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THE POISSON RANQOM PROCESS

by Carroll 0. Wilde

The Poisson probability distribution provides a

'mathematical model from which we can obtain useful
A

information in practical applications,. In this unit we

study the Poisson distribution and some situations to

whiCh it applies, and we sh8w how to fihd answers, to-

' practical questions that arise in these contexts.
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I. INTRODUOTPON

. B,

0The Poisson probability distribution prOwides a

mathematical model from which we can obtain useful

information in practical applications. In' this unit we

study the Poisson distribution:andsome situations to
which it applies,, and we show how to find answers to,

praCtical-quittions that arise in these contexts.

We begin by posing'two problem; that are related fo s
. ,

the Poisson distribution. Although imprecisely Ifotmulated,

here, these problems do illustrate some underlying ideas.'

Problem A. Suppose that you live in an isolated

communiV4here tires break out at random at an average

of 3 per day' If fires require an average of 1 hour to

'fight, how many firefighting units should your fire sta-
tion have to make the.community "safe?"

Problem B. Suppose that you own.a hardware store
,

that carries brooms, Your merchandise is restocked only

at the close bf your business week, each Saturday

afternoon. You,have limited storage spacg and therefore

wish to ke,p inventory levels at.a minimum. ,If.customers

who buy brooms arrive at random, times and at an average

rate of 10 per week, how many /brooms should you have . -,1

on hand each Mondb.y morndng?

Problems A and B illustrate practical situations

that involve "random arrivals" at given locations. Other
examples are, customer arrivals at a barbershop-, at a

supeiletkett (for goods), at a supermarket checkout

counter (for ser.ice), or at a gasoline.station. Further

examples are the birth Of a member of a population,
' messages arriving at a messag_e_center, letter drafts

arriving in a tYpist'Oin-basleer, alpha 'particles'
-J;k

stimulating a Geiger counter,ie commission of felonies
in ,a po- lice precinct, and man4Seripts arriving at. MAP!

Corresponding to.randoMarrivals we also have

6 1

.

"random departures". There aro customer departures from

a barbershop after a haircut, messages disseminated after '
. .

processigig, deaths of members of a .populat,ion, typed

letters departing from a typewriter, particle-emissions

i from a radioactive source, and' 1pght bulbg burning out.

)
Our study is focused 011 systems in which' goods or

i
services a exovided to customers who arrive at random
*times. 'IL lconsider two basic types'of systems, which

correspond to Problems A and 1I3, ., . .

A':' Ser7iic.01Wnted Systems. Here'we are concerned

with the impact-of arrival randomness on the-requirements
-

for speed of service necessary to meet customer expectations
and demands for promptness. In addition to the fire

protection example,Ispeedy service is important for

barbershbps, banks, zlerical stations,,messagecentersi

computer centers, supermarkets, and factory assembly
lines.

15". Goods-Oriented Systems. Here we_consider the.
.impact of arrival randomnes on requirements for inventory

necessary to meet customer expectation for'goods and,

supOlies. The problem is important in such retail

establishilents as hardware, stores, sup"ermarkets and gas

stations: It is alSo important, albeit to a lesser degree,

for service agencies such as barber shops and television

repair centers, since service often involves supplies or

parts of some kind.

.In many practical situations, the 'randomness of

arrivals and departves can-be described by a Pois,son

random process (see !section 2 for use of this,terininolog0

In planning effectivg goods- or service-oriented systems,

we use thisprocess to study arrival rates, "gaps" between

arrivals, (or waiting times), service (or "holding")

times, and the effects of different witting line pattern

(Is there one waiting line leading to many servers? Are

there parallel .laiting lines, each with its own server?

7

s.
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. IS there an arrangemenrfor priority interruptions?)

The study of "gaps" isimportant in its own right,

wihobi regard to service- or goods-oriented sytems as

we have described Wove. For example, traffic control
0

inv.olves times and distances between vehicles arriving at

an intersection; and a typesetter .is concerned with the I

. -

number Of error-free pages between typos)

.

In Sections 2 and 3 we brieflyreview-stme fundamentals

of the'Poisson distribution and the closely related .

exponential distribution. You may wish to tur.n directly

to_Seetion 4, where we present someof Erlang's, formulas
0 r,

that are used in the applications.' An appendix (Appendix

A) is included for those who want abrief review of some

of the fundamentals of probability theory. c

2. THE POISSON DISTRIB6TON,,.

.....-0-/NNI.,
. he "Poisson distribution" is actually a whole

'family of probability distributions, one for each value
.. -7--

of a parameter -a >A._ They outcon1es aft' 0,- 1, 2, ..., and.

' the probability functiori is-givpn'hy
,

(2:1)- - f(n) = e"'an/n!, n = 0, 1, 2,... . .

The mean, p, o.f the Poisson,distribution-with parameter-a
. turns out to:be the pailameter itself:

. - (2:2) , V = a.

ThePoisson'distribution is appropriate in the
. V

44116Wing,type.of sieuation. _Suppose that ,in any interval
a*, I

,

of length t (which often.representsAime, but the inter-'
t

pretation is wand also for distance), we may have any

tuber of occurrences of a particular phenomenon at

andom points of the,interval. We called. these occurrences,.4
arrivals" or !Idepaqures" in 'the examples,of the previous,.

ection. ' Denote by Pn(t) 'the probability- that there-will

'Vexactly'n such 'occurrences inKthe interval. Then

4.4

,.,..

,140

3

0

under the hypothesis indicated below, the Poisson

distribution .s given by ..

. .

(2.3) . Pn(t) = e't(at)n/n!, 'II = 0, 1, 2,...,
,

tthere a'is,a positive constant'whose meaning we'shall

explain. resently. When Ie interpret the Poiison

distribution (2.1) In this way as) function of time t,

we often refer' to it as. the Poison random (stochastic)

process.

Equation (912.3) is based_ on several hypotheses, which

may be stated roughly as follows.

(a) The function Pn(t) is well d/efined,. in the sense
II

thTlt only the length of the interval matters and
not its location. .

(b) Any'twononoverlapping intervals, when regarded as

events, are statistically independent.

'(c) For*Iall intervals of length At we have

(i) PI(At) ant:

(ii) P (At) = 0.
n=2 n

The discussion in Appendix B should help to clarify

' (c). Assumption c(ii) means that when an interval is very

small, the probability of more than one arrival in the

interval is negligible. 4

The mean pa(t) of.thePoisson pr4ocess determined by
Equation (2,3) is giveTi by

(2:4) p (.0-1 = sat.
4

This result'shows the meaning of a, the proportionality

constant from c(i): taking t = 1 we see that a is th

mean number of arrivals or departures per unit of time or
length.

We observe that the notation p
a
(t) indicates the

dependence.of the. mean on both a and t, and that t is

4
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usually regarded as,S variable apd a as a par amete4) We
0

often abbreviate to 11(0 when a is understoodt, and to
.

siftp-ley u when a and t are both understood.

Ex ercise 1. Suppose that customer arrival times at a barbershop

have a Poisson, distribution with mean arrival rate of one customer

every 1.0 minutes: This is. a'meanrarrivq0 rate ore customers per

hour,- so that Zith't in hours, a

a. Find t,lie mean nymber of arrivals in any balf-hour period.

b. Findthe,probability that exactly 0, I or 2,customeisswill. t

arrive in,a given half-hbur period. . .

4

) .3. INTER -AftitIVAL` GAPS
, ,

% p

Ougpose,we have'a Poison arrival process With mean

rate a. To find .th probability distribution for the4 ,

length of time. or distance between any two cdn'Secunve

arrivals, we first iconsider'the length to, the first .

arrival, starting from zero, Let f denote the probability, .)

density function b.f )t-bis distribution :,t -any poi.ltive

pdMbei', and A the interval friam 0 to.t. Since we agreed'

to start at.zer&,'we,,,have f(d) = 0 foi a11 < 0. 'Hence,
, .

. . -

Pf(A) 4 ft f(u)du
0'

.
' ft f(u)du .

0;
V

.4 F(t):

where.F is the-cumulative distribution function. But

the probability that the first afrival occyra

interval from Q to t -Must also be givendpr, e sun!

CO

P (t), .% ''''-

because thins Sum represents the probability that there
,

will be one, or more,arrivals in the interval, Therefore,
/

,,

03 .

= L - Po(t).= 1 e-at.F(W7ii1Pn(t)

from which t,e (11;taiz.(hy difterentiating),

(3.1) f( t )i

q at
t 0

0 t < 0

SinN, the arriva1 distribut.ion is independeht of

interv.al loCation: Equation .(3.1i also provides the

probabilitie's fuP the "gaps" between any consecutive ,

arrivals. That, iS ,f the probability .hat the waiting

time between any two consecutive arrivals will be

anywhere from t
1

tp
2

t- minutes- long will. be

N

1t, -at'
ae dt.

6
Thus:4-his exponential distribution

arrival, or gap, distribution.

, mean M of the distribution

(3.1) is given-by
A

(3.2) M,= 1 /a.

represents tAe inter-

3

determined b) Equation

.e

,

-This result agrees writh.oul.- interpretation of'd as the,,
,pmean'arrIval rate. For_examplp, an average arrkvaI rate

or 6 customers per hour corresponds to an average watt

of 1/6 of an hour, of 10 minutes, betweeri arrivas.,

Exercise 1. In the barbershop .prAlemof Exercise"1, suppose that
.a customer arrives at exactly 2.P.M. Find therobability that the

next customer Kill arrive-by 2:30. '

-

O

S

ERLANG'S LOSS FORMULA
-e

In-this section we present formulas teat are useful

in planning effective customer service. One of'these

formulas.is ofteri called Erlang's loss formula, and the-

others are closely relayed to it. Derivations are

mr

,6
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indicated in Appendix B.

The context of the problem is a service facility
. .

with c.servers, at which customers arrive at random

times and at mean rate a. This assumption on customer

arrivals should be quite reasonable for anyone who i5

comfortable with the ideas outlined in Section 2.

Departure times, on the other hand, ale not so

easily described, because they depend ontwo factors:,

(1) the arrival times, and (2) the length of time

required for service. In real applications there are

many possibilitieA for service (or holding) time

distr'ibutions. Some common ones are exponential (think

about it -- just like inter-arrival times!!), uniform

over an interval,, and -even deterministic, i.e. constant.

What-is important for. us is that departure tines

the same basic hypotheses (those that led to the Poisson

distribution in the first place). as the arrivals, except ,

that the "service rate'is defined in terms ot:conditiOnal

probability: Roughly, b is the average number of customers.

,that a consistently busy server will serve per- unit `time.

The basic condition is that for any time t and any very

small At we have

P(departure in it,t+At] server busy at t) = bAt.

We assume that each of the-c 'servers provides service

at.the,same-rate we consider only the _case cb > a:

(If cb < a, then the number of unserviced cyst-eters Would'

increase withwt bound.)'
0

Let K be the'"system size", i.e. the number, of servers

plus the length oL the waiting line, or,que'ue, that is'

allowed to form. The waiting line-capacity then, is
K - c. We use the otation K = co to indicate tlia,t no

a priori limitation is placed,on the number of customers

who may-be in line l'Or service. IP

- Denote by p'(0 the probtbility that there are
a

:

7

I

exactly'n customers in the system at time t, where t > 0.

The numb'eriof customers, n,-may be any integer from 0

to K, or any ncinnegativeainteger when K In many

practical situations the probability distribution of

pult) settles doVn to a steady-state distriSution that

is, independent of t (regardless of the,number of customers

in The system at time t = 0; it may take a while to

reach this situation). 'Thus, in the steady-state, pn(t)

is constant with respect to t, and we denote it by simply

p
n

. We present the probability distribution of pn,

distinguishing three cases.

Case I. K = c.' In this case, no line is allowed

t o 'form. With c = 1, this case may provide a model for

incoming calls to an ordinary telephone: when the line.

i s ,busy, the'incoming call is not put "in line" for

'subsequent answering; the call is."Jost" (unless the

caller tri'es again later, and this could affect the,

results, as we. shall see in the examples). The case K = c

also provides information on the fire protection problem,

since most fires spread very fast and hence (for an

approximation), it May be reasonable to regarecalls that

are, not answered immediately as losses.

The Steady-state distribution for K =-c is known as

ErZang's first formula and is given by
r.

(41) (a/b)n/n!
c

(a/b)i/i!
i=0

n = 0, 1, . , c.

The ,'ratio a/b is called the traffic intensity, and zde

denote it by r/ If a is measured, say, in arrivals per

hour', and b in customers served perhour by a consistently

busy'server, then
t

a arrivals/hour
F customers served by a busy server/hour "

8



, Thus, /7 = a/b is a measure.of the ability of a single

server -to deal'with-the.traffic stream Coming in.

With . this notation, Equation. (4.1) bedoMes

r
n
/n! n = 0, 1, c.

Pn c ;

y r'/i!
i=0

Erlang's loss formula is the formula for pc itself:

(4.3)
.

Pc c .

.

1 r!-/i!

i=0
.

.

This formula yields the probability that ,the system is

full at any time in the steady state. The value of p
c

'represents the fraction of time that the system is full

and hence, since the arrivals occur at random times, pc

must also represent thefraction of customers tha.t are

lost, i.e., the probability that an arriving customer

will be lost.

For the case K = c, the probability that

an arriving customer -will bp lost is

(4.4) p
c

crc /c! (where r = a/b). '

rA/i!
i=0

Case II. c < K < co. lh this case we assume that

the number of customers in line for service may not exceed

a prescribed finite value K - c. This assumption may be

.appropriate for the barbershop problem, for example. It

could be assumed for approximation purpdses that there is

a kixled numbtr m such that any customer who arrives to

find m people in line will4lot wait.

The p robability distribution for pn in this case is

more complicated:

14
1 ; 9

.10

ti

(4.51
r

,/n!)po n = 0, 1, . 1

n
l

-

v

(rn/c!c n c)po, . .,n = c, c+1, . K

where

PP c-; . c K-c+1

10' C! 1-r/c
ri/FT +"r .1-(r/c)

=
., :

0
. ,.. .

While these firAnilds look forbidding, they are made
..-..

,
.

manageable by the'fact-that in many practical situations

_ c is relatively small.
.

Since plc, represents the probability that the system

is full,we can calculatekthat an arriving customer is

lost by taking n = K in Equltion,(4.5):

For the case e.< K < co, the probability that

an arriving customer 041 be lost is

(4.7) r
K

c!c
K-c PO'

where p0 is -given by Equation (4.6).

Case III. K = m. In this case the queue may contain
any number of customers. In practice, queues do not

become infinite except, perhaps, at some gas tfons
we've seen recently! However,,when K - c is very large

we may use the limiting distribution to simplify

calculations. The probability distribution for pn in
this cage is given by

(rn/n!)00 n = 0, 1, ... c-1
(4.8) pn.=

.
(r-/c!cn-c)p

0
n = c,\ c+1, .

where

1
(4.0 4--P0 c i i rc

+ --
c! 1-7175i=0

r
10



In this case: the total system "is hever "full":

because we can always add an .arriving customer to the:

queue. Thqs, in a sense;oarriing rustomers need never

be lost, although real customers Who'arrive to find very

long waiting lines,may very well'decide not .to wait for

service. Nevertheless,"this model is useful in several

ways. It provides a good approxilation to-Ymany real

situations, it simplifies calculations because we may

use Equation (4,9) insteat,of (4'.6) when - c is large,

and it can be used to find the Txpected_length of the

queue and the average total time, from tustbmer arrival

to departure. We cite one particular result that is

of some interest, namely the probability that an

arriving customer must wait in line. This event occurs

when all c servers are busm, and hence wnen the total

number of'customers in the system is at least c. ThO

required probability is therefore pc + pc.1.1 + which,

is a geometric series whose sum is

c
/c!)

1
F

.1-r/c

n=c
*Pn c-1 4

r'/i! + r 1

i=0
c! 1 717-5

In Section,5 we apply the results of t s section in

i"ervice-oriented" systems to obtain informati n for

s'ervice'planning. First, we offer a routine exercise

for familiarization with the fOrmulas.

C

Exercise 3.' Suppose we have a service system with c = 3 servers,

a waiting-line capacity for IC- c =.9 customers, an arrival rate of

a = 10 customers per hour, and a service rate of b = 5 customers

pgr hour.

at Calculate the probability p0 that -the system is idle.

b. 'Find an approximation for p0 under the assumption K = co. Compare

youi approximation with the result of part (2).

c. Calculate the probability that at least one server is idle.

d. Calculate the probability that an arrivinecustomer must wait

for service.

11

e. Calculate the.prohability that an arriving customer will-be lost.

f Find an apprilximation for the probability that an arriving

. customer will be lost using Fcguation (4.9) instead 'of (4.6) to

find po. Comliare 'your approximation with the result of pUrt (e).

5. SERVICE ORIENTED SYSTEMS

Example 1. Barberr'*,9'. Suppos.e. tkal.customers
,

arrive at random...times during, business hours at an average

rat; of16 per hour. Jf we choose a'minute as the basic '

unit of time; then a = 1/6 = .167 arrivals Ter minute.

Suppose further that the average haircut' takes 10

minutes. Then one,barber cannot handle the .traffic, but

two could. The question.is, however,' what sort of queueing

will occur because of randomness Of customer arrivals?

For example, we want to know whether the waiting line

buildup would at times become so excessive as to drilre'

business away, for then it.might be bettbr to staff a t.hird

chair:

We use results atom. Section 4. For this problem

there are c = 2 -servers, a = 1/6, 1) =,1/10, andg. = a/b = 5/3

We qssuite K = .0 for approximation purposes. Then`'

. 1

PO 1/11 = .6441
,1 + 5/3 + (1/2)(5/3)2 '

. 1-5/6

by Equation (4...9), and from (4.8) we obtain

pi,. (5/3)p0 = 5/33 = :152,

p2 = (546)p, = 25/198 = .126,
I '

P3 = (.5/6)p2 = 125/1188 = .105.

In Table 1 we show the-probability Px that there Will

be a total of N or more customers-in the system for a few

values of N.'

, 1 7

r
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TABLE 1

The Probability that there areN
or More Customers Waiting or BeinOerved in

the Barbershop of Example 1, fell- SeleCted Values of N

'

2 .

3' .63A

4

5 J 418-

6j /3165

%304

.'9 ; :211

0 '254

10 .176

The table shows, for.example, with N = 2-that arriving -

icustomers*wll findbot h barbers busy around 76 -- of the

time, so 3 out of eveig. 4 arriving customers will have

at least some wait,'
#
With N-= 4 we see that more than

. .
half the time there will be mofe than 1 customer waiting,

and with N = 8 we''sde that I out -of every 4 arrivals will:,
',.,

find at least 6 'peoplo.in line!
.

.
. P

Welhave not tried, toe find the lIngth of time that

, customers efgect to wa: in.the queue, but the figures
. /

above indicate that,w T only 2 chairs staffed there is
14

likely to be some exqqsive waiting. The gain made by

adding a third barber istexplored in Exercise 4,' The

ultimate desirability Of such a move ,would depend on ,
. ...

factor's like labor' cost, the =increased amount of idle.

server time, and'custoer tolerance of waiting, lines.
7

, .
, , , .

Exercise 4. Suppose _that.,:a third barber is added to the shop in

Example..
-.
.

/

,
/',

...:a. Pind pfl, Pi> p /13, 1)4.

. 1 U

t

13

b. Find the probability that all three barbers are busy; hence

als6 the fraction of arriving customers who must malt

c. Show that more than half the time at least two barbers are idle.

Example 2. Fire Potection.- 'Suppose that in a

certain community there are three fires per day on,the

average, So that a may be taken as 1/8, or .125., fire

outbreaks per hour. Suppose also that the average time ,

requited tb fight a fire is one hour, i.e. b = 1. We

also assume that no waiting line forms, i.e. K = c, the

number of firefighting units, so that fire calls are lost4

. if all c units are busy. We wish to. find the smallest '

value of c fox- which the community will be "reasonably

safe"

O We apply Erlang's loss formula, Equatson (4.A),, with
.

r = 1/8, for several possible values of c..

1/8c =.1:
P1 1,+ 1/8 1 /9

, *
. .

Thus, the kobabilit,mithat a call will be lost is 1/9;*

that is, on the'average.exery ninth call will be lost.

Since .there'are 3 calls

3

per'day, we lose a call every
.

.d.. ays, which seems to be quite unsafe,

(1/8)
2
/2c = t: p2 =

1/8
1/145.

T t is, over the long rItrill we would find that one out of

every 145 fire calls would go unanswered; -this would occur

once every 145/3 = 48-1/3 days, or-roughly. once every 7
,

weeks.,.
, .

Certainly, then? this community.must have at least

3,firefighting units -- but then how'safe will it be?'

(1,8)3/6' = 1/3,481.P3 '
1 + 1/8 + (1/8)2/2 + (1/0/6

r. 14
JL a./
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Therefore, with 3 units there will be one unanswered call

every 3,4.81/3 = 1,160-1/3 days, or around once every 38.

months:

With four units the rate drops'to one unanswered

call every 101 years. (See Exercise 5.) With allowances

made. for vehicle maintenance and other factors that may

affec-t*the accuracy of our results, it looks is if this
4

community could feel reasonably'safe with four fire=

fighting units.

Exercise 5.

a. Uslfig Erlang's loss formula with c = 4 tp find the probability

that a fire call will go unanswered when the community of Example

2 has four firefighting unit.

b. Convel.1 the result of part (h) to an average rate of years per

unanswered calls.

/

We pausefer a momentto.point our some'.tf the liMita-

tions in mathem tical modeling that are illustrated by the,

fire protection 1examWe. We,made the simplifying assume -.

trom..that fires are igaoreh if they break out when all

crews are busy. Is this assumption reasonable? 'Certainly,

fires don't queue dp'and wait to be extinguished! Yet We

all kniaw that ill real situations a fire Crew may be diverted
thpre,are 40 calls per 'day, the daily loss rate is,frgm one fire to ancalier under special circumstances We

about'6:16,.' Thus, we would expects to lose" one call- in a

6 -day' business week-.

Premark. The assumpti6n,that Calls are ost alien all

1 AI

tolerable liMi4is we should refine the.model. Such model

refinements are coniidered4n more advanced studwes in

operations research.
t

'ExaMple 3. Teerhone Service. A sma.11business

has 3 telep4ione Imes. Calls occur at random timers, at.

dn average rate of 40 per 8-hour working day,, and the

average dueation of:the'se calls is 4 minutes. The owner

LA concerned about the 4-requency of incoming calls that

get a busy signal .and the number of potential outgoing

calls that. are not made because all lines are im use. ,

The owner wants to know if another line should be added. ,
4

Sure! If.we use hours -for units, then a = 40/8 = 5'

Can you, help'

calls ,pier hour. Fri addition, b = 15, beca'usea "service

rate;' of one cal nlinutesis equivalent to J5 per

hour, Thus, traffic intensity is r = a/b = 1/3. We are

- given that the number of servers '(linesris c = 3, and if

we assume that a potential call, is losts when all lines ,

are ,busy.(seti the remark belofv),Ithen K = c. By Erlang2s
1 -loss formdla (Equation (4.4)):, we have,

3 AA - °
y p( (1/3) /3Y- 1

.804224f + 4/3 + (1/3)
2

k,i/2! + /J1 /3!

pave not conspeiedprioritief -- We would no doubt sacri- -

ficeAnisolated building to save a whole section of town.

Moreover, our model does not account-for seasonal

tiOns, suclt'as higher-dangdr leyels in dry seasons and lower

in rainy seasons. In addition, we have assumed that the .

fiA station serves an isolated wall community; the model

_vis not appropriate for cities where there-is cooperation

between neighboring fire districts.

This discussion pointsup the need for care in,the

interpretation of results. We can obtain good insight

from, mathematical models, but we mast,remember-.-that

approximations involve.errdr, and when%ertors exceed

20

fines are busY.is highly questionable. Incoming and

outgoing,' calls.hoth may Merely 'be delayed until lines .

.:tre-free, because callers may keep trying to complete

-their,call.,s.)To estimate our error, let's 8ssume the

,worst, that na calls are lot. Call callers keep trying

when the lines arb busy), so that we have the equivalent

of a queue.with,K The probability that all lines

will be occupied then given-by Equation (4.10),:

.

21. 16
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Pn
n=3 1 + 1/3 + (1/3)-2/2! +.( ;1/3)3/3!

1-1/9

s

1

..((1,(3)°/3!) 17r7g

1/201 = .005.

Under this assumption,,the loss rate would be 0.20 per'

day, or aroundone'in every 5 business days. We feel that

the actual error resulting from the "lost call" assumption

shoul be&gomewhat,less than the error resulting from the

worstjcase assumption of no los;calls. -

Exercise Suppost that the owner of the business in Example 3
. -

decided on the basis of our Asults that two lines would be adequate.

a. Use.Eflang's loss formula to calculhte the resulting call loss

rate (under the assumption that calls are ost when all lines,

are busy).

b. . Find the probability that both lines will be busy using Equation

(4.10) (under the assumppon that no calls afe lost).

6. GOODS-ORIENTED SYSTEMS

In this section.we are concerned with the effects of.

randomness in customer arrivals on inventory control.

The example is rather long, so we present It in two parts:

Example 4. Inventory Stocking, Part I.' Suppose that

customers .. who buy brooms at.,,a particular store arrive at

random times and'at an mg.tage rate of 10 per week.' If

brooms can be restocked.only on weekends, how many brooms

should the merchant have on hand each Monday 'morning?

If we use weeks as the unit of time, then the mean

arrivalrate is a =J 10. Thus, Pn(t) (see Equation (2.3))

reptesUnts the probability that n brooms are Id in

weeks. Then for' very nonnegative int er n we have

t-

P
n
(1) > 0, hence there is no absolutt guarantee that the

brooms will be spld out in a week no matter how many are

. stocked.

2.2 17

-Now, because of storage requirements, capital outlay,

and problems with deterioration' and obsolescence, the

merchant wishes to keep the number of brooms on hand each

Monday morning reasonAqy small. At the same time, the

demand must he accommodated or sales will be 1.6st; We

calculate some probabilities frZ the Poisson distfibution

with a = 10, t =.1:

ur less 0.067

(1) = .

P6 or less 0130

P, (1) =
/ or less-

0 220

11-"or

P
.124 or

P13 or

less
(1)

less
(1)

lees(1)

=

=

=.0.864

0.6,97

0.792

P
8 or less

(1) = 0.333.
or less (1) = 0.91

P9 or less (1) = 0.458
15 or less (1) 0.951

P
10 or less (1) = 0.583 P 16 or less (1) 0.973.

Therefore, if 10 brooms are stocked, then the supply

will meet the demand in 58.percentof the business weeks.

If 15 are stocked, then demand will exceed' supply only
4

'one week in 20. 'Fot- 16 brooms, the figure.is one week in

36.

Exercise 7 Find the minimum number of brooms that the merchant in

Example 4 should stock Itch week to reduce the sales lossfrate to a

point where demand exceeds supply only one week evexy2 years (or

better).

t

Example S. Inventory Stocking, Part
.
PI. In Part I

we calculated probabilities that showed the frequency with

which the weekly demand will exceed weekly, supply for vari-

ous values of the stocking'level. From a practical point

of view, we would alto want to know the expected numberof

, broom sales lost each week, in order to find the expected

dollar loss. In Part II we calculate the expected number

of sales_ lost using the basic definition oftMathemAical

expectation.

Of) 18
.1'
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To gainMie insight, let us suppose that 15 ,brooms -- Now, sincr*
-are stocked on Monday morning. If the demand is 15 or

-

00
.'e -at

(at/

n

less that week, then the .number of lost sales is YN If (6.3) Pn(tl =
n!

the demand\is 16, the number lost is 1; if 17, the number .

is 2; and so on. Thu.s, the possible outcomes are froM Equation (2.3),
L

d, L, 2, .. and the associated probabilities are: co 'co, e-aa

P15 o; less(1)

n
. 1 nP (1) = y n

n!P(O sales lost) 0.97.2.5,
.

n=1 .11 / n=1

- w' n-1
aP(1 sale lost) = P16(1) = 6.02171

= ae
-a

-

L (n-1)!
(6.4)

. n=1

.P(2 sales lost) = P17(1) = 0.0128,
t' *

Therefore; the expectation of the number of lost sales is

(6,1) p = C0.9725) + I(0.0217),; 2(0.0128) +
.

(see Equation (11.0' in .Appendix-A).

We could now calculate the value of
ji

numerically,

adding up enough terms to meet a prescLeted accuracy.

Such an efforthowever, would be clumsy and tedious, and

would pfovide very little insight into the problem: It is )

much better to derive a gepe61 formula for the expected

number of "sales lost.

Let a be the average demand (so_far, we have been

taking 'the value of a as.10), and suppose that the merchant

stocks ktrooms (k = 15 in our example above). If we
,

let it be the actual demand during a given week, then the

number of ?ales lost is 0 if n < k, 1 for n = k +

2 for n = k + 2;/etc., and ,4 Equation .,(1L.6)' we have
.

. k '
,

p = i 0-Pn(1) + 1 fn-k)Pn(1)
n=0 n=k+1

A.

(6.2)

/

I n= +1 nPn(1) k 1 Pn(1)

2 4

_ \

19

Oa'

Also,

(6.5)

= ae
-a

e
a

a

-a n
P n (1) = y ent a

n=0 n=0.

n
=a Y, criT= e

n=0

=
-a a

e e

= 1.

Alicordingly, the formula for p in (60.2) can be rewritten as

. k
(6.6) = p = [a - nPn(1)] 141 - P,(1)].

. . n=1
n=0

Equation (6.3)'also tells us that

e.aar1nP
n
(l) = n --T--

n.

(6.7) e -a an-1
a

a .4
= a

n-1(1)

When we ilbstitute--=rirt5 last (Ix res ion for n%(1) in

Equation (6.6)., we obtain



(6.8)

u 1, aPn-1(1)]. 111 Pn(1)
, n=1

=

ar, k-1 . k
l - Pn(1)] - k {l - Pn(1)]

LL n=0 - - n=0

=\(a'- k) {1 -Pn(1)] + aPk(1)Illo

-= aP
k
(1) -

k

-. OLP- Pn(1)1
n=0

In words, this last expression for u says that the average

number.of sales Yost per week is the difference between

the following two products: .

(1) the mean number of sales per week, times the

probability that actual demand will exactly

equal'the supply;
I.

(2) tcie excess'of,inventory stocked over mean demand,

times the probability that demand will exceed

the supply.

Let us now see chat Equation (6.8) has to tell us

about the brooms with which we ').egan this example. The

average demand is- a = 10 broomp.per.week, there are -

k = IS brooms on hand each Monday moirning. The lost

sales expectation, therefore, is
s.

.

.

I 1

ii = 10P15(11 '. .(13-10)[1.-- 1 Pn(1)1.
n=0 --

Since

-10 -(1')ISe 0

15!P1S ( ) 0.035,

from Equation (6.3), and

15
1:

l'Pri?1) =1)15 or less
(1) 0.951;

n=0

from Example4the,value of u is

06*

JAS

7

21

u = 1000.035) - 5(1'- 0.951) = 0.1022.

Thus, on the.average, we lose approximately one sale every

lq,weeks The loss represents approximately one percent

of demand, since the total demand in 10 weeks would

average 100, and we would lose one of these potential

sales.

For a = 10, we obtain the average number p of,,sales'

lost for various choices of k, the number of brooms

stocked:

for k = 16, p = 0.0532;

fOr k = 17, 11 = 0.0279;

for k = 18, p = 0.0156;

(see Exercise's). Thus, with k = 18,,we expect an

average of 1.5 sales lost every. 100 weeks, which is

around 3/10 of one percent 'of demand. This sales lOss,

represents a_substtantW improvement over'theiresult with

k = 15, but the penalt.y is having to'stocyhree more brooms.

Exercise 8. Obtain the values of p for k = 16, 17, 18 in the preceding ,

examples.

7. CONCLUSION

We close with a few comments to indicate the intro-

ductory character of this unit. We have made no attempt

to be complete, as you can see by asking some relatively

easy questions about our examples. Our purpdse will have

been served if Nou have seen another way to use mathematics

in, practical, everyday situations. Perhaps some of you

may also be inspired to learn more about the fascinating

subject of queueing theory in the field of operations

research.

A.

27
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8. MODEL EXAM 9. ANSWERS TO EXERCISES

1. Suppose that at a certain hospital an average of 4 babies per

day axe born, and that each birth ties up a certain piece of

delivery room-equipment for two hours. The hospital has 3 of

these pieces of equipment.

a. Find the fraction of time during which all 3 pieces are in

use;

b. Convert the probability found to (a) to a rate in days of

how bften we expect the equipment to be inadequate.

2. Suppose there are 10 radar speed check points spaced randomly

along a 2,000-mile stretch of interstate highway. Find the

probability that a speeding motorist will not pass a radar

site during a 300-mile.drive on this highway.

rk

\ e.
1. (a) u = at = 6(1/2) = 3.

(b) P
0
(1/2) + P

1

(1/2) '+ P
2
(1/2) = e

-3
(1 + 3 + 9/2) = 0.423.

2. With at = 3, use the cumulative distribution function for the

inter-arrival times:

F(1/2) = 1 - e
-3

= 0.95

3. Hei-e'af= 10, b = 5, r = 2, c = 3, K = 12.

(a) Use Equation (4.6) :

9

Po-
8 1 - (2/3)

10
1 + 2-+ 2 +

6 1 - (2/3)

1

5 + 4 (1 -
(2/3)10)

(b) Use Equation (4.9):

0.112.

1 - 1

Po = 8 1 5+ 7 0.111.
1 + 2 + 2 +

6 1 - 2/3

The results compare favorably, with relativlerrof around 0:0009.

(c) Use Equation (e8):

Alisk

P1 2P0' P2 2P0

The required probability is

p0 + p1 + p2 =5p0 = 5(0.112) =

(d) The given evenvis complementary to the event of part (c),

so the required value is.abqut 1 - 0.56 = 0.44.

(e) Use Equation'(4.7):

2
12

1312
(0.1119741346) = 0.-00388.

3! 3

(f) The simplified approximatkon is

12

p12
2

9
(1/9) =

3! 3

23 2/3
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Theresugts agree to 4 decimal Oaces.

4'. For this case c = 3, but t remains 5/3,

(a) pc) =

+ 5/3 + (5/3)2/2 + ((5/3)
3
/3)

1 -
1
5/9

P '

1

.p0 = p0 = 0.3478

5

P2 K pi
0.2899

5
p3 = 5. 172.= 0.1159

0 20&7

5"
p4 = p3 = 0.0644.

(b) The probability that all 3 barbers will be busy equals the

probability that at least 3 customers are in the system.

Hence

Pn 1 -
n =3

+ pl + p2) = Q.1536.

Thus, only 15% of the arriving customers have any wait at all.

(c) The'probbilit?,that 2 barbers will be idle is

p0 + pl = 0.5565 > 1/2.

5. We have c = 4 and r = 1/8, 'So

) (1/8)4/24
P4

1 + 1/8 + (1/8)
2
/2 + (1/8)

3
/6 + (1/8)4/24..

= 1/111,393.

44

(b), The loss rate is 3 X 365 X p4 = 0.0098 per year, or approximately

once every 101 yeaxs.

6.4 Here c = 2 and r = 1/3, so

,

(1/3) /2 .

0) P2 = 1/25 = 0.04,
- 1 + 1/3 + (1/3) 2 /2

30 25

Thus, 40 of the calls are lost, and at 40 calls per day the

loss rate is 1.6 per d4, a ten-fold increase; but still

refatiVely small.

(b) Using Equation (4.10), we obtain the value

1

((1/3)
2
/2 1 - 1/6 1

= 0:048.
1 21

1 + 1/3 + ((1/3y/2)
16

This value is equivalent to a loss rate of approximately 1.9

calls per, clay.

/. P
17 or lesS (1) = 0.986, for which the loss rate is one out of every

fl) = 0.993, for which the.loss rate is one
70 weeks. P

18 or less
out of every 139 weeks. Thus the required number of brooms is 18.

8. Answers are contained in Example 5.

26
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10. ANSUERS TO MODEL EXAM'
, .

1. If we choose hours as the basic unit of time, then the average

arrivalrate of babies is every 6 hours, or 1/6 per hour.

a. With a = 1/6. b = 1/2, we have r = 1/3, and Erlang's loss

formula yields

(1/3)3/3!
- 1/226.

P3 1 + 1/12 + (1/3)2/2!-+ (1/3)-73!

b. Since 4 babies arrive per day on the average thg...resnit of

part (a) means an inadequacy rate of once every 56.5

days

2. If we regard the radar sites as "arrivals ", then 10 sites in

2,000 miles means an average of 1 site every 200 mires, so the

average arrival rate a is 1/200. The probability that the

motorist will not pass'a radar site during a 300 mile stretch

equals the probability that there will be no arrivals in an

interval of length 300. The required value can be obtained

from Equation (2.3) with t = 300 and n = 0: we have at = 1.5, and

Po(3p) = e -
.5 (105)0

e
-1.5

0.22.

I- b,

W

11. APPENDIX A: BASIC PROBABILITY CONCEPTS

In this unit we use relatively standard conceptsof

elementary probability theory. The basic notion ,is that

of an "experiment:', which is describe'autira-trInle

E, P), where:

Q is a set (the possible outcomes);

E is a °collection of subSets of Q (the event));
0

P is a "probability function".

The function P assigns prpbabilities to'events

according to the following rules:

(aJ Fqr every event A we have Q < P(A)"..s. 1;
0

(b) P(II) = 1; '

(c) Fot every sequence (AnIn=l of pairwise disjoint

events we have

P(A, or A2 or A3 ,or ...) = P(An).

When E is a finite collec,tion of 'Sets, as is the case

when II is a, finite set, condition (c) may be replaced by:

(c)' For mutually exclusive events A and B we have
.

P(A or B) = P(A), , 13(6.

The following properties are fundamental and can be

obtained easily from the defining relations above:

A For any events A, B we have

(11;1) . - P(A or B).= PTA) 4- P(B P(A and B);,.

, For any event Awe have

(11:2) P(not A) = 1 - P(A).

We define two and closely related,c' cep s

If B is an event with,P(B) 5 0, then the condi
A

probabibity of an event A, given that B has occurred,

P(A1B), is defined by:

(11.3) P (Al B)

.

3P(A and B) 3r- p.m

27.
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The rii:atkd:.clOipt---ig.:STta t ista:ca-1-?-yid

events A and 11 are said 4 fr- -

.4 P (A: aiar-ik): TPW

Thus , if P (A) 0..and -T

statistically illdepend4nt if aQ:
and P(BIA). = P(B).T..-

Condit ipnal probability pre,yider* ST
formula for finding p-rol?..abi'lities.-- -1,f;eveirt
are mutually exclusive land. exhauStive;'fb:"
B we have

,

.
_. __,

, A . - form-an: en t.kr e rOal Inte'rva 1 rather than a di scrKte- set.. --- ... .....
..,..,-_,,- FOTAx-ampl'e-,---c,O'n§ilier _the instant in time when,:_the first-.-

------'cli---StoineTr.. of -t.irrily at ri v t a store, or_ the-distance".. -

- ,
-.: ; .---.hetWeeiti -two- cars -in-

. -..-----7---. --iir
a- -tr

_ - e ;0/4 : In -th--is case,
iObability-js-calcfrated T-rcm a..p-robabi_lity d-_nfri-ty_. . ..-

--::.1C:"-;:=:::-."-- , funciirt-_1,-;-14i.-c-li has:- th e..-E-o1 lOwirl.g.- prop'erties :--

fh-eilher the average of the outcriles,
_we ilpirtTgd" according o their likelihood of occurrence.

' Kay the possible o_utComes___of an experiment

(11.5) , P(B) P(-13.1A:)P
i

proVided, ,of

. tlr../1'). = (x)
"

"Ill% 8) -

.

_7-_-:-1h-;t-hiS case .the diitribution

Cr for' all -x;

Course, that each P(A.:).-'> .0. and we,-,c-alirnl.ate probabilitie
If A consists ,of a single ou-tabine,.:-i:r-;-ii:/.::A";=--:{ic).;.

then we denote _the grobability of A by 13(x)--EnSE-teaid-,o-f
the formally correct 1((x1) .

. .

In many expeAments the ouAcome.S may be represented
by realnumbers, for example the numbei-s on the faces -of .

a die, the- numbe* of dollars in the payffs to players
of a gambling 'game, and the number of customer arrivals
at a store in an hour of the business day. Ithelothis
happens, wg many define the" lithematicral expectation oft.
the experiment. If the're are exactly n distinct possibleI
read outcomes, then the mathematical. expectation (or
mean, or avirage). u i,s defined by:..

("11.6) n'= x.P(x.).
i=1

If theOutcomes .form an
the mean is

- -

-(113)1' =

infinite sequence {x1 n.)C° then=1 ,

xnP(xn).
n=1

3 4
29

ti

,rul: If A iTs-M interval of
from a:. to b,7 then

4 p(11.9) P(A)
i
= f(x)dx.

4,

is,a'lso said to be
s according to the following
'possible outcomes, say

continuous

,Thus, we may interpret the value of
is an interval which contains x and
length, AZ,then

(11.10) P(B) = 'f(x)Ax.

0

f(x) as follows: If B
which is of very small

The mean of a continuous distribution

(11f. 11) p = )ef(x)dx,

which is the analogue of Equation (11.6)

is glveloe'y

and (11.6)'. For
a continuous distribution the cumulative diStributiot
function F is 'given. b5,

q(11.12) F) = f(u)du.

In this case we hare the relation'
(11.13)' F' (x) = f(X)

:3 5
30,



O

for all x, by the fundamental theorem of calculus.,

12. APPENDIX B: DERIVATION OF ERLANG'S FORMULA

Here we derive Erlang's loss formula (plution

which is appropriate when no queue is allow to form.

This is the case in whith the total system size K equals

the number of serversc..

e basic assumptions for the aimiVals,pare indicated

a

"'%i '
in SeLion 2, and we shall dinote thefmean rrival 'rate

+

by a here, too. One basic assumption on de artures was

described in Section 4. Namely, for any sma 1 interval

from On t + n't we have th_ e Conditional pro ability

approximation

P(seiwice completion in [t, t + Atl 1 service t t) = bAt

for each of the c servers. We also assume tha

small interval from t to t + At the prObability

ffian one arrival or departure is of the order o

is therefore neibible.

for any,

of more

A

(I, arrival and no departuies):

n 1(1 - aAt)(1 nbAt) = 1 - at - nbAt

(no arrivals and no departures):

n - 1 (1 - ant)(nbAt) = nbAt

(no arrivals and 1 departure).

.14 hen n = 0 at /ime t, the conditional probabilities

for t-he number of customers in the system at time t + At

are

1 ant
t

1

(1 ari-iva 1-)-----
0

.
.

0 1, - ant . ,

`(no arrivals). . . ......

When n = c at time t the_ corresponding probabilities are

c - 1 nbAt

(1' departure)

Consider a short interval of time from t to t + At.

Let n be the number of customers in the, system at time t

11. 1 s n s c, then at time t +1st there may be n - 1, n,

or-n + 1 customers which corresponds to the respective

possibilities of departure and 0 arrivals in'the

interval, 0 departures and 0 arrivals, and 0 departures

and 1 arrival. If n = 0, then we may have only 0 or 1

customer in the system at t + At; if n = c, we may have

n 1 1 or n. In addition, the conditional probabilityof

1 departure in the interval [t, t + Atl, given n servers

occupied at,t istapproximately nbAt. We also assume

statistical independence between arrivals an400gparturei.

Thus, the conditional probabiTities for the, number' of

customers in -the system at t + At, _given n in the system

at t, are as ollows for 1 s n c 1:

n + 1 . Y adt(1 - nbAt) = at
31

1 - nbAt

(no departures).

Let pictenote the probability that there will be n

customers in the system at\time t. As noted in Section

4, pn, really depends on t, but in many practical situations,

the dependedce,on t becomes negligible as the system
...,

operation settles down to its steady state. Thus, the

,probability that there will be n customers in the system

at time t + At must be (approximately) pn. Sut ;here is

aq alternate expression; or there may have been n

customers at time t (with probability pn) and no change

during the interval (probability 1 aAt - nbAt); or there

may have been n - 1 (probability pn..1) and an increase af

1 (probability ant); or, there m

+ 1)bAt.

y have been n + 1-

le
(probability pn+1) and a decrea of 1 (probabjity

(If 4

Thus, by Equation (11.5) we ob.6in
+wk..

pn = ph(1 - at a nbAt) + pn,i(aAt) + pn+1((n +,1)bAt)

0



which simplifl s to

'(12.1) (a bb)pn = apn..1 +b(n
')P114.1.

ym- cancel like terms to obtain

(12.6) = 2bp2.

(Note t at the At drops out. Ultithately this is where Now add Equation 0'2.6) to the equation for n = 2 from
our ign ring of vnegligible"Nquantities is mathematically the system (12.4) and simplify to obtaiq
jusit.i ed.)

3bp3.

Eq ation (12.1) is valid for n = 1, 2,..., c-1, but

not'for = 0 or n = c. The correct formulas for n = 0
and n = are:

or

(12. Z)

p0 = pb(1 - ant) + pi(bAt),

(12.3) bCp

Continuing in a similar way we find

ap3 = 4bp4

O

= bpi;

--Pc-1 =cbPc'
= pc(1 - t1,it) t Pc_1(aAt),- s, %, 1

.

(No'Pe,that the final equation is identical to the one
. .

obtained earlier far n = c.)
.

= apc_i.
.,,

i
44......0 Npw let a/b ir; the traffic

dquation above may be written in the form
eN

%
1:11 = rPO

. .,

f

1: n

1 1
b ,. .'3 p2 = (r

2
/2)41p0$

(12.7.) P3 = (0/3!)P0

intensity. Then the
Of.

Thus, we o tain a system'of equations

, (12.4)

P0. brq

(a + b)pi = apo + 2bp2

eN
(a + 2b)p2 + 3bp3

(a + (c -.1)b p
c-1 = apc..2 + cbpc

1:.cPC aPc-1.

We 'solve this system by first expressing the' p i s.

in terma of p
0
and then uaingtke condition

nn=0

..to find p0. AUC;he equations for n = 0 and n = 1-and

,

f

.Pc (rc/c1)P0

Now Substitute the results from (12.7) into Equation (12.5)

to find P40:.

*
+ r2/2P0(1 r

+
ci
c!) = 1,

33".

from which

--(1-2`.8)

a,

1

1 + r + r
2
/2 + + r

c
/c!

c)
ti*.<

34
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Erlang%sfkrst formula, Equation (4.1),snow follows
from (12.7) and(12.8):.

'f\ n
/n!(22.9) ' n , n = 0, 1, g.

.

. 'r1i!
i=0

og

Erlang's loss formula now follows from Equation (12.9) for
the value n =

Derivations of Equations (4.5) and (4.8)'can be
carried out in.a similar way*, 'ye remark here.only that
-the chaXga in'the formula at n=c results fiom the fact
that'for n!>'c the conditional prObibidity of a service
completion in the'intertal Et, t + given n servers
busy is no longer nbAt,..but instead istcbAt:

1'

.t
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1.
STUDENT FORM 1

Request for Help
ti

Return to:
EDC/UMAP

55 Chapel St.

Newton, MA 02160

Student: If you have trouble with a specific part of this unit, please fill
out this form and take-it to your instructor for assistance. The information
you give will help the author to revise the unit.

-.Your Name Unit No.

OR OR

Page

Section Model Exam
Problem No.id Upper

()Middle

0 Lower

° Paragraph Text
Problem No.

4
Description of Difficulty: (Please bespecific)

Instructor: Please indicate your resolution of the difficulty in this box.

4

Corrected errors in materials. List corrections here:

Gave student better explanation, example, or prodedure than, in unit.
Give brief outline of your addition here:.

Assifted student in acquiring general learning and problem-solving
skills (hot usingexamples from this unit.)

41
fir'

Instructartb.Signature
.

Please use revetse'if necesitry:
4



Return to:
STUDENT FORM 2 EDC/UMAP

55 Chapel St.
'Unit Questionnaire

Newton, MA 02160

Name Unit No. Date

'Institution Course No.

Check the choice for each question that comes closest to your personal opinion.

1. How useful was the amount of detail in the unit?'

Not enougH detail to.understand the unit
Unit would have been clearer with more detail
Appropriate amount of detail
Unit was occasionally too detailed, but this was oot distracting

. ,

Too much.detail; I was oftensdistracted

2. How helpful were the problem answers?
0

Sample solutions were too brief; I could not do the intermediate steps
Sufficient information was given to solve the problems
Sample solutions were too detailed; I didn't need them

3. Except for fulfilling the prerequisites, how much did you use other sources (for
example', instructor, friends, or other books) in order to understand the unit?

a

A Lot Somewhat A Little Not at all-

4. How long was this unit in comparison to the amount of time you generally sRend.on
a lesson (lecture and homework assignment) in a typical math or science course?

) Much Somewhat About Somewhat:. Much

Longer Longer the Same Shorter,

5. Were any of the following parts of the unit confusing' or-distracting? (Check

as many as apply.) <,

_Prerequisites
t tement of skills-and concepts (objectives) .

It' ragraph headings ...

Examples
.

--special Assistance Supplement (if present) \

Other, please explain

6. Were any of the following parts of the unit particularly helpful? (Check as many

as apply.)
Prerequisis
Statement of skills and concepts (objectives)
Examples '

Problems
Paragraph headings
Table of Contents
Spedial Assistance Supplement (if present) ,

.Other, please explain

--a-
.

Please describe anything in the unit thatjou,did not particularly like.

t

1

:Please describe'anything that you found particularly 14.pful.. (Please use the baCk of

this sheet.if you need more space.) . k

14 2.


