AUTHOR TITLE

INSTITUTION SPONS AGENCY pUB DATE
GRANT
NOTE
EDRS PRICE DESCRIPTORS

IDENTIFIERS

Grimm, C. A.
A Unified Method of Finding Laplace Transforms, Fourier Transforms, and Fourier Series. [and] An Inversion Method for Laplace Transforms, Fourier 'Transforms, and 'Fourier Series. Integral. Transforms and Series Expansions. Modules and Monographs in Undergraduate Mathematics and Its Applications Project: UMAP Units 324 and 325.
Education Development Center, Inc:, Newton, Mass. National Science Fóundation, Washington, D.C. 78
SED-76-19615; SED-76-19615-A02
59p.
MF01 Plus Postage. PC Not Available from EDRS.
*Algorithms; Answer Keys; *College Mathematics;
Higher Education; Instructional Materials; *Learning
Modules; *Mathematical Concepts; *Problem Solving;
Supplementary Reading Materials
Fourier Series; *Eourier Transformation; *Laplace Transforms

This document contains two units that examine ABSTRACT integral transforms and series expansions. In the first module, the user is expected to learn how to use the unified method presented to obtain Laplace transforms, Fourier transforms, complex Fourier series, real Fourier sseries, and half-range sine series for given piecewise continuous functions. In the second unit, the student is expected to use the method presented to find a function when given the Laplace transform, the Fourier transform, the ${ }^{\text {s }}$ coefficient transform, or the. Fourier series expansion of a function. Each module containsyexercises and a model exam. Answers to all questions are previded. (MP.)

* Reproductions supplied by EDRS are the best that can be made

 INFORMATION CENTER (ERIC) "
a unflled methey of findridg laflate transforms, FOURIER TRANSFORMS, AND FOURIER SERIES f
by

C. A. Grimm

Department of Mathematics
South Dakota Sckool of Mines and Technology Rapid City, South Dakcta 57701

TABIE OF CONTENTS

U.S. DEPARTMENT OF EDUCATION

NATIONAL INSTITUTE OF EDUCATION
EOUCATIONAL RESOURCES INFORMATION
The CENTER (ERIC)
recerved from the person reproduced as
or organization
Minor changes have been made to improve reproduction quality

- Points of view or opgens stated in this document do not necessartly represent official NIE position or policy
\qquad
Title: A UNIFIED METHOD OF FINDING LAPLACE TRANSFORMS. FOURIER , TRANSFORMS, AND.FOURIER SERIES
Author:. C.A Grigm
Department of Mathematics
South Dakota School of Mines and Technology \because Rapis City, South Dakota 57701
Classification \quad TRPDANS \& SERIES EXP
Suggested Support Materials. Standard textbooks on engineering mathematics, applied advanced calculus textbooks
Prerequisite Skills

1. Differentiate and integrate elementary functions. Sketch graphs of elementary functions.
2. Use Euler's formula.

Have a basic understanding of integral transforms and orthogonal functions
5. Understand odd and even functions.
6. Understand piecewise continuous functions
7. Sum geometric series..

Output Skilrs:

1: Use the unified method described in this unit to obtain a- Laplace thonsforms .

Fourier transforms
complex fourier series
real Fourier series
e. half range sine series.
for given piecewise continuous. functions...

other Relaned Units:

> - (C) 1978 EOC/Project UMÅ

> 1
. Integral transforms and orthogómal functions provide the basis for widely used techniques in solving a large number of physical and engineering problems. in this unit we present a method which facilitates the inding of the Laplace transform, the Fourier transtorm, and the $u r i e r$ series when the given function is precewpe continuous (as aremost functions that are encounterged in practice).

The transforms and the series expansions that can be obtained by the method presented here may be obtanned by various other techniqués that-are frequentiy used. Normally the two transforms and the series expansion are. presented as three separate (but related) topics, and the techniques for handling piecewise continuous functions include integration, use of tables, and månopulation with unit step functions. The unified method has the following desirable characteristics:

- it avolds the use of tables;
- it avoids almost all integration;
- unit step functions are unnecessary;
- the method is quick;
- ."it provides a single, unified approach to. all three problems;
- it employs graphical techniques.

2. ${ }^{\text {THE }}$ METHOD EXPLAINED

We tagin by recalling the basic definitions of the transforms and the series in question. The Fourier series expansion of'a function $f(t)$ of period $2 p_{s}$ is given by (1) $f(t) \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi t}{p}+\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi t}{p}$,
where

$$
\begin{equation*}
\text { I. }\{f(t)\}=\int_{: 0}^{\infty} e^{-s t} f(t) d t \tag{3}
\end{equation*}
$$

Vote that $i(t)$ necd be defned only for $t, 0$ howerer - -
throughout thas unit we shall regardfi(t) as being identacally zero for ${ }^{\dagger}$ © ${ }^{\prime \prime}$ when we arofinding the Laplace \because " transform. The fourier transform of $f(t)$ ls given by

$$
(t) \quad . \quad \Gamma\{f(t)\}=\int_{-\infty}^{\infty} e^{-\quad f(t) d t .}
$$

[.. There are, of course, basic questions that arise concerning condit, 1 ons under which the serres (1) and the improper intergrals in (3) and (4) exist. There is also the question of whether the series in (1) actually represents $f(t)$ and if so, in what sense. Anśwers to thesé questions can be found in textbooks on engineering mathematics and applied advanced calculus, and we shall

- _ limit our study to. functións for which appropriate conditions are satisferd.
- Thésimiliarızy between expressions (3) and (4) is apparent. In addition, the integrals for a_{n} and b_{n} in (2) also resemble (3) and (4). In order to connect (2) with (3) and (4), 'ie define the coefficient transform

$$
\begin{equation*}
C\{f(t)\}=\int_{0}^{2 n} e^{-i n \pi t / p} f(t) d t \ldots \tag{5}
\end{equation*}
$$

The, structural-similarity of (3), (4), and (5) is apparent and the connection with (2) can be seen from the Euler formula $\dot{e}^{i \theta}=\cos \dot{\theta}+\mathrm{i}$. $\sin \theta$. The coefficient trans. form may belregarded as arising from the complex form on (1), which is
$f(t) \sim \sum_{n=-\infty}^{\infty} C_{n} e^{i n \pi t / p}$,
where

$$
\begin{equation*}
C_{n}=\frac{1}{2 p} \int_{0}^{2 p} f(t) e^{-i n n t / p} d t \tag{i}
\end{equation*}
$$

Formulas for \dot{C}_{0} and C_{-n} may, be obtained from (0) be sübstituting $n=0$ or by replacing n with- n. Ixpres sions (1) and (5) may each be obtained from the other via the relationships

$$
\begin{array}{ll}
C_{n}=\frac{1}{2}\left(a_{n}-i b_{n}\right) & C_{0}=\frac{1}{2} a_{0} \tag{8.}\\
C_{0}=2 & =\frac{1}{2}\left(a_{n}+i b_{n}\right) \\
a_{0}=2 & a_{n}=C_{n}+C_{-n} \\
c_{n}=1\left(C_{n}-C_{-n}\right)
\end{array}
$$

${ }^{\circ}$ (The Euler formula, of course, provides the basis for (8)..)
Suppose now that $f(t)$ is a piecewise continuous
function. ' In Figures 1 - 3 we show functions of this type that are appropriate for the three transforms in question. The graphs also show the information needed to apply the, ufrified method, namely:
$. \boldsymbol{r}^{*} . \sim$ thé location of the discontinuities of $f(t)$

$$
\text { (indicated by } a_{i} \text {); }
$$

- the "jump" in $f(t)$ at a discontinuity
(indicated by M_{i});

Figure 1. One, period of a $2 p$-periodic function $f(t)$; this illustration
ERIC is appropriate for the Fourier series expansion.

Figüre 2. An illustration that is appropriate for thel Laplace transform. Note that $f(t)=0$ for $t<0$; however, $f(t)$ need not be discontinuous at 0 in general

Figure 3. Illustration of $f(t)$ appropriate for the, fourier transform. \because
Under the conventions that \bar{M}_{i} will. be positive if the jump at a_{i} is up and negative if the jump is down, we have the following unified formulas:

$$
\begin{align*}
& C\{f(t)\}=\frac{p}{i n \pi} \cdot \sum_{k=0}^{M} M_{k} e^{-i n \pi a_{k} / p}+\frac{p}{i n \pi} C\left(f^{\prime}(t)\right\} \tag{9}\\
& L\{f(t)\}=\frac{1}{s} \sum_{k=0}^{M} M_{k} \cdot e^{-a_{k} s}+\frac{1}{s} \dot{L}\left\{f^{\prime} \cdot(t)\right\} \tag{10}
\end{align*}
$$

3

$$
\begin{equation*}
F\{f(t)\}=\frac{-1}{1 \alpha} \sum_{k=0}^{M} M_{k} e^{-1 \alpha a_{k}^{t}}+\frac{1}{i \alpha} 1(f \cdot(t)\} \tag{11}
\end{equation*}
$$

Formulas (9), (10), (11) may now be used iteratively to find $C\left\{f^{\prime}(t)\right\}$, Lifi(t) $\}$, $F\left\{f^{\prime}(t)\right\}$, and so forth. with j a little practice the 1 terative process becomes-lery quick, and graphical techniques make it easy, to. imple. merft the algorithm for many elfmentary functrons, as We shall-see next.

We note that formulas (9)' (11) can be obtanneá by eleméntary methods. A derivation is. carriedout in detail. for the coefficient trafsform in the appendix.

3. TH IETHOD IN ACTION

3.1 Example 1

To find $L\{f(t)\}$ for the function

$$
f(t)= \begin{cases}t^{2}, & 0 \leq t<2 \\ 3, & 2 \leq t<4 \\ t, & 4 \leq t\end{cases}
$$

we first graph $f(t)$ and its distinct nonzero derivatives, indicating all jumps (see Figure 4).

Figure 4. Graphs of $f(d)$, $f^{\prime}(t), f^{\prime \prime}(t)$ for Example 1 , showing jumps at discontinuities.

Apply formula (10) to $f(t), f^{\prime}(t), f^{\prime \prime \prime}(t)$:

$$
\begin{aligned}
& \text { - La\{f. (t) }=\frac{1}{s}\left(-e^{-2 s}+e^{-4 s}\right)+\frac{1}{s} b\left\{f^{\prime}(t)\right\} \\
& \left.\Leftrightarrow \quad=\frac{1}{s}\left(-e^{-2 s}+e^{-4 s}\right)+\frac{1}{s}\left[\frac{1}{s}\left(-4 e^{-2 s}+e^{-4 s}\right)+\frac{1}{s} d+(t)\right)\right]^{.} . \\
& \text {(*) } \quad=\frac{s}{}\left(-e^{-2 s}+e^{-4 s}\right)+\frac{1}{i s^{2}}\left(-4 e^{-2 s}+e^{-4 s}\right) \\
& {\left[\frac{1}{s^{2}}\left[\frac{1}{s}\left(2-2 e^{-2 s}\right)\right]\right.} \\
& =\frac{2}{s^{3}} e^{-2 s}\left(: \frac{1}{s}: \frac{1}{s^{2}}-\frac{2}{s^{3}}\right)+e^{-4 s} \cdot\left(\frac{1}{s}+\frac{1}{s^{2}}\right), \quad,
\end{aligned}
$$

At first, this method seems to offer little, if any, advantage. over a direct integration or the use of unit step functions. However, the calculation which we carried out in' detail above can be vastly shortened \because we ned ${ }^{\text {. }}$ only observe, as can be seen from "Equation, (*), that the .
 derivati,ve', each weighted with the approxiate exporer, toini function. Thérefore, merely by keeping tracih graphicaliy of the magnitude, direction, and location of the jumps for each derivative, we may wite down the transform ir essentially final form as soon as the sketches are drawn. We use this shortened procedure in all subsequent examples, and ask you to do the same for the exercises.

3.2 Example 2

Suppose we wish to. find $L\{f(t)\}$ for the function' which is defined graphically in Figure 5.

- Since we need only the segment slopes (which afe - obtainable from the end poinit coordinates) in order to 'graph f' (t), we do:not even neéd êtplicit formulas. (See Figure 6.)

Figure 5. The function $f(t)$ in Example 2 consiŝts of the straight line scegments shown, and is zero for $t \geq 4$.

Figure 6: The graph of $f^{\prime}(t)$ for Example 2, showning jumps and their locations:

From Figures. 5 and σ_{1}, and using our understanding of Farmula (10), we may write immediately

$$
\mathrm{L}\{f(x)\}=\frac{2}{s}+\frac{1}{s^{2}}\left\{-1+3 e^{-s}-\frac{7}{2} e^{-2 s}+\frac{3}{2} e^{-4 s}\right)
$$

Exercise' 1

Use the ${ }^{a}$ unjified metḥod (the abbreviated form illustrated in
Example 2) to fitad $L\{f(t)\}$ for the following functions: :
a. $\quad f(t)=\left\{\begin{array}{cl}t, & 0 \leq t<1 \\ 2-t, & 1 \leq t<2 \\ 0, & 2<t .\end{array}\right.$

$$
f(t)= \begin{cases}t-1, & 0 \leq t<2 \\ 6-t^{2}: & 2 \leq t<3 \\ 0, & 3 \leq t\end{cases}
$$

$$
\begin{aligned}
& \text { The function shown } \\
& \text { in the diagram to } \\
& \text { the right. }
\end{aligned}
$$

3.3 Example 3

Find tho coefficient transform $C(t)$) for the periodic function whose formula over one period is

$$
f(t)=\left\{\begin{array}{cc}
t^{2}+1, & 0 \leq t<.1 \\
0 & 1 \leq t<2
\end{array}\right.
$$

Here we have $2 p=2$, so $p=1$. We proceed as in Examate 2, graphing $f(t)$ and its distanct nonzero derivatives (see Figure 7).

Figure 7. Graphs of $f(t), f^{\prime}(t)$, , and $f^{\prime \prime}(t)$ for Example 3.

Using the data recorded in Figure $7,-$ and applying Formula - (9) ', 're may write down immediately:

$$
\begin{aligned}
& C\{f(t)\}=\frac{1}{i n \pi}\left(1-2 e^{-i n \pi}\right)+\frac{1}{(i n-)^{2}}\left(-2 e^{-1 n^{-}}\right) \\
& +\frac{1}{(1 n+)^{3}}\left(2,-2 e^{-1 n T}\right): \\
& =\frac{1}{1 n^{*}}+\frac{2}{\left(1 n^{-}\right)^{n}}+e^{-1 n^{n}}:\left(\frac{2}{1 n^{*}}-\frac{2}{\left(n^{*}\right)}-\frac{2}{\left(1 n^{-}\right)}\right) . \\
& \text {Since e } e^{- \text {int }}=\operatorname{cosnt}=(-1)^{n} \text {, we mat samplify: } \\
& C\{f(t)\}=-\frac{1}{n^{\pi}}-\frac{2_{1}}{n^{3} \pi^{3}}+2\left(\cdot l_{0}\right)^{n}\left(\frac{1}{n^{\pi}}-\frac{1}{n^{2} n^{2}} \cdot \frac{2^{2}}{n^{2}}\right) \quad:
\end{aligned}
$$

(This result holds, of course, for af(0.)

3.t Example 4,

find the real form of the fourier series expansion for the function it from Example 3 . Since

$$
C_{n}=\frac{1}{2 p} \subset(f(t-)) \quad(\text { see }(5) \text { and }(7))
$$

and since $p=1$ (see Example 3), we have for this example

$$
C_{n}=\frac{1}{2} C\{f(t) i
$$

Thus,

$$
C_{n}=-\frac{1}{2 n \pi}+\frac{i}{n^{3} \pi^{3}}+(-1)^{n}\left(\frac{1}{n^{\pi}}+\frac{1}{n^{2} \pi^{2}} \cdot \frac{i}{n^{3} \pi^{3}}\right),
$$

from which

$$
C_{-n}=\frac{1}{2 n \pi}-\frac{1}{n^{3} \pi^{3}}+(-1)^{n}\left(-\frac{1}{n^{\pi}}+\frac{1}{n^{2} \pi^{2}}+\frac{1}{\sqrt{n^{3} \pi^{3}}}\right)
$$

In, addition,
R. $C_{0}=\frac{1}{2} \int_{0}^{1}\left(t^{2}, 1\right) d t=2 / 3$.

Irom (8) we have

$$
\begin{aligned}
a_{0} & =c_{0}=2 / 3 \\
a_{n} & =c_{n}+c_{-n}=\frac{2(-1)^{n}}{n^{2} \pi^{2}} \text { for } n \neq 0, \\
b_{n} & =1\left(c_{n}-c_{n}\right) \stackrel{t}{=} 1\left[-\frac{1}{n^{\pi}}+\frac{21}{n^{3} \pi^{2}}+2(-1)^{n}\left(\frac{1}{n^{\pi}}-\frac{i}{n^{3} \pi^{3}}\right)\right] . \\
& =\frac{1}{n^{\pi}}-\frac{\varepsilon}{n^{3} \pi^{3}}+(-1)^{n+1} \frac{2}{n_{0}}+(-1)^{n} \frac{2}{n^{3} n^{3}}
\end{aligned}
$$

The lourier seriest expansion is

$$
f(t)=\frac{2}{3}+\sum_{n=1}^{\infty} a_{n} \cos n \pi t+\sum_{n=1}^{\infty} b_{n} s 1 n n \pi t
$$

- wizh a_{n}, b_{n} ds guven above.

3.5 Example 5

Find the half range sine expansion forthe function $f(t)=t^{2}-2 t, \quad 0^{0} \leq t^{\circ}<l_{0}$.

We first rake an odd extension of $f(t)$ to include the interval $-1 \leq t<0$. Since we need only information on the jumps, the extension may be carried out graphically. * with no formulas necessary. We save additional effort by noting that the derivative of an odd function is even and the derivative of aneven function 15 odd. See Figure 8.

Applying lormula (9) with the information. displayed in Figure 8, and noting that for the extended function. $2 p=2$ so that $p=1$, we obtain

$$
\begin{aligned}
C\{f(t)\} & =\frac{1}{\ln \pi}\left(e^{i n \pi}+e^{-i n \pi}\right)+\frac{1}{(\ln \pi)^{3}}\left(-2 e^{i n \pi}+4-2 e^{-i n \pi}\right) \\
& =e^{i n \pi}\left(\frac{1}{i n \pi}-\frac{2}{(i n \pi)^{3}}\right)+\frac{4}{(i n \pi)^{3}}+e^{-i n \pi}\left(\frac{1}{i n \pi}-\frac{2}{(i n \pi)^{3}}\right) \\
& =(-1)^{n}\left(: \frac{2 i}{n \pi}-\frac{41}{n^{3} \pi^{3}}\right)+\frac{4 i}{n^{3} \pi^{3}} .
\end{aligned}
$$

Figure 8. The graph of $f(t)$ extended to form an ddd function, and the graphs of $f!(t)$ and $f!(t)$.

Then we have for the Fourier coefficients

$$
\begin{aligned}
C_{n} & =\frac{1}{2 p} C\{f(t)\}=\frac{1}{2} C\{f(t)\} \\
& =(-1)^{n} \cdot\left(-\frac{i}{n^{*}}-\frac{2 i}{n^{3} \pi^{3}}\right)+\frac{2 i}{n^{3} \pi^{3}}
\end{aligned}
$$

apad

$$
C_{\cdot n}=(-1)^{n}\left(\frac{i}{n^{\pi}}+\frac{2 i}{n^{3} \pi^{3}}\right)=\frac{2 i}{n^{3} \pi^{3}}
$$

In the thalf range sine expansion $a_{n}=0$ for all in, and we have

$$
f^{\prime}(t)=0 \sum_{n=1}^{\infty} b_{0} \sin n \pi t
$$

where

$$
b_{n}=i\left(C_{n}-C_{-n}\right)=(-1)^{n}\left(\frac{2}{n^{\pi}}+\frac{4}{n^{3} \pi^{3}}\right)-\frac{4}{n^{3} \pi^{3}} \quad \text {, }
$$

or

$$
b_{n}=(-1)^{n} \frac{2}{n^{\pi}}+\left[(-1)^{n}-1\right] \frac{4^{4}}{n^{3} \pi^{3}}
$$

[^0]
Exercise 2

Find the complex fourier series expansion for the following periodic functions, where the definition over one period is given
a. $\quad f(t)=\left\{\begin{aligned} 2, & 0 \leq t<3 . \\ -2, & 3 \leq t<6 .\end{aligned}\right.$
b. $f(t)=\left\{\begin{array}{cl}\frac{1}{2} t, & 0 \leq t<2 \\ 2-\frac{1}{2} t, & 2 \leq t<4 .\end{array}\right.$

Exercise 3
Find the half range sine series expansion for the function $f(t)=\frac{1}{2} t, \quad 0 \leq t \leq 5$.
3.6 Example 6

Find the Fourier transform of the function

$$
f(t)= \begin{cases}1-t^{2}, \| & |t| \leq 1 \\ \mid 0, & |t| 21 .\end{cases}
$$

The process is the same as before: sketch the function and'its distinct nonzero derivatives, recording the relevant data on all jumps, (see Figure 9).

figure 9. The graphs of $f(t), f^{\prime}(t)$, and $f^{\prime \prime}(t)$ for Example 6, with information on jumps.

17

Applying Formula (11) and the
Figure 9, we obtain

$$
\begin{aligned}
F\{f(t)\} & =\frac{1}{(i \alpha)^{2}}\left(2 e^{1 \alpha}+2 e^{-i \alpha}\right)+\frac{1}{(1 \alpha)^{3}}\left(-2 e^{1 \alpha}+2 e^{-1 \alpha)}\right) \\
& =-\frac{2}{\alpha^{2}}\left(e^{1 \alpha}+e^{-1 \alpha}\right\}-\frac{2}{\alpha^{3}}\left(e^{1 \alpha \cdot} \cdot e^{-i \alpha}\right) \\
& =-\frac{4 \cos \alpha}{-\alpha^{2}}+\frac{4 \sin u}{s^{3}} .
\end{aligned}
$$

Exercise 4

Figure 10. Graph of the redefined $f_{(}(t)$ for Example 7.
For the following functions $f(t)$ find the fourier transform $F\{f(t)\}$:
a. $\quad f(t)= \begin{cases}1, & |t| \leq 2 \\ 0, & |t|>2 .\end{cases}$
b. $f(t)=\left\{\begin{array}{cc}1+t, & -1 \leq t \leq 0 \\ 1-t, & 0<t \leq 1 \\ 0, & |t|>1 .\end{array}\right.$

3.7 Example 7

Find the Fourier cosine transform of the function $f(t)=e^{-m t}$. We first note that by definition the.Fourier cosine transform of the given functioh is

$$
\int_{0}^{\infty} e^{-m t} \cos \alpha t d t=R \int_{0}^{\infty} e^{-i \alpha t} e^{-m t} d t=R F\{f(t)\}
$$

where $f(t)$ in the latter expression is redefined as
$f(t)\left\{\begin{aligned} e^{-m t}, & t & >0 \\ 0, & t & <0,\end{aligned}\right.$
and R denotes'the real part of the, transform. (See Figure 10.)

Figure 11. Graphs of the odd extension of $f(t)$ and its first derivative.

In this example, $2 p=4 \pi, p=2 \pi$, hence $\frac{p}{i n \pi}=\frac{2}{i n}$ Since $f^{\prime \prime}(t)=-f(t)$, we have by Formula (9)

Therefore,

$$
\dot{C}\left(\left(1-\frac{4}{n^{2}}\right) f(t \hat{j}\}^{\prime}=(-1)^{n} \frac{4 i}{n}-\frac{4 i}{n}\right.
$$

from which

$$
\mathcal{L} C\left\{f\left(t^{\prime}\right)\right\}=\left\{\begin{array}{cc}
-\frac{8 n i}{n^{2}-4}, & n \text { odd } \\
0, & \text { n even }
\end{array}\right.
$$

$$
\text { Site } 2 p=4 \pi
$$

$\cdot{ }^{1}$

$$
\begin{aligned}
C_{n} & =\because \frac{2 n i}{\left(n^{2}-.4\right) \pi}, \\
\cdots C_{-n} & =\frac{2 n i}{\left(n^{2}-4\right) \pi},
\end{aligned}
$$

so that
and

$$
f(\bar{t})=\sum_{n=1,3,5 \ldots \quad}^{\left(n^{2}-4\right) \pi} \sin \frac{n t}{2} .
$$

Examples and 8 illustrate that $1 t$ is pot necessary that $f(t)$ have some derivative which vanishes in order to apply the unified method'- it is' possible, to use this method also when there is an algebraic relationship between' $f(t)$ and its first few derivatives. This fact will be useful in some of the following exercises.

The next exercises rif 11 conclude the application portion of this unit. For those who wish to learn how the unified method can be derived, we carry out the derivation in the Appendix for the coefficient transform. Derivation of Formulas (9) and (11). can be carried•out in a similar way.

Exercise 5

Use the unified method to find the Laplace transform of $f(t)^{\prime}=e^{-2 t}$.

Exercise 6
Find the Laplace transform of the periodic square wave shown to the right. This problem will require an extension of the unified method to a where the number of jumps discontinuities in ${ }^{\prime} f(t)$

2. a. $f(t)=\sum_{n=-\infty}^{\infty} c_{n} e^{i n \pi t / 3}$, where

$$
C_{n}=\frac{2}{i n \pi}\left[1-(-1)^{n}\right] \text { for } n \neq 0, C_{0}=0
$$

$$
\text { b. } \quad f(t)=\sum_{n=-\infty}^{\infty} c_{n} e^{i n \pi t / 2} \text {, where }
$$

$$
\infty \quad c_{n}=\frac{1}{n^{2} \pi^{2}}\left[v(-1)^{n}\right] \text { for } \dot{n \neq 0}, c_{0}=\frac{1}{4}
$$

3. $f(t)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi t}{5}$, where $b_{n}=(-1)^{n+1} \frac{5}{-n \pi}$.
a. $\frac{2 \sin 2 \alpha}{\alpha}$.
b. $\frac{2}{\alpha^{2}}(1-\cos \alpha)$.
4. $L\left\{e^{-2 t}\right\}=\frac{1}{s}+\frac{1}{s} L\left\{-2 e^{-2 t}\right\}$, from which $L\left\{e^{-2 t}\right\}=\frac{1}{s+2}$.
5. $L\{f(t)\}=\frac{1}{s}\left(1-2 e^{-s}+2 e^{-2 s}-2 e^{-3 s}+\cdots\right)$

$$
\begin{aligned}
& =\frac{1}{s}\left(1-2 \frac{e^{-s}}{1+e_{-}^{-s}}\right) \\
& =\frac{1}{s} \tanh \frac{s}{f}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 1. a. } \frac{1}{s^{2}}-2 \frac{e^{-s}}{s^{2}}+\frac{e^{-2 s}}{s^{2}} \text {. } \\
& \text { ob. } \quad \frac{1}{s^{2}}-\frac{1}{s}+e^{-2 s}\left(\frac{1}{5} \cdot \frac{5}{s^{2}}-\frac{2}{s^{3}}\right)+e^{-3 s}\left(\frac{3}{s}+\frac{6}{s^{2}}+\frac{2}{s^{3}}\right) \cdot \\
& \therefore \text { c. } \frac{1}{s}-\frac{e^{-s}}{s^{2}}+\frac{2 e^{-2 s}}{s^{2}}-\frac{e^{-3 s}}{s^{2}} \text {. }
\end{aligned}
$$

Find the following transforms an k series expansions using the unified method.

1. Find the Laplace transform $L\{f(t)\}$ for the functions:

$$
\text { a. } \quad f(t)^{*}= \begin{cases}t^{2}, & * 0 \leq t \leq 1 \\ 1, & 1<t .\end{cases}
$$

b. $\quad f(t)=\cos t$.
2. Find the fouriertransform $F\{f(t)\}$ for the functions:

$$
\begin{aligned}
& \text { a. } \quad f(t)=\left\{\begin{array}{cc}
4-t^{2}, & |t| \leq 2 \\
0, & |t|>2 .
\end{array}\right. \\
& \text { ib. } \quad f(t)=e^{-2|t|,} \text { all. }
\end{aligned}
$$

- 3. Find the half range sine series for function

$$
f(t)=1-\frac{1}{2} t, \quad 0 \leq t \leq 1
$$

6. ANSWERS TO MODEL EXAM -
7. $\dot{a}=\frac{2}{s^{3}}-2 e^{-s}\left(\frac{1}{s^{2}}+\frac{1}{s^{3}}\right)-$
b. $\quad L\{\cos t\}=\frac{1}{s}+\frac{1}{s}\left(\frac{1}{s} L\{-\cos t\}\right)$, from which.

$$
L\{\cos t\}=\frac{s}{s^{2}+1}
$$

2. a. $\frac{4}{\alpha^{3}} \sin 2 \alpha-\frac{8}{\alpha^{3}} \cos 2 \alpha$:
B. $\quad F\left\{e^{-2|t|}\right\}=\frac{-4}{(i \alpha)^{2}}+\frac{1}{(i \alpha)^{2}} F\left\{4 e^{-2|t|}\right\}$, from which

$$
\cdot F\left\{4 e^{-2|t|}\right\}=\frac{4}{4+\alpha^{2}} .
$$

3. $f(t)=\sum_{n=1}^{\infty} b_{n}^{\prime} \sin n \pi t$, where

$$
b_{n}=\frac{1}{n \pi}\left(2+(-1)^{n+1}\right)
$$

7. APPFADIX: THI $M E$ HOD DERIVED

In this section we carry out the derivation of formula (9). The formal proof for a function with a finite number of jump discontinuities requires an induction argument, but the idea can be seen by considering a function if (t). with Jumps only at $t=0, t=2 p$ and one intermediate point $t=a$ (see Figure. Al). Thus we take $f(t)$ of. the form

$$
f(t)= \begin{cases}f_{1}(t), & \rho \leq t<a \dot{b} \\ f_{2}(t), & a<t<2 p\end{cases}
$$

Figure Al. Graph of $f(t)$ with one intermediate . discontinuity.

By thę definition of $\dot{C}\{f(t)\}$, (see Formula (5)),: we have.

$$
\therefore \quad C \notin f(t)\} \sim=\int_{0}^{a} \cdot e^{-i n \pi t / p} f_{1}(t) d t+\int_{a} n_{e^{-i n \pi}}
$$

We integrate by parts, with $u=f_{1}(t), f_{2}(t)$ and $d v=e^{-i n \pi t / p}$, so that du=f$f_{1}^{\prime}(t) d t, f_{2}^{\prime}(t) d t$ and - $v=-\frac{p}{i n \pi} e^{-i n n t / p}$. Thus

$$
\begin{aligned}
C\{f(t)\}= & \frac{p}{i n \pi}\left[-\left.f f_{1}(t) e^{-1 n \pi t / p}\right|_{0} ^{a}-\left.f_{2}(t) e^{-i n \pi t / p}\right|_{a} ^{2 n}\right] \\
& \quad+\frac{p}{i n \pi}\left[\begin{array}{l}
f_{0} a e^{-1 n \pi t / p_{f}} e_{1}^{\prime}(t) d t+\int_{a}^{2 p} e^{-1 n \pi t / p_{f}} f_{2}^{\prime}(t) d t
\end{array}\right]
\end{aligned}
$$

${ }^{\circ} C\{f(t)\}=\frac{p}{i n \pi} \sum_{k=0}^{M} M_{k} e^{-i n \pi a_{k} / p}+\frac{p}{i n \pi} C\left\{f^{\prime}(t)\right\}$, where $\|_{k}$ is the signed jump at a_{k}.

$$
\begin{align*}
C(f(t)\}= & \frac{p}{i n \pi}\left\{f_{1}(0)+\left[f_{2}(a+)-f_{1}(a-)\right] e^{-i n \pi a / p} \cdot f_{2}^{\circ}(2 p)\right\} \\
& +\frac{p}{i n \pi} \int_{0}^{2 p} e^{-i n \pi t} f^{\prime}(t) d t, \tag{AI}
\end{align*}
$$

- Since $e^{-i n \pi t / p}=1$ for $t=i p$. Let $M_{0}, M_{a}, M_{2 p}$ denote the "jumps" in"f(t) as shown in Figure Al; moreover we assume that the value is positive when the jump is up anci negative when down. (Thus, for the function pictured in
- Figure $\left.\cdot A 1, M_{0}>0, M_{a}>0, M_{2 p}<0.\right)$ We may therefore write
the expression $(A 1)^{\text {a }}$ as.
$\left.(A 2)^{\prime} C\{f(t)\}=\frac{p o}{i n \pi} \cos _{0}+M_{a} e^{-i n \pi a \%}+M_{2 p}\right\}+\frac{p}{i n \pi} C\left(f^{\prime}(t)\right\}$.
stis
The first term in $(A 2)$ is more systematic that it appears, since $\underset{\sim}{r} t, c a n \cdot{ }^{\prime} e^{\prime}$ Written ${ }^{\prime} \cdot s^{\prime}$

$$
M_{0} e-i n_{!} \pi / p+M_{a} e^{-i n \pi a / p}+M_{2 p} e^{-i n \pi 2 p / p}
$$

Thus, in actuality, each signed jump is multiplied by, the exponential $e^{-i n \pi t / p}$ evaluated at the value of t where the jump is made, and the resulting products are summed. Finally, as may be verified by an easy induction argument, wheno $a_{0}=0, a_{m}=2 p$, and the function $f(t)$ has $m-1$ jump discontinuities in between, at $a_{1}, \because \because, a_{m-1}$, we have
'Student: If you have trouble with a specific part of this unit, please fill out this form and take it to your instructor for assistance. The information you give will help the author to revise the unit.
Your Name \qquad

Description of Difficulty: (Please be specific)
Unit No. \qquad

Name \qquad三 .Unit No. \qquad Date \qquad
Institution \qquad Course No. \qquad
Check the choice for each question that comes closest, to your personal opinion.

1. How useful was the amount of detail in the unit?

Not enough detail to understand the unit
___Unit would have been ${ }^{\circ}$ clearer with more detiail
__Appropriate amount of detail
Unit was occasionally too detailed, but this was not diostracting
\ldots Tòo much detail; I was often distracted
2. How helpful were the problem answers?

Sample solutions were too brief; I could not do the intermediate steps Sufficient information was given ta solve the problems. Sample solutions were too detailed; I didn't need them
3. Except for fulfilling the prerequisites, how much did you use other sources (for example, instructor, friends, or other books) in order to understand the unit?
\qquad A Lot (r Somewhat \qquad A Little Not at all
"4. How long was this unit'in cömparison to the amount of time you generally spend on a lesson (lecture, and homework assignment) in a typical math or science course?
$\begin{array}{r}M \\ \mathrm{~L} \\ \hline\end{array}$
Much . Somewhạt . \qquad About, \qquad Somewhat
Much Longer Longer the Same Shorter Shorter
5. Were any of the following parts of the unit confusing or distracting? (Check as many as apply.)

Prerequisites
Statement of skills and concepts (objectives)
Paragraph headings
Examples
Special Assistance Supplément (if present)
Other, please explain
6. Were any of the following parts of the unit particularly helpful? (Check as many as apply.)

Prerequisites
Statement of skills and concepts (objectives)
Examples
Prob'lems
___Paragraph headings
Table of Contents
Special Assistance Supplement (if present)
Other, please explain
Please describe anything in the unit that you did not particularly like.

Please describe anything that you found particularly helpful. (Please use the back of this sheet if you need more space.)

umap

AN INVERSION METHOD FOR LAPLACE TRANSFORMS, FOURIER TRANSFORMS, AND FOURIER SERIES
by C.A. Grımm

.
\because

- INTEGRAL TRANSFORMS AND SERIES EXPANSION

AN INVERSION METHOD IOR LAPLACE TRANSFORMS, FOURIER TRANSFORMS, AND FOURIER SERIES
by

Department of Mathematics
South Dakota School of Mines and Technology Rapid City, South Dakota 57701

TABLE OF CONTENTS

1. INTRODUCTION . 1
2. inverse laplace transforms 2
3. INVERSE FOURIER TRANSFORMS 6
4. inverse coefficient transforms 8
5. MODEL EXAM 22
6. ANSWERS to eXERCISES . 23
7. answers to mooel exam 24

Title: AN INVERSION METHOD FOR LAPLACE TRANSFORMS, FOURIER TRANSFORMS, AND FOURIER SERIES

Author:

C.A. Grimm

Department of Mathematics
South Dakota School of Mines and Technology
Rapid City, Souttr Dakota 57701
Classification: INT TRANS \& geries Exp
Reyiew Stage/Date: 111 12/1/78

Prerequisite Skills:

1. Differentiate and integrate elementary functions.
2. Sketch graphs of elementary functions.
3. Use Euler's formula.
4. Have a basic understanding of integral transforms and orthogonal functions
5. Identify odd and even functions.
6. Identify piecewise continuous functions
7. Apply basic theorems on uniformly convergent series of functions.

Output Skills:

1. Use the method described in this unit to find a function $\dot{f}(t)$ when given
a) the Laplace transform $L\{f(t)$
b) the Fourier transform $\mathrm{F}\{\mathrm{f}(\mathrm{t})\}$
c) the coefficient transform $\mathrm{C}\{\mathrm{f}(\mathrm{t})\}$
d) the Fourier series expansion of $f(t)$.

Other Related Units:
A UNIFIED METHOD OF FINDING LAPLACE TRANSFORMS, FQURIER TRANSFORMS, AND-FOURIER SERIES (Unit 324)

33

(C) 1978 EDC/Project UMAP

Aly rights reserved.

MODULES AND MONOGRAPHS IN UNDERGRÁDUATE MATHEMATICS AND ITS APPLICATIONS PROJECT (UMAP)

The goal of UMAP is to develop, through a community of users and developers, a system of instructional modules in undergraduate mathematics and its applications which may be used to fupplement existing courses and from which complete courses may eventually be built.

The Project is guided by a National Steering Committee of mathematicians, scientists and educators. UMAP is funded by a grant from the National Science Fóundation to Education Development Center, Inc., 'a publicly supported, nonprofit' corporation engaged in educational research in the U.S, and abroad.
PROJECT STAF́F

Ros's L. Finney
Solomon Garfunkel
Felicia DeMay Weitzel
Barbara Kelczewski
Dianne Ladly
Paula M. Santillo
national steering committee
W.T. Martin

Steven J. Brams
Llayron Clarkson
Ernest J: Henley
Donald A. Larson
William F. Lucas.
R. Duncan Luce

George Miller
Frederick Mosteller
Walter E. Sears
George Springer
Arnold A. Stràssenburg
Alfred B. Willcox

Director

Associate Director/Consortium Coordinator
Associate Director Eor Administration Coordinator for Materials Production Project Secretary
Financial Assistant/Secretary

The Project would like to thank members of the UMAP Analysis and Computation Panel, Carroll O. Wilde, Chairman, Richard J. Allen, Louis C. Barrett, G.R. Blakely, and B. Roy Leipnik, for their reviews and all others who assisted in the production of this unit.

This material was prepared with the support of National Science foundation Grant No. SED76-19615 A02. Recommendations expressed are those of the author and do not necessarily reflect the views of the NSF nor of the National Steering Committee.
it does offer most of the same ordvantages listed in Unit fer far the unified (forward) method.

In Unit zew we pesented a untaed wedrod finding Laplase tansforms, Fourier trystorms, and Fourier seriés The prexentintas a equel to: Unit 324, and we shafi freemearmover the notation and terminology used there the particuar, we are concerned primarily with the transforms $L(f+t)$, $\mathrm{F}\{\mathrm{f}(\mathrm{t}) \mathrm{k}$, and $\mathrm{C}\{\mathrm{f}(\mathrm{t})\}$.

Some apphedotrohlems require only the use of the forward transforms. In such problems, the calculation of the transform represents passage from time domain to the frequency domato nd the int mation obtaned by sudyth frequency-réated properties is all-that is reguired other problems (such as solution of dufecential equations by transförm techniques), however, reqüire determination of inverse transforms; that is, recovery of $f(t)$ from Lif(t)\} or from $F\{f(t)\}$.

In this unit we build-upon the ideas presented in Unit 324 to attack the problem of finding a function from its given transform or series expansion. Given a trans'form $L\{f(t)\}, F\{f(\dot{t})\}$ or $C\{f(t)\}$ we attempt to reconstruct first the derivatives of $f(t)$, and finally f (\$self, by reversing the process used to find the forward transform. Since the forward process is based on integration by parts, the method is generally applicable. Hence the inverse methods presented here are also generally applicable .. theoretically!! The problem, is primarily that in finding a forward transform we may cancel terms which," if present, would provide clues to the nature of the derivative. For this reason, the inverse process does require patience and practice; nevertheless

2. INVERSE IAPLACE TRANSFORMS

The process, wrill be developed by examplesa 'Agana; it is assumed that you, are familar with the uniffed "method presented-in Unit 324:

Example 1

-Suppose we wish to find $f(t)$ if

$$
\therefore L(f(t)\}=\frac{2}{s} e^{-3 s}-\frac{2}{s} e^{-4 s} .
$$

- We first note that the right side can be written in slightly more revealing form as

$$
2\left(\frac{1}{s}\right) e^{-3 s}-2\left(\frac{1}{s}\right) e^{-4 s}
$$

The factor $\frac{1}{s}$ in each term indicates a jump in the function $f(t)$, the multipliers 2 and -2 show the magnitude and the direction of each jump and, finally, the factors $e^{-3 s}$ and $e^{-4 s}$ show that the jumps 'occur at $t=' 3$ and $t=4$. Therefore the function must be given by

$$
f(t)= \begin{cases}2, & 3<t<4 \\ 0, & \text { elsewhere }\end{cases}
$$

(See Figure 1.)

Figure 1.: The graph of $f(t)$ for Example 1 .

Example 2

Find $f(t)$, if

$$
L(f())=e^{-s}\left(\frac{2}{s^{3}}+\frac{2}{s^{2}}+\frac{2}{s}\right)+e^{-2 s} \cdot 5\left(-\frac{2}{s^{3}}-\frac{5}{s^{2}}-\frac{3}{s}\right)+\frac{e^{-4 s}}{s^{2}} .
$$

The exponentialsoe $e^{-s}, e^{-2 s}$, and $e^{-4 s}$ tell us to look for jumps at $t=1,2$, and 4 , so we must, watch these positions. However, we begin construction of the function with the terms $2\left(1 / \dot{s}^{3}\right) e^{-s}$ and $-2\left(2 / s^{3}, e^{-2 s}\right.$, which indicate jumps of $\uparrow 2$ at $t=1$ and +2 at $t=2$ in the second derivative. 'Hence, we have

$$
f^{\prime \prime}(t)= \begin{cases}2, & 1^{\prime}<t<2 \\ 0, & \text { elsewhere }\end{cases}
$$

às shown in Figure 2.

Figure 2. Graph of $f^{\prime \prime}(t)$ for Example 2.

By integrating $f "(t)$ we obtain the following expression

$$
f:(t)= \begin{cases}C_{1}, & 0<t<1 \\ 2 t+C_{2}, & 1<t<2 \\ C_{3}, & 2<t\end{cases}
$$

where $C_{1}, \dot{C}_{2}, C_{3}$ are constants. to be determined.
Now the detective story begins! We must look to $L(f(t))$ to evaluate these constants. Since there is no term of the form

$$
\text { . } \quad \frac{1}{s^{k}}=\frac{1}{s^{k}} e^{-0 s},
$$

e there can be no jump in $f(t)$ or any of its derivatives at the origin, so $C_{1}=0$. The term $2\left(1 / s^{2}\right) e^{-s}$ reveals a jump̀ of $\uparrow 2$ in $f^{\prime}(t)$. at $t=1$ and since $C_{1}=0$, we must have

$$
2=f^{\prime}(1)=2+C_{2},
$$

from which $C_{2}=0$. Next, the term $-5\left(1 / s^{2}\right) e^{-2 s}$ shows a Jump of +5 at $t=2$. But $f^{\prime}(t)=2 t$ to the left of $t=2$, and $f^{\prime}(t)=C_{3}$ to the right of $t=2$. Hence at $t=2$ we jump 5 units from 4 down to C_{3}, so that $C_{3}=-1$. Finally, the term $1\left(1 / \mathrm{s}^{2}\right) \mathrm{e}^{-4 \mathrm{~s}}$ is consistent with the value $C_{3}=-1$, since it shows a unit jump back to the $t-a x i s$ at $t=4$. Therefore

$$
f^{\prime}(t)=\left\{\begin{aligned}
2 t, & 1<. t<2 \\
-1, & 2<t<4 \\
0, & \text { elsewhere }
\end{aligned}\right.
$$

(Figure 3).

Figure 3. Graph of $f^{\prime}(t)$ for Example 3.
While the above explanation of how to find $f^{\prime}(t)$ may seem complicated, in actuality by observing the transform carefully and proceeding from left to right, we can (after a little practice) sketch f'(t) section by section rather quickly. We illustrate by obtaining $f(t)$ from $f^{\prime}(t)$ graphically. The result. is (See Figure 4):

$$
f(t)= \begin{cases}t^{2}+1, & 1<t<2 \\ 0, & 2<t<4 \\ 0, & \text { elsenhere } \\ 2\end{cases}
$$

Figure 4. Graph of $f(t)$ for Example 3.

- The result was obtèined sectión by section, as follows. First, we have previously observed that $f(t)=0$ for $0<t<1$. Then, from the graph of $f^{\prime}(t)$ we obtain $f(t)=t^{*}+b_{1}$ for $1<t<2$, but the term $2(1 / s) e^{-s}$ indicates a jump of $\uparrow 2$ at $t=1$. Hence, $2 \equiv f(1+)=1+b_{1}$, so that $b_{1}=1$, and $f(t)=t^{2}+h_{1}$. Now for $2<t<4, \cdots, \quad$, the graph of $f^{\prime}(t) y i e l d s f(t)=-, t+b_{2}$, and the term $-3(1 / s) e^{-2 s}$ yields a jump of +3 at $t=2$. Since
$f(2-)=5\left(\right.$ from $\left.t^{2}+1\right)$, and $f(2+)=-2+b_{2}$, we
have' $3^{\prime}=5-\left(-2 \pm \mathrm{b}_{2}\right)$, from which $\mathrm{b}_{2}=4$ and $f(t)=-t+4$.for $2<-t<4$. Since there is no jump in $f(t)$ at $t=4$ we have $f(t)=0$ for . $t>4$.

Exercise 1

For eack of the following, find $f(t)$ from the given expression for $L\{f(t)\}$:
ad. $\frac{1}{5} e^{-5}$;
b) $\frac{2}{s} e^{-5}-\frac{1}{5} e^{-3 s}$;

4
c) $\frac{2}{s}+e^{-2 s}\left(\frac{1}{2 s^{2}}-\frac{4}{5}\right)$,
d) $e^{-2 s}\left(-\frac{3}{s}-\frac{5}{s^{2}}-\frac{2}{s^{3}}\right)+e^{-6 s}\left(\frac{2}{s}+\frac{1}{s^{2}}\right)+\frac{1}{s}+\frac{2}{s^{3}}$.

3. INVERSE FOURIER TRANSFORMS

. He lllustrate the procedure for finding the inverse Fourier transform by an example. Again, a familiarity with the forward transform from Unit 324 is assumed.

Example 3

Suppose we wish to find $f(t)$, if

$$
F\{f(t)\}=\frac{2}{\alpha^{2}}(-i+\cos \alpha)+\frac{2}{\alpha} \sin \alpha
$$

Wegin by converting $F\{f(t)\}$ to exponential form so that we can rdentify the location, magnitude and direction of all jumps. Hence we have

$$
F\{f(t)\}=\frac{1}{\alpha^{2}}\left(e^{i \alpha}+e^{-i \alpha}\right)-\frac{2}{\alpha^{2}}+\frac{1}{i \alpha}\left(e^{i \alpha}-e^{i i \alpha}\right)
$$

We now recall that information on jumps for the forward transform is recorded in terms of powers, of. $1 / i \alpha$; hence we must make a further adjustment to obtain

$$
\begin{aligned}
\therefore F\{f(\tau)\}= & e^{i \alpha}\left(-\frac{1}{(i \alpha)^{2}}+\frac{1}{i \alpha}\right)+\frac{2}{(i \alpha)^{2}} \\
& +e^{-1 \alpha}\left(-\frac{1}{(i \alpha)^{2}}-\frac{1}{i \alpha}\right)^{\prime}
\end{aligned}
$$

The terms

$$
-\frac{1}{(\mathrm{i} \alpha)^{2}} \mathrm{e}^{\mathrm{i} \alpha}, \frac{2}{(\mathrm{i} \alpha)^{2}},-\frac{1}{(\mathrm{i} \alpha)^{2}} \mathrm{e}^{-\mathrm{i} \alpha}
$$

indicate jumps of $\downarrow 1$ at $t=-1,+2$ at $t=0$, and $\downarrow 1$,
at. $t=1$. Hence we may now sketch the graph of $f^{\prime}(t)$
(Figure 5). Then working from left to right as'before,

Figure 5. Graph of $f^{\prime}(t)$ for Example 3.
we find firsis thät $f(t)=-t+C_{1} ;-1<t<0$. But the term $\frac{1}{i \alpha} e^{i \alpha}$ shows a jump of 11 ir $f(t)$ at $t=-1$; hence $f(-1+)=1 \pm C_{1}$, from which $C_{1}=0$: For $0<t<1$, $f(t)=t+C_{2}$; but the term $-\frac{1}{i \alpha} e^{-i \alpha}$ shows a jump of $\downarrow 1$ in $f(t)$ at $t=1$, and in addition, no jump in $f(t)$ is indicated $t=0$. Therefore, $C_{2}=0$; hence we obtain.

$$
f(t)=\left\{\begin{aligned}
|t|, & |t|<1 \\
0, & |t|>1
\end{aligned}\right.
$$

(See Figure 6.)

Figure 6. Graph of $f(t)$ for Example. 3.

Exercise 2
For each of the following, find $f(t)$ from the given expression for $F\{f(t)\}$:
a. $\frac{1}{\alpha}\left(i \cos 2 \pi \alpha-\sin 2 \pi \alpha^{\prime}-i\right)$;
b. $\quad \frac{2 i}{\alpha^{2}}(\sin \alpha-\sin 2 \alpha)$;
$\therefore \quad \therefore 0 \frac{2}{\alpha^{3}}\left(\alpha^{2} \sin \alpha+2 \alpha \cos \alpha-2 \sin \alpha\right) . \quad$.
4. INVERSE COEFFICIENT TRANSFORMS

For our final examples we shall find the "inverse" of three Fourier series, That is, the problem we solve is the following: given a Fourier series, find the function to which the series converges. Those of you who are familiar with Fourier series may well be surprised to learn that this problem may have a reasonable solution.

* The problem of recovering a fundtion from its Fourier series representation may well require con-siderable ingenuity, iffight and, perhaps, even some experimentation. The reason for this is three-fold. The first reason is the nature of the expansion itself -- very simple functions may yield expansions with coefficients of considerable complexity. Thesecond difficulty arises from the terms of the form

$$
e^{-i n \pi a_{k} / p}
$$

[see formula (9) of Unit 324]. The problem is that for $a_{k}=80$ and for $a_{k}=2 p$, we have

$$
e^{-i n \pi \dot{a}_{k} / p}=1
$$

Therefore, we may not know whether the jump is at $t=0^{\circ}$
or at $t=2$, or perhaps both. Similarly, if terms of the form $(-1)^{n}$ occur in the expansion, we may have either $a_{k}=-p$ or $a_{k}=p$, sincée $(-1)^{n}=\cos n \pi=e^{i n \pi}$ $=e^{-i n \pi}$. Therefore, in this case the, actual integration in $C\{f(t)\}$ would have been from $t=-p$ to $=p \quad$ But again, we may not know whether the jump was at p or at p .

The third difficulty is related to the second. Since the exponentials involved are equal at the end points of the interval in question, it follows that if the corresponding coefficients are equals in magnitude but opposite in sign, then the sum of these terms will vanish! Hence, we may be looking at a situation in which there is actualy a jump present, but no indication of it. It may well require some patience to overcome these difficulties!

Example 4

Suppose we wish to find the function $\dot{f}(t)^{*}$ whose Fourier series expansion is

$$
\begin{aligned}
& \frac{8}{3}+\sum_{n=1}^{\infty}\left[\frac{3}{n^{2} \pi^{2}}\left(\cos \frac{4 n \pi}{3}-1\right) \cos \frac{2 n \pi t}{3}\right. \\
& \left.+\left(-\frac{4}{n^{2}}+\frac{3}{n^{2} \pi^{2}} \sin \frac{4 n \pi}{3}\right) \sin \frac{2 n \pi t}{3}\right]
\end{aligned}
$$

We observe immediately that

$$
a_{0}\left(=\frac{10}{z^{3}}\right.
$$

and for $\mathbb{N}=1,2,3, \ldots$ we have

$$
\begin{aligned}
a_{n} & =\frac{3}{n^{2} \pi^{2}}\left(\cos \frac{4 n \pi}{3}-1\right) \\
b_{n} & =\left(-\frac{4}{n^{\pi}}+\frac{3}{n^{2} \pi^{2}} \sin \frac{4 n \pi}{3}\right)
\end{aligned}
$$

The approach we use is: first find C_{n}, next find $C\{f(t)\}$, and then recover the function $f(t)$. Since,

$$
c_{n}=\left(a_{n}-i b_{n}\right) / 2 \quad \text { (formula (8) from Unit 324) }
$$

we have

$$
\text { a } \begin{aligned}
C_{n} & =\frac{1}{2}\left[\frac{3}{n^{2} \pi^{2}}\left(\cos \frac{4 n \pi}{3}-i \sin \frac{4 n \pi}{3}\right)-\frac{3}{n^{2} \pi^{2}}+\frac{4 i}{n \pi}\right] \\
& =\frac{1}{2}\left(\frac{3}{n^{2} \pi^{2}} e^{-4 n \pi i / 3}-\frac{3}{n^{2} \pi^{2}}+\frac{4 i}{n \pi}\right) .
\end{aligned}
$$

From the general form of the Fourier expansion we obtain that for this example

$$
\cos \frac{n \pi t}{p}=\cos \frac{2 n \pi t}{p}
$$

from which

we have

$$
C\{f(t)\}=\frac{9}{2 n^{2} \pi^{2}} \cdot e^{-4 n \pi / 3}-\frac{9}{2 n^{2} \pi^{2}}+\frac{6 i}{n \pi}
$$

Because the coefficients in the C-transform involve powers of $\frac{p}{i n \pi}=\frac{3}{2 i n \pi}$ and exponentials of the form ,
$e^{-i n \pi a_{k} / p}$
e k, we write

$$
C\{f(t)\}=-2\left(\frac{3}{2 i n \pi}\right)^{2} e^{-\frac{2 i n \pi}{3} \cdot 2}+\left(\frac{3}{2 \operatorname{in} \pi}\right)^{2}=4\left(\frac{3}{2 i n \pi}\right)
$$

The first term indicates a jump of-2 in the first derivative, $f^{\prime}(t)$, at $t=2$. The second term is the bothersome one -- it could indicate a jump of $\uparrow 2$ at $t=0$ or a jump of $\uparrow 2$ at $t=2 p=3$, or it could be the result of a combination of.jumps at both places.

In order to allow for the various possibilities, we write for one period:

$$
f^{\prime}(t)=\left\{\begin{array}{cl}
2-a, & 0<t<2 \\
-a, & 2<t<3
\end{array}\right.
$$

(See Figure ?.) From the expression for f'(t) we

Figure 7. Graph of $\mathrm{f}^{\prime}(\mathrm{t})$ for Example 4.
obtain for one period:

$$
f^{\prime}(t)= \begin{cases}(2-a) t+b, & 0<t<2 \\ -a t+c, & 2<t<\mathbf{3} .\end{cases}
$$

The expression for $C\{f(t)\}$ above shows no jump in $f(t)$ at $t=2$, and therefore the left and right sections of $f(t)$ agree at $t=2$. Thus,

$$
-(2-a)(2)+b=(-a)(2)+c
$$

from which

$$
c=b+4
$$

The last term in the expression for $C\{f(t)\}$ could arise from a jump of +4 at $t=0$ or at $t=3$, or from a combination of jumps at both ends. Now observe that the jump at $t=0$ is $f(0+)$ and the jump at $t=3$ is

$$
A 1
$$

-f(3-). Since these jumps must combine to produce "the value -4 , we have

$$
\begin{aligned}
-4=f(0)-f(3) & =b-(-3 a+c) \\
& =(b-c)+3 a \\
& =-4+3 a,
\end{aligned}
$$

from which

$$
a=0
$$

So far we have for one period

$$
f(t)= \begin{cases}2 t+b, & 0<t<2 \\ b+4, & 2<t<3 .\end{cases}
$$

Finally, since

$$
a_{0}=\frac{16}{3}=\frac{1}{p} \int_{0}^{2 p} f(t) d t
$$

we have

$$
\frac{16}{3}=\frac{2}{3}\left[\int_{0}^{2}(2 t+b) d t+\int_{2}^{3}(b+4) d t\right]
$$

from which

$$
\begin{aligned}
8 & =\left[t^{2}+b t\right]_{0}^{2}+[(b+4) t]_{3}^{2} \\
& =8+3 b
\end{aligned}
$$

so that

$$
b=0
$$

Hence the given series converges to a function of period 3 whose definition for one period is

$$
f(t)=\left\{\begin{array}{lc}
2 t, & 0<t<2 \\
4, & 2<t<3
\end{array}\right.
$$

(See Figure 8.)

Figure 8. Graph of $\dot{f}(t) \dot{f}$ for Example 4.

Exampie 5

$\%$

Suppose we wish to find the function $f(t)$ whose Fourier series expansion is given by

$$
f(t)=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{12}{n^{-3} \pi^{3}} \sin n \pi t .
$$

We first note that from the given expansion, $a_{n}=0$ for $n_{0}=0,1,2, \ldots$, so that $f(t)$ is an odd function. In addition, from the terms $\sin n \pi t$ we have $p=1$, hence $f(t)$ has period 2, and we must find an expression for, $f(t)$ over any interval of length 2 ; we choose $-1 \leq ' t \leq 1$.

Next we find C_{n} :

$$
c_{n}=\frac{1}{2}\left(a_{n}-i b_{n}\right)=\frac{(-1)^{n+1}(-b i)}{i n^{3} \pi^{3}}=\frac{6(-1)^{n}}{(i n \pi)^{3}}
$$

Therefore,

$$
C\{f(t)\}=2 p C_{n}=\frac{12(-1)^{n}}{(\operatorname{in} \pi)^{3}}
$$

In general, we must express $C\{f(t)\}$ in powers of $p / i n \pi=1 / i n \pi$, but this task is already accomplished here. The single $t \in r n$ in $C\{f(t)\}$ indicates a jump of
magnitude 12 in $f^{\prime \prime}(t)$, and the factor $(-1)^{n}=e^{i n \pi}$ $=e^{-1 n \pi}$ shows that the jump is at $t=1$ or $t=-1$ or that, perhaps, the whole term results from a combination of jumps at both ends. However, a little reflection shows that we simply cannot have a positive jump at just one end of the interval $-1 \leq t \leq 1$ or, for that matter, any combination of ojumps at both ends with sum total positive if, after a jump is made the function remains constant until the next. jump.

The following function is a possibility for $f^{\prime \prime}(t)$ and we take it as our startifg point:
$f^{\prime \prime}(t)=-6 t+a, \quad-1<t<1 \ldots$
(See Figure 9.) If we try the above function for

Figure 9. Craph of a possible f" (t) for Example 5 .
reduces to zero. Because of this cancellation the jumps made by $f=\left(x_{t}\right)$ ape idst from view in the transform

We prodeed from our point of departure. From the expression for $f^{\prime \prime}(t)$ we obtain

$$
f^{\prime}(t)=-3 t^{2}+a t+b
$$

To evaluate the constants it helps if we know as much about the nature of the function as posible. The following argument will be very useful.

Both the series

$$
\sum_{n=1}^{\infty}(-1)^{n} \sqrt{6} \frac{12}{n^{3} \pi^{3}} \sin n \pi t
$$

and the series of its derivatives with respect to t

$$
\sum_{n=1}^{\infty}(-1)^{n+1} \frac{12}{n^{2} \pi^{2}} \cos n \pi t
$$

converge uniformly by the Weienstrass M-test, applied with the series of constants

$$
\quad \frac{12}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{n^{3}}, \cdot \frac{12}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{n^{2}},
$$

, respectively, used for comparison. Since the sum of a uniformly convergent series of continuous functions is continuous, we have continuity of $f(t)$. In addition, since the series for $f(t)$ converges and the series of derivatives converges uniformly, we have that

- $\quad f^{\prime}(t) \cdots=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{12}{n^{2} \pi^{2}} \cos n \pi t$,
and hence $\mathrm{f}^{\prime}(\mathrm{t})$ is also continuous.
Now, thare are two easy arguments we can use to find the constant a.in $f^{\prime}(t)$. First, since $f^{\prime}(t)$ is given by, a cosine series, it is an even function,

 - 15
and hence $a=0$. An alternative argument which is also useful in general is that by cont nuity and periodicity we have

$$
f^{\prime}(-1)=\hbar^{\prime}(1)
$$

- so that

$$
-3-a+b=-3+a+b
$$

from which $a=0$. Hence, either way we fand

$$
f(t)=-t^{3}+b t+c
$$

Similarly, to find c we may observe that $f(t)$ is an odd function, so that $c^{\prime}=0$. We could also argue that since $f(t)$ is a sine series, we must have $f(0)=0$, from which $c=0$. Finally, to find b, we observe that by the Teries definition of $f(t)$ and its continuity, which precludes jumps from one period to the next, we have $f(1)=0$, hence $-1+b=0$, and $b=1$. Aiter . natively, by the continuity and the periodicity of - $f(t)$ wel have $f(-1)=f(1)$, so that

$$
1-\dot{b}=-1+b, \text { and } b=1
$$

Thus, for one period

$$
f(t)=-t^{3}+t, \quad-1 \leq t \leq 1
$$

(See Figure 10.)

Figure 10 , Graph of $f(t)$ for Examples.

- 16

Example 6

Suppose we wish to. find the function $f(t)$ whose Fourier series expansion is given by

$$
f(t)=\frac{8}{\pi^{2}} \cdot \sum_{n=1,3,5 \ldots} \frac{(-1)^{(n-1) / 2}}{n^{2}} \sin n t .
$$

We first note that $n \pi t / p=n t$, from which $p=\pi$, $2 p=2 \pi$. In addition, $a_{n}=0$ for $n=-0,1,2, \ldots$, so that $f(t)$ is an odd function. The coefficients b_{n} are given by

$$
b_{n}= \begin{cases}\frac{8}{n^{2} \pi^{2}}(-1)^{(n-1) / 2}, & n \text { odd } \\ 0, & \cdot\end{cases}
$$

Sínce

$$
c_{n}=\frac{1}{2}\left(a_{n}-i b_{n}\right)
$$

we have

$$
C_{n}= \begin{cases}-\frac{4 i}{n^{2} \pi^{2}}(-1)^{(n-1) / 2}, & n \text { odd } \\ 0, & n \text { even }\end{cases}
$$

from which

$$
C\{f(t)\}=2 p C_{n}= \begin{cases}-\frac{8 i}{n^{2} \pi}(-1)^{(n-1) / 2}, & n \text { odd } \\ \prod^{,} & n \text { even. }\end{cases}
$$

Since the transform coefficients in formula (9) of ' Unit 324 are expressed in powers of $p / i n \pi$, we rewrite the preceding expression in the form

5i)

$$
C\{f(t)\}= \begin{cases}\left(\frac{\pi}{i n \pi}\right)^{2} \cdot \frac{8 i}{\pi}(-1)^{(n-1) / 2}, & n \text { odd } \\ 0, & n \text { even }:\end{cases}
$$

We now face the crucial problem ff finding the way in which the two distinct expressions (for the odd and the even coefficients) in $C\{f(t)\}$ can be unified into a single form. Your ability to make this step requires careful observation in working with the forward trans form, and with trigonometric' functions in general. We simply note the result

$$
(-1)^{(n-1) / 2 r}=\sin \frac{n \pi}{2}, \quad n=1,2,3, \ldots
$$

(Check out a few values of n for yourself!) We therefore have

$$
C\{f(t)\}=\left(\frac{\pi}{i n \pi}\right)^{2}, \frac{8 i}{\pi} \sin \frac{n \pi}{2}, \quad n=1,2,3,
$$

We now convert to exponential form:

$$
C\{f(t)\}=\left(\frac{\pi}{i n \pi}\right)^{2} \frac{4}{\pi}\left(e^{i n \pi / 2}-e^{-i n \pi / 2}\right)
$$

With $p=\pi$, we now obtain the coefficient transform in the form of (9.) from Unit 324 :

$$
C\{f(t)\}=\left(\frac{\pi}{\operatorname{in} \pi}\right)^{2}\left(\frac{4}{\pi} e^{-\operatorname{in} \pi(-\pi / 2) / \pi}-\frac{4}{\pi} e^{-\operatorname{in} \pi(\pi / 2) / \pi}\right)
$$

This form reveals jumps of $\uparrow 4 / \pi$ at $-\pi / 2$ and $+4 / \pi$ at $\pi / 2$ in the first derivative $f^{\prime}(t)$. However, we must also be alert to pos ble cancellation of terms, especially at $-\pi$ and π. The simplest type of function whose behavior agrees with what we have so far is one with derivative of the form

$$
5 i
$$

$$
f^{\prime}(t)= \begin{cases}a, & -\pi<t<-\pi / 2 \text { and } \pi / 2<t<\pi \\ \frac{4^{\circ}}{\pi}+a, & -\pi / 2<t<\pi / 2\end{cases}
$$

(See Figure 11. We note that because the period is π, and contributions at $-\pi$ and π would cancel:

$$
a e^{i n \pi}-a e^{-i n \pi}=0
$$

Such cancellation does not occur at $\pi / 2$. ')

Figure 11. A possible form of $f^{\prime}(t)$ for Example 6.

Proceeding from our, point of departure, we have

$$
f(t)= \begin{cases}a t+b, & -\pi<\pi<-\pi / 2 \\ \left(\frac{4}{\pi}+a\right) t+c, & \because \pi / 2<t<\pi / 2 \\ a t+d, \quad . & \pi / 2<t<\pi .\end{cases}
$$

To evaluate the constants, we first apply the M-test (as in Example 5), iusing $\left(8 / \pi^{2}\right) \sum_{n=1,3,5 \ldots}^{\sum} 1 / n^{2}$ for comparison to see that $f(t)$ is continuous everywhere.
, Again, we illustrate two alternative methods for determining the constants.

First, since $f(t)$ is an odd function, $f(-t)=-f(t)$, so that

$$
f(-t)= \begin{cases}-a t+b, & -\pi<-t<-\pi / 2, \text { 1.e., } \pi / 2<t<\pi \\ -\left(\frac{4}{\pi}+a\right) t+t, & -\pi / 2<-t<\pi / 2, \text { i.e., }-\pi / 2<t<\pi / 2 \\ -a t+d, & \pi / 2<-t<\pi, \text { i.e., }-\pi<t<-\pi / 2\end{cases}
$$

$$
=-f^{\prime}(t)= \begin{cases}-a t-b, & -\pi<t<-\pi / 2 \\ -\left(\frac{4}{\pi}+a\right) t-c, & -\pi / 2<t<\pi / 2 \\ -a t-d, & \pi / 2<t<\pi\end{cases}
$$

from which

$$
\mathrm{b}=-\mathrm{d} \quad \text { and } \quad \mathrm{c}=0
$$

By continuify of $f(t)$ at $t=\pi / 2$,

$$
a \pi / 2+d=\left(\frac{4}{\pi}+\dot{a}\right) \frac{\pi}{2}
$$

- from which $d=2$ and hence $b=-2$. From the series
- definition of $f(t)$ and continuity, $f(\pi)=0$, hence $a \pi+2=0$, and $a=-2 / \pi$.

Aiternatively, we could have used the series definition of $f(t)$ to obtain $f(t)=0$, from which $c=0$. Continuity of $f(t)$ at $t=\pi / 2$ now yields the equation

$$
a \pi / 2+d=\left(\frac{4}{\pi}+a\right) \frac{\pi}{2}
$$

from which $d=2$. Similarly, from continuity of $f(t)$
, at $-\pi / 2$ we obtain $b=-2$, The constant a is determined as above.

By either approach we obtain

$$
f(t)=\left\{\begin{array}{lr}
-\frac{2}{\pi} t-2, & -\pi<\dot{t}<-\pi / 2 \\
\frac{2}{\pi} t, & -\pi / 2<t<\pi / 2 \\
-\frac{2}{\pi} t \pm 2, & \pi / 2<t<\pi
\end{array}\right.
$$

(See Figure 12.)

5. MODEL EXAM

Figure 12. Graph of $f(t)$ for Example 6. ©

Exercise 3

For each of the following, find the function $f(t)$ whose Fourier series expansion is given:
a. $\quad f(t)=\frac{4}{\pi} \sum_{n=1,3,5, \ldots} \frac{i}{n} \sin \frac{n \pi t}{2}$
(it may be helpful to note that $\cos n \pi=(-1)^{n}$ and that

$$
1-(-1)^{n}=\left\{\begin{array}{ll}
2, & n \text { odd } \\
0, & n \text { even }
\end{array}\right\}
$$

b. $\quad f(t)=\frac{1}{3}+4 \sum_{n=1}^{\infty}\left[\frac{(-1)^{n}}{n^{2} \pi^{2}} \cos n \pi t+\frac{(-1)^{n+1}}{n \pi} \sin n \pi t\right]$.

51

1. Find $f(t)$ if
a. $L\{f(t)\}=\frac{1}{2 s^{2}}\left(3-e^{-2 s}-4 e^{-3 s}+2 e^{-5 s}\right)-\frac{1}{s}\left(1+e^{-3 s}\right) ;$
b. $\quad L(f(t)\} \mathrm{e}^{i 3 s}\left(\frac{1}{2 s^{2}}-\frac{1}{s}\right)-e^{-s^{\prime}}\left(\frac{2}{s^{3}}+\frac{3}{s^{2}}+\frac{1}{s}\right)$
$1+\frac{2}{s^{3}}+\frac{1}{s^{2}}+\frac{1}{s}$.
2. Find $f(t)$ if

$$
F\{f(t)\}=\frac{4 \sin \alpha}{\alpha}(\cos \alpha-1)
$$

3. Find $f(t)$ if $f(t)$ is पeriodic 'of period $3, f(3 / 2)=0$ and if

$$
\begin{array}{rrl}
C f(t) & = \begin{cases}-\frac{3 i}{2 n \pi}+\frac{9}{n^{2} \pi^{2}}, & n \text { odd } \\
-\frac{3 i}{2 n \pi}, & n \text { even } .\end{cases}
\end{array}
$$

1.

2. a. $f(t)=\left\{\begin{array}{l}-1, \\ 0,\end{array}\right.$
$-2 \pi<t<0$
elsewhere.
b. $f(t)= \begin{cases}t+2 \\ 1, & -2<t<-1 \\ 2-t, & -1<t<1 \\ 0, & 1<t<2 \\ 2 & <|t| .\end{cases}$
c. $f(t)= \begin{cases}t^{2} & |t|<1 \\ 0 & \quad \\ & |t|>1 .\end{cases}$
3.
a. $\quad f(t)=\left\{\begin{array}{l}-1, \\ 1,\end{array}\right.$
$-2<t<0$
$0<t<2$.
b. $f(t)=t^{2}+2 t$,
$-1<t<1$.

b. $f(t)= \begin{cases}t^{2}+t+1, & 0<t<1 \\ 2, & 1<t<3 \\ \frac{1}{2} t-\frac{1}{2} & 3<t .\end{cases}$
2. $f(t)=\left\{\begin{array}{ll}t+2, & -2<t<-1 \\ |t|, & -1<t<1 \\ 2-t, & 1<t<2 \\ 0, & 2<|t|\end{array}\right\}$
3. $\quad f(t)= \begin{cases}\frac{3}{2} t+1, & -\frac{3}{2}<t<0 \\ -\frac{4}{3} t+2, & 0<t<\frac{3}{2}\end{cases}$

Student: If you have trouble with a specific part of this unit; please fill out this form and take it to your instructor for assistance. The information you give will help the author to revise the unit.
Your Name \qquad Unit No. \qquad

OR
Model Exam
Problem No. \qquad
Text
Problem No. \qquad
Description of Difficulty: (Please be specific)

Instructor: Please indicate your resolution of the difficulty in this box.Corrected errors in materials. List corrections here:Gave student better explanation, example, or procedure than in unit. Give brief outline of your addition here:Assisted student in acquiring general learning and problem-solving skills (not using examples from this unit.) skills (not using examples from this unit.)
\qquad

Name \qquad Unit No \qquad Date \qquad
Institution \qquad Course No. \qquad
Check the choice for each question that comes closest to your personal opinion.

1. How useful was the amount of detail in the unit?
\qquad Not enough detail to understand the unit Unit would have been clearer with more detail Appropriate amount of detail Unit was occasionally too detailed, but this was not distracting Too much detail; I was often distracted
2. How helpful were the problem answers?

Sample solutions were too brief; I could not do the intermediate steps
___Sufficient information was given to solve the problems
__ Sample solutions; were too detailed; I didn't need them ;
3. Except for fulfilling the prerequisites, how much did you use other sources (for example, instructor, friends, or other books) in order to understand the unit?

A Lot \qquad Somewhat
A Little Not at all
4. How long was this unit in comparison to the amount of time you generally spend on a lesson (lectûre and homework assignment) in a typical math or science course?

Much
Longer
:---
Longer
:---
the ${ }^{4}$ Same
:---
Shorter
:---
Shorter

5. Were any of the following parts of the unit confusing or distracting? (Check

Prerequisites

Statement of skills and concepts (objectives).
Paragraph headings
Examples
Special Assistance Supplement (if present)
_O_OTher, please explain \qquad
6. Were any of the following parts of the unit particularly helpful? (Check as many as apply.)

Prerequisites
Statement of skills and concepts (objectives)

- ___ Examples
___Problems
Paragraph headings
Table of Contents
Special Assistance Supplement (if present)
Other, please explain
Please describe anything in the unit that you did not particularly like.
< $1-2 /$
Please describe anything that you found particularly helpful. (Please use the back of this sheet if you need more space.)

[^0]: i3

