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Methods of Validating Learning Hierarchies
With Applications to Mnthematice Learning

by

Judith H. Ekstrand

BACKGROUND AND runrosc OF THE STUDY

Mathematics testn yield direct meaeures of students' learning in

mathemntics. They, elm, reflect unmeaeurable cognitive procesres,

that in intellectual abilities ouch as remembering facts, analysing

components, integrating conceptn, making ansumptionn, evaluating

statements or nolutionn. Insthin ntudy, the relationship between

mathematic° tests end the theoretical learning process is explored

unIng alterantive statistical methods and models to mnthemntically

dencribe relationnhipo between obnerved test ncoren nnd hypotheticnl

construct° which we nnnume contribute to the obeelved tent scores.

The tentresultn used ale.reaulte of the mathemntice eenlen (ie.

subtestn) from the National Longitudinal Study of Mothemnficn1

Abilities (NLSMA, 196?-1967) for grades 5, 8, 11, nnd 12./

The tent itemn were constructed following a nnmulative hiernrchicnl

structure tinned on the firnt four categories in Ploom's Taxonomy of

Educntionnl Objectives for the Cognitive Domain (Bloom et al, 1956).

Bloom's clansificntion nyntem builde from simple behaviors to complex

behnvioni where pimple behaviors nre integrated with other simple

rnper prenented at the Annunl Meeting of the
American Educationnl Research Association.
Mew York City, March 1982

1whnvinrn to
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Scum n more complex one.
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A rpprenentn the behavior that is required to euccensfully ennwer

n tent-item requiring only Computntion. That, in addition to another

behavior, B, is required to succeed at a Comprehension -level item.

Then n hlrhrr level in build from the previous level plus one ndditionnl

behavior In n model that in ndditive, rnther than, say multiplicative.

3



( Comprehension

Data that correspond to this cumulative structure have a correlation

matrix that ex:abaci Guttman's (1954) simplex structure where adjacent

categories are more highly correlated than non-adjacent categories.

Thus, a perfect simplex has a correlation matrix such that the largest

values lie along the firnt off-diagonal. The next largest values lie

along the adjacent diagonals. The eminent values will then lie in the

upper-right and lower-left corners of the matrix.

A similar hierarchy is found in mathematics learning. Except for

some basic definitions and assumptions, mathematios to built upon

other prerequisite mathematics regardless of the content area or

grade level. It seems natural, then, to believe that in order to

learn a particular mathematical concept or fact, a student needs to

know all of the concepts below that one in the hierarchy. Thus,

lower levels of mathematics are the building blocks of higher levels

of mathematics. It is this idea that is the genesis of a hierarchy of

learning in mathematics. Se. Appendix A for a review of the literature.

Previous attempts to validate Bloom's cumulative hierarchy of

learning in sevbral different subject areas have been inconclusive

(Seddon, 1978). There is supportive evidence, however, particularly

from the simplex analysis of Kropp and Stoker (1966), the multiple

regression analysis of Mndaus, Woods, and Nuttall (1973), and most

recently the reanalysis by Hill and ?Way (1981) of the Kropp and

Stoker data using areskog's LISREL (1978) program.

Mathematics scales consisting of groups of similar items from

one teat battery are classified into one of the above cognitive levels.

In order to explore the validity of Bloom's cumulative hierarchy

path analysis, factor analysis, and the computer program LISREL IV

are used to describe the relationships between these four cognitive

levels.

The path analysis model assumes there /should be direct links between

mathematics males from adjacent,,cognitve levels and no direct links

from non-adjacent levels. The possible paths between the four cognitive

Isiah, are illustrated below where adjacent path, are shown as solid

arrows and non-adjacent paths as broken arrows. In this model, the

mathematics test scores equal the underlying cognitive levels.

( Computation 4 "SI "via
(Application) ---f

3

Analynin)

Figure 1. Path diegraa illustrating adjacent and non-adjacent paths.

Path coefficients are estimated in linear structural equation

models d d from relations among the observed mathematics scales in

terms of cause and effect variables and their indicators. Here, the

scales are grouped into those scales classified at the atom category for

a particular grade level.

Factor analysis investigates the theoretical latent structure that

could have produced the observed correlation matrix of the mathematics

monies. Sere, it is the latent factor structure, in contrast to the

relationships between observed test scores, that is manipulated.

Assuming we have four tests -- one from each of the four cognitive

levels under consideration -- a simplex structure in the correlation

matrix or these tests would be represented in the factor structure

shown below.

Test:
Factor: r F

2

2

73

F3

0 0

O

Figure ?. Factor structure of four testa whose correlation matrix

exhibits a simplex structure.

For this study, there are usually 1 tests categorized at each

cognitive level giving multiple indicators of each level. Bloom's
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sti-..cture implies that thone teats that were classified under the same

cognitive level should exhibit the same factor structure. In this ;Ince,

certain mathematics tests gn together. We then look for a factor structure

that exemplifies the classifications of the tests and the cumulative

ordering.

In another factor analytic approach, the computer program LISREL IV

integrates linear structural equation models involving observed test

scores with latent variables corresponding to the four cognitive levels.

Again, we investigate how well the theoretical simplex structure exists

in the observed data. However, in this analysis, the relationships

between the four cognitive levels from Bloom's hierarchy an latent

vnrinbles and the observed mnthematics test results are separated and

made explicit. Furthermore, two models are specified and tested for

their goodneon of fit using a chi-square statistic. The first model

epecifies the test clnssifications according to cognitive level but

does not limit the relationships between cognitive levels to Bloom's

cumulative ordering. In this model there is complete symmetry between

the four cognitive levels in that each one is connected to all of the

others. Thin first model is illustrated in Figure j.

(Computation)

(Comprehenoion)

yi = observed

ei = error in

71 f °1

e2

-----___, e3

D. e4

test I (i -1, , 4)

test i , 4)

Figure 3. Hypothetical LISREL model allowing all possible paths between

the latent variables.
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The first model in compared to n second model that differn from the

first in that there in Bloom's hierarchical ordering in the four latent

varinblen.

---,(COMpatit i0I1) e

4'2-) `Comprehension

e3

(Analysis) t 4-- et.

= observed test i (i=1, , 4)

ei = error in tent i (i=1, , 4)

44 error in latent variable i (i. 1, ; 4)

Figure 4. Hypotheti 1 LISREL model showing cumulntive hierarchy in

the latent voriableo.

By exploring the ap Acation of there threk, various structural

equation entimation techniques to the NLSMA date, ench adds to our

understanding of whether Bloom's cumulative
hierarchical ordering is

exhibited in the data. The important question in not whether Bloom's

hierarchy gives the only valid explanation of the test results, but

rather in exploring the validity of Bloom's hierarchy how do these

stntistical methods contribute to our understanding of the te6t results.

THE NMI% DATA

The Nationnl Longitudinal Study of
Mathemeticn1 Abilities (NLSMA)

began in 1962 to collect data on over 112,000 students from 1,500

nchooln from 40 states in the United States. Data was collected for

5 years on students in grndeo four through twelve. Thteeontinuen to

be the largest such study of
mathematical achievement in this country.

Three populations of students were studied. The figure below

and the necompenying quotation from
NLSMA describes the design of NLSMA.
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X - Poputotion

Y- Poputotion

Z - Populollon
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She figure above illustrates the design of $IZPA. A large population
of students at each of three grade levels was tested in the fall and spring

of each year, beginning with grades 4, 7, and 10 in the fall, 1962. The

5-Population and V-Population vice tested for five years. the g-PopulatIon

vas tested for three years and then followed with mmitionneires after grad-

uating from high school. The design stressed three restores: (1) the long-

term study of a group of students - up to the yeers,,(2) study of the seem

grade level at different times - for instance, grades.? in 1962-6h for the

T-Populstion and again in l96)-67 for the X-Population, and (3) extensive
data ea mathematics achievement for grades 16 through 12.

Figure 5. The design of NLSNA. (Reprinted from FOREWORD to all ifLSMS

Reports.)

Mathematical achievement was characterized in a matrix of three

content areas that students typically covered in the fourth through

twelfth grade curricula and four cognitive level oategoriee taken from

Bloom's taxonomy.

Number Systeme Geometry Algebra

Computation

Comprehension

Application

Analysis

Figure 6. NLSMA model for mathematics; achievement.

Since the goal of the peoent study ie to investigate the valility

of the imponed taxonomic structure in the mathematics scales, only

those populations that include at least one scale from each cognitive

level category ars considered. From the thirteen possible grades

spread uver the NLSMA X-, 1 -, and
Z-Populations, four anaples were found

that met this criteria:
5-Population, Grade 5 and Grade 81 7-Population,

Grade 11 (group 1)1 and Z-Population,
Grade 12 (gro4 2). Group 1 in

the grade 11 7-Population
includes all students who had completed at

leant three years of college preparatory
mathematics by the end of that

year. Approximately 45 percent of the 7-Population, Grade 11 are in

group 1. Group 2 in .the grade 12 Z-Population
includes all etudente who

had not had at least one mathematics course
more advanced than geometry.

Approximately 30 percent of the Z-Population,
Grade 12 are in group 2.

In general, the etudente were above average in mental ability,

mathematics achievment, and socio- economic statue. They came from

schools from all five geographio regions
in the United Staten -- North

Atlantio, Southeast, Midwest, Great Plains and Rocky Mountains, and

Far Meet. Statistical information is presented for a 5 percent

atretified (by geography) random /maple
of each of the entire X-, 7-,

and Z-Populations. This sampling procedure yields large sample sizes

in the four samples under investigation --
1776 etndente in the !-Population

Grade 5g 1130 etudente in the
X-Population Grade 8; 515 students in the

group 1 7-Population Grade 11;
and 205 students in the group 2 Z-Population

Grade 12.

In this paper, we will examine the results for the grade 5 population

only. Descriptive statistics for this sample are given in Table 1 and

Table 2. Complete'test batteries and item statistics for each scale

are found in NLSNA Reporta Noe. 1 - 6 (Wilson, Cahen, Begle1968).

Correlation matrices on all of the NUNN scales are found in MLSMA

Report No. 33 (Wilson, Begle, 1972).



8

TAM.% 1

X-10putation Mathematics Scales for Spring 10hh, Oracle 5,
Simple Si7en Range From 1320 - 1330.

Cognitive Level Nnth Scale of Items Allowed
Alp has,

Hensurement

Computation X301 - Flnetions 3 10 112 min. 0.81 1.11

x3o2 lucimals 2 1 7 min. 0.76 1.03

X303 - Division Whole
Numbers 2 8 15 min. 0.82 1.08

Comprehension X3011 - Decimal Notation 8 0.54 1.211

x305 - Translation 7 0.6') 1.06

X306 - 00;etric Mules h 0.53 0.73

Application X301 - Working With

Numbers 12 20 min. 0.68 1.49

Analysis X3011 - Five buts 19 15 min. 0" 1.70

lf time information in not given, then the scale ie part of a larger timed

section.

Alpha in an estimate of the internal consistency reliability of the scale.

10

TABLE P

Means and Standard Deviations for X-Fspulation mathematica Scales,
Spring Io6h, Grade 5, g-1776.

Cognitive bevel !hth Seale than
Otandurd Percentile
Deviation Sean

Computation X301 - Froctionn 3 5.97 3.07 o.60

x302 - Decimals 2

x303 - Division Whole

3.20 2.11 o.46

Numbers 2 4.83 2.5h o.60

Comprehension X30h - Decimal Notation 3.06 1.83 0.48

x305 - Translation 4.82 1.87 0.67

Application

X306 - Geometric Figures

nar - Working With

2.57 1.07 0.613

Numbers 5.78 2.59 0.101

Analysis X308 - Five Dots 10.71; h.77 0.25

From Table 1 we that the small number of items in each scale

yield lens reliable scale ccoreo. Alpo, there are not equal numbers of

items in each scale. There are not equal numbers of scales for each

cognitive level category. In general, over the entire 111.Slitt populntion,

there are more acelea at the lover cognitive level categories in the

lower grades and more scales at the higher cognitive level categories

in the higher grnden corresponding to the more abstract quality of the

materiel being taught at the higher grades.

From Table 2 we note that the percentile mane generally decrease

from lower to higher cognitive level
category which in consistent with

taxonomic structure.

11



RESULTS FOR X-POPULATION, GRADE...2

10

Re!sulto Using Path. Analysis.

Using the NLSMOV classification of
the mathematice scales, a path

diagram is used to display the
pattern and strength of the causal

relations between scale scores from adjacent cognitive levels. The

variabilities of the independent scales at the lowest level, Computation,

are all assumed determined by causes outside the model. The variabilities

of the dependent scales nt the other three levels are explained, by the

previous independent variablea or by other dependent variablee.

Each path diagram represents a model
that consists of a net of

equations each of which includes a disturbance term that summarizes

the effect on the structure of the system of both me)11urement error

for that equation and all other unknown variables. Each model is

assumed to represent linear relationships
between the variables end

the disturbance terms where the disturbances are independent of each

other and of nll variables that precede them in the given causal ordering.

tic
e6

yi=Fractiona yeecimale, y3rDivision.of Whole Numbers,

yv.Decimal Notation, y5=Translation, yeGeometric Figures,

y2=Working With Numbers, y8.Five Dote.

Figure 7. Path dingrem in a mode] using tents from Number Systems

and Geometry, Oracle 2, N.1776.

11

Path coefficients, Pi,, where pij represents the path from tent yj

to tint yi are given in Figure 7 above. This diagram represents the

following, five regression equations.

Y4 = P41 Y1 * P42 Y2 + P43 Y3 + e4

Y5 = P51 Yl 4 P9.7 72 P53 Y3 e5

(1) 76 " 61 YI 4 P6a Y2 4 P63 Y3 4 e6

Y7 = P74 Y4 4 P75 Y5 4 P76 Y6 4 e7

y8 = r87 y7 e8

Relationships between the regreneed variables y1, y2, y3 may be presented

in a correlation matrix as shown in Table 3.

TAME 3

Correlation Matrix For Computation Scales, Grade 5.

Teat: 7 2 73

71 1,00

72 0.49 1.00

y3 0.59 0.45 1.00

Since the correlations are computed on standardized vnriablen, the

regression coefficients are identical to the path coefficients obtained

from solving a aeries of linear atructurarequatione. Doing the model

described in Figure 7, we obtain estimates for the path coefficients as

solutions of three systems of equations. From the equatlenn

(2)

114 Phl Ph;, 112 1`h3 r13

phi r12 ph2 Ph3 r23

134 Ph l r 13 Php p151

we obtalr tetimsten of P41' P42' phi; from the eqoatlone .

I"It,



(3)

(4)

- p51
6 P52 rP1 P53 r13

P51 r1P' 6 P5P
p53 rr9

p r p r, 1 p
15 51 11 id

ve obtain estimate,: of P51, p62, Prilt from the equations

rio, 1.61 Ph:. p63,r13

rPt. P61 r12 1'6P
' p63 rtn

113 '
1'6^ r:1 P61

12

we obtain estimates of r n
'61' '62' p63.

In each system of eqvntions

there are exactly three equations in three unknowns, and thi quatione

are independent, so that these systems are identified.

Ae a consequence of the last two regression equations of equation (1)

we obtain the equation°

(5)

rii P O; r41 4 P15 r51 pN, r61

12/ P 14 r42 PI5 r52 P16 r62

r3.1 - r43 4 n75 r,..3 p74 rA3

r.51 p74 4 p15 r54 4 p76 r64

r5f P14 r45 P/5 P76 r65

r(.1 ro rv. pp, pl6

Here we have a.x equations in three unknowns, so that the °Warn is

overidentified. Solving this system algebraically cannot give unique

estimates. However, the regression procedure does give unique regres-

sion coefficients which can be used as unbiased estimates for the path

coefficients. Similarly, the last regression equation in (1) correspondo

to an overidentified system of seven equations in one unknown.

!
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All but two of the mathematics scale° from the Grade 5 onmple were

originally classified under the content area Number Systems. The other

two acalen were classified under Geometry. By collapsing across these

two content areas, and using ordinary least squares regression, we obtain

the estimates given in Figure 7. Estimates for the disturbance terms

were computed using-FT-7 for each regression.

For this sample, we note only one path coefficient (p63 t-0.05) that

in close to zero. The mathematic.) scale yeGeometric Figures consists

of four multiple-choice questions dealing with naming figures that

reprenent A square, circle, rectangle, and triangle. Working With

Fractions (y1) and Decimals (y2) may be taught using geometric figures

(pie charts, segmented rectangles, etc.) whereas Division of Whole

Numbers (y3) typically is not illustrated using geometric figures which

may explain the difference in the strengths of them relationships.

None of the path coefficients is very large, which we would expect

given the large sample size. We note, howevar, that the strength of

the path coefficients generally increase as we go from low to high

cognitive levels. Also, the disturbance terms are large and are

inversely proportional to the number of items in the mathematics scale.

That is, the largest disturbance terms correspond to those scales with

the fewone numbers of items.

'Because collapsing the mathematics scales across the4two content

areas may not be consistent with Bloom's taxonomic structure, similar

regression were carried out using only the scales from Num'tlr System:1.

The path coefficients obtained are essentially the same.

Regressions were also completed on Ude sample for the ill model,

that is, including all of the non-adjacent paths. The non-adjacent paths

were all smaller then the adjacent paths; however they were not all zero.

The large error terms in Figure 7,compared to the values of the

path coefficients themselves. preclude any strong interpretation of

the restate) of this analysis. Thus we turn to factor analytic techniques

to aid us in our understanding of these results.

Renulta Using Factor Analysis.

Principal components annlynis was used as an exploratory technique

to justify using models relating the four underlying hypothetical

15
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cognitive levels of Bloom's Taxonomy as unobserved latent variables to

the oboerved mathematics male scores. First, corresponding eigenvalues

greater than one were extracted. This procedure produced one principal

component that accounted for approxidiately 53% of the total variance.

Because the mathematics scales were categorized' into one of four

cognitive levels, the first four principal components were aleo examined

and rotated hoping to find a structure consistent with the four

hypothesized cognitive levels. The first four principal component&

accounted for npproximately 8196 of the,total variance.

Bloom's violative hierarchy implies that one principal component

should be sufficient to account for a large percentage of the total

variance. Principal components analysis is also used to check the

structure of each group of teats in a given cognitive level to determines

in any particular scale loads very differently than all the others in

that category. (In that case, the results would indicate a misclassifi-

cation of thnt scale.) For this sample, all of the tests at a particular

cognitive level had similar factor loadings.

Since principal components are orthogonal, and we expect an oblique

factor structure, we do not expect to find a structure exemplifying

Bloom's hierarchical structure using principal components. We do,

however, want to account for as much of the total variance as possible.

Therefore, principal components is used to determine the values of the

first four eigenvaluee in order to specify four factors in a classical

factor analysis that will allow oblique factors.

Both orthogonal and oblique rotations are examined. The potentially

low relinbilitien of the acales limit the strength of the expected

structure. The only interpretable structure that was found wan to

separate the tests into those at the Computation level and those at

all the higher levels together, except the one geometry scale, Geometric

Figures, produced its own untque factor. Because not all possible

oblique factor structures were examined, this analysis does not give

a definitive answer to whether or not Bloom's hierarchy is exhited in

this data. It does indicate, though, that classifying mathematics teats

into those tapping two factors (say, computation and problem-solving)

is warranted.

16
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Reoults Doing LISREL IV.

Maximum likelihood factor analytic proceduren are used in order to

obtain initial values for the parameters required in the LISRFI. IV

computer program. (We note that a new version of the program, LISRiL V,

produces ita own initial values given one initial estimate.)

This computer program provides the analysis for a structural

equation model that is used to specify explicitely the behavior of

the tifSHA mathematics scales related to a cumulative hierarchical

ordering of four cognitive levels. areskog introduced very general

model in 1973. The program description of the specification, estimation,

and tenting of the model with illustrations from social science research

ie given in .1Oreskog (1977).

The estimated obtained are based on the method of maximum likelihood.

Models are examined containing directly observed variables or unobserved

hypothetical construct variables. Latent variables'are assumed to be

related to other observed variables end to each other.

Thy general model for which LISREL IV was designed is described by

the following matrix equations:

(6) M. r( 4 4
(7) Y A e
(8) . x S

whore) Arr are coefficient matrices; , ( represent independent and

dependent' atent variables, respectively; y is a matrix of error terms;

x, y represent independent and dependent observed variables, respectively,

with corresponding matrices of error terms C. and S. and Jix

contain regression coefficients of y on I and of v on k, respectively.

An entimnted covariance matrix is computed whose elements are functions

of eight parameter matrices -- A , jkx, P, and the covariance

matrices of and If

The program allowe for both errors in the linear equations, including

specification errors and disturbance terms, and errors in the observed

vnrinblee, including measurement errors end observational errors.

The program yields estimates of the residual covariance matrix and
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and measurement error covariance matrix as well as estimates of the

causal effects from the structural equations, provided all the parameters

in the model are identified.

We use a special case of the structural
equation model where the

observed mathematics scales are represented by dependent variables

and our hypothesized cognitive levels are represented by four latent

independent variables. The structural equation model (6) then reduces to

(7) idT-C

and the only vector of observed variables is y.

The methodological goal is to reproduce a covariance matrix whose

elements are tuncionn of the four parameter matrices: /1,13,

and the covariance matrices of y , and di. Our special case is

identical to a factor analysis with the following differences.

There is no restriction that there be
fewer factors than variables or

that the covariance matrix of the residuals 'e diagonal. The only

requirement ie that the covariance matrix of dependent observed

variables be nonsingular and that the model be identified.

In the identification of the parameters, the assumption is slide

that the distributions of the
observed variables are described by their

moments of first and second order. That is, the information in moments

of higher order is ignored. This assumption is valid if the distributions

are multivariate normal.

In the estimation and testing of the model, it is assumed that the

distributionsof the observed variables are described by a mean vector

and covariance matrix. The problem is to fit the covariance matrix

imposed by the model to the sample covariance matrix. In the process,

maximum likelihood estimates emerge; such estimates are efficient for

large sample sizes. A test of the model is made using the chi -square

-*statistic under the assumptions of
multidimensional normality and large

sample sizes.

For the grade 5 eample, a comparison is made of how well two models

fit the observed correlation
matrix of the MISMA mathematics scales.

,The first model includes the four
cognitive levels but does not contain

1s
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the theoretical cumulative hierarchy. That is, all possible paths

between the cognitive levels are included. The second model is the

ones as the first but is restricted to only include the cumulative

hierarchy. In both models, one parameter from each mathematics seals

at n given cognitive level is restricted to equal one in order to

assess the relative effects of each scale at that level. Chi- equare

statistics for both models are given. A large decrease in the chi-

nquere statistic compared to a small change in the degrees of freedom

indicates an improvement in the model. That in, there is supportive

evidence that Bloom's cumulative hierarchical structure does exist

in the empirioal data.

Because of the stratified cluster sampling procedure used by the

namA investigators, these chi - square statistics are known to be too

large. The critical issue is not the fit, however; the critical issue

is the difference in chi-square stntistice.

Figures 8 and 9 show the LISREL results for the Grade 5 sample.

Model 1 is the model without the hierarchy and model 2 is the model with

the hierarchy, Model 2 was unidentified without fixing the value of

the disturbance term e 8. In order to compare these two models,

model 1 was re-run restricting this estimate to the value 0.23 thnt

had been obtained when it was allowed to be free. This did not change

any of the estimates from model 1 and allowed model 2 to be identified

by using this same value for 418. The chi-square statistic dropped from

1

192.94 to r18 e 39.43 indicating a better model with Bloom's

cumulative hierarchy. .

Because of the large simple size, the probability value associated

id% the model including Bloom's structure is not statistically significant

even though the residual differences are smell indicating a good practical

fit. The empties method also implies that the probability value should

also be higher giving en even better fit.

2
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Figure 8. X-Poputaticr, trade 5, N - 1776, Mndel 1,
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CONCLUSIONS

Analysis of the means for the Grade 5 sample are limited because of

the differences in the'numbers of items in each scale and because of the

low relinbilitina. Theo° low reliabilities due mostly to the small

number of items in each scale contribute to the large error terms in

the path analyaie of this data. However, even w'th the large error

terse, Bloom's taxonomy is weekly supported in this analysis when a

full model using both adjacent and non-adjacent paths is examined.

The factor analysis produces one factor as Bloom's structure would

dictate, but when the four factors accounting for the largest percentage

of variance are examined, we get a factor structure correspondinz to

only two factors not four that could be named computation and prohlem-

solving. Neither orthogonal nor oblique rotations yielded the desired

factor structure. However, because a* particular oblique factor

structure may be difficult to find, the factor analysis here is

inconclusive. On the other hand, the analysis tieing the computer

progrns LISRFI IV, that dose account for large error components and -

large sample sizes, doss support Bloom's cumulative hierarchy. (We note

that in the other grade levels ( 8,11, and 12) examined but not reported

but not reported in this paper, the analyses using LISREL all gave results

supporting Bloom's hierarchy, whereas the path analyses and factor

analyses were not conclusive.)

0
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APPENDIX A

Review of the Literature on iierarchies of Learning

In this section we review some of the studies that have, in the

last two decades, tried to validate learning hierarchies. Two typea of

studies emerge. Firnt, especially in mathematics and science education

studies, there are those that use Gagne's model of constructing a

network of links between higher-order tasks that depend on the mastery

of a set of lower-order teat,.
The validation technique's are boned

on analyzing dependencies along the links. The second type of study

deals with validating Bloom's taxonomy. In these etudiea various

atntieticnl techniques hnve been used to teat whether a simplex structure

exists in the data. There are indications that modifications to the

original ordering and/or additional constructs are needed to adequately

explain the results of the Bloom taxonomy-type tests.

'
Capie and Jones (1971) study a series of ratios derived from s

phi - correlation matrix to validate a Gagne model. They suggest that

the construction of a logical sequence is not necessary when all

behaviors considered relevant are measured and each behavior paired

with all others for analysis.

Whits (1973, 1974a, 1974b) discusses three, mayor Gagne investi-

gations as well as several later studied following the Gegn$ model.

Re identifies several weaknesses in all the previous studies including

the lack of a statistical teat that takes into account errors of

measurement, small sample sizes, use of only one question per element,

delays in tenting, and imprecise specification of component elements.

The later studies propose ways of correcting theme weaknesses. They

support the later postulate of Gagne (1968) that generalized intellectual

skills are learned hierarchically whereas
verbalized knowledge is not.

The later studies also illustrate a statistical teat developed by

White and Clark (1973) for calculating the critical value of the

maximum number that could occur in the crucial cell (number of subjects

who answer.correctly higher-order teaks but not lower-order tasks)

for particulir probabilities under
the hypothesis that the connection

between the two elements is hierarchical.
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Kropp and Stoker (1966) offer the first major validation study of

Bloom's hierarchy. They develop taxonomy-type testa with equal numbers

of items for each class. A comparison of means for each class shows

that higher means occur in the lower levels, in general, over four

subject . Their eimplex anslysiS gives some suppOrt for a cumula-

tive hierarchical structure though they note problems in interpreting

the category 'Knowledge' and have some reversals in the ordering of

the categories 'Synthesis' and 'Evaluation.'

Sedans, Woods, and Nuttall (1973) reanalyze a subset of the Kropp

and Stoker date with a anneal model using multiple regression procedures.

They also compute a general mental ability factor ( "g"-factor) using

principal components analysis on one standardized test. They find

many indirect links that would invalidate the assumed hierarchy. All

but one of these disappear, however, upon adding the "g"- factor. They

also report a decline in the magnitude of direct links ea processes

progress from simple to more complex behaviors.

Seddon (1978) summarized many of the previous Bloom validation

studies in terms of educational and psychological issues. The result.

he studies are inconsistent. Re questions the correlational properties

of composite scores used in many of these studies and suggests they

could be avoided using factor analysis or smallest space analysis on

the correlation matrix of individual items.

Miller (1979) uses path analysis, stepwise regression, commonality

analysis and factor analysis in reanalyzing the Kropp and Stoker data.

All methods reject simple hierarchical structure. The factor analysis

and commonality analysis suggest a two-factor model. The path analysis

nuggeate a branching in the order of the levels though the ordering of

Knowledge -- Cosprohonsion -- Application -- Analysie remains in the

original order.

Bill and McGw (1981) use LISREL to reanalyze a modified version

of the Kropp and Stoker data. Their results support the simplex

assumption when the category Knowledge is deleted.

These previous studies yield conflicting results. They all,

however, reiterate a need for more research into validating learning

hierarchies and improvement of the statistical methodology needed to

adequately interpret the results.

2 1
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