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I. INTRODUCTION

The National Longitudinal. Study (NL$) of the High School Class of 1972 is

a large-scale sample survey sponsored. by the National Center ibt Education

Statistics (NOES). The sample design for. survey can be described as a

deeply'stratified}yo7stage design with 60. final strata. The original design

called foi. 1,260 schools and 18 students per school (size permitting)'. A

total Of.4069 schools and 16,68 student7participated in the base-year

survey, which was conducted by Edicational Testing Service. An additional'

follow-up of nonregpon4ent schools, plus additional backup schools and augmen-

'tation A the sample for the first folloW-up.,, inCreased the number of partici-

pating schools to 1,318 and the totals student sample to 23,451. The numbersc.

of respondents to the first, second, third, and fourth follow-up questionnaires,

administered by the ResearCh Triangle Institute (RTI), were 21,350, 20,872

_(20-,092, and 18,630, respectivelky.

As suggested above, a large -amount ol'Ita has been collected for this

study. The types of statistics' required to address various research questions

Of interest range from simple descriptive totals and means to more complex

analytic statistics, such as regressio n coefficients, butthe ,problems of
,

drawing valid and relevant inferences, whichere common to all multistage

sample surveys, must be addressed in analyzing the NLS data. For complei

statistics; such as regression coefficients, there are no "pat" -solucCions to

these problems; however,.tbe need still exists for some gOod, even though

"imperfect'," techniques to approximate these statistics ando.their errors.

. Aside'from the various 'theoretical issues involving the validityfof

inferences from surveys, the basic problem of producing unbiased estimates of

regression parameters and estimates of the associated standaid errors has been

a partifularly thorny issue! in dealing with results from stratified multistage

sample designs such as-the one used in the NIS. Most of ,tHe available statis-.

tiC11,1 software packages [such as SPSS (Nie, et al., 1975), SAS (Bari, et al.,

1977), BMDP (Dixon, 1975), or OSIRIS (Rattenbury'and Eck, 1973;Ifistitute
. 4

fOrdOcial Research, 1973)4 treat the sample, as indeperidelt random.observitions,

ignoring the sample design. This approach is convenient'but theoretically

I

... .,
,

inappropriate: since it doe not account for unequal probabilities of Selection

or for effects of stratification and /or clustering. TheAppliCationof sampling" -.

'weights is possible through some software packages, allowingcorrect-estimates

v
.

- . ,,

.,
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of regression coefficients, but appropriate error variance estimates typically

are not,produced.4 In fact, it'is not possitile to-obtain explicit expressions

for variance esimates of complex estimators such as regression coefficients

within complex survey sample designs; however, various approximation procedures

are available.

The purpose of this report is to,review some appropriate available tech-
.

niques that may be useful in applying regression models to the NLS data. The_

following section providep a fr.amewprk for evaluation and an appraisal of some

alternate approaches within this framework. In Section III, a preferred

approach (combining the Horvitz-Thompson\4 estimator and Taylorized deviation)

is compared to,an Ordinary Leatt, Squares approach, through a-simulation proce-
,

dure using actual NLS data. The several results are summar Section IV.

Formulae underlying the preferred approach are provided separately in Appen- .

dixes A and B, and details of the development and use of a computer program to

implement the approach are provided In Appendixes C and D.
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II. ASSESSMENT OF. ALTERNATIVE TE1NIQUES

.

Survey research in the social sciences is often based on large complex

samples, from which inferences are made regarding the population under study. \'

The most,common practfte for drawing inferences about a univariate paiameten

is to (6- 0)/s(8) has approximatelythe Gaussian or Student's t dis-

tribution, where the statistic 0 is an estimateof the parameter e and s(6) is

an estimate of the, standard error of 6. Similarly, for a multivariate parameter

6, represented as a row vector, inference maybe based on a Hotelling's T

type statistic of theform (6 - 6)01(6))
-1

(6 - which is assumed to hiVe

a chi.-square or transformed F distribution in repeated samples, where V(6) is

an estimate if the variance-covariance matrix of 6.

The justification for such an approach'is based on the assumptiop that a

generalized centKal limit theorem applies to large complex probability samples

froefinitepopulations, David (1938), Madow (1945), and Hijek (1960) have

established such resulti 'for the mean of a simple random sample by letting the

population size increase at the same 'rate as the sample size. For survey

11
statisticians concerned with finite population inference, the regularity with

,which sampling distributions for properly standardized survey statistics can

be, expected to follow classiCal distributions continues to be one-of the most

important unanswekd queslions.

'The problem is further complicated in the case.of regtessionipdels in

the specification of 8 and the standa;Terror of 6, where is'a vector of

regression coefficients. A variety of models all intgrpr ations have been

suggested [e.g., Konijn (1962), Godaffibe and ThomiAon (191), Royall (1971),

Kish and Frankel (1974), Fuller (1974), and Folsom (1974)].

z

A. Overview and Notations

.1

For the NLS survey, schools were-stratified by several characteristics to
4

obtain 600 strata (Westat, 1972). Within each stratum, h, m
h

(mostly 2)

schools were seletted at random from the total of M
h
schools in the stratum.,

Within each scho?1, the ith school in the hth stratum), a random sample

of nhi (mostly 18) students from the Itotal of Nhi'students within school hi

were selected for survey.
A

F Although the discussion in this and suPsequent'sectionS is sometimes specifi

to the NLS survey design, theresults are generally. applicable.

ti
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Within this context, estimates are required; for example, consider an
.

'estithateoof the national total number of high school seniors who were in an
A .

.

academic curriculum. Let Xhi be.the estimated number of students with academic
.- . )

curriculum in the (hi)th schqol, h = 1, 2,0...', H and i = 1, 2, ..., mil:

If the sample of schools within each stratum is,stlected with equal.prob-

abilities and with replacement, thentht estimated totar,J, 'and anunbiased .

-- estithate of its variance, V(T
h
), are

and .

H gh mh A H mh

T= F X1,4 = Yh4

11
=1 m h itl h=1,0-1=1

M
A A h,A

-
.V(T) = mh (Yhi -1h) 2 /(mh

h =1

where Y = X M
hi ni h

/m
h

and
mh A

=. Yhi/Mh
i=1

f

1) (1.2)

If an approximAeesfimate of the size of schools (shi = size = total'

number of students in the (hi)th school) were known, then one could use a

biased atioestimator, T1, given by

mh
=

.

Z
hi

h=1 1=1

where Zhi T sh
121
./m s

+ h hi '

h .

and sh+ =
Z shi

.

i=1

Nog

-The estimator T
1,

which may be recognized as a Horvitz-Thompson (1952) estima-

tor, is an unbiased estimator of the total if the probability of selecting

a

A 6
(L3)

I

4 .
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the'(hi)th school is phi = shi/str+ on, each of mh

of Its variance is.given as

draws.

4..,. '4.

... ... . . H ' mh ...

VXT1) = I 'mh 1 -(Z . 20?/(mh
. .

h=1 i=1
. . , -..

where' 2
h

. 1 Z
hi

/m.
, n

rt, - i=1

O

An unbiased estimate

(1.4)

This appears to be ;..he'most common approach id many sample surveys. .7her

absence of bias in the estimatorTii.and the estimate of its.variance V(T'1) are

established .over repeated samples 'with the primary sampling units sele ted

with unequal probabilities and with replacement.. I.

While the prior disttssion has been directed to prOviding an example of

estimation within the 'NIS study, towardinti6ducing notation, it also has

illustrated the way in which-the sampl design or the cbnceptualization of all

possible samples affectsthe variance of the estimator based on only one of

.1 thesamples. The freedom, of survey designers to define the sampling distri-
.

butions has raised several fundamental issues regarding various statistical
0

estimates. A full discussion of these issues is not within the scope of this

report; how ver,the practical problem of selecting en appropriate estimator
If

and ap esti to of the variance of that estimator must still be addressed.

.The estimator chosen, for the current puri3ose- is the HOrvitz-Thompson r.

441
estimator. For sampling -with unequ'alvprobabilities, this estimator. is used

widely id practice and'has been found to'be an admissible estimate. The

Horviez-Thompsyn estimator is not the "best " - estimator in gli cases, but the

same can be saih of any other'escfi.mator. When probabilities of selection are

based on priorsinformafion-about size and ,the relatlionship of size. to the

characteristic of interest) 'the Horvitz-Thompson estiMator.is optimal or

nearly optimal.

The choice ofthis estimator is not as arbitrary as it may'appear'cShah,
....,

1980); however, there are few practical rules to support the choice: The most

common advice for selecting an? gstimator
0--.

is
*
to examine the data before, deciding ' -,, .

.-. which estimator is optimal. Ail expert in survey desigd and titory may be able
\

to teach such a decision. because of past experience and knowledge. .0thet %
r

. I .
o. or P. .

( c a Vr4- t
/ li -

.1

to
1111.

.r
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researchers may need a catalbg of alternate estimators and%a set of rules that

will enable -them 'q- select the optimal estimator.. At .presents, no such guide-
. - . d

lines exist except for such 'ague statements as, "If probabilities of selection

Q.
I.

have no zelatio,U to the characteristic to be measured then the simple mean
,

would be better than the Hotvitz-Thompson estimator.mt The survey practitioner
0;

obviously needs better-guddelines for choosing estimators, but untildsuch time ,.

ailabld, the survey practitioner prob5ly will continueas these rules becom
. .,

to use, the Horvitz - Thompson eitima;tor,fwhich it optimal in mostscases,-eves

thouiph may be.inefficient in a few situations. .e.
.

'
.:

A second impdrtant consideration, 'which is oftJmneglected, is an estimate
.,

of the,, variance of the e§timatotc The estimator that oneuses.mayor may not
_ .

.

be optimal and may oi,alay'not be efficient, but it is imperative that pomeA..

proper estimate of the variance (mean square error)-of the estimator be momputed

from the data. .The proper evaluatiop%of mean square error assumes an additional

dimension of importance when the estimator used is not unbiased. Guidelines',
.

for selecting froth among availabiemean sqUare error estimators also are not

readi1v available. -
/ ,

In 4Che case oestimates of error variance, there are additional' consider-
,

,. atiOns; or the example given apove, the total isca simple linear function of
4

the observations, and,it is possi,ble to derive explicit algebraic expressions

for estimatingcvariances of such linear functions. Howe \er, it is not possible

to obtain such expliclt expressions fOr variance estimates of complex estimators

.such as a regression coeffiCientsor a.correlation cOefficient:2 There,are,

however, various available approximation procedures; somesuch procedures are:
.

.-
(1) Tay/orized deviations, (2) independent replications,. (a) balance!! \epeated

replications, and e4) Jackknife.
t

B.
-
: Application of the Central Limit Theorem

.Assuming the estimate and variance for the total (f.1)and (1.2), let the

vector 'Th

t.., x ) for

ance matrix'

Further, let

(t1,, t2, f., tih reprepe the totals of k var,iiables (xl,.x2r.7

theith stratum: An estimator of total T
h

and its variance-covari-
,

V(T
h
) can be obtained, using formulae similar to (1.3) and (1.4) .

the vector T denote the sum of thvectors T
h'

Since the'sampling
,

.,
.

Ir*". \ , ,

s. A

n ^

14 It should be notedlthat this difficulty ;with complex statistics is common to
aliebrinches ofstati4ieS and is not a distinctive featule of sample surveys..

6 12
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within one stratum is independent of sampling within another,"it follows that

and

H
T = Z T

h '

h=1
A

an estimate ogle variance-covariance matrix of T is

H A A

T) = V(T,)

h=1 "

If a large number of strata3 are involved and it is

first tvo moments of the distributions of T
h

(h = 1,

convergence properties (e.g., Lindberg conditions),

(1.5)

(1.6)

ass ed that the 10
2, satisfy certain

a general for of the

central limit theorem would applygeller4 1966); hence, the

bution of T would be multivariate normal.

limiting distri-

If One'is interested in estimating the variance of a statistic, 8, which
A v

. .
is a nonlinear function of T,, then the approximate normality of T is not

A

necessarily useful in estimating V(8). Examples of such nonlinear functions

are:

and

Iw
h
x
h

8
1 Iw

(lv
hxhyh

Iw
h
x lt

h'
v
h wh
/I 1)

11{1w ;7:2
h
Y
h
)2aw

4naih hx2.\!:5h

A A

The statistics 8
1

and 8
2

can be readily recognized as the weighted mean of x,

and the weighted correlation between x and y, respectively, where:w
h

represents

6

the weight.

PIN

3- If sampling'Of frimaky Sampling Units (PSUs) is with replacement, the same
arguments can be'made at PSU levels.

4
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C. Variance Approximation .Procedures

As stated previously, four relatively common approaches to appropriate

4ariance estimation are (1) Taylorized deviations, (2)' independent replica-

tions, (3) pseudo-replications, and (4) Jackknife. Brief descriptions of each

of,these-techniques, their assumptions, and their strengths and we'Anesses are

provided in this section.

1'. Taylorized Deviations

A classical solution'to the estimation problem has been to express

the statistic 8 as a polyhomial in.(ti,'ii, tk) elements of ,the vector T,

using the Taylor Series expansion. The approximate variance of,6 can then be

obtained by using only, the linear terms of this expdnsion (see Kendall and

Stuart, 1973).
.

If (56/(5T) is a row vector derivatives, oepst segt
1, 2'

then the approximate variance of 6 is estiAte&by

V(6) = (56/6T)V(T)056/(5TY ,

which can be further expanded as

.4 4
V(6) = f (56/(5Th)V(Th)056/(5Thr

h=1. e

H' ^ ^ 1 4

sehstk),

For large values of H, it is assumed that the distribution of 6 will be

approximately normal with variance V(6). Such expansion for ratio estimates

is presented in most-textbookson sample surveys. The first-order Taylor

Series expansion for regression coefficients' has been derived by Folsom (1974)

and Fuller .(1974). Wookuff (1971) has presented an algorithm for,\obtaining a

first-order Taylor Series approximation to compute the variancerl any complex

statistic. Programs for Taylorized deviations are available from Hidiroglou,

and Fuller (1915)Holt (1977), Kish et al. (19721, Shah (1974), and Woodruff

and tausey (1976).,

2. Independent Replications

.The postiptraightforward way to avoid assumptions would be to draw

i several independent samples from the same population and, thus, to obtain -

...several independent estimates of the same statistic 0 (i.e., 61, 62, 6r).

14
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The mean estimate, 6, would; be

and

,r

= E 6./r
i=1 1

an estithate'of the
e

IP%

.

variance, V(6),;iis given by.

r
V(6)' = (6. 6)

2
/r(r - 1)..

1=1,

In practice, however, one would like

samples, and for complex statistics 6

is then necessary to assume that V(6)
A

A practical problem exists with

I.

to compute 8 using data from all the

will not necessarily be e al to 6. It

is approximately equarto V(6).

this technique. in that it places severe

restrictions on. the sample Aesign, since each independent sample is much

smaller than the' "total sample" feasible with limited resources. Further,

resources may similarly constrain the number of independent replications

(samples) to be small;'consequehtly,

few degrees of freedom and would tend to be unstable. Additionally, in the

mate of the variance would have

aase of multivariate analysis where 6 is a vector'of dimension P, if P > r,

then the estimated variance-covariaAcematrix V(6) will be singular.

3. Pseudo-Repricatiems ,

q An inienioni but simple. approach was suggested by McCarthy (1966)

for designs with exactly two primary sampling units (PSUs) pet,,stratum. A

Xrandom half ofthe sample is defined by randomly selecting one of the PSUs in
r

!each. Stratum; the half sample and its complement are assumed,to be "approxi-

'mapely".1pIdependent samples. Thus, an estimate' of the variance with one ,

degree, of freedom can be,computed using two half samples. Of course, it is

necegsity to assime that thAariance, of the-Statistic based on the total

sample esjs approximately half that of the estimate based on half r)ePlicates.

Since there are 2
H

posAbre half,samples, many pairs of half `samples can be

selected. In practice, about 40-to 100 pairs of half samples are selected. to
.,

prchide reasonable estimates of the variances.

The determination of the 4pEroximateegrees of freedom for the estimated

variance remains an unanswered question. The practical approachoiS to assume

degrees of freedoS1 equal to the number of strata or the number of'pairiof

9 15
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half replicates,,whichever is smaller. If both of .these are large (i.e.,

greater than 30), then, in practice, the actual value is irrelevant since the

t or F distributions can be approximated by the normal or X2 distributions,'

respectively.

4. Jackknife

-The "Jackknife' approach originally suggested by Quenoille (1956),

and so named by Tukey (1958), is an intuitive approach to computing variances.
T

A definition pf "Jackknife" for a multistage survey design in which all stages
.

are, random is presented by Folsom et al. (1971). Kish and Frankel (1974) have
/

'suggeoted an approach for a stratified sample with two PSUs per stratum; 4

hpyever, no general definition is available for a stratified multistage sample.

D. Additional Considerations

1. Computation

Most of the widely used statistical packages (e.g., SPSS, BMDP,

OSIRIS,41SAS) do not routinely provide for computing proper variances of a

weighted statistic= from a multistage,,sample survey. Except at institutions

with large statistical and computational resources; the computation of such

standard errors frequently is mot attempted.

Frequent complaints are that the cost of computing variances is excessive

and that standard software for the computation is not available (the cost of

special purpose programming being prohibitively expensive). For example; the

cost of computing the variance of a weighted mean may be 10 to 50 times that

of computing the mean. While this may be theicase for some techniques or

programs, Fll's experience in using the Taylorized deviation approach:is that,

the total cost.of computing variances is only about twicqethat of computing

only the Mean: Moreover, several general-purpose programs have become available

'recently (see subsection II.C.1, above).

2. Estimating Variance Components

Many surveys are conducted periodically, and there is a need for

evaluation Pf survey designs used with a view to possible 4mprovement) in

subsequently designing similar surveys. To make decisions about such designs,

there is a need to estimate contributions to the variance of a statistic from

various elements of the overall design such as stratum; PSU, and individual;

in other words,
(

estimation of variance components is required. Of the techniques

discussed abOve, Taylorized deviation is the only one that permits estimation

10

16
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of variance componeniS4see:8hah.et 41., 1973; Moore et al., 1974). Since the
, -7.

estimator is expressed as:4 suit of random Variables, the variance components

of 0 can be estimated in the same manner as that of T.

E. Comparison -of Techniques

To compare the:techniques, the following criteria are used:

1) validity or number of'assumptions required,

restrictions on sample design,

3) computational problems for large data sets, and.

4) flexitility of applications.

A'summary of the comparison is p egented in Table 1. From the comparison, the
0.

Taylorized deviation, approach a'pears to be best, if one is Willihg to accept

applicability of the central "mit theorem.' Furthermore, if one needs to

evaluate components of variancg, then Taylorized deviation is the only approach.

If there are only two-PSUs per stratum in the design, pseudo-replications

would be.appropriate.4 The-Jackknife approach should be considered only in
,1

the rare case of a complex design and for a statistic for which it is not

possible to evaluate derivatives. The independent replications approach.mill

be suitable only if the sample is designed appropriately.

F. Conclusions

The recommendation supported by the discussion in this section is that

fopmest nontrivial survey designs,. the Horvitz-Thompson estimator and a

Taylorized deviations approach are typically the most appropriate and practical

techniques for computing parameter estimates and associated estimates of the

variance, including estimates of regression coefficients. The choice of the

Horvitz - Thompson estimator is based partially on intuitive grounds but is also

supported theoretically (Shah, 1980). The choice of Taylorized deviatiohs was

.ma4e for the fegowi.pg reasons; (1) applicability to all designs and statistics;

(2) ipplicability'tojarge samples; ( ) economy and computational feasibility;

and (4) capacity for estimating variance components.

The assumption underlying the Taylorized deviatiods approach is asymptotic

normality. The assumption of approximate normality is in use in other contexts,

and some rules of thumb have been developed (e.g., a binomial distribution is

40,

" Although the Original NLS survey design had two schools per stratum, the
ultimate design had several strata with three or four schools.

ow 11
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table 1.--Summary of comparative evaluation"

tie

Technique Asstimpiions

Criteria

Restrictions /
t

on sample Computational , . .

disign . mblems Flekibility

Independent.
replications

Psuedo7
'9r6plications

Taylorized
deviations

(Jackknife

Minithal Severe

Independence of Two PSUs per

complementary stratum'

half replicates

Simple

Significant

General central None . Not difficult Can be. used

limit theorem for variance

:///7 components

Intuition None , Greater than ,May be useful

Taylorized for some r..'

deviation designs

44
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approXimately normal if npq is greater than 10). There is an obvious need for

developing such simple rules of,thumb for statistics resulting. from survey

samples; ,however,untilimore infqrmation is available, the suggested approach;

is Taylorized ,deviations using any of the available programs:(Hidiroglou

et al., 1975; Holt, 1977; Shah, 1974; on Woodruff and Causey, 1976). In

practice, one should consider certain transformations of ttatistici that

rapidly converge to normality;, as an example, if r is the sample correlation,

then evaluation of the variance of Tanh 1(r) may be more ap propriate.

A.development of the Taylorized deviationkapproach for regression coeffi-

cients is rovided in Appendixes A and B, for the interested reader. A flexible

and easily used computer program app'ying Taylorized deviations to the Computation

of regression coefficieitsnand
their standard errors for data arising from

multistage sample's is deitrille.d in Appendixes C and D. This program is available..).

from the senior author of this report.

lot

.
4

4
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'EMPIRICAL TESTS. OF TWO REGRESSION APPROACHES

t C"`

.:Previous discussion -fits indicated the theoriticalPsuperiority, under
et

assumptions of appioximate-normality, of a combined Horvitz Thompson estimator

arta a Taylorized deviatioh variance approximation ipproach to- the investigation

of regrOssion-models with data arising from complex survey samples. Nonetheless,

there is need fpr some empirical evidence of the verity of the approach;.

consequently, a simulation procedure was undertaken, using the NLS data base.

'The study involved drawing a large number of random samples from»a, Liaite

population and then deriving pertinent statistics from these samples, to

evaluate theJdistribution of the regression coefficients and that of the

approximate F values computed by Taylorized deviatio

The simulation also allowed a natural vehicle

less appropriate, approaches to regression atialyiis

approach. 00ne of the most widely used approaches

ns.

for evaluation of other,

ascomparedtotfie suggested .

to regressln analysis

ignores-the sample design and addressee the data as though they arose from a

simple random sample. This approach, using Ordinary Least Squares (OLS)

criteria, owes much of its popularity to the facts that it is better khown

than the more appropriate techniques and that it is easily applied through all

of the widely used statistical analysis packages.: Nathan and Holt (1980) have

demonstrated that in most cases the regression coefficients computed by applying

OLS solutions to data collected from complex survey designs will be biased,-

although an exception occurs for epsem designs. Moreover, they shooed th;t,

under these conditions, the'OLS variance.estimator is consistently biased even

in those cases for which the OLS regression coefficient estimates themselVes

are unbiassed.. While the proper applicatiof sampling weights, within some

standard statistical packages, Can produce unbiased estimates of the regression,

*efficients, the weighted variance estimatepproduced by most packages remains

biased. Moreover, 13,1" s experience with this latter approach suggests that

resulting variances show considerably greater bias than those obtained throughp

OLS. For these reasons, OLS was chosen as thelcomparison approach to Tayld'r .

Series Linearization (TSL).o

A. Method

The NLS, base-year sample was taken of the finite population for this
.

simulation: The original sample Asign consisted of 600 strata, with 2
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A

-

e.

schools selected pet stratum. Within each school, an equal probability sample.

of roughly 18 seniors,was selected. For the simulation, 84 major strata were

formed by combining similar strata, each containing at least 10 schools. So

as.not to confdund results of the simulation study with problems of missing.

data thefinite population was defined to exclude studenrs'with missing daV

.elements for any of the variables used in the regression models. Consequeitly,.
t

the study population contained 935 schools and 10,657 students.

The simulation consisted of selecting 1,000 random samples from the
.

defined population. Each sample Was selected in two.stages. Within each

stratum ,twos schools were seieFted 'without replacement with probabilities.

',proportional to estimated senior class enrollments; Durbin's (1967) method/was

used for these selections. From each of the schools in each sample, fiv

responding students were selected with.e4ual probabilities and without...replace-

...ment; thus, each resulting sample consisted of .840 students. _.(ms andTSLt

values of regression coeffilients and their associated variances, covriances,

and F values were computed for each of the'1,000 samples add for 4 regresSion

equations. 46

Two basic regression models were selected fdr the NLS simulation study;

land -within each model two, related critejion variables were.used eccindicate

,the type of postsecondary education being received by'individuals in the fall

of 1974. This esulted in four regression equations for evialuatiOn,'although

the is criterion variables for each model were similar (both.trelated t tIrpe

of,postsecondarY entry, but one was a dichotomization of the other). e

predictor variables represented chaiacteristip of high school seniors

The two basic regression addels are wridx.en.prior to-graduation in 1972.
. ,

symbolically, below.

Model 1: Ik (or TYP) = INT +sSEX + SES + GRADES + GOALS:
. .

0

/ Model 2: INC (or TYP) = INT + SEX + SES + ABIL + RACE*PROG

i r
0 The variables used in theekWo models are defined below.'"

.

.

,

,

INC F: 1.if the individual had enrolled in some type educatibn.
.

after high school;

0 otherWise,

4
21.
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cor

TXP = type of college enrollment, scaled,as follows:

4,if 4-yea r college;

k
3 if 2 -year college;

.--

INTL-- the model intercept.e

SEX = 0 if female;

1 if male.

2 if any other regular bilovocatiohal college;
.

1 if not enrolled in any college

SES =.composite socioeconomic -e tcational.statut derived from several
- .

base-year questionnaire items (s* eeDunteman, et al?, .1974).
. 0 . (

GRADES = gelf-reported, overall, high - school grade rtngi O'levels).

GOALS = a quantitative lasure of educatiOnal or Other aspirations

derived frem.ba"ear questionnaire ,response (see Duntemid,
,. -,

et Al., 1974). -4 "4 ..

- .
,

ABIL = an ability score based on felt items administered during the

base-year (see Dunteman, et al., 1974).

RACE*PROG = indicator variables for the joint conerCibution of 6raceiettinicity

awl high school program including their interaction, where

1 if the high school program. was' academic and race/eth-
.

R*P
1
=

nicity was majority white,

0 otherwise;

1 if the high schooliprogram
,

as academic aELce/eth- 1

. . ,
.

nicity was any minority, l '

0 otherwise;
II

.'.R*p
3

= 1 if the high school rogram was `nonacademic and the

race/ethnicity was majority white,

0 otherwise;

R*P4 = 1 if the high school prdgram was nonacademic and the-
.

-face/ethnicity wasany minofiiy,.

.0 otherwise.

The regression models were evaluated using liciteOLS and TSL, as applied
. I

through procedure SURREGR describedin Appendixes C and D. In'full mo4p1.

(ALL) hypotheses, the intercept was excluded. '19o-, the* RACE*PROG hypothesis
.

of model 2.was reduced to rank ..*AT eliminating the R*P
4

a
e

vriable. The variance

of the regression coefficients; the mean difference from the corresponding '

population value, and the standard error,4 the dean were ,computed over the
4
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samplgs in order to evaluate the possible bias in estimates of the

coefficients. Means of the,estimated variances were also computed.. Additionally ,14

the Values of the F statistic for testing the hypothesis that the regression

coefficients were equal to known pophlation values were computed. Since the

-hull hypothesis is true, the observed values should -resemble the' theoretical F

distribution. The actual numbers of observed F vanes falling below various

percentile points of appropriate F distributions wire tabulated for this

comparison. ,

4 A

B. Results

The discussionin the previous. section leads to'three predictions which

should be observable from the results pf simulation, if the estim4o.rs and

their variances are unbiased.

1) The expected value of the difference of each regression coefficient'

from its true value over all samplei should be approximately 0;

therefore, the mean value over all samples of a regression coeffi-

ccient should fall within the interval defined by the true' value ± 3

times its standard deviation.

2) -The expected value of the variance of a regression coefficient which. '

was computed by the TayloriiedIdeviation method should be approxi-

mately equal to the var iance of that regression coefficient over all

samples.
..-

3) The percentage over all samples:of tie statistically significant F
-*/

values for testing.a hypothesis about the differenc f computed

trcr9Coefficients from known population values shOuld approximatelya.
A equal to the nominal significance level.

Summary statistics to check "the validity of pudictions 1 and 2 are

presented in Tables 2 and 3, for the TSL and ,OLS approaches, respectively.

The first two columns of each table define the four regression equations
0 4

examined (i.e.; the criterion variable and predictor variables of the two.

basic models, respectively). The entries'in column 3 give, foreach predictor

variable, the average (PVer the 1,000 samples) of the difference between the

4 estimated regression coefficients and the actuai.population value of tit

coefficient. The estimated standard errors of these mean differences are

given in column 4. The variances of the estimated regression coefficients

over the 1,000 samples are,provided in column 5, and the averages over the

- g3
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Table 2.--Statistics describing the distribution of the estimated
. regression coefficients over 1,000 samples from a finite

population using Taylor Series Lilparization

\
Criterion Predictor
variable variable

Mean
difference Standard

from ' error
populo,tion of the

value mean

Variance of
the computed
coefficients

Mean of
the computed
variances

INC INT' 0.02426 0.00254 0.00643 0.00747
ts SEX., 0.01225 0 00110 0.00121 0.00132

SES -0.00296 CO:00078 0.00064 0.00065
GRADES -:0.00303 0.00040 0.00016 0.00017
GOAL -0.00493 -0.00046 0.00021 0.00023

TIPP INT , -0.06369 0.60644 0.04150 0.04563

SEX , 0.02666 0.00236 0.00764 0.00830
° SES 1 - 0.00714 0.00200 0.00599 0.00415

:GRADES -0.00682 0.00102 0.00105 0.00110

GOKL -0.01487 -0.0011efr 0.00139 0.00152

INC INT -0.02038 0.00456 0.02078 0.02375

SEX 0 a0Q684 0:00113 0I-04129. 0.00134

SES 0.00973 0.0)0086 0.00074 0.00083

ABIL 0.00016 0.00002 04'001 0.00001

RP1
RP2

-0.01228
-0,00974

4.00274
0.00311

0.00750
0.00967

0.00831
0.01039 .40

.4

-0.00756. 0.00251 0".00628 0.00642

'TYP INT -0:03576 -41:01r64 0.13541., 0.15359

sgx. 0.01376 0.00292 0,00851 D.0059 "S

SES -0.02292 0.00220 0.00484 0.00543

ABIL 0.00030 0.00006 0.00000 0.00000

kP1 -0.03221 0.00698 0,04865 0.05542

RP2 =0.03645 0.00805 0:06475 0.07237

RP3 -0.01750 0.00629 0,03951 0.04111

O
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Table 3.--Statistic idescribing the distiibution of tie estimated
regressibn Coefficients over 1,000 samples from a finite

q. ,population using Ordinary Least.--.Squares

4

Criterion
variable

Predictor
variable

Mean
difference Standard

from error

population of the

value mean

'Variance of
the computed
coefficients

MeAn of
the computed
Variances

OG

4 p

I lk INT
SEX

11"
-0.025980' 0.001963
-0.004871 0.000834

0.003855
6.000695

0.00.5923.

0.000722

i SES ' -0.004038 0.600607 0.000368 0.000383

GRADES 0.600728 10.00q320 0.000102 0.000104

GOAL 0.003870 0.000349 0.000122 0.00011%

TYP-' , INT 0.029836 -0.005044 '0:025448 ' 0.025306

SEX_ -0.015392 0.d02112 0.004460 0.004658

SES -0.025277, 0.001603 0.002572 -0.002473

GRADES 0.003476 0.000822 0.000676 0.081b671

GOAL 0.004050 0.000908 0:000824 0.000745

'INC INT -0.018672 0.003597 0.012941 0.013219

SEX -6.00974'6 0.000910 0.000828 0.000828`

SES -0.007226 0.000678 0:000460 0.000519 11.

ARIL' 0.000145 0.000017 0.000000 0'.000000

RP1 -0.012951 0.002193 '6.004811 0.004562

RP2 -0.01394i 0.002629 0:006914 0.007318

RP3 - 0.0,14713 0.001963 , 0.003855 0.003617

TYP , INT -0.003198 0.009129 -0.083348 0.087252

SEX* -0.026208 0:002335 0.005452 0.005469

SES -0.036864 0.001741 0A63034 0.003429

ABIL 0.000328 0.000044 0.000002 0.000002

-0.053305 0.005632 0.031729' 0.,039115

RP2 -0.078817 0.006933 0.048073 0.048297

RP3 -0.044036 0.004948 0.024485 0.023876

I-

.7'
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1,000 samples of the variance estimates computed for each sample are given in

column 6. /

Prediction 1.can be examined from the entries insolumn 3 and 4 of Tables 2

and.3e -.The mean differences of computed and actual regression coefficient

values.are Clustere- d near 0,unging from -.064 to .027 for the Horvitz-Thompson
- - .....

.

;

and Taylorized deyiation approach and from -.079 to .004 'for the OLS approaCh.
A ..,-

'With. few exceptions, however, :the confidence intervals of three standard
,-)

. 4,-. .

.
errors about,ehese means didinat include the value of 0, Whith-timplies some

a
bias in estimating the regresi6n coefficients by both of the-appsoaches.

. Prediction' can be examine*from the entries in columns .'fang 6 of
.

.. .V,
Tables 2 and 3. he TSL' variance for,each sample was computed accordiri'g to a

equation (A.52),'as'proyided'in Appendix A.-, The average, over samples,:of the
, ...

TSt variance estimates is quite comparable to, the actual variance, sover'ihe -

1,000 samples, of the
\

computed regression coefficients (Table 2). Similar

4 results are also observable for the analogous OLS statistics (Table 3).

-"
Summary statistics to check the validity of prediction 3 are provided in

' Tables 4 and 5. These tables indicate for regression models l' and 2, respeor:
4.

tively, a comparison of the uppei tail of the approptiate theoretical F dist4i7

butionta the empirical distribution'of F values computed for'elch hyptthesis
0

in-each of the ,000 simulations. Within each of these tables, results are
op

presented separately for each of the criterion variables considered in the

particular model and for TSL and OLS,approaches. *IP

The TSL solutions appear-to.give good approximations for both models and

. for both criterion variables. Using an average of the empirical distributions
I '
over the vacipus hypothesis tests within model and criterion variable, the. TSL. ..i-

solutiOni-xanle-s-e'en to approximate the theoretical perceptage points quite-
.

Well. With one exception, such averages differ from nominal values bf no more

than one-half of a percentage point, -and all such differences are in-a sqnser-

vative'direction (i.e., suggest the null hypothesis would have'been reflected
.

.

.

less frequenLtly than suggesteeby the nominal significance level).' .

'1!1 general, the OLS solution; alsp provide good approximations.to the
.

.
.....,..

.1-

theoretical rdistributions. The average of empirical distributions suggests
t.

- that OLS solutions tend to err ift.a nonconservative direciion and that the'

error A.6 greater in modeling the criterion variable TYP. Even though the

avera\,,differerices from the theoretical distribution are still relatively.

smell n.an absolute sense (at most 3.5 percentage points), a tuestion is

-20 26



Table 4:,--The number of- sample F values (out of 1,000) which fell below

specified.Percentiles'o the appropriate F distribution for
Model 1.

"

Analysis
type

Criterion
variable. Source

Hypothesis
degrees

of
freedom

F distribution percentile

75 90 95 ,97.5 99

Taylor' iMC. ALL 4 751 893' 950 978 993

Series
Li r-

ization

-#
SEX
SES
GRADES

,

.

1

1

1

745

762

.760

896
917
904

- 947

953
954

980
974 .

-979

990
992
992

GOALS 1 750 911 962 986 993

TYP ALL, - 4
.

755 898 960 981 992

SEX 1 751 070 956 977 992

SES 1
h

754 916 957 977 991

.-\ .GRADES 1 755 903 941 975 987

GOALS 1 736 896. 950 976 997

Ordinary INC ,. ALL 4 745 902 955 974 989

Least SEX t" 1- 751 895 '952 975 993

Squares SES 1 745 902 -949 974 989

GRADES 1 0758 906 951 973 987

GOALS 1 716 864 931 953 978

TYP PIL.q 4 732 868 934 973 988

SEX, '1 744 899 947 969 991

SES 1 674 846 920 956 977

GRADES 1 755 ' 896 943 967 987.

GOALS 1- 737 871 930 962 980

r.

21



.1

4 -

AI

Table 5.--The number of sample. F values (out'O1,1,000) which feltnielow
specified percentiles of the appropriaiej distribution for

4

, Model'2.

Hypothesis

Analysis Criterion

Aegrees
of

F distribution percentile

type variable Source freedom 75 90 95 .97.5 99

Taylor
4

Series

INC
',

ALL .6
If -

SEX 1 .

748' 892

736 405
944

952

970,
975

986

992

Linear- . SES 4 -763 .a6094 954 971 990

ization, ABIL r 777 '919 965 988 995

RACE*PROG 3 ,749 900 944 970 986
."

TYP ALL 6 755 889 953. 97,2 987

SEX
.

.l. 756 908 953 973 987

SE§ 1 744 893 940 975 , 992

ABIL .1 775 919 967 982 997

RACE*PROG 3 769 899 947 972 '987

Ordinary
Least

INC
.

ALL 6

SEX 1

776 893

707 887

944

941

971

971

987
987

Squares SES 1 749, 406 955 977 98$
Ar ABIL - 1 759 900 942 976 990

RACE*PROG 3 757 892 947i' 974 986

TYP ALL 6 709 870 922 956

,
SEX 1 -713 877 936 971, 988

SES 1 684 841 413 957 986
. ABIL 1 744 902 953 977 941

RACE*PROG 3 732 ' 881 933 968 989

s-e 22

28
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raised as tolthe extent to which the applicability of OLS,approximations is

situational ( particularly the poor fit for-Sthrin OLS( solution for TYP).

Additional Simulations

Although not specific to.the NLS data, similar simulations (Shah, et al.,

situations with1977) compared TSL and OLS under a wider: range of samp

different populations defined from the Health andlutrition xamination Survey

(cf. Public Health Service, 1973). In general, these results further support

the contention that 'the agreement Of/OLS solutions with the theoretical F

dietribution` is situational., Using.24 strat. a and selecting, first, 2 of 12

Pals per stratum and., second, cluster sizes of 10 from each PSU, regression

models similar to those used in the NLS simulations were employed. : As Withei..

the NLS simulatiOns, TS!! solutions, in general, gave only marginally better

results than OLS; however, the performance of the OLS statistic was, again

generally nonnonservative and was better for continuous variables and for the

case of greater between-PSU homogeneity '(which reduces clustering effectg). ,

The performance of the TSL stati'st1C.was again relatively stable over. all

conditions.
.1

In the special case of the application of regression mOdelto solutions

for domain means, the overall superiority of the TSL statistic was quite

pronounced.5 Under these conditions, not only did the OLS statistic generally

show considerably less congrue a than TSL to the theoretical F distribution

but also the,congruence:of the OLS statistic varied dramatically with different.

cluster sizes, different strata definitions, different between-PSU heterogeneity,

and ,different models.' With the exception of the prediction of domain meads

for race/ethnicity with a'small number (8) of defined strata, the TSL F statistic

was quite consonant with the theoretical F distribution and otherwise showed

little variability from situation to situation.

1

D. "Concluding Remarks

It should biirrecOgnized that the results of the several simulations offer

only support and not definitive proof of the general applicability of the TSL

5 Although -this is a fairly atypical application of regression modeling, it

"floes demonstrate the general applicability of the TSLapproabh over a wide

variety Of situations and the lack of such applicability for the OLS_approach.

For-a technique .o#£ adjusting standard errors:for domain means computed from

NLS datal-see Williams, 1978.

2P



approach. No amount of empirical data can conclusively prove that any statis-
.

tic provides valid inference in general. The sUulations with NLS data w ere

quite limited, restricted to two relatively simple (and related),regression

models crossed with two (related) criterion variables. The consideration of

*1results from the additional simulations provides a somewhat broader but still

limited base for conclusions. The additional simulations examined only three

regression 'equations (for each of two defined sampling frames) of a form.

similar to those examined in the NL simulations. The additional results also

included 64 simulations of the special case of applying regression modelingsto

computation of_domain means. While these latter results are certainly. germane

to the general applicability Of a statistical procedure, they do not directly

address more conventional.regression approaches.

Also, it should be recognized that the, actual NLS data differs from

.the NLS simulation in some important ways. While the NLS simulation results

were based on a cluster size Of 5, the actual NLS cluster size is 17. Other

things being equal, increased cluster size tends to increase the variability

of statistics. As an example, for a' simple statistic (note that a'regression

coefficient is not a simple statistic), the impact of cluster size, m, on the

variance, a
2

, an be indicated by the straightforward equation

a
2
= {1 + (m-1)p}a

2

where a
2 is the variance including the clustering effect and p is the intra-

class correlation. jhns, the clusteting effect for sibple stafisticsi (m-1)p,

would be expected to be four times larger with the actual NLS data than in the

simulations (i.e., (17-0/(5-1) = 4)", with equivalent values of p. Further,

eyettifp were as small as,.02 an increase in actual variance of 32 percent,

(i.e., 16(.02)) over -that of random sampling would be expected for simple

statistics, other things being equal'.

Finally, it should be recognized that the simulations were co nducted

.under more or less ideal conditions in regard to comparability 'of sample

weights, a situation that should theoretically favor OLS, which assumes equal

sampling weights. While no marked disparities of'sampling weights exist for

the NLS data ,'Iiome differences in weights have been introduced as a result of '

oversampling and adjustments for nonresponse (recall that the simulations did

not address the problem of nonrespohse). Under such conditions, bias in the

OLS estimators may be expected to increase.

r -

-
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With an understanding of these additional considerations as well as 'the

s limitations of the results and drawing from results of both simulation studies,
. 411P

the general findings support the following conclusions.

1) TSL, though not perfect, produces "good" conservative inferefices for

regression coefficients (i.e., the probability of rejecting the null

hypothesis, when true, is smaller than the nominal, value) when the N

number of strata is moderately large (greater than 20).

2) In some situations, the performancg of TSL is less satisfactory when

the number of strata is small (less than 10).

3) OLS produces nonconservative inferen es for regression coefficients

(i.e., the probability of rejecting the null hypothesis, when true,

is larger than the nominal value);, in some situations the

extent of nonconservatism is negligible:

4) While OLS compares favotably to /SL in the specific typical regression

models considered, them are indications that the extent of accepta-

bility of the technique is situational.

5) Inthe special case of domain means, the results of OLS are generally,

poor, Moreover, in this situation, the perfort4ance,of OLS.deteriorates

considerably when the cluster size is'increase

25

.004



1

IV. SUMMARY AND CONCLUSIONS

The sample design for NLS is a deeply_stratified two-stage design with

600 final strata. Although the original design called for 1,200 schools (2

7> stratum) and approximately 21,600 students (18 per school), the final

sample, as defined from various sample.additions, included1,318 schools and

23 ,451, students. The information collected during the NLS base year and in

subsequent follow up surveys represents a rich data source for addressing

questions regarding the educational and occupational development of high

school graduates. The types of statistics used to address these questions may
.

vary- from simple totals to ratio and' regression estimators; however,, the

problems of drawing valid and relevant inference that are common to all multi-

stage sample, surveys must be fated. The "perfeceianswers to drawing infer-,

ences for complex statistics from survey dsta may not be readily available,,

but an applied scientist needs some good, though 'imperfect, techniques- to

provide approximate quantitative measures for the errors in the estimates.

This report has reviewed available theories and has suggested a technique

that will be. useful in analyzing NLS data with respect to regression models.

For drawing inferences, it is, imporative.that some estimate of the variance

(mean square error) of the estimator be computed fiom the data. For a simple

linear function (such as a total or mean) of e observations, it is possible

to derive explicit algebraic expressions for estimating variances; however, it

is not possleble to obtain such explicit expressions for variance estimates. of

complex. estimators such as regression coefficients. The approximation procedures

considered were: (1) Taylorized deviations, (2) independent replications,.

(3) balanced repeated replications, and (4) Jackknife. The Tayloi. zed deviations

approach is preferred for the following reasons: Melt is applicable to all

designs.and statistics; (2) it provides "good" answers for "large" samples;

(3)k
it is economically and computationally feasible; and (4) it alone provides

for estimation of variance components.

Since the' applicability of the Taylorized deviations approach is based on

asymptotic theory, it erformance was evaluated empirically through simulation,

using NLS dsta. Additibi111 simulations using another large data set were also

considered, Simulations were carried out using both Taylor Series Lineariza-

tion (TSL), as defined inAppendix A, and OrdinaryLeast Squares (OLS). Aside

from potentral,violations of assumptions of the relatively robusteregresiion
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.
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4 ._

model, OLS is Obviously inappropriate for drawing inferences from complex

samples, assuming as it 'does simple random sampling; nonetheless, the techr?ique

. .1

was considered because it is so widely known and used (eve when theoretically
, ..

inappropriate) and is so easily applied Xhrough the more dely used statistical

packages.

The simulations, though limited in scope, do suggest thet TSL performs
...e

extremely well in a ldrge variety of situations. With a small (i,e., less

than 10) number of strata, there is iome'deierioration in its performance in

some cases, but there is a dramatic improvement in perfo ance with more than

20 strata. 'Both TSL and OLS show some bias in the estim tion of regression

coefficients; however, errors in inferenCe using TSL are generally conservative,

while the OLS approach generally yields rtonconservative results (i.e., statistical

tests are likely to reject...the null hypothesis more frequently than they

should). In some typical regression situations, however, the nonconservati'sm

of QLS is negligible, and the approach performs quite well. Nonetheless,

there are clear indications that the extent`to which OLS solutions approximate

the theoretical F distribution is situational. OLS performs particularly

poorly inthe specific case in which a" regression model is applied to the
.

estimation of domain means.

The various findings do suggest some prdcticalrecommendations to those
.

iwho wish to use regression models in analysis of NLS data. In making general

recommendations for use of a statistical methodology) even )for,a specific

survey or specific hypoih ing, the performance of the methodology in a

broad variety of situatioqs . Thus, if a methodology is successful

on one or two hypotheses for a pecifiv survey, .there is nq logical justifica-

tion that it will perform dell for all eimilar.hypotheses, even with the same
,

data. On the other hand, a methodolop that is successful for several different

hypotheses and different data sets may be expected to perform reasonably well

in most ositdations. Moreover, a fairly general rule'in applied statistee'is

that, given, equality in other, areas, recommended statistical methodologies. 1

guidelines, TSL.procedur can be recommended for the'N1Serirr

Which have potentiil for erring,should err in a onservative direction.

Under these the
2 *

data. In fact, the transformed Hotelling's T type statistic, using the TSL
4 -oar

variance-covariance matrix ppovides fairly robust multivariate inferences

about regiessioli coefficients t;iih loderately large number of strata (i.e.,

standard,24 or more).
.

Although standard software for use of TSL is not widely available
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,such software does exist (see Section;Ii:C.1). The prodedure SURREGR described

in Appendixes.0 and D can generally be supported on a system supporting SAS;
0

this procedure is available from the senior author of this report.

Although OLS yielded good results for'some regression models in the

simulations, it cannot be recommended for general use on the NLS data base.

.Not only is the OLS procedure logically poor when compared to TSL (OLS results ,

4
are necessarily biased when applied to the. NLS design- -see Nathan and Holt,

19.80), but also it is nonconservative. The potential user of the NLS data

base'may be tempted to use an OLS regression approach on the basis of the fact'

that OLS appeared to perform reasonably well in most simulations involving

typical regression models. Such a decision would involve, of course, an

element 'of risk, since:there is an indication that OLS does not perform equally

Well for all models ..pr designs. Moreover, the actual]. NLS data base differs

from the NLS simulation in some important ways. Specifically, the actual NLS

ata are based on larger cluster sizes and contain more disparate saihple

weights.

...., Even though the OLS procedure. cannot be recommended for general use with

NLS data, it should be noted that the principal purpose of this research was

not to examine the robustness of OLS. Additional research obviously is needed
. 1

to determine the conditions under which OLS regression solutions might acceptably

approximate those of more appropiiate approaches. Turt4er, the recommendations

provided above have addressed the'situation of drawing inferences from a

sample (i.e., estimating population parameters); however,many regression

studiesare not-directed to this end. For such other uses of regression with

the NLS data (e.g., sample-specific modeling, exploratory studies), the.use of .

OLS may be more apprOpriate, but such uses also are beyond the scope of.this

study. In such cases, 4oclearver, the.potential user must recognize the cie

distin9tion from estimating, population functions.
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Appendix A

An Apptpximation to the Variance of.

Regression Coefficients in Sample Surveys

In this appendix, pm-pia:dem of estimating the variance of a vector of

regression coefficients in a complex sample is solved by first finding a

linear approximation to the estimator of the coefficients and theelising this
4.

approximation to derive an approximation for the variance.

I. THE LINEARIZATION TECHNIQUE

The linVization technique employed i this paper is the Taylor Series

expansion of the estimator: Tepping (1968) first used this approadh with

spepial reference to regression coefficients. Woodruff (1971) later elaborated

it for,a :broad class of complex sample designs. In general, let u = (u1,'u2,

u3, ...,uk)" be a vector of sample statistics and let U = (U1, U2, ..., Uk)"

representa,yector of simple population parameters such that E[u] = U. Let

*f(U) = (fi(U), , f (U)) be a vector-valued function of U, which represents

the p population parameters of interest. Assume that f(u) estidates f(U).

Now, f(u) is linearized by approximating it to its first-order Taylor

Series expansion:

or
AV

where

,f(u) 1-L.1 f(U) + (u. - U.)
8f(U)

1 '

i=1
81.

' 8f(.U)
f(u) f(U) Cu. - ,

.i=1

(A.1)

(A.2)

8f(U)
8f

1
(U)

[

8f,,(U)
__E

N. (A.3)

8 Ili Ili8 ' ' 811.
1 .

Since E[u. - U
1
] = 0, it can be shown that E[f(u) - f(U)] =.0, to the order of

approximation indicated. Consequently, the matrix fond of the mean square ,

error, where VAR indicates.a variance-covariance ma4lx is

4
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,.....

VAR[f(u) - f(U)P = E[{f(u\- f(U)} {f(u) - f(U)) 1
.

Using (A.2), (A.4) can be approximate'd by
i

VAR[f(u) - f(U)] = E[{ I (ui -Ui ) /3U'fAL) { I (u.-U.)3!P))1 .

i=1 i j=1 J Quj

Therefore, ! s

k k
VAR[f(u) - f(U)] =

_I
I -f(U) 8f(U)

1- COV(u.,u.))\

i=1 1 !

3Ui
H43U.

i j
,

!

j

--

where ,c0V (.,.) Is usecto indicate the covariance of two entities.

If k/is small, (A.6) is a convenient expression from whic he variances

of f(u) may be compUted; however, if k is large (greater than I, the formula

becomes cumbersoipe. In this case, an alternative approach uses thapactual

numerical ialue of the sum of the k linearized portions of (A.2 'so that the

variance - covariance matrix of (u) may be evaluated directly. Explicitly,

define atiew column vector, vi, V p elements, ' i

virrl

(A.4)

(A.5)

(A.6)

k
3f(U

w = I (u.

i=1

*

'S

\k_

and observe that E[w] = 0. Now A.5) can be ekpressed as

VAR[f(u) = i(U)] = E[wJ-] =VAR[w] = VAR[z], (A.8)

O lr.
...where

(A.7)

k

z = Z. WI)
af (U)

i 3U.

.II. APPLICATION OF TAYLORIZEDILINEARIZATION'TO REGRESSION COEFFICIENTS

er
a.

44

r

vo,

A realistic egressiongression model
4may be .defined' using the notation f;om

Sectiofi II of the report as '' -

Y AB + e.

(A.9)

(A.14)

Here e representsa ve of deviations from the lineavrediction equation.

Kish and Frankel's criterion minimizing the sum of the squared deviations over

36
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X

the entire population yields a solution for B which is the familiar least

squares solution to the normal equations:

X'Y

Now suppose that a sample, S, is drawn from the popultion and let the

subscript i refer to any population number. If the units are selected with

probability, P., then the unbiaed Horvitz-Thompson estimatorslor X'X and X'Y

are x'x and x:Y. (Lower case letters indicate sampling statistics.)

(A.11)

x'x = Of (.K.JX./P.)

isS
Xi/Pi)

o

(A.12)

= I (X.1 'Y./P.1 ) .
y (A.13)

isS

The summations extend over units, i, belonging (0-to the sample, S. The

availability'''of unbiased estimates for x'x and x'y allows the estimation of B

with

b = (x=x)-1(x .y).
'

(Aj..)

From (A.11) it can be seen that-8 is a func0.onof X'X and X'Y while b is

a function of x'x and x"' from (A.14). .If it is assumed that there are p °

independent variables ihtthe model, then X'X and x'x are pxp symmetric matrices.

X.Yandx.yarepxlmatrices.Let(x!X)1J
. JJ

,or (xx).., represent the element

of X'X or x'x in row j.and column j'. Also let ()CY)
j
ror (x'y) locate the

row,j element of X'Y or ICY. Using the results ptesented in the previous

section of this Chapter; the Taylorized linearization of b can be written as

(A.15)

op

b = B 2 [(x. . 1 (X.Y> ] FITaByi-T-Y).3+
.j=1.4,

:4P p
88

41, 1.. { (iPx)
. (X.X) j j2.1 a(X X)

.

)=1 f=i JJ4.

For regression coefficients, Tepping and Woodruff.solved for the derival--

tives numerically. HoWevet, Folsom (19,74) and Fuller,(1974) 4i dependently

! . developed ah analytical expression for the derivatives, which lifies,the

I"
expression-in (A.9)., The remaining section's of this chapter follow Folsom's

, work. The partial ddiiv'atives are derived in Appendix B, and only. the results

are presented here.

1
1,a'
gr.

0
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Forj=1,...,q)-letd.be the pxl column vector with a 1 in row j and

zeros.n all other rows. Also define p(p+l) /2 symmettic matrices, Djj with

dimension pxp and with zeros everywhere except in row j, column 3' and row j',

column j. These locations contain l's.

From Appendix B we have

and

8B
a(rx

)331

ono -41)
JJ

B , .

88
= (x1c)

-1
d. .a(

Substituting (A.16) and (A.17) into (A.15) yields.the approximation

P
b .S' B + (X -X)

-1
I [ (x . - (X Y) . ] d

i=1

Y).3
J J

P P
- (X-X) [(x-x).. ]

'

- (X-X).. ]D..,B .

j':=j
JJ' JJ JJ

Basedonthedefinitionofd.-and' D. "
it can be seen that

Jj

1E1 Y)[(x- .
-.] d. = x-y - X-Y=.) (X1)J

P P

j=1 j'=1j

[0Cx)JJ..' -(X-k)..
JJ,

= x'x - X-X

1
JJ,

)

Consequently,

B+ (K-X)-1 [tx-y X-Y) -
." .

= B + (CX)-1 [x-y - (x-x)B + (X-X)B e X-Y] .

Using the fact that (X-X)B = X-Y,

or

'b "_'B
1 Wx)/0 ;

b - B = (X-X)-1 ['Cy - (x-x)13] .

38
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(A.16)

(A.17)

(A.18)

(A.21)

(A.22)

(A.23)

' (A.24)
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III. APPLICATION TO THE STRATIFIED, i6-STAGE SAMPLE DESIGN

For the purpose of this report, a stratified, two -stage sample design is
9

assumed. In this type of design, the population has been divided into H strata

by population or demographic characteristics. For stratum h

there are n(6 primary sampling units; PSUs. The actual observations are

',nested within each PSU, and there are n(h2) observations in PSU 2 (2=1,...,n(h))

within stratum h.

Referring to the first section of this chapter and remembering that the

aresamplestatistics,considerthecaseinwhicheachu.a is a sum over

sample observations of random values. (The regression problem repVesents suip.,

a case.).Letu1 .(h2D indicate the observation for individual ] (j=1,...,n(h.2))*

in PSU 2 within stratum h.

For the stratified, two-stage sample design,

H n(h) n(h2)
u. = F F F ui(h2j) ,

1
h=1 2=1 j=1

and now (A.9) can be rewritten as the vector

k H n(h),n(h2)
of (U)z =1{1 F Idi(h2j)) .

i=1 h=1 2=1 j=1
vui

.Rearranging the order of summation,

H n(h) n(h2) k
8f(U)z =1 1 ui(h2j) )

h=1 2=1 j=1 i=1 i

Consequently, another vector, z'(h2), may bp defined as

.

k

.2(112) = 1i {
J)

U:(h24',af(11j)
.'au1

where

and

j=1 i=1

.H a(h)
z = I -1 z(h.e)

h=1 2=1

0

. 43.
. ,

(A.25)

(A.26)

(A.27)

(A.28)'

, j

7.

(A.29)

41"

0



H n(h)

VAR[z] = VAR[ I I z(h&)i ,

h=1 /=1

for this sample design.

(A.30)

IV. THE GENERAL MEAN SQUARE.ERROR FOR REGRESSION.COEFFICIENTS

A biased, with-replacement approximation to the variance in (A.30) for a

stratified two-stage sample design will be used. Gray (1975) states that the

variance of a sample total from without- replacement sampling may be divided

-into a with-replacement variance component and a without - replacement covariance

contribution atthe first stage. By ignoring this covariance component, which.

is usually negative°, a conservative approximation to the variance is obtained.

It is usually assumed that this omitted finite population correction at the

first stage is small and accounts for little of the total variance. This

.approximation for VAR[z] is
. .

H
I n(h)Sz(h),

h=1

41* "

n(h)

h) = [ / [z(h). i(1271{z(h.e) i(h))1/[n(h)-
2=1

0

12(11)

i(h) = [ I i(h.01/n(h). . ( 3
.'

.

2=1

1 -f
.?.

,
,

The actual specification of the for theestimate of the
, . . .

variance of regressidn coefficieide in a stratified two-stage sample design
,

requires the defidition'of the row vfctor.(X(h/j) as the X values for observa-

tion j in PSU £ and stratum h. .Correspondingly, Y(h2j) iethe scalar response .
. .

for a Wrticular.obeervation. From (A.12)
'

and (A.13),J .

c-
.

(A.31)

(A.32)

"- n(h) n(h/)

x'x = I X-(h/j)X(h/j)/P(h/j)
h=1 2,=1 j=1

74100
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H n(h) n(h2)

x'y =II IX"(h2j)Y(h2j)/P(h2j).
h=1 2=1 j=1

(A.35)

From the-pre;lious section of this appendix, z(h2j) for the regression case can

Ale defined as

z(h.j) = (X"X)_1 EX"(h2j)Y(h2j)-X'(h2j)X(h2j)B10(h2j). (A.36)

Noi;, the expression for z(h2) can be Written with one last level of approxima-

tion, which is imposed by substituting the estimates (c-x)-1 and b, for (X)-1

and B, respectively:

-1 A(112)
z(h2) = (x"x) , pr(h2j){Y(h2j) - X(Lej)b)]/Patgj). ,( A.37)

j=1

A convenient expression fqr (A.37) is obtained by defining the vector

r(h2j) = EK"(h2j){Y(h2J) - X(h/j)b)]/P(h2j). (A.38)

Now (A.37) may be Atten as-

0,1

1 n(h2)'
z(h2) = (x "x) r(h2j)

j=1

4

O

45

.4

(A.39)

1

Jo.



-Derivation of the Partial Derivatives



r,

Appendix B

,.Derivation of the'Partial Derivatives

\AB 8B
'For the siniplifieationiof and

8(X-X)ii, agfiagnfoineOhl4,

O

1, if j=r;
d(r) =

0, otherwise;

..,

1, if j =
d =
JJ 0, otherwise.

Also define p(p+1)/2 symmetric matrices, Dii with dimension pxp and with

zeros everywhere except in row j, column j'.and row j', column j. These

010

(fg'cations contain l's. The element in row, r, and column, c, Of D.., can
°

be written as

Ti(rc) = (1 - d..,)d.J (r)d.,(c) + d., (0Jd. (c). 4:

e. ,

Consider the partial derivatives of B.with respect to each element in X.Y

by taking the,partials of both sides of the ,equality r

( ' -

'

(X-X)B ='X'Y,

8(X"X)B 8(X'Y) .j=1,2,...

5737; 767TY5i'
arP ,

8(X-X)B'_ d., j=1,2,...,p,
a(x y). J-

(X-X)B d., j=1,2,:..,p,
a(x y). ,

J

8B -

8(X
,

).3

0

01%

The derivation of the partials for X X is more complicated. Again begin
gr° '

with phe equality and observe that the right, hand side is equal to zero v ,

after the derivatives with respect to each element of X'X are taken.

4 45
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.4

aoi'x)B a( Y) = o,
a( -30i.v.

(x)B r 80(10
T j acx. '

j'=i)IP1'
B + (X-X) [a(xaBx)..

JJ'

(VX)BB aoc'x) B = -D..,B.
B(X X) g =[B(MriOji, JJ

Consequently,

#

I

BB
a . ,

o

,,

-=,-(XX)-1 4.1=1',2"."13,3.3 it=j,.,p.

44,
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Appendix C

The Survey Regression Procedure
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Appendix 4

The Survey Regression Procedure

r

This appendix provides a brief description of a flexiblrogram developed

by the authors fdr estimating regression parameters and associated standard-

errors from data arising from survey samples. Theprocedure employed is 'based

on a Taylor Series Linearization approach,.tesctibed in Appendix A. The

program, entitled SURREGR, has been incorporated into an exiating statistic

, ,

analysis package, Statistical Analysis Sysgtem (SAS); aaUsers Manual for the
4...

(program is provided in Appendix D.

GENERAL ,

,F4

a
: I I

One of the-most difficult taSii'in providing ,a new, flexible, statist;cal

' 0,,
.

.a

ke

computer.prOgigmia in-convincingerogradimers'who.know little about statistics
4 ,

and itatAticiaiii foCial:sbientists who know, little about programming to

' 44* -' 4 o 4(

use it. EXperience,,hasahown ehmplstatiStyaa programs that stand alone with

, . .-"-s''4. g. A ,
their own specialized' control Icards:are ImAidlodc Wheicieer possible. For maximum

.
. ;, ... k. ' ' t v , ' r

utility,. these programs heed' ,to,
opexatie,ithincp*IiiSteM:whidk takes care of

interfacing with the user;- however; it' lb e remely time- consuming totesign'

and implement such a'system. Therefore, it. as:.40410,thai the survey regrestion

,
, Y ' L

Program would be written to run under an ekikt.inr statistical system.
)*- . : ,,

:, at Several statistical packages, BHtP, SISS,°0$141$, and SAS, were

,
and, among these, it was determined that SAS pOSesset thg,1;est data

.

reviewedt2, .

management

. le.

exe as follows:capabilities:, The partibular advantages of

a) the ability to extensively mani late t e' input 4ita, -- .

. .

' b) the immediate availability of other t es of statistical analiss,
.

' c) . free format' procedure information statement,,,
..

'information
,

.
,.

,

' d) comprehensive, error:awking . for dataalid procedure information .

statements,' =
- ,., .

-,1 , . e

for'urther
. ,--,e)

f)

4./

procedure output atiaSAS data set which liavailable
0

analysis, and -

theNdynamid, allocation of tore which eies.

-within syStcm core and time lititatilk.

.. 49 ,
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Furthermore, programming details and technical assistance were readily

ay ilable within the lobal Computing facility, the Triangle Universities

G mputation Center (TUCC). 'Consequently, it was decided thatthe survey

regression program would be written as an SAS procedure. The SAS documenta-
1

.ion was provided by Barr,'Goodnight, Sall, and Helwig (1976 and 1977).

II. COMPUTATIONAL PREDURES

The survey regressiatn procedure, SURREGR, his five,main' unctfunctions:

:
.

a)' ,interpretation, of user. input, '

b) accumulation of sums of squares and'cross products, ,
, .

c) a solution for'the regression coefficients,

d) 'general mean square errors, and

'1 'tests of hypothesis.

The approach taken for each function is

A. Interpretation of User Input

discussed in the following subsections.

This function is controlled by the language module, which is independent

of the computational pert ofthe program and is responsible fbr the parsing of

.the SAS...language statements. Although the language module must be written in

IBM 360 assembler language, SAS macros areprovided for the standard parsing

of the variable lists, options, and parameters' philosophy for the parsing

of the model statement is borrowed from the SAS general linear models procedure,

GLM. The GLM language model was modified to allow for multiple model statements

within one execution of SURREGR and

by categorical dependegt variables.

declared as effects or interactions

the reqhired number of binary (0,1)

defined a0

to permit effects and interactions formed

For all'categoricalariables that are

in the model statement, SURREGR generates

variables, qi. These dummy variables are

1, it an obskvation has a particular

11..= 'Ivariable;

A. '0, otherwise.

0

Value for that

..

.

(C.1)

Only after all information statements are parsed without error will SAS execute

the computational part of the program.

c.

50
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The X'WX and X'WY matrices are'computed as the second main function Of

the Trocedure. 'These matrices are* acCumulated as sums of squares and cross

products of variables over all observations. In other words, the actual X, Y,

and W matrices ar never formed. Howeve the W matrix can be represented ai

a square diagonal

)e

matrix with the numbeI of rows and columns equal to the

B. Accumulation of Sums of Squares and Cross'Prnducts

number of observations and with equal diagonal element containing an observa-
s

tion's weight. The X and Y matrices are defined in Section II of the report

with one,exception--there may be more than on column Allocated for an effect

(which,may be a classificatory variable.) I ractions among Continuous and

classificatory aatiables are permitted.

C. A Solution for the Regression Coefficients

To compute such a solution, the inverse of X'WX must be found.! The

Cholesky decomposition technique described by Wilkinson and Reinsch (1971). is

used to compute a standard matrix inverse unless X WX is singular. In this

case, a generalized inverse is computed. This nverse, A
-1

for a matrix, A,

must satisfy the following conditions:

'A = AA
-1
A , (t.2)

and

. .

1

-A check for the numerical accuracy of equations (C.2) and (C.3) is provided

since some ill-conditioned matrices may be subject to large numerical errors.

Each term on the right-hand side of the equations is evaluated and compared

-with-the corresponding element on the left-hand side. Tie maximum difference'

found between any two elements of either comparison is reported to the user.'

If any deviatipn exceeds a set tolerance, the user is given a warning message;

however, the program will continue. Subsequently, the regression coefficients.
,

are compute by the formula in (A.14) giveR,in Appendix A.
. 1

4

D. General Mean Square Errors

This computation
4
requires that the file be reread and'that the TaAorized

, .

deviations defined in appendix A, eqUation (A.38), be computed. These deviations

.N

"If
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52-



as

4

may be rewritten in the notation of this appendix as

r(h/j) = [X"(h/j)[Yh2j)l- X(h/j)B))W(h/j), (C.4) I,

V
where r(h2j) is a column vector: and W(h2j) = 1/P(h2j); other notations- are

defined in AppendiXI A and are not repeated here. The falleging sums and sums -

of squares and cross- products are computed
%Al

. .

-n(h.) _

r(h2) --=''I r(h2j) ,
(C.5)

j=1

n(h)
rr"(h) = T . r(h2)r-(#1)

2=1'

n(h)

r(h) = I r( h/ )r:( )
4

, .

0'

(C.6)

(C.7)

The variance- covariance matrix is then accumulated over strata and adjusted by

(X"WX)
-1 following these accumulations to yield the variance covariance matrix

2
Sb. Specifically, c

H
Sb
2 = WW1) -1

[ F [(n(h)rr"(h) - r(h)r"(h))/Tn(h)-1)fl(X"WX)
-1,

.

h=1

E. Tests of Hypothesis 1

(C.8)

The last major function of the program is to compute the tests of hypo-
-

thesis first for the entire model and then for each effect. The null hypothe-

sis for any of theseltests, may be written as

Ho: Bm = Bm4.1 = Bn = 0,(for n>m), (-
(C.9) I

against the alternative hypothesis

H
1'

B
k
#0 (for Tome k, m<kin). (C.10)

For a particular hypoth sis, the prpgram 'determines its rank, d, and a dxp

11
matrix, C, eh-that-the given hypothesis is in the form CB = 01 The value of

Ig\***.sad is n-m+1, if 11 of the-pyameters, Bm, Brow ..., Bn, are estimable.

Otheridse, the value of d is less'than ni6+1. ,

'.
.

. If the parameters were normally distributed, the test statistic would be
. .,

,.. .

a li1elihood ratia criterion which would have an approximate F distribution
4.i

for laTge samples. If SB is the variance-covariance matrix of B with degrees

52
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of freedom, e, equal to the number of,PSU's minus the number of strata,.. hen
. .'

the test statistic'from Folsom.(19 ) A 0

.F
d,e ed

= (
e-d1

) (CB)"(C S ")-1(CB), (C./1)'

O

r

is an approximate F with d and e degrees of freedomunder the nuLl hypothesis.

III. DESIGN FEATURES

tiThe SURREGR procedur is'designed to produdea regression aniYsis for

sample survey data. To achieve this end, a number of.tinique'feafures have

been incorporated. into the program. The following attributes place SURREGR in

a,class, apart from the standard regression packages of,BMDP, SPSS, and SAS:

a) SURREGR accounts for the correlation between observations dlie-Yo the

sample design.
. f

b) Tgere is no program limit to the number of models which may be

specified in ohe procedure.

C) Effects and interactions ate allowable in independent and dependent.

variables.
.

d) Standard tests o hy&theses are provided,' and,- 'n-the case of a
.

. .

..

.....--

non-full-rank hyp thesis, a test of the es able subhyPotheses is

11
.,

0

made. 411, .
. 1 : , -1

e) _checks are made t 'establish the condition of (X,WX)
,

f) suRnpR has the a "fity to select multiple random samples from a
. .

data file which s considered, to be a finite population. . This

permits'empiricallevaluation of the performance of the statistics

,
and tests generatea,by the program. t

V -

i
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-Appendix D

User'slanual for the SURREGR Procedure

'SURREGR is a procedure which provides a means of producing appropriate
14

tests' of hypotheses for regression models in sample survey situations. The

procedure offers many useful options and operates in three modes, which

differ only in the method by which the variance-covariance matrix of the

regression coefficients is calculated. SURREGR was developedprincipally.

to handle regressi& analysis for sample survey data; hence, the default

mode of the procedure will incorporate a stratified multistage sampling

design into the variance-covariance computation. Another mode of the

procedure relies onsphe ordinary least squares estimate for the variance-

covariancd datrix. Finally,,a weight may be used for a weighted ordinary

least squaresanalysi.i.

The Procedure SURREGR Statement
411,

PROC SURREGR options and parameters;

The options and parameters for thePROC SURREGR statement are grouped

by function.
\,

FILE OUTPUT

DATAOUT (abbreviated DOUT)

° This option produces a SAS file which contains for each model the

regression coefficienti, the variance-covariance matrix, the F test values,

and their associated degrees of freedom. A new record is generated for

each different value ora dependent effect. The data record structure and

output variable names and descriptions follow:

MODEL Model number

DVAR Dependent variable number

NCELL Numlier-of columns of.the X matrix
,.

NTESTS Number of F test,valueS . I
,

CHECK' This variable equals zero if the XI
.

inverse matrix is ,

acceptable.- .

k

so/
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0

B001-B _ _ The regreision coefficients (beta vakues). Each variable

--name for, a-regression-sion-coefficient starts with a B and ends---

with a three-digit number with leading zeros, which is the

column of the X matrix to which the regression coefficient

O corresponds: B001, for exapple, represents theIntercept

value if an intercept was included in the mode l.

V001-V. The variance-covariance matrix of the regression coeffi-_ _ _

Cients% The matrix is output-in lower triangular form.by

rows. The variable nam4 starts with a V and!'ends with a

three-digit number with leading zeros; which is the position

of the variable in the lower t ;iangular matrix.

t

F001-F_ _ wThe F test values frothe tests of . hypothesis for the

entire model (F001) an4 for each independent effect

(F002 -F
1

The aegrees-Of freedom associated with each F test value. ,

It is important to realize that the.sliecification of the output data

set .cannot be made with the s'tandard
,

SAS two-level. forrnat, A separate

parameter le needed for each level.
os

"DDNAME= cabbreviated DDN)
.

This parameter -is used-with the DATAOUT option to specify

the DDNAME in a JCL statement which describes the OS data

0 set for the outpilt file. If DDNAME is omitted a temporary

file will be.uied.

DSNAME= (abbreviated DSN)

DSNAME is used\wilththe DATAOUT option. is a six-character
". ,

name fot`the outpUi data. set. If DSNAME,is omitted the

name, DUMMYM, will be generated bythe proc edure. Since

each different model produces a different data set, a two-

character suffix to the six - character, data set name is added

t b.

3.

by the procedure to identify the model number. These two

characters range from 01 through the'number of models.

REIDUAL

This option allows for output to an SAS data,set of the unweighted

prediCted,and residual values associated with each level of each, dependent

4
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4

0

p

effect for each model. There is one output record for each observation in

the input file. The output variables are:

MO1PRD01-MO1PRD The predicted values. The variable name begins with4 _

the letter M, followed by a two-digit number, the letters

PRD, and a two-digit number with leading zeros for the
. -

dependent effect level. For-example, the predicted value

for the second continuous dependent variable in the fourth

modelAs M04PRD02,

MO1RSD01-MO1RSD The residuals.

(Description the same as for, predicted values.)

OUT This parameter is associated with the RESIDUAL option. It '

. provides the procedure with a st,andard one:- or two-level SAS

data set name. If it ris omitted the'next WORK data set will

be used.

'PRINTED OUTPUT

The hypothesis testing results and the checks on the inverse of X-X

are printed by,defan1t.

NOPRINT This opting suppresses all printed output.

'BETA; BETA prints a solution to the normal equations and the

variance-covariance matrix'fo.r that solution. It'should be

noted that singularities in the X-matrix produce: rrespond-
%

ing zeros i0n the rekression:coefficients and in tl lariance-

covariance matrik. There is no, ieparameterization.

XPX This,,optiOn-prints the X'X matef;Cand itsinVerse.

MODES OF.OPERATIONa

Computation of the variance - covariance matrix using Taylorized devia-

tions-and a sampling structure is default.

OLS OLS requests ordinary least squares analysis-.
.

WLS , WLS,Tequests weighted ordinary Ieast squares analysis.

TAXWLS TAYWLS will computeWLS and then will repeat theanalysis

using the sampling structure and Taylorized deviations.

53
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DATA=_ This parameter specifies a standard one- or two-level SAS_
data set name to'be used by the procedure as the input data.

If DATA are omitted, the-current SAS data set will be used.

PROGRAM CONTROL

MISSPSU This option is for Taylorized deviations and is only needed

when no more than one PSU (primar(sampfingunit) in a I

'stratum has 7114 data. A'divisor used incomputing the

variance-covarsiance matrix of the regression coefficients is

corrected from the number of PSUs in a stratum with valid

data, minus 1 to,the total dumber of PSUs.in a stratum minus 1.

TOL= The absolute tolerance used to compute all'relative tolerances

in the program is set at-10 unless this parameter is

.assigned a different' value. *
PLACES= The number of digits used for all matrix printing is set_

to 8 unless this-parameter is'assigned a different value.

4;

PROCEDURE INFORMATION STATEMENTS

Model Statement

r

MODEL dependent effects = independent e ffects/list of options;

The MODEL statements allow the user to list one or multiple dependent IN

effects with any number of independent effects. An effect may be (i single

variable or a main effect, or it daf be compdsed of,a group of variables.

When there is more, than one variable in an effect, each. variable must be

joined to the next with either a * indicating crossed variables or a ( )

indicating a nesting structure. AAn effect may contain continuous or discrete

variables, but only discrete variables may be nested. 'Variables which are

combined into one effect must be listed with the trossed and then the

nested groupings. Only one level of nesting is allowed.

Exawles of correctly formed effep:

A*B A crossed with B.

A(B) A nested within B.

A*B(C) A crossed with C nested within B.

A(B C) A nestedtwithin B crossed with C.

,Note that an * is not to be used before the,( or

between B and C.
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Examples,of incorrectly formed effects:

A*(B) . The * is not allowed.

A4B4tC neSting7---

All variables must be individually listed.

The "-" option of SAS is not valid in the.MODEJ.,_

statement.

Only one option is.availgble for a Articular

MODEL statement: Unless NOINT is specified,

SURREGR will assume an intercept for the model.

CLASSES STATEMENT (abbreviated'CLASS)

X1 -X10 or

A*(X1 -XS)

-NOINT

II

CLASSES list of variables; intOrder for a variable

to be treated as discrete, it, must be in-the CLASS

statement. CLASSES Al-A4 is a valid CLASS statement.
.r)

PSU. STATEMENT
.

PSU variable name; PSU gives the name of the vari-

able containinea numerical primary sampling unit
4

ixdicator. .
1

4
STRATUM STATEMENT (abbreviated STR)

STRATUM variable.name; STRATUM gives the name of.

the variable containing a numerical representation.

for, each stratum.'Alemember thaethe data set must

be sorted by PSU withitrstratumfor a Taylorized

deviation comptitatian of the variance-covariance

matrix:i

WEIGHT STATEMENT (abbreviated WT) a

WEIGHT variablg name; WEIGHT gives the name ofthe
.°

sampling weight variable.

'LEVELS STATEMENT

LEVELS. list of numbers separated by blanks; a

level is the number of values'available for a

particular discrete variable. That vriable must

be coded from 1 through the maxim= value available.

There must be a level specified for each variable

listed in the CLASSES statement and the levels

must be ordered exactly as the variables in the

CLASSES statement. If there are variables in the

6 0 4 *4'
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CLASSES statement which all have the same number

of levels, then the notation can be shortened.

Four consecutive variables with two levels each

. may be/written as:

LEVELSI4*2i or LEVELS 2,2 2 2."
Certain modes of SURREGR require different procedure information

statements:

'Taylorized
Statement Deviations

MODEL
CLASSES
PSU
STRATUM
WEIGHT
LEVELS

required
optional

required
,zquired

quired
--/

$

OLS . WLS

required required

optional optional

irreleyant trrelevant

irrelevant . .irrelevant
not allowed: required

with the classes statement-

COMPUTATIONAL METHODS AND NOTES

The X Matrix
_

2

TAYWLS

r54luired

optional,
required,

required
required

The X matrix is.a matrix with a row for each observation. The number
' .

of columns -Is the sum of the number of locations needed to hold each effect

- plus one column for the intercept if necessary. A continuous main effect

or an effect with continuous variables crossed together requires only one

column. A discrete main effect requires columns equal to the number of

levels for-that variable. When discrete variables are crossed or nested,

the.number of columns is'equal-to the product of the levels for each variable.

The values of the effect are located within, the program as Well as for

output. by varying the value of the last variable most rapidly. If an

effect is defined at A*B*C where A has a levels, B has blevels, and C has

c levels, then the actual location of an observation A=x, B=y, and C=z

, within the a*b*c available locations is (x-1)*b*C + (y -1)*c + z. Note that

X'X is accumulated once for all dependent variables in a model. In order

to have different treatments for different dependent variables, a separate

MODEL statement must be used'for each dependent variable.

11
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CHECKS ON THE INVERSE

The sums of squares and cross products matrix for the independent

,
effects in:a model statement, X.X, is inverted asApait of -the least

.

squares proceduie. The inverse, ,(X"X)
-1

, is a generalized inverse. There

is a check provided on 'the condition of the inverse. Each element of X1E

, is compared with that 'of X'X (X-X)-1: X'X and then each element of (X'X)71.

is compared with that of (X-X) X'X (XI)
-1

. A relative deviation equal

to (the check value minus the' actual value)'divided by theactual value is

compared with the program's set tolerance times 100. If any deviation

exceeds the%et,tolerance, the user is given a-warning message.
-

THE VARIANCE - COVARIANCE MATRIX OF 'THE°REGRESSION COEFFICIENTS I

- If no option relating to the variance-covariance matrix is specified,

a between -PSU (primary'sampling unit), within-stratum, generalized mean

' square error (GMSE) is computed. This GMSE is derived for the regression.

4 Tr bleui using'the technique of Tayloezed linearization yielding a Taylorized*.'

,

d iatiod whiChis incouporated in the cothputations.
2

For the OLS option, the:variance-covariance matrix is (X-X) v.

6

-.ma... = (Y b "X "Y) / (N-r)

4

where ris.a vector of all for one dependent effect, b is a

vector of regression coefficients'for that dependent effect, N is the,

number of Aiervations, and r is the rank of X.

For, theW1S option, the variance- covariance matrix has the same formula

'as-for OLS except tHat each product, of 'dependent and independent effects

observation has been-multiplied once by that observation's weight.

HYPOTHESIS TESTING

The last major function of the program i to compute the tests of

hypothesis first for the entire model and then for each effect. These

tests exclude the intercept. The null'hypothesis for any of these tests

may be written ai

HO : Hm =
1
= = B

n
= 0(for n > m),

63
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against the alternative hypothesis

Hl : Bk # 0'(for some k, m < k < n).

For a particular hypothesis, the program determines its rank, d, of the

estimable subspace of the hypothesis and a dxp'matrix, C, such that the

,parameters CB are estimable and rank C is d. The value of 'd is n - m +'1,

if all of the, pakameters, Bm; Bm B
n
, are estimable. Otherwise,

the value of d is less than n - m + 1.

Ifthe parameters were normallYAistributed, the test statistic would

be a likelihood ratio criterion which would have.an approximate F distribu

tion for large samples. If SB is thevariance-covatiance matrix of B with

degrees of freedom, e, equal to the number of PSUs minus,the number of

strata minus the rank of XIC, then the test statistic,

e -d+d 1 2 -1
(CB)Fd,e = (CB) (C SB C")

e

).-'s an approximate F with d and e degrees of freedom under the nul). hypothesis. -

. ..

For OLS, e is equal to the number of observations minus the rank of X.X.
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