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L ERROR CORRECTING CODES I

- back to earth,

.

: 1. TINTRODUCTION -
. ) T

#?th the prom1nence of computers in today s .
ltechnol<og1ca1 society, d1gﬂtal commun1cat1on systems have
become widely used in .a_variety of applrcatmns_.__ior
example data gathered ‘by. space_grobes must be transm1tted
where the 1nformat1on can be processed for
subsequent use. This example i cludes satellite p1ctures
that are transmitted and processed dig1tally to ,obtain -.
Data links

between cqmputers provide enormous gains in computer

reconna1ssance and sc1ent1f1c 1nformat1on.‘

applications: /Military command and control systems also
wprovide a broad range of examples. .. N

’ N

A .
in digital communications,

1nformat10n is transm1tted

in the fornm of rbinary messages," that is,,strings of.0's
and d's which are coded _in some way to Convey information.
For example, in transm1ttlng a satelLJte photograph,\,
suppose that the“onboard instrumént package can’

t1ngu1sh 64 gray, levels from white to black
each level is identified by a number from 0 to 63. The'
.particular str1ng lOlOll which is. the binary representa-
tion of the decimal number 43, could be. transmitted to

indicate that the llght 1ntens1ty at a particular pgint -

in the prﬁéure is ‘at level 43

v

7 ',

You may @as11y 1mag1ne some of the problems that

#1n the or1g1nal entod ng of data and in the transmitter-.
-~ Channels may be "norsi\&v§

whd<have access to our channels.

arise in d1g1tal communrcat10n systems. Errors may occur

o that* “bits gre lost or

j distorted.. Security is often a problem— there may be

compelling reasons to deny -information to some individuals

-
-

S, L 1
\)}.“ ‘.\. o A o / -

: - 0 P . ‘ )
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is-
and th \\\\\

. “In thlS unit we study the problem of correcting- -

~» errors in d1g1tal communication systems

* Error torrect1ng

" codes are developed as *an. appl1cat10n of linear alg;bra.
and f1n1te field algebra. "The models chosen for .this- .

un1t Nere.selected for relative ease. of - comprehens1on, 2

more complex models will .be presented 1n spbsequent-units.

‘. > A R . .

. ) Lo )
THE BINARY SYMMETRIC CHANNEL :

A

. N .
.

2,

. -

Q »
Suppose we w1sh to send a bimary message through a
no1sy channeﬂ wh1ch\may corrupt the message by’ changing
one or more of the b1ts. One- or mote zeros may be inverted

.to ohes, or ones inmerted to zeros. A S1mple ‘modeI of such-
a channel is called the binary symmetxic channel (BSC), gnd
is, shown‘in*Figure 1. In this model, '

with, probability p, regardless of whether it is a2 0 gr-a 1,

a bit ig inverted

and the corruption- of any bit is statisticaldy 1ndependent

of what happens to any other bit. "

-
- .

" Transmitted Bit

We .assume thatr 0 < p < %,

»

- +  Received Bit

=
®

Figure»l

The binary symmetric channel (BSC)

Jrangmitted

bits ate inverted with probability p. - .

K

*We.note that the BSC is not a .good model for many
. real-1life channels, although 1t does reasonably represent
the errors 1n sqme computers dur1ng,fast data transfers.
The assumpt10n of statistical 1ndependence is valid for
certain systems in which, encoded data are mult1plexed .

_transmitted, ‘and then demult1plexed before decod1ng.

. . ¢
.
. - |
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Exrors tend o occur in “bursts'=a relat1ve1y large 3 " the cofrrect resylt, but it could also produce an error, ¢
‘number in a shert time per1bd followed by a long error-, *  whith would be the ,case here if 00000 had been transm1tted -
" free® perlod MuthpZexzng minimizes. the damaging effects and the channel, had corrupted the lst, 3rd and.4th bits. - “i
of bursts by se1ect1ng the succéssive bits in the Under this scheme, the probability:of a decod1ng error is .
. . Ay 7
transmitted 51gna1 cyc11ca11y from'different coﬂewords . gnven by: , R
. - 7
Bursts of several  errors in d-relatively short span will - ,. wP(E) probability of 2 bits correct and 3 incorrect ‘ » . F\:
* then tend to corrupt bitsin different codewords 1nstead AL + probability of 1 bit'‘correct and 4 incorrect ' hd
of,be1ng‘concentrated in a single word or two amd renderrng . - prohability.of 0 bits correct and 5 incorrect . R
them unrecognizable. (See % endix 2. L. ' ' P ' -
: 08 . ( i . ) ©o ] = 5Cz(l-p)2p'3~ + 501(1-p)p[' +p° . N
\ Even though the BSC is an appropriate model for only . : . ’ . ’
\ J - .
. _certain real channels we use It in this module for two - . '= p3(19(1_p)2.+5(1_p)p + pz) , . ‘ T -
primdry reasons‘ The f1rst, and more 1mportant reason, . ' . ¢ .
- : . e
i? that the BSC affords the most' elementary ‘discussion S ‘ . =p3(6p2-15p-+10)., ) ‘
of the theory of ‘error cotrecting codes available. The . - ) . ~ : *
second is“that despite its limitations, the BSC is the . . If we had simply transmitted the intended bit instead |
.principal model by which code performance ‘s gvaluated, of using a code, the_probability of an error would have ° u// . 1
-because - 1t is the only one for-wh1ch a1gebra1c computat1ons ‘been p. Using th% code we hawe a new probability of error .
of ‘code performance are- tractable. Nevertheless there~ c. P(E), which depends on the original p. We tabulate a "
are other models that are ava11ab1e and _in current uste, few values to show how these probab111t1es compare: o .
and we descr1be one briefly in Appendlx 1. ) L, - ’ !
7 T
: .0f course, it is'dgsirable that a message be - * p'»| 0.05 ]0.10 | 0.15 | .20 | 0.25 | 0.30 p0.35 | 0.40 | 0.45
Teceived correctly W1th high grobab111ty For example . * F2N S = .
. . P(E) | 0.002 }:0.01 | 0.03 | 0.06 | 0.10 | 0.16 [-0.24 | 0.32 0.41
if the bit 1 signifies "by land" and 0 "by-sea," an ° _
7 / - . P O
© error in, t ansm1551on couﬂd have. serious conséquences! - - ¢ ' ; . ]
In our first example we cons1der a scheme that substantially The table shows. the ga1n we have made +in reducing the
increases the probability of* getting a-.single bit of probability of an'error——by a factor of 10 °when p = 0.1,
1nformat10n through correctly . . for éxample. But we have paid‘a price for .this vmprovement'

[ 4
S Example I (Repetltlon W1th "maJor1ty" decod1ng)
Suppose we w1sh to transm1t a single-bit of 1nformat1on,

For to transmit, one bit- of 1nformat10n we now need a block
of-f1ve.bits. ‘In this case we would say that the znfb;mg
tion rate, or ny?beg of_lnformatlon bits divided, bw the R

. that is,. a 0 orea 1.’ Instead of a s1ng1e 0 we. transm1t : AN . . 1 ' . i .
. number of message b1ts is 175 We note also that our ‘code ™

the sequenCe 00000 and 1nstead of 1 we send 11111.

. ) w111 correct as man as" 2 errors in a messa e wé have
. These two repetltlon strings are the* coﬂeworﬂs Ain our -code. nany &

designed a 2-e ror correct1n binary .re ef1t1on code of
The rece1ve¢ decodes the message by 2. 51mpfe majority vote. £ ’ & y rep

‘block length 5, 1n whigch there are two p0551b1e codewords =%

For example if 10110 is rece1ved the decoder decides by.
. 00000 and 11111, .

-a 3 to 2 vote that 11111 was tran mltted shence the . o v .
iptended. bit was 1. This decodLng algor1thm mhy produce . . o . ) } ]
TR B . 3 S R o
o .o . . ~ - > i

.
B . . . . .o . . . . . . ¥
‘ YL . . . - - « .. . L , i

ol o - Lo S - - . . . N 2
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. ' Exmmle 1

:,///' b,* compare the valdes of P(E) and.p for p = 0.05, 0:1, 0.15,
0.2; 0.25, 0.3, 0.35, 0.4, and 0.45; ' ¢ . -

x - .

¢. find the information rate.}x‘ : ‘ .
- - kY . ..

- . . SN
;o | 0
L. . « 3 . * -
. -3 HAMMING "CODES . K
t?“ ) . In the repet1t10n code we used redundancy to
. increase the probability that a message will be 1nterpreted
S ) correctly - The general theory of error correctlng codes

addreSSes the questlon, "Can'we add redhndancy in such a

way that the: probability of error will be decreased to an

acceptable level and the 1nformat n naﬁe will remain

e relatively high?" (The térms Macce abte" andé,relatlvely

‘ high!' are imﬁrediset they. must be gbf'ned by the

- commun1cat;on system de51gher in light\ of available
equipment and tih

nsm1$s1on channels.)

’ ) «In this sectiont we introduce a ¢lass of cgdes in -
.which redundancy is added more intelligently than it was .
1n the 51mp1e repetlmlon code These cod s,prov1de a

’
~

results from 11near algebrajto obtaln pract1c 1 error
. correctlng codes. . We perform our calculatlons over- GF(Z),

T

»

and mu1t1p11cat10n -If nis a p051t1ve integer, let
GF(Z) -denote the vector space whose elements are the -
ﬂ'tuples w1th entr1es 0or1, and whose scalar field is

.
. 4 -
ruurmmurvmc . Lo B . ’
N . . R »
. Lo . -

For examﬂle, with n

simple repet1;§on code.

"2’ subset C of GF(2)",
,codewoz'ﬂd of the cpde.

Eiements,of GF(2)",
represented as row vectors »/as column vectors, or-as

. (1:.01_1':1') s

O

represent the same element of GH(Z)

wheré m is a. pos1t1ve integer.

algorlthm for the case’ m

‘Examgle 2 (A (7,9 Hammlng code**)
(7,4 Hammipg code ‘C, we first form the 3 X[Z —1), or 3x7,
matrix whose columns are' the binary® representations of the

-~~~ the f1e}d~w1th"two elements 0 and 1"wrth binary addision

4, the vectors °(1,0,1,1)
and (0 0 0,1) are two of the 51xteen elements of GF(&X

We may now offer a formal def1n1t10n of 4 concept .
whlch we have already used loosely in descr1b1ng the

A bin&ry|bode of block length n is simply
Eagch element of C is called a
'3 « .

including cod%wbrds, may be

"words," which are str1ngs of 0‘s or 1's.

L}

* We shall- be "some-
what cavaller in pa551ng between these represbntatlons
» And between the terms "vector" and "word " \\/ .

An early 1mpetus to cod1ng theory was provid
Richard w.
Hammtng aodes,,These dre b1nary;€odes of "block length

Hammlng,* when he developed what are now galled

In Examples
we descr1be the code and a correspondlng decodlngh

*R.W. Hamming did much of his pioneering work on coding theory
at 5he Bell .Telephone Laboratory, Murray Hill, New Jersey.
currently a Professor of Computer Science at the Naval Postgraduate
School, Monterey, Californiat

%*The indefinite article is used:because any permutation of ‘the’
columns in the fundamental matrix H 1n (3 1) yields anotper (7, 4)
Hamming code.

To obtaln a




S . '

1nteger5 from-1 to 7. Since these repre§Entations are,
in order, 001, 010, 011, 100, 101, 110, 111, this matrix,
* . which is called the parity check matriz of ‘the che, is:'b

.

00 0.1 1 1 1 -
- (3.1) H=10 1 1 0 0 1 1}.

) 1 01 0 10 1 . L ',
~ ~ ‘

A quick inspection

reveals fhat the rank of H over
GF(2) is 3. Hence, the

nﬁi%snace of H is a 4-dimensiénal ’
suhspace'of GF(Z)7 (see Exercise.2), and th1s nullspace
is the set-we take-for C. Thus, a vector x in GF(Z)
codeword if and«only if x satisfies the condition B =
(here 0 denotes -a zero vector), when x is represented as a
. column vector. For‘example, if

i's a

- ¥ : - - ’
T . . 1 S0l - ‘
R * 0 0 .
Lr- 0 i
= [0] ana y = |1, .
1 1l ,
— - - 0:- 1
: / 1) 1] ;
© , thenfsince : . :
. - 0] 0] .
Hx = {0} and Hy = |0f, . - .
- 0] ! . .
N . o ) J
..we have xeC-.and_y¢C. That 1s x is a colleword and y is ndt. -

i}nce‘c is a 4-
thé‘re dre’ preclsely

g

en51ona1 veitor space over GF(2),
=16 codewords in the (7 4) Hamming

‘, 4

w“j code. +Sao far we have seen*only “one element of C (the | .
. ;vector x that, as a word is represented by the Sttiﬂg *&»éﬂéa*
ST 101‘0101) in the Tast display. But. we Know that 0000000 {5 <
L ; -

s also. 1n,C SJnCe HO =.0 by elementary propert1es of matr1x

nd all the ewords in th15 code. E ) h'%ﬁ"”
e g 'qu L o M
S : In.Example 3 beiow we present a decod1ng algor1thm .
5~ »7 for.the C7 4) Hamm1ng code . of Examﬁie~2 In..this code- ':_»fi“

o f " four™ 6f the” seven bits in-a codeword may be designated as’

- the information blts. .The -Temaining three ‘are. ¢alléd. the

S R S o : S )
LN L el P, . B - ‘. L.
+ f v . . , .. A g e P
. P A P . ks ’ * . »
4 C\ .- ¢ ) T -

s,"

S “' m-" ‘.
el mu1t1ﬁ11cat1on., In Exercise 3 you will be challenged to 0 ¥

PR uslng elementary matrix man1pulat1on.

et t

parity check bits %ﬁg‘simply,,the check bits.
case the information rate is 4/7.

In th1s,
For a more general
Hamm1ng code,-w1th m any pos1t1ve 1nteger, tile parity
check matrix H w111 h#ve dimensions m X(Z -l) and rank
Z.m-m-l,:and the information rate will be (2"-m-1)/(2"-1).

Betore ‘we pr sent Example 3, we offer several exer-
c1ses dnd some aflditional discussion desighed to get you
better acqua1nted with the "(7,4) Hamming codes. This ¢
mater1al will help you understand the decod1qg algor1thm

1n‘Example 3. i ) - o
¥

Exercises ' . t

2. Consider the followin,g elements of GF(2)7 (rega.rded as column -

vectors) :

b
w
n
oOHOMHOMO
-
I

£ -

(That is, show that each ‘xiEC,
the nullspace of thé matrix H in (3.1)}0 !

Show that for i = 1,2,3,4, Xy is a codeword in the (7,4)
. Hamming code of Example 2.

Show that the set {xl,xz,x3,x } is linearly independent in
the vector space GF(2) ovep the scalar field GF(2)'

-the subspace € has dimension 4; this agrees with our earlier

ob:e;ggt;ondthat the rank of H is 3.) wves .

(Hence

. 3. Use the result of Exercise 2 to 113: all 16 codewords in our
¢ «(7 4) Hamming code. i, . .
' CE N

[4

. [P .
e P RIS 1

. Although We now, have“a 11st of the codewords, the

‘ approachtused to obta1n 1t 1n Exerc1ses 2 and 3 is not”

parn;tylarly 1nstruct1ve " We offer a, better "téchmique
.

. We first 1ntroduce
two add1t1onal 3 X7£matr1ces 1
. ,. . £

. R .
[l e N . ;
o >

N

Lo

Teal

. R T ! - T )
Sl WP L - . * .
PN, .

e
3o

& . “ .
AT P U | N “
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P e

-t

"\‘«M‘t‘ - . “« o
Wy A‘:‘\ ) N “.‘ ' -
N :.;:’.A— »
-~ (\" R ° ¢ ’ "
R 00010 0 Q0. 111}
. et - ' 1 N
3 - | = [ \
oty sjo110t0 0, H,=s 00 0L I -,
L el 1010:000 003101
Then&gx’matrix addition we have C e .
! \ EE_ H=H + Hy, - ‘
and;ﬁor any e1ement X. (represented as a colupn vector) in
(% . M .
GFC§§7 we.have \ , .
. i;%' Hx = Hlx + Hzx. . | '
o vEL -
‘-).wx .
?&%?efore” if xeC, the_,nullspate of H, then ° 3 °
N -%frzi ¢ He, x'+ Hzx , . .
TN
iy .
o / H X = -H X . RPN
’% 1 2 } *o

Qﬁt, 51nce we are calculatlng in GF(Z), we have

'~
.\ :

E’E 2)
pr let X
because o

(3.3)

H

b

. fOIIOW1n§ redug£1ons

., Joo0g*
Hix=17011
- 101

X = Hzx.’

1Xq 508 35Xg be~the coordinates of X. Then,
the blocks of -zeros in- Hl’HZ’ we obtain the

»

11 27|%4 To oo 1]}, .
01 1[xg}=fo110 1 t
101 xg 10-1'0 X2

. B Xz

&

Equatlon (3. 4) can_ be solved to obtain X4 3XgsXg in

Q

RIC:

>

terms of xo,xl,xz,x by a matrix inversion.

Since

E

- | 4 ' .:""j . . .

' L 4 “f
’ . a < ® .
o Q . \‘
DI- = N - -
b oyt [L1o . *
L(3.8) o1 =q101]
g 2 101 ‘_111 .

N

(see Exercise 4), we may multlply both 51aes of Equation

N

(3 4) by this matrlx to obtaln
¥ -~ X - .
. . - - - . 0 . .
. L X npioyooo1 .|
(3.6) _ {xM&s |t o101 10} -
. x 11 1f{1010][%2f ~ -
6 N
) . x:,’ ~ X
e -kl T Xyt Xy .
= |xg * xp + xg) (after two matrix
s : - ' multiplications).,
) o P Xt X3 .
.Now, the steps used to derive Equation (3.6) are all
reversible (see Exercise 5). Hence, ' ,
" - i
’ xO . o .
- X . , .
. Xy :
#for x = |x | e GF(D)T, )
- ‘ x‘g » ’ _‘ . R . . . 2
. ‘ i
Xs . : .
* -X6_ - ‘ | ‘ ®
. . . O |Xq =X Y Xyt X5 Q« :
(3.7) .%e c if:and.gnly if {xg = Xg +x, * §3 .
. LR .
. x6 =~ X5 * §1 * Xz
We note that X5 x » Xp may be taken as the check
bits as long as the columns i, j, form 11near1y 1nde-

+ pendent vectors so that the 3x3 matrlx consisting of

. . these dolumns is invertible. °

9* .

>

10

.

,




7. For the word x = 1000000 in GI:‘(Z)7 (you may want to represent x
as a golumn vect\or) , ¥, . - )
“a a. find Hx; ‘4nd compare.Hx with the individual ¢cqlumns of H
: . . «(to which columm does Hx gorrespond?); ¢ =
) b. 1list the 16 elements in the coset’ C+x. i
P 4 A\‘ < ’
/ 8. _Carry out the'instructions of both parts of Exercise 7 for the - .
vord. y = 0100000. T L e L -
et . -
RS : . : ; T

L. T a way to identify them (Condition (3.7)).

.Exercises . : 4

- 1.‘_ Verify that the two matrices (3.5) are indeed mutudlly inverse.

.

Qa LI r - \
5, Show that if, the coordinates of a vector iy GF(Z)

-l‘ condifion in a(3 7), then Hx = 0,

‘.

satisfy the

(The verification may be ’

. accomplished by reversing the steps, that led to Equation (3.6), ‘ P
or bg‘performing the mattix operation needed ‘to find+Hx.)

N
*6. Again list the 16’ qodewords (as in Exercise 3), this time using <

the condition (3. 7)

. * M ~

o . 4
?

By now we have a good understandlng of the space C.
We know thﬁt of the 2 = 148 e1¢ments in GF(Z , exactly
’ 16 are codewords; we know which ones they are;-and-we have
) We also have 4 .~
\ good feellng for the coset structure we know that there
are elght cosets, each with' 16 elements, and that the
.~ elements og’any one of the cosets other than C itself
'can be obtalned by choosing a fixed bit (or coordinate)’
p051t10n and’ 1nvert1ng the b1t in that p051t10n, for each
. element of C. (In Exerc1se 7 ‘we chose the first coord1nate,
in Exercase-s the second.J "g ”f ' 7

.

r'd

- a - 5

We call spec1al attent;on to Condition (3. 7) This
cond1t10n shows. that- while “four-of the seven bits in 4
cggeword may be ass;gnedvas we wish (here the indicated
bf%gﬁare xo,xl,xz,xg), there is ne choice in the remaining '
three. For if we~assign values to xo, *1’~x2’ xsahthen -

o SN . . 11

VERICT qg . L -

AT SR ¢

PO . . . . oo ’ PP .«
» .« - .

.Thus, each 7-bit codeword contains onl? 4 information

.
v . - 2

-

the values of X4s Xg» Xg are then preSetermined by (3.7).

bits, which confirms our earlier observation that the

information rate is 4/7. ’ . .

We now present a decodiné algorithm for our (7,4)
Hamming code. This algorithm is called a maximim likelihood
decoder, although the reason for this name will not become

apparent until the dlscu551on after the example. :

- »

e

Example 3 (Maximum likelihood” decoder). Syppose that
a chTtaln 7-bit codeword ¢ from our (7,4) Hamming c6de C

in GF(Z) is transmltted over a noisy channel, and that:the

word r = 1001010 1s received at the other end. if we
represent T as a column vector, we_may calculate Hr, for
H the parity check”matrix (3.1): ) ‘: Ty
' ) 17, .
. L < )
. * 0 ML 0 - <.
(3.8) Hr = H|1]| = |1} #.]0]. .
' 0 1 0 .
- 1 .
L3 0 .o

Since Hr'# 0,

the message recipient knows that r ¢ C, and -
hence r # c, 5uﬂ;y

and therefore an or has been made in ',

J

. What dord was originally sent;\

1

transmission.

.Suppose we repreSent the received word r as the

"sum of the transmltted codeword ¢ and an error e:

-

(3.9) r=c+e. -
'fej“"

i)
Now let Hr = s}i then also'ﬁef=\8' because

. .

s = Hr = He + Hc= He + p = He.

-

¢ . ’ * P A I
Therefore, while the message .recipient doés not know_c or

e, he or she-does know that e is containgd in the same

coset as r, i.e., that eeC + r. The problem of detemmining.
¢ therefore reduces to that of making an "intelligent" -
choice for e from the coset C + r. ' ‘.

. .y o
1% -

L




IR s \- « ! 7 \ !
' - - ad . < ™ N . . N
- ~ s . S 'S .
W In seeking the best choice of e in C .+ r, we first the errof ¢ - ¢' would |be a codeword, so the choice of
‘note that the column vectgr Hr in (3.8) coincides with the ' an error would be made ‘from.C itself. - In this "case i\y‘e )
thlrd column of H. But by elementary properties of matrix . choose the Zero word 0000000 for the errer, that isj we
algebra (see also Exercisés 7 and 8), we know also that 7 assume that no error occurred, so .we take c' “itseff as )
the column yYector given by the product i ' + the choice of c¢. (The reason for thrs choice will be n
. . 0 - ' o . explained affer this examplo.) - e
. N - -
(1] o ' . , We summarize the procedure above.as our decoding'®
H|O . ’ - algorithm for 9 (7,4) Hamming code. o . ° ' .
0 . ’ .
N \ . ! - ] q = - " N M
X : g : Maximum likelihood decoder. For‘a (7,4) Hamming . .
. ) - . - .o : codd; when a 7-bit word r is received, we: . :
‘ . LY . . N .
) also equals the third column of H. H?nce the word ¢ repfesent r as a 7x1 column vector; :
: 0010000 is also in the coset C + r. Moreover, if s > - “
) we call the number of 1's in a word the weight of that e find th? column vector Hr by,mafrlx i
- word then no single coset may contain more than one ) mult\lpllcatlon over GF'(.Z); o ° .
) vect.or of weight one. (This fact can be seen from the v e test Hr to determine Whether Hr is the
e results of [Exercises 7 and 8 and the observation that, as . zero vector,Yor a column of H; ,“~
; . . ‘
. vectors, the columns of H are all alotlnct.) l"he word wo o choose r to be c 1tself 1f Hr = 0,\fo
.. 'take from the coset C +.r as our choice foI_' the er‘ror when o then:r ¢ C; N
. the received word is * = 1001010 is the word ' . . ) : "
k e "~ choose ¢ to be the codeword obtained from ’
N \ ° . . . °
C - (3.10) e = 0010000. . ‘r by inverting the jth bit, if Wr is the ' -
= s . . - . jth column of H. . N . : '
We' now use Equation® (3.9) to find our "best" guess forfthe ° ) ) . o el
>~ original c: . K . Exercises : \ . .
- f = c'+ e k . . 9. For the (7,4) Hamming code of Example 2 with maximum, likelihood
H - ¢ - ’ . .
L St . - . .decoder, decode each of the following received words r: -
o N )
P - 1 i + = . - R . - . Lo < ¢ ¢
S f»roln which (sle? e +e 9000000) . . # a. A101011; N
v, . LY ) \‘.‘:“‘* ‘ N ‘.: d
* e o. . c=r te . i b. 0011110; . P ~
s = 1001010 + 0010000 - o e c. A00t01; © s . : :
.7 Lo s . . N . ' s . . o ' . . C e , . ’
Lo ot = 1011010 . d. 01000005 . - " k . .'
: We note that our ch01ce of c* can be obtained by‘ 1nvert1ng X , ’ . - - o .
th R . R o* - - ° , .
the 1rd blt in the recelv.ed word r. . * - \Two :meedlate questions arise in connection with
: Now suppose ‘that 1nstead of a w%rd (such as 1001010) - Example 3. The first is: smCe we are u’51hg 7-bit code- .
. " from a coset of G, a code,word <! had''been recelved Then, words .to convey 4 .bits of Jnfofmatlon whlch means an
Lk ‘ < : ‘ . .
. ", . . .13 ifformation rate of 4/7, or 0. 57,..what\do we sgain in
* . - ' i < K s ’ . P - B 14
EMC T - T R : . Co ' 19
-L - . B . e - £L
) c 4‘-. .. . ~ <« ° o T 7 » A o R ! N e " 3 - o » w




< ‘ .
- trade for tha.s 43 -percent: loss" The second concefns the, .

name of* the algorlthm——w'hy is it calded thé "'maximum gain fér severak values of p. = . T - -
likelihood" decoder? Cot : © ' v . ’ o
‘ ‘ ] : T : oL e TABLE 1 ) .-
. We Dbegin with the fJert of these questiohs< The . ¢’ . Percent, Gain in the Probability'of,No Error ,
» “ . . .
- ba51c response is that By using the cqde we reduce the . " (for selected values of p) '
i, . probabc111ty of error 1n-convey1ng each 4 bits of informa- - o - .
tion. We shall measure this gain, as we, measured t;he . : o ¢ ’ : i K
. . . 1 4 . Pefcent Gain ¢
., . ‘corresponding gain ih Example 1, but ‘we emphasize: that in \ TP (1-p) fP(N) (£(p)-1).- ¢
studying gains, a redlistic user.must never 1ose sight of ¢ ] | , , N . J >
“ . the losses involved. ' -~ ‘ ) : Q01 | To96 1.00 “ o A
‘ For an analysis of the gain made.by using a (7,4) v 0.05 0.81 J 0.96 17 ’ ‘
. i . .
Hamming code we use the.binary. symmetrlc channel (BSCQ * 0.10 ) 0.66 ) - 0.85 30 > 1
- - AN A
l_. model'as in Example 1. In this case, however, 1t'1s mote . w . 0.15 0.52 0.72 37 .
cenvenient to study the increasé in the probability of 0.20 0.41 0.58 T4 -, -
"no error," P(N)y instead of the decrease in the proba- % - 2/9 . 0.37 ©0.52 ar . -
b111ty of. error, P(E). . .. -~ . 0.25 0.32 0.44 41
: 0.30 0.24 0.33 38
If we simply b:roadcast 4 ~b1ts of 1nformat1o}n across: Y 0.35 18 0 3 31\ "
a BSC w1thout usmg a code, then wp would have N : . o.z..o' 2.13 0.; - 59 '
- P(N) (1- p) 851ng a (7,4) Hammmg coder w1th manmum - i ) ) ) . . .
> 0.45 " 0.09. 0.10 12 .
: 11ke11hood decoder, we makKe no error prec1se1y when . v . o ) K] . ¢
. . . , -
-~ . élther one or none of thé 7 transmltted bits is corrupted ) - =
! .In ‘this.-case we have - < . g . et ’ : - ) — .
. g ’ % . e - L R . ) \‘ w -
< [} : ! 'y . . . .
- . . LT b d d h may V.
- ’(3.11) P(N) =4>robab‘ility of 7 bits correct and 0 incorrecm : Cra he table i icates that this ocoding’scheme may vepy
w + pxobability of 6 bits dorrect and N incorrect voey T well Jbe appeallng, depér&dlng on requlrements for accuracy .
N . : ' '_ . S AP other factors, such as constramts.on tT\e xnformatlon' L
I - = (l-P5 Y (1-p) P . A S W‘rate 'In addition; it may be that thng scheme would be -
‘l Tl L ;(llp)l}(lﬂp-llp +6p3) L T o :_": i gg:e de§1rab1e for ‘values of p that do #not y1e1d maximum
. i A TR perCentage gai-n in the ‘probability ‘of no error. For =
_Thuy, t’he polynomlal f(p) =1+ 4p - an H 6p provules— 2 "i%q,‘_; example,- if, a’ h, degree of accuracy is required, ghen
- Wt .

a medsure of the gain in the probablll‘ty of no erdr; »'

‘We tabulfate the values-of (;-;{)4, P(§), and \the percentage

the 1ncreas§‘ int he probability of no error from 0.96 to -

. ~ wr ¢ .o, 998 rounded €871 00 in the table) for p = 0.01 could -
) . Since f(0) . £(1/2) = T and an eaby aflalysis of’ the R ¢ ) P 1
be attractlve to the axser and well worth the trade in the
e der1vat1ve shows, that f'(p) >0 for 0 <p<2/9. ahd,! : . T
1nformataon raté 2 . . -
£'(p) < 0.for 2/9 < P < 1, our best peraentage gaim. rn P 0 P ~ .
%xe probablhty of no ex or\,occurs auP 4 2/9 Slnce ) }_ T s The second questmn indicated above also has an
f(2/9) = ]. 41 thls maxlh‘gmn is afodnd\u percent‘ 3’1, in eresxtmg answe 'In the decoding algorlthm of Example
.. . ' . e L ' ' /there is a. test to b made, namely a determination -af ¢
N : R - v 9y 1
PR : , e - . “ .
FERIC: ™ - 5 " . ) ,
- IO TRPEE S N PN N RS e G, . .
- o ""‘\ y")""' ;:{'-, ‘r;"Q [ g ‘?v", “’a v .. WUt “’J“?’—'w ? ., =4
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.and’that no vector

e

EMC . T

P . =
Fullox Provided b ERIC

'\:.w.

-

whetherethe rece1ved word X is a codeword or not

£

reC, thep the error vector ew1s also in C, and the bas1s
‘»Of our cho1ce of e = 0 for the error is that under'certa1n
~con§1t1ons this choice maX1m1zes the probab111ty that the
choseﬁavector 1s the error vector Similarly, if r¢'C
'the c%p1ce of the vector of welght one from the. coset

C + Tk max1m1zes the probab111tyrof the error vector (agaln
under” :ertaln conditions).

‘. Let us explore these probab111t1es, again us1ng ‘the
BSG mo&el. When e transmit a 7-bit word over a noisy
channel‘ the error vector cqmponent is 0 +if the bit is
correctly ‘received, and 1 if the bit is. inverted in the
: channel Thus, the error vector may be regarded as the
outcome of 7 repeated Bernoulli trials with probablllty
.p of a 1 at’each trial and 1- -p of a 0. Hence, for a an
integer with 0 <.a < 7, the’ probab111ty that the error
vector will have welght a (1 e.y a entr1es 1 and 7-a
entries 0) is b1nom1a1. g

(3.12) P(d) 7Cap (1 p)7’a a =

- & ’
Thus, the probability of any error vector depends on

1ts we1ght When e C, we seek the vector in C which
max1m1zes (3 12]

-

e notesthat, the zerQ vector is in C,
f weight 1 is #n C. But C cannot have

a vector of W’lght 2 either; for example, if 1100000 eCy -
" then we would have :

-

J

-

1 4 5, - - 5 -,

o."}'

,
o i bR

¥

L

+ H

“e

[}
Puve

= H

<’

.
¢

‘

1 (1
0 1
0 1o
= H|o 0
0 0
0 0
0 0

coococook
L]

' = S

coococoHO
.
.

N e " . . . - M M °
which would imply that the words.1000000 ands0100000 are in
.the same cosét. - Since 1111111 ¢ C, we see that fi0 Vector of
welght 5 of 6 can be a codeWord, either,’: (These facts are

also known from the results of Exerc1ses "3 and 6. ) Thus,
17

. and (l-p)3/35p3

" vector is indeed the’error3~proyjded only that- 0<p <0-.234.

"L+ has vectors of weights 1,2,3,4,5 ;and 6 only, and

®
eyt

..
S
=

to .maximize the function P(a) in (3.12), we need congider
only a = 0,3,4,7.° But since 0 < p < 1/2,
consider only 0 and 3.

h
we need

From (3.12) we have

t

P(O) = (1-p7, P(3) =g501-p)%p° }
€, r~ * e A v ¢ -
» . . ‘ , ' .
. 3 , . o
. P(0) - (1- T
) JoRr~ :

- .

> 1 wher 0 < p < 1/(1+¥35), or 0<p<0.234
(apgroximately). -Thus, when the yeceived word r is a
codeword, i.e., when r ¢ C, the choice of e = 0000000 for/ .
the error (wﬁth the concomitant choice of r for ¢) is the N
choice that maximizes the probability that the chosen

In practice, real-world digital communication channels
7 sat1sfy this modest requirerent, wrth‘room to spare.

‘When® the received woxrd r is not a codeWord we would
like to know the condition(s) under which the choice of
‘the vector.of weight 1 from C + r maximizes (3.12). Since
since 0 < p < 1/2, we must.maximize P(aj in (3.12) for
‘a -~1 2 3,.only. Erom (3.129 we have

4
P(l) = 7(1 p) Pr $(2) = 21(1- P) P 3 P(3) =,3'5/(1-P) PS-‘_

A . b

J&t follows that . o . ’ - N oo
©PQA) >.P(D) whenever 0 < p < 1/4, -and'é" o

P(1) > P(3) whenever 0 < p < 0.309 (apprbx1mate1y)

-

The Ver1f1cat1on is s1m11ar to the one above forgthe case ]
reC. Therefore, in al}l cases the algo;1thm in Example 3 s
calls for the choice of e that, %111 maximize pca) in (3.12) -

whenever 0°< p < 0.234 (approx1mate1y), hence the name p» ‘
"maximum likelihood” decoder.".
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We note that if the ch%nnel noise causes 1 error in Bl 2. Usipg our (7,4) Hahming code with mdximum likélihood
~x 7-bit message, i.e., inverts 1 bit, then the decoding decoder; decode the words: LN ‘
algorithm will correct the errar. 'Thus, in Examples 2 and" ) . 2 1= '6110011;
3 we have a l-errdr correcting binary code of block length . v )
7, with 16 possible codewords. b. r = 1101101.
We close this section with an exerc1se “that represents . "’ In problems 3 and 4 you will need. results from -
afi invitation to share the experience of working through a ~ Exercise 10. Ct -
Hamming code model from the beginning. " T_h}s model cor- - | c R ‘
X responds to the value 4 of the parameter.m.(we considered i 3. Using the (15,11) Hamming code of Exercise 10, with
) the case m = 3 above). No doubt you -will find that the . ' maximum likelihood deceder, decode the words:
-. ' calculations rapidly become tedious’as m increases. Larger a. r =101010101011111; ' ,
: . v : S
models_.g,x;e best handled,by computers.- . . b, o1 ‘. 110111000101101. " ° ‘ ‘ . .

B ) . _// K ‘
e -
4 Exerciges 4 .

In* our (7,4) Hamming codeﬂ we found the followmg
10, For the (15, 11) Hamming code with col{imns of the parity check

.. . b d15tr1but1on in C: 1 word of weight 0, 7 of Welght 3
trix i 1 th likelihood decod .
matrix in natura order, and with maxipun likelihbod decoder: 7 of welght 4, 1 of werght 7, and 0 of weights 1,2 45,6,
p < " a. find the parity cgck matrix H; ; - In the (15,11) Hamming code, find: _ S
k' b. -find the information rate; o ) a. the number of words of weight 0; c
-y . decode the received word 111100101100010; . b.. the number €f words of weight 1; N Do
- d. find conditions corresponding to (3 7) that characterize -, c. ;:he number of words of weight 2; o
5 . - , ; ! L Mes
. codewords 4n GF(Z) o ‘ . : ‘ . . A
‘\’ . - . d.=-at least one word of weight -3 (there are 24~ of them).;. .
oy . « . . o
e. carry out an anal sis to compare the gain in the : , - : -
Y Y P & . . - €. the total number of codewords. _
. . probability of conveying information correctly under this ' ' <, i : 52
s R . . . . . E ™~ . .7
~. - coding scheme with the corresponding probability of no . - . I v
. ——— — - : 7 - -
- error under no coding scheme, which 1d (l—p)n. . ‘ 5. !SOLUTIONS TO EXERCISES" N
. . . ) T, T —~ f:
S =7 . ‘ - . L ) : 4 g N
R / . L = . - 1. a. P(E) = probability of 1 bit' correct and 7 incorrentf.;_: S
i ST e 0 ' . ) . ~ + probability of 0 bits correct,ami 3 *i,ncorrect:
oo T ) 4. MODEL EXAMINATION . X M LT T
s . , : *'y Qo + 9k g (32 o
o 1. For a 3Zerror. correcting binary repet1t10n code of  ; °

block 1ength 7; with codewords 1111111 and 0000000

{f . a. _find- the" information rate; = .
| .

»

5 . -~

b. decode the received word 0011000;

i c. flnd the probablhty of anaerror P(Ef, vusmg )
the BSC mode1. . = ‘. 19 - )
E‘y v N g ".4 - N . ~ . . ) - o

JAruitoxt Provided T
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. - .. * - 1 B
- - A o et X s R
* 2. a. The verification can be accomplished ‘\?y carrying out the -~ w ' Xo. v
matrix multiplication to show that Hx, = 0 for 1 = 1,2,3,4.. s x, , : S
T For example, ) ' - . . . ) b ) A .
L . . IR . » . fooo1111]f * Xyt i txgfrghg e et g
. ) o i 1 L . 0110011 X, = > x1+x2+x()-i'—x2+x3+x()+:r<1+x3 ,
. ~{0001111h1 JO+0+0+0+0+0+0 0 , 1010101 -
v A . 0 Te . b4 +x2+x bd +x2+x1+x2+x "Pxo'\"xl'l"x .
Be, = 10110011 =10+1+1+0+0+0+0|= 0. . 1723 0 3 3
. . . .. ; i ' e
101010'1|0 140+1+0+0+0+0 0 . SR NS a3 N
- 0 . . @ ~ [ .
* . . - - B . . -:\0+x}+x3_ J
3 “b. Suppase that a linear combination of the Xx,'s vanishes, i.e., . ‘ 2 . > '
P . J . Sy . - - . ~ i
; that o x) +ayx; + “3"3,*’\“4"4* = 0. (Note that the a's are . . & -Jol. '
) 'all 0 of “1*and rhat all: arithmetic is carried out in GF{2).) - " i 0
W Theh from the fifst and second rows we have ) . ) ‘,-' el . e R
:}" .:_’_ T o e }&13.*. @, + @, = 0, .an;d ) ' . ] : . 6" The answers, whicbf‘a;é“given in the soluti|on for "Bxeré;s'e 3, can ) N
{‘ i . ’ T , ' . - . be obtained by making all possible assignments for xo,xl,xz,x3,
5. Y . T, . . N . . - « N N -
R oY tag ta, =0, . : . then gpplying “3.¥). For exapple, if we take xg =1, x; =1, .
T ~ % Y\ e s . . . .
LR : S ¢ P x, =1,'%x, =0, ghei"rx, =1 +1+0=0 =14+1+0=0
" ° ° -Upon adding we cbtain &, + a, =iliiso &, = ¥,. The third 2 3 hen %y, - "
A - ® “ .2 x, =1+1+0=0, aigj.ve obtain the codeword 1110000. e
I, row- sho‘w)_s'that,al =q,, the fifth that a, = al', and the - 6 A . -~ N
S ' severith that a, = 0. Thus, a, = 0, 1 = 1,2,3,4, so . IS 0]’ - : N
. . - - "L_ : ! . 7. a. Hx 0}, which corresponds to the first column-of H.
L3 X,3X,,X,,X, are linearly independent. M - \ 1l N . -~ i .
DT R Lo L near ) ) . - ] :
58 b c e AT o ot e - N ‘.' i E“« - - ’ - «
5 © 3, We.may find all elegients j;n «C by forming all possible Iinear . b* The words -in C + x can be obtained from the codewords by
- ¥ conmbinations a)x) +agx, +'a.xy + @,x,, where the a,’'s may assume -’ o invert;.ng the first bit 4 each word. Referring toé theé -
s, o . ‘ o . > > . N “ " - . -
the-valugs 0,1, We list tlie'l6 elémepts.in C as-words: . - solution for Exercise 3 we obtain the 16 words in € +. x:
j —'2 . . N "‘ - ‘ N . ) . - ; -t N . . .
SN / .~ 0000000,' 1110000," 1001100, 0101010, . 0010110, 0100101, 1000011, . 1000000, 0110000, 0001100, 1101010, 1010110, 1100101,
. - . ) . , . LA . " ‘ N “ N ’
.07 . 1001100f, 0001111, 0110011, 1010101, 1101001,..1011010, 0111100, .. ., -.0000011, 1011001, 1001111, 1110011, 0010101, 0101001, -
e _; ,.:;‘. o v . ;‘..‘_ . . . R v ',,k’ ‘ - . ."l:»: . oy . i :/‘..:A g N
=3 .. 1100120, Tiilina. N ‘. .. .0011010, I111100, 0100110, dhaia1. e eh s
-7 «%4. Verificatiod can be accomplished by cagrying out the indicated (8- a. Hy = |1, vhich ctorresponds td the second column of H. .,
PR oL T e . < L. . . P T, . of - 7 - <
R ‘,é‘('matr;[x multiplication to obtain the {dentity matrdx. v Lo T \ B .
IR - L MRS e, . B .. . .o P N et i
- T T O T > . ‘. R : K : , y i -
- T . ;i A L . ‘ . A . b. The words 1n' C + y can be o?tained fromgth 7<§o§iewords b&?ﬁ;i ol
. ‘ "f' “We perf?fmfthe guggested matrix mu}tipleatj.on: . . 4“—“* Anverting fhe second!bit in each word: .
- T - N ) . N . Ly o . i -“:w:'f ‘. ) PR - e , . = . 9
* s - ’ ’ L . 0100000, 1010000, 1101100, bOOlOlO, ~0110110, 0000101, oot
. . . . - . - . . ., * il  , o
-~ O o 21 . . 1109011, 0111001, 0101.}11, 0010011, 10101, 1001001; .
S, ' oy e e . . 2 .- o
\ k - © . -7 4. ¢ 1111010, 0011100, 1000110, 1011111. /. .- & 7 22
o, ST s . SO - ’ - - . T
i '.‘ K ‘—.’ . ] - ‘a" . . ! . ‘o - N ,’h‘ 5 VN :% . o . T - B N - .
ST e oo . Je . . ., PR ot . ¢ N e P




a. 1101001

PR
=

b. 0010110

»

c. © 1010101

H

~N o S W N e

Xg . fooo000001111
Xq 00011110111

) : ol l01100110011
0000000112111111 e
¥1311 10101010101

000111100001°111 ‘ - ' ,
0110011000 1100121

1010101010101 0°1],

11/15. ' '

0000000

HN HN H I
w N

e
S

111100101100000. - .

Some care must be taken in using the technique that resulted
in Condition 3.7). I:‘o} example, if we try to echo the
method to find the last 4 variables in terms of the first 11,
we obtain a singular matrix.., We must select a set of
unknowns with a matrix of rankelo. There are many choices,
of wly’.gbvone is the following:

weob‘tain
11
11 oo
01 - 011110010
10 . 101101011
‘ 110100111
looo111101

000000010000
0001111010000
0110601101000
101°01-010 0000

(00000000}11111.00
0000000010001 )00
0000000 0110}000
60000000 1010} 00

3

i
If x is a codeword then, as in Equation (3' 2), wben we

, represent. X as a cplumn véctor we f:l,nd H xJ- H2x§ If we ) C o :‘, ‘ s

Therefore, x ds a ;odeword if and only if

we abtaj.n a resu,lt similér to' Equation (3. 4) = : 1 . ) X + ) + X3 + x4 _ 7 * *13 +x

14 ..
i ~ 2 [ a— 4,..._ e b e — R g e
.- . Lo o ‘ x0+x2+x3+x5+x7 12:¥-x14

x0+x1+x3.+x +x7+x

1
< denote. the bits} (or t:he coordinates) of x by xo,gcl,...,x14,?

T SRS . — el & -

""‘.13‘
‘=X3+x +x +x6+x'




.

e "

. x, =1, andxk=0fork-123456,7 12,13,14; then

ERIC ;5 ",

e
St

“;‘ ’ 0
e . \ - 8 =0, Xg =1,” % 10 =1, x 3" D, and.we obtain the codeword
—~ kR 1oooooooonoooo, : R -
PN {e
2, o 2, 048. . ¢
;”{t‘ '\)‘ B ’ . v - ' L8 -
B . e
L

n o e. Usdng the code, we have for the probability of no errory N
f"E . P(hj = probability of O bits incorrect and 15 correct
< . N
" . + probability of 1 bit incorrect and 14 correct
" . .= (1-p)15 +,b5<1-p)14p, ? .
CL - 2 3 4
cee Lt = (1-ptha + 11p - 39p% + 41p7. - 14p%). , i
R The following table shows the gain for a few values of p: * '
B N . .
N P 0.000 | 0.005_ | 0.00 0’05
. . (1-p) 0.989 0.946. | 0.895 1| 0.569% -
S \
- P(N) 0.99990 0.9975 0.990 0.829
* = .
. \ _ _ . .
; 6. ‘ANSWERS TO MODEL EXAMINATION
: - -

9 AY N
. ' 1. a. .1/7; R
7*-' b, 0000000; p°(35 - 84p + 70p21- 20p3). \
ta . RN ] T
w20 a. 01100115 _

*.b. 1301001. S . ' G -
. - AR Wt R
3. & 1110101010111113%- b ;
- . A . . .‘.‘4:‘ -

b. 110111000101101. R R ‘

. .. . - - - \

Qv 1; B .

- oy v . .

.b. O3 - . ) .

’- ’-{ R ‘{ ’ . . . .

‘¢, 03 v .
. . ¥ 3 . e 1 . .
ﬁ@w;,thﬂwJMJwﬂLﬁjmmnmmtmhggwﬂm1fwa@gn o

) APPENDIX 1 ¢

AN ALTERNATE TO THE BSC "

We describe briefly a model that is applicable in

some situations where the BSC mddel fails. Note first

. that’ the BSC model may be represented as a finite Markbva

rror state'" E and a Ycorreg¢t
n by o

chain witl/ two statesy an "

state" C, with matrix of transition probabilities ;

C E
Cll-p " p
_ELD 1-p)
) \ [ . .-
A graph-theoretic .model Es also useful in visualizing
this chain.- .The states may be represented as vertices,

and the transition probabilities are shown on the edges.
4

i . 1l-p v
P -
,//””‘————____§~\\\\\\; '
C _—  ~ ? - Q B
| E . \
i
» . - M '
1-p- . “ /
Coa - ‘ )
- The Markov"thain approach can) be used to obtain a NERTEN
model which represents reasonably’Well some channels in
'whlch errors occur in bursts, fbr example, certa1n HF , .y
channels., In this model there are three states CG is - b
a "guard state," and, -the transmlsslon is ?rror free while
the system is in this state; the remaining states C nd .
E are "bursty'" (noisy) states ___The @gtrl;Aqgﬁtrhnsitggg"w*‘_FV*M
probabllltles is glven by A * )
-3 . b
T . ;7. 26 .
: 4o 31
>, . - N B ’
~ b4
.. ‘u ; i “ . -




. - ’ e

L
L3
N
‘e
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. This model can be interpreted in a straightforward !
way. For exdample, suppose that the system is in state .
~~ N CG, so that error-free.transmission‘is in progress. 1If :
3 Pz is small, then there <is a Wigh-'probability of continuing
"« in stat@ CG, but it is also possible to make an error. We , .

move to the error state E with probab111ty Pz, and from
_this state it 1s poSS1b1e to continue in state E, return
'jl. to state Cg, .or enter the error -free state Cy Analyti- - T
cally, the'd1fference between states- CG~and CN is :that Ps
is much. smaller than P;. Thus when the  channel is in state

-t CG, ‘it has a, tendency to remain- there,

.
>

-
-2

-When the error o
-" burst is over, Wwe move back to state CG for another -period
of error free transmission. ’ -

L "I+ This 3-state Markov model ‘can be generalized to a
o modeliwlth any number of states. Increas1ng “the number of
J*“* 'stateS'to 5; ‘say, w1th“three erTor- fréE‘étates‘aﬁa two T

o » error states may enable us to  model a w1der class of

32 o s

-

»

,while the channel is in the guard state, no errors occur

© error, correcting codes

[NUUSIEUU TR N

channels accurately. However

difficulties.

thereiare two maJor
First, as the number of states increases,
the physical significance of these states may be difficult
to ascertain; and, second, evén in the case of the 3-staté
model computation of P(N) in Table 1 in terms of Pys pz,
Pz, q; is quite comp11cated

The customary method for constructing an analog to
Table 1 for a mu1t1 -state Markov model is to use a Monte
ﬂmtls
0's and 1’s accord1ng to the model.
then divided into n-bit blocks and decoded. If decoding
y the all-0 block, -

Carlo approach, to generate an "error stream" of

The error stream is

produces any.result othet than 00...0,
.then a decodlng error has occurred

L “

| . "It is worthwh11e to_ note” that if Errors tend to occur

in bursts, ‘then a code, such as a Hamming code, which is

designed to ¢orrect s1ng1e isolated errors may be worse

than useless, for two reasons. First, most of the time,

at all, so that all the code is doing in this state is
adding unnecessary rédundancy, and second when errors do
‘occur, the cﬁances are that any block with at_ least one.
error will contain more than one, wh1ch results in a de~
cod1ng error, thus produc1ng even more errors. Therefore,
channel cons1derat1ons are very 1mportant in designing -
Our nexf two modules on error-
correct1ng codes wr}l,contain some'examplesfof codes that

are -désigned to correct burst errors. - . By

.
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Now’l, -rag,her.tthan transmt Cl’ iy
transmlt the columne. of C: :

( + ’cfz,t-a, mz), then ( 3
L The rec:.pient of the transmsslozb:téce é
<. (rll’rz;l’rsl" e, 1’r12’1221 r ﬁ’ ""ygh1ch are wntten

by oolumn into an mxn arxay R : ( =, —'): The rows -of R

Doy ey aré "(possz.bly) corrupted codewords.. ,,If a -"Burst"- e

er;:—'ors (if length b < m-has occurred in transmss:ton/overx
the channel,, the errors are spread through success1ve “TOWS

gf R.’ Therefore nﬁa given. row, whatever errors occur v

,,sgém"to be 1soJ.'<;1:ec1m 1ndependent -errors. In such a: s1tua-
< V,t1on,.ehe b1nary symmetr:.c channel may- ~g:nfe aa; reasonabﬂe

model for the errors appearmg 1n_' the rece:.ved words to be

AT
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STUDENT FORM 1.

" Return to.;

e - .EDC/UMAP
T ~ T i - . 55 Chapel St.
e .Request for Help .’ . Newton, MA 02160
. *'*St‘uﬁent. I-f you have  trouble with a specif‘ic part of this unit, please fill
~out-this form and _take it to your instructor for assistance. "The information
Qtuu,gi_yg,vill helf.the author to revise the unit. ’ :
"~ Your- Name s, “Unit No. .
2 ,'Pa e" PS 4 ; b '
1 ge ~ ¢ Dot seerion . . Model Exam .
b+ O Upper | OR. - —_— br- Problem No. : .
OMiddle Paragraph \z T Text .
O 1oifer . -} .- . Problem No. -
Description of Difficulty (Please be spe'cific)' i K - ="
o - - s, | P N
! . q"i . i EX -
R :* r,%‘" e t ‘ e )
J S &
* © e' . ¥ /
- ‘ " - ¥
’ ! 0> ¥
g ” ' A
Instructor: Please iridicate . your’ resolution bf the. difficulty in this box. - |
i O Correctedierrors in ‘materials. List corrections here:
. . % . ]
. : ~ ’ ’ .. .-’ ] ; -
f ‘1‘ . F - - 3 .
Gave student better explanation, example, or procedure t}xan in unit.
~ Glve brief outline of your addition here: ./ BN .
.\_/ o (. ! v e - - . ’
) : : P H . ot
- : . . v i
‘. x o’ ° A1 * «‘».
N Assisted student in acquiring general learnin‘g and- problem-solving s, '
“:skills -(not-using examples ﬂfrom this unit ) s L N B
Y .‘ i ] « ’ ¢ ! ::v g
’ 1 % ) g § ’ é . 35 * »” . A *
m . ) B ©ox o o
My FT Pt s '*  Instructor's Signature ¢ = O
ARSI . . . - eI,
“77e . . .-Pledse use reverse if necessary. . ) / , . L
=y LR ‘i, v & |- <f . L - k4 A




. 3 : . . Return ta: .
- STUDENT FORM 2 . ! EDC/UMAP

' 55 Chapel St.
Newton, MA 02160

Unit Questionnaire
Name_# ] .6 Unit No_;r Date - .

Institution > 4 Course No. '

Check the choice for each question that comes closest to your personal opinion.

/”/1 How useful was the amount of detail in the unit? ‘x

Not enough' detail to understand the unit Lo

Unit would have been clearer with more: detail

____Appropriate amount of detail

Unit was occasionally too detailed, but this was not distracting
- Too much detail; I was often distracted

How helpful were thJ problem answers?

\ ]

Sample solutions were too brief; I could not do the intermediate steps
Sufficient information was given to solve -the problems
Sample solutions were too detailed; I didn't jneed them

Except for fulfilling the prerequisites, how much did you use other sources (for
example, instructor, friends, or other books) in order to uriderstand the unit?

A Lot Somewhat Z ___A Little ___.Not at all

How long was this unit in compar;son to the amount of time you generally spend on
a lesson (lecture and homework'assignment) in a typical math or science coorse’

\
Much Somewhat Qbout .Somewhat - '  Much
Longer Longer ____the Same ° Shorter Shorter

5, -Were any of the following parts of the unit cohfusing or distractin52 (Check
; as many ds apply.) .

__- Prerequisites v
____Statement of skills and concepts (objectives)
Paragraph headings ‘

EXamples N gl :
‘- Special Assistance Supplement (if present)

-Other, please explain

Were any of the following parts of the unit particularly helpful? (Check as many
as apply.)
Prerequisites
Statement of skills and concepts (objectives)
Examples
-Problems
Paragraph headings
Table of Contents
pecial Assistance Supplement (if present)
Other, please explain

Y.

< . .
-~ < PR

- 'Please describe anything in-the unit that you did notﬁparticularly like., o

. :
<. © . ' ‘ L i
Fal .

-

Please describe anything that you found particularly helpful (Please use the back of
this sheet 1if you need more space ) «




