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an eas1ly stated problem:

‘R

[

o

INTRODUCTIEN

"This unit applies lihear algebraic methods td solve
Suppose an obJect in a/three- :

d1mens1ona1 coordinate gystem is first’ rotatedZabout a*
‘given akis through: the origin by a gtven angie,

and then N

rotated about another ax1s through the or1g1nyby another

angle.
¥ " combined result of the two rbtations?

Is there & stra1ghtforwara way to calculate the °

For example are

there formulas that describe the.resu}t in terms of the

. two axels of rotat1on and the two angles?

still.
dimensional space R3
space R4
generallzesithe Cross product in R3

. that the answer 1s yes, as we shall see.
Y

It turns out

4

Figure 1.
through the origin. . . ‘ "

.

Rotations of an object about dxfferent axes

~ |
!
1
!

Although this, is an 1nﬂbrest1ng quest1on\to answer
thé3method by which:we will ‘answer 1t is more’1nterest1ng

!

~and which |is intimately
3 . ‘ {

-

For, in considering rotations in Euclidean three
, we embed Rs'in’ghe fourldimensiona

. I
In R* there is a vector product which

related to rotations in R - . i

“fixed axis vector n by a given, angle 8.

EE

Aruitoxt provided by Eic:

1

Q

RIC

We' define a- rotat1on in R~ as a rotation about a

The vpctor nis //
' - — !

~

-

N . .

¢
and we will

assuméd to emanate from  the coqrdinate origia,
The sense of
If the rlghx hand thumo points in -the ®
direction of n 'then the frngers curl 1
rotation;

hold to this assumptton tnroughout the unit.
rotation is thi%:

the direction of
and only vectors perpendlcular to n #re Totated.
We will take' the arxts of rotation p to Aec

a unit vVeCctorT.

- Notice that the rotatlon about n by angle 8 1s tHe same

“as the rotation about -n by angle 27-8. o JEEO
‘e e ’ -
o A rotatioh is a Iigear Operator on R * That 1s, if
° R@a&fﬁenotes the vector obtalned by xotatlng uabout n

by angle 0, then -

. R+ ) =R *RE), and R(rw) = rR(w), .-

for any vectors
B R(u + ¥)'= R(u) + R(v), for example note that'u + v is

a diagonal of the paralle’logram determined by u and v.

After the rotation,

u and v and scalar .r. To see that

the corresponding diagonal of the
parallelogram determined by R(u) -and R(v), namely

R(u) + R(v),~1s exactly the d1agonal of thé‘or1g1nal ~
parallelegram rotated, R(u + v)

LX)

See Flgure 2.

R + R

R{_u_)

0~. o,

: . J*
. Figure 2. Under a rotation W in R3, the image of the sym
of ‘two vectors u and Vv_is the image of their sum.

- .
.

)

. Similarly, chang1ng\the length (and perhaps the
d1rect1on) of a vector by multiplying the vector by a
scalar r, whether performed before or after the .rotation,

.yields the same result., Thus R(ru) = TR(v).

a rotation is a linear operator.

Consequentli,
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-It is conve;ieng to express rotations by using a
"right-hand" set of orthonormal vectors in R3 Let n be
the yﬁit vVector defining the axis of rotation as above.
Let _\_{ and y each be unit vectors so that 4, vV, n, are

with cross product uxv =n.

mutually berpendicdlar 1.
“Then the rotation ‘about n by angle 6 is given by

-
<

°

in the basis ‘u,v,n of R3 See Fiéure 3.

.o - ()
1] . "a

(a) Three mutually orthagonal vectors u, ¥, and n,
(b) A rotation R

Figure 3.
. ' pictured with n pointing out of the page.
about n by an angle 6 (shown hereaas a small positive angle)
- moves u to R(u) and v tC\R(_) .
- - P >

’ ) Z.

CONTEXTS IN WHICH ROTATIONS ARE COMPOSED
We now indicate two contexts in which' applications
vof Comp051t10ns of rot%tlons occur. * *

For the' first context, consider twe reference
frames—an uhprimed one with axes x, y,-and z and a
primed'reference frame with axes x', y', and ZS. Assume
that each is a right-hand Cartesian .frame.

“each the x,

That is, in
y, and z axes are mutua11y46erpendicular with
the positive z axis obtained by-the right-hand rule from:

the x and y axes as in several variable calculus. Assume

Aruitoxt provided by Eic: . - .

.

T R(n) = n
’ - . » -
- R(u) = cos 6 u + sin 6y ,
R'(,y') =, -sin 6 u+cos 6y

3

.that the axes are all marked off with the same units, and

° v A4

that the coordinate origin§ of the two systems coincide.

k' be the unit vectors along the' -

Then there

exists a rotation R that takes i to i', j to j*, ahd k to
Ve o~ - N~ P N

k'. That is, ° -

WA

3R = RG

Leti,i,kandi‘,i',
X, Y, 2 axes, respectively, in each systemus
Ll . .

ENRRIEY

To see that such a rotation exists let S be.any rotation

with S(;) « Now rotate around the axis S(i) = 3;
until S(J) and S(k) coincide respectlvely with j' and k'.
AN ~weo,
Call thas “new rotatlon T. Then the-composition of T and '
S yields M N . .
ToS(i) = i' = ToS(j) = j'  .ToS(k) =
AAA PNA MAA AN -~ e

v

K= TSI

Figure 4. .The rotation S about the origin‘takes 1o A‘,

as shown in parts (a) and-(b). Then, the rotation T about
N a 1 ',
the o'rigin takes Sg‘)/t:o‘l and S('Mk) to'&!

Now, the composition of,rotations about-éxes that pass
through a commoit”point is ,itself a rotation (a direct -~
Consequence of Theorem 3 of Section 10 below), so that Tos
is .the desired rotation R. Thus wé have the result that_ : ,
given any two right-hand Cartesian coordinate systems -
whose origine coincide, there exists a rotation which

maps the x,’'y, 'z azes in one'system‘

{7 Y '

L ’

onto the cagresponding




s . .
0 ¢ .o 3
- ‘l. ] o N
axres’ in the second system:

. - ‘e

each azis 18 preserved. . -

. flow consider three right-hand Cartesian’-coordinate
dall them unprimed,

Eystem; whose origins-coincide.
..primed and‘doubly primed. Suppose wq'know a rotation

* taking the uﬁprimeg system Fo the praimed fystem, and ?lso

~ ' *a rotation taking the primed to the doubly That

° is, let Rl and Rz.be the 'rotations so that

primed.

)

. s
<4

it =

: <8 .

L A ;4]:\' =r Rl(;];z, l(: x‘" Rl(“l‘(‘S’ *
« - ~ . - . ! *

ST RN, ey, TR Ry

*Then the tra;;forﬁatibn_tiking the. unprimed axes to the
doubly primed axes is the cdmposition of the rotations:-
coe AT ReR(D),
A v .. . ,
- As another cpﬁtext in which.it wduld be useful to
kno¥ how t5‘compgse rotations, consider an objecpJthch is
"rotating about two “axes sifultangously.

-

Avspfingbdard
. diver who is twisting %hd spinning at the€ same time
exhibits such.behavioTi Sp does the orbi}er shown in o
ngurg-s. To be specifi¢, consider.a cylinder whose axis
initially liés‘alopg the x-axis and whose center of mass
- lies at the origin (Figure 6). Suppose the cylindef is
fptgti@§>a§out this axis so that at-time. t 'the total
angle ‘through .which the cylinder has rotgged_ié-e(t)t .
- {For "uniform" rotation, 6(t) = ct_for;SOme tonstant ¢.)
;Now suppose that the cylinder, is also rotaginé about the
* z-axis so that at_time t the ‘tota]l ,angle of rotatipn is
.¢Tt)" Let R, denote the roxétion abput the x-a is by
angle ¢'(t) and St denote;the rota;ion about the’z-axés by
angle ¢(¢). Then ,a point on the cylinder whose positioh *
. is o= xi+yj 2k at time 0'will beat S,oR (uh at fime
- t. ThaF is, the location of 4 gfter t Qnits of time have
elapsed is found by first spinning about thé x-axis and
then about. the z-axis even though in reality the two
rotations occur simultaneously. '’

-

Ic 1 o
¢

. xS

f rther, the osltive sense o
¢ p s

\

~
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 Flightmode . °

o

2

Gravity gradient
7 stabrized

Y-POP, X-nadir t:%§}<:§.
Z-POP, X-nadir B—é@;—é .

Quasi nertial Y-POP
{selected inertiat s
sttitude/attitude
rate

b

2-POR

o

-t 3

- .

Figure 5. Orbiter. .

X, Yand 2 }Il‘k “

. Orbiter axes. Skatchs$ at )
latt show which axis is perpen-
dicularto-the-arbit-plane (0P,
the cifcles) in , oriantati
toward Earth. Whan gravity-
stabllized, an orbiter's fose
always faces . Whan drift-

Ing quasi-inarilal, tha same

*+  surface’always facds tha Sun,

useful to keep haat radiators .
on top out ofdirect sunlight.

.
- »

s 4

" (Source: Air and Space, 'Volume 2, No:'3, Jan.-Feb. 1979,

page 6.)
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. fx s . x* B t .
. , : - . - .
(a) Position of uat, « (b) Position of u after R and
time t~= Q. . S have acted simultaneously

for t units of time.

°

Figure 6. The point u 13\&;¥d by the rotations R_.and St,
- ag’described in the text. Its.position may be found by

o : spinning first about the x-axis, and then about the z-axis.

‘e

(1,0,0,0) with

3=

(0,1,0,0), with
. (0,0,1,0) with

(0,0,0,1) with .

We wilf denote scalars by lowercase letters a; b, ¢, and
4 will be denoted by the
'lowercase letters P, g, u, v,°i, j, and k

the ggfmlg = 2&,+ Q; Y qb'can be thought to be ezther

in R¥ or in R” (as w=20+aj+ bj+ ck). However, in

performlng the cross product 4 x v, both u and N must be

~

in R3 A quaternion of the form (a,o0, 0,0) = al will

d. Vector$ either in R3 or R

A'vector of

3

. oExQQ\?e denoeed just by a. o .

-

4. ADDITION AND MULTIPLICATION °

N

Addition is dé&fined compSnentwisé just as in linear
algebra. To define the multiplication, we give the rules #
for multiplying the bdsis vectors-1, i, i, k and then

"extending by linearity." These products are g

_ A=il= L =kl
3. THE QUATERNIONS' ST ‘ ki = j = -ik,
. . . T TR T ;
R Four- dlmen51ona1 Euclldean Space R can be given a ! E = ’l’ iﬁ = i = '&l‘
product functloﬁi with this product R4 is called the The vegtor 1 = (1,0,0,0) is to_pehave as a'multiplicative
Wquaterntons fand denoted by the letter Q.. The essential unit. That is; . . e
;}. "feature' of this product is that it permlts a kind of ) B _ e L ¢
L “dlvzslon whereas %he cross praduct in R doeswnot Let -a37a=9L '
?_ us begln by denoxlng an element (a,bsc¢ d) %r r? by for any quaternion q.
; (@B v cf «dk, just as in R® the élement (b,c,d) is ! Example: - To find the product of 2+3i and -M6k, we
e often denoted by b1“§ c3 + dk In this way we may embed . . ’ . - - "~
\ R3 in R = Q as the last three coordlnates In Baft1cu~ » ,erteﬁ ’ ’ . .
;1 " la:‘ye mayildcntlfy the vectors oﬂ*the left side of the&w, (2 f.%i)(:l # QB)f= 2(‘1? * 2(6k) -+ 3i(-1) + 3i(6ﬁ)
' following: table w1th the symbols on the right: . > C L :"= -2+ 12k - 33 + 18k .
- g RN - R A A "; ‘ Toe -2 - o3g - 18]+ 12, .
! A - 1 .
[1{lc T : TR .
. : ‘ ,.&" ! ' : - M )

@
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LN

E

S

,F.xe‘rcis:a 1: Show tilat the complex numbers can be embedded in Q by

carrying out the following steps. Consider, any two-diménsional plane
contdining the Ll =(,0,0,0) axis. That is, let P be the set of !

s a fixed unit vector of the form

vectors of the form a + b.& where n
x4 + x,j + x.k and where a and b afe free to take on any scalar
1 23 IS .

= = N :t

(real number; valxluzzs. (;; vect;r u x1£ +62‘2.+ x:;l‘fA is a uni
0 + Xy + %, *+x, =1.) -Show that multiplication of
quateri\ions in P, has the usual rules for the multiplication of

2 3
comp®¥ax numbers.- In particular show that n2 = -1.
. w

~ . .
” -~

vector if'x

&

“Exercise 2: Let £ = i+ bj + ck and y= xi + yj + zk Show that
multiplication of . 9@ and ¥ as, quatemions yieLds . . !
uva—(u . v)+(u><v) : . -"
- . AN L .’
where * indicates.the.dot or inner prodlfct and x denotes the usual
cross product in Ra. Conclude that the following ,two for;nulas
hold for vectors 4 and y in R3-: .
RN A AR
@ yxy-= 1?(:&— v,
where the products on the right denote quaternionic¢ multiplication.
R < . . . - ‘
AN
d N )
4\ «
¢ 5. CONJUGATION AND NORM
2 ¢
* L4
Two “other operatlons frequently encountered 1n work
with quaternlpns are .conjugation and norm. ’Let
q=a+ b1 + CJ + dk We define the conjugaté of q to be
~ . RN
- } s p
. . ’ ’q? a bih. CA d~k'. d
The "norm of'q is defined to be thg usual length of q in.
4. . . oo : * . ~
R . . BN -
. _ . e
la] =/a% + % < e v dh),
M o -
. . . ‘
E\. ~ /‘ ; o
0 N £ s
14
[N . “ , 5 t

.

Exercise 3:° Show that the

q.uaterm;ons )2 and 2‘: )
k]
. _ 2 , N
. (1). qq = [q|° = qq.
[ ”~ LMA
(2) E‘ = q‘ v - ~ L)
E) ", .
' (3) _pa=Tap A
- At aall ¥ 1 Yy
(4) lpql = Iptlgl- . ) . -
j» Notice that the third property says that the conjugate of a product - /
is the product of the conjugates inthe reverde order. This ’
reversal of ord;r holds for prodi:cts ‘of more than two quaternions as. ~

well. Notice also that the first property implies hat every q #0

-has a multiplicative inverse.

pq = 1 = qp; namely, ). q/lql

M
I3 '

For any a #0, there is a P so that

6

6. THE QUATERNIONS ARE A SKEW-FIELD:

All'the%"normal" rules 9f arithmetic hold for
" multiplication and addition in Q except commutativity of
multipliication. ij = k # -k = ji.
I o ~ M M
are the basic properties of multiplication, those for
' addition be1ng the ones with which'you are alreéay o,
familiar from linear algebra: Y

For example, Here

4 w .’-
v /
Associativitz: (pq)r = p(qr). " . - i
R B . MM . MMM N
Distributivity: p(q+r) = pq * pr . . : “
M A M A -
: T + = + .
- A - A A s
Multiplicative Identity: The quaternion 1 sa,gfies
S S N
s o lp =p=pl - .
”» Lt
for all quaternlons p. : .
~w Iy -~
Rec1procals: For any q # 0 there-is a p so that .,
[ad .4
. .« agp=1-=pq
LYY ~M M AN

, F N

‘ Although associativity and distributivity are somewhat

tedious to prove, their %roofs follow quite directly from
: R ~ 10




@
_the definition of"muitiplication. The‘existence of
reciprocals gllows division although there _is ambiguity.
For examgle,. to d;vlde ol by q, we may multlply q1 by
the rec1pr0cal of qz:elther on the left"or the right.

L 3
E
.

. And these. may not yleld the same result since multiplica-
With these -
propertxes the qﬂatern1ons Q\are called a skew-field.

- thI’l iss I'lOt 1n general commutative.

> - If we thlﬂk of Q as the vector space R4 then for -
', .every red] 'scaldr r we héve . £
r(a * bi,+ cj * dk) = ra + rbi + rcj -+ rdk.
. W N, M . M ey M
. =~ However, we may think of the scalar r as r&l= (r,0,0,0),
in which case T . - -
/ r(a.* bi + cj + dk) = ra + rbli +.rclj + rdik
P me AA oM FYS N reS M

-~ . : ’ -‘ O
.. = ra + rbi + rej +Tdk
M- A

ot

by the definition of multiplication-in Q

Thus we

bi + ¢j + dk
M Ar M

0 , :l - “
i ¥C2+d'

Now. write . ’

LA X,
hol PR S oY
. '
. \ A

(o]

‘ l:lz\,
bW :‘ - B L. N
¢ T PR . ¢ -
M - a - ’ -

Tt - SO o -

PO
s

‘ ' -
B

.

+

. . . ] .k L] ‘_
q=a+ bib + dk S
- M AN AN 4
= a + /gz + c2 + d2 n
a4
. . [a z t" +d ]
s E Tt — nf,
T R T MW -
where t = va%-+ bl + ¢t +at - fql.
- - \ N "
- 2 42 2 Z2)2
. N é + 'C + d = .
Since {r] + [T—r ] 1,

<« * ~the pdint (a/r, -/(b2 + c2 + dz)/r) lies on the unit circle

in RZ. Thus its coordinates are {cos 8, sin 8) for some ~

angle 6. We have now arrived at a polar representatia;

for quaternions. Any quaternion q can be written in the

S W J
férm S . -

¥-- '.

, for some angle ¢ and some unit vector n in R3 “
- £ -
*

Exercise 4:

kql(cos e + sin & n)

W

.

Find the polar fepresentations of the following

quaternions. S -0
e . , . . - .
I 7. 'POLAR REPRESENTATION OF QUATERNIONS - \3 , . @ IEgk e T -
, A ¢ - . - 4 . . i
- ,( , ) RIS AERSS : %
= For many purposes, when aling W1th complex numbers,: ey I+k ‘ g o
the polar representation 51mp11f1es notatlon and calcu- B e E) g ’
- ulatlon Thus we denote a complex numbeﬁ a+b/_— by, ’ ‘(¢}Q3** al',6§; PT\
r(cos & + sin 8 /-1) where: . P - . L} =
- ' < . . - \ ' . .
r= v/t + b, .cos 8 =a/r, sine = b/r. 8. DEFINITION OF THEMULTIPLICATION LINEAR OPERATOR
%@%ﬁ “We can develop an dnalogous representation for quaternions. | - T - - THE BASIC THEOREM )
’ -To see this let q.= a + b1 + CJ + q&, and let h be the
unit vector in df in the same d1rect10n Aas bi + sl + dh, ) We nowddefine a certain lineif operator’'on Q. ' Since .
* This means that . . . the space R’ that underlids Q is a. vector space, ‘the
v . ) notion of a linear operator on Q makes' sense. It will

turn out that this operator i

intimately related to .

“rotations in R3 Thls is the bysis for our gaining

1n51ght into rotatlons by consiflering Q. To define this

. 12

o,

.l




operator let g be a fized-quaternion,
function M_:Q + Q by the rule

N

M (p) = qpq

Then define the

§a)

That is, the 1mage of b is obtalned by.multlplylng p
on the left by q and on the right by q.,
the function Mq

.

a multiplieation map

L »

is a linear
If 9 and 9,
¥ollowed by M

THEOREM 1:' (a) .The multiplication map Mq

operator on Q; for any qﬁatefnion q. (b)Y~
~

are two quaternlons, the: comp051te of Mq

. N

is

' - e,

Mﬂ.lflz

(c) If u=ai+ bj + ck is.in R (has flrst Foordinate
zero) then its image M (N) is also in R3. Hence Mq

when restricted to R3, "'has its range 1nQ ~
L R, . ’
Proof of (a): - .

To.show that M_ is linear, we must show for any
two quaternions pl,ﬁhd P, and any scalar r.ghat
. ~» -~ - .

,r . 4
l‘«ig(}g1 + Py = Mq(_gl) + Mq(gz)

. % ‘
,;' M“(rgl) = r'gﬁ,("‘lj.
But ' M1t B2 = aley * )y, .
R TR 20
R ST F5Y s
.A = . ‘= M&(.gl) »* M%(BZ)’ : .

by- the distributivity of multiplication.’
- preserves scalar multiplication.
. . , .

i}

L

We will call "

4

»

(Y

Proof of (b):
- - \
We show that M. oM =M -
a1 qz('E). didy '~
p- ‘This is accompllshed by-the follow1ng sequence of
equ€11t1es ) .

Mg oMy (p) = M, (4,53;)

9 9w a7 vmln .
™ -~ . 7 *

—— ¢ ;
T 4103229209 ¢ ' )
= (SISZ)E(EEEI) " by associativity -

' ) o L é 5
\‘ K . (alaz)gfgiizi by Exercise 3(3)
. = M i o ) ,
L , a,9, %) C e

oy R

Proof of (e):~

/; ’ 3
A quaternion ) has first coordinate zero (is in R )
if and only if u = -u We may therefore establlsh part

(t) of the theorem by shOW1ng that if u = -u, then

Mq u) = -Mq(u) The argument is brlef ) .
~ ~ R / .
G 7 :
~ .
=quq by Exercise 3
M M oan .
v - - . i )
A Toad Mhe
= ; : -
) . ;( = 'Mq (HI) . . 14
.\- L K
~ \I'\
o ae ? 9, THE MULTIPLICATION OPERATOR
: IS "REALLY".A ROTATION
| - ’ - Lo ‘iv
We may now devélop the connection between the .
multiplication operator M and rotations in R3. _Let "

n = aij +'bgr+ ck be a vector’' of unit length in R So
MA

, for any angle 9, the quaternion cos 8 + sin 911 is a

quaternlon of unit length. :
1

(P) for any quaternion




¢ . 4 . . . T ) ‘ , ' &
* .THEOREM 2: The multiplication map Mcos 0 + su‘] on, 25 2 ° ‘. .Therefore, . - . R o
3 3 . ¥ ) ° ’
. . . 2
map from'R™ to R”, isithe :x;otatlon about axis n of * angle o ‘M(.l.’) - (Cosze ) $1n e)u + 2sin 6 cos 6 X
26. That is, if u is in R” then , &4 : -t
- ‘ g . . o . = cos(20) u + sin(26) v, .
M ; u P - i .. '
cos-6 + sin 6n ") o by the trigonometric formulas for the sine and cosine of
- ., - is obtained by rotating u about n by angle 2. . T twice an angle.
: ’ : . . 4 ST ) . ) °
L N ¢
Proof: ;! . . . - ~ ~‘.' . Exercise 5: Show that
We know Jfr_om Theorem 1 that M = Mc<;s ?. + sin 6n is' 7 M(v) --;/-sin(fze)g~ + cos(20) v, <"
- a linear map from R3 to RS, To check that it is the ) “and . M(n)“’=}};: ) S
; tati h . . o ~ N -
reql'ured rosatlon we need only check 1ts action :n a - this completing the proof of Theotem 2.
basis for R”.« As in the 1ntroduct10n we use a right-hand . .
orthonormal basis u,v,n. . N : . ‘ ®
- \ Rt @ — ’ ,
Th are th i h f . - ‘
ere are re‘e things to show, namely that ’ L 10. APPLICATIONS ‘TO ROTATIONS
~ . . . R . . o R N
. M(B) = fos(ze) u + sin(260) .Y.’. . . - -
Sy M(‘X) = -sin(20) }},:”;\C.OS(Z'_G}AYV» . . ‘l-Ve can now"recast s?me of the results'that we ha§-/e .-
3 d LI ' obtained about 'the relation of the quaternion multiplica-
a - - . " ' . . *
n' - s - tion maps to rotations in R3 in the fqrm of a theoren,
-~ . . . . - . > & . .
~ N M(n) i . for future I:eference. - .
. We will establish the figst of the three equations, and oo ) ~ . - C
‘ leave the verification of the remaining ‘two to be”done . IiEOTREM_I% Let Rl” be a rotatlon about a unit vector 1
- . as Exercise 5. ‘Here is the argument that M(u) is what it - in R” by angle 0, and.let R, be a rotaticn abouta unit: -
ou%ht to be. Flrst of all. . ) ; . R . AR vector Mo by angle 8,. Then . N
e M(") (cos o + sin eg)g (cas 8 51r{ OB) . e ) ) 8" . 1
SR . . ) . \ R1 = Mq ,» Wwhere q; = cos > + sin VRIL
> . = (cos 8.u + sin 6nu) (cos 6 - sin6 n) T ‘ . A A e
. ' B 2 5 . and ’
” - o= cos eu - sin enun + sin e cos e(nu - ug) .- A . 62 ez
e ’ . R, =M , where q, = cos — + sin =N,
= But u,v, and form a right- hand .or o.rthonormal set /So . . . gz me ] ]
e 3 EH,"_’:(_,.,. u) +- (n xg) : 0 + Yo "g ‘ “~ g . Then the Con'lpo.s“ition of the rotation R, followed by R, is
. and : . .t : . given by . . ¢
. . . Y - . <
- . [§ - 3
i © inun ¥ = = L ) R,0R: = M oM = M .
, un = =yn = -(v. + (v x = . , .
.. fpun = (nn = vn ( D) v n)~ ) }}V L 21 9, 4 9,9;
‘B Formula 2 1n Exe cise Py ' ; \ . R X : .
y ( 1 rei 2’ ; > . TR . 4 In particular, the composition is itself a rotation, and
R ) ’ - . ~ . e . . . .
- - .nu - un "\311"“}}”"? Zx,,» . T s . may be achieved by multiplication by the quaternion q,9, -
. v & . . e 1 - "1, . . wimt e

¢

. 20 T T 21
K S e .

n . s v . “ . . - . . N ’
Proi o rovioror v RS Lo . % . - 5.
= J . e eI, ¢ L U . . \ . A = " '
. P4
<

- ’ A .. L NI by L. S0 . et

LY




.. Exariple: Let R1 be'the rotation about the x-axis by.“90°'
and let R be the rotation about the z-axis by 90°. Then
. 2.
= c0s 45° + sin 45°i = —(1 + i
‘ a1 ~, /"('“ =
= . ° X ' ° ) 1 ) s
» q, = €0s 45 +-sin 45 k = —(1 + k)
. wt L~ VT~ ~
™ represent R, and R, respectively. Then R2°R1 is repre-’
sented by - ’
. q,9 ='1(1+k)(1+1)
o281 T 7 ~ .
. L \ 1 i .
. = ke kD
- = 1( + i + j + k) )
s A z e .
- s1,alR Ak ,
L)
L2 ‘
R .. . i+ o+ k .
= cos 60° + sin 600 (&
. . . /3 -
4 -
which is,; according to Theorem 2, a 120° rotation about
. ~the axis i + j°+ k. *
M MM o~ l
. 4 kd
° z z z
- ﬁ )
P . /TRI\ 1. /R\
. Lo 2
- n.\ -
. * 111 . I I
é! ‘\ ° 1 ) P * ' ' it -
b I — Y 11 — y 111 - fm—— y
- ‘ - y
X . X -X -
- Figure 7. Composing rotations in- R. 1f R, is a 90°
‘rotation about 1 and if Ry is a 90° rotation about j, then
the composition ] R <>Ri is a 120° rotation about the Vector
. I+3tk " 17
o~ @
Q . © .
" . ? . '
. ERIC 22 J

Exeréise 6. 1In the example above, find the result of roigting first
about k and;dten about i, racher than the revetse. Show that this

result dlffers\from the resulc in che example. Thus4 composition of

rotations is not commutative.

Exercise 7. Find the result of rocacxng first about 1 by angle 180°

then about i+t Jw- k by 120°, and flnally‘about 2 “by 90°.

o 0
. T e
-~ -

» » \‘: ' .
11. THE/bRIGINAL QUESTION:ANSWERED

. .

In the introduction we askell whether it were p0551b1e
to find forﬁh%as that allow a strgightforward way to flnd
the result of. 55mp051ng two rotations whose axes and *

.angles are given. It is certainly possible, and the

géneral Procedure, -as you saw in the example of the pre-
vious section, and 1n the solutions of Exercises 6 and 7,
is the following: Let . 1

R1 denote a .rotation abaut grby angle 24,
and . s :
.R2 denote a rotatiqn about E’by angle 2¢.

To determine .the axis and angle of the rotation R, °Ry,
we first take

v s -

,ﬂl ='cos 0 + sin ea and_ 2‘2 % CoSs ¢ +-sin ¢;n~.

N4 .
The norm of q1 and q2 are both equal to 1. To see ‘this,

let n =-22£ ASL + Hﬂk‘ Then
P PO v amy
.- Igll = Jcos 6 + sin 6(n," + LENERS P
= /éosze + sinze(l)
. « 8
= 1. o . ’ .

o 4
M .4

1 is similar, and we may conclude
s

The argument that |q2[

that N oo R 18

4\‘.

. _' 23




¢ L |
M A}
" . ‘ - ‘ . = 6 —
. SN -
laga;l = lapila;17="1 )
R L wom - ,
) as well. The polar form of q,q, is 'therefore . .
N\Z_Ml
cos + sin pu
4,9 = 19,9l Ccos o o 1)
- = (1)(cos p + sin pR) }
v = cos p + sin pu,
( . ~ 3 &
where P;is a unit vect%r .in f{S. When we'cpmpare the _' v

polar form of q,9; with thé expression
M Eam . . » -

qqu- = (cos ¢ + sin q>£1') (cos 8 +sin 6&) . AR
. Mmom .

. . : .
. ® cos¢pcosd +sinbcosodn+sindgcosdm+singsénémn
- ~w »w PAAA

\

(cos ¢ cos 8 - sin¢ sin8m.n) ) .
. * . MM ]

+"(sinB8cos¢n + sindcos8m + sin¢ sin®dmxn),
. an - e M

we see that . . . r\
1 A Y - /‘\
u==(sin6cos¢n + sinpcosém + sin¢sinémxn),
w T M .~ A AN
‘ - -
where - - . ; :
N r = |sin@cos¢n + sin¢ cos 6m°+ sin¢ sineémxn]. -
'S M - A P M~oaa
\ We also see~that N

- & .

cos p = (Cfospcosd - sin¢§in6m-n),'
. MM

" and that )

S, .sin p = 1. . . t

These formulas for u and p give us the informMation that we

;- . .° seek about R, o0 Ry - -

\ ’ )

Exercise 8, Suppose an object rotaces about some fixed point in such
a way that a point on the object ac u= ai + bj + ck at time 0 is at ’
u(t) = R (u) at time t.
axis n by angle 6 = 6(:) Show that the velocity of the point u(t) ”
at time t is u (t) = 8'(v) n xu(t) As . %g calculus the
velocity of a vector u(t) - a(c)i * b(t)j f@(t)k i% its term-by-

Thac is, u' (t) = a (t)i £ b (c)j + ¢ (c)k, provided

: .19

T - ) n. &

Assume that R is a rocation about a fized
(Note;

. term derivative. “

the appropriate derivatives exist. Similarly, the derivative of a s

quaternion functxon of t is its term-by-term derivative.) It may be
helpful to prove that the product rule holds for differentiating
products.of quaternions: (pq)' = p'q + pq' with the corresponding
Lk o M M A AN .

rule holding for products of .mora, than ‘two quaternions. Incidentally,
it is possible to generalize’ t?e formyla for u '{(t) to the case where

the axis of rq@tation n also depends on t, as it does 1n a wobbly

Spinning top. . \‘, -

-

} -
Exercise 9: We could have introduced the\ljltiplication operator

by means of two other Operacors,,ché left and righé mulciplication )

maps. Let g, be a fzxed quaternion znd define Rq and L (for right
and left mulciplication) by ' '.“ . 91 -
< . ' . R . ¢ DI
= . w T .
-q(g)_ 31 . v . e
M 1
L.(p) = qp . ) .
q A .- . .
. ~ -
Then Mq = Lq ORE- N Interpret these two maps'. (Hint: First write t
q in pSlar Torm™as r(cos 6 + sin © n) where r is the norm of q £nd n [

is a'unit vector in R3 Now calculate the effect of Rq and Lq on
£
each of the basis elements 1, u v, n where U, ¥ -1 fbrm qriait-hand :

orthonormal basis of R3

Note chat Rq and Lq are each linear.) R
§ > y ‘\ ~ ~ ‘ ' LA
rten i‘ -
. =l ‘
. 5T ) . [ N
. p 12. HISFORICAL NOTE . . .

. aPgebraic system in wi{ich commutat1mtyl/doés not_hold.
His book Elemgnits,

*and provides

The quaternions were invented by Wiiliah Ha®1ton

(1805-65), an English mathematician and mf')/thematlcal o oL
physicist.

0y

Hamilton d1scovered the noncommutatlve rules Lo
for mu1t1p11cat1on of 1, J, and k in a flash of” 1ns1ght

as he was walking over a brldge near ‘Dublin..
the first mathematician

He is “perhaps
consider “the "p0551b111ty,of an

Quaterntons (Londj)n, /1866) was «,/

e t1 e when Jiinear algebra»w 1n '1}5 b1rth
Nt restmg readmg‘ The quatermons were -
the first alge ; ac system to hav,e been studlé%/beyond the
The modern notatlon for vectors was

— . N -

written.at

complex ‘nunibelzs .

5 . - - <

Y -
oa

S 9

ey

4

U




*-_introduced mainly through ‘éh_e..‘efforts of the American 6. Let u=cos 6 + sin O'R and X3= cos ¢ + sinl¢ n,
physicist J.W. Gibbs (1839-1903). There were several ;3 . where n is a unit vector in R Find uy and vu.
emotionally bitter controversies between the early pro- : Let R, and R, be the rotations assoc1ated Wlth u:and

N pnents of quaternionic algebra and those of vcktor * - M respectively. Verjfy that uv and vu both xie{re-
o * algebra. . "sent the rotation about n by angle 2(0+¢), as they
. i’ - must from purely geometric considerations.

s
13. MODEL EXAMINATION

! ‘ 7. Let q=1 + i Find ‘the polar representation of q.
- " ‘ %)
‘ < ' Let'p = + +zk. F Show that qpd
1. Find the followiﬁ&\.products,:‘i; ' etk XI YJ z ind qpq ow 4, ?.Bﬂ is R
. A ’ rotated about the X- ax1s by 90° followed by .an

f‘ ili+j+ k) . o expansion by factor 2. o
b. (1+1)(2-J) ' : , e , .
v c. (4 K2 y .- B 8. Let R be the rotatlon about 1 *j * k by angle 60
. i . .
) s'J" ~ . . . ~ . . and S the rotatlon about 1~ - ‘J + k by angle 9¢°,
" . ’ L -t : +Find the axis and angle of rotatlon of ROS
2. Find the multiplicative inverses of: . . g
. a.. 1 ., \ - . i 9.:.Let R'and S be the .rotations given in the previous
: b." 1 + i . ' . ‘‘problem. Let ,T be the rotation _about 1 + k by angle
-~ < .
ce. 1w . 4 S 240°. Find the ax1<an¢ angle of rotatlon of RoSoT. :
~ny s - . N » P - .
f . * . ° .
3.7 Let u-= k - ZJ and’ v = 1 + ZJ Calculate uv.and yu. ‘ R 14. ANSWERS TO EXERCISES wms
Venfy the formulas in Exerc1se 2* (in the text) for i ’ ) . . ;
; : ~dot and crpoSs pfodpcts of, u and v L - 1. Nowg =X L+ xd +txk. so 0
< e ot R B i * . . - »
PRI ek o i e s sh S .z=\ ’ ¢ .
."-i..A 4, Letg‘_—k- 3 ,X—i+2“’ andx=l-}‘<~. ow ) o ‘)l}_p‘ . N )
: that ,, ’ : . . . “
- AN e R RN
e . . u(vw*}m (uv)w u(y + w) = uv-+ouy X M m !
1 : o
. thu:i verlfylng associativity and dlstflbutlvny in i + xlxz(H‘f;ji) + xfx)3(£lf<+ ki) + x2x3(ili+5p
T« }hls special case. T e . - . i N ) - '
: \ . S 22 .
) . . C e . . Xy Xy 3 X3 + 0 . [
e 5. Find the polar representations of - . P ‘
, * ¢ ' ' . = -1, - ' ,
a. i ‘ Z. o - >
. . “ ) L e et _since n B 48 a-unit-vector-(where the second to the last equality
I - 2 3; + ,1 B T . follows from the rules for multiplication) Thgrefore, mltip@lica—
- * C. =1 +j " , ' P ) tion of any two eleménts of P yields -
" AN M % I - . - .
2+4i -3 . , - ¢ 22
M A - 21 -t ® '
n o ' . ) - 5, O
. w . ~ 7
A e " '




<

(a + l;n) (¢ + dn) = ac + (bac + ad)n + bdn2
M A L M

° -

= (ac - bd) + (bc + ad)n. % @

>

¢ This {s the formula one obtains in complex multiplication with
-1 replacing 1. Similarly, addition of quat‘ernions of the .

&
. +form a + b& obeys the same rules as do complﬁ.inumbers. The

~

notation is convenient here:’ Denoting Y by i suggests how to

embed the complex numbets in Q as the first two coor&inat‘,es.

. ’ -": - .

2. Calculate‘ LR
yoo A

VA ) ). .
Pt O byy? = czk’
M

av o= (ai + b;} + ck) (xi + yj + zk)
AM ‘ M M M M

o tayij + bxji + azik + exd +'bz3k + eykj
\

¢ = 2(ax + by + cz) + (bz - cy)i + (ex - az)j + (ay - bx)k

- °

=-(-v) +;(u« V)[*‘“

~ b

By interchanging the roles of h and y, ve find
By,
Ju QT -
" Now add and subtract to obtain formul%s for the dot and cross
pt&duct,_?jng that u*vav.-uand u xv=-v xu. N '
[ Y *

o == Y MM MM \n M
e 3. Let€-°a+b&+c1+ dk;* then . .
s ) . q:l."(a+bi+cjtdk)(a-.b1~cj—dk)
N Fryvs M A M M .

°

) -az+b2+c2

v

si’nce all other &erms cancel.

+d -|q|2 ‘

N -

Similarly for qq. To. show the
third relation let p = a + u where u = bi + cj + dk and let -
X ~

v : q-A+.UwhereU-Bi+Cj+Dk’

That is a and Q’ are the
P ) first coordinates of p and q. Now s
. . - ~ L2

r— — 0 . , .
22-(a;»-&)(4\+y\) \

Soe e v waA AW F aobul v T s = e
. M M. MM,

-aA+Au+aU+ [—(u‘U)

¢ $

-aA—(u U)+Au+aU+(uxU)
M.M

LT aA - (,‘i‘i}’.,)%;“}i.' aY,- wx® RN - 23

wx] -

n *

-

\ se 2.
by thea definition of -conj_uga?pn"and E:vcercise 2. Also

q-p=(aA-U)(a - u)
M M A [N -
* * =Aa_

al - Au + Uu
-~ A g
= aA - Au- al + [-(U-u) + (Uxu)]’ ’
-~ FYRPY FYSPN
= aA - (u*U) - Au - atll - (uxU)

. “ A . o) ~ M M
since u*U = Uxu and (uXU)=-(UXu) . ’
’ M AN L

The lést relation to be proved-.;-that lpq| = |p| Iql—fqllows 1n

much the same way
ds clear.)

Assume that p # 0.
"

.

“(Otherwise the. assertion

2, 2 - -
Ipl“lal” = ppaq by the above

°= p(pq) (qp)r where r.is the reciprocal to p
P aade, AR \M M
= p(p9) (pO)T

s = plpq»kr ) .

L T Y

by thé above

- = lpal %

Mmia W
R
. = |pq| ‘
N .
since r is the reciprocal to p.
o~ - ) ~o

- ¥ -

1+3+k .
4, a. 1+ jFk=0+ 32 48 . o
A - /3_
1+3+K . .
= y3|cos 90° + sin 90° [—ea= M|,
/5 . [y
) i i+ ]+ K
b."1+‘1+j+k=21+’/—5—- =
T ATATITR Y 5 .
o - 1+ +K)]
. = 2|cos 60°+sin 60022 | |
/3_ -
- . . _ SR “
Ce 1+k L+—k /_(c0845°+sin1o5°l<)
Ivs V2 > 4
9]
0 " - L ] H'
N B . 24
; .:' - ‘ ¢ . e .




: ~
vy - . 3 - 6K j - 2k " 7 Thus the composition (note the order) is represented® by
; M . 3 - > '/— 1. 3. M] . .
. d. 3 +3j -6k = JBoj—=— + 2 - 4511, z . 1
- Y S VTN JE /5 99, = =L+ A +i+j-ki .
« [ q3 2 1 . J J
VL aveyve 2/5'»\ M AN AN ~ A AN -
. - 2k . B . :
v ° + si =N ;
, 3/_cos66 sn66 /§ ) =../__(A]‘_\+£+ ~k+j-k-1-1)i
v 2 Rand , A A L) AL AN g -
b : to ’ ' . . j
5. For ease of notation let ¢ = cos § and s = sin 8. Then s = “(23 - 2k)1 . .
. 2 N r LY * Py 2'/5 vy .
H(@m) =.(c + smn(c - sn) :mr .
. . 2 . . = _—(—k - J)
= (¢ + sn){cn - sn‘) . L S A |
-~ L =y . Py , . /‘
= (c + sn)(s + cn) by Problem 1 (-j - ¥
“ M ‘ ’ . : .
‘ ) ) = cos 90° + sin 90°—L—t¥ '
Ty = ¢s + son + cn + scn? ' . ‘/5
_"' . M A . . . .
S = cs 4+ n - sc ¢ - - which is a 189° rotation about the a:lis -j - k, or a 180° rotation
MM .
- . . : . about j + k. * ’
[RY = n, N - 4 &g AN
m T, . ' ’ - > . . *
: 2 » 0 ' .
: since cosx‘e +sin"0 = 1. The argu‘t&ent%@t M(Y) has the requxred 8. First we note that if p= a’t bl + °J + dk and
‘,: form i5 similar. . g\}\\.“: \ 1 A+ Bi -HCJ + Dk are each functions of t, then pq is the sum .
' ' ) - : -of terms such as bCiJ bCh. Differentlating this term gives
=, 6. The quaternion that represents the rotatjon now is . hd . b! Ck + bC' k Although the details are slightly ted 1 it 1is at
’ - .o [A )
. . R - leaat easy to seesthat (pq)' splits into two sets¥bf .terms one of
45° + sin 45° 1)(cos 45° + sin 45° R ’ . .
. (gos 3 8 »)( . M') : ' . which is the result of diff‘erentiatmg p, tl the other fro&\dlf- -
o & l(l +1)(1 + k) ) ! ferentxatlng q. And so the whole quaternion (pq)' ‘split ‘11‘\?%‘*-\
. \ 2 . :
. : .om e Q- p'q + pq™ This product rule extends to products of more than
a . S Mo M AA ~
I ' - l'-(l F1-§+K two quaternions just as in sifigle variable calcplus. .Now i e
- 2 ' 2 : £,
- . MM AN oM u(cz = R (u) = q(t')uq(t) where q(t) = cos[46(t)] + Sinpfe(t)} é&‘s{g:
: - i-J+k : So the velout of h i i 11 ime 0 e
‘. 43 % y tepontorgma y at u at time 0 at t .
Y ="cos 60° + sin 600 [ s . i . R %"\ e
. - A . . t is ¢ , . . ! TN ;
?"" " ) . N . \ -
. “‘This represents a rotation &bout the i - j + k axis by angle 120°. . u'(t) i (C)UQ(C) ¥ q(t)uq (t) A
AN o~ A - A Ay -
. %2
. - o . .o - 7 by the product rule. But’ q '(t) ® [519 (t)](—sin[lze(t)] + o9sThB ()
¥ . Ny
s v 7. The'rb’tations are represented by . And similarly for q (t) Notice that . Y
£ ‘ - < ‘ ) a4 h
‘ q = cgy 90° +sin 90° i'-’ ER . q () = !56 (t)[-sin(lse) + cos(lze)n] e
i . ) : - . _ e L e e e ot e T . D
- ?,,w.;hjuﬁ-:’m@ s N L R + j ) . . . [ ;59"11[008.‘(;59) + Si“.(!’e),?.,] , N
: - . . g, = cos 60° + sin Y600 |28l o A +1+ 3 =k), ‘ ’ : . o .
i . w2 /3 [P . . = %0'nq(t). ' : N
: » N Y ' L . \
Te . . . i ) .
- and ~ ' : To- 26
o i5° +- 45° ==l + j). T . f
g ] 21 = cos lfs sin ' 5 ;1 - /2_(2; ) 25 R , N . B,
4 . . -

Lo
| Y

l{‘i ‘ . '. . jo .‘. : | .: | \ | AR “ ) . " o ' \;&-ﬂrw“ ' 1 ) bee




.
v

u'(t) = q'(t)uq(t) + q(t)ug (o)
.~ M Man [ S VN .

= 40" [ng(e)ug(e) + a(c)ug(elnl -
- %6' [nu(t) - u(t)n]
LYY - "
= 5'[nx1(t)]

+ where the second to t.:he lasg, equalit; follows from the fact that

n

= -n for n in R3 and the last_gquality follows from Exercise 2.
A ~ »~ g -~

f - “a

sin 6 So q = r(c.+ sn)
' That Lq and R are linear operators on Ra = Q is easy t:o see in

For ease of notation set ¢ = cos 6 and s

the same way tha: Hq was geen to be linear With u, v, n right-hand
M A A

or;honormal we«calculate .(see Figure 3): RS
L R (1) s 1q = r(c + sn) = r(el + sn) ,

q w oA, . M . ",

“wo 3

*R (@) = ng = r(en + sn?) = r(-si + cn), .
. q . TN - “ ™ - f [ ’

~“ v -

Rq( = ug T rlep s < ey sy,

~ A}
and o . x ) ) - e *

A R (v) = vq = r(cv + svn) = r(su + cv). .
m .

This shows Rq to be d rotation in two planes (dp the plane spanned

-

by 1 and o 157 angle 6, in the u,v plane by angle -0), followed by =°

an expansign by the real faccor r. Similarityy
- -
L (1) = r(cl + sn), ,
' “ [ ~ . A
w . . .
Lq(&) =“rﬁ-‘s~l~ + ‘c‘rl) , ’ .
-~ K . ‘( -
. | ] - .
. Lq(a), = r(c&i— sx_), . . .

“ .
) .

T L@ (R F )
:-h 4 : ’

This shows Lq to be a rotation’in ‘the l n plane by angle 6 and 1n

the u v plane by angle 0, followed by an expansion by r. -
Pt . . " . . 27
3 - ¢ % ) -
, o ; o . .y

15. ANSWERS TO THE MODEL EXAMINATION
1. a. -1-3+4k . -
Y ~ N
b. -2+2i+j -k .
~ M »
c. -3 ) .
2. a. 1 . :
b 27 - 1) )
- ‘MI . .
e. 7M1 - -y)
, ~ Ml‘ .
. - i . \ .
g 2v~=4—2,1;,+,‘1+2k’ vu=4+21-;];-2}‘cv,
.u-v.=—4. uxv =—21+-J+2k
m"N P o ' g
. , ~ )
4. d(vw)=6-3i—j—2k=(uv)w, u(v+w)=§—j+3k=
U ~ o M A A \m\
5. ka. c0s(90°) + sin(90°) 3{ ) .
I . - 1+3 5
b. v2]|cos(90%) + sin(90°)#~gf®l
| i ¢ /2_ -
5 ) -1+ 4], . .
c. ¥2[cos(90°) + sin(90°)-‘”—‘ﬁ’
. L. 2
~ . i iy )
d. /% cos(35°) + sin(350)e—# approximately,
. L ] /2_ 4
;
6.

Bl " 0080+ ) +otn(® ) p =gy

[}

.

) = ° °) 1]; q = 2xi — 22§ + 2yk
7 { V2 [cos (45 ) + sin(45 )‘ i] 11')3* xM zi vk

8. 121° rocation about 0.791 - 0.1 32k approximately
- W"
-— * - -~ N\ - ¥‘ -
9. 43° rotation about 0. Sli + 0 583 approximately
MW
13
‘0
r o
P ° K
~ ¢ \‘

uv + uw
MM A
[
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. 4 ¢
~ » _ A J 'g . .
L. 3 b - 0 ; v
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.' —) i : )
‘ ’\ . \q ) . 2 /"
« & @ * . ) .
Y < . . . - "
. T
. - . " Se- =~ =3, p—
’ Instructor: Please indicate your resolutios of the difficulty-in this box.
B - ‘ ' - ]
O Corrected errors dn materials. List corréctions here:
- » ] >
- . » <« ..
. ~ : ,
’ - . - ‘; o ) .
. ) » )
\"O Gave student better explanation, example, or procedure than in unit. )
Give brief outline of your addition here: :
& ‘é I \
- . 4 ) ‘ AN
] ) ' ¥, .- .
e p O Assisted student in acquiring geﬁeral learning and problem-solving 8
¢
&skills (not using examples from this unit. ) I
. :
. ¢ ’ ) * ’
- . - -
\ - ) - ! -
- ‘) P . - °
- B . o ’ -
N .- o c j L]
st Instructor's Signature - .
"' . - . - < S . ¢ ~
: o : ‘
‘WEMC Please;use reverse if necessary. o s
b ‘ 3% 7.
'fh'?; -
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S o STUDENT FORM 2 - .. EDC/UMAP
o . : . B : (; ‘k . \ < Unit Qﬁestionnaire ) . gZngife;Asgaleo

'~4:; Name ‘ . " 'Unit Wo. Date

U T Institution ) : Course No. - o x
:%i;;x Chﬁék~she choice for each questlon that comes closest to your personal opin;;R.
- ) *,‘fif{‘ How .useful was the amount of detail in the unit? )
S R ____Not enough detail to understand the unit : . ..

- ] .___Unit would have been cleaser with more detail
___ Appropridte amount of detail ' - -

Unit was occasionally too detailed, but this not distracting
T ) Too much detail 1 was then distratted

2. How helpful were the problém answers?: . ,;

____Sample solutions were too brief; I could mot do the intgrmediate steps
N ", Sufficient information was given to solve the problems :
Sample solutions were too detailed; I didn't need them

,
a

)
3. Except for fulfilling the prerequisites, how much did you use other sources (for -
* exa@ple, instructorl¥friends, or other books) in order to understand the unit?

___Alot Somewhat I | Little ___Not at ally

L3 - N -

4. . How long was this unit in comparison to the amount of -time you generally spend on

- a leSSOn (lecture and homework assignment) in a typical math or science course’
"Mdch ~ Somewhat . About ' Somewhat - Much A
Longer Longer X ; the'Same . ____Shorter Shorter,

5. Were any of the following,parts of the udit confusing‘qr distracting? (Check '
as many as apply.) . ;

s

- P;erequisites : < . e
’ Statement of skills and cOncepts (objectives) .
Pargiraph headings - - ..

‘ ‘/ ,__" Examples, ‘ _
) ) Special Assistance Supplement (1f present) . T
4 Other, please explain . C .-

.1

6,. Were any of the follow ng parts of. the unit partitularly helpful? (Check as many

[

as apply.) -~ . S o »
Prerequisitesy . “ o &
Statement of skills and conceptg'(objectives)
Examples o .
Problems N T, \ ooee
R Paragrdph headings - T . .
) Table of Contents v .
___Special Assistance Supplement (if present) ' ’
Other, please ékplain I - )
”ﬁ‘Please describe anything in- ;he unit that you did not particularly like Ce

~
4 4
-
~
-0
1

. Please descrfhe anything that you found particularly helpful (Please use the back of
. this sheet if you need more space ) - - A .

-

o5/ .. L ‘d’ ‘ w

“. L i L ' ’ . .




