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Abstract L

é
. A .
. Using Goodman's (1975) notion of quasi-independence as a method of
M N N ) . LY R ‘ é\‘
obtaining goodness of fit measures for non-scalable types in a scalogram’

analysis, archival data sets were examined using available Guttman

v

scaling techn;ques,.fécent dgvelopméétéﬂin latent strudture analysis,-

& and multid%mensional scaling procedures. It was found that alternative-
methods can yieldid}Tfering conclusions about the unidimensiod%lity of a
v ikl‘ s%ale. Implications in the use of Guttman scaling are discu§s§d.
Sp;cifically, researchers are encouraged towards sequential testigg of

»

unidimensionality and convergence of the three methods if Guttman scal-

ing is to remain a'meaningful methodological tool. -
N
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[ S o
- A A,popular"and'wddeiy uséd model for scaling dichotgmous responses

-
>

L] N '
N . is scalogram analysis’or the Guttman scale. PA Guttman scale, initially

deveioped by - Guttman (cf..Gdttman 1950; Torgerson, 1958), defines 2

W

« ! \
. h1erarchy of response patterns such that passing an ditem at the n- th
- ~
4 3 B
. l vel of the hierarchy implies, passing all previous 1tems on the’ n-1

3 s ’
ARy

A previous levels. While the‘vogue of Guttmah scaling took place con-

jointly with the growths in attit dé/personaIity.meé%grement in post-
. 4 » . ~ °

. World War II_America, it remains a wddely used model for 'scaling res- .

’e .,

ponse patterns. Developments in the methodology of use of Guttman scales Lt

- -

continlie to have an actlve lrterature (cf DaWes 1972).

<
> 1 P ¢
. ¢ 4 ’ .,

! Whlle scalogram_ analy51s coqtlnues to be an act1vely uspd data -

- s

ahalyt1c tool, the model is fraught with inherent problems. THe most

x 3 ' N .
.

: ‘¢ critfical of these is its, determirfistic’ nature Wthh places severe res-

}
3 Al
5

trictions oh data patterns which can be said to m’a Guttman scale.
In any data~cpllect10n, n dlthotomous variables cjn y1eld p0551b1e 22

e -
-~

. responses, 0f.all these p0551blesresponsesr ogly.g + 1 are allowed by,
the scalogram model fypicail§, resﬁonses outside those which“define "

h
.

[ 4
+the Guttman scqle are obtalaed\ Varlous goodness (badness) of fit

LY

1nd1ces have been suggested for evaluatlonaof the appllcab1}1ty of a .4

P v
t £2 I

Guttman scale to data Ihe most ‘widely known -and used is Guttman s own ) ’

- nd ‘ -
- ’ coefficient of reproddc1bllityu ‘The coefficient of reproduelblllty is

.
i . ©
:

the proportion of'1Cells whicQ'are‘perfectly scalable\and is %efined - .,
. ‘ 7

3 . Y -

mathematically as: . ) N . .




Unjdimensionality.
3. %
E 3 ' :
1 - [no. of errors/(# respondents) (# items)] (1)

While no strict -statistical criterion eXxists against which a coef-

ficient of reproducibility can be compared, values of 0.9 3nd greater

are assumed to adequately define responses which fit a Guttman scale.
Very early in the history of Guttman scaling, the‘arbitrary nature
of the coefficient of reproducibility was shown. Festinger (1947) gave

an example of how the coefficient could be arbitrarily inflated.” He

Al

further suggested that the assessment of unidimensionality be confined

-

to the rejection of a null-hypothesis of unidimensionality rather than
an acceptance of the unidimensionality of a given scale.

The coefficient of reproducibility is not the only index which has

t
-

been suggested in the evaluation of Guttman scales. Other reliability

indices are the’ Kuder-Richardson formula 20 (Kuder & Richardson, 1937)

-

. ’

and the Loevinggg?Foefficient of homogeneity (Loevinger, 1947). None of
\_/ ¥

these indices has .the property of being compared against some known

distribution as a test -of a statistical null hypothesis. Instead, the
- -

. . :

adequacy of a fit for these measures is defined rather loosely in anal-

ogy with the Guttman coefficient -of Kruskal's stress values in multi-

dimensional scaling (Kruskal,-1964). The methods of assessing fit in
. ) .

Guttman scaling are weaker than the determination of dimensionalng from

stress values since the one dimensional Guttman solution does not pro-

duce the multidimensional scafiﬁg/%ﬁ3fog of the scree test (Cattell,
. (o '
1966). o !

~ .
. - >

|
|

While the pﬂ%blem of defining a fit index in the Guttman solution
remains unresolved, developments using statistical methods for the

Guttman scale have yie{ded alternative definitions about the adequacy of
L4

a Guttman scale to data. b v

.
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Proctor's (1970) probabiiist%c formulation of the Guttman scale

, " ~

. model is now incorporated into a widely used‘prpg}am for Guttman scaling

(SAS, 1979). Various ‘applications of latent structure techniques have
°r

also been suggesfed to better evaluate the adequacy of data to a Guttman
7 R A,

. scale. Both Proctor's method and th®e various adaptations of the latent

likelihood .estimation for the adequacy of the Guttman scale to a given
”~ - » . A -

. set of data. A summary of methods involving vatrious latent structure
*

0 N 1 ¢ ~ .
b models is provided in Clogg and Sawyer (Note 3). - .

.
Models discussed ‘here relate specifically to the traditional
Guttman Ecaling model and extensions~uhéfh have been made with regard to

this simple one-dimensional model. Multidimensional Guttman scaling,

. t . .
partial orer Guttman scaiing, and Guttmap and Lingoes's Smallest Space

N 4
Analysis are not  conéidered.. A related” method of finding the best
ro.

»

L ~ subset of dichoiomous.@tems which can be said to form’a Guttman scale
has recently been introdui?g,(Price, Dayton, and Macready, 1980). . -
Latent structure an lysis posits the existence of ong or more

D 4
latent unmeasured variables to explain existing relationships between
- L

discrete -measured variables’ in contingency tables. While the theoreti-

- EY - . £
\_ cal conceptualization of the problem has been known for quite some time/
’ it is only recently that efficient computational algorithms have been .

"available for the widespread” application of latent Structure analysis.,
Prograﬁs curf%ntly available include the maximum likelihood‘programs of

. Clogg .kqownxiés_ MLLSA (Maximum L?kelihood Laggnt §tructure' Analysis)
tClogg, Note 2} Clogg;‘ 1979) and Haberman's LAT pfogram (Haberman,

1979). A program known.as LSA (Latent §tructure\épalysis) developed by

"ty

K > . L

O g

Al

structure ~model’ ,yield chi-square goodness-of-fit tests under maximum’
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-

Mooijaart (Mogijaart, in press) performs latent structure analysis by

least sguar“s and generalized least squares.

The idea of analyzing .Guttmah data by latent struTture methods

represents a convergence 6f ideas which were forwarded in the analysis

e d .
D

of discrete multivariate data (e.g. Bishop, Fienberg, & Holland, 1975).
> - :

One such concept is that of structural zeroes. A struetural zero is one
-~

* B ¢ ’ " . -
which octuss in a contingency table (or matrix of-responses) which is

known a priori to have a zero -value. This is distinguished' from a

sampling‘zero$$hygh occurs dpe to low'relative‘probability of a cell.
. ¢ . I 4

An example of a structurdl zero would be a contingefcy table cell which.
. ~ g N

defined the number of pregnant males. Such a cell would logically take- o,

~
. -

on a value of zero and could never take on a non-zero value.

1]

The concept og a structural zerp was expanded somewhat (Bighop et

al., 1975; Goodman, 1975) to consider hypothesis of interest to a resear-
: N N ’ @ -

cher where analysis of the complete data would be less meaningful .than

an analysis which deleted certain cells. For example, in a- confusion
v £ . ) . -

matrix; a test of interest would not involve a test of independence in
the complete table since entries qoula nécessgrily be_higher'along the
diagonal (letters being recognized as themselves). Instead, the incom-

plete table consisting of the matrix with diagonal entries deleted (i.e.
. ¢ :
taking on a structural zero value} would provide a test of "independence
: :

among the errors. Such an analysis of an incomplete data-matrixX fé;.
- \

indepepdence among Bhe'remaining cells has been called a test of guas';

. . .

independence (Bishop et al., 1975). \

Goodman (1975) can be said to be respongiﬁie for taking the notion

.

of quasi-independence and applying it to latent strutturefapélysis and,




Unidimensionality

“

more spebifically, to the Guttman scaling problem. In at paper,

Goodman propesed the following type of analysis for Guttman ‘type data

B through the use of latent structure models. Recall tgat_fof n
v ‘ ¢ -

N . .of n+ 2 latemt cIasseé, n + 1 latent classes which define those re-

~ . -, &
sponse patterns which are perfectly scalable and, an addit'ional latent

class to account for reébonse patterns wh{ch deviate f}onx a perfect
Guttman gcale.~ In this model, the hypothesis of interest is that §uﬁsi-
ipdspendence holds among tpe deviations from the Guttman séalg pattern.
’ "This latent class model, if identified, can yisjd ‘estimates of the

probabilities of the latent classes, ‘probabilities of the observed
. : A T
B responses conditional on latent class mepbership, azd a likelihood ratio
. ) \ e X * ,
’ * chi square goodness of fit statistic (Gzl which can be used to test -the

o a *

hypothesis of quasi-independence. *
¢ L.
The- mathematical formulation of the model (from Goodman, 1975)Ljs

- - (S N N — .

“ . as follows: . :

» . ' -
. Let p, = the probability of "an ind%vidhal in latent class t

AU _ _ (t=1,...,0%2) . p —
‘ S ‘ -p?t = the conditional' probability of being at level i on
.t variable A given the individual is in ‘the t-th latent
' class. Similarly, define p?t, pﬁt,... for however maqy
" variages there are in the analysis. ~ )
ABC... _ - . PP :
- piiﬁ"- = the probability of obtaining response pattern (i,j,K,...)
) p??g ¢ = the conditional. probability of obtaining response
cen ‘ Tl .
' pattern (i,j,k,...) given membership in latent class t.
Q K N i Z
ERIC . ;0

»
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. .
TheJ:
ABC... _ _ _ABC ]
Pijk... ~ PtPijk... N ()

where responses in the non-scalable clags are mutually‘independen; (let-

+ ting this be class 1, the representation is: p??ﬁ\:,. = p?l p?l cal)

and the response patterns for all scalable 1nd1vxduals corresppnds to

the scale typg with probabllity, 1 e‘g 1ett1ng class 2 define a' res-

o’

ponse pattern with all negatlve responses scored zero in the 0-1-dichot-

—_— ~

omgs BB o | S .
P00. %2 , . C

Goodman (1975) showed application; of' the notion of‘quasi-indepehd-

ence in a Guttman scale by applying the model to some archival data

o~
sets. Goodman analyzed these data using his own program with maximum
4

Likelihogp' estimation of model parameters. Here the Stouffer-Tbby
) . ) )
(1951) data analyzed by Goodman were re-analyzed using Clogg's ML¥sA

program. Since the estimation procedures are the same in both programs,

-

there should be little difference in the results obtained here compared

-

Py

.

with oodman’s.}esults. As a second example, data from Suchman (from
; . ple,

Coombs, Dawes, & Tversky (1970)) were fit using the quasi-independence
model. A similar develobment has recently been presented by Dayton and
, Macready (1980) utilizing their own model of hierarchicval scaling.

Where a confirmatory hypothesis regarding the Guttman Wnidimension-

alxty of a scale 1s of less interest than determining the dlmen51ona11ty

I . .
) b -

of a scale, othe"more exploratory technlques may be-employed.' In bar-

©

ticular, use of multidimensional sgaling techniques and factor analytic
‘ [t y

ar, By

« 4 . [
techniques have been used to determine the _dimensionality of 'scales.

~

Here, focus will be placed on multidimensionai’scal}ng techniques since
dichotomous responses are not apprépriately analyzable using t;aditional
exploratory factor analytic techniques althohgh some recent work as been
‘done in the developmenf of models ip this area (Muthén, 1978). |

o

- B . ° .
q »
= [y i

-
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Stouffer-Toby (1951) Data

The Stouffer<Toby (1951) data set measuring role conflict on 216

respondents'as*to whether or not they{tend toward universalistic versus

/
@ .

. =
particularistic values is a favorite in the latent structure analysis
literature and has been a frequently used example (e.g. Goodman, ‘1974,

1975). Here, as in the”subsehuent analysis of data from Su&pman, only
RN ‘, A n

four. ‘dichotomous variable are used to demonstrate the model. While the
1 . ’ :

model is equally applicable dithiﬁ variables, the problem of ekponentfal

growth in the number ,of cells in the supermatrix of response patterns

makes the four variable problem a {;mputationally simple one.

. - .
With four variables, there are 24 or 16 possible response patterns.

.

Of -these, 4+ 1 or 5 are said to define a Guttman scale i.e. the re-

_sponserpatterns %0,0,0,0), (0,0,0,1), (0,0,,1), (0,1,1,1) and (1,1,1,1)

where items are coded such that 1 represents domination of-an item, In

genéfal, degrees of freedom for the model can be calculated by recalling’

that there are 28 data points, n + ] passible scale typds, and at1
. ' \ 14

;5-’ N
probability. parameters which must be estimated for the non-scalable.

)y °

individuals (n conditional prgbabﬁlitieé and one latent class probabi-
‘e ‘ >

lity). “Therefofe, there are ZEpj Z(é +¥}) degtees of freedom for the

‘ . . . ‘
general model. For the four variable model in question there dre 16 --
. N .

10 = 6 degrees of freedom. The choice of,a four variable problem was
Y * ) '
not entirely an arbitrary one by Goodman since n ijust be at least equal
N . - .
to 4 'in order for there to be positive degrees of ‘freedom to test a

del. \ : ' -
mode .’\’ 'y . ’ R . -1&

The Stpuff%r-Tbby~data_wege first run on the GUTTMAN SCALE program

-

u ) ’ Vo . ‘) o) '
of the SPSS package.” A coefficient of repraducibility of 0.84 ias -

obtained, a value which would have rejecteqd_the data as being. fit by ;hew

Guttman §cale'model:
* .

-

ra
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. . . R - f
o

s ' -
A model of quasi-independence was fit to tire data with, the -MELSA

§ - v -
program. The model yielded §’1ikelihood ratio chi-square of 0.99 on six

-degrees of freedom. Pafameter estimates for the latent class and condi-
. ' L4 . -

N L4

¥

tional , probabilities agreed with “thbse reported by Gobdh;h (1975).

.

. P P .~) EIR) ‘ ) e
While traditional -decision <ules regarding how well the data fit a

~
. . -

Guttman scale would hive caused the modelﬂgo be rejected here, on¥ can

.

» see that thé.errogs in the G?ttman:scalg for thesg data are very we¥1

fit by a model of quasi-independence suggésting tﬁ;\:;tentién of the

4, .
 Guttman gcale as a model for the data. ¢

I3
e

" Using a generalized least squares solution (Moo{jaart, 1981), the

{

proportion of indiviguals for the unscalable ylas% wa%ééstimated to be

< -
.

S~
reported byTGoddman (197%). Estimafes for the conditional probabilities
' \ " N v e

v -

-also corresponded to those in Goodman. The ordinary ledst squares -

solution obtained- #Sing Mooijaart's LSA 1 program also gave estimates
. R ' . v

-
—~

which were consistent with those réporiéd,in Goodman (1975).

4

-~

3
e

Another exantination of scaleﬁﬁniQimehsionality was‘pro?ided by éhe
. mpltidimensibnal ;c;ling proéram ﬁYST (Kruskal, Ypﬁng, & Seéf&, Note 3).
] Given thagy the data actually ar# unidimensioqq},:a loler;blq,value of
}stres;’in 6ne‘dimensi0n ﬂgruskgf, 1964i §p6Q1d pq‘?btéiﬁéd. Inéut to

3 -

-
[ ~3

KYST weré Yule's Q values which|weré prévided in the, SPSS GUITMAN SCALE
TEER , .

[

+

.682 which agre%d wellv'with ‘the max imum 1ike1ihoo& estimate of .68

procedure. . The  justification fior using this type of input to scaling

[

v

programﬁjis well es;ablishedhftf. Kfuskal\and Wish, 1978). . )

. ’ .
o ’,Here, a stress of-0.230 An,one diméhéion'was obtained, 4 result
~ . " * / e - ', »

: Vo b T SR
. which,. though-not good with reébect to Kruskal's criterion, represents a

. o= -~ \

. N i . ..
more.viahle solutign than,the/zgrp stress~obtained for these data in two
N ~ L N N NG

. . S "

dimensions.

— £ . . T \// \ ~ - ‘

.



~ -

~ v e ' ' ‘ . .
.. - . Unidimensionality

‘ ‘ \ .10

SUCHMAN DATA - P

N * s ~

- ? - _ . . - i
~ . The Suchman data taken from Coombs et al., 1970 measured the sever-

. v

ity.of fear.symptoms from soldiers who had Been;wiihdrawﬁ‘from combat
’ ¢ . . ' .- ,"

during(World War II. Items on the $calé ranged from "violent pounding

Voo . K3

] - - ’ .
. of the heart" to “yrinating in pants'. When one item ("breaking out in

N

a cold sweat") was deleted, the items were sdid to form a Guttman scale

w?ih‘a coefficient of ¢reproducibility of 0:92'(as reported in Coombs et

- .

al., 1970). However, when  these data were ‘analyzed independeqptly for
the present results, a coefficient of reproducibility of 0.861§as ob-

_taf%gd for the full scale of items, 'a value which, by conventjon, would

s

“have rejected these data as fitting'a Guttman scale.

* Far comparison of the Guttman scale model with the model of quasi-

- -

’independence, only the four least severe items were considered. As a

A . . - : » -
result the number of total respondents was greatly reduced (from 93 to

44). However, the coefficient of rsprdducibility of the remaining

>

respondents  remained apb}oximately the same as the full data (='.84).

)

When the, model of quasi~independence was run on the MLLSA program?,

v .

4 -

a2 final Likelihoqd ratio chi-squigp of 4.78 O six degrees of freedom "

¥

for the model was ohtained. Tﬁis value still réprese ts a statistically
= ; < ‘ A o

- L .
significant fit of the model of quasi-independence to the errors in the

Guttman scaLing.of this data: .

-As with EHF Stouffer-Toby dat;; the truncated Suchman data’ wete
analyzed to F;st the hypthésis of uniQimensionality using_;§§T/(Kru§kaf
4¢t al., ﬁote 3). A one dimensional géfess Y;lue of 0.23 was.obtained.
fﬁis value wouldﬂle_considereq poor using the Kru§kaf§&1964) crité}ion.

. - 8 .
. —

<« Howevér, the two -dimensional solution gave a stress value of zero in-

7 \ . . ) .
dicating overfit of the model. ' Hence, one could potentially conclude

s - > L . L /\

et
O 1
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. ’ '
< .

-

oo .
that, while the one dihenﬁional model is not quite, adequate according to.

14 \

Kruskal's own rough measures of goodness of fit, it represents an ade-

quate*representation of the data which is not guilty of overfitting.
<o «
While the quasi-independence model using the latent class formyla-

-

tion becomes computationally burdensome ag n inCreases because of expo-

N ]
nential grow in the number of ce{ig in the supermatrix of responses,

=
the KYST model, which involves only a similarity matrix between items,

does not becomes gquite as laboriou® with increasing n. ;heieﬁpre, a
[ "~ n .

¢
test of unidimensionaljgty of the entire Suchman data matrix as reported

B

in Coombs et al., (1970) was performéd; Given adequate indl.es for the

-

Amnidimensionalitygof the dafs, one should have expected the full data
L 3

4

matrix. to y?eld a tolerable value of streis in one dimension. The data
= ) o

were tested in both one and two dimensions.
N . . . - - 4 \ .
In the one dimensional solution of the full Suchman data, a stress

-~ N R

value of .301 was obtained. The two dimension solqtzqn gave a.stress |

o v

. .
value of .151. While neither of these values wpuld represent good fits

by the Kruskal (1964) criterion, it seems rather apparent that the two

Y

° ~t
dimensional—selution isibetter th‘k the one dimeasional solution. The

s . -

three. dimensional solution has evenfbetteg stress value (0.05). It,

A

however, lacks the rough interpretability which' can bé made in the two

dimensional solution. '

<

In looking at the two dimensional solution, it -appears: that all
. .

<

items which load negatively on the first dimension (wifh the exception

. FU PR . .
of the "urine" item) seem to reflect tovert cognitive manifestations of

.

fear (e.g. "a sinking feeling of the stomach") versus overt physiolo-
s SN
gicél manifestations of fear (e,g- "vomiting").
s ?

-

— R -




&‘

over the manifestations of the fear. symptoms ranglng from a perception

. . {
Unidimensionalit&}
% . . 12

* N ] L v * -

¢

The second dimension, while not ‘as e%gily ‘interpretable ‘as the
. 5 o a ]
first, seems to reflect the degrees of control which could be exercised
. » . . 2\ .

v . R

’

of p0551bly high control (e. g "feellng of stlffness") to perceptlons Off

8
1

‘little or no control ("violent pound1n§ of the hedrt").

\ ..
____________ d e mee .

\ - * .

[}

Insert Table 1 Abfnvl:::‘5 Here )
DISCUSSION

Analysis of the Suqhm;n data has proviéed a stroﬁg example‘of the
pratfalls of->Guttman 'scaling. Theﬁe_ data showed that: a) it wass
possible to exgract a two or'even higher Qimensionai solution which c;n
be loosely interpreted; and b) even if one could accept a oﬂe‘dimen-
sional solutjon as being tolerable for this data set,: the data failed to
meet the traditionally established and we}flknown.criteyion of.prodncing

a coefficient of reproducibility of 0.9 or greater although an alternate

s »

goodness of fit measure prqygded by the model of quasi-independence show .

these data to define a Guttman scale tolerably well. Results here have

.clearly shown that widely varying conclusions regarding the adequacy of
-

a Guttman scale to a given data set may be reached. depending on what

v

crlterlon is used to test the data. . ¢

-

Givep the inherent difficulty with’ scalogram analysis, the question

+

>
arises as to whethér or not the method can be justifiably retained to

perform meaningful types of scaling.  The best way of assessing the

adequacy of the scalogram model would be to perform sequential tests on

.

the same data set. One could perform the traditional scalogram analysis

such as th® one found in the SPSS or SAS packages, a'tesE}bf/quési-

& .
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1nde?endencé of the errors in a Guttmin scale using elther 1atent class

or log- linear models, and a comparison of a tnidimensional solutlon and

multidimefisional solutions in a.multidimensional scaling program such as

2 . -
-

KYST. o ey . -
. Using the ideas of sequential tésting for unidimensionality takes a

“»

.

ion, both the latent class and’ﬁultididénsipnal scaling analysés have
~
theoretical problems in convergence (local versus global minima) which

. /
make these individual procedures potentially prohibitive both in, cost

"and time. However,.given the discrepancy in the results shown here with

\ .
the, same set of data, it would be unwise to conclude on the adequacy-of

.

a Guttman scale on the basis of any singlé test.

On the other hand, it is debatable whether much is gained through

-
. ~

the use.of sequential testing. For any real set of items which axe

’

thought to form a Guttman scale, the number of items, n is too large to
v ‘ - .
create the supermatrix of response patterns which can be handled with

“ . ?
any computational efficiency for the.statistically based models. Even

if computational, algorithms did exist which could handle an infinitely

k] * >
large _supermatrix of response patterns, the number of subjeets N needed

such that the majority of entries in the supermatrix was not zero would
L} t B

~
be prohibitive. Hence, the strongest crgterion?for determination of the
adequacy of a Guttman scale can, in fact, be used only the moi;/rebtric-

tive of conditions (n,no greater than 6 or 7 at the most).

} N
Guttman scales, and indeed much of s¢aling, is fraught with prob-

lems in the interpretation of dimensionality. Currently, this problem

1

is resolved in mulMidimensional scaling by ~eyeballing scree plots,

A

-

procedure which could be done’ manually and evolves it into a~time-

consuming and potentially expensive comﬁutational.procedufe. In éﬁdib¥

3

*
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comparing obtained stress values against.stress values of random daéa 3

. ) ) .
from Monte, Carlo studies, or an even looser "good - poor" 1n€;x (Knpskah,,

.
.1964). N0“§}r1ct stat15t1ca1 criterion has yet been develdped against -i

whlch, these partlcﬁlar 1nd1ces of fit may be compared. Given, thlS
flex1b111ty 1n 1nterpretatlon and the fact that 2. researcher ushally.-

4
g enters with a hypothe51s of the dimegsionality’ he/she wishes to find, it

e . u .

is probaply too tempting for the researcher te reject as non-51gn%;;§ant -

* - the o+ 1 dimensi&hs greater than- the n he/she wantedt to extract _This,
AN
‘c{- . N X

R becoqps partlcularly relevant in a- Guttmag scale analysis sfné%\\iﬁe

. ' ’ 4 .

* rESgarchef looklng ‘for a unidimensional phenomenon can bias hisﬁp@r_

efforts in finding a unidimensional ‘phenomenon’ unless all indices for

-
.

\ the goodnéss of fit for the data are simply intoiefable.vof course,

: N ) ;- - - 3 3 ! . N
¢ since the researcher is looking for a unidimensional phenomenon, he/she

-

will tend tg construct scales which reflect the hypothesis of unidimen-

1.

. sjonality resulting in rare rejection of the null hypothesis. It seems,
~ &

“w LR

. - in retrospec?> that Festinger's (1947) approach .to the un1d1men51onallty

- of a.scale was correct. ’

.

While OCuttman scaling provides an efficient way of suﬁmarizing

data, researchers interested in hypotheses of unidimenéionality should
cafefylly assess the ﬁpthods they use in testing their hypotheses. As

was seen clearly in the Suchman data, alternative methods of assessing

A
F2]

unidimehsitonality*can yield contradictory results. Careful scrutiny of
" . . ox,
. » . *
1 _Guttman scalable data is necessary prior to drawing conclusions regard-
o .

2ing the°scalability of any given data set.

¥ .

» A

-
§
8
O
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Footnotes .,

>
“ s
.

1While the number of respondents in the truncated Guttman scale

3 A

analysis 'was 44, a %alue of 1.0 was added to all zeTro cells for the =~ .

MLLSA analysis because. of problems in the estimation of parameters with
-~ ¥ i

.

. C e
cells- which contained zero entries. This is’a well-known (and hotly
. e T " H

debated) technique in contingency table analysis {see Fienberg, 1977 or
» .

Dixon, 1977 on the estimation'of log-linear models in the BMD package).

~ .
.
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1. Clogg, C. C. Unrestricted and restricted maximum .likelihood létent'.

structure analysis: A manual for users (Working Paper jNo.
1977-09). University Park, Pennsylvania:g Pennsylvania State
University, Population Issues Research Office,. 1977.

¢

. : . : N
» 2. Clogg, C. C., & Sawyer, D. 0. A comparison of sbme alternative

- .

~ *

models for analyzing the scalability ‘of resporfse patterns.

«  Unpublished manuscript, 1980.

3. Kruskal, J. B., Young, F. W., & Seery, J..B; How to use KYST, a

very flexible program to do multidimensionallscaling and un- -

folding. Unpublished manuscript, "Bell Laboraforiesa Murray '
( ‘ i to
. ’
Hill; New Jersey, 1973. . T !
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Two Dimensional Solution, of Suchman Data

’

after Principal Componerts Rotation .

Item label . N 1
1. Violent pounding of the Emea}:t .496
2. Sinking feeling of the stomach , -1.418
3. Shaking or thrembli'h’g all.over .-‘616
+4. Feeling sick at the stomach .129\
. c
5. , Feeling of stiffness .068 :
6. TFeeling of weakness or feeling faint ‘ -.507
7. Vomiting <, ) ’ . 1.048 -
8. Losing, contr;l of the, bowels. = .861 '
9. Urinating in pants f“ - l -.061

.
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