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PACKGROUND AND PURIOSE OF THE STUDY

Mathematics teata yield direct measures of students' learning in
mathemntics. They, aleo, reflect unmeasurable cognitive procesces,
that is intellerctual abilities nuch as remcmbering facta, analyrning
components, intagroting corceptn, making ossumptions, evaluating
stalements or solutions. In\éhia study, the relationship batween
mathematico tests and the theoretical learning procesc is explored
uring slterantive statistical methods ond models to mathematically
dencribe relationahips betwesen obnerved test scoren and hypothetical
constructs which we ansume contribute to the obgeived tent gcores.
The toat resultn used ie-results of the mathemntics senles (ie.
cubtects) from the National Longitudinal Study of Hathemntical
Abilities (NLSMA, 196?:1967) for grades 5, 8, 11, and 12.

The test itemn wera constructed following a sumulative hierarchical
structure baned on the firat four categories in Bloom's Taxonomy of
Fducntional Objectiven for ths Cognitive Domain (Bloom et al, 1956).
Bloom*n clasaification ayatem builde {rom simple behaviors to complex
behaviors where simple behaviors are integrated with other simple

behnviors to form a more complex onme. The four clssmificntions vied

here arae:
Claosification Behavior
1. Computation A
(Knowlodge)
?. Comprchennion A+B

A+BRs+sC
A+RsCe D

3. Application
. Annlyain

A represents the behavior that ia required to successfully annwer

n teat-item requiring only Computntion. Thal, in addition to another
behnvior, B, is required to succeed at a Comprehensicn-level itenm.

Thun n higher level is build from the previous level plun one ndditionnl

hebavior in n model that is additive, rather than, say multiplicative.
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Data that correspond to this cumulative structure have a correlation
mtrix that exhzbite Guttman®s (1954) simplex structuve where adjacent
categorics are more highly correlated than non-adjecent cetegories.
Thua, a perfect simplex has a correlation matrix euch that the largest
values lie along the first off-diagonal. The‘next largest values lie
along the adjncent disgonals. The smalleat values will then lie in the
upper-right and lower-left corners of the matrix.

A similar hierarchy is found in mathematics learning. Except for
some basic definitions and assumptiuna, mathematios 1a built upon
other prerequisite mathematics regardless of ths content area or
grade level. It seems natural, then, to believe that in order to
learn a particular mathematical corcept o; fact, a student needs to
know all of the concepts below that one in the hierarchi. Thus, )
lower levels of mathematics are the building blocks of higher levela
of mathematics. It is this idea that is the genesis of a hierarchy of
learning in mathematics. See Appendix A for s review of the literature.

Previous attempts to validate Bloom's cumulative hierarchy of
learning in ceveral different subject areas have been inconclusive
(Seddon, 1978). There is supportive evidence, however, particula;ly
from the simplex anslysis of Kropp and Stoker (1966), the multiple
regression analysis of Mndaus, Woods, and Nuttall (1973), and most
recently the reanalysis by Hill and HcGaw (1981) of the Kropp and
Stoker deta using J3reskog's LISREL (1978) program.

Mathematics acales consisting of groups of similar items from
one teat b;ttery are classified into ope of the above cognitive levels.
In order to explore the validity of Bloom's cumulative hierarchy
path analysis, factor analysis, and the computer progrsa LISREL v
are used to describe the relationships between these four cognitive
levels.

The path analysis model assumes there should be direct links between
mathematics scales from adjacent cognitve levels and no direct links
from non-ndjacent levels. The possible patha between the four cognitive
1c/els are illustrated below where adjacant paths are shown as solid
arrows and non-adjacent paths as broken arrows. In this model, the

rathematics test scores equal the underlying cognitive levels.
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Figure 1. Path diegram illuatrating adjacent and non-adjscent paths.
Path coefficients are estimated in linear structural equation
models derivad from relations among the observed mathematica ecales in

terms of caune and effect variables and their indicators. Here, the
scales are grouped into those scales clascified at the same category for
a particular grade level.

Factor analysis investigates the theoreticel 1atent structure that
could have produced the observed correlation matrix of the mathematics
acales. Illere, it is the latent factor structure, in contrest to the
relationships between oboerved test acores, that is manipulated.
Assuming we have four teste -- one from each of the four cognitive
levels under consideration -~ a simplex structure in the correlation
matrix of these tests would be represented in the factor etructure

shown below.

Test: Factor: F‘ F, F3 Fy
7, ——— o o o
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Figure 2. Factor structure of four tests whose correlation matrix
exhibits a simplex structure.

For this study, there are usually several tests categorized at each

cognitive level giving multiple indicaturs of sech level. Blooa's




sticture implies that thoase teots that were classified under the same
cognitive level should exhibit the same factor structure. In this o'enaa.
certain mathematics tests go together. We then look for 8 factor structure
that sxemplifies the classifications of the tests and the cumulative
ordering.

In another factor analytic approach, the computer program LISREL IV
integrates linear structural equation models involving observed test
scores with latent variables corresponding to the four cognitive levels.
Again; we investignte how well the theoretical simplex structure exists
in the observed data. However, in this anslysis, the relationships
between the four cognitive levels from Bloom's hierarchy as latent
varinbles and the observed mathematics test results are separated and
made explicit. Furthermore, two models are aspecified and tested for
their goodnecs of fit using a chi-square statistic. The first wmodel
specifies the test clnsoifications according to cognitive level but
does not Uait the relationships between cognitive levels to Bloom's
cumilative ordering. In this model there is complete symmetry between
the four cognitive levels in that each one is connected to all of the
others. Thic first model is illustrated in Figure 3.
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Figure 3. Hypothetical LISREL model showing 211 possible paths between
the latent variables.
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The first model is compared to n second model that differn from the
first in that there is Ploom's hierarchical ordering in the four latent

varvinblen.
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:\= error in test 1 (i=1, ... , ®)
g, »orror in latent variable § {i= 1, «o. ¢ W)

Figure 4, Hypothetical LISREL model showing cumulntive hierorchy in
the latent variabdbles.

By exploring the ap ~<:tion of these thre. various structural
equation entimation techniques to the NLSMA data, ench adds to our
understandirg of whether moou’s cumilative hierarchical ordering is
exhibited in the data. The important question is not whether Rloom's
hicrnrchy gives the only valid explanation of the test results, tut
rather in explorinz the validity of Blooa's hierarchy h(:m do these
stntistical methods contribute to our tinderstanding of the test results.

THE NLSHA DATA

The Nationnl lLongitudinal Study of Msthematical Abilities (NLSHA)
began in 1962 to collect data on over 112,000 students from 1,500
achools from C states in the United States. Date was collected for
5 years on students in grades four through twvelva. This continues to
bo the largest such study of mathematical achievement in this country.

Three populstions of students wers studied. The figure below
and the nccompanying quotation from NLSMA describes the deaign of NLSMA.
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X ~ Populotion

Y~ Populotion

-~

m Z - Populoiton

The figure above 1llustratss the design of WLSMA. A largs population
of studsnts at cach Of three grede levils vas tested fn the fall s spring
of each year, begiming vith grades §, 7, and 10 in the fell, 1962, The
X-Poptlation and Y-Population vere tested for five years, The Z-Fopulatioo
vas tested for three years snd then followed Vith quebtionneires eftsr gred-
uating from high school. The design stressed three fiatures: (1) the long-
term study of & group of ctudents - up to five yur-,'(ﬂ study of the same
grade Jovel st different times - for instance, grades.7-8 in 1962-6% for the
Y-Population and agatn in 1963-67 for the X-Population, and (3) extenstve
data on mathematics achievement for grades b through }2.

.
Figure 5. The design of NL3MA, (Reprinted from FOREWORD to all NLSM
Reports.)
Mathematical achisvement was characterized in a matrix of three
content areas that students typically covered in the fourth through
tvelfth grade curricula and four cognitive level ostegories taken from

Bloom's taxonomy.

ffumber Systems | Geometry Algebra

Computation

Comprehension

Application

Analysis

Figure 6. HLSMA model for mathematice achievement.

co

Since the goal of the preoent study is to investigate the validity
of the imponed taxonomic structure in the mathematics scales, only
thoss populations that include at least one scale from each cognitive
levol category sts considered. From the thirteen possible grades
spread uver the NLSMA X-, Y-, and 2-Populations, four samples were found
that met this criterim: X-Population, Grade 5 and Grade 8; Y-Population,
Grade 11 (group 1) and Z-Population, Grade 12 (group 2). Group 1 in
the grade 11 Y-Population includes all studente who had completed at
Jeast three years of college preparatory mathsmatics by the end of that
year. Approximately 45 percent of the Y-Population, Grg_:de 11 are in
group 1. Oroup 2 in.the grade 12 2-Populetion includes all otudents who
had not had at least one mathematica course more ndvanced than geometry.
Approximately 30 percent of the Z<Population, Grade 12 are in group 2.

In general, the atudents were above aversge in mental ability,
mathematics achisvment, and mocio-econosic status. They came from
schools frowm all five geographio regions in the United States -- North
Atlantio, Southeast, Midwest, Great Plains and Rocky Mountains, and
Far West. Statistical information is presonted for a 5 percent
atratified (by geography) randos sample of each of the entire X-, Y-,
and Z2-Populations. This sampling procedure yields large sample sirzes
in the four samples under investigation ~- 1776 stndents in the %-Population
Grnde 51 1130 students in the X-Population Grade 8; 515 students in the
group 1 Y-Population Grade 11; and 205 studenta in the group 2 Z-Population
Qrade 12. '

In this paper, we will examine the results for the grade 5 population
only. Descriptive statiastics for this sample are given in Table 1 and
Table 2. Complete teat batteries and item statistics for each scale
are found in NLSMA Reporta Mos. 1 - 6 (Vilson, Cahen, Begle, .1968).
Correlation matrices on all of the MLSMA scales are found in NLSMA
Report No. 33 (Wilson, Begls, 1972).
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TAVIE 1

X-lupulation Mathematica Scaler for Spring 106h, Grade S,
sample Sfren Range From 1320 - 1330,

~ Frror ol

Nuntrer  Tlme® .
Alphat Moagurement

Mth Scale of Items Allowed

Cognitive lLevel

Commutation X301 - Fractions 3 10 12 min, 087 1.1
X302 - fuvcimals 2 { ‘{ min. 0.70 1.03
X303 - Mvision Whole
Mumbers 2 8 15 =min. 0.82 1.08
Comprehicnsion X30% - Decimal Hotation 8 l 0.54 1.4
%305 - Transiation 1 0.0 1.06
X300 - Geowetric Flgures h 0.53 0.3
Appiiention X307 ~ Working With
Numbers 12 20 min. 0.68 1.h9
Analysis X308 - Five hots 19 1% min. 0.0y 1.70

« If time Information §a not given, then the scale is part of & lurger timed
section.

e« Alphs 15 an estimate of the {nternal consistency reliability of the seale.

“?

TABIR ?

Means and Standard Deviations for X-Fopulation Mathematics Scales,
Spring 064, Grade 5, N-1T7G6.

Gtanlurd  Tercentile

Cognltive level Math Scale Mean Devintion _  Mean
Computation X301 - Fractions 3 5.97 3.07 0.60
X302 - Decimls 2 3.20 2.11 0.h6h
X303 - Divigion Whole '
Numbers 2 h.83 2.5h 0.60
Comprehension X30% - Decimal Notation 3.86 1.83 0.48
X305 - Translation h.82 1.87 0.67
X306 - Geometric Figures 2.57 .07 0.64
Application X307 - Working With
Mumbers 5.78 2.59 0.h8
Analysis X308 - Five Dots 10.7h h77 0.25

From Tnble 1 we note that the omall number nf itemo in each ncnle
yield leas reliable scale ccores. Also, there are not equal numbers of
ftems in each ncale. There are not equal numbers of acales for each
cognitive level category. In general, over the entire NISHA populntion,
thero nre more scales at the lower cognitive level categorias in the
lower grades and more ocales at the higher cognitive level categories
in the higher grndea corresponding to the more sbotract quality of the

miterinl being taught at the higher grades.
From Table 2 we note that the percentile menns gencrally decrence

from lower to higher cognitive level category vhich is consistent with

Bloom's taxonomic structure.




RESULTS FOR X-YOPULATION, GRADE 5

Resulto Using Path.knalfuia.
Using the NLSMA' classification of the mathematice scales, a pnth

diagram i used to display the pattern and strength of the causal
relations between scale ncores from adjacent cognitfve‘lovels. The
variabilities of the independent ascales at the lowest level, Computation,
are all speumed determined by causen outside the model. The variabilities
of the dependent scales at the oth;r three lavels are explained by the
provious independent variables or by othe; depondent variables.

Each path diagram represente a model.that consiste of a set of
equations each of which includes a disturbance torm\thnt summarizee
the effect on the structure of the system of both ne)g?renoni error
for that equation and nll other unknown variables. Each model ie
assusmed to represent linear relationshipe between the variables and
the diaturbance terms whare the disturbances are independent of each

other and of nll varinblea that precede them in the given causal ordering.

)
.86
l 0505
. e °
32 17 fo 1,8:75

_Jl__, _-ﬁ‘__,
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y1=Frnctionu yzzbecimalu, yjsoivieion‘of whole Numbers,

y“=Dec1mal Notntion, y.=Trnnslation, yszGeometric Figures,
y7=Horking with Humbers, y8=F1ve Dots.

Figure 7. Path dingram in n model usning testo from Number Systems
nnd Geometry, Crnde 5, N=1776.

5]

o d
Q
ERIC

>

n

Path coefficients, piJ' vhere "y reprencntn the prth from test yj
to tant y, are Riven in Figure 7 obove. This dingram represents tho

following five regreascion equations.

Yy = Py Yyt Pup Tt Pz Y3t oy
Y5 % Pgq ¥y * Psz ¥p t Po3 Y3t G5
(1) Yo %1 Y1 Pea Y2t Pe3 Y3t % .

Yy = Py Yy * Pyg 15 * Ppg g M)
¥ =Tgy ¥, * o8

- .

Relationships between the regreseed variables o ’2' y5 mny be presented
in » correlation matrix ns ahown in Table 3.
TANE 3
Correlation Matrix For Computation Scales, Grnde 5.

Tesot: Y ’2 ’5
7, 1,00
A 0.49 1.00
s 0,59 0.45 1.00

Since the correlations are computed on standardized vnriables, the
repreasion coefficients nre identical to the path coefficients obtained
from solving a series of linear atructural equationa, Using the model
degcribed fn Figure 7, we obtain estimates for the pnth coefficiente ae

aolutions of threes nystema of equations. From the equntions

RV " Ty P M T3
(2) Yoy T Puy iz ' Phg ' Py oy

b P Ty Pee Ty T Mg |

ve ohtalr setimates of Py Pyo? ph3: from the equations |

[y

‘ 17

|
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) Yo, T Py Ty P Ps

wve obtain estimates of P2 Popr pS‘: from the equations
. 2 e

LETPR U8 PP Tyo ! FG3.T3
- ~
() To " P M1z ' Pop ' Py Ty
LEYSRE VN x[g ' P Tm ! Pe

we obtain eatimnte; of Fq® Peor p6}. In each ayatem of eq;ations
there are exactly thrae equations in three unknowns, and thé quations
are independent, oo that thess systems are identified.

As a consequence of the last two regression equations of equation (1)

we obtain the equations

-

v P Tt P T P Ter

Lot P Tt Pis Tso P Thn

r - . ) Y p,. T ‘ T
T37 T P Tay Py T3 ' P tAa
Yyt Pp P Ton t Prg Ten

r

hcl
=

P16 T6o

t,

o1 7 Pk Fhs

L B I YA SN S

Here we have o.x oquations in three unknowns, so that the systam is
overidentified. Solving this system algebraically cannot Rive unique
estimates. Hovaver, the regression procadure does give unique regres-
sion coefficients which can be used as unbiased estimates for the path
coefficients. Similarly, the last regression equation in (1) corresponds

to an overidentified system of scven equations in one unknown.

o —"".
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A1l but two of the mnthematice scales from the Grade S5 pample were
originally classified under the content area Number Systems. The other
two ocalen were classified under Geometry. By collapsing across these
tvo content arcas, and using ordinary least squares regression, we obtnin
the estimntes given in Figure 7. Estimates for the disturbance terms
were computed using §1 - R® for each regression.

For this sample, we note only one path coefficient (p6}=0'05) that
is close to zero. The mathematics scale y6=Ggometric Figures coneiste
of four multiple-choice questions dealing with naming figures that
reprenent 4 square, circle, rectangle, and triangle. Working ¥ith
Fractions (11) and Decimals (12) may be taught using geometric figures
(pie charts, segmented rectangles, ete.) whereas Division of Whole
Numbers (y}) typically is not illugtrated uesing goometric,figurea which
my explain the difference in the strengths of these relationships.

None of the path coefficients is very large, which we would expect
given the large ssmple size. Ve note, however, that the strength of
the path coefficients generally increase &s we go from low to high
cognitive levels. Also, the disturbance terms are large and are
inversely proportional to the number of items in the mathematica scale.
That ia, ths largest disturbance terms correspord to those scales with
the fowent numbers of items.

Becnues collapsing tha mathematics scales ncross thedtwo content
nreas may not Le connistent with Bloom's taxonomic etructure, similar
regressions were carried out using only the acsles from Num' 2r Systeza.
The path coefficients obtained are essentially the same.

Regressions were also completed on this sample for the 1)1 model,
that is, including all of the non-edjacent paths. The non-adjacent paths
wers all smaller than the adjncent pathsj however they were not all rero.

The lnrge error terms in Tigure 7,compared to the valuee of the
path coefficients themselves. preclude any strong interpretation of
the recults of this analysia. Thus we turn to factor analytic techniques
to nid us in our understanding of theme results.

N

Reoults Using Factor Analysis.

Principal compononts annlysis vas used 88 an exploratory technique
to justify using models relating the four underlying hypothetical
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cognitive levels of Bloom's Taxonomy as unobserved latent variables to
the obperved mathematics acale scores. Firat, corresponding eigenvalues
greater than one were extrncted.‘ This procedurs produced one principal
component that accounted for approxikately S¥% of the total variance.
Because the mathematics scales were categorized into one of four
cognitive levels, the first four principal componenta were also examined
and rotated hoping to find a structure consistent with the four
hypotheaized cognitive levels. The first four principal componenta
accounted for approximately 81% of the.tota) variance.

Bloom's e‘amlativa hierarchy implies that one principal component
chould be sufficient to account for a large percentage of the total
vorinnce. Principal components analysis is also used to check the

structure of each group of teats in a given cognitive level to determine _

in any particular scale loads very differently than all ths others in
that category. (In that case, the results would indicate a misclassifi-
cation of thnt scnle.) For this sample, all of the tests at a particular
cognitive level had similar factor loadings.

Since principnl componenis sre orthogonal, and we expect an oblique
factor siructure, we do not expect to find a structure exemplifying
Bloom's hiernrchical structure using principsl components. Ye do,
however, wnnt to account for as much of the total variance as possibloe.
Therefore, principal componente is used to determine the values of the
first four eigenvaluee in order to specify four factors in a classical
factor analysis thnt will allow oblique factors.

Both orthogonal and oblique rotations are examined. The potentinlly
low relinbilities of the scales limit the strength of the expected
structure. The only interpretable structure that wae found was to

ta

separote the tests into those at the éanputation level and thosa at

ali the higher levels together, except the one geometry scale, Geometric
Figures, produced its own unfque factor. DBecause not all poasible
oblique factor structures were examined, this analysis does not give

a dennivtive angwer to whether or not Bloom's hierarchy is exhited in
this data. It does indicate, though, that classifying mathematics teats
into those tapping two factors {(say, computation and problem-solving)

is whrrsnted.

16
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Results Using LISREL 1V.
Maximum 1ikelihood fector unalytic procedursn are used in order to

obtain initial values for the parameters required in the LISREL 1V
computer program. (We note that a new version of the program, LISREL V,
produces its own initinl values given one initial estimate.)

This cosputer program provides the analysis for a structural
equntion model that is used to specify explicitely the bohav;or cf.
the NLSMA mathematics mcales related to a cumulative hierarchical
ordering of four cognitive levela. JGreskog int;!roduced & very genernl
rodel in 1973. The program description of the specificaticn, estimation,
and testing of the model with illustrations from socisl science research
ja given in Joreskog (1977).

The estimaten obtained are based on the method of maximum 1likelihood.
Models are examined containing directly cbserved varisbles or uncbserved
hypothetical construct variables. Latant voriablu‘ are assumed to be
related to other observed variebles end to each other.

The general model for which LISFEL IV var designed ia described by
the following matrix equu'tianax

‘

7) y n_A’t T
(8) . ‘ x qut + 8

whero A,J’ are coefficiont matrices; l( . ‘ropreaent independont and
dependant ‘latent variables, respectively; & is a matrix of error terws;
x, y represent independent and dependent observed variables, respestively,
with correaponding matricea 2! error tor-.e € and S . _A_’ ond _A’
contain regression coefficienta of y on D( and of ©on £ , respectively.
An cnatimnted covariance matrix is computed whose elexmenta are functions
of eight parameter matrices -- _A_’, -Ax' 0. P. end the covariance
matrices of {. ‘. &, and ‘.

. The program allowa for both errors in the linear equations, including
specification errors and disturbance terms, and errcrs in the obaerved
varinbles, including measurement errors and observationsl errors.

The profram yields eatimates of tha residusl covariance matrix and

Kl
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and measurement error covariance matrix as well se estimatea of the
causal effects fros the structural equations, provided sll the parameters
in the model are identified.

We use & special case of the atructural equation model where the
cbaerved mathematics acales are represented by dependent variables
and our hypothesized cognitive levels are represented by four latent
independent variables. The structural equation model (6) then reduces to

@™ 1. £X~

and the only vector of observed variables is y.

The methodological goal is to reproduce a covariance matrix whose
elements are funcions of the four parameter satricea: p. .
and the covariance matrices of & , and €. Our specisl case ia
{dentical to a factor analysis with the following differencés.

There is no restriction that there be fewer factors than varisbles or
that the covariance matrix of the residuals be diagonal. The only
requirement is that the covariance matrix of dependent observed
variables be nonsingulsr and that the model be identified.

In the identification of the parsmeters, the sssumption is sade
that the distributiona of the observed varisbles sre described by their
woments of first and second order, That is, the inforsation in moments
of higher order is ignored. This assumption is valid if the distributions
are multivariate normal,

In the estimation snd testing of the model, it is assumed that the
distributions.of the observed variables are described by a mean vector
and covariance matrix. The problem is to fit the covariance matrix
imposed by the model to the sample covariance matrix. In the process,
maximum likelihood estimates emergei such entinates are efficient for
largs sampls sizes. A test of the model is made using the chi-square

g atstistic under the sssumptions of. sultidimensional norsality and large
sample sizes.

For the grnde 5 semple, A romparison is made of how well two models
fit the observed correlation matrix of the NLSMA mathematics scales.
The first model includes the four cognitive levels but does not contain

~f.
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the theoretical cumulative hierarchy. That §s, sll pessible paths
betwcen the cognitive levnls sre included. The zscond model ie the
onme as the first but is restricted to oniy includs the cumulative
hiernrchy. 1n both models, one parameter from each mathematics scale
at a given cognitive level is restricted to equal one in order to
assess the relative effects of each scale at that level, Chi-square
statistics for both models are given. A large decrease in the chi-
nquare statistic compared to a small change in the degrees of frecdom
indicates an improvement in the model. ’ That 15, there is Ssupportive
evidence that Bloom's cumulstive hierarchical structure does exist

in the empirioal datsa.

Because of the stratified cluster sampling procedure used by the
BLSMA investigators, thess chi-squere statistics are known to ba too
1nrge. The critical issue is not the fit, however; the critical isoue
is the difference in chi-square statistics. ’

Figures 8 and G show the LISREL results for the Grade 5 sample.
Model 1 is the model without the hierarchy and model 2 is the model with
the hierarchy. Model 2 was unidentified without fixing the velue of
the disturbance term € 8° In order to compare these two models,
model 1 yas re-run restricting this estimate to the value 0.23 that
hnd been obtained when it was allowed to be Iree. This did not change
sny of the estimates fiom model 1 and allowed model 2 to be identified
by using this sane value for € .. The chi-square statistic dropped from
-x 219 = 192.94 to 1215 « 39.43 indicating a better mcdel vith Bloom's
cumulative hiersrchy.

Becsuse of the large sample size, the probability value ssaociated
with the model including Bloom's structure is not statisticelly significant
eveh though the residual differences are small indicating s good practical
fit, The ssmplirg sethod slsc implies that the probability value should
also be higher giving an even better fit.
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CONCLUSIONS

Analycis of the means for the Grade 5 sample are limited hacauce of

the differencos in the muabers of items in each ncnle and becnuse of the

low relinbilitina. These low revliabilities due moutly to the smnld
number of items in each scale contribute to the large error terms in
the path analyais of this data. However, even x'th the large error
terms, Bloom's taxonomy is veskly supported in this n'm\lyulu when a

full model using both adjacent and non-adjacent paths is examined.

The factor annlysis produces one factor as Bloom's structure voui‘d
dictate, but when the four factors sccounting for the largest percentags
of variance are examined, we get a factor structure corresponding to
only two factors not four that could be nased computation and prohlem-
solving. Neither orthogonal nor oblique rotations ylelded the desired
factor structure. However, because ar; particular oblique factor
structure moy be difficult to find, the factor analysis here is
inconclusive. On the other hand, the analysis using the computer
progras LISRFL IV, that does account for large error components and
large sample sizes, does cupport‘, Bloom's cusulative hierarchy. (We note
that in the other grade levele ( 8,11, and 12) examined btut not reported
Lut not: reported 1n§ this paper, the snalyses using LISREL all gave results
supporting Bloom's hierarchy, whereas the path analyses and factor

analyses were not conclueive.)
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APFENDIX A

Reviaw of the Litarature on Hisrarchiea of learning

s
In this section we review some of the atudies that have, {n the

last two decades, tried to validate learning hisrsrchiea. Two types of
otudies enrge.' Firnt, especially in mathematics and science education
studiea, there are those that uee Gagné's model of constructing a
network of links between higher-order taske that depend on ths mastery
of a set of lover-order tasks. The validation techniques are baned

on analyzing dependencies along the 1inks. The second type of study
denls with validating Bloom's taxonowmy. In these studies various
atatistical techniques have been used to test whether a simplax structure
exists in the data. There are indications that modifications to the
original ordering and/or additionsl constructs sre needed to adequately
explain the results of ¢he Bloom taxonomy-type tests.

g Capie and Jones (1971) study a series of ratios derived from s
phi-correlation matrix to validats & Gagné model. They suggest that
the construction of a logical eequence is not becessary when all
behaviors considered relevant are measured and sach behavior psired
with all othera for analysais.

white (1973, 1974ia, 197Ub) discusses three major Gagn‘ {nvesti-
gations as well as several later studies following the Gagnk model.
He $dentifies several weaknesses in all the previoue studies including
the lack of a statistical test that takes into sccount srrors of
measurement, small sample sizes, use of only one Question per element,
delaye in teating, and imprecise specification of component elements.
Ths later studies propose ways of correcting thess vesknesses. They
eupport the later postulate of Gegrie (1968) that generalized {ntellectus}
ekills are learned hierarchically vhereas verbalized knovledge is not.
The later studies also illustrste a statistical test developed by
Vhite and Clark (1973) for calculating the critical value of the
maximus puwber that could occur in the crucial cell (number of mubjects
vho snswer .correctly higher-ordar tasks but not lower-order tasks)
for particuler probsbilities undsr the hypothestis that the connection
between the two elements is hierarchical.
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Kropp and Stoker (1966) offer the first major validation study of
Rloom's hierarchy. They develop taxonomy-type tests with equal numbars

of items for each class. A parison of for each claes nhows

that higher means occur in tne lower levels, i{n genaral, ove_} four
oubject areas. Thelr eimplex analyaie gives some support f(fr 8 cumula-
tive hierarchical structure though they note prublems in {nterpreting
the category ‘Knowledge' and have some reverasls in the ordering of

the categories 'Synthesis' and ‘Evalustion.! g/

Madaus, Woods, and Nuttall (1973) resnalyze a subsat of the Kropp
and Stoker date with s causal model using sultiple regreasion procedures.
They alao compute a general wantsl sbility factor ("g"—f)ctor) using
principal components analysie on one standardized tuata They find
many indirect links that would invalidate the nsaumd hierarchy. All
but one of these disappear, however, upon adding the “g'-factor. They
alno report a decline in the sagnitude of direct 1inks as processes
progreas from simple to more complax behaviors.

Seddon (1978) susmarized many of the previous Bloom validation
studiea in terms of educaticnal and psychological isevea. The results
he studies are inconsistent. He questions the correlational properties
of composite scores used in meny of these atudiea end suggeats they
could be avoided using factor anslysis or smallest space snnlysis on
the correlation matrix of individusl items.

Miller (1979) uses path analysis, stepwise regression, cossonality
analysia and factor analysis in reanslyzing the Krupp and $toker data.
A1l methods reject s simpls hierarchical structure. The factor anslysis
and commonality analysia ouggest a two~factor wodel. The path snalysis
suggests a branching in ths order of the levels though the ordering of
Xnowledge -- Comprehension -- Applicstion ~ Analysis remains in the
original order.

f111 and McOav {1981) use LISREL to reanslyze s modified version
of the Kropp and Stoker dats. Their results support the simplax
assugption when the cstegory Knovledge is delsted.

Theae previous studies yield connicun‘ results. They all,
however, reiterate a need for more x-nurch into validating leernirg
hierarchies and improvement of the statistical methodology needed to
adequately interpret the resulta.

)
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