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« 1. INTRODUCTION - .

) . b »

. ! - ]

The Poisson probab111ty distribution p;ov1des a
mathematlcal model from which we can obtaln useful
1nformatloq in practical applications. In this unit we
?tudy the goieson distributionland 'some_situations to
which it applies and we show how to find dnswers to

practlcal qqutlons that arise 1n these contéxts.

We begin by p051ng ‘two problems that are relatbd ro *

the Poisson dlstrlbutlon Although imprecisely fofmulate&

examples are ‘the birth of a member of a p0pulat10n,
messages ezr}v1ng at a message %pnter, letter draﬁts
arriving in a typist’s#in- baskét, alpha particles’ ” .
sblmulatlng a Geiger counter; the commission of felonies

in a pollce precinct, and manueerlpts arriving at UMAP!

DT
Correspondlng to- random ‘arrivals we also have

@ '-. ’Tu.

Y - '

“'random departures” .There are customer departures from

a barBershop after a haircut, messages drssemrnated after
processing, deaths of members of a populatlon typed
letters departing from a typewriter, part1c1e’em1551ons

from a radioactive source, and’lpgh; bu1b§'burning out.

Our study 1s focused on system> in which goods/or
serv1ces 3§z provided to custome®s who arrive at random
“times. Ve Xonsider ¢wo basic typesof systems, which

correspond to Prgblems A and P e e

N 1

. » .
A': Servaceﬁggiénted Systems. Here“we are concerned

In plannlno effectivg goods- or service-oriented systems,
we use this-process to study arrival rates,
arrivals, (or waiting times), service (or "holding") .

times, and the effects of different wQTtlng line patterns
(Is there one waiting line leading to many servers’ Are

there parallel Paltlng lines, each w1th its own server’

. Al .
/ . . o

’

.

. here, these problems do 111ustrate some underlylng ;deas.' ‘
. . %1th the impact of arrival randomness on the requlrements
Problem A. Suppose that you 11V9 in an 15013t9d > for speed of servicg necessary to mest customer expectations
. commUn1§y46here fires break out at random~at an average and demands for pro ptnegs In addition to the fire
of 3 per day.’ If fires require ‘an average of 1 hour’ to -+ protection example,!speedy service is important for
"« fight, how many firefighting units should your fire sta- . barbershops, banks, clerical stations, _message centers,
+ tion have to make the community "safe?" computer centers, supermarKets, and factory assembly
. p
« . Problem B. Suppose that you own a hardware ;tore . Tines. ’ -
. that carries brooms. Your merchandise is restocked only . B“: Goods-Oriented Systems. Here we c0951der the,
. at the close of your business week, each Saturdav . 1mpact of arrival randomness‘on requirements for Lnuentoqy
afternoon You ,have limited storaoe spacg and therefore necessary to meet customer expectatlon for' goods and .,
, - wish to keqp inventory levels at. a minjmum. If-customers supgﬂles . The problem is 1mportant 1n such reta11
who buy brooms arrive at random times and at an average es;ablishments as hardware, stores, supermarkets and gas
rate of 10 per week, how many” brooms should you have ‘ stat‘)ons' It is also important, albeit to a lesser degree,
on hand each Monday mornding? ' v ‘ . for serv1ce agenc1e$ such as barber shops and television
) Problems A and B 111ustrate practlcal 51tuatlo;s repair cehters since service often 1nvolves supplies or
that involve "random arrlvals” at given locatLons. " Other Parts of some kind. ' . T RN \,
examplés are_customer arrivals at a barbershop3 at a In many practical situations, the randomhees of
supermetket (for goods), ,t a supermarket checkout ) arrivals and departyres can be described by a Poisson
counter (fOT seryjce), or at a gasollne station. Further random process (sge Eectlon 2 for use of this, terminology,.)

"gaps" between‘




| N " -
. N . h »
.z“ ‘/— . L. . » \ .
‘ " . ! ', -t
YA . .’ , ’ . /
J - Isfthere an arrangemént for priority interruptiohs?) o'
- o
! ', The study of "gaps" 1s.1mportant in 1ts own right,
e w1thoht regard to service- or goods-oriented systems as -

proyan

5

O

qof length t (wh1ch often. represeutsrt1me

v
'arrgvals" or

-

P e

AR
Co e

1 3
, an 1ntarsectron- and a typesetter Ais concerned with the

5;.—*/\‘
. he

we haVe descr;bed above For example, traffic control

1nvolves time's and d1stances between vehicles arriving at

i
number of error-free pages between typos' .

'

<
PR

In Sectlons 2 and 3 we briefly review s®me fundamgntils

/

‘

of the Poisson distriBution and the closely related *
exponential dlstributlon
to.Section 4,

You ‘may w1sh to turn directly
where we present some ‘of Erlang' S, formulas
that are used in the appllcatlone.“ An appendlx (Appendix
A)’is included feor those who want a;brief review of some
of the fundamentals of,brobéhility theory.

- ,’ {
! . Y-
THE PQISSON DISTRIBUTiON‘ ‘

[

2.

"Poisson d1str1but10n” is actually a whole N ‘
'famlly of probablllty d1§tr4bnt10ns, one for each value

of a parameter—a >,0.o The outcomes afe 0 1, 2, ..., and
the probability Fufction is- given by
(2:- - P(n) «"/nt, n = o', 1, 2, .

’ s
The mean, u, of the P01sson dLstrlbutlonuw1th parameter o
turns out tosbe’ the parameter itself: b ¢

- (2. 2)

[ . - *

o. . xS

S [N

The.Poisson‘distribution is approprlate in the
!Ellew1ng Ltype- of situation. Suppose that in any 1nterva1
but the 1nterw’

pretation is valid also for dlstance) we may have any

mber of occurrences of a partlcular phenomenon at -

d
andom points of the,interval. We called,. these .occurrences
depar;ures" in the examples of the prev1ousv

ection * Denote by P (t) “the prdbabllltyvthat there.will

exactlY‘n such occurrfnces insthe interval. - Then
g \ )
. ] ., . T - 3
N é; . (3/. e J . .
o - - .

?

-3

(N

' di 0 * . . Co L
. ™

. / ‘ . B IS L] vt

- ‘ o . |

under the hypothesis indicated below, the Poisson .
distribution \is given by ~ .

NP _ o -et n, L. ) fe
(2.3) . P (t) = e*t@y™nt, m =0, 1, 2,...,

‘ o ‘ ’

“where a'1saa positive constant’ whose meaning we shall
explaln.ﬁrosentlv When we 1nterpret the Po;sson *
distribution (2.1) 1n this way as/g functlon of time t,

we often refer' to 1t as. the Poisson random (stochastic)

process. ’ : 2
1 . ,
; Equation (:2.3) is baséd on several hypotheses, which <y,
may be stated roughly as follows ¢ . ; )
(a) The function P (t) is well & fIned _1n the sense
that only the length of the 1nterval matters and |
. not its location. * Yao
, (b) Any' two nonoverlapping intervals, when regarded as R
events, are statistically independent. -
f(c) For*®mall intervals of length At we have . ’ '
(i) p (At) >~ apt: . ' o
(ii) ) P (at) = A
n=2 .
The discussion in Appendix B should help to clarify
(c). Assumption c(ii) means that when an 1nterval is very (
small, the probability of more than one arrival in the
interval is negligible. N '
The mean ua(t) of*the Poisson process determiheﬂ by : ’
Equatian (2.,3) is give by ; ; ' )
(2:4) p, (t¥ = at, o L R
- ~ “ ) * ) ‘

Th%s result 'shows the meaning of a,
constapt from c(i):

the proportionality

taking t = 1 we see that a is the

-
. . r .
-mean numben of arrivals or departures per unit of time or

length. * .

- .

We observe that the notation ua(t) indicates, the N
dependence.of the. mean on both a and t,

a

and that t is
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usaally regarded
- often abbreviate

Exercise 1.

as, a variable_ and aas a parameter ' We .
to u(t) when a is understoo& and to

siftpl'y u when a and t are both understood. | p
4 ° ;
LR . v R

Suppose that customer arrival tames at a barbershop
have a Poxsson dxstrxbutron wrth mean arrival rate of one cuqtomer

evety 10 minutes. This 1s a'meanxarrunﬂ rate of" o cusyomers per

hour, se that thh t in hours, a =~6. -

r -

a. Find the mean nymber of arrlvals in any balf-hour period. .

b. F1nd the probabxllty that exactly 0 1 or 2_customers wxll ¢

" , .
arrive in a given half- hbnr period. <l ' . )

N L ) . - s f
- 8 - < L I—— - s

. - .
- .

* . ..3. INTER-ARRIVAL® GAPS® -+ .
1

e .

< ~« <

: : . o v,

Buopose.we have~a Poigson arrival procecs with mean "
raté a. To f;nd sthe probab111ty d15tr1but1on for the
1ength of t1me.or distance between an) two conSecutlve
“we first consider’ the Iength to, the flr&t
arr1va1, Let f denote the probabllltx

density function of this disgtribution!.t ‘any posxtlve v

arrlvals
starting from zero,

pumbeT, and A the intérval from 0 to. t. Since we agreed’
to start‘at‘zeroﬁ'wahhave f(u) 0 for all u<9, ﬂence,
7 Lt -t -
PlA) ¢ f f(u)du R .
X o R . -~ . Lt
[T . 2 K N . ' ’ .
N IO Coe L,
RN -o ] e e . . ..
2 R(t) - . o .
. where F is the cumulative dlstrlbutlon functlon But )
the probab111ty that the first arrlval oceyrs ‘in. the
1nterva1 from @ to t must also be g1ven by~}he sunt . .
- B N a ‘4 i
;1p (t), L TR . : .
. ) \ . i Y 3 ,:: - .
because thL§ sum represents the probab111ty that there
will be one, or more arrivals ‘in the Interval _Therefore,
4 - N
- . i
~ , 'J . \ \ ! S
4 e .,
.LO . l : ]
5 "L

- & h)
. - - < 4
. N (:~ . ‘ -at
. F(t)v=, P (t) = L - Po(t)y=1- ¢ "%
M ‘e ~ h=1 . a . ,

from which we dhtaxn‘(hy difrerentiating)

. . . PN
N . .

., " ‘(' ‘a-t N . -
(3.1) f(t) =ni3¢ » t 30 . ¥
- '/ : - \\0 byt <0 - . N

T Sindg, the arrrval dlstrlbution is 1ndépendeht of
.~ 1nteryal locatron Equation '(3.71) also provides the
probabilitiek for the "gaps"' between any consecutive -
arrivals. . That, is ]the prebab111{y that the wa1t1ng
time between any two consecutive arrivals will be .

anywhere from t, to t; minutes-long will. be o .
. »
L jtZ atdt .
. 1 ‘ o

7

K
arrlval “or gap, dxstrlbutlon - -

3

ﬂhe mean M of the dlstrlbutlon determ1nea b\ Equatlon

_): (3.1) 1s g1ven by . . : e

(3.2) 'M:= 1/a."

. 1

‘This result agrees thh our 1nterpretae1on of- a as the,

v .. -
A\

.

mean’ arrlval rate. For .example, an average arrival rate
of 6, Customers per hour corresponds to an average wait

,of 1/6 of an hour, or 10 minutes, between anrlvals

) ‘ —

. .
" Thus, °th18 exponentlal dlstrlbutlon represcnts the 1nter-

~ ' . v [] .
Exercise 3. In the barbershop prohlem-of Exercise’l, supposé'that

a fustomer arrives at exactly 2,P.M,

Find the *probability that the =

. Tnext customer wWill arrive by 2:30, . T "
~ . - -
- | ’ . AR . /
I, T i : ) !
" 4. ERLANG'S LOSS FORMULA -
‘
D . g . *e o,
¢ ¢ " +In-this section we present formulas that are useful

in planning effectlve customer service. One ‘of 'these

formulas .is often called Erlang g loss formula, and the -

‘others are closely rela ed to 1t Derivations are

’ ) Y. 6

'
) %




. . allowed to form.

1nd1cated in Append1x B.

© The context/of the problem is a serv1¢e facility 4
with c,servers, a't which customers arrive at r4andonm
times and at mean rate a. This assumption on customer
arrivals should be quite reasonable for anvone who is

comfortable with the ideas outlined in Section 2.

-

Departure times, on the other hand, aye not so
easxly de%crlbed because they depend on« two factors:
(1) the arrxval t1nes, and (2) the length of time
required for service. In real applxcat1ons there are
many p0551b111r1e{ for service (or holding) time ;
distributions. Some common ones are exponential (think -
& .about it -- just L{ke inter-arrival timés!!), uniform

' over ‘an interval !

i.e. coOnstant.

What-is impertant for.us is that departure times satisfy

». and “even deterministic,

the same basic hfhotheses (those that led to the Poisson |

e distribution in the first place} as the arrivdls, except
that the "service rate" is defined in terms og:cond1t1bnal
probab111ty
that a c0n51stent1y busy server will serve per unit ‘time.
The basxc.condltlon is that for any time t and any very

. small At we have . .

‘?(departpre in {t,t+At] | server busy at t) = bAt.

. We assume that eath of the .c 'servers provides service -

-+ at. the .same’ rate b,aand we consider only the case cb > a:
" (If cb <

a, then “the number of unsefv1ced customers would
increase without bound.) ' ’

. I
" , T © .
Let K be the " i.e. the number of servers

plus the length of the waiting line, or queue, that is’

systém size',

The waiting line capacxty, then, 1s
K - ¢. We use the notation K = « to indicate tha& no

a priori limitation is placed,on the number of customers
"who ma&’be in line For service.

- Denote by pg(t) the probabilitf that there are
3 . : .

\)4 . 1 O 4
P N

ERIC .+*% N

~
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Roughty, b is the average number of customers.

A i od

" to form.

exactly'n customers in the system at time t, where t > 0.
~

The numher{of customers, n, -may be any integer from 0
to K,
pracyical situations she probability distribution of

or any ndnnegatave,integer when K = w, In many
pn(t) settles down to a stcady—state\distrfhution that i
isyindependent of t (rdgardless of the,number of customecrs
in the system at time t = 0
*Thus,
is constant with respect to t,

it may take a while to

reach this situation). 1n the steadv-state

pn(t)
and we denote 1t by sxmplv
P, We present the probability distributron of Pns

distinguishing threc ‘cases.

Case I. X = ¢. In this case, no line is allowed
With ¢ = 1, this case may provide a model for

incoming calls to an ordinary telephone: wh&n the line.

" is .busy, the "1ncoming call is not put "in line" for
“subsequent answering: the call is "lost™ (unless the

caller tries. again later, and this could affect the~

results, as we. shall see in the examples). The case K = ¢

"also proV1des 1nformat10n on the fire protection problem,

since most fires spread very fast and hence (for an
approximation), it may be reasonable to regardicalls that

are not answered immediately as losses.
.

The steady-state d1str1but10n for K -'c is known as

Erlang's flrst formula and is given by .
(4.1 P! = M/“_' n=0,1, ..., c.
Z (a/b) /it .

' -
o 1

The fatio a/b is called the traffic intensity, and'wé

denote it by r.” If a is measured, say, in arrivals per

hour,, and b in customers served per“hour by a consistently

busy" sérver, then — -

a o arr1vals/hour

b = customers senved by a busy server/hour c

Y . ‘ '

-
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. Thus, ﬁ = a/b is a measure.of the ability of a single ' '(4 5{ . (rn/n!)po, n=0,1, Cc-1 -
server‘to deal with- the, traffic stream ¢oming in. ) ) > Py T . ~ c- s
.n-c :
- f clc = [ { ¢
/ WIth thas notation, Equatlon.(4.1) beComes ' . r /. )po, n s C+13 » K
o ’ n - . . where ' -
. - r'/n! » n=20,1, ...,cC. . . “
(4.2) P, = E . , » L : . B r6) , 3 1 .
r /it .6 0= =i ; .
ito . SR Ty ers LR T
- . . - H =7
: ) . . . 120 - ¢l l-r/c -
Erlang's loss formula is the formula for p. itself: ~ . - .t : o .
\ ) - c . ’ . . While these fbimuias look forblddlng, Lhey are made
h (4.3) Pe f‘;EE_LEi_ . T . - manageable by the- fact ‘that in _many practical 51tuat10ns
. N rl/it . . . C 1§ relatlvely small
. T ) . . ' - . R Slné:\pw represents the probability that the system

This formula yields the probabilit; that the system is

. is full, ‘we can calculateithat an arriving customer 1s
- full at any time in the steady state. The vilue qf Pe lost by taklng n = X in Fquat1on (4_5).

“represents the fractign of time that the system is ful11

and hence, since\the_a‘yivals occur at random times, p,_ \ For th? ?ase €< K < =, the probability that
an arriyving customer will be lost is

“must also represeht thexﬁraction of customers that are -

lost, i.e., the probab111ty that an arr1v1ng customer - ) ; rK . -
will be lost. : , . (4.7 PR ™ ke Por -, )
" ) 3 . . ) ’ * | - ’ . i " .- ~
For the ca§§€K = ¢, the PrOb%blllty that . where pd is -;given by Equation (4.6). S .
an arriving customer-widl be lost is g . } N )
g ' , . . Case III. XK = ». In this casg the queue may contain
' (4.4) p. = __LSLEL_ (where r = a/b). * CT any number of cystomers. In practice, queues do not
: R N : . . . PR . 0 .
. F E g . bgcome 1qf1n}pe except, perhaps,_at some gas stations
S ¢ we've seen recently! Howewer,.when K - ¢ is very large
Case II. o < K < w. 1 this case we assume that we ‘may use ,the limiting dlstrlbutlon to simplify. =™
‘the number of customers in line for serV1ce may not exceed - calculatlons The prObablllty d15tr1but1on for p  in
a prescribed finite value K - c. Th1s assumption may be ) ; th}s case is given by
. c . > b . .
appropuate for the barbershop problem, for example. -It ) . . \ (r"/n!)p‘o- n=0,1, ... c1
could be assumpd for approximation purpdses that there is (4.8) P, = N ce
a {iﬂﬁd numb?r m such that any customer who arrives to, - e (rn/c!cn-c)p0 n = c,\c+1
find m people in line will‘not wait. - ~ | . .
o .o . where s .
The probabpility distribution for p, in this' case is . : : - 1 .
more complicated: » . (4.9) =-Pg * T3 : * 1
- . -' . v
. . . 120 T/AE . c! 1-r/c ,
1 . 9 . \ ;
14 . ‘ .
s \ 1Y -
Q ‘Lli ¢ g'. 10

s . v
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In th1s case, the total system 1s hever "full”

/- because we can always add an @rr1v1ng customer
queue. Thys,
be lost,

in a sense °arr1v1ng rystomers ne
altﬁough real customers who'arrive to
long wa1t1ng 11nes may very well ‘decide not .to
service. Vevertheless, “this model 4s useful in
ways: It provides a good approx1hatlon to‘many
situations, it s1mp11f1es calculat1ons because
use Equation (4.9) 1nsteaﬁ of (4‘6) hhen X - ¢
'and it can be used to find the @xpected _length
queue and the average total t1me frem custbmer
to departure. "We cite one particular result th
of some interest, namely the probability that a
- arriving customer must wait in line. Th1s even
¢ when all c seryers are busx, and hence when the
' number of' customers in the system i3 at least c.

requ1red probability 15 therefere P, +

+
Pesy
is a geometric seties whose sum is

-
f

R . o © &rc/cl).l—i c
) (a‘ip) Z c-1 . <.
R " “Z ri/in e %T T-r/s
1=0 ’

. @ 5

" In Section, 5 we apply the results of tiNs
. "service-oriented” systems to obtain informati
service ‘planning. First, we offer a routine ex

for familiarization with the formulas.

to the’

ed\never
find very

wait for
several
real

we may

is large,

of the

arrival

at is

) .

t occurs
total

The

.

..., which.

section in

n for -. -

ercise

N e

Exercise 3.

Suppose we have a Service System with ¢ = 3 servers,

\ -
a wa1t1ng l%%? capac1ty for K- ¢ =9 customers, an arrival rate of

a= 10 customers per hour, and a servxce rate of b =

t hour. ’
7 -
at Calculate the probability p0 that the system is idle.
b. <Find an approximation for Py under the assumption K
' your approximation with the result of part-(Z).

5 customers

4

= ®©, (Compare

.

N .

c. Calculate the probability that at ledst one Server is idle.

d. Calculate the probab111ty that an arriving®customer must walt

for service.

) .

Ricts, T

s e W 3

H " " . )

11

. - -

Calculate the.prohablllty that an arriving customer w1ll be lost.
f Find an apprqxrmwtlon for the probablllty that an arr1v1ng

.custoner will be Iost'uslng quatron (4.9) instead of (1.6) to

find Py Compare syour approxrmntron with the result of parz, (e).
- . ‘ -
5. " SERVICE-ORIENTED SYSTEMS
»°  Lxample 1. Barbcrgﬁo”. Suppose that. customers

arrive at random- t1me< durlng business hours at an average
rate of 10 per hour. Jf we choose a'minute as the basic

unit of time; then a = 1/6 = .167 arrivals :per minute.

Suppose furgher that the average haircut takes 10
minutes.
two could.

Then one.barber cannat handle the trafflc but
The question _is, however,'what sort of queue1ng
will occur because of randomness of cystomer arrivals?
For example, we, want to know whether thé waiting laine
builduv would at times become so excess1ve as to drive’

business away, for then 1t might be better to staff a bh1rd
cha1r X : :

1
i

W
. For this problem

1/6, b = 1/10, an%&k = a/b = 5/3.

2

« for approximation purposes. Then S
L]

%?' We use results from Section 4.

'

there are ¢ = 2 “servers, a =

We gssume K

» L

R | ) .
PO = v ; 7 1 = 1/11 = -69% v
, 1+ 5/3 + (1/2)(5/§) =576 - ) N
s . - ATy ’,5
by Equation (4.9), and from (4.8) we obtain ke
p1u= (5/3)p0 = 5/33 = (152,

) . '

25/198 = .126, -

p, = (5/6)p)

It

’ pP3 05/6)p2 125/1188 = ,105.
In Table 1 we show the "probability PN that there ¥ill
be a total of N or more customers’ in the system for a few

values of N.° . "

o
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’ . TABLE 1% . E \ e - . b. Find the probapility that all three barbers are bUSy, ‘hence
. The Probability tha“t t\here are N C - : also the fraction of arriving customers who muft wait
or More Customers Waltlng or Belng "Served in . ¢. Show that more tharf half the time at least.two barbers are idle
the Barbershop of Example 1; fqr Selected Values of N i - * = e
) . ' o \. . . . Example 2. Fire FProtection.. "Suppose that in a :
. ? YPN‘ ' i certain community there are three {ires per day on, the
’ LI .,:753 : ; . : ' average, so that a may be taken as 1/8, or 125, fire o
‘ '¥ 3 ' §3ﬂ ,:\ outbreaks per hour. Suppose also that the avenage time .
4 526 f - . required to fight a fire is one hour, i.e. b = 1. We gf
5 J hig. ; ' alse assume that no waiting line forms, i.e. K = c, the *
_ i 65 fs%s b » N number of fxreflghtlng units, so that fire calls are lost
. . 7¥ 'ﬁ§04 . ] +1f all ¢ units are busy We wish to find the smallest
! yﬁf 8. K 254 T e C value of c for which the commﬁnity will be "reasonably
& 9 s : , safe, .
~e Y R : ' . LT -
. ~ ‘19 .176 . . ' 9 We anply Erlang's loss formula, Equat-on (4. 4), with
The table shows, for.example, with N = 2. that arriving - r = 1/8, for several possible values of c.,
customeré‘will find béth barbers busy ‘around 76% of the § A c =-1: -f P = i/f g = /9. P
time, so 3 out of everx 4 arriving customers w111 have - :
: Thus, the prObablllt?ithat a call will be lost is 1/9,

at least some wait,’ _With N'= 4 we see that more than ¢

half the t1me there w111 be more than 1 customer waltlng,
and with N = 8 we See that I out -of every 4 arr1valsow111w '_,

that is, on the average, eNery n1nth call will be lost
+ Since there’are 3 calls per~day, wé lose a call every

3 days which scems to be quite unsafe,

find at least 6 peoplq 1n line! LT .
r
Weshave not tried w0 find the léngth of time that c = 3 P, = (1/8) 2/2 = 1/145
. customers ect to %§g$)1n the queue, but the figires - 1 +1/8 + 21/8)2/2‘ :
above 1ﬂd1cate that wi® only 2 chairs staffed there is ° - Thit is, over the long rg; we would find that one out of
likely to be some excesslve waiting. The gain made by every 145 fire calls would go unanswered; -this would occur
adding' a third barber 15 explored in Exerc1se 4. The * once every 145/3 = 48-1/3 dayé; or'roughlx once every 7
ultimate des1rab111ty of such a move would depend on’ . - . weeks._. - e v < .
factors llkk 1abor cost thp ‘increased amount of idle . . . B . ) . . ' -
server time, and customer tolerance of wa1t1ng lines. ' Certaifly, then, this community must have at least
. - (N N . ] Yo : 3.firefighting units -- but then ‘how safe will-it be°
,/ —,‘-‘" * é "3 :,.Y - — : (1/8)3/6 . .
Exercise 4. Suppose _that,a th1rd barber is added to the shop in c=3; Py = —— = 1/3,481.
Examp1e+1 % g ;: jégt . ) . . ) 1+1/8+ Fl/sz /2 + (1/8)°/6
n, it - - v
a. Find po, pI, ?%f g3'>?§’ P ’ .
. "5 AR ' o o ’
g B LA f
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Therefore, with 3 units there will be one unanswered call : g * hould % . d‘l . .d -
~ - tplerable we shoul efine the.mode “Such model ‘
every 3, 481/3 = 1 160- 1/3 days, or around once every 38. pler Lihits 11d refi B .
. R o Veflnements are conéldere in more advanced studqes in
- ,months D .
. . - . ooeratlons research . . ¢ . s
. With four units the rate drops’ to one unanswered ’ , : : . . ’
call every 101 years. (See Exercise 5.) With allowances s Example 5. Telephone Scrvice. A small business |

- ‘ 3 . = I .
1+ made. for vehicle maintenance and other facfors that may . has 3 telephone lhnes Calls occur at random times, at '

. affect’ the accuracy of our results, it looks as E this dn average rate of 30 per 8- hour working day, and the #

. community could feel reasonably" safe w1th‘four fire: /o~ average dufation of ‘these calls 1s 4 minutes. -The owner oY

flghtlng units. - , 18 concerned about the {requency of 1ncom1ng calls that

get a busy signal sand the number of potenulal ocutgoing |

f - - |. [ ) ,

. , . ca11> that, are_not made becau%e all lines are in use. |, .
Erercise 3. ' The onncr wants to know 1f another lxne should be added * ¢
. = babiltt N . )
a, Using Erlang's loss formula with ¢ = 4 tp frnd the pro abiltty - Carl Y01L help? - = i - . . .

.chat a fire call will go unanswered when the community of Example ' . . .
. L - Sure! Ifs we use houts “for unlts, then a = 40/8 = 5

calls g&r hour.

~ . 2 has four firefighting unats.

<

’ b. Convert the result of part (a) to an average rate of years per Iu" dddition, b = 15, because 2 "service

unmsweraicalls ' e N . rate! oﬁ one ca1 - m1nutes 1S equivalent to 15 per
. ; ;- . i d N hour: Thus, traffic 1nten51ty ts r = a/b = 1/3. We.are
* We pause’ £6r a moment to‘p01nt our some 55 the 11m1ta- - given that the number of servers (11nes)'is c =3, and if’
"tions in mathemytical modeling that are 1llystrated by the- we assume thit a potential C“IL is 1lost when all lines |
fire protecflon?examble We.made the simplifying assump— . are busy (5ee the remark below),-then K = c. By Erlang's
““¥ton~that fires are 1gnorea if they break oyt when all . ' loss formula (Equat1on (4.4)), we have, > . ’ T W,
‘ crews are budy. I{ chls assumptlon.reasonable? Certalnlx: N ) . - ’ . (1/3) /JE/Q -‘-1 ;, 664 . 1
N fires don't queue up and wait to be extinguished! Yet we . ) p§ T ﬂ/3 . (1/’) /2' . (1/3) /3' Tz T v ’ ‘
. all know that ih real situations a f1re crew may be diverted i © < ’ g .
2 t ~frqm one fire to anathpr under special circumstahces. We ' & Simee chsre,aréJ40 callo per day, the daily loss rate is "
- bave not consldexed _priorities -- we would no doubt sacrl- Lo - about 0.:16,° Thus, we would expect’ to losc one carL in a‘
o . fice an 1solated bu11d1ng to save a whole section of town. _ o-day'business week. ' .. ’ e
! Moreover our ‘model does not account for seasonal varla- ) ) Remark. Tne assumption. that calls are Jdost ﬁhen all . ‘
. tions, such as higher. danger levels in dry seasons and lower ; 11ne5 are busy is h1gh1y questivnable. Incoming and
i in ra1ny seasons. In addltlon, we have assumed that the . ¢ outg01n"‘calls both may merely ‘be delayed unt11 lines .
f1ré station seérves an isolated gmall communlty, the model ' aré~free4 because callers may keep trying to qomplete <,
T is not 3PPT°PT13te for cities where there-is cooperation ! ) the1rqcalls.P To estimate ourserror, let's assume the ey
, betwepn nelghborlng fire dlStT1Ct5' ’, ;ZQ, . ﬁﬂ . ‘morst that na calls are lost (all cillers keep twylng .
' , This discussion poants up the need for care in,the "~ ¥ when the lines aré busy), so that we have the equivalent o
interpretation of reésuits. We can obtain good insight ’: . of a queue with K 5"= The propability that all lines ,
-+, ' from mathematical models, but we mist rgmember,that Lo ‘éi_ﬁ}Ll be occupied 1§ then given bY Equation (4. 10) a
approximat1ons involve,errdr, and when® errors exceed S e , T .

A ruText provided by Eric < - . . - . . ‘
A\
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R E > N Now, because of storage requ1rements, lcapltal outlay,
P, == 3 N *
R nes M 1+ 1/3 + (1/3)2/2! o (1/3)3/3! )T-—%T§ . ant problems with deterloratlon and obsolescence, the
! ) - ¢ - N . merchant wisheg to keep the number of brooms on hand each
_— = 1/20%1 = .005. . ! ) Monday morning reasonably small. At the same ‘time, the
Under this assumption ‘the loss rate would be 0.20 per* demand must he accommodated or sales will be 1ost; We

day, or around’ one 1n every § bus1ness days.

wWe feel that

the actual error resultlng from the "lost call" assumption

calculate some probahi1lities {r&m the Poisson distribution
with a = 10, t = 1: ' '

-

shoul be-somewhar. dess than the error resulting from the Ps or less(1) ~ 0.067 1Mor lcss(1) « 0,697
"™ worstfcase assumptioin of no losg calls. - + . .
5 . " - p6 or less(l) = 0.130 121or less(l) * 0'792\
. Exerciscws Suppostthat the owner of the busxness 1n Example 3 . P—7 or"resg(l) 0.220 p13 or 135{(1) ~"0.864
decided on the basis of our rdsults that two-lines would be adequate. T i
. . o~ bd \\ ~
a, Use Eflang's loss formula to calculite the resulting cnalliloss PS or less(l) 0.333. Pl4 or less(1) 0.91
: rate (under the assumption that calls are {gst when all lines., .
. are buSy). ’ . ; ) , Pg or 1855(1) 04[58 pls or less(l) - 0.951
b. - Find the probability that both lines will be busy using Equatioh N - R
) . P10 or leSS(l) 0.583 P16 or less(l) 0.973.

(4-10) (under the assumpgion that no calls are lost). .

»

.. .. -

6. GOODS-ORIENTED SYSTEMS ’

-

In this section.we are concerned with the effects of.
randomness in customer arrivals on inventory control.

'E;gﬁexamp,le is rather long, so we present it im two parts.'
» > - .

N

-

°

. Therefore, if 10 brooms are stocke&, then the supply

will meet the demand in 58, percent of the business weeks.

If 15 are stocked

‘one week in 20.

36.

then demand w111 exceed supply only
I‘o{ 16 brooms, the figure.is one week in

]

Exercise 7. Find the nﬁ’n‘imum number of brooms that the merchant in

-~ Example 4. Inventory Stocking, Part Ix Suppose that
‘ customers, who buy brooms at ,a particular Stor® arrive at Example 4 should stock ch week to reduce the sales loss' rate to a
random times and at an avesage rate of 10 per week.' If point where demand exceeds supply only one week every 2 yedrs (or
brooms can be restocked.only on weekends, how many brooms better). :
' _ should the merchant have on hand each Monday morning? . ] 3 : C =
. . oo . Example 5. Inventory Stockzng, Part ¥I. 1In Part I
If we use weeks as the unit of time, then the mean s we calculated probabilities that showed the frequency with
arrival-rate is a = 10 Thus, pn(t) (see Equation (2.3)) which the weekly demand w111 exceed weekly supply for vari-
represgnts the probability that n broo:&sold in & ous values of the stocking’level. From a practical point -
weeks. Then for"every nonnegative intefer n we have of view, wée would aldo want to know the expected number «of
T P (1) > 0, hence there is no absolute guarantee that the . broom sales lost each week, in order to find the expected
brooms will -be spld out in a week no matter how many are dollar loss. In Part II we calculate the expected number
stocked. v . .- . . v of sales_lost us’lng the ba51c definition of¥mathematical
o . . ¢ expectation, Lo v
Q. 22 ’ . ) A V' ' . - ‘ 03 18
EMC f+ : . . ] s . . o~ .
i ’ ¢
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Aruitoxt provided by Eic:

‘are stocked on Monday morning.

stocks k ‘brooms (k

°

~

To gain'50me insight,

.

let us suppose that 15 brooms

If the demand is 15 or

less that wegk, then the numbér of lost sales is Rh If
the demand'is 16, the number lost is 1; if 17, the number
Thus,

., and the associated probabilities are:

(1) =

is 2; and so on.
0, 1, 2,

the possible outcomes are °
h

P(b sales lost) 0.9725,

15 or less

. P(1 sale lost) 16(1) =

1

0.0217 . .

H
IH

P(2Z sales lost) Pl7(1)

I 7 .
- i

14

Therefore, the expectation of the number of lost sales is

(6.1)

r Okﬂ 9725) + 1(0.0217).% 2(0.0128) +

(see Equation (11 6)' in -Appendix A) . /

3

. We could now calculate the value of ¥ nuﬁericalry,

adding up enough terms to meet a prescc¥bed accuracy

,, however, would be clumsy and ted1ous, and
would provide very little insight into the problem.” It is
much bettér to derive a genefal formula for the expected

number of ‘sales lost.

Let a be the average demand (so. far,-we hdve been

taking -the vdlue of a as 10) and suppose that the merchant

15 in our example above).

If we
let n be the actual demand during a given week then the
number of sales lost 1s 0 if n < k, k+ 1,

1 for n

2 forn =k + 2,etc., and By Equat1on (1L 6)' we have
L X
o= 2 0-p,(1) + 71 gn-kp (1) \
n=0 n=k+1 N
- - —

(6.2) & o . }
* < L (1) -k § b Lyl
;& n=k+l n=k+1 ’

\ .
p N
Z?e{' .

)

~

‘.

[T
¢

.

Now, since™ . -
" ' L]
. . JS-at n t
(6.3) P (t) = e (at) . : RN
. n n! . -
from Equation (2.3), N
© ot oo -a_n
‘e Ya ~
. nP_(1) = § n =2
nzl I 5! n * .
. < o' n-] . -
: Caen 1o -
(6.4) - : n=
= ae @ a '
-~ ) .
- s N
Also, KN , .,
® oo -a_n-. Y
7P (1) = .
n£0 n nEO_ n ] *
A . L
. _ ~a —_—
< (6.5) ¢ azo M .
. , = q-aea
— =1.
Adcordingly, the £é}mula for u in (6.2) can be_;ewrittén as
' ’ ~
. Cor K ko
. (6.6) - T u o= [a - nPn(l)] - k[l -3 Pn(l)].
, " n=1 n=0
Equation (6.3) -also tells us that . T
* e_ﬂan - ‘I< 4 B u“/
nPn(lﬁ =0 - _ ) -
- 4 s
k6.7) T - e 3071 . .
. (n-1)1 . Y
»
¢ E a’P 1(1) . :: [ ~Q§§“
When we Substitute=tirts last qiﬁ%es nR.(1) in ~A. "7
Equation (6.6)., we obtain’ T _ B
.t ) - /, - I - -
e oe 20 - .
A ~J .20
-




&

—— . - k
' . = aP (1) - (k -, a)tlx- nzopn(l)], .

. 4 [}

In words, this last expression for u says that the avetage
number of sales lost per‘week is the difference between L
the following two products: , ~ ?

" (1) the mean number of sales per week, times t“e,
probabilft} that actual demand will exactly

equalfthe supply; .

Ny

L (2) the excess of 7Anventory stocked over mean demand,
times the probability that demand will éxceed
R °  the supply.
) e . R , . ‘ » .
* . Let us now see what Equdtion (6.8) has to tell us
about the brooms with which we began this example. The
average demand is a = 10 brooms-per week, there are -
. k =15 brooms on hand each Monday morning. The lost
sales expectanuon, therefore, 15{' . .
7/ - 1, . \ R R
5 - — s
. § = 108, (1) -.(15-10){1~- ) pn(l)].
;. o * A 3 . n=0 =" - °
: Sipce . b .} Yo . -
H ' ’- !
. . . 10 15 * "
, - “p (i) = & U0 "L g pss fad
. 15 I ’
from Equation (6.3), and : : « o,
. e * ‘151‘ = ’ ° ) ) . ‘
S 2 pnél) ='P1s or 1ess(1) : 0 951, T, .
n=0 . .
. from Example -4, the value of y is ’ . . -q
!
: - %l .
, q - ; . L}
, Adé; 21 >
5**E12J!:‘ RO . ’ : T
o ommmmm . ] - *
VAL e N ’ *

- Thus, on the.average, we lose approximately one sale every

Exercise 8.

0.1022. R

p = 10(0.035) 5(1'- 0.951) =

1Q, weeks.
of demand,

The loss represents gpproximately one percent
sipce the total demand in 10 weeks would
average 100, and we would lose one of these potential

sales.

.

For a = 10,

lost for various

we obtain the éverage number u of‘sales' .

choices of k, the number of brooms

stocked:
. for k = 16, u = 0.0532;
fér k = 17, y = 0.0279;
for k = 18, u = 0.0156; .
L

(see Exercise -8). Tﬁhs, with k = 18, we expect an .
averige of 1.5 sales lost every. 100 weeks, which is - .

around 3/10 of one percent ‘of demand. This sales 10ss .
represents a subs?antfal improvehent over' the 'result with’

k = 15, but the penalty is having to’ stock<;hree more brooms.

Obtain the values of u for k = 16, 17, 18 1n the preceding .

examples.

‘may also be inspired to learn more about the fascinating

7. CONCLUSION . . .
; ‘ : ' : ©
‘ We close with a few comments'tp indicate the intro-
ductory character of this unit. We have made no attempt
to be complete, as you can see by asking some relatively
easy questions aBout our examples. Our purpdse will have
been’served if xou have seen another way to use mathematics

in. practical, everyday situations. Perhaps some of you

subject of queueing theory in the field of operations
research. ) . S e




8. MODEL EXAM . N

°

Suppose that at a certain hospital an average of 4 babies per ‘
day axe born, and that each birth ties up a certain piece of

) delivery room equipment for two hours. The hospital has 3 of
these pieces of equipment. ’

a. Find the fraction of time during which all 3 pieces are in

* use; -7 ) -
b. Convert gﬁe probability found in (a) to a rate in days of
how &ften we expect the equipment to be inadequate.

Suppose fhere are 10 radar speed check poihts spaced randomly
along a 2,000-mile stretch of interstate highway. Find the
probability that a speeding motorist will not pass a radar

site during a 300-mile.drive on this highway.

- B . . -
(f) The simplified approximation is

t

9. ANSWERS TO 'EXERCISES -

1Y -
(a) uw=at =6(1/2) =

.

(b) Po(1/2) + P (1/2) "% Py(1/2) = & 31+ 34+ 9/2) = 0.423,

3
With at = 3, use the cumulative distribution function for the
inter-arrival times:
F(1/2) = 1 - e™> = 0.95
Here 'a = 10, b = S, r=2,¢c=3, K=12.
(a) Use Equation (4.6): .
9
1
Py ®
- 10
. 8 1 - (2/3) *
Ve2s2v e T ‘ .
S 1 o= = 0.112.
5+4 (1- (2/3)
- ¢
(b) Use Equation (4.9):
.1 ’ « 1 ‘
Py = - 5 1 =TT 7 0.111.
S A W 7] ' :
The results compare favorably, with relat%ye\errof around 0:0009.
(c) Use Equation (478): .
E N f
pl = ZPO) p2 = 2p0 : %
The required probability is | . *
Po* Py *Py= Sp0 = 5(0.112) = 0.56. -
(d) The given eveni'{s complementary to'the event of part (c),
. So the required value is.abqut 1 - 0.56 = 0.44,
(e) Use Equation®(4.7):- 5?
- . N N \ . »
cee 212 L | .
Py = (0.1119741346) = 0.00388.
. 12 9 . .
3137, \ i

J2 oL : o,
Py, ¥ — (1/9) = 0,00385. . o .
12 () .
: 313 ) _ ‘
20 . .
23 24




s

- Lo t
The-reswlts agree to 4 decimal places. Thus, 4% of the calls are lost. and at 40 calls per day the

loss rate is 1.6 per day‘, a ten-fold increase; but still
s .

M 4. For this case ¢ = 3, but t rémains 5/3.
. R . relatively small. . - 3
1 - ' oo
(@) p, = = 0 2087 b) Using Equation (4.10), we obtain the value .
. Ot a2 (57373 5 . ‘ ( g Eq ' (3.10),
- . . l * .
. . - . s . 2,
R ((1/3)°/2 T 178 s 1
-Pg * %po = 0.3478 . ) 7 - 1 = 37 = 0.048.
B . P+ 1/3 + ((1/3)7/2) 1%
5 & N : :
P, =g Py = 0.2899 . ' . This value 1s equivalent to a loss rate of approximately 1.9
5 . ~ . ’ R catls per day. 3 . *
P3 = g Py = 0.1159 , ' ) t
. -1 7. P” or less(1) = 0.986, for which the loss rate is one out of every .
p, = 5 Py = 0.0644 . e . 70 weeks. . Pigor lesS(l) = 0.993, for which the.loss rate is one
4~ 9 ' ) . ! . out of every 139 weeks. Thus the required number of brooms is 8.
(b) The probability that all 3 barbers will be busy equals the 8. Answers are contained in Example 5. . o
probability that at least’ 3 customers are in the system. . t )
. "y Hence ' ‘ ) g
. o« . ’ . ‘
N ’ . .
Thus, onfy 15% of the arr1V1ng customers have ahy wait at all. . y

7 Pagan,

(c) The: probab1l1t)7' that 2 barbe‘rs w1ll be 1dle is

PRl . 0.5565 > 1/2 !
g o . p p = . . o
w ‘ o' P -~ & ' - i
5. We have c = 4 and r = 1/8, “so ¢ ,
N (/8)"24 ~ . < -
, . @ p, == 5 3 3 _— . . -
: ‘ 1+ 1/8 + (1/8)7/2 + (1/8)/6 + (1/8)"/24. . . .
L 4 = 1/111,393. . . .
- %% (b) . The loss rate is 3 x 365 x Py = 0.0098 per year, or approximately . . *
once every 101 years. — . - L . . ' N
6. Here c = 2 and r = 1/3, so \ - e T ) - : -
- - 3 ! - - < - - — . - - — — -
PO - - - K}
e oh R P e e .
L (a) Pz A2~ - 25 = 0.00. .
’ -1+1/3+(1/3)/2 L - e ‘
. - ) ] . Ui
: o . ‘ . .
; ‘ 26
5 . 25 ] . ‘
e 30 » "




ANSWERS TQ MODEL EXAM!

If we choose hours as the basic unit of time, then -the average
arrlval*rate of babies is every 6 hours, or 1/6 per hour.
1/6. b = 1/2, we have r 1/3, and Er]ang s loss

formula yields

1+ 1/12 ¢ (1/3)" /2' + (1/3)3/31
Since 4 baqies arrive per day on the average thg~result of

part (a) means an inadequacy rate of once every

If we regard the radar sites as "arrivq}s", then 10 sites in -

2,000 miles means an average of 1 site évery 200 miles, so the

average arrival rate a is 1/200. The probablllty that the
motorist will not passa radar site during a 300 mile stretch
equals the probgbility that there will be no arrivals in an

& interval of length 300. The required value can be obtained

from Equation (2.3)_with t =

~——

S

11.

APPENDIX A:

BASIC PROBABILITY CONCEPTS

In this unit we use relatively standard concepts: of

elementary probability theory.

The basic notion as that

of an "experiment!, which 1s described by auriple
Q. E, P), where: ) .
i

Q is a set (the possible outcomes); i
© Eis a ‘collection” of subsets of @ (the events
P is a "probablllty function".

. The functlon P dssigns probdbllltles to® events
accordlng to the following rules: '

(a
(b)
(c),

For every event A we have 0 < P(A)'s 1;

Fof every sequence {A kl ilof pa1rw1se d1$301nt
events we have

ne~ g

When E is a finite collection of Sets,

when @ 1is

as is the case

& finite set, condition (cﬁ may be replaced by:

(c)' For mutually exc1u51ve events A and B we have*

P(A or B) = PA). 3 P(B)

The follow1ng propertles are fundamental and can be
obtalned eas11y from”the def1n1ng relatlons above:

.

(11.1),

»

(11.:2)

For any events A, B We have
PYA) + P(B) - P(A and B);, .

For any event A we have

1 anh_closely related cg

We define two vi
If B is an event with P(B) > 0,
probabzlzty of an event A, given that B has occurred,
P(AlB), is deflned by:

(11.3) -

- P(A and B)
i P(B)



; “#_is the averige of the out&me:

-"d ng to the}r likelihood of occurrence.

n\'

e 1;g>frted €

It may he’tha‘t the p0551b1e outtomes. of an experlment .
o ferm En_ entire re_é_l» Lnterval rather than a dlscrete set.. -~
PR For i&‘(ﬂmple -ccnsadcr .the instant in t1me when: the first -
T -
statistically’ mdependént if aad o 1y "’rtlrs—tomer of tm arrlzyt a store, or_ the. gilstance
- and P(BlA). = P(B). - ‘-'_ _-,' xbetweea wtwo cars in a-trafiac flow{ In f-hls case, s
d Conditional” probablllty pnovnie_'." -ﬁbasz&ty ;s calc‘ulateu‘ “f)rom a.prebabtltty dgns Lty‘ .
formula for flnd1ng prob;;b]_1_13;_95> funcfwn—f-’w,ﬁldl has— the follow:.ng I?rop.ertles y :
- (11—1}): o for all x; - _j SRR
B we have . ) ) S - ) .
N ' D as ST e =T {1148) dx = 1. ;T . : S E
Coans) Lo P(BJ 3P (R : : o . N T i
-0 L i :I_n’thls case the dlstributlon 1s/also said to be ‘continuous
provided, of course, that each P(i‘c ). > 0.7 7> and We~cal}m1ate probabllltles according to the following
- °, If A con51sts of a smgle outCOme, 1:e’ £ = rule/ If A is,an 1nterva1 of possible outcomes, say
then we denote ghe grobablhty of A -by P(x) 1nsr.ead of oo from d to b thén o ’ : L
the formally correct P({x}') o i = ’ v . f .b o s .
- TR : 11.9) - PA)'= [ . :
In many expeiﬁrhents the out\comes may be representedv ( ) K2 (, ) Jaf(x)dx - v —— et T
by réal-numbers, for example the numbers on the faces -of . JThus, we may intefﬁret the value of f£(x) as follows: If B
a die, the~ numbe® of dollars in the payoffs to players is an 1nterva1 which contains x and which is of very small
~of a gambling % game, ‘and the number of customer arnvals o length, a%, then ; .
at a store in an hour of the business day. When\thls- <. .10y ° P 5 . ) o ’
: happens, wg many define the mgthematical ezpectation of R _( 10y ( ) (x)ax. .7 - 1/ -
. the exper1ment If there are exactly n distinct possible . The mean of a continuous dls“tleUtlon is given’by
: o reai‘ outcomes then the mathematical expectation (or e ' '3;
.. mean, Or average).u i5 defimed bys- . ., i (11' 1) : ro%f(x)dx o :
. - a . - s . , - g . M
: . ,' . . . n . , - ' whlch is- the analo ue of Equatlon (11.6) and (11.6)'. For
: (11.«6) u o= E’ x;P(x;). . - .- g
3 i a continuous distribution the cuznulatwe distribution
- » . . -
. - . t- F . . : . J . -7 s
i If the{outcomes form an 1nf1n1te sequence {x }n-l » then .. funetion F is glveen by.a @‘ .
" the mean is -~ -~ | C . . ‘ X ’ -
’ o o - . (11.12) F()é) J f(u)du. N . .
- - o - i - - .
1. $ - = . . L. IR - ¢ e R . R ‘
(11°‘6) - H nzl an(xn). . ’ . In th1s case we have the relation’ :
. * ¢ od, . - .
oo 5 . K - (‘11.13) F'(x) = £(x) T, .

- . Lo ’ 29 - . ) ’ ) ‘ 30

. 2 R 1 .
L « . . . B} -




e

for all x, by ‘the fundamental theorem of calcylus." v

! -

12.  APPENDIX B: DERIVATION OF ERLANG'S FORMULA
. LY

. ¥
Here we derive Erlang's loss forhula (qugtion (4 4)),

which is appropriate when no queue is allowéa to form.
This is the case in whrbh the total system 51ze K equals

the number of servers c. ff R A
-‘\ P P

%i% basic assumpt1ons for the a§{1vals,are indicated

in Sectlon 2, and we shall denote theJmean

One basic assumptlon on departures was

rrival ‘rate
by a here, too.
1 interval °

descrihed in Section 4. Namely", for #ny sm

from t%o t + 4t we have the gpnéitlgnal prokability

approximation
P(sesvice completion in [t, t + At] | servicelat t) = bat
for each of the c servers. We also assume that\ for any_

smaIl interval from t to t + At the probabilitylof more

~

-

sy
-

- ERIC

than one arrival or departure is of the order o
is therefore neg} ibible.

c—«c-«-cr-*—m-r: areas e ac- T wr e ae!

Consider a short interval of time from t to t + At.
Let n be the number of customers in the system at time t.
If 1 <n £c, then at time t +,At there may be n - 1, n,
6r~n + 1 customers,, which corresponds to the respective
possibilities of ] departure and 0 arrivals in the
0 departures and 0 arrivals, and 0 departures
If n =0,
customer in the system at t + At;
n:1orn. Inaddition, the conditional probability of
1 departure in the interval [t, t 7+ At], given n servers

interval,
and 1 arr1val. then we may have only 0 or 1

if n = ¢, we may have

occup1ed at. t 1s'apprOX1mately nbat. We also assume
stat1st1cal independence between arrivals an%ljgpantures
Thus, the conditional probabilities for the number of
customers 1q “the system at t + At, given n in -the system

at t, are as follows for 1 £ n £c¢c - 1:

n+ 1. <adt(l - nbat) = aAt

"Yh

31

3
.
.

(1 arrival and no dqgartufes): ’ -

~

n L (1 - aAt)(1 - nbat) = 1 - adt - nbét
, -* (no arrivals and no-departures): i
n -1 (1 - aAt)(nbat) = nbat

(no arrivals and 1 departure).

Nhen'n = 0 at frime t, the gpnditional probabilities

-for éﬁe number of customers in the system at time t + At

are
1 alt | o1 .
.(1 arrivab——————_ o , .
] L-ast ’ .o
. “~(no arrivals). . ) ‘

When n = c at time t the_ correspond1ng probab1l1t1es are

~
" -

nbAt . - . R

c -1
(l'departure)- . -
< 1 - nbat

ZNn(T&iai‘tures). .
N T 4 N e

Let p“Renote the probability that there will be n
customers in the system at\time t. As noted in Section
4, pn,really depends on t, but in many pra€t1cal situations,
the dependence\on t becomes negligible as the' system

operation settles down to its stéady state. Thus, the

v

.probability that there will be h customers in the system

But ;hefe is
ap alternate expression; for there may have been n

at time t + At must be (approximately) P,

customers at time t (with probability pn) %nd no changé .
during the interval (probability 1 - ast - nbat); or there L
may have been n - 1 (probability pn_l) and an iﬁctease‘of
1 (probability aAt); or. there mgy have been n + 1°

l 19 of 1 (proba@é&ity

(probability P,+1) and a decrea

{n" +_1)baAt. R ; . '
. - ® . - ) 'l'
Thus, by Equation (11.5) we ?btaln ' —
Py = P;(1 - adt - nbat) + p__,(ast) + p +1((n +-1)bat)
,l’ . - . ) ~ m‘

< .



which simplifiés to :

‘12.1) (a hb)pn = app., +'b(n + l)pn+1

(Note/that the Zt drops out.

Y

Ultimately this is where

(12.1) is valid forn =1, 2,..., c-1, but

not'for 0 or n = c¢c. The correct formulas for n = 0
and n = .
b - Pg = Pp(1 - ast) + p,(bat), .
. or  um ,
(12.2) % bpy; : ..
= pc(l - tbat) + Pc.p(ast), - ) \ /
" or : . . A
(12.3} = ap..y- . .
- o s -
\ Thus, we ohtain a system“of equations
\ ! .
N\ [ apg = bp) : - . o
(a’+ b)p1 = ap, + Zbp, ¢ oot J
{ (a + 2b) e Sbpa
-, . (a + p; =sap, +
” ' 2% Pz -,
AP ¢ RO L ! -
. . * ) : Lo S )
\ . g (% + (c - -1)b')Pc_1 = ap‘c_z + Cbpc
2 ' 1 b - R C
., . { 2C€Pe = 4Pc.y. ' .
ooy N . \ o
4
-

in terms of p0 and then us1ng the conditlon

B °

cancel like terms to obtain _;

(12.6) ap; = 2bp,. |
Now add Equation (T2.6) to the-equation for ; = 2 from
the system (12.4) and simplify to obtaiY L
%p2q= 3bp3.
Continuihg in'a similar way w; find °
aps = 4bp4 ’
- ’ * '
N f ~
. ~4épc_1 =‘cbbc. YO ‘

.

' (Note  that the finalﬁequation is identical to the one

Eo Th

obtained earlier for n = c.)

Vow let a/b ? r; the traffic intensity.’ " Then the
equatlon abave may be written in the form e
! . Py = TPg
‘ . . P .
. . 2 :
oo %l ey = (rF/2)pg
» @ ‘. ~ 3'
(12'1) 3 P3° (r /3!)p0
1 » ~ .
f A -
. , -
o (€ .
,Pc = (r7/ct)py. ' =

Now Subst1tute the resnlts from (12.7) into Equation (12. 5)
to find po : "

, v p0(1 +r+r /2 + oo+ 1%y =,

from which ., ‘ . ]
N N ' . w Y . * -
. - L . . »

. .,.,.“.-,_(.12. 5) . . g ph..;\,_l‘- R R IR PN . © U172, 8) ' < fp; L * 1 L - ) <.
L .n-ol ! . \\\ - .o 0 1+ + rz}Z + . rC/C! -
. sto find p,. A8 ‘the equations for n = 0 and n = 1-and e ‘ A T ot
& - : - e ‘ : BTN . . s e
; . f o 33 . 34
:‘ \.r . . \Q 9 -

: ‘) 8 o .A‘ o ; ) N " v e ' l
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e . \ . . - . B R 5
~ S . A P ©w . N
. v, ) « i a ]
. B N v s - & . . . |
- " w N
] Erlang s first formula, Equatlon . 1), now follows
- i f:om (12.7) and -(12.8): . . . ’
' o n : .
r/n! y |
(x2.9) - pn=c/$"~'"=0’ 1, ..., c. - . .
3 ' - ¥ rlir o
) i=0 “. ' . . ° |
Erlang's loss formula now follows from Equation (12.9) for . ’
© the valuen=g¢. ‘ L ‘ R »
v Derivations of Equations (4.5) and (4.8) ‘can be ! L ) .
P carried out in.a similar way. °We remark here.only that - e e
L -the chahge in the formula at n=c fesults from the fact ' . i 4
ot that ‘for ne>'c the cond1t1ona1 probabnhty of a service o ’
completmn in the" 1nterfra1 [t t + At];, g1ven n servers v o
) busy‘ls no longer nEAt,-but mstead istcbAt .- . et “
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Return to:

SRR < L STUDENT FORM 1 * EDC/UMAP
: s o C ; " 55 Chapel St.
%%, - Request for Help Newton, MA 02160

£ ~

. . . Student: If you have trouble with a speclfic part of this unit, please fi1l

S out this form and take-it to your instructor for assistance. The information
.- -, you. give will help the author to revise the unit.
‘Your Name ° ' . Unit No.
5 1 f; . B . ‘ * R
. . ge%i______ Section o Model Exam
,C) Upper | OR @@ S OR Problem No.r_____
OnMiddle - Paragraph ik .Text
O Lower . . . i Problem No.
 Description of Difficulty: (Please be specific) <
3 . s
£ @ ' :
>
éf ’
\
\ -
T ;
-

Instructor: Please indicate your resolution of the difficulty in this box.

“

<::> Corrected errors in materials. List corrections here:

o R . .
3 , .
@ § 2
. I e
4 . . WS
. o)
. . \ : ) !
g::) Gave student better explanation, example, or procedure than in unit.
. Give brief outline of your addition here: ’
5 } - v .
— N . , . ,

~ - . N -
. . L] . -
- . N .
. ,
i . . LN

-] :(::) Assiﬁted student in acquiring general learning and problem-solving

Y skills (hot using examples from this unit.) .
\.;- ’ . . . .“‘ s 41 J-, )
. ' , , € " ) /
\;T4 I e . InstructorLSQSignature '

“en
LY .

1

e

. b R ' P
o : Please use revetst” if necesgary.
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Return to:
STUDENT FORM 2 ‘ EDC/UMAP

. 55 Chapel St.
L [ Unit Questionnaire . Newton, MA 02160

Name ' ) Unit No. . Date

-

‘Institution ; . ] Course No. . *

Check the choice for each question that comes closest to your personal opinion.

a

1. How useful was the amount of detail in the unit?’

Not enougH detail to understand the unit

Unit would have been clearer with more detail
____ Appropriate amount of detail

Unit was occasionally too detailed, but this was not distracting
" Too much detail I was often’distracted \ .

*

How helpful were the problem answers7

-]
___ Sample solutions were too brief I could not do the intermediate steps
i Sufficient information was given to solve the problems
Sample solutions were too detailed I didn't need them
Except for fulfilling the prerequisites, how much did you use other sources (for
example,, instructor, friends, or other books) in order to understand the unit?

= Alot Somewhat A little ____Not at all
- How long was this unit in comparison to the amount of time you generally spend on
a lesson (lecture and homework assignment) in a typical math or science course?

Much -Somewhat About \Somewhat Much
Longer ____Longer the Same " Sherter Shorter ,

\
. .

Were any of the following parts of the unit confusingﬁor distracting? (Check
as many as apply.) .

Prerequisites

Szétement of skills-and concepts (objectivea)
ragraph headings et

___ Examples )

Special Assistance Supplement (if prepent)

Other, please explain C -

e,
-

Were any of the following parts of the unit particularly helpful7 (Check as many
as apply.) .- - : i-

Prerequisi€es

Statement of skills and concepts (objectives)

__Examples

Problems

Paragraph headings

" Table of Contents :

Spedial Assistance Supplement (if present)

.Other, please explain

& ’—__' 4

Ld

Please describe anything in_the unit that Yyou did not particularlzmlige.

. ' - -, .o
' ]
R

-

" Please describe anything that you found particularly helpful (Please use the back of «
this sheet .if you need more space.) - .




