would be

important, but originality and creativity would not be. Finally,

there was also a need for a quite small percentage of students to

master mathematics and physical science profoundly, so as to be
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able to make important original contributions.

The rote school met these needs ideally. Routine drill and

practice provides the cheapest kind of custodial care available, with

minimum demands an specialized teacher'a expertisef so that

substitute teachers can fill in at any time, on a moment's notice.

For 90% (or so) of the students, this was exactly what was desired.

For routine assembly line work, or routine office work, a little

rote knowledge of arithmetic filled the bill very neatly.

Finally, despite the appalling dullness of the rote curriculum,

a few students would nonetheless see through what was taught,

glimpse the possibilities of what can really be done with mathe-

matical models of this universe (or of other universes), and become

mathematicians, scientists, or engineers. Again, the program

would produce just the desired mix of levels of adult performance.

Only a few good scientists or engineers were needed.

When the rote curriculum is presented in such a light, it

often seems that the writer cannot possibly be serious. There

should be no mistake about this. Some writers who see the curriculum

this way are entirely serious about their analysis.

The implications should be clear. The meaningless rote

curriculum does not come close to matching the socio-economic

mix that is needed in the United States today. At this moment,

air traffic has been reduced to 80% of earlier levels because of

an inability to train enough air traffic controllers quickly

enough. Naval vessels have navigational problems (and collisions)

that are actually educational problems in the ineffective teaching

of vectors to navigational officers. The growth of high-technology

industry is being impeded by a shortage of engineers and computer

scientists. Japan has become the world's largest producer of

automobiles (and may take over computers), thanks to a combination

of non-routine work settings, superior education, and a suitable

base of personal cultural values. In the U. S., unemployment among

rLJ
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some sectors has reached the highest levels since the Great

Depression. If the rote-curriculum school matched the socio-

economic needs of an earlier United States, it clearly fails --

catastrophically -- to meet the needs of the nation today.

H. One last remark on background: This study had a strikingly

"practical" origin. The University of Illinois group were involved

in the creation of computer-assisted instruction ("CAI") course-

ware, designed to help students learn mathematics in grades 4,

5, and 6. They used task-based interviews, and a study of the

literature, to identify weak spots in typical student knowledge

or performance, and then lessons were created to meet these very

specific needs. For example, in response to Erlwanger's

evidence that many students had no adequate idea of the size of

the numbers they were working with, Sharon Dugdale and David

Kibbey created several CAI lessons dealing specifically with size.

One of these lessons was Darts; the terminal's panel displays a

picture similar to Figure 1. (The location of the balloons is

determined by random numbers, and hence cannot be predicted, nor

memorized.) By typing in numbers, the student causes darts to

appear at the left of the screen (at the height named by the

student's input), to move across the screen from left to right,

to thud into the "wall" at the right, and (possibly) to burst

a balloon (if the input number matched a balloon's location).

Darts has proved extremely popular with students. The student

is left with a number of significant choices in how to burst the

balloons. One fifth grade girl, A.C., was observed to apparently

waste her first dart, after which every dart burst a balloon.

More careful observation revealed that A. C. did not "waste"

her first shot -- she used it to get a unit for measuring length!

She would type in a number small enough to give her a unit for

use in measuring the locations of all of the balloons; thus she
1

might type in (say)
'

then use her fingers to "measure" with
10

1
the interval (0, ---) so as to locate, precisely, all of the balloons.

10
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Figure 1 shows that 2 darts have been thrown
across the screen: one (following the
student's directions) has thudded into the
"wall" at 1/2, thereby missing; a second dart,

thrown at 1/3, has also missed.
By typing 1/4 at the "arrow" (Lower

Left Corner), the student is telling the
computer to throw the next dart at 1/4.
The computer will carry out this action as
soon as the student presses the "NEXT" kov.
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Another strategy is to come as close to a balloon as possible,

by a "good guess," then correct the height by a systematic correction

strategy -- the lesson even allows a student to type in, say,

5
1 7 ,

5 1
then l 7 - -8

'

L. 1 1
then 1 := - - -

10
--

7 8

The lessons produced in this way are known to be successful

(Swinton et al., 1978; Davis, Jockusch, and McKnight, 1978), capable

of producing important learning gains in students, both in

algorithmic performance and in conceptual understanding.

This is the kind of curriculum which we believe is needed.

But this belief is not widespread. It is clear that the rote-

arithmetic curriculum can be presented, in routine format, by

computer CAI lessens, at very little cost in money and effort.

Given that possibility, it seems next to certain that the rote

curriculum will soon be abundantly available in the form of CAI

courseware. Will this amount to an educational program, or to

a "classroom pacification program"? We have come to see this as a

genuinely urgent question.
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IV. Urgency!

One last remark, while standing "outside" of our scientific study itself.

The word "urgency" in the previous paragraph does not strike us as excessive.

We see the U. S. confronted with an educational system designed and able

to teach sterile "facts," but NOT able to teach meanings, nor analytic

processes. Given drill-oriented workbooks and drill-oriented computer

CAI lessons (or games), this limitation may become more securely built-in

in the years ahead.

Wt. do NOT see this problem receiving the attention it urgently

deserves.

The resulting failures and dislocations can be at least as bad as

our national failure to build automobiles for the years ahead, that devastated

the U. S. auto industry in the late 70's and early 80's.

There may well be many reasons still operating to force us, as a

nation, to rely so heavily on rote teaching -- excessive class size may

be one --but the probable ultimate cost can be horrendous. We must try

to analyze this problem from many points of view -- and we must be

determined to do something about it!

V. Different Ways of "Understanding"

Readers have probably already seen, in our earlier examples, that

speaking of "understanding" vs. "not understanding" is an unacceptable

over-simplification. Instead, one clearly needs to distinguish alternative

ways of understanding. We illustrate this with some observations of

eleventh grade high school students who were studying calculus, dealing

with applications of the definite integral. (Chapter 6 in Anton, 1980). Two

classes (16 students in one, 11 in the other), and two teachers, were

involved. (Since both teachers were in substantial agreement concerning

the forms of understanding that needed to be developed, we report on only

one of them.)

L:3
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A. Calculating the Work Done in Compressing a Spring

The calculation of the work done in compressing a spring is

one of the most standard of calculus problems. Three quite different

ways to .understand this process-were revealed from observing these

classes:

1. The "Pretend the Force is Constant" Method.

The basic difficulty is this: if the force is constant,

the work is computed merely by multiplying force times

distance:

W = F x D.

Calculus is needed, in the spring problem (and elsewhere)

because the force is not constant. Instead, the force

depends upon the amount of compression, according to Hooke's

Law.

The teacher presented a method for dealing with the non-

constant force, as follows:

i) If the force were constant, we'd have no

difficulty;

...but the force depends upon the distance

x we have compressed the spring;

...well, if the distance x didn't change

much, the force wouldn't change much...

iv) ...so, arranging things so that x does NOT

change much -- just compress the spring a

small amount, dx

v) and, since the force F will not change much

during this small compression (through a

distance dx), pretend that the force doesn't

change at all. Then one can write

dW = F dx

vi) Of course, in doing this, we have made an
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error. But we can get estimates on these

errors, and we can show that the total error

E
n
will go to zero when the size of dx goes

to zero. (If the total distance the spring is

compressed is R, then divide R up into n

equal intervals, so that

dx =
n

One then finds that

En = 0(1 77) . )

vii) By taking the limit when n 0 Do ,

our total error goes to zero, and the summation

becomes an integral

W =

.)(1

R

F(x)dx. (1)

2. Define It This Way.

The textbook presents a different analysis of the situation

(on page 384), giving equation (1) as the definition of work.

These two approaches represent quite different ways of

understanding how work is to be computed. In particular, the

"pretend-it's-constant-and-keep-track-of-the-resulting-errors"

method has the disadvantage that the language is often confusing,

at first, to beginning students, but the advantage that it

gives the student a principle that is applicable to many other

kinds of problems -- for example, one can compute the force

on a non-horizontal bottom of a swimming pool by arguing as

follows:
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(i) If pressure were constant, one would find the

force by merely multiplying pressure times area,

F = p.a

(ii) But the pressure is NOT constant; in fact,

the pressure depends upon the depth.

(iii) Therefore, we want to break our one "big"

problem into n "little" problems, arranged so

that the pressure (or depth) is constant (or

nearly so) over any single one of the "little"

problems;

(iv) ...but this tells us how to arrange the n

"little" problems: take narrow strips of the

bottom that are all at (nearly) the same depth.

(v) For the rest, proceed as with the spring com-

pression problem.

3. Use the Intermediate Value Theorem.

A third way to understand the work-done-when-a-spring-is-

compressed problem is to observe that the force, F, is a

monotonically (indeed, linearly) increasing function of

the compression distance, x. Using, for each sub-interval,

the smallest value of x will thus produce an approximation for

F which is too small; using the opposite end-point of each x

sub-interval would produce an approximation which is too large.

Thus, by the Intermediate Value Theorem (Anton, p. 185), there

is a value x
k
*in each interval (x

k'
x
k + 1

) such that

F (x
k
*) (x

k + 1
- x

k
) gives a correct value of the work AW

k'

with the error equal to zero. But, by the definition of the

Riemann integral,

Al.
1 im F (xk ) (xk - xk )

n -10 k = 0



-24-

is precisely

fRF(x) dx.

0

These constitute three quite different ways to "understand"

the computation of the work done when a spring is compressed.

4. Multiple Understandings -- "All of the Above."

The existence of three different ways to understand work

automatically implies at least a fourth: one can "understand"

all of the others, and see them as legitimate alternatives

indeed, see how they relate to one another, see their various

advantages and disadvantages.

Seeing several possible understandings is significantly

different from seeing only one, no matter which that one may be.

B. Using Formulas vs. "Cans of Tomato Soup".

One can argue that the matters referred to in A, above, are

somewhat exotic, and lie at the outer limits of most student's

cognitive awareness. The distinction we consider here, however, was

well within the thinking of these eleventh-graders.

The textbook deals with volumes of solids of revolution by

presenting a few basic formulas, such as

[Anton, p. 362)

and

V

b

iff

= 17- [f(x))
2

dx

a

V

o)(
= 77° [11(Y)]

2
dY,

c

0.
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Initially, nearly all students in both classes dealt with such

problems by merely substituting into these formulas. Both teachers,

independently, decided that this was a poor way to deal with such

problems, and sought to get students to realize that one did NOT

need to memorize (or use) these formulas. Instead, one could think

of a small volume, dV, shaped like a cylinder with a very small

height. Both teachers spent considerable time trying to ensure that

students overcame the probable limitations on what they think of as

"cylinders." A can of tomato soup, a Necco wafer, and a dime are

(neglecting minor variations such as flanges, milling writing,

etc.) all cylinders. In a mathematical sense, a dime is the same

shape as a can of tomato soup. To be sure, for the soup the

radius may be 1.5 inches, or so, and the height may be 4 or 5

inches, or thereabouts, whereas for the dime the radius is perhaps

1
cm., and the heipht (or thickness) is perhaps 1.5 mm. -- but,

2

ornamentation and details aside, both cans and dimes are cylinders.

For any cylinder -- even one with very small "height" (i.e.,

thickness) -- the volume is

V = frr2 h ,

the area of a face, times the height.

Some students had trouble at first seeing a circular disc,

cut from a sheet of paper, as a "cylinder" -- the "height" (thickness)

seemed too small to qualify -- but once this was accepted, it became

possible to write

dV = irr
2
dx,

to identify "r" and "x" (or "y") in any particular problem, and

thence to find the volume by integration.

The contrast, then, was between a first method:

(1) substituting into formulas such as

V =f [f(x)]2 dx

vs. an alternative method:

a
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(ii) computing dV by recognizing the small "slice"

in question as a cylinder (or as some other well-

known simple shape).

Both teachers advised students to use the second method, tried

to make this easier by emphasizing the true shapes (as "cylinders",

etc.) of the various tiny slices, and enforced this choice by

'putting on tests problems for which the textbook did NOT give

formulas.

Summary: one thus sees two quite different ways of "understanding"

the methods of finding certain volumes by integration. (The teachers

were consistent, both here and in the "work" problems discussed

earlier, in trying to make intuitive sense out of separate "little

pieces," such as

and

W = F xk
k k K

dV = fr r 2 dx.

[One could quarrel over whether this is better written as

11 AV" and "ax."])

C. Arc-length vs. area.

The multiplicity of different ways of "understanding" becomes

considerably greater when one considers arc-length [Anton, p.374ff].

Again, one way to deal with such problems was to use the formula

L + [C(x)]
2

dx

a

(Anton, p.375).

Both teachers were again consistent, and discouraged this. The

ri
ow rJ
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"understanding" whiph one teacher sought to build in students'

minds was roughly as follows:

(i) It is important to notice how arc-length differs

from area. In dealing with area, we used

inscribed rectangles,

and thus were faced with a "stair-shaped"

approximation to the smooth curve y = f(x);

(ii) For each rectangle, the error is a small somewhat

"triangular" error that is easily shown to be

1 1
0 (--- ). The sum of such errors is thus 0(--),

n
2 n

and becomes small when n becomes large.

(iii) Notice that it would NOT be enough to show that

the errors for individual "stair-

n i I
a/ Li

steps" goes to
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zero, because so does the area of the rectangle

itself. On every hand, we are dealing with a very

large number of lery tiny numbers. But the total

error goes to zero, whereas the sum of the areas

of the rectangles approaches the correct value

for the area under the curve.

(iv) Now, arc-length behaves very differently. The

teacher demonstrated this by using a "discovery"

of a twelve-year-old student at the school.

Consider the distance from (0,0) to (1,1).

Clearly, this is 48.2". 1.414. But suppose

you go from (0,0) to (1,0), and thence to (1,1).

The distance is now 2. Suppose you modify the

path like this:

change

to be

then change it again, to get

31.
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and so on. You can "get very close to" the

straight-line path from (0,0) to (1,1); but

at every step, the "stair-way" path has length

exactly two. "Taking smaller sub-problems"

isn't decreasing the error at all!

(v) Something quite different is required. Indeed,

one needs to use the hypotenuse of a tiny right

triangle

zx

)

and to use the familiar result that

ds
2
= dx

2
+ dy

2
.

(vi) The teachers wanted students to see how to use

this idea to find arc-length if one is given

y = f(x),

or if one is given

x = g(j),

or if one is given both x and y as functions of

a parameter (say, t):
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x = f (0
1

Y f2(t).

(vii) The teacher also wanted students to see that

this kind of understanding led to greater

flexibility. For example, given this, with some

careful thought the students could find the arc-

length of a helical spring:

x = sin G

y = cos G

z = G ,

since they could work out for themselves the

relationship

ds
2
= dx

2
+ dy

2
+ dz

2
,

by repeated applications of the Theorem of

Pythagoras.

(viii) From earlier work on limits, the teacher wanted

the students to master at least three views of the

limit process:

(a) An "algebraic" or "algorithmic" view,

obtaining formulas such as the algebraic

estimate on the sum of the errors;

(b) Some notion -- not yet formalized -- about

"taking the limit" when "n goes to infinity."

[This, of course, became quite a large topic

in its own right.]

(c) A realization that these various symbols really

refer to numerical quantities -- to numbers!

Students considered the effects of sums and

products of "ordinary-sized numbers" [like 1

or 7 or 1/2], "very small numbers" like

r 4 CI
k4 li
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.00032] and "infinitessimals of higher order"

[like (.00032)2 = .0000001021, with emphasis

on sums such as

.00032 + (.00032)
2
= .000320102,

.00000032 + (.00000032)2

= .00000032 + .0000000000001024

= .0000001222221024

Six correct significant figures!

The similarity between this and Marcia's subtraction difficulties

should be obvious. Marcia possessed the ability to represent decimal

numerals as arrays of MAB blocks, and could "trade" MAB blocks correctly.

If she had made use of this knowledge, it should have caused iler to

recognize the error in

5

\6.

Ni, 0-0-2

- 2 5

5, 0 8 7

and should even show her how to correct the error. But this did not

occur. Even after prompting from the interviewer, Marcia claimed not

to see the relevance of MAB blocks to the subtraction problem she was

working on.

Similarly, the calculus students frequently did not see that

1
Total error = 0 (

had anything to do with numbers like

.00000032 + (.00000032)
2
= .0000003200001024,
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that finding volumes from slices had anything to do with the

formula

V = ollsr
2h

for the volume of a cylinder, or that finding arc length had anything

to do with the Theorem of Pythagoras. Both teachers worked

continually to establish these connections in the students' minds.

D. Surface Area vs. Volume.

The three views of limits listed above -- "algebra," "limits,"

and "numbers" -- were extended by the teacher to include a fourth,

when the discussion moved on to three-dimensions. To appreciate

what was done, it is important to notice that what, in two-dimensions,

is arc-len&th will appear, in 3-D, as surface area; and what in 2-D

is area will become, in 3-D, volume. Thus, in 3-D, the presence of

"stair-step" indentations (rather like the sides of Egyptian pyramids)

will not destroy the correctness of the volume calculation, because

the total error caused by the indentations will go to zero as the

step-size goes to zero. For the surface area this will not happen.

(The "diagonal of the square" counterexample still applies, if a

third "z" dimension is added.)

As a fourth way of thinking about these phenomena, the teacher

used physical objects. The calculus book itself provides a typical

example: if the book is lying open on a table, one can feel a

difference between the smoothness of the bottom-of-the-pages side of

the book, vs. the perceptibly-greater roughness of the side-of-the-pages

side.
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)5 5 qr

;5 5,A1:20444r,

This is, again, the "steps-on-the-side-of-an-Egyptian-pyramid"

phenomenon, where the step size is just the thickness of a single

page of paper.

the

The teacher was concerned that the students be able to see how

V =fdV

calculation relates to physical objects and physical situations; hence

he developed four approaches to the definite integral:

(a) an "algebraic" calculational approach;

(b) use of an intuitive theory of limits;

(c) an "arithmetic" view, looking at the comparative size of

some of the numbers;

(d) meanings of dV, dS, etc., in actual physical situations with

actual physical objects.

These represent four different ways of "understanding" the

uses of the definite integral; they thus imply a fifth way: understanding
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all four, and the relationships between them.

E. "Using Formulas" vs. "Cutting Paper Bands"

The earlier distinction of "substituting into formulas" vs.

"recognizing familiar objects" (such as wafer-thin "cylinders")

cf. Section B, above -- appears throughout calculus. In the

case of finding the area of a surface of revolution, one can use

the formula

S = 2 fr f(xrl 1 + [f'(x)]2 dx

or one can recognize a thin circular band. If this band is cut

across its narrowest dimension, and flattened out, it becomes

(except for infinitessimals of a higher order) a rectangular

parallelepiped -- intuitively, "brick-shaped." The dimensions

of this brick -- "height," "length," and "width" -- are now

readily recognizable, so that

d A = 2 'Yr d s,

with r and ds easily determined. [The teacher took pains to make

sure that the students realized that a piece of paper, a pad of

paper, and a brick are all the same shape.]

Again, there are at least two quite different ways to "understand"

this topic.

In fact, all of the calculus examples discussed briefly thusfar

actually involve intricate arrays of details. A more complete

discussion might profitably employ tree diagrams to chart the paths

through alternative forms of "understanding." But our main point

should be clear: with so many, quite different ways of thinking

about mrthematical problems, it is clearly NOT adequate to contrast
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"understanding" with "not understanding." One must go further and

ask: 'In what way, precisely, does this student "understand' this

topic?'

VI. Arithmetic vs. Calculus

The range from arithmetic to calculus may seem extreme, and therefore

perhaps inappropriate for a single study. We realize that some readers

will find it uncongenial, being interested in one end of the range but not

the other. Yet the overall patterns of what it means "to understand" are

strikingly similar at both ends, and everywhere in between.

We acknowledge that "understanding" in calculus reaches into vast

areas of relevant -- even essential -- knowledge. One cannot understand

calculus without understanding limits. One probably should not be said

to "understand" limits unless one has both a formal understanding and

also an intuitive understanding. Neither of these is possible unless one

knows quite a few examples and counter-examples. One must know the topology

of the real line, both formally and intuitively. One must understand

mathematical induction and proof by contradiction. And throughout all

of this, algebraic calculational skill is required in order to fit the

pieces together. One can look more deeply into heuristic problem-solving

skills in.calculus.

This is so large an area that we can report here only on pieces

of this vast territory. But even the pieces are interesting.
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SECTION TWO

VII. What Does It Mean to "Understand"?

Our serious answer to this question is presented in Section Four,

.because it depends upon a conceptualization of thought processes which we

develop in Section Three. In this section we give what might be called some

"naive" answers to this question. In some cases we will build on positive

examples, and in others on negative instances, since either can sometimes

clarify the meaning of "understanding."

A. Sometimes we "understand" because we are able to match a

specific input to something that we can retrieve from memory,

and find

(i) the match is perfect

(ii) the "something" that we retr eyed from memory

leads to associations that answer all of our

present needs.

Example: The equation

e
2t

- 5e
t
+ 6 = 0

is easily dealt with if, first, we retrieve the general quadratic

equation

ax
2
+ b x + c = 0

and its associated "quadratic formula"

-b :1'42 -4ac
x -

2a

and make use of the perfect match

et x

e2t" x2



whence

or

so that

or else

x = 2

x = 3 ,

e
t
= 2

e
t

= 3.
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Now this process is used again: weyetrieve frOm memory some knowledge

about logs and exponentials being inverse functions.

A
r

= s 4=4, LogA s = r.

We again find a perfect match between our input data and our retrieval

from memory

so that

or (similarly)

e t'-* A

t 4-4 r

2 () s

t in 2

5 = ln 3.

The kind of "perfect match" has been elegantly described by Minsky

and Papert (1972), who say that when the key parts of a situation on

a chess board has been matched perfectly to a retrieved piece of

"knowledge" -- say, perhaps, we recognize that a knight is pinned

by a potential queen attack on the king -- "it is almost as if the

pieces involved suddenly changed color." Suddenly we understand what

the knight can, and cannot, do -- and what this implies for the

mobility of other pieces (Davis, 1982-A.) What might previously have

been many tiny pieces of separate input data has been reorganized into

a larger "chunk" (in George Miller's phrase). It is a single thing',

and this single thing is connected to many other items stored in our

memory. A similar view of "meaning" is presented in Hofstadter

(1980).



-38-

This is a useful naive category of "understanding," but it

leaves much that requires further discussion.

B. Sometimes we fail to retrieve something from memory, even though

the item was stored in memory. This is one way in which we can fail

to "understand." An example was given earlier, when Marcia failed to

retrieve key pieces'of knowledge which she did possess.

A failure of understanding, then does not necessarily imply that

there was no knowledge in memory which could have been helpful --

it may be only the retrieval process that has failed.

C. In case A we considered a "perfect match" between input data and

some knowledge representation retrieved from memory. When successful,

this can constitute a powerful kind of "understanding." But it can

fail in any of several ways.

1. In the first place, the retrieved knowledge representation

needs, like Janus, to look in two directions. It must accept

the input data, and in that sense it must look atpor connect with,

the present specific problem. But it must relate also to

knowledge previously stored in memory which is relevant to the

present problem. If this other knowledge is not stored in memory,

or if the retrieved representation fails to connect to it, then

one will "not really understand."

Example: a class of 16 eleventh-graders studying calculus.

In "clock arithmetic" on an American 12-hour clock, "12" is

really a name for the additive identity element, and might

better be called "0". Then one has "divisors of zero" --

e.g., 2 x 6 = 0 (although 2 i 0 and 6 i 0), or 3 x 4 = 0

(although 3 14 0 and 4 14 0). Asked where in high school

mathematics non-existence of divisors of zero (for certain
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number systems) played an important role, the students

could think of no such situation. [A correct answer could be:

in solving polynomial equations by factoring.]

We have found repeatedly that the axiom

A x B = 0 [A = 0
Ne

B = 0] does not seem to be associated

with the algorithms which depend upon it, despite teacher

emphasis to try to achieve such an association (Cf., e.g., Davis,

Jockusch, and McKnight,1973) .

In fact, our earlier example with Marcia is probably an

instance of this same phenomenon: the representation structure

which is "active" at the moment does not connect with other

knowledge which should be seen as relevant.

2. Has the correct representation structure been retrieved from

memory?

"Retrieval-and-matching "frequently fails because the wrong

piece of knowledge has been retrieved.

W.Lth the calculus students we observed, this frequently occurred

in attempts to solve quadratic equations. The students, assuming

that they were dealing with a linear equation, would try to pursue

the strategy of "getting all the x-terms on the left of the equals

sign" (although they often did this incorrectly, as in

96
x - 20 + = 0

In such cases we see a "failure of understanding" that consists

essentially of retrieving the wrong piece of knowledge from

memory, not recognizing the error, and attempting to match the

input data with this wrongly-chosen knowledge representation

structure.

1
We shall say more about "knowledge representation structures," "frames,"
"scripts," etc., in Section Three, below. See also Davis, 1982-B.
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3. Incorrect mapping into a correctly-chosen representation.

Kirsten, an eleventh-grader, was working on this problem:

A triangular plate ABC is submerged in water

with its plane vertical. The side AB, 4 ft. long,

is one foot below the surface, while C is 5 feet

below AB. Find the total force on one face of

the plate.

Kirsten, not following the teacher's recommendation, used

variable names in her diagram to label "end-point" dimensions. The

teacher had recommended drawing variables at intermediate

values

as here, where h is shown more than 1 foot and less than 6 feet,

Kirsten, however, made this diagr-

so that h was shown at its maximum value, 6 feet.

A key step in solving the problem is to get x as a function

of h. For the correct relation, we have, frcm similar triangles,

13
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6 - h

4 5

Kirsten realized that x would be a linear function of h,

and wrote

x = ah + b,

4 4
and concluded that b = 0, and a =

'
so that x

5

The teacher tried to show Kirsten that this meant that x would

increase as h increased, which would imply a geometric configura-

tion generally like

No argument reached Kirsten; she was convinced that everything

she had done was correct.

This insistent belief in the correctness of a wrong solution

has been reported frequently in the literature in recent years

(see, e.g. Rosnick and Clement,1980 ; Davis, 1980-B). It has

to be recognized as one of the most provocative and revealing

phenomena reported in decades. [Cf. also Davis and McKnight

(1980) and Davis (1982-B)].

Kirsten shows this pattern repeatedly, and is sometimes

literally reduced to tears by the intolerable frustration of

"correct" work somehow unaccountably going astray.

Where has Kirsten made errors? Her picture Is essentially

correct, except for showing h at its extreme value, making it

hard to distinguish between the constanL function h(x) = 6 for

all x, as against a variable h that covers the interval [1,6],
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This probably makes it harder for Kirsten to analyze the

variation in x, and in h, and the relationship between them.

Kirsten is also correct in thinking that h is a linear

function of x, and conversely:

ax + bh + c = 0

She is correct in concluding that a change of 5 in h corresponds

to a change of 4 in x. Putting Kirsten's remarkable persistence

into context with other similar studies (including the case of

Marcia), it seems likely that the correctness of much of what she

has done is standing as an obstacle to her seeing that there is an

Lrror in her work. As she checks over her reasoning, it seems to

her that she has retrieved the correct tools from memory (she

has), and that she has mapped the specific present input data

into the appropriate slots in a correct way (she has not!).

Whatever the details of this information processing, this

kind of error is typical of Kirsten. On another occasion, Kirsten

tried to solve this problem:

SLY.Find for x = Jr and y = 3,
dx 12

if

477-7777 - 2 = O.

She was unable to, and finally decided she wanted to watch while

the teacher solved the problem.

The teacher wrote:

43777777

#13--+771xy

3 + tan xy

- 2

= 2

4

= 0 (1)

(2)

(3)
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tan xy = 1 (4)

II(sec
2
xy) (x I + y) = 0 (5)

dx

x -1:-/X + y = 0 (6)
dx

3 36

dx x

12

Here is an excerpt of the discussion at this point:

Kirsten: What happened to the secant squared?

Teacher: Well., the secant squared is never less than

one -- so it's never equal to zero -- so, by the Zero

Product Principle [Stein and Crabill, 1972] , the other

factor must be zero, and that's where I got this equation

(pointing to equation 61...

Kirsten: But where did the secant squared [heavy emphasis]

go? You didn't do anything with the secant squared!

Teacher; Kirsten, suppose I have two numbers, A and B,

and suppose I know that

AB = 0.

What do I know about these numbers?

Kirsten: One of them has to be zero. [K. says this very

quickly, glibly, her manner dismissing this as irrelevant].

I know all of that! But what happened to the secant squared?

[Again, heavy stress on these last two words.] [Note: once

again, Kirsten is close to tears.]

-her: Kirsten, look -- this [sec
2
xy] is a number, and

this [(x SLY- + y)] is a number, and if we multiply these two
dx

numbers together, we know we get zero. Now, this number

4 sii-
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[sec
2
xy] cannot be zero. Therefore, this number

x y
dx

must be zero, and that's what I've written.

Kirsten: But what happened to the secant squared? You've

just dropped the secant squared!

Something has to be going on here. Tvo experienced teachers

interpreted this episode differently. The first thought Kirsten

had retrieved the familiar algorithmic recipe used, say, in

(x 2) (x - 3) = 0

:. Either x - 2 = 0, or else x - 3 = 0.

If x - 2 = 0, then x = 2.

If x - 3 = 0, then x = 3

which we can represent as a tree

(x - 2)(x - 3)= 0

x - 2 = 0 x - 3 = 0

Kirsten followed this algorithmically (much as Marcia did in an

earlier example), and would not interfere with the execution of

an algorithm by allowing the intrusion of other relevant semantic

.1061
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information.

The other teacher thought that Kirsten had mapped this

specific problem correctly into the Zero-Product-Principle decision

tree, but had not developed the meta-language necessary to allow

her to talk about this algorithm. This teacher thought that the

interviewer had made an error in not following out both branches

of the decision tree :

(sec2 xy)(dvx -c-i- + y) = 0

sec2 xy = 0 (x + 6) = 0
dv

dx

impossible

When the interviewer tried to get Kirsten to trim the tree by

deleting one branch, he lost her. She could not carry out this

kind of meta-analysis. Had the interviewer "gone through all the

motions" of following out each branch, perhaps Kirsten would have

"understood."

This suggests the following additional kind of understanding (or

of misunderstanding):

D. Possession of (and Use of) an Adequate Meta-Language

Kirsten, above, is an example. Although she could easily execute

the Zero-Product-Principle algorithm, she was seemingly unable to talk

about it, and could not "understand" what the teacher was saying.

E. Clearly, "understanding" cannot be 100% retrieval of relevant

ideas learned on previous occasions. Such a system could deal with

nothing new -- but people do deal successfully with new inputs, and

4" 3
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do so every day! Thus, "understanding" must, at least in part,

frequently mean the ability to construct a mental representation for

the present input data.

But a given person may not possess the capability of creating

a representation for some specific input data. We shall consider

this in more detail in later sections. For the present, consider

the example of "understanding" the gigantic molecular clouds which

astronomers study:

(i) These clouds are the most massive objects in the galaxy.

(ii) One such cloud may have a mass that is 200,000 times

the mass of the sun.

(iii) Yet these clouds are almost "perfectly empty" space.

Each of these clouds is a more perfect vacuum than any

that has ever been produced on earch (Blitz, 1982).

Do you have a clear picture of what one of these clouds is like?

Mathematically-sophisticated readers may be beginning to create a

reasonable representation in their minds -- if they did not previously

have one -- but less sophisticated readers perhaps cannot do so.

But it gets worse:

(iv) The clouds are very "lumpy" -- within a cloud, the gas

is organized into "clumps" -- within each clump, the

density of the gas is ten times greater than the average

density for the entire cloud.

(v) How large is one such cloud? A typical dimension across

one cloud would be about 45 times as great as the

distance from our sun to the next star nearest to our sun,

but a dimension across one cloud might in some cases be

more than twice that large.

(vi) These large clouds may exert gravitational and tidal

forces on stars, or on star clusters. These forces

may be large enough to disrupt less-stable clusters of

stars. [Quite a feat for an almost-perfect vacuum!]

4
t.i
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(vii) Stars are often created inside a giant cloud, when (in

some complex way) some of the matter comes closer and

closer together. If a star is born inside a giant cloud,

if it moves with a speed of 10 kilometers per second with

respect to the cloud, and if the star lives for three

million years before it "dies" or "self-destructs", it

may still be in that same cloud when it dies! (That

gives some idea of how large these clouds really are...)

Can you represent all of that information adequately in your own

mind? This example is interesting because the separate ideas -- speed,

distance, etc. -- are things we all know. Hence this is NOT a case

where we don't know the usual meanings of the words. What is difficult

is to fit all of the parts together so as to get an adequate and

coherent representation. A major cause of the difficulty lies in the

size of some of the quantities that are involved. We are not, for

cxample, accustomed to thinking of a gas so thin that it is a more perfect

vacuum(!) than any ever created on earth, yet at the same time more

massive than our sun -- indeed, more than 200,000 times more massive

than the sun! But then, we do not often think of distances that are

45 times the distance from the sun to the next nearest stars or possibly

100 times that distance. Such a thin cloud can be so massive, clearly,

because it is so big!

Far more complicated -- and self-contradictory -- examples exist

within high school mathematics, as we shall see below.

"Understanding," then, is sometimes closely related to the ability

to construct a suitable mental representation in your own mind.

For some mysterious reason, relatively little attention seems to

have been paid to the task of taking specific input data and using it

as a basis for the creation of a mental representation of the problem

situation -- yet our observations indicate that, among the students

we have observed, this may be the point where failures are most likely

to occur.

50
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F. Seeing the Story Line.

In fact, the solution of a mathematical problem is very similar to

a chess game. Every step that is taken serves some purpose. One sense

of "understanding," then, is setting appropriate sub-goals, or seeing

the reason why a step is taken.

Within our study, one sub-study consisted of asking 27 eleventh

graders, who were studying calculus, to find

lim

X--)0

sin 7x

sin 3x v

with the requirement that they justify each step of their work by

reference to the known limit

lim

9 ---)0

sin 9
- 1 .

9

What this task amounts to is a shrewd setting of sub-goals, for example:

lim sin 7x lim sin 7x 7x

x-=>0 sin 3x x-100 7x sin 3x

=

=

[which gives us one opportunity to use the known limit]

7 lim sin 7x x

x-100 7x sin 3x

[which reduces clutter]

7 lim sin 7x 3x

-5- x-,0 7x sin 3x

7 7
= 1 6 1 = -5

3

Alternatively, one could set a different sequence of sub-goals,

as in

*- I
ii.4.
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sin 7x
lim sin 7x lim-

sin 3x sin 3x
x-100 x-00

7 lirn

7

3

7

3

sin 7x
7x

sin 3x
3x

sin 7x
7x

sin 3x
3x

Many other possible sequences can be created.

Of the 27 students in our study, only one was able to solve this

problem correctly -- the youngest student in our study, who was 14

years old at the time, and who has consistently been the best mathe-

matician among the students we have been studying.

Of course, all 27 students could easily deal with such problems

AFTER seeing one solved correctly. What we were discussing above was

the ability to tackle this as a novel problem, to set up appropriate

sub-goals, and then to carry out this plan.

G. There is a special case of sub-goals that deserves an explicit

listing. "Understanding" any long proof or calculation seems to be

tnpossible, unless one can break the argument up into sections that are

joined together to make the complete proof or calculation. (Note 1)

H. We have seen (in the case of Marcia and her use of subtraction

algorithms) that "understanding" can also be a matter of "understanding

what you yourself are actually doing."
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I. Understanding the Nature of the Task.

Anne, a nineteen-year-old student at a community college, was

studying Laplace transforms, and came to us asking for help. Her

centl:al difficulty, it became clear, was that she did not understand

the kind of thing she was working on.

The idea of Laplace transforms (cf., e.g. Hildebrand (1949 ),

or Finizio and Ladas (1982 )] is this: one wishes to study functions

f (x) described (say) by an initial valuL problem for a linear

differential equation, such as

eax

y (0) = -1

Instead of dealing in the space S of functions y f(x), where

differentiation and integration are the key processes, one can map

the functions in S into a different collection of functions, L, and

carry out the work in L. Why would one do this? Because the key

operations in L are very simple algebraic operations. The operation

of differentiation in S corresponds to multiplication by_ in the space

L. Integration in S corresponds to division 1.,3y. s in space L.

Readers familiar with the computational uses of logarithms (a

topic now obsoleted by hand-held calculators) will recognize a

very close parallel to the use of logarithms to replace multiplication

problems by addition problems, using

log AB = log A + log B.

(Other examples of using mappings or isomorphisms could be cited, as well.)

Anne did not know of this view of Laplace transforms, and was lost

in a maze of formulas for which she could see no purpose.

5 3
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From compiling a "naive" list of kinds of understandings, and looking

at examples, it became clear that a more explicit use of a more precise

conceptualization of human information processing would be needed if

one were seeking to understand "understanding." We sketch such a

conceptualization in the following Section.

SECTION THREE

For the past 10 years, work has been underway at the Curriculum

Laboratory of the University of Illinois concerned with observing student

and adult behavior in relation to various mathematical tasks, and relating

these observations to postulated knowledge representation structures and

processing mechanisms. This Section reports on a few of these studies. More

complete reports can be found in Davis(1982-A),Young (1982), Davis (1980-8),

and Davis, Jockusch; and McKnight (1978). We shall also draw on work done

elsewhere, which we identify at appropriate points.

VIII. Postulated Structures and Mechanisms.

The postulated structures and mechanisms can be divided into five

categories:

(i) Those concerned with representations for a specific

problem, task, or sltuation;

(ii) Those concerned with storage in memory and retrieval

from memory;

(iii) Those concerned with problem-solving in the sense of

setting up a structure of goals and sub-aoals;

(iv) Algorithms;

(v) Those concerned with making judgments about the

correctness or usefulness of retrievals, goals, and

representations.

We begin with a consideration of re resentations.
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IX. Representations

.1

A. In order to work on a mathematical task, one must represent t1.1

situation in some way. For very simple problems, representation may seem

relatively unimportant, but as soon as a problem assumes even moderate

complexity, representation of the problem situation becomes critical, and

seems, for many students, to pose the most severe challenge to theirability

to deal with the problem.

Consider this example, from a widely-used calculus text:

A rope with a ring in one end is looped over two pegs in a

horizontal line. The free end, after being passed through

the ring, has a weight suspended from it, so that the rope

hangs taut. If the rope slips freely over the pegs and through

the ring, the weight will descend as far as possible. Assume

that the length of the rope is at least four times as great as

the distance between the pegs, and that the configuration of

the rope is symmetric with respect to the line of the vertical

part of the rope. (The symmetry assumption can be justified

on the grounds that the rope and weight will take a rest

position that minimizes the potential energy of the system.)

Find the angle formed at the bottom of the loop.
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Or consider this excerpt from a proof of the extreme-value theorem

(grade eleven calculus in our Lab School):

The proof involves the construction of a collection of closed intervals

= [al, b1], 12 = [a2, b2], . . In = [an, bn], . . ., where each

interval I
n + 1

is either the left or right half of I
n

. The endpoints

of these intervals are determined successively as follows: First

of all, we take al = a and 131 = b. To determine a
n + 1

and b
n + 1

in terms of a
n
and b , we denote by c

n
the mid-point of I

n
[that is,

c
1

= --(a + b )] and we examine the function f over the two closed
n 2 n n

subintervals [a
n

, c
n

] and cn, bn ]. If there is a number x in

[a
n

,

n
] such that f(t) f(x) for all t in [c

n
, b

n
] we let a

n + 1
=

a
n

and bn
+ 1

= cn . Otherwise we let an
+ 1

= cn and bn
+ 1

= bn.

In the second case we note that for each t in [a
n

, c
n

] there is at least

one x in [en, bn] such that f(t) < f(x).
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In either case, you cannot begin serious work on the problem until

after you have created at least a tentative representation for at least

part of the problem situation, and a majority of the students whom we have

observed have been brought to a halt at this point. (Note one important

difference between the two problems: in the first problem, you know enough at

the outset to make a drawing that must be reasonably close to correct; in

the second, the information is so general that it does not determine, in

detail, what the result will look like. Any sketch can, therefore, have

only a "general" or "suggestive" character. A specific instance would

resemble such a sketch in only a general way. It requires some sophis-

tication to work with sketches of this type.) (Note 2.)

"Representations" are not merely something related to geometry. Any

problem of more than trivial complexity requires some sort of representation,

or at least one's performance on many tasks will be improved if one makes an

appropriate representation. We have considered, earlier, the problem

7 , 0 0 2

- 2 5

and we shall consider, below, the problem:

Find f (f(x)), if

1 - x
f (x) 1 + x

Neither of these, as stated, is "geometric" -- but in both cases it turns out

that certain geometric representations seem to be especially powerful.

To avoid misunderstandings, two further clarifications are needed:

1. A representation may be a combination of something written

on paper, something existing in the form of physical objects,

and a carefully constructed arrangement of ideas in one's mind.

Our interest is especially aimed at ideas in one's mind, but some

information will often be stored on paper, if only to reduce the

strain on one's short-term memory. A situation on a chess board

combines physical materials (the board and the chess pieces) with

an elaborate idea in one's head (which, among other things, includes

the rules of chess, and procedures for developing a strategic

plan). Some players can, of course, play "mental chess," without
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using a board. Every aspect of the board situation must then be

carried by some sort of mental representation. Arithmetic commonly

uses notations on paper, but some people can carry out mental

arithmetic, again using only representations that they construct in

their minds.

2. We are concerned with the representation of the situation or data

for a single specific problem. But, of course, underlying the

creation of such a representation is the general ability to build

representations for certain situations. Thus, someone who knows about

derivatives and integrals in calculus can easily construct repre-

sen*.ations where changes, rates of change, and changes in the rate

of change are involved. Without such knowledge, constructing

appropriate representations can be far more difficult, as one

hears daily in political and econamic discussions. For example,

there are reports that "the rate of inflation is slowing down" --

this (usually) does not mean that prices are coming down, but rather

that the percent increase in prices this month will be less than the

percent increase in prices last month. (Question: Does this mean

that the first derivative is positive, but the second derivative is

negative?) In a similar way, there is ambiguity in the phrase

"that clock is fast ". /t may mean that the clock, capable of

keeping correct time, has been set incorrectly, or it may mean that

the clock is defective and the hour hand rotates through 360° in

less than sixty minutes. This is an important ambiguity, which

forcefully hits anyone who tries to mike a correct representation for

the statement. Because most people have not developed much capacity

for creating representations involving rates of change, this ambiguity

usually passes unnoticed.

As a second example, notice how much information can be

conveyed by saying "this value exceeds the mean by more than two

standard deviations" -- but only to a listener who possesses the

ability to construct representations using such concepts as

"distribution," "mean," "standard deviation" and so on!

A person playing "mental chess" must have a representation

for the specific board position in this specific _same at this

specific moment -- and we shall focus attention on what can be



-56-

said about such quite specific representations for the specific

present problem -- but of course one is not unmindful of the

underlying ability to construct such representations.

B. The function

1 - x
f (x) =

1 + x

is weird, but its weirdness may not be immediately apparent. In

fact, if

one can easily solve equation (1) for x, and thus find the

ourprising result

x
1 + y

This function is its own inverse! How can that be?

It may, at first, seem impossible. Most functions

certainly do not behave like that. Consider f(x) = 2x. If

you double a number, you cannot merely double it once more

in order to get back to where you started -- e.g.,

3 6 It 3.

If you square a number, squaring once more won't get you back

to where you started: e.g.,

5-0 25 625 It 5.
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But for this weird function

1 -x

this pattern does work: e.g.,

1
3- , - -2- ......), 3 Voila!

Now ask: are there any other functions that behave

this same way

ce\1 ;ix -P6c):A

? vx P (4x)) 7- A
Even further: can you find a necessar and sufficient

condition for a function to behave this way?

Nearly everyone who successfully deals with these

questions necessarily makes use of one or more representations,

of which the three most important seem to be:

(a) "cycles":

3 "-IP 1 ---> 3, etc.

3 0
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(b) , 'machines" mIth "Inputs" and "outputs":

(c) graphs (Cartesian coordinates)

1

1

1

1

//////

/

/
/ I

/ I// I//
I/
1
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There is an important aspect of an algebraic representation:

If f (x,y) c, then it is NAS that Vx Vy f (x,y)

f (y, x). Thus

1/3
+ y

1/3
x 2

qualifies, and so does

x + y + xy 1

(which is another form of

Notice:

(i) The crucial role that the representations play in any

analysis;

(ii) That certain general representation-creating

capabilities -- such as the ability to graph functions

-- can be crucial;

(iii) The prominent role played by certain "naive" or

"pre-mathematical" representations (or metaphors),

such as the "machine" with an input hopper and an

output spigot.

X. The Special Role of "Pre-Mathematical Assimilation Paradigms."

One of the most persistent themes in ten years of research has been the

prominent role played by certain metaphors that allow one to think of some

mathematical situation as some sort of "simple" or "pre-mathematical"

entity or situation. Thus, one can think of the numeral

7, 312

as an array of a few pieces of wood -- using MAB blocks -- namely:

seven blocks
three flats
one long
two units.

A subtraction 7,002 - 25 can be thought of as an act of trading with these

pieces of wood.
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In our second example, the weird property

f (f(x)) = x

can be thought of in terms of the "machine"

INPUT

OJPUT

These simple, frequently mechanical, metaphors are so prominent that we

call them pre-mathematical assimilation paradigms.

Why are they so useful? Because they come equipped with a large

collection of ancillary processing capabilities. As one example, consider

critics. A critic (in this sense, as used by Herbert Simon and others) is

an information processing procedure, stored in a person's memory, that becomes

activated by certain information inputs, and responds by declaring that

something has gone wrong. Thus, for most readers, the subtraction calcu-

lation

7, 0 0 2

- 2 5
5, 0 8 7

will probably trigger a "size" critic, that will declare an error because

"about seven thousand," minus twenty-five, should not be "about five thousand."

[No third or fourth grader in our study showed any evidence of having this

particular critic included in their repertoirel] A pre-mathematical assim-

ilation paradigm -- such as the MAB block representations, or the "hopper-

and spigot" machine picture -- will, because of its basic familiarity, have

a large array of associated critics. MAB blocks are especially effective,

because when one trades correctly -- e.g., one "flat" is traded for ten

"longs" -- the trade looks correct and feels correct. Physical mass is

conserved, and so is physical volume.

I I

U
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Critics, of course, are not the only cognitive mechanisms that are made

available by simple "pre-mathematical" metaphors. The "hopper-spigot" metaphor

allows us to interpret

f (f (x))

in terms such as this "cartoon-strip" representation:

XI. When Primitive Paradigms Are NOT Available

The value of pre-mathematical assimilation paradigms becomes especially

clear in those eases where no such paradigm is available. A particularly

dramatic instance occurs when infinite sets of points are involved. One

thinks of points as tiny specks of pepper or very little ball bearings --

or, to use one example we've encountered, bees. A long line segment, such

as AB, contains exactly the same number of points as a very short segment,

such as CD. One easily proves this with a few axioms ("Two points determine a

unique line," and "Two lines, if not parallel, intersect in a unique point.")

and with the diagram
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which, properly interpreted, shows that every point R on AB corresponds

to a unique point Q on CD, and vice versa. Students meeting this for the

first time have difficulty, primarily because when one tries to think about

points by using pre-mathematical metaphors more-or-less like ball bearings,

the metaphor cannot be made to match the abstract situation, so incorrect

cognitive apparatus is used again and again. Students try thinking about

"smaller" and "larger" points, or try to "compress" the points more

tightly together. None of these ideas is correct, and each must sooner

or later be discarded.

Consider the spherical "ball"

x
2
+ y

2
+ Z

2
4.: 1,

which is the interior space inside the spherical shell

x
2
+ y

2
+ Z

2
=1.

Compare this with bees (as one student did). Studies of bees show that they

group into a large ball for protection against extreme cold. When the outer

layer of bees become very cold, the bees shift positions; the cold bees move

into the interior of the ball, and a new group of bees take their turn in the

outside layer. Now, for x
2
+ y

2
+ Z

2
411C 1, which points (x,y, Z) lie on the

"outside"? Answer: none of them! Every point is protected by other points

nearer to the boundary -- and these other points are themselves protected

by still other points still nearer to the boundary -- and ... the process

continues forever!

If such a configuration as

/(x,y,2)(x
y2 02

2

could exist as a physical entity, and if it were visible, and if points were

opaque like tiny black marbles, what would you see if you looked at it?

Although there were before your eyes a thoroughly dense packing of infinitely

many points (uncountably many!), and even if every point could reflect light

and was opaque, you could not see ANY points! Every point would be shielded

from view by some other point that blocked your line of sight -- and you

couldn't see the "blocking" points, either, because the view to them would

be blocked by even nearer points . . . and so on!
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XII. Your_i22Anramids

A particularly interesting study of cognitive representations has been

carried out by Stephen Young, inspired by a much-publicized wrong answer on

an ETS test.

Consider, first, the general proposition. It frequently happens that

one person will be able to answer correctly, and immediately, certain questions

which most people could answer, if at all, only after considerable work. When

the mathematician Hardy told Ramanujan that he had arrived in a taxi with a

number plate that showed an uninteresting number, Ramanujan asked what that

number was. Hardy said it was 1729. Ramanujan imnediately answered that

1729 was not "uninteresting," since it is the smallest positive integer that

can be expressed as a sum of two cubes in two different ways:

1729 = 1728 + 1 = 12
3
+ 1

3

1729 = 1000 + 729 = 10
3
+ 9

3
.

How did Ramunujan arrive at this result?

Similarly, some people can answer immediately that

1

17-

is .707, that 8
3

is 512, and that

, 1 Aro.

In many of these cases, it turns out that the problem is easy if you

represent it correctly. Thus

.° 2
-x

dxje
0

and

1.414
= .707

2
2

8
3 2

10
024

2= (2
3
)
3

=
9 1

2
= 512

dy

t.)
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(4.7..4)
le'l2 2 2._

al e,...,(444%".7-r-e-(x + Y ) dxdy . _ir rdir_4! 2 .

17-

2

which is the square of what was desired.

Norbert Wiener conjectured (and proved) that, if the function f(x) has

an absolutely convergent Fourier series, and if f. 0, then

1

f (x)

has an absolutely convergent Fourier series. Why would anyone conjecture

such a thing? It is NOT at all obvious -- when one thinks in terms of the

usual representations! (How Wiener thought about the problem is not

known.) But subsequent work by the Russian mathematician Gelfond on

normed rings makes possible an alternative representation in which Wiener's

theorem becomes immediately obvious.

Similar remarks could be made about Heaviside's "operator methods"

in differential equations, and about many other parts of mathematics.

Now to the ETS problem . We are to construct two pyramids. Every line

segment we will use has length L (they are all equal in length). Every

face we will use -- with one important exception! -- is an equilateral

triangle (every side has length W. The one exception is a square of side

L. We now construct our two pyramids, one having this square base. If we now

glue these two pyramids together by gluing together two congruent faces, how

many faces will the resulting solid have?

The ETS answer was 7, on the grounds that there had been 9 (4 on one

pyramid, 5 on the other), and 2 had disappeared as a result of gluing.

One student said it was obvious that the correct answer was actually

5, because in two separate cases what had been two distinct faces would become

single faces after gluing.

The question, of course, is whether a certain pair of two faces lie

in the same plane or not. Do they?

All the experts to whom ETS had shown the problem considered it obvious

that the faces did NOT lie in the same plane. If you think hard about the

pyramids, you will probably agree. The angles don't work right -- the faces

will not lie in the same plane.

I
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But in fact the student is correct.

Young set himself the task of proving what might be called a "cognitive

existence theorem" -- of showing that

(0 There does exist a representation in which the

correct answer is immediately obvious;

(ii) This representation is one whi,h a student might

reasonably build up from everyday experiences (if, of

course, one has had the right "everyday experience" -- which,

clearly, most people had not).

Here is Young's representation:

1. Most of us think about the pyramids with each pyramid

sitting on a face, in a stable position. The physical

stability itself guarantees that pyramids will usually

be in this position when we see them.

2. If we think of the pyramids in this stable position, it seems

unlikely that any exposed faces of one pyramid will be

coplanar with any exposed faces of the other pyramid.

3. Indeed, one student gave this "proof" that they are not

coplanar: "The key faces of the 5-sided pyramid are,

in a sense, 'parallel'. The square base makes them

move along, not getting closer to one another, nor

further apart [as you move horizontally].

"But for the all-triangle pyramid, the faces come

together in a point. Therefore, the pairs of faces will

not be coplanar." [The reader should make sure he or she sees

which faces are involved in this discussion. Looking down

from the top, the pyramids are

I
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Suppose face B is glued to face D. The question, then,

is this: Will face C and face G lie in the same plane,

or not? (Similarly for face A and face E.) P is the

point where the student in our study said the "faces [A

and C] come together."

4. Eut tetrahedra do exist in other positions. In particular,

some restaurants serve individual cream containers that are

cardboard tetrahedra. One sometimes seeb these piled up

in disorderly arrays.

5. Without reproducing Young's complete analysis, here is

his key alternative representation:

[The reader needs to try to see these perspective sketches as if

they were really three dimensional.]

We have two parallel horizontal lines (shown in perspective):

a row of souares:



-67-

Each squf!re is of length L along each edge (and, as before,

every line segment we use will be of this same length L).

The midpoint of each square is located:

and at this midpoint a vertical "tent pole" is erected (this "tent

pole" is the only exception to our requirement that each segment

be of length L).

Using segments of length L, we now erect a row of "pup tents",

each square being the base of one tent:

R and S are the tops of two tents. Connect R to S. The segment

RS obviously has length L (note that each end is directly over the

center of one of the two square bases). But this piece we have just

filled in is precisely the tetrahedron in question, as one sees

immediately by noting that it has the correct number of faces (namely,

four), and every edge is of length L!

Now, in this representation, is there any doubt that the two

triangular faces in question
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FACE E

-- face A and face E -- lie in the same plane? Of course not!

Face A was constructed to lie in the same plane as face E! It

has to!

What Young has accomplished is to prove that there does exist a

representation for this problem situation in which the correct

answer is immediately obvious. This representation might be called

the "pup tents in a row" representation.

Notice that:

(i) This representation is simple enough that it can be

constructed "in your head," without requiring the

use of paper;

(ii) It is based upon pre-mathematical paradigms (which

can be stated in terms of "tent poles," "pup tents,"

"single-serving cream containers," etc.);

(iii) It leads immediately to a correct solution.

FACE A

The reader may feel that what is being presented in this paper is a weird

version of mathematics. To be sure, this is NOT mathematics as most people

know it. To the lay person who has not gone much beyond school arithmetic,

mathematics consists of facts and algorithms that you learn by rote memorization.

To the lay person who has had some success with high school algebra and

geometry, a proof should consist of a two-column array of precise statements

and axiomatic justifications. It should NOT deal with mental imagery about

a row of pup-tents!

But notice that the Young representation immediately tells you how to

construct a precise proof if one is called for!

Furthermore, there is a growing body of evidence that those who are "good

at mathematics" do, in fact, think in terms of just the sort of "pictorial"

metaphors that we have been discussing.
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XIII.Basic Conceptualizations

The Greeks - perhaps the true parents of modern science - might have

stared at islands and oceans and mountains for quite a long time, with little

"scientific" result, had they not taken the decisive step of postulating some

entities that made "space" more amenable to effective human thought: specifi-

cally, entities such as points, planes, lines, distances, etc.

A similar approach is a key to the alternative paradigm for the study of

mathematical thought: the postulation of structures and procedures that

represent mathematical knowledge and mathematical information processing.

What should be postulated? Three dualities need to be considered: (i) the

static representation of knowledge vs. the dynamic processing of information;

(ii) "gestalt" or "aggregate" or "chunk" entities vs. sequential procedures;

(iii) storage and retrieval of entitites, vs. the real-time ad hoc const.uction

of representational entities. What each of these dualities means will become

clearer in a few pagos.

Presumably, before postulating things like "points" and "planes", the

Greeks had thought quite a bit about physical space, and about possible

intellectual tools that might make it easier to discuss space. In analyzing

intellectual thought, before postulating comparable mathematical tools one

needs to observe a large number of instances of human mathematical behavior.

Such observations have been carried out (though vastly more are needed), - cf.

e.g., Davis, Jockusch, and McKnight, 1978 - and the consideration of instances

has suggested the postulation of several devices for processing mathematical

information, which now list.

A. Sequential Processes

1. Procedures. By "procedure" we mean an algorithmic, step-by-step

activity, such as the cognitive sequence for adding 11 + 3 by starting with

"eleven", then saying counting words to "count onward" from eleven by counting
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the points of the symbol "3": "twelve" (+3); "thirteen" [ +3]; "fourteen"

f 43J, "So eleven plus three is fourteen."

At least two kinds of procedures exist and produce observably different

behavior.

(1) Visually-moderated sequences have the form of an input (usually

visual) that cues the retrieval (from memory) of a procedure; execution of

the procedure modifies the visual input; the modified visual input cues the

retrieval of a new procedure; and the cycle continues until some process

(possibly completing the solution) triggers termination. A very typical instance

would be long division, being performed by someone who is not the full master

of the algorithm:

A visual cue 21 )7329

triggers the retrieval of ["Uh, yes! How many times
a procedure does 2 go into 7?"]

which produces a new
visual cue (Note 3)

3

21 )7329

which triggers retrieval from ("Oh, yes! Now I multiply
memory of another procedure 3 times 21."]

3

which produces a new visual 21 )7329
input 63

. . and the process continues.

Factoring quadratic polynomials is another example - again, if the

student doing it is not yet the complete master of the topic:

The visua] input

triggers the retrieval of a
procedure

that produces a new visual
input
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which triggers the retrieval
of a procedure that produces

a new visual input

. . and so on.

(ii) Integrated Sequences. With sufficient practice, a visually-moderated

sequence can become independent of visual cues to trigger retrieval of the

smaller component sequences which need to be strung together. Someone who

knows long division well can describe the entire process without dependence

on written cues. (They may, however, require paper as temporary storage for

f aim numerical results.) Sequences which, through sufficient practice, have

become independent of visual cues for program guidance are called integrated

sequences.

2. Aelations Among Procedures. Within computer programming there is an

important relationship among procedures: one procedure, A, may "call upon" or

transfer control to a second procedure, B. When B has completed its assigned

task, it returns control to procedure A. In such a relationship procedure B

is said to be a sub-procedure of procedure A, and A is called the super:-

procedure.

It seems appropriate to postulate a similar relationship among procedures

in the information processing that is part of human mathematical thinking.

Indeed, observational data collected by Erlwanger (1973; 1974) indicate that,

for the 6th grade students observed, errors were entirely in super-procedures

calling for wrongly chosen sub-procedures. The sub-procedures themselves

functioned correctly (cf. Davis, 1977). This, of course, is partly a comment

on the school curriculum; over-learning of antecedent tasks had occurred

satisfactorily, but the new tasks had not yet been mastered. Erlwanger's

evidence from remedial tutoring suggested tile, for most of these 6th graders,

the 5th and 6th grade tasks probably never would be mastered.
or-1 r

4
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As one example, one student answered .3 + .4 . ? with the answer

.3 + .4 .07

The sub-procedure that accepted, as inputs, the numbers 3 and 4, and returned

7, operated correctly; so did the sub-procedure that counted "1 decimal place"

and "1 decimal place" , and returned the format "2 decimal places" (i.e., .07).

Of course, this second sub-procedure should not have been called upon in the

process of solving the given addition problem; it should have been used only

for multiplication.

In cases where a super-procedure called upon the wrong sub-procedure,

Erlwanger's data showed a persistent relationship between the sub-procedure A

(say) that should have been chosen, and the sub-procedure (call it B) that

actually was chosen. Almost without exception, the visual stimuli to elicit

retrieval of A and of B were extremely similar - for example, "3 + 3" vs.

"3 x 3", or

VS.

10

17

10

17

A further pattern has virtually no exceptions: within Erlwanger's data, it is

very nearly always the case that sub-procedure B (which was chosen) is something

that was learned earlier in the school curriculum. In other words, some

recently-encountered new sub-procedure has erroneously been ignored, and its

place has been taken by some more familiar 'old friend'.

An interesting explanation of this phenomenon can be given in terms of

Minsky's theory of K-lines, but the details are complex, and quite beyond the

scope of this article. (Cf. Minsky, 1980.)

B. The General Problem of F Zexibility.

Thinking of offices, bureaucracies, and other human organizations, we all
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have some experience with the limits of flexibility within an organization;

at some point, one reaches the boundary, and office procedure cannot deal

appropriately with some specific instance because that instance lies outside

of the original design for office procedures, and no further provisions for

adaptation have been made.

Clearly, an analogous phenomenon bedevils human thought; one can reach

a point where person A cannot cope, because no explicit procedures learned by

A will suffice, and the creation of a new (and appropriate) procedure lies

outside of A's capability.

To understand this phenomenon, most researchers attempt to postulate

some definite body of procedures and knowledge representation structures

(which we shall temporarily call "the system"), and then to distinguish

"operations within a system" from "operations that involve stepping outside

of the system". This distinction is made with exceptional clarity in Hofstadter,

1930. When a procedure orders up some sub-procedure, all of the activity is

"within the system" (or "within the same level of the system"), rather as if a

carpenter asks a fellow carpenter to hold a board in place while he nails it

there. But clearly there are other kinds of operations that are needed.

A computer, asked to find the phone number of George Washington, first

President of the United States, might call on a "Philadelphia" sub-procedure

to scan the Philadelphia listings, or a "Virginia" sub-procedure to scan

listings for Virginia, or even a "D.C." sub-procedure to scan the D.C. listings.

That sort of thing could go on for a long time, unless there were some informa-

tion-processing operators of a different type that were able to deal with

different aspects of the task - for example, a "plausibility" operator that

could make a historical check, perhaps calling on an "historical" subroutine

that could query when Washington lived, and when the telephone was invented.

.43
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The original "phone directory" procedure, and its "Philadelphia" and "Virginia"

sub-procedures, are on the same level (in this classification), a level that

might be described as "finding the phone numbers". The "plausibility" operator,

and its "historical" subroutine, are on a "higher" level (and on the same

higher level), since they do not perform "phone-number-look-up" tasks, but

"reflect" on the nature of such tasks. (To return to our carpenters, it is

as if there were a "higher level" of operations, carried out by efficiency

experts, architects, economists, etc., who do not cut boards and drive nails,

but who study the process of cutting boards and building houses.)

This is an old issue in artificial intelligence and cognitive science;

very often when a computer performs "stupidly" (as in spending vast resources

in the search for George Washington's phone number), it is because the machine

has been programmed with "task-performing" procedures, but without any higher

level procedures to step back from, as it were, the assembly-line, and to look

at what is going on.

There are various ways to provide for these "higher-level" operators,

including at least these three,(the first of which is NOT actually "higher-level"):

(i) checks may be inserted at the original level - e.g., before looking

up any phone number. The look-up procedure can check dates, locations, and

other reasons for believing that a phone number probably exists (this, of

course, is not a real solution, because there remains the possible involvement

of relevant attributes that have not been provided for in the checking procedure,

as in the case of looking for the phone number of Hans Solo, or Lieutenant Uhuru,

nr KAOS);

(ii) procedures can be created that do not perform tasks on the original

level, but exist on a higher level and operate on lower level procedures (a

mechanism postulated by Skemp (1979) and by Hofstadter (op. cit.) and others.)



-75-

(iii) operations can take place in two separate areas: a "task-

performance space" and a separate and distinct "planning space" ( a solution

implied by Simon, Minsky, Papert, and others).

All three solutions are possible for computers, although the second is,

for computers, usually the most difficult; presumably all three are possible

also for humans (who appear to make extensive use of the second method, which

is one of the ways humans differ from today's computer programs.) It conse-

quently seems desirable to postulate all three possibilities. We deal with

the first method here (since it is really on the lowest, or "task-performing",

level), and also postulate some mechanisms to provide for the second method.

We defer discussion of the third method until later, when we deal with

heuristics and planning.

1. Critics. A "critic" is an information-processing operator that is

capable of detecting certain kinds of errors.

Example 1. A beginning calculus student wrote:

y = sec x
2

dy = (sec x2)(tan x2) 2x

The teacher instantly recognized that there MUST be some error here, because

a differential dy could not be equal to an expression which did not involve

differentials. The teacher's collection of information processors included

a critic which was not contained in the student's collection.

Example 2. We :Jaw earlier Marcia's error in subtracting

7,002
-25

5,087

Clearly, Marcia lacked "critics." By contrast, most adults possess a critic,

related to the size of numbers, that should come into play here. After all, if

I have about seven thousand dollars, and I spend twenty-five dollars, I should

NOT end up with about five thousand dollars. hSometta±srmls! The third-

grade student, however, believe her work to be correct.

Wfbi
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One particular kind of information-processing arrangement, the so-called

production system, provides an epecially straiEht-forward method for dealing

with critics. For a discussion of "productior 3ystems", refer to Newell and

Simon (1972), or Davis and King (1977).

In both of the preceding examples we see differences in mathematical

behavior that would be attributed to the presence, or absence, of certain

specific critics.

2. Operations on Procedures. It is commonly postulated that a memory

record is kept of procedures that have been used (Winograd, 1971; Davis,

Jockusch, and McKnight, op. cit.; Minsky, 1980). It is also usually postulated

that there are procedures which use the sequence of active ("Zower-Zevel")

procedures as their input, and which output modifications of either the

collection of lower level procedures, or else the control structure. John

Seely Brown, for example, postulates a higher level operator that recognizes

when the operational sequence is in a loop, and which intervenes in the control

structure so as to terminate the loop. Other higher-level operators that have

been postulated include a "look-ahead" operator that, with repetition, makes

possible the prediction of which operator (or which input data) will be

encountered next (Davis, Jockusch, and McKnight, op. cit.), and a "recognition"

operator that can detect repetitions (idem). There is also evidence for a

"simulate a run and observe" operator, as when a student, confronted with

can "run through" in his head the algorithm for the long division of integers,
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31 )6851 ,

"observe mentally" what happens, and thus solve the division-of-polynomials

problem.

3. Metaphor and Isomorphism. Of course, underlying the ability to recognize

the prease parallel between an algorithm for dividing integers and an algorithm

for dividing polynomials, there is something far more fundamental: an ability

to match up input data with some kind of knowledge representation structure

that has been stored in memory. In typical information-processing explanations,

four steps are postulated:

(a) Use of some cues to trigger the retrieval from memory of some specific

knowledge representation structure;

(b) Mapping information from the specific present input into "slots"

or "variables" that exist within the knowledge representation structure;

(c) Making some evaluative judgments on the suitability of the preceding

two steps (and cycling back where necessary);

(d) If the judgement is that steps (a) and (b) have been successful,

then the result is used for the next stage in the information processing.

One could illustrate these four steps as follows: if the task were to

solve the equation

x
2
- 5x + 2 = 0,

then step (a) consists of observing some visual cues in the equation which

cause us to say (in effect): "Aha! It's a quadratic equation!", with the

result that we retrieve from memory the quadratic formula:
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For the equation

ax
2
+ bx + c = 0,

the solutions are given by

x

2a

-b ±4-b2

Step (b) now involves looking at our specific present input - namely,

the equation x
2
- 5x + 2 = 0 - and taking from it certain specific information

to enter into the "slots" or "variables" of our memorized rule. We see that

"1" should be used as a replacement for the variable "a", that "-5" should be

used as the replacement for the variable "b", and that "2" should be used as

the replacement for the variable "c".

Step (c) involves whatever checks we carry out in order to convince

ourselves that this is all correct, after which use of the quadratic formula

(step (d)) easily produces the answers.

In one respect this example is too simple, and might therefore be

misleading. In most examples of human information processing, the "knowledge"

that is involved is more complex, and hence the knowledge representation

structures are more complex. Suppose the content dealt, not with solving simple

equations, but instead with reading and understanding a story about two people

taking a trip of some sort:

Leslie and Dana knew that they had several

hours to travel, so they decided to seize the

opportunity of having lunch.

The "variables" in this case deal not with simple numbers like 1, -5,

and 2, but rather with such matters as: The sex of Leslie and of Dana (either

could, after all, be either male or female); their mode of travel (horseback?

(.00
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bicycles? flying in a commercial airliner? driving a car? ); in what sense

they are "seizing the opportunity" (stopping at an inn? stopping beside the

road at a point where there is a good view? telling the stewardess that they

do want lunch?); and so on.

Nor, by considering Leslie and Dana, have we left the domain of mathematics,

which after all requires us to read words, sentences, paragraphs,equations,

tables, and so on. In every case, however, the basic four-step operation is

usually postulated as a fundamental part of the human information processing;

in this, at least, information-processing theories do not treat reading and

mathematics as being very different. The convenient accident that, within

mathematics, the "slots" in knowledge representation structures may be labeled

as mathematical variables "a", "b", "x", "y", and so on, is merely that: a

convenience, but not an essential difference. (And, of course, a great deal

of mathematical knowledge is stored in memory in other forms that do not make

use of literal variables.)

One is dealing here with one of the most fundame%tal matters in human

information processing. Presumably a successful selection, retrieval, and

matching is what is meant by the word recognize - an instance of remarkable

"folk" insight built into a common English verb. We have referred earlier to

work by Hofstadter and by Minsky and Papert. Hofstadter (op. cit.)

suggests this is what is commonly meant by "meaning", and Minsky and Papert

(1972) remark that, when a situation on a chess board has been analyzed

correctly, and (say) a "pin" has been recognized, it seems almost as if the

pieces in question had suddenly changed color. The small pieces of input

data are suddenly linked up with an important memorized data representation

structure - the small pieces have suddenly become a large "chunk" (in Miller's

phrase). Instead of tiny "meaningless" bits of information, we now have a "chunk"
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to deal with, and it is this "chunk" which gives meaning to this aggregatiot.

These chunks are sometimes called "assimilation paradigms", and the

teaching strategy that consists of first establishing such assimilation

paradigm, (or metaphors), then subsequently exploiting them, is sometimes

called the paradigm teaching strategy (Davis, Jockusch, and McKnight, 1978).

(Note that this educational use of the word "paradigm" is unrelated to Thomas Kuhn's

historical use of this word!) This paradigm teaching strategy is used with

stunning effectiveness by Hofstadter (op. cit.) to teazh adel's theorem and

the theorem that recursively enumerable sets are not necessarily recursive.

For his "assimilation paradigm" metaphors, which he establishes beforehand,

Hofstadter uses drawings and lithographs by M. C. Escher, and some "Lewis

Carroll" style dialogues he created himself. The "paradigm teaching strategy"

for pre-college mathematics is used in Davis (1980-A). In one example, a bag

is partially filled with pebbles. By adding pebbles to the bag, by removing

pebbles from the bag, and by interpreting the result as more pebbles, or

than when one started, it is possible to give a meaningful interpretation of

mathematica] statements such as

4 - 5 =

and

7 - 3 = *4.

(Davis, 1967, pp. 57-61). Thus, the effect of the combined acts of putting

4 pebbles into the bag, snd removing 5 pebbles ftom the bag, is to leave the

bag holding one less pebble than it held beforehand. In the case of the

second equation, the combined acts of putting 7 pebbles into the bag, and

taking 3 out, produce t!.o. net effect of leaving the bag holding 4 more pebbles

than it held before. The mental imagery of "putting pebbles into the bag" and

"taking pebbles out of the bag" serves as a paradigm that guides the process of
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calculation; it is easy to demonstrate that this imagery serves this purpose

considerably better than an explicit set of verbal rules can. (Notice that,

if this "pebbles-in-the-bag" model is used, then the knowledge representation

structure that is created wiAin the student's memory is not like the

quadratic formula, with explicit literal variables, but instead more closely

resembles kind of episode-based memory trace that one ordinarily associates

with reading comprehension, rather than with mathematics.)

We turn now to knowledge representation structures in general.

G. Knowledge fibpresentation. Several arguments establish the need to

postulate, within knowledge representation structures, some fo:m of aggregates

or chunks. One of the most telling arguments is arithmetical: The number of

possibilities that would need to be discriminated if, say, every symbol in a

book were independent of all others, can be estimated as something like

70585000=(706)97500.2500= 101°7

if one assumes 70 possible characters (a,b,c, ...; A,B,C, ...; 0,1,2,3, ...,9;

plys punctuation . - "space"), 65 characters per line, 45 lines per page,

and 200 pages. It is inconceivable that a human could discriminate 10
1072500

different things; and one ge.ts a hint of the difficulty if one imagines a

,00-page book, where every symbol in every line on every page was a decimal

digit, so that the exltire book contained one huge number, 585,000 digits long.

One could not 'read" such a book because the human mind cannot process so much

information.

Clearly, then, a book that contains 585,000 characters does not contain

this much iaformation. Rather, it contains far less because it is highly

redundant. (As one trivial example, a symbol "q" in a word will necessarily

be followed by a "u"; relative_y few capital letters will appear; in the symbol

string

space, t, h, , space
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the blank can only contain "e" or "o", (with a few very rare exceptions).

But our assembling little bits of data into larger chunks goes much

further than this; we normally deal in words, or sentences, or even larger

aggregates - which, incidentally, is what makes proof-reading so difficult:

we see what we are prepared to see, and this may not co!.ncide with what is

actually there.

1. Frames. But even more forceful arguments can be given that

demonstrate that the information in one's mind must typically be organized

into quite large aggregates (cf. Davis and McKnight, 1979; Minsky, 1975).

For some of these larger aggregaLes, Minsky has used the word frame (although

Rumelhart and Ortony use schema, and Schank uses script). A frame, then, is an

abstract formal structure, stored in memory, that somehow encodes and represents

a sizeable amount of knowledge.

A frame differs from a procedure in (among other things) the fact that a

frame is not ordinarily sequential - it allows multiple points of entry, and

provides some flexibility in its use

2. Retrieval and Matching. Consider what needs to occur when an eleventh

grade student is asked to solve the equation

2t t
+ 6 = 5 ee ,

or a calculus student is asked to integrate

dx
err(

The first student presumably knows how to solve

ax
2
+ bx + c =

and the second knows how to integrate

jeu du ,

but each, of course, knows many other things that might be reevant to these
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tasks. In the quadratic equation case, a complicated przess must take place,

leading ultimately to the realization that

matches exactly the pattern

if you write

2t
+ 6 = 5 e

t
e

ax
2
+ bx + c = 0

2t t
- 5 ee + 6 = 0 ,

and make the correspondences

a -4-+ 1

b -4-+ -5

c -4-). 6

e
t

-4.-- x

This matching process succeeds only because the correspondence e
t
++ x

2t 2
necessarily implies the correspondence e -4-4- x , as a result of the addition

law for exponents.

A similar analysis shows what must occur in the case of the integration

problem.

How correct retrieval can occur - and often occur almost instantaneously!

- is a considerable mystery. Minsky's recent "K-Lines" theory may provide an

answer (4insky, 1980), but we do not pursue the fundamental retrieval question

further in this report. (Below, however, we shall consider some heuristics

which students can learn that can improve student performance on retrieval

problems of this general type.)

A "frame", then, is a formal data-representation structure that is stored

in memory, hopefully to be retrieved when needed. This retrieval often occurs

almost instantly. In a well-known experiment, Hinsley, Hayes, and Simon (1977)

found that, for some subjects, merely the first three words ("A river steamer ...")

in the statement of a problem were sufficient to trigger the retrieval of an
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appropriate frame (indicated by the subject interrupting after the third

word, to say something like: "It's going to be one of those river things

with upstream, downstream, and still water. You are going to compare times

upstream and downstream - or, if the time is constant, it will be the distance").

Frames possess considerable internal organization. Especially important

are the variables (or"slots") for which the frame will seek specific values

from input data. When the present input_ does not provide enough information

to permit certain slots to be filled, the frame may insert some tentative

"guess", based on past experience. When slots are filled in this way, we say

they.contain "default evaluations" - data inserted (from past experience) to

make up for gaps in the present input. Thus, in the earlier story about Leslie

and Dana, if we knew they were on horseback, heading for a cattle drive in

the old west, we might assume they were both male - but, of course, we could

be wrong. Default evaluations are not guaranteed:

Default evaluations are important primarily in non-mathematical frames,

where the matching of input data into slots is usually approximate; it is a

peculiarity (,f mathematics to require that every matching mus,',- be complete and

precise!

3. Pointers. Following computer practice, it is usually postulated that

one mechanism by which one data representation structure can be related to

another is the device of pointers; in effect, when a certain structure has been

retrieved from memory and rendered active, and when certain definite conditions

are met, then a pointer causes the retrieval of some other data representation

structure, and/or causes some specific change in control. Pointers can also

be used within a data representation structure to "weld" the whole unit together.

D. Planning Language, Planning Space and Meta-Language. It seems clear

that complicated problems are often dealt with by carrying on two somewhat

separate activities: actual calculations, and the process of planning what

(_)r).../J
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calculations are to be performed and how. To provide for this, it is common

to postulate:

(i) descriptors that identify the possible uses of "action-level"

processors;

(ii) mechanisms for dealing with descriptors (which can include tree

searches, backward-chaining, etc.)

Example: Suppose a student encounters the problem: The plane P passes

through the points A (a, 0, 0), B (0,b,0), and C (0,0,c). Find the distance

from the origin (0,0,0) to the plane P.

Suppose also that this is, for the student, a novel problem, one that is

not already familiar.

Presumably the student has the requisite knowledge to solve the problem,

but this knowledge is scattered among the many techniques that the student

knows. The task, then, is to select the correct techniques, and to relate them

correctly to one another. Hopefully, the student possesses, for example, a

technique that might be described as:

How, given a non-zero vector V, one can find a unit vector

+ +
u that is parallel to V;

and another technique that might be described as:

How, given the equation

ex+fy+gz=k,

to find a vector that is perpendicular to the plane represented

by this equation;

and so on. By sequencing these techniques correctly, the student can solve

the nroblem, even though it is an entirely new problem that the student has

never seen before. (For details, cf. Davis, Jockusch, and McKnight, op. cit.)
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XIV. Applications

How can such conceptualizations, imported from cognitive science or

artificial intelligence, be useful in studying the process of carrying out

mathematical tasks, or learning to do so? We consider here some specific

studies of this type.

A. Some Specific Frames

Can we identify some specific "frames" (i.e., knowledge representation

structures) that most students build up and store in memory? The answer is:

yes. From some general rules about how frames are created, one can deduce

some probable frames; from the existence of certain frames, one can deduce

observable behaviors. One can then check actual student performance protocols,

to see if these behaviors do in fact occur.

1. The Undifferentiated Addition Frame. A common law of frame creation,

used by Feigenbaum and others, is that discrimination procedures are no finer

than they need to be. In the first year of elementary school, children

typically learn (at least at first) only one arithmetic law, namely, addition.

Hence they presumably synthesize a frame that will input 3 and 5 and output 8.

When this frame is invoked, it will demand its two numerical inputs; it will,

however, ignore the operation sign "+" because it has no need to consider this

sign. There being only one arithmetic operation, discrimination among operations

is not necessary.

When, in later months (or years), students encounter, say, 4 x 4, one should

expect the wrong answer "8", and this is by far the most common wrong answer

(cf., e.g., Davis, Jockusch and McKnight, op. cit.).

There is further evidence of the operation of this frame: Friend (1979)

reports the seemingly curious fact that, of the three addition problems,
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(A) (B) (C)

235 235 235

14 45 114

12 42 12 ,

problem (A) is the most difficult for elementary school students in Nicaragua,

whereas, naively,one would expect (A) to be the easiest. After all, problem

(B) involves one additional "carry" from one column to another, and problem (C)

involves one more addition (the "2 + 1" in the left-most column).

In terms of frame operations, however, one would assume that a "column-

addition frame", now being learned and tested, will make repeated sub-procedure

calls on the primary-grade addition frame, which demands two numerical inputs.

When, in problem (A), this demand is frustrated in the left-most column, a

general law postulated by John Seely Brown predicts some intervention in the

control sequence so that the program can be executed (see also Matz, 1980);

this intervention distorts the column-addition pattern so as to obtain the

required second input for the primary-grade addition frame, often by picking

up a numeral from the "tens" column, so as to get the "wrong" answer 361 (taking

"1" from the "12"). (For details, see Friend, op. cit.)

The "'ymmetric Subtraction" Frame.

Consider another arithmetic operation learned in the primary grades:

subtraction. At first, subtraction problems are of the form 5 - 3, but are

never of the form 3 - 5. Hence, once again following the Law of Minimum Necessary

Discriminations, students synthesize a frame that inputs the two numbers "3" and

"5", and outputs "2". The frame ignores order since a consideration of order

has never been important.

In la r years, of course, the student will need to deal with both 7 - 3

and 3 - 7, and will need to discriminate between them. Such discrimination

capability has not been built into the frame (which is why it is called
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"symmetric"). Consequently, in later years certain specific errors are

easily predicted - and are, in fact, precisely what one observes (cf. Davis

and McKnight, 1979).

(In a similar way, many adults are confused between "dividing into

halves" and "dividing by one-half". The most common answer to 6 4- 1/2 is

the wrong answer "3".)

3. A Possible ".hecipe" Frame.

Karplus, in some elegant (and not-yet published) studies of ratio and

proportion, reports protocols such as the following:

In a story presented to the student, there is a boy, John, who is

making lemonade with 3 teaspoonfuls of (sweet) sugar and 9 teaspoonfuls

of (sour) lemon; a girl, Mary, is also making lemonade, but using 5

teaspoonfuls of (sweet) sugar and '3 teaspoonfuls of (sour) lemon.

Appropriate illustrative pictures accompany the story. The interviewer

asks: "Whose lemonade will be sweeter?"

1. Student: Let me see. Mary's would be sweeter.

2. Interviewer: Mary's would be sweeter? Um-hum [thoughtful tone

invites further explanation . . .]

3. Student: Because Mary's has two less lemons in contrast with

this [pointing to pictures], with John's.

4, Interviewer: Actually, she has 4 more.

5. Studcnt: She does? [tone of great surprise]

6. Interviewer: [explaining his preceding remark] Well, she has 13

compared to 9.

7. Student: Yeah, but in relation to the sugars.
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8. Interviewer: Could you explain to me how you figured that she has

2 less in relation to sugar?

9. Student: Well, 0 K There's 3 and 9.

10. Interviewer: Uh-huh.

11. Student: And 3 goes into 9 3 times, and then you go 5 and 13 . .

12. Interviewer: Yes . . .

13. Student: 15 goes into 5 3 times [sic!) ,so it's really too much . .

14. Interviewer: Uh-huh. So it's 2 less. And so if Mary wanted to

make it come out the same sweetness as John's . .

15. Student: It would have to be 15.

16. Interviewer: She'd have to use 15. So, I see she has 2 less. O.K.

This interview excerpt can be split into three sections: utterances

1 through 7 show frame-like behavior,, utterances 8 - 13 show sequential

behavior under frame control, and utterances 14-16 are ti '.erviewer's

attempt to re-state the student's idea in more explicit language.

The student's comparison of the table

John

Mary

Sugar Lemon

3 9

5 13

with a different table which is nowhere in evidence except in her own imagination

is stunning! The.a2ternative table, namely,

Sugar Lemon

John 3 9

Mary 5 15

is so real to her that she at first rejects the ioterviewer's "common sense"

numbers - which AhE the numbers that are actually in evidence - in favor of

her "ideal" table.

(CJ
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This, and other evidence in various Karplus interviews, suggests strongly

that many students have a "recipe" frame, which allows them great facility in

doubling recipes, halving recipes, etc.

4. A ql nits" or "Labels" F rame .

Clement, Kaput, and their colleagues (Clement and Kaput, 1979; Clement and

Rosnick, 1980; Lochhead, 1980) have carried out an important series of

experiments dealing with student responses to this question: "At a certain

university, there are six times as many students as there are professors. Please

write an algebraic version of this statement, using S for the number of students

and P for the number of professors."

The correct answer, of course, is 6P = S; but an exceedingly common wrong

answer, even among engineering students, is 6S = P.

By itself this might mean very little. After all, humans are fallible,

and 6S = P is almost the only wrong answer that any reasonable person would

invent. Furthermore, one could explain the error as a manifestation of internal

information processing that simply follows the time-sequential order (or left-

right order) "there are SIX times as many STUDENTS as there are PROFESSORS" (or

a possible abbreviated version: "SIX STUDENTS for each PROFESSOR").

But the phenomenon is far deeper than this: Clement and his Lo-workers

have varied word order, studied different populations, used different degrees

of "meaningfulness" (after all, there are almost always more students than

professors but how about the ratio of sheep to cows in a certain farm?),

and varied the ratio (e.g., "there are five professors for every two students").

Most importantly they have tape-recorded interviews in which a tutor attempted

to correct the error in students who were writing the wrong equation. No simple

"accidental slip" is involved here, as one sees from four facts:
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(i) Students who are initially wrong protest vigorously against the

change. ("I can't think about it that way!" "You're getting me all mixed up!"

"That's weird!");

(ii) Students who are initially wrong are very reluctant to change, and

if they do change to writing correct equations, they soon slip back to the

wrong versions;

(iii) In order to preserve their wrong equations, students would make

egregious variations in the definition of variables, even concluding that

"S" must stand for the number of professors (sic!) and "P" must stand for the

number of students (or "S" must stand for the number of cows, and "C" must

stand for the number of sheep);

(iv) Students who wrote the wrong equations tended to verbalize the

problem differently from students who wrote the correct equation: students

writing the correct equation tended to say "Six times the number of professors

equals the number of students", whereas students writing the wrong equation

tended to say "There are six students for each professor."

In any situation of very common and very persistent errors of this type,

one who believes in frames will quickly suspect the presence of a frame that

is itself perfectly useful (and in that sense "correct"), but which is being

retrieved when it should not be, and being put to use for a task where it is

not appropriate. The fourth characterization above gives a strong confirmation

of this conjecture, and even indicates what this alternative frame probably is:

it is a frame that has been developed for dealing with units and with labels.

We have all seen "equations" such as:

12 inches = 1 foot

3 feet = 1 yard

5280 feet = 1 mile

2.54 cm. = 1 in.
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and so on. The labels "inches", "foot", "in.", etc., are not variables, and

do not behave like variables. For contrast, let I be Mohammed Ali's height in

inches, and let F be his height in feet. What equation can you write between

I and F? (Cf. Davis, 1980-B.)

B. The "Greater Than" Alation.

Richard J. Shumway, of Ohio State University, has pointed out the discre-

pancy between formal definitions of

a < b ,

vs. what students actually do to decide whether a < b.

For example, one may define: "a < b if and only if there exists a

positive number N such that

a + N = b ."

Now, ask a student which is smaller, 31 or 2,986. What thought processes

will the student employ? Does he start adding numbers to 2,986 to see if he

can get 31 as a result? If he did start such a search, how would he know when

to give up?

a) For positive integers, the first step in deciding probably looks

like this (where 9, (A) denotes the number of digits in the decimal

representation of the integer A, etc.)

If NO, longer symbol string names larger
number.

b) But suppose 9, (A) = 2. (B); what then? Typical students presumably

use some step-wise decision procedure - or else a production system -

roughly equivalent to this:

f 1 rs
vi,j
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If

YES

Are left-most
digits of A and

3 equal?

If

YES

If

NO

If

0

<
cycle
back

Are next
digits equal?

[No digits left
implies numbers
are equal) (Note 4)

If

YES
If

NO

e longer symbol
string names the
larger number

The larger left-most digit
indicates the larber number.

The larger digit indicates
the larger number.

This is all very well for positive integers, but something more is needed

to deal with negative numbers, rational numbers, etc. For example:

(i) Which is larger, -1,239 or -37?

(ii) Which is larger, 0.039 or 1.15?

(iii) Which is larger, 0.0395 or 0.00953?

We do not pursue this example further in this chapter. The main point of

Shumway's example is tnat older analyses in terms of formal definitions or,

cognitively, "having a concept", although these may be valuable for'certain

purposes, are NOT as usef41 for understanding a student's thimki.ng as the

"procedure-and-frame" kind of analysis is. Clearly, a student does not fihd

a positive number to add to 0.039 so as to get 1.15, in order to answer the

ri
ti
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question of whether 1.15 is larger than 0.039.

C. Teper-Level Procedures

It is a well-known fact (cf. Davis, Jockusch, and McKnight, op. cit.)

that students who have learned to solve quadratic equations by factoring

x
2
- 5x + 6 = 0

(x - 3)(x - 2) = 0;

so, either x - 3 = 0,

or else x - 2 = 0;

hence, either x = 3 or else x = 2

tend to make the following mistake:

x
2
- 10x + 21 = 12

(x - 7) (x - 3) = 12;

so either x - 7 = 12 or x - 3 = 13;

therefore, either x = 19 or else x = 15.

This error is very difficult to eradicate - or,at least, very difficult to

eradicate permanently. Even when classes of able students, using a seemingly

excellent textbook, receive careful instruction with emphasis on the special

role of zero in the "zero product principle" - it is still the case that this

error will continue to crop up in student work. Despite careful explanations

of why it is an error, despite short-term elimination of the error, it keeps

coming back.

Matz (1980) presents a theory of cognitive processing that explains the

persistence of this error. She postulates two levels of procedures (stateable

as "rules"). The surfacc level rules are ordinary rules of algebra; the

deeper level rules serve the purpose of creating superficial-level rules,

modifying superficial-level rules, or changing the control structure.

Now one of the deeper level rules must surely generalize over number;

that is, it must say, in effect,
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[P(a), P(b), P(c)]4[V P(x)].

In other words, if I show you how to add

23

+14

37

you will never master arithmetic if you persist in believing that this works

only for 23 and 14. You must believe that this same procedure works also for

Or

34

+15

and so on. In short, in order to learn arithmetic you must possess a deeper

level rule of the type that Matz postulates.

Now, it is a known property of rules that, in their less mature forms,

they tend to be applied too widely; the appropriate constraints on their

applicability have not yet become attached to the rules

The zero product principle,

[A B = 0]14 [(A - 0)V (B 0)], (1)

is very nearly the first law students have encountered where some specific

number (zero) must not be generalized. Predictably, then, the lower-level

II generalizing" rule will be used to extend equation (1) to read

[A B = C]:=0[(A = C)NAB = C)] (2)

Equation (2) would be a correct generalization of equation (1) if generalizing

were appropriate in this case. Unfortunately it is not.

Then this error is hard to eradicate for the same reason that dandelions

are - something is creating "new" dandelions, so even when you eliminate

dandelions, the job is not permanently accomplished. Even when
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you achieve enough remediation that a student ceases - temporarily! - to

commit the error, your work may not be finished, for the student has, in his

own mind, the deeper level rules that are capable of creating anew the

incorrect factoring pattern, in accordance with commonly-accepted laws of

cognitive processes.

John Seely Brown has used this same notion of "deeper level rules" to

explain the observed fact that multiple errors occur in arithmetic problems

more often than ordinary probabilities would predict. Brown postulates that

a first "bug" (i.e., systematic error) may produce a control error (such as

an infinite loop); an "observer" procedure notes this control error, and

intervenes; the intervention takes the form of modifying the control procedure

so as to exit from the infinite loop; but this intervention will itself tend

to create further performance errors. Consequently, multiple errors occur

disproportionately often in student work.

D. Knowledge in Other Form; The Semantic Meaning of Symbols

One who is skillful in the performance of mathematical tasks must be

able to work with mathematical symbols in a relatively "meaningleseway,

guided only by patterns and formal rules, but they must also be able to deal

with the meanings of the symbols - or at least, with some of the meanings of

the symbols. We have seen earlier that third grader Marcia would subtract

7, 0 0 2
- 2 5

incorrectly, following the standard algorithm, but using a version of that

standard algorithm that contains a "bug":
6

14, 0 0
1
2

- 2 5
7 ,

5

.6% 1 1
14, 0 U 2

- 2 5

5, 0 8 7
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In a recent study, Davis and McKnight (1980) used this subtraction

problem as an interview task in order to compare children's algorithmic

knowledge (which could, of course, be rote), with the knowledge which these

same children had concerning tile meaning of the various symbols and operational

steps.

The interviews sought to study each child's possession of five kinds of

knowledge that might be labelled "meaningful". The interest in this question

arises from a question of knowledge representation; the different kinds of

knowledge would require coding into different representational forms.

The five forms of knowledge were as follows:

i) The size of the numbers should immediately signal an error - "about

seven thousand" minus "a few" ought not to turn out to be "about five thousand".

This would be coded in "critic" form. Interview data showed that no third

grader interviewed (from four different schools) had this level of understanding

of approximate sizes of numbers. Since the students did not possess this kind

of understanding, it could not be used to heip identify and correct the error

in the algorithm.

ii) The use of simpler numbers, Perhaps numbers like "seven thousand"

are essentially meaningless to these students; perhaps, then, smaller numbers

would be more meaningful, and might thus allow meaning to guide the algorithm.

This kind of knowledge would be coded as a heuristic strategy. Unfortunately,

since the error in question involves "jumping borrowed one's over zero's", it

is not possible to use truly small and familiar numbers - but one can, at least,

use smaller numbers. For example,

702

-25

No improvement in student performance was achieved by switching to smaller

numbers.
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iii) Adults who regularly use "mental arithmetic" to solve such problems

without writing do not usually do so by visualizing the standard algorithm.

On the contrary, they take advantage of the special properties of specific

numbers. E.g., for 7,002 - 28, one can say: 7,000 - 25 would be 6,975. But

if I subtract 3 more (because 28 = 25 + 3), I will end up with three less, so

7,000 - 28 must be 6,972. But if I now start with two more, I must end up

with two more, so 7,002 - 28 must be 6,974. This kind of knowledge would be

procedural. In interviews, this general method was taught to students.

Results: (a) Those students who learned it well enough to get correct

answers to 7,002 - 28, etc., nonetheless had more confidence in the correctness

of their (wrong) algorithmic answers; (b) students more often attempted to

visualize the usual algorithm - in short, they persisted in unchanged algorithmic

behavior, with only the modification that they attempted to visualize the

algorithm instead of actually writing it down on paper; (c) in no case was

this kind of knowledge used to correct the "bug" in the algorithm.

(iv) "Borrowing", as in

6

,

15
9 2

- 6 2 1

6, 9 7 1

can be interpreted as "giving the cashier a thousand-dollar bill, and

receiving in exchange 10 hundred-dollar bills". This kind of knowledge would

be coded as a frame based on past experience. The interviews revealed that

every third grader could deal correctly with such "cashier transactions" when

they were presented directly (and not by implication, in a subtraction problem) -

that is, if asked "How many hundred-dollar bills could you get in exchange for

a thousand-dollar bill?", every third grader answered such questions correctly.

However, no third grader saw the relevance of this to the subtraction algorithm,
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and none sought to correct the algorithmic error as a result of the discussion

of "cashier exchanges". (The interviewers carefully avoided suggesting how

the two might be related, since it was the goal of the study to see if the

students would spontaneously see the relevance of "cashier exchanges" to the

subtraction algorithm.)

v) Lienes' ftlti-base Arithmetic Blocks.

Dienes' MAB blocks provide a physical embodiment for place-value

numerals, and allow a physical "subtraction" that is precisely analogous to

the subtraction algorithms (cf. Davis and McKnight, 1980). This would also be

coded as a frame. In one school included in this study, students did learn

how to represent 7,002 correctly in terms of MAB blocks ("7 blocks and 2 units"),

and similarly for 28 ("2 longs and 8 units"), and could interpret the task

7,002 - 28 in MAB terms ("you have 7 blocks and 2 units, and you are asked to

give someone 2 longs and 8 units"). Nonetheless, no third grader saw (i) that

this indicated an error in their algorithmic calculation, or (ii) that this MAB

task showed how to correct the error in the algorithmic calculation.

The over-all result was that the students were entirely wedded to an

algorithmic performance of this subtraction task, preferring their algorithmic

answers (even when wrong) to answers obtained in other ways (even when these

answers were in fact correct). Asked to check their answers, they merely

repeated the algorithm. No knowledge of possible meanings of the symbols was

brought to bear on the algorithmic task. None!

It is interesting to compare this result to a persistent theme that

emerges from many studies by Ginsburg, who reports that students commonly

possess important mathematical competences of "non-school" origin which they

do not relate to school tasks. (Cf. Ginsburg, 1977; 1981-B.)
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Implications for Teaching. Does this mean that, say, MAB blocks are no

help in learning algorithms? No, surely not. Many experienced teachers

believe that the MAB blocks can be quite helpful. Furthermore, in general,

mathematically-experienced people frequently report being guided in their

calculations by a knowledge of the meaning of the symbols. Prescmably what

this unexpected outcome does indicate is that the school in question was not

relating MAB blocks to algorithmic calculations, so that, even though the

students were getting a good knowledge of how to set up MAB representations,

they were not using these representations to guide them through the algorithm.

Adults can easily see the students' point of view here: anyone who is

following a very unfamiliar and complicated recipe for the first time may find

themselves checking up primarily by checking through the recipe, one line at a

time, to see if it seems to have been followed correctly - and this is exactly

what the students did. One doesn't "think about the task in other terms"

because one lacks the tools to be able to do so. With experience, all of

this can change, and knowledge of other sorts can be brought to bear on the

task at hand.

How DO "Other Meanings" filate to the Theory? The study of third graders

has been presented primarily in terms of observable behaviors. How would

these phenomena be formulated in theoretical terms?

The algorithmic performance is the easiest to conceptualize - a programmable

hand-held calculator can exhibit this kind of performance, and it is readily

conceptualized as a "procedure" consisting of a sequence of simple "unit" steps.

The knowledge of MAB blocks which the students demonstrated is probably

contained in a collection of procedures, any one of which performs some

specific task - such as trading ten units for one long, or recognizing that

1 u
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"7,396" calls for three flats (and also 7 blocks, 9 longs, and 6 units).

(Of course, this could be in the form of relatively powerful, relatively

general procedures that can deal with, say, any "10-for-1" trading situation,

or it could be in the form of a larger number of more specific procedures,

such as "trading ten longs for one flat".) Because such behavior shows little

of the sequential rigidity of a procedure, it would be classified as "frame-like".

But for the students who had both the "algorithm" procedures and the "MAB"

frame, and who nonetheless failed to relate the two, what was lacking?

There are several possibilities, including at least these:

i) The students may lack pointers in the algorithm procedure that would

invoke the MAB block frame;

ii) The students may lack a goal-oriented control mechanism that would

relate to the MAB blocks frame to establish goals for block exchanges, and

to sequence exchanges so as to achieve these goals;

iii) The students may never have refZected on the MAB frame, and to

discover pattern similarities between the MAB frame and the algorithmic

procedures.

Concepts.

In the 1950's it seemed that mathematicians meant one thing by the word

"concept", while psychologists and educators meant something else. Mathema-

ticians spoke of "the concept of function" (Note 5) or "the concept of limit."

By contrast psychological studies of "concepts" seemed to deal only with

rules for inclusion in a certain class of things. (To be sure, it may appear

that anything whatsoever can be formulated as a class inclusion problem, but

this often distorts the reality so badly as to be positively harmful.)
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Artificial intelligence, cognitive science, or even what is nowadays

called "knowledge engineering", provides a way to express something that is

closer to the mathematician's notion of a "concept". If you have mastered,

say, the concept of "limit of an infinite sequence", you possess adequate

knowledge representation structures of certain specific types, and you

possess an adequate array of pointers to guide certain appropriate associations.

You also possess a collection of useful examples (or the means of creating new

examples), and an ability to relate examples to general statements.

For the concept of "limit of an infinite sequence", you would need at

least knowledge structures representing:

i) the graph of u
1,

u
2'

u
3'

. . . showing u
n

vs. n, with a horizontal line

for the Limit L, a strip representing L - c < un < L + c , and a representation

of the "cut point" N (for n > N);

ii) the interpretation of

Iu
n

- LI <

in terms of the distance from u
n

to L;

iii) an ability to convert between

and

Iun-LI <c

L - c < un < L + c

and the graphical representation (as in(ii), above);

iv) "metaphoric" language, describing e as an "allowed tolerance", and

N as a "cut point";

v) knowledge of the consequences of choosing c first, and N second, vs.

choosing N first, and c second;

vi) metaphoric language to describe (v) intuitively;

vii) even more intuitive formulations, such as: "L is the limit of the

Ilb
4.LJU
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sequence ul, u2, . . . if every term un in the sequence is equal to L - except

that when I say "equal" I will forgive an "allowed error" c, and when I say

"every term" I mean "e*cept for a finite number at the beginning";

viii) the usual c, N definition;

ix) an ability to relate all of the preceding structures;

x) knowledge of how "arbitrarily close" works, or can be used;

xi) knowledge of how indirect proofs are employed, especially by using

(x) above;

xii) knowledge of how (xi) uses the Law of Trichotomy;

xiii) the axiom or theorem that every Cauchy sequence converges;

xiv) a classification of sequences as: monotonic, increasing, non-

decreasing, oscillating, convergent, divergent, bounded, and unbounded;

xv) either a collection of sequences that are examples of the categories

in (xiv), or else an ability to generate examples as needed;

xvi) knowledge of various common errors, and precisely why they are errors.

(E.g., the error of claiming that "the sequence 1,1,1, . . . is not convergent

because the terms are not getting nearer to any number"; the error of claiming

that "the limit of .9, .99, .999, . . . must really be less than one, because the

terms of the sequence are always less than one"; the inadequacy of defining limit

by saying "the limit'is the number that the terms are getting nearer to"; the

error in defining limit by saying "given any e > 0, there must be an integer N

such that there exists a term u
n
, with n > N, and with lu

n LI < e"; the error

in assuming that "the limit of a sequence is either an upper bound for the terms

of the sequence, or else a lower bound.")

The relation between general statements and examples is so important

that it deserves special attention (cf. Rissland, 1978,A, B). Student errors

reveal something of this relationship. One 12th grade calculus student

defined the Limit of a sequence by writing:

1 V 4
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The limit of a sequence is a number that the

terms approach but never reach.

This student had seen, in class, sequences such as

.9, .99, .999, . . .

and
1, 1.4, 1.4,, 1.414,

Even for these sequences, the student's answeris inadequate, but it fails

flagrantly for sequences such as

1, 1, 1,

or
1, 0, 1/2, 0, 1/3, 0, 1/4, . .

Subsequent interviews showed, unsurprisingly, that the student was not bringing

to mind examples of this type to test the suitability of his definition.

The other main error in the student's answer can also be revealed by

testing his statement against appropriate "test case" examples. The first

error, which we have seen, involved his use of the phrase "but never reach",

and is revealed by considering examples of possible sequences. The second

error is revealed by testing his definition against examples of possible

limits. Consider the sequence

.9, .99, .999, . . .

Clearly, the terms of this sequence "approach" - that is, get nearer to - the

number 1, which is what the student had in mind. But the terms also get nearer

to the number 1.01, they get nearer to the number 1.5, they get nearer to the

number 2, and, in fact, they get nearer to the number one million. To be sure,

they never get very near to one million, but .999 is closer to one million

than .9 is !

The relation between known examples and general statements is so important

in mathematics (Rissland, 1978,A,B) that it seems necessary to postulate two

1u3
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information-processing capabilities:

1. Given a general statement, one can retrieve from memory, or

construct, examples by which to test the statement. (The postulate

does not assert how successfully this will be done in any particular

case, only that in principle it is something that c2n be done -

just as humans possess, in general, the ability to move from one

place to another, whereas most plants do not.)

2. Given a collection ol examples stored in memory, one can make

general statements that describe common attributes of these examples.

Mathematical thinking is heavily dependent upon these two capabilities.

When a physicist or mathematician says "I must educate my intuition"

about certain matters, it seems likely that part (at least) of this process

-

means synthesizing data representations of appropriate examples, and establishing

relations among them - as, for instance, when the phenomenon of a returning

space capsule hitting the earth's atmosphere can be better understood by

relating it to skipping flat stones across the surface of a lake. Both are

useful examples - one familiar, and the other not - of the surprising ability

of a solid to glance off of a liquid if its velocity is adjusted in a certain

way.

Xv. Planning SPace.

Va have considered earlier the problem: plane P passes through the three

points A(a,0,0), B(0,b,0), and C(0,0,c). If a, b, c are all non-zero, find

the distance from the plane P to the origin 0(0,0,0).

Tlis problem involves planning only if, as we suppose to be the case,

it is a novel problem which the student has not previously encountered. As a

novel problem, it is rather difficult. We further suppose, of course, that

i=orl
ti .2



-106-

the student has learned the separate techniques (in vector form) needed for

a solution. Thus, the student's real task is to select (and retrieve from

memory) the correct techniques, sequence them correctly, and establish the

proper relations between them.

This task is fairly easy, however, if and only if the student has the

correct descriptors attached to ea.:11 technique, and has developed the

procedures needed for searching among these descriptors. One can think of

this, informally, as if each procedure is a specific tool, and attached to

each tool is a tag that describ.ts what the tool can be used for. Execution)

of course, requires the u3e of the tools themselves, but planning is carried

out merely by reading the "tags" or "labels". One tag, for example, says:

if you haoe a vector V (of any non-zero length), and a unit vectorl, you

can find the component of V in the directionl by computing the "dot product"

or "inner product"

U.

Another tag says: if you have any non-zero vector-t you can get a unit vector

. . . .

u by &tout:mg W by ste length.

Yet another tag says: if you have the equation of a plane P in the prm

a x + by + cz = d,

where a
2
+ b

2
IF c

2
)1.0, you can immediately write down a vector N that is

normal to plane P.

Carrying out such advance planning of how to attack a problem depends upon:

i) knowing the necessary techniques

ii) possessing appropriate descriptors ("tags" or "labels")

for each technique, that specify what the technique can accomplish

iii) (probably) possessing a definite collection of recogirtzable

sub-goal candidates (that is to say, a "menu" of possible sub-

goals from which appropriate sub-goals for a given problem can

be selected) or a way tc synthesize them

/I
-
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ili mechanisms for identifying appropriate sub-goals and

retrieving the appropriate "tags" or "labels"

v) given a "tag" or "label", a mechanism for retrieving its

essee-iated -tool-

vi) mechanisms for assigning correct inputs for each "tool"

or sub-procedure.

It is sometimes assumed that a problem solver has, laid out in his

or her mind, a complete "tree " of possibilities - of all the possibilities,

that is. There seems to be no observational data in support of such an

assumption. On the contrary, people commonly "see" (or "bring to mind")

very few possibilities, and may, indeed, omit the most promising ones. (This

happens, for example, in the puzzle: draw a sequence of connected straight

line segments without lifting pen from paper, so that each dot lies on at

least one of the segments; do this with the smallest possible number of

segments:

a .1

4 a

a 4.
3

The smallest number turns out to be 4, as in this solution,which most people

do not consider.)

)
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The search problem may seem simple, if one unconsciously assumes the

student knows just where to look. But - for the "distance to the plane" problem-

consider all of the things the student could do, such as

i) form the vector A B = (-a, b, o) from the point A (a, o, o) to the

point B (o, b, o);

ii) form seven times the vector A B

-
7 A B = (-7a, 7b, o)

iii) form the cross product

iv) find the unit vector

ABxBC

A B

v) form the triple scalar product

4 -4 ->
(A x 0 C ;

vi) find the distance from point A to point B;

and so on.

The number of possibilities is clearly infinite; but even when the

number of possibilities is finite but large, people do not typically recog-

nize most of them, and may omit some of the most important. What guides

good problem solvers to "grow" the search tree in the most useful directions?

A further example of planning in advance of calculation: Suzuki (1979),

when a student in eleventh grade calculus, decided to solve this problem

by as many different methods as she could devise:

4IL
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The curve C is defined by the equation

5x
2

- 6xy + 5y. = 4.

Find those points on C which are nearest to the origin.

Among the methods Suzuki concocted were:

17-fedognizei-lTat as-the -equation of an ellipse whose axes

are rotated in relation to the coordinate axes; therefore rotate

the coordinate axes to coincide with the axes of the ellipse,

and read off the semi-major and semi-minor axes by inspection;

ii) let 2,
2

= x
2

+ y
2

be the square of the distance from the origin

to the point P(x,y). Minimize 2, 2, subject to the constraint that

the point P must lie on the curve C, by getting a pair of simul-

taneous equations in the differentials dx and dy, and use the

Cramer's rule requirement that the determinant of the coefficients

must be zero;

iii) the vector T = (1, y
1

) is tangent to the curve C; it must be

perpendicular to the vector R = (x, y) from the origin to the

point of tangency; therefore set the dot product equal to zero:

K T = 0;

iv) introduce a mythical "temperature" T% defined as T = 5x
2

6xy + 5y
2

- 4. The gradient T points in the direction in which

T increases most rapidly, and is normal to a curve of constant

-4
temperature. At the nearest point, the vector -VT must point

directly toward the origin, hence be parallel to (and therefore a

scalar multiple of) the vector R = (x, y);

v) convert to polar coordinates, and minimize r.
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The specific planning by which Suzuki created these strategies was

not reported; nonetheless, it seems clear that she possesses a very powerful

capability for planning novel ways of solving problems. (More recently, she

has made excenpnr_shclwings in various problem-solving conXests,)

Yet one more method for solving this same problem has been employed by

Kumar (1980), while a student in twelfth grade calculus: examination shows

that C is a smooth curve contained in an annular ring centered at the origin.

Therefore, a very small 4ircle
mr

x
2
+ y

2
= r

2
,

where r is small, will not intersect C. But as r becomes larger, the circle

will intersect C. Finally, for still larger r, the circle will be outside

the annular ring, and will not intersect C. Hence, find the smallest positive

value of r such that the system of simultaneous equations

5x2 - 6xy + 5y2 = 4

x
2
+ y

2 2
= r

has a solution in real values of x and y. One can set out to solve this system;

if the result is a quadratic equation, the criterion b
2
- 4ac = 0 will

identify the desired value of r.

So much for strategic planning; when this strategy is implemented, the

result is not a quadratic equation, but tether a fourth-degree equation.

With a little ingenuity, a tactical step can be inserted that transforms the

fourth-degree equation to a quadratic, and the problem is then easily solved.

Finally, one can look at planning as it is carried out by more experienced

problem solvers. R, an experienced calculus teacher, was planning a lesson on

writing the equations of tangents and normals to various curves. He attempted

to sketch out his a priori plans, to the extent that he was aware of them :

(Note 6)
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"I thought of two things: (i) distinguish the point

(x,y) [the "general" point that moves along a curve, or tangent

line] from the point (x
1
,y

1
) [the fixed (or "constant") point of

.
tangency]; and (ii) use two geometric criteria to get two

equations - the tangent and curve must intersect at (x1,y1), and

they must have the same sZope at (x1,y1).

"Later on, as I began to think more seriously about the

problem, I wanted to write equations for the pencil of lines

3
through the point P (-

'

0), and to do this I selected the form
2

yl 0

3 3
x - T

xl -2"

"Still later, when I saw C, [another mathematics teacher in

the same school] use the point-slope form of the equation, that

struck me as more natural, and so I switched to using that form."

Notice especially the use of an appropriate and rather well-developed

meta-Zanguage, with terms such as "get two equations", "the 'general' point",

"the fixed point of tangency", "the pencil of lines", "the poitt-slope form

of the equation", "struck me as more natural", and so on. (To gee a remarkably

sophisticated meta-language used by a seventeen-year-old high school student,

cf. Parker, 1980.)

LL ;J
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In addition to mathematical tasks, the study also used certain puzzles,

particularly the "cannibals and missionaries" puzzle, and a word puzzle (start

with "SOUP", and change only one letter at a time, every line being a

legitimate word) to end up with "NUTS").

The heat a the elemeath7gradera_were exceptionally skillful in

(i) setting goals and sub-goals

(ii) using a powerful meta-language to describe and

analyze what they were doing

(iii) making very quick revisions in their strategy when

they got a glimpse of a new possibility, or when

they saw a dead-end looming ahead.

Here are excerpts from a transcript of an interview with Witold, a highly

superior problem solver (who was 15 years old). Witold is so good at mathe-

matics that his performance on mathematical tasks is often hard to learn from --

it all seems so effortless, and happens so quickly. His problem-solving

technique is revealed more clearly in the puzzle protocols.

In the "Cannibals and Missionaries" puzzle, you have three missionaries

and three cannibals on the left bank of a river. They want to cross, and

have a boat that can be rowed by one person, but can hold at most two people.

If at any time, on either bank, the cannibals outnumber the missionaries, a

disaster occurs. Your task is to work out a sequence of non-catastrophic

crossings that will get all six people across the river.

Here is Witold, working on this puzzle, which is entirely new to him:

1. [First of all, he spontaneously and immediately invents a notation

to describe the "state" of the system:

would mean:

on the left bank on the right bank

2 missionaries 1 missionary

1 cannibal 2 cannibals

the boat

2. [Second, he chose to consider (more-or-less) every possible

pattern of crossings, using a tree diagram to help him keep

track.)

f
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3. Here is how he proceeded:

Student: You could do that just by drawing a tree like...OK.

You've got...use Roman numerals to represent missionaries and

nmabers to- represent -eann4bals-9- and your starting position is,

III, 3 and a B for the boat, and then from there you've got,

what did I say? Roman numerals are cannibals?

Interviewer: ...Missionaries.

Student: OK, fine. Roman numerals are missionaries so then you

have 2 options here. That doesn't get anybody eaten and that's

you can either go to having one, three, and two, you see my

notation system here, the line is the river.

Interviewer: OK

Student: Or you could go to...that's what I did there, two, and

then symmetrically you could do the same thing from the other

end, so if you ever hit a symmetrical position, you've got it

made and, OK, but this one you see is a dead end because

somebody has to come back. It's just like what you could have

gotten from over here, so if the cannibal comes back, then these

people get eaten, so again, all this can lead to is stuff you

can get from over here, anyway. So you can forget about that

one. This one could continue. You could either bring everybody

back but that's obviously silly. You're back to where you

started, or, and these trees on a simple problem like this won't

spread out because things keep getting eliminated. So then the

only thing you could go there from here, I guess, is having two

in a boat and a cannibal over there and then from here we only

have one choice. You can send over one cannibal but again that's

putting you back to there. You can send over one missionary which

puts you back to there, so you've gotta send over two. And

sending over both missionaries loses the third missionary, too.

You send over both cannibals and then you've got 3--and that, now

at the point if you can then get--you've got to hit 2 symmetrical

positions, for example, if you hit this and this with the boat

on the other side, which is impossible. Am I making a fool of

117
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myself here? I guess from here the only sensible thing,you could

just keep brute forcing on through. Like from here the only

sensible thing sending both cannibals back across would put

you back up there so from here the only thing that works is,

two, the boat, no, no boat, two, one, three, boat. Now at this

point you can send the canni--if you send anything but 2 missionaries

back, you'll either get something you've been at before or get

somebody eaten, so going back up to there what you have is you've

got one of each over here and then over here you've got two, and

two, and the boat, 'cause anything else would be a repetition

and so on. From there it's almost done. You want me to finish it?

Interviewer: Well, it's clear what you do. Now one of these

is a Roman numeral.

Student: Right.

Interviewer: And so at this point one of each has to go back.

Student: No, wait, sending back one of each. Right, sure it will.

If you send back one of each, then you can follow these steps in

reverse order.

Interviewer: Yeah, right. If you send back one of each, then

two missionaries can now come back next time.

Student: Well, if you send back one of each, you just follow

these in reverse order... Which is just like this except the

sides of the river have been reversed and what you want is this

with the sides of the river reversed so if you reverse all

crossings...

Interviewer: Aha, nifty! Oh wow! That's phenOmenall Oh wow!

4.. J. ,...)
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4. Here is what he wrote as he was saying that:

113
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5. [Notice W's stunning use of meta-language, to describe and

analyze what he's doing -- especially his criterion that if a

n symmetry" can be found, the problem is solved! And his

stating a rule to proceed after a symmetry has been found: reverse

both the time sequence, and the rivern

XVI. Summary.

For most adults in past years, "mathematics" has probably meant memorizing

certain specific techniques, and thereafter recalling them and using them as

necessary. This is probably still true for many people even today. For a

minority of people - including mathematicians, engineers, scientists, computer

specialists, and a growing number of people in the health care field, in

psychology, in education-,-in art, and elsewhere - the use of mathematics

has nowadays a different quality. For these people, mathematics is an

expandable tool for solving novel problems, for which no previously-learned

algorithm will be entirely sufficient. An engineer designing a more fuel-

efficient automobile engine, or a composer using a computer to generate a

new piece of music, is not merely plodding along by stepping in someone else's

footprints. He or she is exploring new territory - and this often means

exploring new mathematical territory, as well. Hence thoughtfulness, the

re-thinking of old assumptions, intelligent guessing, insight, and shrewd

planning are all integral parts of the task.

0 " /1
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Unfortunately, this "creative" aspect of mathematics has typically

been ignored in most school curricula, and the whole idea is foreign to most

of the general public. Something very important thus gets lost. In order to

correct this situation, we must devote more effort in school to teaching the

creative aspects of mathematics, and in our research and development work as

well we need a greater emphasis on creativity, understanding, and problem

solving.

In recent years, an alternative research paradigm has appeared in the

world of mathematics education. This alternative paradigm shows considerable

promise for increasing the emphasis on creativity, vision, understanding,

insight, and the like, while at the same time paying proper attention to rote

drill, routine practice, and "meaningless" algorithmic performance. This

alternative paradigm gets data especially from task-based interviews, but

also uses other data-collection methods, including the analysis of error

patterns, and even the precise measurement of response times. In typical

cases, the analysis of this data is based upon information-processing concep-

tualizations, often drawn from the fields of cognitive science and artificial

intelligence.

This approach is beginning to demonstrate its ability to create a

serious theory for the analysis of those processes of thinking that are

required in dealing with tasks of a mathematical nature.



-118-

It has been a most gratifying aspect of this research project that,

simultaneously with the Project work in Urbana, Illinois, an unprecedented

outpouring of relevant work has been underway, independently, by many

other investigators, especially the Clement-Lochhead group at the University

of Massachusetts, Matz at M.I.T., John Seely Brown and his colleagues at

B.B.N. and at Xerox, Karplus, Stage, and their colleagues at U.C. Berkeley,

the Minsky-Papert group at M.I.T., Roger Schenk and his colleagues at Yale,

Steffe and colleagues at Athens, Georgia, a large group of investigators in

Pittsburgh, a group in San Diego, Kristina Hooper's group at the University

of California at Santa Cruz, Robert Lawler and Andrea DiSessa at M.I.T.,

and by many others elsewhere.

Mathematics education has not often seen such a period of rapid

development, in similar directions, by so large a number of independent

investigators. What is developing is a shared view of mathematics learning

that is quite different from the typical view of, say, the 1950's. This

gives us an entirely different way of thinking about the processes of

mathematical thought. In SECTION FOUR we use this conceptualization

in order to restate the results of this study of "understanding" in

mathematics.

SECTION FOUR

In this section we reinterpret our observational studies in terms of the

information-processing concepts of the preceding section.
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XVII. Information-ProcessinkAspects of "Understanding," or of a

Failure to Understand.

A. Matchin& Input Data to a Structure Retrieved from Memory.

In any case, "understanding" requires the use of a knowledge

representation structure (krs) within the student's mind. This krs

can be retrieved from memory, it can be constructed, or it can be

created by a combination of retrieval and new synthesis.

In the case where retrieval is involved, one would ordinarily be

said to "understand" if all of the following are true:

1. A knowledge representation structure exists in the student's

memory which can adequately represent the present problem

situation;

2. An appropriate krs is selected and retrieved from memory;

3. Specific input data from the present problem is mapped

correctly into the variable slots in the retrieved krs;

4. When the task goes beyond the specific krs, the necessary

additional krs's are activated (this is, in effect, a recursive

return to the first information-processing task).

Thus, the teachers in our study might reasonably be said to under-

stand a task such as:

1.12Find if y = 3x
2
+ 5x - 7.

dx
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Each of the four conditions is easily seen to be satisfied.

For the students this was not necessarily the case. One easily

finds instances where one or more of the folly conditions were not

satisfied -- as, for instance, where associations to the fundamental

definition

f' (x) = lim f (x + h) - f (x)

h--,0 h
(1)

were not activated, or where the further associations connecting (1) to

the slope of a secant were not activated. [This last matter is easily

tested in an interview format by asking the student to give a graphi-

cal interpretation of (1).)

B. Construction of a Representation.

A knowledgeable student possesses many powerful devices for

constructing representations. One of the most important is the use of

Cartesian coordinates, as in explaining the distinction between

x
h

lim 1 log (1 + !17.)
x a

h 0 0

and

1
log e ,

x a

where in the one case a limit is taken along the x-axis, and in the

other case a limit is taken along the y-axis. This example uses

also anothe7 powerful representation device: the sequential order in

which operations are carried out.
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A student. who cannot retrieve a suitable representation, and who

also cannot 'construct One, would not be said to "understand."

C. Representations constructed by a combination of retrieval and

ad hoc construction. This process typically requires a breaking up of

the present problem into several parts or segments, with krs's being

retrieved for individual parts, and "welded together" to represent the

entire problem. (Note 7 ) Being able to identify the key "critical

points" is a measure of the degree of "understanding."

D. Associations.

Clearly, any serious depth of understanding will usually require a

rich network of appropriate associations (i.e., connections to other

krs's). At least four mechanisms have been postulated to account for

associations. (Cf. Davis 1982-B.) They can be summarized briefly as:

1. "Sending" or "pointers": the operative krs may contain

pointers that direct processing to he appropriate further krs;

2. "Volunteering" or "pattern recognition": the products of

intermediate information-processing may be treated much the way

that initial input data is, and be scrutinized for certain

patterns whose appearance will trigger the activation of other

krs's.

3. Boxp of the preceding mechanisms may be combined, as in some

of the work of Gerald deJong;

4. The "library-card" model. Consider the act of going to a

library, examining a particular book, looking to see who has

previously checked it out, and checking it out yourself if certain

other people have previously used it. This can serve as a metaphor

for a mechanism proposed by Schank and Kolodner: since it is

1 r) CJ41. 4.
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widely assumed that what is stored in memory includes a record

of which procedures and representations have been used, one can

use this record to locate likely associations: if some other

process used this same item, examine that process as possibly

relevant to our present task!

E. Recognizing the Over-All General Nature of the Task.

We considered earlier Anne's study of Laplace transforms. Anne

did not recognize the "general nature of the task," which could

be described as follows:

S
2

:

There are two sets of mathematical entities:

S
1

S
2

There is a correspondence between elements of S
1
and elements of

--A

1
S
2

T-1

There are some calculations that are supposed

to be carried out on elements of Sl...

but, instead, we map S1 into S2,

carry out some (different)

calculations on S
2'

and

then map back into Sl.

Note that this description applies equally well both to logarithms

and to Laplace transforms.

If one is unaware cf the general nature of the tasks, and tries

to proceed by following various formulas, one is proceeding by rote

without "understanding" (and one is very likely to fail).

I 11184. 4,
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This is a very interesting phenomenon from an information-

processing perspective. One of the fundamental properties of

information-processing conceptualizations is that information,

and information-processing, can exist on a hierarchy of levels:

what on one level is a process may be looked at, or operated upon,

at a meta-level, where it will be treated as a piece of data. Hence,

just as one can see the pattern that unites

(x - 2)(x - 3) = 0

with

(x - 5)(x - 1) = 0

and with

(s 4- 7)(s 3) = 0

so also one can see that using

log A + log B = log AB

follows the same pattern as using Laplace transforms to solve an

initial value problem for a linear differential equation with constant

coefficients.

The "general nature of the task," then, becomes merely a

matter of pattern-recognition, except that the patterns are now to be

seen from a higher "meta" level. Of course, the experience that a

student needs in order to be able to operate on these higher "meta"

levels is quite different from that which is required for operating

on the lower "factual" levels.

F. Setting Sub-goals; "Following the Story Line."

We have seen that every step in working on a problem is aimed

at achieving some goal or sub-goal. Thus, we derive the quadratic

formula by taking steps such as:

ax
2
+ bx + c 0, a 0 0

1 ra
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x
2 b

x + a 0
a

[The goal of this step

was to make the coefficient

of x
2
one, in order to

simplify the process of

completing the square.]

2 b
+ x - [The goal of this step wasx =

a a
to make it easier to complete

the square.]

2 b b
2

b
2 [Completing the square; the

cx + x + . - .1.

a a goal was to get to an equation
4a

2
4a

2

b
2

4a
2 a'

= 0

1 f.,r3

form that wil]. factor easily.]

[We've finally achieved a form

that factorsn

b\ b2 - 4ac

2al
4a

2
= 0

[The purpose of this last step

was to achieve a form where we

could use the Zero Product

Principle.]
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A major infredient in "understanding" is being able to" follow

the story line" -- to recognize sub-goals, or even to set sub-goals

for oneself.

Notice the parallel between "recognizing the general nature of

the task" and "setting sub-goals" -- both, viewed from a higher

"meta" level, are essentially pattern-recognition tasks.

G. There is the somewhat different category, discussed earlier, of

"knowing what you yourself are doing." This, too, can be restated in

information processing terms, but we do not take the space here to do so.

H. Intuition: The Primitive Foundation Schemas.

What is "mathematical intuition"? 'The emerging view appears to be

that "intuition" is related to the process by which early knowledge

representation structures (or "schemas") become elaborated with

experience. In particular, this elaboration process often starts with

very simple schema, dealing with the kinds of experiences that very

young children have, experiences such as turning one's body, moving a

step forward, putting one object near another, drawing a curved "line,"

etc. An early schema, for example, that relates to giving each child

one cooky, or putting hats on dolls so that each doll gets one hat can,

as one advances in mathematics, become the basis for great elaboration,

getting later to matters such as

door -st
F (s) = f (t) dt ,
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which establishes a mapping between functions, f (t), and their

Laplace transforms, F(s), as in:

f (t) 1111".""1., F (s)

e
-at 1

s + a

sin t

s
2
+ 1

cos t
s2 + 1

a correspondence having much in common with putting hats on dolls so that

each doll gets exactly one hat.

If secure schema exist, and have been carefully elaborated, then

we have an "intuitive" grasp of a mathematical situation. Otherwise

we do not.

I. Schemes Without Antecedents.

As discussed earlier, the importance of extended elaboration of

schemes, starting with very simple initial schemas, is revealed most

strikingly in mathematical situations for which there are no simple

antecedents. Consider the theorem that the number of points on segment

[A, B] is exactly equal to the number of points on segment [A, C]:
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When this theorem was proved to him, Robbie (in grade 12) concluded that

somehow the points on segment [A,B] were being "squashed together

tighter" -- although, of course, there are obvious problems with any

such interpretation. Points simply do not behave like ball bearings, or

buck shot, or moth balls, or rubber pellets, or grains of sand, or

any other physical objects.

Those who study mathematics must, as many of them say, "educate

their intuition." With the advent of space travel, we all needed to

"educate our intuitions" about the effects of air. A moon vehicle,

returning to earth at the wrong angle, would "skip" off the earth's

atmosphere and travel on into space, and as a flat stone can "skip"

across a pond if it is thrown in a special way. But a space capsule --

skipping off of the thin, insubstantial atmosphere? It seems impossible.

That means we must educate our intuitions, and realize if you hit the

earth's atmosphere at a high enough speed, it can be like hitting

water!

The following interesting example was provided by Oliver Selfridge

and Edwina Rissland: we think of a sphere in three-dimensional space

as round and compact. A three-dimensional cube is not quite so round

and compact as a sphere, but it comes close -- it is reasonably round

and compact. Consider, now, a cube in a space of 100 dimensions. Say

the cube has one corner at the origin, and is one unit along each edge.

The cube is then

C = i(x
1

, x
2' '

x
100

) 04 x 1, i = 1, 2,...,100

1 3 4
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Is this 100-D cube also "reasonably round and compact"? By no means!

It must be thought of as sharply pointed, with spear-like projections at

every corner. Why? Consider the distance from the center of any

face to the center of any other face. This distance cannot be more than

1, because one can go to the midpoint of the edge where the faces meet
1

by a journey of T, and traveling via this point one can go from the

center of one face to the center of the other by a journey whose
1 1

length is + (There may be shorter routes!) But now go from one
2 2

vertex to a "diagonally" opposite vertex. In 2-D, the distance is

4.57 In 3-D, the distance (as one easily figures out) is F. In

dimension N, the distance is TNT In 100 dimensional space, the distance

is 417. 10. So the faces are "all near one another," yet --

somehow -- the vertices "stick way out!" "Understanding" this requires

some serious work on "educating your intuition."

But, in terms of early "basic" well-established knowledge

representation structures, we have powerful capabilities for three

dimensional space -- watch professional basketball players! -- but no

experience at all in E
n
for n> 3. Our schemas for E must be

100

developed by carefully deliberate elaboration, from the quite different

schemas for E
3'

J. Misinformation.

One does not necessarily approach a topic with "no idea at all."

On the contrary, one may come to a new topic laden with a heavy burden

of incorrect ideas.

Within our studies, this phenomenon has been especially conspicuous

in relation to the concept of limit of a sequence. Among the persistent

wrong ideas that students have repeatedly used are these:

1. The sequence 1, 1, 1, ... does not converge. In a

convergent sequence the terms are getting nearer to the

limit -- but these terms aren't "getting nearer to" anything!

2. The limit of the sequence .999, .9999, ...

oa
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is a number "just a little bit smaller than one."

[This is an interesting error -- it is of a very common

type, errors due to a failure to distinguish two

different thinga.) These students are correct in thinking

that the terms of the sequence "will always be a little

bit less than one." The students err, however, in failing

to distinguish between

and

the terms of the sequence

the limit of the sequence.

Minsky's (and Scott Fahlman's) notion that

Ha general frame will [often] use

one of the specific cases below it as its exemplar;

'mammal' might simply use 'dog' or 'cow' as its

exemplar, rather than trying to come up with some

schematic model of an ideal nonspecific mammal "

(Minsky, 1975, p. 266)

can be applied to postulate a description for the representation

structures involved. What should have been constructed as an

appropriate representation structure would provide for something

like (or at least equivalent to) the familiar graphical sketch,
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which shows the (admittedly complex) relationship between the

terms a
n

and the limit L.

The students who make the present error are, presumably, not

making use of such a representation, but are instead using some

term, a
n

, for reasonably large n, as an "exemplar" representative

of the limit. "Cow" may (depending upon context) suffice as

the representing exemplar for "mammal," -- and, indeed, an

will even suffice, in some computational contexts, as a

representing exemplar for L -- but in theoretical discussions the

distinction can become crucial!

3. Some students imagine, incorrectly, that every convergent

sequence is monotonic, and are thus led to make many inappro-

priate definitions, and to draw many false conclusions.

4. The notion that, for n 44:N, the initial terms an will be

disregarded is difficult for some students to accept. These

students appear not to distinguish between a series such as

1 1 1
1 + 71. + +

, 1 ,

and a sequence such as

1 1 1
1

' 4' 9' ."'
n
2 '

(although their text and their teachers have attempted to avoid

such confusion). These students need to switch basic metaphors;

instead of thinking in terms of something like a savings account

in a bank, where previous deposits accumulate and continue to

make their presence felt in the current balance, they need to

think of a metaphor such as a calculation -- if one calculation

is rejected as too imprecise, a new calculation, somewhat more

precise, is carried out. Earlier, less precise, calculations

are, of course, discarded.

1 fo #
4-to
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K. Critics

A "critic" is a procedure that checks up on a frame retrieval,

or on instantiation of variables, or on some other process, and

pronounces it "acceptable" or "unacceptable." Thus, a size

critic ought tn have told Marcia that

5

0-0-2

- 2 5

5, 0 8 7

could not be correct, since the answer had to be close to

seven thousand. People who "understand" a subject well seem

to have many critics available, so that (for example) they do not

say

nor

dy = sec
2
x , (1)

y = (sec2 x) dx, (2)

because neither (1) nor (2) is of the correct form with regard

to differentials. Beginning students, however, make such errors

frequently.

L. Knowledge of Examples

As work by Rissland and others has made clear, "understanding"

is often related to the matter of knowing a large number of

L...dmples. One might, for example, come to the erroneous conclusion

that a set which is not closed is open, unless one knew examples

such as

x I 0 lx dic .

1 tit I 4.1
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M. Levels

We have referred, above, to various "meta" levels. One might

speak of a "performance" level, then a "meta" level that observes,

analyzes, and guides the performance-level procedures, then a

ftmeta meta" level that modifies the meta level, etc.

Suppose the problem were to divide two fractions:

3 2

5 7

A "performance-level" procedure might invert the first

fraction, then multiply:

5 2 10

3 x 7 21 .

If no meta-level procedures were in operation, this might stand

as the result. If, on the contrary, appropriate meta-level

procedures were activated (perhaps by a warning signal that

dividing fractions could be tricky -- better check!), then for

example, a certain powerful heuristic procedure might be

invoked:

Try a simple case where you know the answer!

[This, for example, is how many people test a calculator.]

Now,

1 1

2+4

has, because of its meaning, the answer "2":

1 1
+ m 2.

But the procedure just used would have given an incorrect result:

2 1 1

I x 4 2 Per.
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(Even more ingeniously,

4 2
4 2 =

1 1

which, using the procedure above, would become

1 2 2 .1

whereas 4 2 = 2.)

This "critic" procedure thus reports an error. The "invert"

procedure is not working! An appropriate meta-procedure needs to

intervene, and to modify the "invert" procedure. For example,

this meta procedure might operate by changing the choice of which

fraction to invert, leading to

a c a d ,_ = _b dbc
which would lead to

1 1 1 4 4

2 T4 I`TximT= 2

a correct result! Also,

4 2 4 1 4
4 + 2

also correct! Using this modified performance procedure, one gets

3 2 3 7 21

5 +7 5 x 2 =10

(which, of course, is actually correct).

Consider the following problem, on which we have a very large

amount of data: (Note 8) students in arithmetic, who have not

studied algebra (and have NOT learned standard techniques for

solving quadratic equations), are asked to solve these equations

137
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(0 x CI) - (5 xa) + 6 =

([3 x - (14 x CI) + 33 = 0

(0 x (3) - (7 x C3) + 10 = 0

(C/ x CI) - (12 x1:1) + 35 = 0 ,

and others, where the solutions are, in every case, unequal primes.

What procedures can the students use? At first, only trial-

and-observation. By trial-and-observation, students easily find

that the solutions for the first equation are 2 and 3, for the second

they are 3 and 11, for the third they are 2 and 5, and for the

fourth they are 5 and 7. Most fifth graders soon realize that

there is a "shortcut" -- try factors of the last number!

6 = 2 x 3

33 = 3 x 11

10 2 x 5

35 = 5 x 7 .

The discovery of this shortcut is not the work of an ordinary

"performance-level" procedure. If one postulates a hierarchy of

"meta" levels of procedures, presumably one would assign the

shortcut-detecting procedure to a higher meta level than that of

the regular "operational" procedures for carrying out assigned

arithmetic operations.

After students have discovered the shortcut, they are

presented with the equation

(0x c3) (13 x 1:1) + 40 0 .

The majority response is to claim (without substituting for

confirmation) that this equation has six solutions, namely

10, 4, 8, 5, 20, and 2. When students are urged to check, they

find that in fact only 8 and 5 are solutions! Those students

ftil
416tis.)
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who spontaneously discover that "there are two rules" have

presumably again used a meta-level procedure to discover that,

for the equation

(C x ) - (a x C3) + b = 0 ,

the solutions r and s must satisfy the two rules

r + s = a

rxs= b

We do not propose any specific mechanism for assigning pro-

cedures to specific meta-levels. Among procedures for which one

might seek such an assignment, consider:

a) A procedure that employs the heuristic: "If you find

one 'secret rule,' don't stop looking! There may be

other 'secret rules' as well!"

b) A considerably more general version of the preceding

procedure, which employs the heuristic: "Whatever you are

doing, if an amount x of it seems to succeed, try a larger

amount (or more instances) of it. Maybe more will be better!"

c) A far more specific procedure that employs a heuristic:

"If the product of r and s turns out to be important, check

for patterns that involve the sum r + s, the differences

r - s and s - r, and the quotients r s and s r."

d) A procedure concerned with establishing a connection between

the observed patterns and the axiomatic logical structure of

algebra.

e) A procedure concerned with the question of _hy.w the first

four equations seemed to have two solutions (an appearance

corresponding to fact), whereas the fifth equation presented

1
qj
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at first the deceptive appearance of having six different

roots. (The answer, of course, is that the roots of the

first four equations were unequal primes, so the factorization

of the constant term seemed unique. By contrast,

40 2 x 2 x 2 x 5.)

Even without any precise specification of "meta" levels, it is

apparent that different students "understand" this quadratic equation

problem in quite different ways.

N. Different Kinds of Knowledge.

One may "know" in many different senses. For mathematical

purposes, it is important to distinguish at least these (Davis,

1982-B):

i) "Knowledge" in the sense of possessing the ability to

retrieve and execute an appropriate algorithm.

ii) "Knowledge" in the sense of seeing relations to basic or

"primitive" schemes.

iii) "Knowledge" in the sense of the ability to retrieve a

frame which, in turn, is part of a well-elaborated

frame system (cf., e.g., Minsky, 1975, pp. 216-219).

SECTION FIVE

IMPLICATIONS FOR INSTRUCTION

XVIII. Three Instructional Corollaries.

A. The "Paradigm" Teaching Strategy.

One of the most important (and least recognized) aspects of the "new

mathematics" was a method for introducing new problem situations, or new concepts,

in strikingly concrete forms. The concept of surface area might be introduced

in terms of the task of coloring a block by stamping with a square stamp 1 cm.

#1,
4.
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by 1 cm. -- how many times must you stamp? Negative integers might be intro-

duced by putting pebbles into, and taking pebbles out of, a bag that was

already partly filled with pebbles. The concept of isomorphism might be intro-

duced by successive modifications of the game of Tic Tac Toe. The inner product

of vectors might be introduced by computing the amount of money spent in a

candy store. (Davis, 1980-A)

At the time that this style of concrete presentation of new ideas was developed

-- primarily from 1956 to 1970 -- no theoretical justification was offered. The

emphasis which recent cognitive science studies have given to the process of

building elaborated frames on a foundation of basic "pcimitive" frames provides

a theoretical conceptualization within which the use of concrete introductions

of new ideas becomes understandable.

B. "Discovery" Teaching.

If the technique of the concrete introduction of new ideas was a little-

noticed aspect of the "new mathematics" curricula, the same can hardly be said

of "discovery teaching." "Learning by discovery" became a commonplace slogan

for most major publishers, was the subject of several scholarly conferences

(cf. Shulman and Keislar, 1966), and was even presented on nz:twork television

during prime time. Yet the discussion of "discovery learning" in the 1960's

was generally handicapped by the incorrect assumption that the goals of expository

teaching and of discovery teaching were the same. They were not, but the

distinction can be stated more clearly in terms of modern cognitive science

conceptualizations. For a large proportion of expository teaching, the goal is

the creation of specific "performance level" procedures. Discovery teaching

aimed also at the development of meta-level procedures -- indeed, emphasized

meta-level procedures, on the grounds that specific algorithms could be learned

when they were needed (as, indeed, they often must be).

If the mechanisms postulated by Schank and Kolodner, among others, are in

fact prominent -- especially storing in memory a record of procedures that have

been used -- then expository teaching and discovery teaching cannot be taaching

the same thing, because they are not laying down the same memory traces. And,

if meta-processes are important to creative and flexible performance, there is

the danger of a very considerable loss when highly-explicit (often rote)

expository teaching is employed.
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C. Task-Based Interviews: Probing the Student's Understanding.

The "new mathematics" movement of the 1960's made little use of task-based

interviews, despite the fact that Piaget had been using this method brilliantly

for decades. /nterviews to probe more deeply into the way that a student under-

stands a topic (or thinks about the topic) gained acceptance within the United

States primarily as Erlwanger, Clement, Lochhead, Karplus, and others gave

convincing demonstrations of what this method could accomplish. The value of

such interview techniques is, nowadays, hardly open to question. Without such

probes, one observes "performances" but one cannot safely infer what thought

processes produced those performances, and differences in underlying thought

processes, perhaps temporarily concealed, are only too likely to irrupt into

prominent display at some time in the future.

1 *1)4. 4 4,
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NOTES

1. Our analysis has consistently made use of these "key sub-goals" --
the idea of joining up "sections" of a proof or of a calculation. In early

1982 we learned of work being done independently in Santa Cruz, California,
by Kristina Hooper and her co-workers, and found that they use essentially this

same system of analysis. There two independent efforts provide some confirma-
tion of correctness in a field where neither logic nor statistics can usually

be used to evaluate conclusions.

2. At the high school level, algebra is typically very different from
geometry. For the sequence

1 1 1

74 , 8,

the n
th

term can be written as

which is a perfectly satisfactory way to write the general term. Similarly,

3x
2
+ bx +c= 0 a#0

is the general quadratic equation.

One cannot do as well with "the general triangle." Whatever triangle one

draws has many specific features that are not general at all. This causes

difficulty for any student who has not learned the mathematician's common
convention of omitting specifics from certain diagrams, as in

where drawing every rectangle would be misleading, since it would seem to

show the correct number of rectangles.

3. Clearly, this composite "protocol" is presented here in a considerably

simplified form.

113
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4. In fact, two identical numbers would almost certainly be recognized in
the first step of the comparison. We have not bothered to indicate this test
for identity, which probably occurs at the start of the procedure. The fact

that humans probably begin with checks for identity, whereas typical computer
programs perhaps do not, is food for thought!

5. It is important to note that function is a special term in mathematics,
and is a noun, not a verb. Within mathematics, there are disagreements in
the best way to define function, and the historical evolution of the idea
may or may not be well represented in certain current definitions. But in

any case, "function" is a special term, as in "y is a func ion of x", or
y = f (x).

6, Insertions in square brackets have been added.

7. The importance of "welding together" separate partial representations
appears also in recent unpublished work by Kristina Hooper.

8. This lesson is part of the "Madison Project" curriculum, and has consequently
been taught to many thousands of students at the 4th, 5th, and 6th grade levels.
This precludes precise counting of students -- which would in any case NOT be
very revealing, since the proportions of different responses can be altered by
minor changes in presentation -- but there is a kind of massive stability to

the data, nonetheless.
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