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PREFACE

These units introduce analytic solutions of ordinary

;differential equations. They are in/ended to amplify

the examples of Paul Calter's Graphical and Numerical

Solution of Differential Equations, UMAP Units 81-83,

-,and to provide, with Calter's units, a general introduction

to a number of standard techniques for solving first-order

ordinary differential equations. Examples have been

included -from physics, biology, and chemistry.

6

SOLVING, DIFFLRENTLACLQUAlIONS ANAL1TICA11.Y

1. ANALYTIC SOLUT!ONS

\Objective: To be able to decide whether a givot: function solves a

given differential equation.

Me mathematical analysis of physical problems can

lead to\differential equations, as we .Jaw in Units 81-83,

and we often wish to gain information about the problems

by examinin\the functions which satisfy these differential

equations.

(Unit 81,

needed to

FOK example, in the optical filter problem

ChaPte'r\l) we want to know how many filters are

decrease a light's intensity to ten percent of

its unfiltered inten ity. Letting L(t) represent the

intensity when t filte\ts are used, we would like to find

the smallest t for whicli\L(t) is less than ten percent of

the unfiltered intensity,\4(0). A graphical solution

enabled us to find the required value of t. If we could

find a formula that expressed L(t) in terms of t, we might

then find the same value of t 'by:algebraic techniques

alone. Thus, we are led to ask what functions L(t) satisf

the differential equation

dL ,
= -kL(t) ,

where k is a positive constant.

Let us show that L(t) = e-kt is a solution of

(1)
dL

= -kL.

To see this we dIfferehtlate L(t), and find, indeed, that

dL d(e
-kt

)

ZIT

ke-kt
= -kL(t).dt

1



Hence, L(t) r e
-kt solution of (1).is a

If we are to profit from this solution, then he need

to find k from our data. then t = i filter then the

light intensity is eighty-five percent of L(0) = 1. In

other words; 141) = 0.85L(0) = 0.85. This means that

(2)

e-k(1) 0.S5,

Inle ") = In(0."85),

-k = In(0.8-5),

k = -1n(0.85).

Hence k = 0.16. This value of k is different from the

value k that was obtained in the graphical solution in

Unit 82. The graphical method is not as accurate as our

analytic method because it uses an approximate tangent

line. To find t so that the value of L(t) is no more than

ten percent of L(0)6.= 1, we must find t so that

(3) L(t) = e
-0.16t

< Tu 1.

Then,

(4)

ln(e
-0.16t

) < ln(2O)

-0.16t < -1n(10),

t
ln(10)

- <
0.16

ln(10.1
14.39.

17fT

This is in close agreement with the estimate of t > 14.4

that was obtained graphically. Both methods entail a

certain 'amount of inaccuracy; the graphical method in using

an approxylate tangent and in reading the graph, the

1

2

anal)tiL technique in ulip.1 a' log table which is aLculate

only to .i ceitain number of digits.

We can see three important point., from this example.

lirst, i f he can .:find a formula for a solution to a

differential equation we can, many times, soke our

original problem without turning to graphical or numerical

techniques. We meTon, hohexer,.that sonic problems can

be solved by using numerical technique,, so these

techniques are important and necessary. But, if an

analytic solution can be obtained, it is usualli

to work with. Second, to obtain an analytic solution we

must either have enough knowledge to "guess" an answer, or

we must develop techniques which will enable us to derive

a solution. In the qpttcal filter, he were able to guess

the answer from known analytical and graphical propeiities

of the exponential function. Third, we can alway,, deter-

mine whether a guess is correct by seeing if it and its

derivatives satisfy the equation. We give another example

to amplify this last point.

cx
i

3
Let us show that y = is a solution for the

differential equation

(S)

Now, if

then

and

dx)
7

X
cx.

dx

cx
3

y 6 '

7 7

dy
dx 6 7'

7

d'y d cx" 2cx
) 2

dx"
= cx.

Hence, y = cx3/6 satisfies Equation (5).
9

3



3
cx

Noti.s.ct.hat y = + I also satisfies Lquation (SI,

for

dam_ a))

dx
dx

(6) '

d
IL(21

dx
cx.

Thus, Equation (3) has at least two solution;. In fact,

it has an infinite number of solutions. (What are they?)

In general, when we are given a differential equation,

our objective will be to find a class of solutions for it

by using7analyticaA techniques, i.e., methods of calculus.

Exercises

LIZ
1. Show that y = e

kx
solves = ky where k is any constant.

dx

3 3
2. Showthat both y = VILTI and y = -43 1x2 are solutions for

3

x
2

dx y*

3. Show that'the functions

y(x) - sinS x,

y(x) = cos& x, and

Y(x)sinJc x cosui x,

all satisfy the differential equation

where k > 0.

C

4. Show that the function y(t) = (yo-M)e-kt f M satisfies the

equation lit = ,-k(y-M), where y0 = y(0)and k and M are constants.

4

ANTIDIRIVATIMS AND WI-EN:Min EQUATIONS

Objectives: (I) To use antidenivatives to solve some differential

equations, and (2) to find the constants of i-tegration

using boundary conditions.

Many differential equations which arise naturally in

physical sciences are easy to solve by finding anti-

derivatives. This should not be surprising, for differential

equations result from combining derivatives of functions.

Hence, we may hope to recover the functions by taking

appropriate antidcrivatives.

Consider a penny falling from the top of the Empire

State Building. 1e measure time, t, in seconds, with

t = 4 at the instant the penny is released, and let s(t)

be the height;of the penny in feet above the ground at

time t. Suppose the Empire State Building is h feet tall.

Isaac Newton's second law of dynamics states that if we

neglect the effect of the air on the penny then the

acceleration of 'the penny is a constant, say k.. Now,

its acceleration is also the second derivative, s"(t).

Therefore,

(7)

2Ls
dt7

k.

2

To. solve (7) analytically, we notice that --7 is the
dt-

uTds
dsdcrivativc of . So 31- is the antidcrivativc of the

constant k, in symbols

2

(8)
ds

I ikdt.UT
dt

But

1.
jkdt = kt + c,

1



N
'where c is someNconstant. So he have a net. differential
.

'equation

(9)
asuT t + L.

Before we solve .(9), let us see if he can find a value for
ds

c. The first. derivative, aT, is the !!-:,,:: of the penny

at time t. When t = 0, at the start of the drop, the

velocity will he 0, since the penny is stationary. Hence,
s

When t = 0; we have
d
IT = 0. So, from (9), /

0 =_k(0) + c,

and.thererbre c = 0. 'thus, (9) can be simplified to

(.10)
ds

Let us reflect' a minute on what we have done. We

have solved the differentialbequation (7) by first taking

th°antiderivative which gave us a class of functions of

the form kt + c. We then found that by using more

information we could show that c = 0, i.e., that only one

of these funct,ions satisfied our added condition. This

added condition, -that = 0 when t = 0, is called a
at,

boundary. condition.

Exercises
ds

5. Show that c.TT= kt + c satisfies Equation (7) for any value of c.

ds
We now take the antiderivative of to get s(t). Thus,

we have

s(t) = I dt

= f.ktdt

= kt
2

I7 d,
6

hlwre d is another constant. Can we also find what d

mist be? Since

s(t) = d,

by Equation (II), he note that s(0) =
k(0)-

7

--T-- + d = d. Thus,

d is the height of the penny aboie the ground when t = O.

That is, d is equal to the height of the building, h.

We then have

(12) s(t) =
kt+

We now have found a function s(t) which describes

the height of the pcnnyfor any time t. The only thing

we have not done is to find the value of k. This must be

determined by physical experiment, and physics tixts give

the value of k = -32.2 feet pet) second. The negative

sign expresses the fact that the penny is falling down.

Thus, we have

(13)

S(t) 7
+ 12S0 or

S(t) = -16.1t2 4 1250,

for the height of the Empire State Building is about

1250 feet.

Exer,eses

6. a. Find how long the penny takes to hit the ground. It will

hit the ground when s(t) = 0, so we can use Equation (13)

to find the value of t > 0 for which s(t) = 0.

b. Now find out how fast the penny will be falling when it hits.

To do this note that Equation (le) gives the velocity at any

time t. It will give us the velocity when the penny hits

the ground, if we use the value of t found in part (a).

Express your answer in miles per hour as well as feet per

second.



7. Shoe that s(t) = -16.11 + 1250 is a solution of Equations (10)

and (7).

Let's summarize what we have done in the pro6lem

above. We were given a differential equation of the form

41=f(0.-AllEquatinn,(fly=11.1-.f(t) = k and
t._

ds
d2s

= k
t

d.

-In Equation (10), y = s and f(t) = kt, for

dv
et
ds

-

kt = f(t).at

In other words, we had to solve an equation of the form

41.
= f(t). To do it we were able to antidifferentiate

to get-

y

jdvut dt If(t)dt.

Thus, we could obtain y if we could find
Jf(t)dt,

the

antiderivative of f(t). We then obtained a class of

solutions that involved a constant of integration. By

using the boUndary conditions we could then find the

constant.and get the one solution which solved our

differential equation and satisfied the boundary condition.

Thii procedure is the basis for most analytic solutions of

differential equations. The difficulty arises in getting

the equation in a form from which we can readily find the

antiderivative.

8

A.

Exercises

Solve the following differential equations, using the boundary

conditions to find the consunnts of integration. Show that each

answer satisfies its differential equation.

ds
8.

dx
= k; s(0) = 1.

dv
9. (1.1= = cx; = 1 when x = 0, and y = 1 when x = 0.

dx
dx

2

Let us look at the sagging beam,problem again, this

time analytically. We know from Unit 83, page 58, that

x
2

= (8 x 10
7
)--

2
+ c,.

(14)

= 4 x10-7x2 + c,

where y is the vertical beam deflection. The problem was

to find c. If we had some conditions on dy/dx we would be

able to find c as in the previous examples. Since we only

know conditions on y, we must proceed with (14) not

knowing the value of c. We then get the following by

ant4derivatives.

1

r
y = dx = 1(4107x2 + c)dx

x
J A

or
Y(x) = 4. 10-7x + cx + d,

where d is a constant. Now y(0) = 0 and y(30) = 0 since

the beam is fipd at both ends. Fromoy(b).= 0 we get

0 = y(0) = d. Hence d =- 0. Prom y(30) = 0 we get

13
0 = y(30) = 4x 10-7

(;(1
+ c(30).

Solving for c, we get

9.-



0

'(15)

30c

30c

-4 x 10
7 (3uL3

3

x 10-7) (9000)

-(4x 10-7)(9000)
50

= -12 x 10-'.

Hence (14) becomes------

dZ
,= 4 x 10

-7
x
2

- '12 x 10
-5

.

Exercises

Solve each of the following differential equations: Check your

answers by substitution.

dx
10._ -cr . t; x(0) . -1.,

42x
dx

11,e -- = -32; .°100 when t = 0, x = 0 when t = O.
dt

dt
2

QUIZ ill

We know' that the maximum deflection occurs for the value Use antioerivatives to find the solution to each of the following

of x at which y(x) is the least, which can bf., foppd by differential equations. Meek your answer by substitution. ,

Idtting dy/dx = 6. Thus souring d2 "

we 'get

or

4i . 4 x 10-7x2 - 12 x 10-5 = 0,

7 _.12x10-5 3x102Y2

4x 10-'

x ±VTUU = ±17.3.

1. = t; = 1 and y = 1 when t =
dt

2 dt

2

2.
2

k
1, dt

AZ = k
2

and y = k3 when t = 0 where k1, k2, and k 3

dt

are constants.

*****t******

3. SEPARATION OF VARIABLES

Note th4t -17.3 is not possible physically, so the maximum Objective: To use the method of separation of variables to solve more

deflectionoccurs when x is approximately 17.3 ft. A differential equations.

quick calculation gives the maximum deflection as

y(17.3) = -138 x10-5 using

1 f*
O

4x 10-7x3
y(x) -------- 12 x JO

-5
x.

In Unit 82 (Chapter 9) we encountered the differential

equation

(16)

2

dx y

with the boundary condition of y = 1 whe. x = 1. If we.

attempt to solve (16) with the technique of the last

44*
chapter' we 'immediately run into a problem. When we try

10 to take the antiderivative of the right side of (16) we
11



0

_

--(li)

4.

get an integral which has both y and x in it, namely

To integrate (1 -7) we need to know y as a function of x.

-4ut.this is what we are trying to solve the differential

_equation Tor--to find y as a function of x! What can we

dO? Well, since yis "in the way" on the. right side when

-- we integrate, it maybe a .good idea to move it before we

try to integrate. Thus, in (16), we must get y from the

right side. We can do thi's if we.multiply both sides of

-061 by .y to obtain

(18)° yli = X2.

Now we can integrate both sides of (18) to get

(19)
= Jx2dx.

But the left side of (1'9) requires more work to integrate.

However, we know that

where c
1
is acqnstant. So (19) becomes

F2 1 3
(20) Ty cl = 3.3( + c2,

where_c2-1-S-also a constant. If we let c = c2-c1 then c

is a constant and we can write (20) in the,form

S21) ly2 = lx3 + c,

which is similar to the cubic we obtained in the7beam--

*deflection problem. The difference lies in that (21) does

not express y as a function of x directly. To get y we
12

must solve for y in (21). Now,

2 2 3
y = x + 2c,(22).

or

(23) y =

Thus, we have two

from the boundary

.1

1

(24)

1

2
1 -

c

%/ix') + 2c.

possible solutions to (16). However,

condition y(1) = 1 we qbtain

= I/4(1)3 + 2c

= 2c

= (±i/i + 2c)2

2
= 3 + 2c

= 2c

1 1 1
= 7.(s) = w.

With this value of c, Equation (23) becomes

y ±j/ix3 + ±v/2x 3+ 1.

To decide which of the two possibilities satisfies the

boundary condition y(1) = 1, we substitute x = 1 in (25)

and find

;112(1)3 + 1

3

This tells us to choose the plus sign, so that

(26)
//2x 3 + 1

3
13



is ouf answer. To check that this function does indeed

satisfy Equation (16) we may differentiate it:

dy d vbx ') + 1

dk J7 3.

(27)

(2x3 + 11=

[

1 2x3 + 1 2d 7x3 + 1

7 73 J7 3

1
7

1

ex ...)

d [2x3 4 11

4 /2x34.1 -

1 1 , 2

= X
2

y

Exercises

12. Show y = -
/x3i1

satisfies Equation (16) but does not satisfy

the boundary condition y = 1 when x = 1. What condition does

it satisfy when'x = 1?

2

The technique we used to solve = is called

separation of variables. In summary, if we are given a

differential equation which has both variables appearing

oh the right-hand side_ of the equation, we move the

dependent variable to the left side of the differential ,

equation. We then integrate and solve the resulting

equation for y.

Exercises

13. gave the equation 5a1,. = ky by separation of variables (k is a

constant not equal to zero). Solve for y after integrating

and then compare your answer to the one obtained in Exercise 1.

Another phenomenon of interest is the way the

temperature of a body changes when it is placed ill a

cooling medium. Let y(t) represent the temperature of

the object at any time t. Suppose we place the oteT in

a cooler medium of sufficient quantity so that the

temperature of the medium is not changed by the hotter

object. (For example, a meteorite into an ocean.)

Let M represent this constant temperature. Experimental

data suggest that the rate of cooling of the object is

directly proportional to the difference in the two

temperatures at any time t. We can express this law of

cooling by the differential equation

(28) = -k(y-M),

where M is the temperature of the medium and k is a ,

positive constant.* Note that since the temperature of

the object is falling, y is decreasing and its derivative

is negative. We can solve (28) by separation of varia-

bles to get

(29) y(t) = (yo-M)e
-kt

+

where yo = y(0).

Exercises

14. Solve equation (28) for y(t) by carrying out the following steps:

First, by using sepakation of variables, show that

ln(y-M) = -kt + C. Next, using'the boundary condition y(0) = yo,

show that C = ln(y
0
-M)

'

and hence that ln-37:IL
M

= -kt. Then find y

using the exponential function.
YO-

We would expect the temperature of the object to

decrease until it reaches the temperature of the medium,

M. To see ifthis happens from (29) we look at y as

t 00. But since k > 0, we know e-kt a 0 as t 00.

*See Appendix 1 for a biological example which also uses a

differential equation of this form.
15
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(Recall the behavior of the graph of e-kt.) Therefore,.

-y i (yo-M)(0) M = M as ,t Note y is always

greater than M, since y0 -A! > 0 and e 't > 0. Thus, the

value of y(t) approaches Mhbut never reaches M. In

practice, the temperature of the obj?ct eventually gets

- .5.eclose to the'temperature of the medium that we cannot

measure any difference between the two.
4

'Fxercises

_15,--A-theillibileter is removed from boiling water. The temperature

decreases from 95° C to 80° C in half of a minute. If the

room temperature is 20° C, about how long will it-take the

thefmometer to get within one Celsius degree of the room

temperature. Hint: Find k first.

Appendices 2 and 3 give two more differential equa-

tions used in'the sciences which may be solved by the

technique of separation of variables.

Exercises,

Solve each of the following differential equations. Check your

answer by substitution.

16. 2 = y2; y(0) = 1.

17. = .c.; y(1) = 1.
P

QUIZ #2

Solve. each of the following differential equations by separation of

variables. Check your answer by substitution.

(1) 2 =4ty; y(0) = 1.

(2)'
dt

+ s + 1 = 0; s(0) = O.

99

**********
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4. MSC ORDkR LINEAR DIFFERENTIAL EQUATIONS

Objective: To solve first order linear differential equations.

4.1 The Fish Pond Revisited

The fish pond,problem was solved in Unit 8.1 (Chapter

8) using tangent fields. We now study the problem ana-

lytically. We begin with the differential equation

lki(30)
t 4 0 t'
= 0.6 -

where Q is the number of fish in the pond at time t. We

first note that none of our previous techniqt,les permit us

to solve this equation. We cannot just useiantiderivatives

since the function Q appears in the right -hand side -of (30).

This suggests, of course, that we try to siparate the

variables t and Q. But if we divide both sides of (30)

by Q to move Q, we are still left with Q on the right-hand

side because of the 0.6, for we get

(31)
1 4fq 0.6 . 2

4320 + t'

We have to come up with a new techniqde if we ';are to solve

(30). Our first move is to change (30) to

(32) 4? 707177 0'5'

To make things a little easier to write, let's replace

2

4320 + t 5Y ft). Then (32) becomes

(33) Q' + f(t)Q = 0.6.

Now it would be nice ifrthe left-hand side. of (33) were

the derivative of something, for we could then use anti-

,,derivatives. The form of the left side of (33) suggests

the product rule, yQ' + y'Q = (yQ)'. In other words, if

we could find a function y(t), so that

Q' f(t)Q = yQ' y'Q,

0

r)r)
4. a/

\

17



then we could use antiderivatives to solve (33). But to

have this we would need to have the product yQ' in (33).

Since we do not have it, we put it thre by multiplying

,both,sides of Equation (33) by y. Thi.; gives

(34) + yf(t)Q = 0.6y.

Now we need y to satisfy

YQ' Yf(t)Q = YQ' y*Q,

or

k3S)

yf(t)Q = Y'Q,

yf(t) = y'.

Thus,.a 'function which would permit us to use anti-

derivatives must satisfy (35). But k3S) is just a

differential equation! AO we can solve it For by

separation of variables,

1
(36)

Y
ye =

there '

f(t)
2

17716-777'

from (32). A solution of (36) is

y(t) = (4320 + t)2

`oh he see that the left side of (38) is Just the

derivative of (4320+t)-Q.

Exercises

19. Show that the left side 01 Equation (38) is the derivative of

(4320 + t)().

Thus, we ca.ii rewrite Equation (38) as

(39) ily((4320+t-)Q) = 0.0(4320+t)2.

Now solve (39) for (4320+WQ by using antidcrivatives to

get

or

(40)

(4320+WQ = 0.6(4320+02dt,

.

Q(t) 1 0.6(4320+0"dt.
(4320 +t)

Thus, we can solve (30) by integrating in (40).

Exercises

20. Find f0.6(4320 + t)
2
dt. Don't forget the constant of

Integration.

Using the result of Exercise 20, we have

'
Exercises

(41) Q(t) 1 IQ. 2 (4320+ i )3+k. J .

(4520+0
1 2

18. Solve the equation v
- 4320 + t

by separation of variables,.
Y

When we substitute (4320 t t)
2 for y in Equation (34) we

obtain

(41)0
`1
4

44

0201 + (4320+t) Q = 0.6(4320+t)2,(4320 +
2

4320+t

(4320+02W + 2(432040Q = 0.6(4320+02.
18

Now Q(0) = 1864, so we can find c from (41), as follows:

Thus,

Q(0) = 1864 =
1

21042(132915+1'(432.0)

c = 1804(4320)2 - 0.2(4320)3

= 18662400000.

19



a

1 (0 /(43/0+t)
3 + 18o024000001..

2
(4320+0

For the original Problem, Q(129b0) = 3519,, rounded to the

neateSi fish, inclose agreement with the figure of 5500

that may be read. from the graph on page 38 of Unit 82.

4.2 °A ,Second Example

As a second example, we look at-Oe equation

+ 2y - x = 0 from Unit 82, Chapter 7.. We put it in

the same form

(42) g 2y'= x,

to separate y and its derivative from x. To solve (42)

we search for a function u(x) so that when we multiply

both sides of Equation (42) by u, the left side is the

derivative of uy. We first get

(43) uy' + 2yu = xu.

Then, since (uy)' = uy' + yu', we must have

C

yu' = 2yu,

or

,(44) u' = 2u. ]

But tire know that

u(x) =
e2x

is a solution of (44). With u"replaced by e
2x

, Equation

(43) becomes

(45) .e
2x

y' + 2ye
2x

= xe
2x

,

Or p

(46) d
B-i(e

2x
y) = xe 2x

This means that
20

se that

1

= xe
2x

dx,

1 2
(.7) y = 777 xe

x
dx.

To find-y we must find xe,x dx. .We need a function whose
1

derivative is xe2x. Notice that re 2x almost works,

because

d(12x) xe2x 1e2x
" -T

1
We need to add a term to the trial function 7xe

2x whose
1 2;iderivative will cancel the unwanted term 7e .. That is,

we need to 'add ,the-antiderivativof- _le2x which is
1

-Te
2x

. The function

1 2x 1 2x
7xe - 4e

now has the derivative we want, for

If2

2x 1 2x) 2x 1 2x 1xe --4 e = xe2x
xe2x

-
xe2x

= xe
2x

.

Hence, theesolution of Equation (47) is

1 [1 2x 1 2x
y = -e tT c],

Or

. 1 1
(48) y 7.x - T + ce

-2x

Exercises

21. Show that xe
2x

is the derivative of

1 2x 1 2x
- 71.e

22. Show (48) satisfies (42) for all values of c.



4.3 Yhe General Procedure
..:;.. ,..'

.

We now formalize the procedure of the two previous
u(x) e

examples. rf we have a differential equation of the _5

form
Exercises

Use Formula (51) to solve the following differential equations. ...,

(49) y' + f(x)y = g(x),
- 7,--;

23. y' = ky; y(0) = N

where f and g are functions of x, the-n we find u(x) so The solution of this equation describes exponential growth.

that / 24. y' + y + I = 0; y(0) =.0

(50) u'(x) = f(x)u(x). 25. y' = x

We solve (50) to get u(x) = e
if(x)dx

. Then.(49) becomes,

by multiplying by u(x), To check Equation (51) we notice that, for any function
.,, -;'

uy' + ufy = gu,
difli('x)dxl hix).

l

,

or
dx

.
:.

-,

Then, from
uy' + u'y ="gu

y = (u(x)( (jg(x)u(x)dx + cl

by (50). Thus,

,

we get

d(uy)
,.

- gu,
' = -(11(x))-

2 dT fig(x)u(x)dx + 0

+ (u(x)1-4,[g(x)u(x))

Juy = gu dx

= Igu dx

where c is a constant.

= -(u(x) (-1 410

+ cl, = f(x)u(x)y + g(x) (using u'(x) = f(x)u(x))

We summarize: The solution of the first order linear

differential equation

y'(x) + f(x)y(x) = g(x)

fY(x) :.' ihr J(x)u(x)dx + 22

So

= -f(x)y + g(x).
A

Y' f(x)y = g(x),

which is our original differential equation, Equation (49).

The linear differential equation is the last type of

differential equation we will attempt to handle analytically
23



15)
in this unit. We note many other types appear in practice.

'The.value of the analytic method is that, if ix horks, it

is -tore tractable than numerical methods. However,

*inerical methods are sometimes more useful and faster,

and at times they proyide the only known way to get to a

solution;

Exercises

26. If in the linear first-order differential equation (49)we have

g(x) E 0, show that the equation can be solved by separationof

variables. Compare your answer with (51).

QUIZ 113

Solve each of the following differential equations by using Formula

(51): Determine the behavior of the solution as

27.
dt t

t
2

az 2
28. + t y = t

2
.

dt

**********

5. MODEL EXAM

Solve each,of the following differential equations by 'I

using tt of the methods of the text; antiderivatives,

separatio of variables, or the linear formula.

a. y' + x =',0; y(1) = 1

1b. ,y' + = 0; y(1) = 1

c. y' + y = 0; y(0) = f

d. y' + y = 1; y(0) = 0.

30

-

Tlie velocity of a body falling in a

may be modeled by the equation

dv
+ hv - 0,

resisting medium

where v = v(t) is the velocity of the body, and k and

g are constants. Assume v(0) =0.

a, Solve the differential equation for v(t).

b. _Shot, that the body,'s speed approaches a thniting

speed as t-).co, and find this speed. This speed is

Chapter 1
kkx

1.

called the terminal velocity of the falling-bay: -

6. ANSWERS TO EXERCISES

3/f ,1/2/f 3/2

2. yi = x1/2

2 3

3 2 2
-5. x x2.

3/2 YAx

x3/2

3' y' = ccos (4. X)

y" = c 4 (-sin (AT x))

--k sin OE x) = -ky.

4. y' = (57,-M)(-k)e-kt
u

= -ki(Yo-M)e-kt+Mi + kM

- -
= -ky + kM

Chapter 2

5. s' = kt + c; s" =.k.

24 25

0 / 4 ,

1

1,,
*-3



a. 0 - s(t) -16.1t2 + 1250

0 u + 1250

t
2 1250

16.1

t = 8.81.

b. v(8.81) a -32.2(8.81) -283.73 ftisec

193.45 mi/hr.

7. s' . -32.2t; s" . -32.2, where k -32.2.

8. s(x) . s . fit dx . kt +' c

s(0) . I . k(0) + c

I . c

s(x) = kx + I.

1

cx2
9. : y! . cx dx . -7- +c1.

Y1(0) 1
2

+ c

I c
I

y'(x) '
c
x
2

+ 1

+ 1)dx
6

3
x + x + c

2\
c

.'Y(x) x3 + x + 1.

rr t210. xct) , t dt + c

x(0)_=. -1 = _c

t2
x(t) - 1.

11. x'(t) ' I-32dt 0 -32t +

x' (0) = 106 a

x'(E) = -32t + 100

x(t) = J( -32t + 100)dt

= -16E2 + 100t + c

x(0) = 0 = c

x(t) =. -I6t
2
+ 100t.

Chapter 3

12. - -1--1(2x3+1)-1/2(6x2)
/5 2

1(6x2)
(6x )

2
cl 6 x

1. 3 1/2 y- --(2x +I)

Y(1) a igl . -1.
)5

13. fldy a fk dx

In y = kx + c

kx+c
Y = e

. 14. = f!kdt
YM
1n(y1M) = -kt + c

ln(yo-M) = c

ln(y-M) = -kt + ln(y .

0
ln(y-M) - in(yo-M) = -kt

=

YO-M

all e7kt

Y0-M

(y04)e-kt



15.- y = (yo-M)ekt +-M

.1
Yvv) = Eicv (95-20)e

-k2
+ 20.

60/75 =
e7k/2

-k/2 ='1n(0.8)-= -0./23

k = 0.446.

9(0 = 75e
0.446t

+ 20 < 21

75e
0.446t

< 1

e
-0.446t

< 1/75

-y
-1

x + c

-L .'c

y
-1

1

11-dy= 1-1 x
Y x

lny =lnx +c

0 c

y x.

Chapier k

-0.446t < 1n(1/75)

18.
11 j

-;11/Y 4320+t ut

In y 2 In (4320+t) + c, with c = 0

In y = In (4320+02

y = (4320+t)2.

" t > 9.68 min.

6

2 8.,,343

19. 2(4320+0Q + (4320+0-W, by the product rul

20. 10.6(4320+0 2dt

= 0. --6 (4320+t)
3 + c

3

= 0.2(4320+t)
3
+ c.

21. By the product rule, the derivative of

1
xe

2x 1 2x
4 is

-e
1 2x 1

--x
2x 1 2x

+ (2e ) - 2 Te
2 2

1 2x
+ xe -

2x 1 2x
Ie

xe2x. #

22. y' = - 2ce-2x

y' + 2y . - 2ce72x + x - + 2ce-2x

= X.

23. u(x) = e
f-kdx

= e
-kx

y(x) = ekx 4

ce

0 e dx + c)

kx

Y(x)

= N

= Ne
kx

.

24,
efldx ex

Y(x) = e-x(f-exdx + c)

ex(-ex

= -1 + ce
-x

0 = -1 + c

1 = c

Y(x) = e-x 1.



25: a(x) el°"' dx z P.° 1

.y(x) (fl x dx + e)

-x2 + c..2

26. g(x) = 0 gives

dx
dv" f (x)v 0

in - f (x)dx + c '

y ceff(x)dx, where, c =ec'.

By (51)

u(x) eff(x)"

.eff(x)dx(10

ce`f f (x) dx

34

u(x)d=. + c)

V 7, ANSWI:11S r0 AND N1010. 1:)tiAN1

quiz 41
2

1. Y. = c

Y"(1)=1=l+c
2t 1

2 +
t 3

y= 6-- + +

1 1
Y(i) T + +

y(t)

1 = c

3
1

6 2 3

2. y' = k
1
t + c

k2 = c

k
1
t 2

Y 2
+ k

2
t + c

k
3

= c

y(t)

uiz 02

1. jidy dx
112

ln y = T c
0 = c

x
2/2

y e

t + k 3.



-(1+s) r--------' Bv linval folmna,

-. .PL
ji+.

[-it
u(x)... .jr0dx

=j
41 -:

1 *
1n (1s) = -t,' + c 4

...e

= C
+ C

' 5- 4. c
:
-..

s = c
-t

- 1.

v(x) = - x..1: + 1.

c o lit
4112 03,

u(t)
ilt dt

= e1
t b.

y>'

a t i vex ,

Y(0 - -14 t ; A: dt + cl
I. t` ) v = - In x

.1 ln t 1 = v . --.

.

y = 1 - Isi x.

t

y(t) - 0 as t 40.

14144.V

u(t) e = eft2dt t3/3

y(t) = et/3 t 2 et73 dt + c)

-1
. ce-t

3/3 -+ e-t
3 3/31

3.
-t /J

ce +1

Exam

a. By antlderivat ive

as t\-

'y' = -x
2

x.
Y + c

2

1 c

x2y 2
+ 1.

\ 32

J

By linear formula,

u(x) c
0

= 1

I 1.,

Y(x) = - 1 dx. + c

"=- - la x 1.

ay

tn

v Y1

y = -x +

0 c

-x
Y e

By linear formula,

efi (I; = exu(x) =

( )Y(x) = e-x 0 exdx +-c

= ce-x

1= c

y(x) = e-x



7

By separation of variables.

y' = 1-y

_1
y = 1

1-y

-1h(1-y) = x + c

0 c

1n(1-y) -x

1-y

y 1 - e-x.

By linear. formula,

u(*) efl dx = ex

y(-E) = e-x111 -exdx + cl

e
-x

(e x +c)

- 1 + ce-x

-1 c

y(x) 1 -

2. a:
Idv

kv g 0

By linear formula,

u(t) =
efkdt ekt

gektdt
v(t)

ekt
ekt[E___

= g/k + ce-kt

0 g/k + c

-g/k c

v(t) .:g/k(1
e-kt).

a. As t4m, e-kt-00 so v(t)4g/k. 34

S

A!TEN01.

AN EXAMPLE FROM BIO

Biologists us: an equation of the kini that aprelrs

in the law of cooling (Chapter 3) to describe the diffu-

sion of chemicals through the wall of a' ell. The cell

is assumed to have a constant volume and to be immersed

in a liquid. We consider the flow of a particular chemical*

or solute into and out of the cell. Assume that the

solute'concentration in the liquid is constant at a value of
o

c0 Let c(t) represent the concentration of the solute in

the cell at time t. The solute will diffuse into and out

of the cell. we are interested in the net flow of the

solute. Now if m(t) represents the mass of the solute in

the cell, then

(1) m(t) = Vc(t).

The derivative, dm/dt, is the net flow rate. A differential

equatioirk known as Fick's law, says that

(2) = kA(c0 -'0,

where k is a constant called the permeability of the

membrane; and A is the fixed area of the cell's surface.

By differentiating (1) we get

dm ,dc

UT UT

which may be substituted in (2) to get

(3)
dc kA
di v(co-c).

Since kA/V and c0 are constants we see (3) is like the

differential equation

= -k(y-M)

that describes the law of cooling in Chapter 3. We can

solve (3) to get
23 35



(4)
-1(X

t

c(t) =

where K is the constant of ontcootion. betol, tot,
Approaches c0 as t-/- lho constant i. mu-t he .L

by experiment.

Exercise

1. Solve Equat ton (3) to go: ryu,t loot (4).

XPI1 \DI\ 2

POPOLX110\ MODLI

The long-run grohth of populayon l not ovonnttal,

because the environment doe- not permit unlimited giouth.

A differential .uation which load-t to 8,11-eful mode) or

limited growth is

dv
= ay - by-,

11% =

sloIlle a 1 g. th.tt = 1,` a and It = l% I 4.011..

-1 . Shot. tin

1

- - b) 2'
tti tit

thus,

11 r h
1 dv a (y

ddt = dt t.
2 dt lv dt , a - by dt

I
ay -

Show

(I do:

1.1

Y

1
v CI, fot- y 0.

3. show

1 b
d.

I a - by dt di = - In to - by) + t 2,
o

for v b.
where y(t) is the number of organi-m-; in the population

at time t, and a and b are po,itive cotants. the term

-by- causes the growth to he sma0ler than ay, and prof ides
Using the lo-tult, of I eitise, 2 dnd he Ma% rewrite

a "liMiting" factor. if b = 0, then (1) simplifies to

the differential equation for exponential growth.

(2)

hquation (2) a-

To solve (1) we first separate xariables to get (3) I 0 1

In )- i In (a-by) = t , c,
a

for 0 y < il.

I I

dv To find c in this; equation, ue let t = O. Then
, at dt = il dt = t + c.

ay by-
i 1

hi (y(0)1 I
5 i

In (a - by(0)1 = c.

To integrate the left side of (2), he expand the quotient if we let yo = y(0), then

1

1 1

ay - by
2 c = In

y0.-
-51n (aby0),

by the Method of partial fractions. In other words, we

find. A and B so that

and Equation (3) may be rewritten as

1

--
1 '1

36, t =
a
In y - In (a-by) - In v

0
+ In (a-by ).

- . a 37
elf



We multiply both sides of this equation h) a, to :let

at = In y In is -hvf 11)%0 . In is-hvol

l';via-hx01
= In 1

Then,

y(a-hv.0 tat.
v
0
ia-bv)

at
av - byoy

Y(3-bY0+11Y0e
at

/ 3Y9e '

and, finally,

or

(4)

1.10%e
at

aoc at

Y at'
a

b%0 bYne

. fit) =
axp

11,0 * (a-hyole
at'

t a
F.

Notice that c as t--, because a - 0. therefore,

3Y0 a

Y by0 ta-by0).0

as t-0. The limiting value of the population is.

A routine investigation of y and its first two

derivatives reveals the graph of y to have a point of

inflection at y = 8/2b. The graph is concave up for

values of y between 0 and a/2h, and concave don for value.4

of y greater than a /2h. The graph approaches the hori-

zontal asymptote y = 1/1) from below as y gets large. See

Figure 1.

The curve in Figure 1 is called a logistic curve.

Note that for y < a/2h, the curve resembles an exponential

curve. In other words, at the beginning, the population
38

time t

dyn

Figure 1. The graph of y = --

for y close to 0. he + (a-bv )o-at.
0 '0

grows almost exponentially. 13tit, as y Increases, the

limiting term -by- in the firt derivative has more effect

and causes the population growth to taper off.

Exercises

4. Experimental data sug:;est that the value of a in Equation (11,

for the human population of the earth is about a = 0.03.

-Suppose we have the following data for the earth's population:

Year 1960 1970 1975

Population
(in billions)

3.01 3.59 3.92

If we let the year 1960 be our starting point then t . 0 in

1960. Then y0 = y(0) = 3.01. Find y(10) from the table. Then

solve Equation (4) for b. using a = 0.03 and t = 10. Now use

Equation (4) with this value of b to find y(15), and compare it

to the table value. What is the limiting value of the earth's

population under this equation? In what year will v = a/2b?

39
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XPPENDIA 3

AN 1.1AMPLL Ron cumism

When a chemical C is formed by combining the

molecules of two chemicals A an$B, it is .:,ometimes

reasonable to assume that the more of A and B present the

faster the reaction could take place. In other hbrils, the

crate of formation of C is proportional to the amounts of

A and B present at any time.

To develop a differential equation th4 decribc4..the

formation of C, let y(t) represent fhe ,.:-m4(*pigt..;;13,.., of C

at time t. he can assume y(0) = 6. Let a he the con-

centration of the chemical A and b concentration of

chemical B when t = 0. Now if the formation of a molecule

ofC requires one molecule of A and one molecule of B, then

a - y(t) and b - y(t) is the concentration of A and B at

-timet. Then the. statement that the rate of formation of

C is proportional to the amount's of :\ and B present

becomes

(1) dv
= k(a - y)(b - y),

for some positive constant k. To solve (I) he consider

two cases, (i) a = b and (ii) a # b.

' Suppose that a = b. Then by separation of xariables

(I) becomes

(2) dt = jkdt.
(a-y)

'Substit ting u for a - y we have

dt = 41
dt

40

Ihew(2) beLo7:.

1 kt c.
-

But y(0) = 0, so

and

So

1 1
kt +

akt + I

a

a
a y

akt + I

a

Y a akt +-7

akt
akt +

Note that as t...)

a k ak\
y(t) = = a.

ak +

---

Thus, the concentration off' C approaches the common con-

centration of A and B.

Now suppose that a'# b. A different technique is

then required to solve (1). By separation of variables,

(1) becomes

1
(3) j(a-ym1b.y)

f 4L dt = jkdt.

To integrate
(a-y)1(11.y) we notice that

1 1

1
- TEET

(a-Y) (h-y) a-y 41

"71



Exercises

1. Show

I (a-b) (b-a)

(a-y)(b-y) b-y a-y

Then

77371177TY (Rldt
1

------____
,-----

_.--

= ylg E47 Ilidt + ,-- --- or.
n-a a-y t

1 I 11. .._

J

Exercises

2. Show

and

1

1 Ili dt = - In (a-y)
a - y dt clt

I. l AZ dt . - In (b-y) + c,b - y dt 2

for < a.

for y < b.

Then, combining the results of Exercise 2,kith

Equation (3), we have

1 -1
(4) y-7 In (b-y) + E--=71n (a-y) = kt + c

Since y(0) = 0, we get

1 -1
c b + In a.

Equation (4) becomes

1 . 1
.-7-gln (a-y) alb In cb-y) = kt + -5-1-F In a In b.

u
,0 ,

We can then get

42

or

57-01n(a-y) In(h-v) + In(b) ln(a)) = kr,

In h(a-y) '(a-b)t.
a(b-y) "

ti

Then,

b(a-y) = a(b-y)e
h(a-b)t

ab by + ayek(a-b)t = ahek(a-b)t
41t

abe k(a-b)t - at)

aek(a-IC)F777

ablek(4-"t - II

(5) Y
ae

k(a-b)t b

Now if a < b then k(a-b) < 0, so ek(a-h)t 4 0 as

t4w. Then y 4 -ab/-b = a as't4w. In other words, the

concentration of C approaches the concentration of A, the

lesser of the two coflcentrations. This is necessary for

there must be enough of eachchemical to form C and C

could not form more than the smaller amount.

Exercises dor

3. Show that if b a, then y(t) 4 b as t
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Appendix 1

1. First,'

dc kA,

V c0-c)

dc fkA

co-c IT/ t

dc
dt

c-c r1 _ \

kA
lnic-c 1 .

-
+

V 1

Then,

c-c
0

-kA

a
2
y(a-bv)

a
2
- ab + aby

a-v(a-bv)

ay(a-bv).

1

Yfa-by)

ay-by
2'

t c
2.

e

-kA

ec 1 e

-kA
Cl --t

V
to e

j

a dt
dt

aj y

=
a
1 n Ivi +c

=
a
-Iny + c

1
(since y > 0).

a

. b
If we now write K for te , we have

3

Ldt libdy
a-by a a-by

on

c-c
0

= Ke

19.1

V
libdy
a by-a

t

c Ke + c

which is Equation (4).

Appendix 2

1. Starting with the sun on the left, we may take the following

algebraic steps:

1 b

a + = +a 1 b

y a-by ay a(a-by)

.t 44

= -
1
-1n1lay-al + c

2a

-
1
-a In (by-a) + ,

c2

Absolute value bars are not necessary, because the given condition

y < a/b requires the quantity Ily-a to he positive.

4. The value of y(10) is 3.59. To save work we rewrite Equation (4)

as

y(t)

ay
0

by
0
(1-e

-at
) + ae

-at

45



fr

,=7

This groups the te:-%s that involve b. Then. with a 0.03.

10, and y(10) 3.59,! we have

3.
12z..9.24i1:0059 .

b(3.01)t
t
l-e

(0.03)(10))
+ (0.03)e-

(0.0)1(10)

0.09

b(3.011(0.26Y+ 0.02

0.09
b(0.78) + 0.02'

2.80b + 0.07 1= 0.09

b = 0.02/2.80 7.1

Appendix 3

1. If we multiply both sides of the given equation by (a-y)(b-y),

and combine terms, we find

1
1 = (a-y) ( v)

(a-b) (b-a)
fr

X=.12

a-b a-b

a-y + y-b
a-b

a-b
a-b

= I.

2.
ja-y dt a-y

dy

Y-a

43 = Inly-al + c
1

' ln(y-a) + c1 (since y-a > 0).

1

Similatl,.

I1_ I _I

b-dvfi=fry tit y

dv

y-b

= Inly-b: + c,

ln(y-b) + c, (since y-b 0). ////

/

3. Since b < a, the quantity a-b is poso,.. The product k(a-b) ////

is then positive, and
/

///
1

0 as ..

e
k(a-b)t

To see that y b as t .,, first divide the numerator and
k(-

denominator of the right side of Equation (5) by ae
ab)t

. The

result is

b[I -

e
k(:-b)t]

Y 1
1

a PiTa--17.

From this we see that, as t

b(1-0) b
Y

= kb .

1 - t 0 I
a



'STUDENT FORM 1

Request for help

Return to:
EDC/UMAF
55 Chapel St.
Newton, MA 02160

Student: If you have trouble with a specific part of this unit, please fill
out this form and take it to your instructor for assistance. The information
you give will help the author to revise the unit.

Your Name
Unit No.

OR

Page

OR
Section Model Exam

Problem No.Upper

-()Middle

() Lower

Paragraph Text
Problem No.

Description of Difficulty: (Please be specific)

Instructor: Please indicate your resolution'of the difficulty in this box.

Corrected errors in materials. List corrections here:

Gave'student better explanation, example, or procedure than in unit.
Give brief outline of your addition here:

(.2) Assisted student in acquiring general learning and problem-solving
skills (not using examples from this unit.)

.3

Instructor's Signature

Please use reverse if necessary.



Name

STUDENT FORM 2

Unit Questionnaire

Unit No. Date

Institution Course No.

Return to
EDC/UHAP
55 Chapel St.
Newton, MA 02160

Check the choice for each question that comes closest to your persOnal opinion.

1. How useful was the amount of detail in the unit?

Not enough detail to understand the unit
Unit would have been clearer with more detail
Appropriate amount of detail
*Unit was occasionally too detailed, but this was not distracting
Too much detail; I wPs often distracted

2. How helpful were the problem answers?

Sample sol 'dons were to.) brief; I could not do the intermediate steps
Sufficien information was given to solve the problems
Semple s utions were too detailed; I didn't need them

3. Except for fulfilling the prerequisites, how much did you use other sources (for
example, instructor; friends, or other books) in order to understand the unit?

A Lot

4. How long was this
a lesson (lecture

Much
Longer

. Somewhat A Little Not at all

unit in cobparison to the amounttof time you generally spend on
and homework assignment) in a typIpal.math or science course?

Somewhat About 1Sionlewhati . Much

Longer the Same Shorter Shorter

5. Were any of the following parts of the unit confusing or distracting? (Check

as many as apply.)

Prerequisites
Statement of skills and concepts (objectives)
Paragraph headings
Examples
Special Assistance Supplement (if present)

----Other, please explain

6. Were any of the following parts of the-unit particularly helpful? (Check as many

as apply.)
Pterequisites
Statement of skills and concepts (objectives)

Examples
Problems
Paragraph headings
Table of Contents
Special Assistance Supplement (if present)

Other, please explain

Please describe anything in the unit that you did not particularly like.

Please describe anything that you found particularly helpful. (Please use the back of

this sheet if you need more space.)


