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: © "1. INTRODUCTION
S »

. »

The National Longitudinal .Study (NLS) of the High School Class of 1972 is |

A

\ a large-scale sample survey sponsored. by the National Center fot Education

. Statistics (NCES). The sample design fpr;§92§/survey can be described as a
deeply‘strati fied two-stage design with 600%final strata. The original design

~Ca11ed for 1 Zﬁa/s:;Qpls and 18 students per sehool (size permitting). A

. total of 1 ‘069 schools and 16, 6?1 students Qarticipated in the base-year

v

L2

survey, which was c?nducted by E
¢

follow~up af nonrespondent schools, plus additional backup schools and augmen-

cational Testing Service., An additional

“tation of the sample for the first foilow-up, increased the pumber of partici-

pating schools to 1,318 and the totaf‘student sampre “to 23,451. The numbers .

of respondents;to the first, second, third, aad fourth follow-up questionnaires,

administered by the Research Triangle Institute (RT1), were 21,350, 20,87% -
320,092, and 18,630, respectivefy. : . )
P As suégested above, a large -amount of da¥a has been cdllected for this
study. The types of statistics’ required to address various research questions
of.interest range from simple descriptive totals and means to more compiex
analytic statistics, such as regress1on coeff1c1ents, but the problemg of -
draw1ng valid and relevant 1nferences, whichuare "common to all multistage
sample suryeys, must be addressed in analyzing the NLS data. For complexX
statistics, such as regression coeff1c1ents, there are no "pat" solutions to
these problems, however,. the need still ex1sts for some good, even though
1mperfect " techniques to approximate these statistics andy. their €rrors.

& - Aside ' from the various ‘theoretical issues 1nvplv1ng the validity, of
inferences from surveys, the basic problem of producing unbiased estimates of °

‘ regression parameters and estinates of the associated standafd errors has been
a particular;y thorny 1ssue in dealing w1th results from stratified multistage
sample desigas such as - -the one used in the NLS. host of,the available statis- .
tichl softuare packages [such as SPSS (Nie, et al., 1975), SAS (Barr, et ai V

199% 1977) BMDP (Dixon, 19750, or OSIRIS (Rattenbury and Eck 1973; Institute

for Social Research 1973}} tréat te sample as 1ndepend\ht random. observations,‘

1gnor1ng the sample degsign. This approach is convenjient  but theoretically
Ed

1napp¢opr1ate, since it does.not account for unequal probabilities of Select;on
ror for effects of stratification and/or clustering. The,application of sampling

weights is poss1b1e through some software packages, allow1ng cortect‘estimates
! )‘35 .. - ' . ' :“‘ h

L
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of regression coefficients, but'appropqiate error variance estimates typically
are not produced.*' In fact, it is not ppssiﬁie té~obtain explicit expressions

. g
for variance esfimates of complex gstimators such as regression coefficients

. s
within complex survey sample designs; however, various approximation procedures

-

are available. ’

The purpose of this report is to . review some appropriate available tech-
niques that may be useful in applying regressien models to the NiS data' The_
following section provides a framewprk for evaluatlon and an appralsal Bf some

alternate approaches within thi% framework. In Section 111, a preferred

g

approach (comb1n1ng the Horv1tz-Thompsonlestimator and Taylorlzed deviation)
is compared to. an Ordlnary Least'Squares approach, through a-simulation proce-
dure using actual NLS data. The several results are summarj Section IV.

Formulae underlying the prefe;red approach are provided separately in Appen-

dixes A and B, and details of the development and‘use of a computer program to

implement the approach are provided ‘in Appendixes C and D.
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I1." ASSESSMENT OF ALTERNATIVE TE(?}{NIQUES '

. ) . » i
PL . & ‘. e %
Survey research in the social sciences is often based on large complex \

samples, from which 1nferences are made regard1ng the population under study
The most common practlce for drawing 1nferences about a univariate parameter
is t6~assume (6 - 8)/s(6) has approx1mately -the Gaussian or Student st d1s-
tr1but10n, where the statistic 6 is an esglmate of the parameter 6 and s(e) is
an estimate of the, standard error of 6 Similarly, for a mult1var1ate parameter -
e, represented as a row vector, 1nference may | ‘be based on a Hotelling's T™
type statistic of the ‘form {6 - 6){V(6)} (6 - 6) ° which is assumed to have

* a chicsquare or transformed F disfyibution in repéated samples, where V(e) is

-

A

an estimate of the var1ance covar1ance matrix of ©.

s

‘{ The justification for such an approach is based on the assumption that a

generalized centzal 11m1t theorem applies to large complex probability samples .
frog{f1n1te populat10ns Dav1d (1938), Madow (1945), and Hdjek (1960) have

established such results for the mearm of a simple random sample by letting the
l

*

population size increase at the same rate as the sample size. For syrvey
statisticians concerned with finite ‘population 1nference, the regular1ty with

wh1ch sampking distributions “for properly standardized survey statistics can
be expected to follow classical distributions continues to be oneof the most
1mportant unanswere'd questlons
The problem is further compl1cated in the case- of regress1on ) 'ls in ]
the spec1f1cat10n of 6 and the standard érror of 8, where l,1s a vector of
¢ regresslon coefficients. A variety of models adﬁ 1nt£rp;§zat10ns have been .
suggested [e.g., Konijn (1962), Godambe and Thompson (1971), Royall (1971), -, »

Kish and Frankel (1974), Fuller (1974), and Folsom (1974)]
. o]

?

A. Overview and Notation!

For the NLS survey, schools were strat1f1ed by several character1st1cs to
,obtaln o 600 strata (Westat, 1972). W1th1n each stratum, h, my (mostly 2)
- jip K schools were seletted at random from the total of Mh schools in the stratum

W1th1n each school (i.e, the ith school in the hth stratum), a random sample :

of ny: (mostly 18) students from the tota1 of N .° students within school hi "
ot

were selected for survey. ° . _ ) . N

3

‘v . * - e
i ~ . 7 . [ /\4 ¥
ecifi .

' I Although the discussion in this and supsequent ‘sections is sometimes Sp
to the NLS survey design, the results are generally app11cable - l 3}




W1th1n this context, es¥imates are ﬁféﬂlred for example, consider an
‘estimate, o£ the natiopal total number of hlgh school senlors who were in an
Let X
curriculum in the (hi)th schqol h=1,

be _the estlmated number of students with %cademlc
2,5...; H and i =1, 2,

academic curriculum.
)- mh

- If the sample of schools W1th1n each stratum is . selected with equal .prob- o

abilities and with replacement, then the estimated total T, 'and an-unbiased

-

e

estimate of its variance, V(Th)’ are ' . e
! ) ' ’ \
~ KoM "hos H ™.
T= § — % XHi = X -Z~Yhi ) (1.1)
b=l ®h =l h=1+"i=1 - R o
and . L ' \k oo ¢ . .
. aa  H " "n,. _ o ‘ '
' V(T) = 2 mh Z (Y =Y. )"/ (m 1) , 1.2) ©
. ’ h=1 ."h h . N B
N ' \
* :
- l. . I "
where Yoo T Xy M/my o o .
. ! * - \
~ Tho. o g < .
and Y = 2 Ypy/my - . :
: o 1= 1
4 he -, R —~ ~ R
JIf an hpproximate estimate of the size of schools (s = size = total
**number of students in the (hi)th school) “were known, then one could use a
‘biased netlo estlmator, Tl’ given by - v .
\ ” - ea\-
\, A . H mh ) A é
o, T,= 3 X 2.9 - (1.3)
b op=1gm M , ;
AN . _ .
A A F ’ t \ \
7 ~
where Zhi £ h+'Xhi/mhshl , . .\ y ) . 5
My | B %
A S
. =1 o - L -
- » S ‘-
T § ”

L . hY
-The estimator Tl; which may be retognized as a Horvitz-Thompson (1952) estima-

tor, is an unbiased estimator of the total, if the probability of selecting

’ ..f"‘”

10

.

-

-




v . t . - it
. Y \ . - ‘
. i . . - . ~ :
LN . ~ © . \
' the "(hi)th school is ph hi/sh+ on each of m ‘draws. An unbiased estimate .
" of its variance is.given as ' v <t

- X .v .
-;v-ﬂ' N . . » -
3 ] . 4\_ )Y . )
aa .. H* ™. T : oL

. hY -
© o PWIT) = Im 3 (2. - 29 (@ - 1), . (1.4)
‘ S W O A Tl . .
[ , . . —) . r © -y
. T 1S ‘ SN
P where Zh = .E Zhi/mh . . ‘ - M
"" .1_1 « e . !
oo This appears to be/the’most'common approach in many sample surveys: The‘

§ -absence of bias in the estimator Ti and the estlmate of its_ variance V( ) are -

\g estab11shed.over repeated samples ‘with. the primary simpling units se1e1ted

e

with unequai\\xobabllltles and with replacement .

- While the prior discussion has been directed “to prOV1d1ng an example of
estimation W1th1n the’ NLS study, toward -intFoducing notatlon, it also has )
illustrated the way in Wthh the sampl design or the cbnceptuallzatlon of a11

poss1b1e samples affects the variance|of the estimator based on only one of

the. samples The freedom of surwey deslgners to define the sampllng distri-

butlons has raised several fundamental issues regarding various statiStjcal

estimates)\ A full discassion of these issues is not within the scope of th1s : .

report; how@ver, - the practlcal problem of se1ect1ng an appropriate est1mator .Y

! . &

: and an-estl ate of the varlance of that estimator must st111 be addressed

L ;The est1mator chosen for the current purﬁose is the HorV1tz Thdmpson vt L i
1 H

T estlmator. For saﬂpllng w1t& unequals-probabilities, this estlmatox is used
v widely id practxce and ‘has been found to' be an admlsslble estimate. The ..
Horvitz-Thompspn estimator is not the "best"-estimatbr in 411 cases, but the
. = same can be saiﬁ‘of any other'esgﬁmator When probahllltlds of se1ect10n are *
based on priorg information~about size and the relat;onshlp of size. to the -

’
. . M

character1st1c of interest) ’ the Horv1tz Thqmpson est1mator»1s opt1ma1 or T “

.
“

R . nearly optimal. ' g - ," 4 o,

) " The cheice, of this estimator is not a: arbitrary as it may’ appear (Shah

P 5 1980); however,’ there are few practical rules to support the ch01ce The most

common_ advice for selegtlng an;gstlmator is’ to examlne the data before, decadlng 7,

e which EStlmator is opt1ma1 An expert in survey dESlgn and tqpory may be able

to reach such 'a decision because of past experience and knowledge. , Other N L
<, - " R . . ’,‘ .
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researchers may need a catalhg of alternate estlmators and'.a set of rules that
~ will enable'them tg'select the opt1mal estImator.. At present‘ no such gu1de-

lines exist except for such vague statements as, "If probab1l1t1es of select1on

-
™

have né relation to the ch?racter1st1c to be measured then the simple mean . #.
, . would be better than the HorV1tz Thompson est1mato£. The survey practitioner
obv1ously needs better- guldelines for choos1ng est1mators, but unt1l‘£u;h time .
e " as these rules becom ailable’, the survey practitioner probably w1ll cont1nue

to use, the HorV1tz-;h:£;son est1mator,:wh1ch is opt1mal in most cases, eveq
-thougﬁ may be 1neff1C1ent 'in a few s1tuat1ons. < . : ' A

Zicond 1mpdrtant con31derat1on, wh1ch is oftdn neglected, is an estrmate
ot of the, variance of the est:nnator:,,L Th:-est1mator that one’ uses_may or may not
o be opt1mal and may oy, may’ not be eff1c1ent but it is imperative that someq . . .
proper estinate of the variance (mean sguare'error) -of the estimator be computed

from the data. The proper evaluation'of mean square error -assumes an ddditional .

_ ] j PR ) . o . . .
. dimension of importance when the estimator used is not unbiased. Guidelines’
* - - ., . . ‘l . »‘. Id . "
for select1ng from among available mean square error estimators also are not . »
- o TR : . PR - "
readtly ava1lable. . X . . -

1

In fhe case of'estnmates of erfor_ variance, there are additional cons1der-

at1ons. Eor the exégple given apove, the total is ‘a simple 11near “function of

¢ ' . the obse;vat1ons, and it is possfble to der1ve expl1c1t algebraic expness1ons

»

*'for est1mat1ng<Var1ances of such linear funct1ons. HOWegfr, it i's not poss1ble

. te obta1n such expl1cit express10ns for variance estimates of complex est1nators

.such as a regression coeff1C1ent or a correlation coeff1C1ent. There .are, < .

| however, various ava1lable apprOX1mat10n procedures, some: stuch procedures are:
Sl S

’ ﬁ; . (1) Taylorized deviations, (2) independent repl1cations (3) balanced epeated
. ¢ ‘replications, and (Z) Jackknife. . : o 1'_ r ‘\ : o
. T B.’”,éppl1catlon of the Central Limit Theorem

e ¢ Assum1ng the estimate and var1ance for the total (l 1) and (1. 2), let the )
‘.: ‘ vector Th = Ctl* Los goees th represe the totals Pf k var;ables (xl,.xzf"T -

teoy xk) for the'hth stratum. An estimatof of total Th and its variance-covari-
ance matrix' V(Th) can be obtained, using formulae s1m1lar to (1.3) ahd (1 4).
Further, let the vectot T denote the sum of the‘vectors Th Since the sampling

. |

e - ' e, R
. ! . \ v v . : R . * : .
.. vé‘” © . ' \ ' . to. ’ . ! .t ’
~ : £ t . . ey ., i ‘.
2 It should be noteﬂ that this d1ff1culty, with complex statistics is common to * % -
o : . 311 branches of stat1st1cs and 1s not a d1st1nct1ve featu?e of sample surveys..
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, T = p3 Th , '- : ‘ v (1-5) '
h=1 i L. , . ! J’fé "
and an estlnite_ji/fhe veriance-coveriance matrix of T is ',
& . ) [ 4 ' ‘ o .
T) = z V(T) . ‘ o (1.6)

h=1 ‘

If a large number of strata® are involved and it is ass\u{m/d that tlhe .
f1rst two moments of the'dlstrlbutlons of T (h =1, 2, R Q) satisf% certain
convergence»propertles (e.g., L1ndbemg condltlons), a general form of the
central limit theorem would apply (Feller, 1966); hence, the limiting distri-
butlon of T would be multlvarlate normal. . .

If one 'is 1nterested ig estlmatlng the varlance of a statistic, 6, which
is a non11near functlon of T“ then the approxrmate normality of T is not L

necessarily useful in est1mat1ng V(G) Examples of such non11near functions

8 . thxh , \. . ~
1 th ‘ e i 3
) S ;o0 |
and e ‘y ; # . i
’ (3w, x 2w, X E& y /ng)

. H hyh h*B~n'h’ .
. % * — -~
- "2 2 . 2 2 L

’ J{Zw v, - By, /2w }{zwx - (2w %) /29 } -

-~

E h kY .
- ° -
.h l h
- ~
. ¢ . . !

.
’

The statistics 61 and 6 can be readfly recognized as the weighted mean of x

and the: .weighted correlatlon betWeen x and y, respectively, where’ wh represents

-

the welght - s oo
o ' < /
" S DON, -~ ’
‘. l . I .
3. If sampling of Prlmary Sampllng Units (PSUs) is with repl@cement the same /

arguments can be’ made at PSU levels.

o
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C. Varfance Approximation Procedures > . )

As stated previously, four relativelyscommon approaches to appropriate

v

*Var1ance estimation are (1) Taylorized dev1at1ons, (2) independent replica-

%‘é’f’

\ .
tions, (3) pseudo-replications, and (4) Jackknife. Brief descriptions of each LW

. of thesge techniques, thé1r assumptions, and the1r strengths and weaknesses are .
o b—-.l . '

-

prov1ded in this section.

1, Taylorized Dev1ations : . = ’ N

A class1ca1 solution’ to the estimation problem has been to express *
the stat1st1c 6 as a polynomial in (tl, 2, ooy tk) elements of the vector T,
using the Taylor Series expansion. The approximate variance of,6 can then be
obtained by using'only,the linear terms of this exbénsion (see Kendall and
Stuart, 1973). o
b If (66/6T) is a row vector of derivatives, {66/6t1, 66/6t2, vy 66/6tg},

then the approximate variance of 6 is est1d§te8®by ~
A A .AAA -~ .ﬁf ’ &
v({e) = (66/6T)V(T)(66/6T) .
which can be further expanded as .
'." \)' . e
A4 AN A H -~

v(e) = =2 (66/6T )V(T )(66/6T )’

S h=l . ® : Y -

' . . LI
s

For large values of H, it is assumed that the distribution of 6 will be
approximately normal with variance V(6).- Such exbension for ratio estimates

i's presented in most'textbookscon sample surveys. The first-order Taylor
Ser1es expansion for regression coefficients has been derived by Folsom (1974) .
and Fuller (1974) Wood%uff (1971) has presented an algorithm for ‘obtaining a
f1rst order Taylor Series approx1mat1on to compute the var1ance\e£ any complex .
stat1st1c Programs for Taylorized deviations are available from H1d1roglou

and Fuller (1975),'Holt (1977), Kish et al. (1972), Shah (1974), and Woodruff
and 3Cause‘y (.1_9 76). ' { .

2. Independent Replicatioﬁs

-]

'

[

_— .The mostggtra1ghtforward way to avoid assumpt1ons would be to draw 4
/ several independent samples from the same population and, thus, to obtain -~

; several independent estimates of the same statistic @ (i.e., 61, 62, ceey er)'
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and an estimate'of the variance; V(é)mjisghiven by-

¢ X ,.‘ L0 i ‘ ’ ’ ’ LNt

¥ T v(B) = z (e ~ 8) /r(r-l)
i=1"

\ < . . - . B
\

R S . .

- In practlce, however, one would llée to compute 8 using data from all the -
" - samples, and for, complex stat1st1cs ® will not necessarlly be equal/zg’;‘——l“‘i
g is then necessary to assume that V(e) is approximately equal“to V(e) X
d " A practical problem exists w1th this technique.in that it places severe
;estrictions on.tﬁe sample .design, since each lndependent sample is much
A smaller than the "total sample" feasible with limgied resources. Further,
. T oresources may similarly constrain the(:L£::;/of 1ndependent repllcatlons
*  (samples) to be small;‘consequedtly, he mate of the variance would have . N
h few degrees of freedom and would téud to be unstable. Additipnally, in the
‘case of multlvariate analxsis where 6 is a vecucr‘of dimensicn P, if P > r, o
then the estimated variance-covariancemmatrix V(0) will be singular. ’ '
e 3. Pseudo-Replicatians , < L .

AR ¢ An 1ngen10us but- s1mple approach was suggested by McCarthy (1966)

R4

' fdr designs with exactly two primary sampling units (PSUs) per stratum. A
‘rangem half of the sample 1s defined by randomly selecting one of the PSUs in
_ a 9each stratum, the half sample and its complement are assumed .to be ' apprOX1-
o ’ mately" }ndependent samples. Thus, an estimate of the variance w1th one . '
degreQ of freedom can be . computed using two half samples. Of course, it is ’
necefsa;y to assyme that thé“Var1ance of the statistic based on the total .
;ample 1s approx1mately half that of the estimate based on half gﬁ%llcates
Since there are 2 possible half: samples, many pa1rs of half samples can be
-selected. . In practice, about 90 "to 100 pairs of half samples are selected- to .
provide reasonable estimaﬁes of the variances. . B
The determination ;f the apgxoximaie degrees of freedom for the estimated
o " variance remains an unauswered -question. The practical approacb is to assume

' degrees of freedom equal to the number of strata or the number of" pa1rs of

» - . © ~ [
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. , .
half replicates,‘whichever is smafier. If both of these are large (i.e.,
greater than 30), then, 1n practice, the actual value is 1rre1evant since the
t or F distributions can be approximated by the normalfo; X~ distributions,’
respecfively. .
4, Jackknife n

tThe "Jackknife" approach originally suggested by Quenoille (1956), .
and so named by Tukey (1958), is an intuitive approach to computing variances.
A definition of "Jackknife" for a mult{etage survey design in which all stages
are,randon is presented by Folsom gt‘al. (1971). Kish and Frankel (1974) have
‘suggesgted an/approach for a stratified sample w?th two PSUs per stratum; é

however, no general definitiod is available for a stratified multistage sample.

N
-

‘D. Additional Considerations ‘ ‘ ‘ .
p Most of the widely used statistical packages (e.g., SPSS, BMDP,
OSIRIS,, SAS) do not routinely ptovidgifor computing proper variances of a
weighted statistic: from a multistage sample survey. Except at institutions
with large statistical and computational resonrces; the computation of such
- standard errors frequently is ‘not attempted. )
Q‘ Frequent complaints are that the cost oé computing variances is excessive
“&nd that standard software for the computation is not available (the cost of °
spec1a1 purpose programming being prohibitively expensive). For example) the
cost of computing the variance ‘of a weighted mean may be 10 to 50 times that
of computing the mean. While this may be thelcase for some techniques or
programs, RTI's experience in using the Tax}orized deviation approach, is that .
the total cos}«of computing:yariances is only about twicsfthat of computing
only the mean. Moreover, several éeneral»purpofe programs hawe become available

trecently (see subsection II.C.1, abave). b . g

2. Estimating Variance Components < . ;

Many surveys are conducted periodically, and there is a need for |
evaluat1on of survey designs used with a view to possible ;mproVements 1n<
subsequently designing similar surveys. To make decisions about such designs,
there is a need to estimate contr1but1ons to the variance of a statistic from
var1ous elements of the overall design such as stratum, PSU, and 1nd1v1dua1
1n‘other words,‘est1mat1on of variance components is required. Of the techn1ques
discussed above, Taylorized deviation is the only one that permits -estimation *

. ~ -
. - .

- ¢ '
© 10 - ' ‘
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.of variance components (see “Shah . et ‘al., 1973; Moore et al. l974) Since the
estimator is expressed as “a "$um of random variables, the variance components

of 6 can be estimated in»the same manner ‘as that of T. . .
- * > ) . X 3
. ‘ , . :

E. ' Comparison -of Techniques s s

v

To _compare the techniques, the folloWing criteria are used:
1) validity or number of ‘assumptions required,

2) restrictions on sample Qesign,

3) computational problems for large data sets, and.

4) fleXibility of applications

A summary of the comparison is p.

eSented in Table 1. From the comparisom the
Taylorized deviaﬁion approach aﬁpears to be best,.if one is willihg to accept
applicability of the central ;'mit theorem.’ Furthermore, if one needs to

_ evaluate components of variancé then Taylorized deviation is the only approach.
If there are only two -PSUs per stratum in the design, pseudo-replications
"would be. appropriate 4 The, gackknife approach should be considered only in
the rare case of a complex design and for a statistic for which it is not

possible to evaluate derivatives. The independent replications approach will

be suitable onlyﬁif the sample is designed appropriately.

Conclusions‘ . .. , . \

. The recommendation-supported by the discussion in this section is that -
fo{\mdgt nontrivial survey designs, the Horvitz-Thompson estimator and a
Taylorized deviations approach are typically the most appropriate and practical
techniques for computing parameter estimates and associated estimates of the
variance, including estimates of rggression coefficients. The choice of the
HorVitz-Thompson estimator is based partially on intuitive grounds but is alsoy
stpported theoretically (Shah, 1980). The choice of Taylorized deviatidns was

. made for the llowrpg reasons“ (1) applicability to all designs and statistics;
(2) applicability to«f%rge samples, ;)‘economy and computational feasibility;
and (4) capacity for estimating variance components. - : .

The assumption underlying the Taylorized deviatiods approach is asymptotic
normality. The assumption of approximate normality is in use in other contexts,
and some rules of thumb have been developed (e.g., a binomial distribution is

! % ' ' )

~4 Although the driginal NLS surVey deSign had two schools per stratum, the

ultimate design had several strata with three or four schools.
, ,
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Table 1.--Summary of comparative evaluation’

AN

RIC

A et provided by R
fe .

T / Criteria

. .

doe Restrictions ' !

u .. on sample Computational ) oo

& Technique ‘ Assumgtions design problems ﬂ"' Flexibilkity

., Independent, - Minimal Severe - Simple -
_replications © ‘ : . ’
Psuedoy . Independence é? Two PSUs per Significant -~

"“*r@plications complementary stratum .

Co 3' half replicates \ .

' ? Taylorized General central Nope . Not difficult Can be. used
 deviations limit theorem .. . for variance
% ' ' : >/// components |,
.?' ‘ PR . ) s
*71Jackknife Intuition * None Greater than May be useful
- : ° Taylorized for some =+
T ) deviation designs
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approx1mate1y normal if npq is greater than 10) There is an obvibus need for_: ..
developing such simple rules of _ thumb for statlstlcs resulting. from survey ," o
samples; hOWever,~unt11'more infqrmation is available, the suggested approach" <

is Taylorlzed deviations usihg any of the available programs (Hidiroglou
1975; Holt, 1974 Shah, 1974 or. Woodruff and Causey, 1976). In

practice, one should consider certain transformations of &tatlstlcs that ’

A

et al.

rapidly converge to normality;, as an example, if r is the sample correlation,
then evaluation of the variance of Tanh~ (r) may be more appropr1ate

A development of the Taylorized dev1at10n§lapproach for regress1on coeffi-
A flexible

and easily used computer prograi applying Taylorized deviations to the tomputation |

cients is provided in Appendixes A and B, for the interested reader.

of regression coeff1c1egts and their standard errors for data arising from @ . .

multlstage samples is de§tribed in Appendlxes C and D. This program is available .

~

from the senior author of this report.
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. » of regréssion-models with data arising from complex survey samples.

. o .
° st " -~
”, . /)

- ‘ ’ S v \ 3
* . s ;-
e © " III. 'EMPIRICAL TESTS-OF TWO REGRESSION APPROACHES
: . . . . .

- . o
?rev1ous discussion ‘hhs ‘indicated the theoret1cak@super1or1ty, under

~ assumptxons of approx1mate normal;ty, of a- comb1ned Hoqv1tz-Thompson estimator

. apd a Taylor1zed deviation variance approx1mat1on approach ‘to- the investigation

Nonetheless,

>
> -

4
~
)

there is need for some empirical evidence of the verity of the appreach;, e .

, consequently, a simulation procedure was undertaken, using the NLS data base.

'The study involved drawing a large number of random samples fromlaﬁiig;te
populatioh and then deriving pertinent statistics from these samples, to
evaluate the.ldistribution of the regression coefficlents and that of the
approximate F values computed by Taylorized dev1at1ons

The simulation also allowed a natural vehicle for evaluat\on of other,

less appropr1ate, approaches to regression analys1s as compared to the suggested
approach. One of the most widely used approaches to regressﬁ%n analysis

ignores-the sample design and addresses the datd as though they arose from a

simple random sample. This approach, using Ordinary Least Squares (OLS)
criteria, owes much of its popularity to the facts that it is better kiown

‘ than the more appropriate techn1ques and that it is easily applied through all

+ Nathan and Holt (1980) have

demonstrated that in most cases the regress1on coeff1c*ents computed by apply1ng

of the widely used stat1st1cal analysis packages

OLS solutions to data collected from complex survey-designs will be biased,’
although an exception occurs: for epsem des1gns Moreover, they shoaed that
- under these cond1t1ons, the *OLS variance. est1mator is consistently biased even.
.1n those cases for which the OLS regress1on coefficient est1mates themselves
;re unbiased. Wh1le the proper appl1cat1o\\ef sampling welghts, within some
‘standard stat1st1cal packages, can produce unbiased est1mates of the regression -
Aaeff1c1ents, the we1ghted variance est1mat¢ produced by most packages remains
b1ased Moreover, B 's exper1ence\w1th this latter approach suggests that
resu1t1ng variances show cons1derably greater bias than those obtaired throughg
OLS. - For these reasons, OLS was chosen as the\compar1son approach to Taylor .

1

Series L1near1zaE}on (TsL). - ‘ -

A. Hethod ) o ©oe
The NLS: base-year sample was taken as the finite population for this

simulation.” The or1g1nal sample des1gn cons1sted of 600 strata, with 2

A Y

14 20 i ' .




' schools selected per stratum. W1thin each school, an equal probability sample,
_of roughly 18 se;?%ts was selected. For the s1mulat1on 84 major strata were
‘e formed by combining similar strata, each conta1n1ng at least 10 schools. So
as -not to confdund results of the simulation study w1th problems of m1s§1ng
"data the finite population was defined to exclude student's "with m1ssLng daEg
the study populat1on conta1ned 935 schools and 10,657 students -
The s1mulat1on cons1sted of selecting 1,000 random samples from the
defined populat1on.. Each sample was selected in two stages Within each
. stratumi/tyolschools were selected without replacement with probab1l}t1es
- proportional to estimated senior class enrollments; Durbin's (1967) method/ was
) used for these selections. From each of the schools ln each samole, fivd
responding students were selected Wlth equal probab1l1t1es and w1thout'replace-
- ment; thus, each result1ng sample consisted of 840 students. OLS and- TSL*
values of regression coeffitients and the1r assOC1ated variances, covar1ances,
. and F values were computed for each of the’ l 000 samples aﬂd for 4 regress1on
’ equat1ons ’ p ' : . A
" Two basic regress1on models were selected for the NLS S1mulat1on study/

N bnd .within ‘each model two, related cr1tef1on variables were.used to indicate

~t

.the type of postsecondary educat1on being received by~ 1nd1v1duals in the fall
v . of 1974.‘ Th1s\Yesulted in four regression equations for evaluat1on, although
7« the t cr1ter1on variables for each model were similar (both related t ype
T of ,postsecondary entry, but one was a dichotomization of the other). i!h ’

pred1ctor variables re resented characteristigs of whe high school seniors
P g

' pr1or to- graduat1on in 1972. The two basic regress1on models are wr1ﬂten
- » .
” symbolically below. ’ . - . LYY
Model 1: INC (or TYP) = INT +SEX + SES + GRADES + GOALS.
. ; . A , R ] o
/ Model 2: INC (or TYP) = INT + SEX + SES + ABIL + RACE*PROG. et
L4 l‘ . \i . l - . ‘ f ' , ’
. . The variables used in the %o models are defined below.:’ T
v INC = 1.if the individual had enrolled in some type of educatibn
) T after high school; 2 .
] . * 0 otherWise. ° . y
’ ) :.’ ) 4 ’ - 7
.y ) .
v .

.elements for any of the varlables use¢d in the regression models Consequently,.

|




Y P o S - e, '
’ . ’ ° ’ i ‘ 7 /
TXP = type of cellege enrollment: scaled, as follows: i ‘ v L.
! 4 if A-yeer college; - L. - N
’ . ™ 3 if é-year college; “'ii a »c, 9 ‘ LY
2 if any other reguiar or;vocat1onal college, °
© 1 if not enrolled in any college ] . oo
N INfu; the.quel intercept.® . 4 o‘ ’ 2 "‘
SEX = 0 if female; e o B -
. 1 if male.,k .~ ° S . o o .

¢ o et - - -%‘ o .
SES = ;composite soc1oeconomic-j?uﬁt1onal status derived from several
t

base-year quest1onna1re ems (see Dunteman, et al 197&5

GRADES = Self-reported overall h1gh-school grade range {8 levels)
GOALS = a quantitative ﬂi:sure of educat1onal ar 6Sther asp1rat1ons

derived frdm- base=year quest1onna1re respdgse (see Dunteman,

4 ’ -
i ’ ) .-

et al. 1974) - "% - o . o

ABIL = an ab1l1ty score based on test 1tems adm1n1stered durxng the
base-year (see Dunteman, et al, , 1974). )
. RACE*PROG = indicator variables for the 301nt contf&but1on of &ace/ethn1C1ty

and high school program 1nclud1ng their 1nteract1on, where

" R*P

= 1 if the high school program~was academic and raCe/eth-

o : . nicity was majority wg}te, i . vt K ‘
’ . 0 otherwise; . P .o ,'Z Co
“,R*Pz =1 if the high eehoolvgrog;am’ ae aeadem?% afld' race/eth- ¢
’ R nicity was any qipérity, /*%Ei\\r’ T
P L. 0 otherwise; LT , ’ —
’ ’ -’.R*P3 = 1 if the high school- program wég‘nonacédemic and the
‘ race{e}hnicity was majority white, ‘
. ‘ 0 otherwise; -. .
. R*Pé =1 if th€ high school program wis nonacadem1c.3nd the

L 4

—face/ethnicity was Lny m1nof1ty,, ) _
.0 otherW1se o Y

The regress1on models were evaluated using botk' oLS and TSL, as’ appl1ed
through procedure SURREGR descrzbed in Append1xes C and D In~ full modgel -
(ALL) hypotheses, the intercept was excluded. 4«;0, the™ RACE*PROG hypothes1s
of model 2'was reduced to rank gq/{y eliminating the R*P var1able. The var13mce
,of the regression coefflcaents, the mean difference from_the‘correspond1ng

population value, and the standard error of the ffean weré ,computed over the
N ; , i pute



A “o ' : l -
-1 EPO samplés in order to evaluate the possible blas in estimates of the
~ coefficients. Means of the .estimated variances were also computed.: Addltlonally,
22 w}t the values of the F statistic for testing the hypothesls that the regresslon
coeff1c1ents were equal to known populatlon values were computed.- Since the
» . “~hull hypothe51s is trye, the observed values should ‘resemble the theoretical F

——

* distribution. The actual numbers of observed F values falllng below various

‘. -percentile/pQ;nts of appropriate F d1str1bytrons were tabulated for this
. comparison. , {"\\e§ .
q B LY
- . . " e .
B. Resuits - -
Reus . .
R The discussion-in the previous section leads to' three pred1ctlons which

. should be observable "from the results of simulation, if the estimators and
_the1r variances are unblased » ' ' .
1)  The expected value of the difference of each regression coeff1c1ent
- . from its true value over all samples should be approxlmately 0;
] therefore, the mean value over all samples of a regress1on coeffi-
\\:::l - 4cient should fall within the interval defined by the tru€ value * 3
‘ times its standard deviation. ’ )
o 2) -~ The expected value of the variance of a regresslon coefficient wh1ch.
was computed by the Taylorlzed NYeviation method should be approni-

mately equal to the var1ance of that regression coeff1c1ent over all

a '

— < ; . samples. . ) ..
" '3) " The percentage over all sampleS'of the stat15t1cally s1gn1f1cant F
. " - ;\ values for testlng.a hypothesis about the dlfferjzig:sf computed "
- . . coefficients from known population values ihould approximately )
® « equal to the nominal significance level.

Summary statistics to check”the validity .of pred1ct10ns 1 and 2 are
. presented in Tables 2 and 3, for the TSL and QLS approaches, respectively.

7

The first two columns of each table define the four regresslon equations
,examlned ‘(i.e., the cr1ter10n var1able and predictor var1ables of the two -
basic models, respect1vely) The entries in column 3 g1ve, for. each pred1ctor
var1able, the average (over the 1,000 samples) of the difference between the
A g est1mateﬂ regression coefficients and the actual population value of that- -
coeff1;1ent. The estimated standard errors of these mean differences are
. glven in column 4. The var1ances of the estlmated regresslon coefficients
Tover the 1, 000 samples are. prov1ded in column 5, and the averages over the *

S ‘ a

a

Nk
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Table 2.--Statistics describing the distribution of the estimated
. vregression coefficients over 1,000 samples from a finite

population using Taylor Series Linearization &~ *
v ) .
. “ ’ Mean ’
difference Standard
L AN from -+ error  Variamte of Mean of
Criterion Predictor populgtion of the the computed the computed
variable variable value -+ mean coefficients variances
— - : : —
INC INT! 0.02426 , 0.00254 0.00643 0.00747
‘ SEX-. 0.01225  0.00110 0.00121 0.00132
SES -0.00296 0-.00078 0.00060 0.00065
GRADES <0.00303  0.00040 0.00016 0.00017
GOAL -0.00493 .. 0.00046 0.00021 0.00023
™ . INT, -0.06369  0.00644,  0.04150 0.04563 -_
. . . SEX .. 0.02666 0.00276 0.00764 0.00830
) .. ' SES ' -0.00714 0.00200 0.00399 0.00415
+ < GRADES .=0.00682  0:00102, 0.00105 0.00110
GOAL -0.01487 -0.00118 0.00139 0.00152
INC INT -0.02038 0.00456 70.02078 0.02375
. SEX 0400684  0.00113 0400129 ,0.00134 -~
SES; * 0.00973  0.00086 0.00074 0.00083
. ABIL 0.00016  0.00002 0.00001 0.00001
RP1 - -0.01228. 0.00274 0.00750 0.0083]
RP2 -0.00974 0.00311 - 0.00967 _  0.0103Q
© ©  RP3 . =0.00756 0.00251 000628 ~  0.00642
TYP INT  -0.03576 4-01164  0.13541. ,  0.15359
. SEX . .+ 0.01376 0.00292 0,00851 0.00859
SES -0.02292  0.00220 0.00484 “.  0.00543
4. ABIL 0.00030  0.00006 0.00000 0.00000
. kp1 -0.03221  0.00698  0.04865 0.05542
- ) RP2 <0.03645  0.00805 0.06475 0.07237
RP3 N -0.01750 0.00629 -  0,03951 0.04111
) ) ) - ~
) ! ~— g . ¢ }
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. Table 3. --Statlstlcdldescrlblng the distribution of the estimated
L. ) regréssion coefficients over 1,000 samples from a finite
ae S population using Ordlnafy Least_Squares &
\ ' Y . B ., - . v _ P
S R ‘j Mean . . . —
; ‘ . difference Stapdard E .
¢ ' .from error  Variance of Mean of
Criterion Predictor populatlon of the the computed the computed
variable , variable value - mean  coefficients Vvariances
- 5 ' » \ : ‘o J .
\ R (o + INT o ~0.025980 0.001963 0.003855 v 0.003923,
SEX -0.004871 0.000834 G.000695 0.000722
’ * . * SES -0.004038 0.000607 0.000368 0.000383
: . ‘ . GRADES 0.000728 '0.008320 0.000102 0.000104
GOAL 0.003870 % 000349 0.000122 0.0001T5,
. TYR- . INT . -0.029836 0.005044 *0.025448 * 0.025306
- ’ SEX -0.015392 0.002112  0.004460 0.004658
, - é: SES -0.025277_ 0.001603 0.002572 0.002473
' ~~ . GRADES 0.003476 0.000822 0.000676 0.0%0671
’ ¢ GOAL 0.004050 0.000908 0:000824 0.000745
. a0 INC _ INT -0.018672™0.003597  0.012941 0.013219
. SEX . - ~-0.009746 0.000910  0.000828 0.00082¢
- o SES .-0.007226 0.000678 0000460 - 0.000519
o . ABIL ' 0.000145 , 0.000017 0.000000 0%.000000
‘ . RP1 -0.012951 0.002193 °0.004811 0.004562
L7 < RP2 -0.013948% 0.002629 0.006914 0.007318/
! ! . RP3 -0.014713 0.001963 , 0.003855 0.003617
— “ -
i TYP - INT . -0.003198 0.009129  -0.083348 0.087252
SEX’ -0.026208 0002335 0.005452 . 0.005469
* SES -0.036864 0.001741 0063034 0.003429
> o, . ABIL ° 0.000328 0.000044 0.000002 0.000002
: ‘ RP1 -0.053305 0.005632 0.031729° 0.930115
RPZ ¢ _  -0.078817 0.006933  0.048073 0.048297
. RP3 . =0.044036 0.004948 0.024485 - 0.023876
' . e




'

-Vsmall

“~d

N -

- . - < - "
1,000 samples of the variance estimates computed for éach sample are given in

.
-~

column 6. ¢ = .

Pred1ct10n 1 .can be examined from the entries 1n.column 3 and 4 of Tables 2
and.3. ~The mean\d1fferences of computed and actual regress10n coeff1c1ent

values. are clustered near 0, ‘rgnglng from - .064 to .027 for the Horv1tz-Thompson

M2 P

and Taylor1zed dev1afion approach and from -.079 to 004 for the QLS apprOach

‘With. few exceptions, howewer, ‘the confldence 1ntervals of three standard

errors about these means did,not include thé'value of 0 Whléh”implles some
bias 1n estimating the regre&s1bn coefficients by both of the appxoaches ‘
. Pred1ct10n can be examined# from the ent&les 1n columns g’and 6 of
Tables 2 and 3. i&

equation (A. 32), as’ prov1ded in Appendix A.", The average, over samples, ‘of the

he TSL variance for.each sample was computed accordldg to a

TSL variance estimates is quite comparable to, the actual var1ance, over ‘the
1,000 samples, of the\computed regression coefficients {Table 2). Slmglar -

results are also observable for the analogous OLS statistics (Table 3)

- Summary statistics to check the validity of prediction 3 are prov1ded 1n

Tables 4 and 5. These tables 1nd1cate for regression models 1'and 2, respeer.

tively, a comparisbn of the upper tail of the approggiate theoretical F d1st&11

— - \ N -
‘bution- to the empirical distribution’of F values computed for  edch hypdthesis

in -each of the 1,000 simulations. Within each of theseotables, resiilts are
presented separately for each of the cr1ter10n var1ab1es considered in the
part1cu1ar model and for TSL and OLS approaches -

The TSL solutions appear- to_give good approximations for both models and
for both criterion variables. Using an average of the empirical d1str1but10ns
o;er the var&ous hypothesis tests within model and criterion variable, the TSL,, .
solutlons\can “be- seen to approximate the theoretical perceptage points qu1te-
we11 With one exception, such averages differ from nominal values bQ no more
than one-half of a percentage point, -and all such differences are in a s\nser-
vat1ve direction (i.e., suggest the null hypothesis would have‘been relected
less frequently than suggested by the nominal significance level). ‘

Tn general, the OLS solutions alsp provide good approximations'to the
theoretlcal F distributfons. The average of emp1r1ca1 distributions suggests'
that OLS solutions tend to.err imva nonconservat1ve d1rect10n and that the'
e:ror ‘i§ greater in medeling the criterion var1ab1e TYP Even though the ’
averag; differences from the theoretical d1str1butlon are still re1at1ve1y

n an absolute sense (at most 3.5 percentage points), a gquestion is

0.' \ - » °' l-" ) - P
‘ 2028 _— ,
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+ Table 4¢--The numi>e'f of. sample F values (out of 1,000) which fell below

specifie@_ﬁercentiles’of- the appropriate F distribution for

- Model 1 .,
& S . ; ,
| k-
. - F - Hypothesis * )
’ . . degrees F distribution.percentile
Analysis Criterion " of _
type variable - Source freedom 75 90 95 97.5 99
. —

Taylor" INC. ALL L » 751 893 950 978 993 _

Series __ . SEX - 1 745 896 - 947 980 990

Lind8r- : SES 1 g 762 917 953 974 . 992 .

lization GRADES . 1 .760 904 954 ~-979 992-
) : GOALS 1 ~ 750 911 962 986 993
; TYP = ALL. - 4 755 898 960 981 992
SEX 1 751 907, 956 977 992
.t . ' SES 1 1 754 916 957 977 991
N -GRADES "1 755 903 941 975 987
. GOALS 1 736 896 950 976 997

Ordinary . INC .- ‘ALL 4 745 902 955 ~ 974 989

Least SEX _ e~ 1- 751 895 952 . 975+ 993

Squares ° SES 1 745 - 902 -949 974 989 °

. . GRADES 1- «758 906 951 973 987
@' GOALS 1. - 716 864 931 953 978

- TYP ‘KL 4 732 868 934 973 988
SEX: ‘1 744 899 947 969 991
SES 1 674 846 ° 920 956 977
GRADES 1 755 * 896 943 967 987

' GOALS 1 737 871 ~930 962 980
’ 4 'A
' - 3 '®
I- / l ; .‘-;' . ’
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Table 5 --The ‘number of sample F values (out*of 1 000) wh1ch fell below
e spec1f1ed pércentiles of the app,ropnate F distribution for
Model‘2. .

. - - . «,
sy - . “ @

.3 . Y

' Hypothesis ~ s
1 . _ degrees F distribution percentile
. Analysis Criterion of . .
’ . type - variable Source f'reedom s 75 90 95 ,97.5 - 99
; Taylor INC  ALL I " 748" 892 944 970, 986 o
b Series . SEX ) 736 905" 952 975 - 992
‘ Linear- SES T ~ 763 4 954 971 990 .
» . fization, ~ ABIL T 777 V919 965 .988 ° 995
1 RACE'{“PROG 3 J49 9%0 944 970 986 v
" ) TYP AL 6 755 889 953. 972 987 .
- SEX wl 756 908 953 - 973 987 o
N - SES 1 744 893 940 975 . 992
' ABIL 1 775 919 967 982 . 997
' .RACE*PROG 3 769 899 947 972 ° 987 -
' " Ordinary INC . ALL 6 776 893 944 971 987 :
\ Least " SEX 1 707 887 941 971 987 |
B Squares SES 1 749. 906 955 977 988
. - * ABIL -1 759 900 942 976 990
RACE*PROG 3 757, 892 " 947¢ 974 986
“T™
TYP AL 6 700 876 922 956 . 978
) SEX 1 713 877 936 971. ' 988
o ! SES 1 684 841 913 957~ 986 .
. * d ABIL 1 744 902 953 977 991
) RACE*PROG 3 732 - 881 - 933 968 989
° T ) . S -
¥ ' :
.-
: ° }5 s - <
» § B M ‘Q
."‘E: 6, - - . *
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xaised as to %thé extent to which the applicability

<

.

of

-

OLS.approximations is

4 1

» situational Ii7é‘parﬁicularly the poor f{t for-SE§?’%ﬁ oLS solution for TYP).

.

Additionél Simulations

a

.

&

)
2
.

Although not specific to.the NLS data,'simiiaf simulabioﬁ; (Shah, et al.,
1977) compared TSL and OPS under a wider:r?nge of samprfgﬁksitdatiohs with
.. different populations defined from the Health and Nutrition xamination Survey
v (gﬁl, Public Health Service, 1973). In general, theseoresﬁlts further support
the contention that -the agreement of/ OLS solutions with the theoretical F
digtribution’ is situational. Using.24 strata and selecting, first, 2 of 12 .

PSUs per stratum and, second, cluster sizes of 10 from each PSU, regression .

. > models similar to those used in the NLS simulations were employed. = As Qith'{

o+ , the NLS simulations’, TS® solutions, in general, gave only marginally better . , -

results thanIOLS; however, the performance of the OLS statistic was, again
c ;

-

generally nonconservative and was better for continuous variables and for the
- * . . .

> e

’ case of greater between-PSU homogeneity (which reduces clustering effecﬁg). .
H

The performance of the TSL statistic .was again relatively stable over.all

‘ .
. N

conditions. ' . . - e Ty
In the special case of the application of regression models- to solutions -

for domain{mﬁéns, the overall superiority of the TSL statistic was duite'

o

pronounced.® Under these conditions, not only did the OLS statistic generally

show Eon$iderauly less congrue than TSL to the ‘theoretical F diétributionl

but also ;ﬁg§congruenceﬁbf the OLS statistic varied dramatically with diffetent.
P cluﬁter éizes, different strata definitions, diffefent between:PSU heteroge;eity,
" and Jdifferent models.” With, the exception of the predigtion of domain meaﬁs
for race/ethnicity with a-small number (8) of defined strata, the TSL F statistic

was: quite consonant with the theoretical F distribution and otherwise.showed

little variability from situation to situation. :

¢

¢ 3

1. L ,
D. “Concluding Remarks S ‘o

. >

It ghould birrecbgnized that the results of the several sighlgtions offer

on1§ support and not definitive proof of the general applicability of the TSL

[ -~

s AlthOugh-tﬁis is a fairly atypical application of regression modelipg, it
"does demonstrate the general applicability of the TSL - approach over a wide
varjety of situations and the lack of such applicability for the OLS approach.
For-a technique .qf adjusting standard errors “for domain means computed from
NLS datay-see Williams, 1978. ] . '

-~
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approach. - No amount of empifical data can conclusively prove that any statis-

tic provides valid inference in general, The simulations with NLS data were
quite limlted restricted to two relatively simple (and related) regression
models crossed with two (related) cr1ter10n variables. The consideration of
results from the addlt;onal simulations prov1des a someWhat broader but still

limited base for conclusions. The additional s1mulat10ns examined onlyathree

regresslon ‘equations (for each of two defined sampling frames) of a form.

51m11ar to those examined in the NL ‘The additional results aLso

slmulatlons
included 64 simulations of the spec1al case of applying regression modelings to
computation of. domain means. . While these lattér results are certainly. germane
to the general applicability of a statistical procedure, they dc not directly

N\
address more conventional- regress1on approaches. {

Also, it should be recognized that the actual NLS data-base differs from -
the NLS simulation in some 1mportant ways. Whlle the NLS simulation results
were based on a cluster size of 5, the actual NLS cluster size is 17. Other
things be1ng equal, increased cluster size tends to increase the variability
of Statistics. As an example, for a simple statistic (note that a’ regresslon
coefficient is not a simple stat1st1c), the impact of cluster size, m, on the

variance, 02, c3n be indicated by the straightforward equation

1

— oi = {1+ (m-l)p}o2 .

*

where Ui is the variance including the clustering effect and p is the intra- -

class correlation. \Thﬁs; the clustetring effect for simmple statistics; (m-1)p,
would be expected to be four tihes larger with the actual NLS data than in the
(17-1)/(5-1) Further,
e}gnr if p were as small as .02 an increase in actual vafiance of 32 percent.

(i.e., 16(.02)) over ‘that of random sampling would be expected for simple .

simulations (i.e., = 4), with equivaleht values of p.

statistics, other things being equal - ‘ . . -
Finally, it should be recognized that the simulations were conducted 1]
.udder more or less ideal conditions in regard‘to comparability ‘of sample ‘
weights, a sitpation that should theoretically favor OLS, which assumes equal
sampling weights While no marked disparities of sampling weights exist for
the NLS data, ‘some d1fferences in Welghts have been 1nbroduced as a result of *
oversampling and adjustments for nonresponse (recall that the simulations did
not address thée problem of nonrespohse). Under such conditions, bias in the .

OLS estimators may be expected to increase.

D ’ — - e
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With an understanding of these additional considerations as well as ‘the

limitations of the results and drawing from results of both simulation studies,
the general findings suppbrt the fOllOWlng conclusions. -
1) TSL, though not perfect, produces ''good" conservative inferefices for
regression coefficients (i.e., the probability of rejecting the null
. hypothesis, when true, is smaller than the ngminaL value) when the .
pumber of strata is moderately large (greater than 20).
In some situations, the performancg of TSL is less satisfactory when
the number of strata is small (less than 10). \
OLS produces nonconservative inferences for regression coefficients
(1 e., the probab111ty of reject1ng the nu11 hypothesis, when true,
is larger than the nominal value); however, in some situations the
extent of nonconservatism is negligible.’ )
While OLS compares favotably to BSL in the specific typical regression
models considered, these are indications that the extent of accepta-
bility of the technique is situational. s
5)- In, the special case of domain means, the resiNts of OLS are generally"
poor, Moreover, in this situation, fhe perforfance of OLS.deteriorates

considerably when the cluster size is increased. »
~ . . 1]

{

.
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#» designs. and statistics; (2) it provides "good" answers for "large" samples;

600 final strata. Although the original design called for 1,200 schools (2'

_considered were: (1) Taylorized deviations, (2) independent replications,.

- using NLS(data Additiva¥ s1mu1at10ns us1ng another large data set were also

IV. SUMMARY AND CONCLUSIONS o

\ .
’
°
B . ‘

The sample design for NLS is a deeply stratified two-stage design with

per stratum) and approximately 21,600 students (18 per school), the final .
sample, as defined from various sample,additions, included- 1,318 schools and
i3,451,students. The information collected during the NLS base year and in
subsequent follo;&up sur?eys represents a rich data source for addressing
questions regarding the educatiomal and occupatianal development of high
school graduates The types of statistics used to address these questions may
vary from s1mp1e totals to ratlo and’ regresslon est1mators, however, the
problems of draw1ng valid and relevant inference that are common to all multi-
stage sample, surveys must be fated. The "perfect”‘answers to drawing infer-
ences for complex stat1st1cs from survey data may not be readily availab?e,
but an applled scientist needs some good, though imperfect, techniques- to
provide approx1ma;s\quant1tative measures for the errors in the estimates.

This feport has reviewed available theories and has Suggested a technique
that, will be useful in analyzing NLS data with respect to regression podels.
For drawing inferences, it is‘impgfative-that some estimate of the variance
(mean square error) of the estimator be computed from the data. _For a simple
linear functionf(Such as a total or mean) dﬁ/tﬁ;fdiservations, it is possible
to derive explicit algebraic expressions for estimating variances; however, it
is not poss!51¢ to obtain such expficit expressions for variance ?stimaﬁés of .

complex. estimators such as regression coefficients. The approximation procedures

(3) balanced repeated replications, and (4) Jackknife. The Tayloigzed deviations .°

approach‘is preferred for the following reasons: (1)rit is applicable to all

(3),it is economically and computationally feasible; and (4) it alone provides
for estimation of variance components. B . ,

Since the‘applicability of the Taylorized deviations approach is based on

asymptot1c theory, itfyperformance was evaluat%d empirically through simulation,

-

considered.. Simulatlons were carried out us1ng both Taylor Series Lineariza-

t1on,(TSL), as def1ned in Appendix‘A, and Ordinary" Least Squares éOLS)v~*As1de

from potent1a1 v1olat1ons of assumptions of the relat1ve1y robust,regresslon



model, OLS is obv1ously 1napproprlate for drawing 1nferences from complex

samples, assumlng as it does simple random samp11ng, nonetheless, the techrfique

dely used statistital

-4
was conS1dered because it is so widely known and used (ei;j when theoretically

inappropriate) and is so easily applied throhgh the more
packages. . . -

The simulations, though lihited in scope, do suggest thet TSL performs
extremely well in a ldrge variety of situations. WiFh/a small ({.e., less
than 10) number of strata, there is some deterioration in its performance in
some cases, but there is a dramatic improvement in perforpance with more than
20 strata. -~ Both TSL and OLS show some bias in the estiirtion of regression
coefficients; howevef, erronrs in inference using TSL are generally conservative,
while the OLS approach generally yields donconservative results (i.e., statistical
tests are likely to reject .the null hypothesis more frequehtiy than they
should). In some typical regression situations, however, the nonconservetfsm
of OLS is negligible, and the approach performs quite well. Nonetheless,
there are clear indications that the extent“to whith OLS solutions approximhte
the theoretical F distribution is situational. OLS performs particularly
poorly 1n*the spec1f1c case in which a regression model is app11ed to the
estimation of domain means .

. The various findings do suggest some practical recommendations to those’
who wish to use ;egress1on models in anaIys1s of NLS data. Id making general
recommendations for use of a statistical methodology) even for .a specific
survey or specific hypothe Kesting, the performance of the methodology in a
broad variety of situations eys Thus, if a methodology is successful
on one or two hypotheses for a Specifi¢ survey, .there is no, logical justifica-
tion that it will perform well for all élmllar hypotheses, even with the same .
data. On the other hand a methodology that is siccessful for several different
hypotheses and different data sets may be expegted to perform reasonably well
in most “sitdations. Moreover, a fadrly general rule’ in applied statisties”is
that, given equality in othef.aéeas, recommended statistical methodologies.
which have potential for erring.should err in;74!5hservative direction.

Under these guidelines, the TSL procedure! can be recommended for the NLS
data. In fact the transformed Hotelling's T2 type statlstlc, using the TSL
var1ance-covar1ance matr1x{ p;ov1des fairly robust mult1var1ate inferences -
about regression coefficients thh a‘moderately {arge number of strata (i.e.,

24 or more).. Although $tandard software for use of TSL is not widely available

L




.such software does exist (see Sectionjfiib.l). The proJodure SURREGR described

in Appendixes.C and D can generally be supported on a system supporting SAS;

this procedure is ava1lab1e from the senior author of this report

Althoggﬁ OLS yielded gpod rgsults for' some regression models in the
- simulations, it cannot be recommended for general use on the NLS data base. .
.Not only is the OLS procedure logically poor vhen compared to TSL (OLS resuits 5
are necessarily biased wheo apblied to the NLS design--see Nathan and Holt,
1980), but also it is nonconservagive. The potential user of the NLS aata
base ' may be tempted to use on OLS regression approach on the basis of the fact'
that OLS appeared to perform reasonably well in most simulationq inéolving
typical regression models. Such a decision would involve, of course, an
% element -of risk, sinceithere is an indication that OLS does not perform equally
well for alllmodels,or designs. Moreover, the actual NLS data base differs
from the NLS simulation in some important ways. Specifically, the -actual NLS .
ata are based on‘laréer cluster sizes and contain more disparate sample '
weights. o '
- Even though the OLS procedure- cannot be recommended for general use with
NLS-data, it should S; noted that the principal purpose of this research was
. not to examine the robustness of OLS. Additional research obviously is needed
-to determine the conditions under which OLS regression solu€&ons might‘acceptably
approximate those of more appropriate approaches. -Furtfier, the recommendations
- orovidéd above have addressed the situation of drawing inferenges from a

sample (1 e., est1mat1ng population parameters); however, -many regression ,

o4 studies -are not-directed to this end. For such other uses of regress1on wa‘h
the NLS data (e.g., sample-specific modeling, exploratory studies), the.use of

° 0LS méy be moré apbropriate, but such uses also are beyond the scope of_ this

e 'stuﬁy In such cases, however, the ,potential user must recognize the clea}

distingtion from est1mat1ng population functions.
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. Appendix A

- . . ¢

- . An Apprbximation to the Vafiance of

Regression Coefficients in Sample Surveys
. A

s .

- \

N In this append1x, ;he’ﬁrﬁblem of es 1mat1ng the var1ance of a vector of

regressfion coefficients in a complex sample is solved by f1rst f1nd1ng a
linear approximatibén to the estimator of the coefficients and then"ysing this
v -

approximation to derive an approximation for the variance. -
I. THE LINEARIZATION TECHNIQUE

The lingigization teéhnrgpe employed ig.this paper is the Taylor Series
expansion of the estimator. Tepping (1968) first used this approach with
speflal reference to regression coefficients. \¥Woodruff (1971) later elaborated
it for_ a broad class of complex sample designs. In general, let u = (ul, u R
Uyy vees U)°

U,, ..
3) A 2
represent”aivector of simple population parameters such that E[u] = U. Let

uk)' be a vector of sample statistics and let U = (Ul’

“f(U) = (fl(U), cee f ) be a vector-valued function of U, which represents -

the p population parameters of interest. Assume that f(u) estinfates £(U).
Now, f(u) is linearized by approximat1ng it to its first-order Paylor

Series expansion: .

R{CVI f(U) + 2 (u - U) al(] ), . " (A.1)
. oi=l
. . .

or ! N . ¢

) - k ' BE)
Cf(u) - £ = 2 (u - U.) 5U. (A.2)

.i=1 i

where

BE(U) _ af, (V) afl |- S\ a3
I au, ’ oAUy ) ~

- .

. ' s ' :
Since E[ui - Ui] = 0, it can be shown that E[f(u) - £(U)] = 0, to the order of
approximation.indicatedl Consequently, the matrix forn of the mean square .

error, where VAR indicates.a variance-covariance makfix is




(V-2
[ ’ g ~ " . )
A \{ R ) ,\ j .

. ‘ i C SV -
* 7RI - s E[{f(u{\- EW} (£ - €D)}) @
) Using (A 2), (A 4) can be approx1mated by ‘ . R

. ) o °
VAR[Eu) - £(0)] = E[{ I (u 3;5‘.’); (2 >: (u; 00250y (a.5)
i=l §- J
Therefore, o . E . .

| . ' 3 ‘ ) : k k i "' L ' ' .

> ~ T VAR[EQ@) - €@ = T 3 [3;(]“)] [3;1(]“)] Covu;,u,) (A.6)
: _i=l j=1 ' ) .

where COV ( ,.) 'is used to indicate the covariance of two entities.
~

If ksis smal‘l, (A.6) is a convenient expression from whicb‘he variances
of f(u) may be computed; however, if k is large (greater thanm 3}, the formula

becomes cumbersompe. In this case, a4n alternative ap’proach uses thes actual

- , numerical value of the sum of the k linearized port:.ons of (A Zfso that the
variance-covaYiance matrix of (u) may be evaluated directly. Exp11c1t1y, "
define a_mew column vector, w, zih p elements, “ x
-, * B i 3 .
L v N . k " . + L) , R
we I (u -U)af( , _ @A
i=1l ) N -
» A v * ‘ hd
and observe that E[w] = 0. Now (A.5) can be expressed as
VAR[f(u) = £(U)] = E[wd"] = VAR[w] VAR[z], ' (A.8) -
J v . - . 3 . ~ L &2
. where ) ~ -
k ‘ : : . :
f . * ; - :
: z= Ze usagl(]U) Co : : (A.9)
N is1 1 % 2 ,
e 1 . ‘
° .II. APPLICATION OF TAYLORIZED %LINEARIZ,ATION “TO REGRESSION COEFRICIENTS
r ] oA - ’ o
A realisﬁicégression model\gay be .defined'using the notation from
> Section II of the report as - . .
' Y -@m ‘e \ , © (A.10)
. -~ M .
' Here e represents‘a vet of deviéltions from the l\liine prediction equation.

Kish and Frankel's criterlon minimizing the Sum of the squared deviations gve'r

- . v -




-

- \ -«

.the entire population yields a solution for B which is the femiliar least -

squares solution to the normal equations:

BEAE )T XY . s o (AL

vy ¢

v
* 4

.

‘

“ate presented here. ; I o : .,

Now suppose that a sample, S, is drawn frem the popultion and let the
subscert i }efer to any populat1on number. If the units are selected with
probabzllty, P, T then the unb1ased Horvitz-Thompson estimators ‘for XX and XY

are x'x and x.y. (Lower case letters indicate sampling statistics.)

XX = qZ (X X. /P ) I | . ) (A.12)
188

-

Xy = 3 (XY, /R) . : _ © (A.13)
ig§ -

. Al ”~
- R,

The summations exténd over units, i, belonging (€) -to the sampie, S. The

availability of unbiased estimates for x 'x and x°y allows the estimation of B

r l d

with ' ’ .

“(x'X)'l(X'y) ° R ‘ ‘ (A1%)

From (A. 11)me seen that B is a funcgion of XX and XY while b is
a funct1on of x’x and x°y from (A.14). qIf it is assumed that there are p°
1ndependent variables im the model, then X X and x°x are pxp symmetrlc matr1ces
X°Y and x°y are pxl matrices. Let (X X) 3t or (x x)JJ, represent the element
of XX or x’x in row j .and column j' Also let (X Y) *or (x y) locate the
row j element of XY or x“y. Using the results ptesented in the previous

section of this chapter, the Taylorized linearization of b ‘cah be written as ~

! ',. °I.’ ) - T ) ‘ ‘ ’ ) s ¥
- b=B+ 2 [(x y) X Y) | 5707 a(x ‘{) ‘ (A.15)
CeyE i "L

o ' v L ; .

P . . oB
C 4y T Z {(x x) - XK. s —.
oL J=1 j'=j iitn ek X)..'

\
« A B P d ~

’ ’

-~

"For regress1on coeff1c1ents, Tepping and Wbodruff solved for the der1va¢

tives numer1cally However, Folsom (1974) and Ful}enh(1974) zg?;ieﬁdently

.deyeloped ah analytical expression for the_derivatives, which\simplifies  the

egﬁression-in (A.9). The remaining sections of this chapter follow Folsom's )

work. The partial dérivatives are derived ih Appendix B, ahd only.the results

-




¢ For j =1, ..;,»‘p.»*let d. be the pxl column vector with a 1 in row j and
zeros “in all other rows. Also define p(ptl)/2 smettic matrices, Djj' , with
dimension pxp and with zeros everywhere except in row j, column j' and row j',
* column j. These locations contain 1l's. t e . ‘
From Appendix B we have - ’
! 3B » - )
: sy — = X070, (A.16)
JJ .
- and : - ' (j
aB - », "1 )
5D, - (XX) 4, (A.17)
L Substituting (A.16) ‘and (A.17) into (A.15) yields-the approximation
P -1 p 4‘ ) P ‘
b= B + (XX) T [(x7y). - (X7Y).1d. (A.18)
j=1 j iti : '
@t T (ko) - @0 1D,
- x x - . ' o - 2z 4 ' 3 .' .
: 521 3= L 3itraat
Based on the definition of dj' and Djj' , it can be seen that
I} <
.- ' P . . -
b3 v). - (X¥).1d. =xy-XY, A.19
& [(x y)J ( )J] ;. Xy , - . (A.19)
) p’ p- rJ », ‘e rJ », ¢
T 0z [(x%).., - &%, D, =xx-XX. (A.20)
591 3'=j 3i REARR R
] “ . )
; . Consequently,
‘- 3 P | ‘ . P - .4"" » X t. - o
N - W2 B‘+ xXX) [{xy - XY} - {x x. = X X}B] . . - (A.21)
- : =B+ @)L [xy - (xx)B+ XX)B - XV} . ‘ '(A.22)
e +  Using the fact that (XX)B=X7Y, ~. , . .
'b 2B+ .Cx”(;\-l [x"y - (x'x)B] - . . (A.23)
r? ‘ . . ‘ ‘ /
- or ’ : . . ’
b b-B= (X'X)-1 [xy - (x'x)B] . . \1" ‘o (A.26) O p
¥ i . ’
§

K]




III. APPLICATION TO THE STRATIFIED, TWO-STAGE SAMPLE DESIGN

For the purpoée of this report, a stratified, two-stage sample design is ¢

assumed. In this type of design, the populat1on has been divided into H strata
by population or demographic character1st1cs For stratue h (h=1,...,H)

there are n(ﬂb primary sampiing units, PSUs. The actual observations are
‘nested within each PSU, and there‘are n(hf) observations in PSU £ (2=1,...,n(h))

within stratum h.

Referring to the first section of this chapter and remembering that the

»

&

\Pi are sample statistics, consider the case in which each u, is a sum over -

sample observations of random values. (The regression problem repxesents suﬁp
a case. ) Let u, (h2j) indicate the observation for individual j (j=I1, ..,n(h£))
in PSU L w1th1n stratum h.

-

For the stratified, two-stage samplé design, f

H n(h) n(h)
u, = Iz z ui(hzj) ,
h=l 2=1 j=1

and now (A.9) can be rewritten as thg vector

"k H nfh).a(he)

z = X {2 z2 z  u,(hj)}
i=l h=1 =1 j=1

af U)

.Rearranging the order of summation,

"H n(h) n(he) k £QU)
z = 2 Pz {Z u (hlJ) aU }

h=1 2=1 ' j=1 i=l .-
‘éonsgquently, another vecfbr, z:(hl), may be defiﬁed as

. . e
o J

‘ n(h2) k
cz(he) = '3 { I3 (hza) 3““) 1,
=1 i=l




_ ~H n(h) -
- - VAR{z] = VAR[ 2 X z(W)], - (A.30)
L - h=1 £=1 ¢ ’

. for this samble design. ™ ’ te i -

iV. THE GENERAL MEAN SQUARE .ERROR FOR REGRESSION.COEFFICIENTS
o ) . \ ’

A biased with-replacement approximation to the variance in (A.30) for a
stratified two-stage sample desagn Wlll be used. Gray (1975) states that the
variance of a sample total from w1thcut-replacement sampling may be divided
-1nto a with-replacement variance component and a W1thout-reﬁlacgment covariance
contributién at. the first étage By ignoriﬁg this covariance component, wﬁich
is usually negatlve, a conservatlve :g?rox1mat10n to the variance is obtained.
It is usually assumed that thls omitted finite population correction at the
first stage is small and accounts for little of the total variance. This

R - » approximation for VAR[z] is . ) . .
‘e

\N o Zn(h)S(h),‘ oL : T @aa
' h=1. SR R

L.
\ ﬁ } RS . .
.e .
. . L.
N 1

. . v

‘ where .
— n(h) - : - t ‘
(8w = (2 {2(0).- ZW}z2) - z(0)})/{a)-}},  (A.32)
‘and . T .
L - S ) @) . . T
, . - 2() = [ 2 2(@)F/nm). : S e,

[N '-“ [ *

The actual specifiéation of the‘approximation for the-estimate of the ‘

variance of regre331dn coeff1c1ents in a stratxf1ed two-stage sample des1gn

requires the def1n1t1on of the row vector (X(h&j) as the X values for obserVa- .
-, 1 - tiom j in PSU ) and stratum h. Correspond1ngly, Y(th) is.the scalar response 4
ol for a partxcular.observat1on From (A.l2l and (A.13),° . T -
« < ?- 5 ‘ .
B e Beam) am)) P .
. L xx= I+ % 2 X“(h2j)X(hej)/P(hLj) - (A.34)
ST o h=l 2=1 j=1'". . IR Lo
- w - . .

- and . ’ - . ’ \

e




. T ’
R
.

H n(h) n(h) ‘
xy= 2 Z 3 X°(h2j)Y(h2j)/P(hLj). (A.35)
h=1 2=1 j=1

-

From the“pre@ious section of this appendix, z(h2j) for the ‘regression case can
A A i

/?e defined as . .
o . ~—
2(h8j) = (X°X)"1 [X”(hej)Y(hej)-X"(hej)X(hej)B]/P(he]). . (A.36)

Now, the expre551on for z(h&) can be written with one last level of approxlma-

tion, which is .imposed by substituting the estimates (x"x)" and b, for (X X)

and B, respectlvely .
. . © o ne)
vy z(he) = (x x) .2 [X7(hegj){Y(hej) - X(hej)b}]/P(hLj). - J(A.37) g
» . . _1 =~ . \ . )
/ .‘l N ’
A convenient‘expression‘fq; (A.37) is obtained by defining the vector -
r(hej) = [X"(h2j){Y(hej) - X(hej)b}]/P(hL]). h (A.38)

Now (A.37) may be wrltten as—

1 .
n(hg) - . . -
T S e e T I : (A.39)
. ) j=1 ' ' Z/\z -
. :
. ) J .
p -
. i ' ’ b S
/
.. ' - N
o= 3 . ! ;: -
~ ;’; %° . \
. R g i . .
?f} ) ’ - .
E%ﬁf«, © ] ¥
o t . / .
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Appen&ix B-

!

.Derivation of the Partial Derivatives

: : e, 3B 3B o v
- For’the s1mp11f1€ht10nlof %%21?7; and (XX oy 3gf{83ngo}ne5éh1§3&,
r, -
. (1, if j=r; -\ ' ‘ “
d.(x) = o
' J 0, otherwise; L . ) Vot
A - - = -". .l
2 VI a.. =\{1» if j =3 *, o
» 3 0, otherwise. . <
. *
Also define p(p+l)/2 symmetric matrices, Djj" with dimension pxp and with . ,{~
.  2eros everywhere except in row j, column j' and row j', cqluma j. These B
.2 ocations contain 1's. The element in row, r, and column, c, of Djj' can ° t
be written as - - . N s .
?jj"rc) f (1 jléjj’)dj(r)dj'(c) + dj,(r)dec). » ‘ . s z.‘
Consider the partial derivatives of B'with respect to each element in Xy -
by taking the ,partials of both sides of the fquality N r
. l ' N Y
(XX)B =XV, ! .
- ) - . ) ! A} .
d(XX)B _ a(XY) .j=1,2,...,p, . Lo,
XD, T XY’ < ' ‘ - .
. . . ¢ \ . 0‘
AXX)B-_d., j=1,2,...,p,
XY, ‘ .
J t ] ’ . o
‘ (XX)B _ d., j=1,2,7..,p, ?
¢ 8(X’.Y)j J . ,
. o8 1’ . ) o I
- P T . . L
m)—.=‘ XX dj’ J=1,2.,...,p., ot N s } '.l‘,.
+ J » o "¢ , . .
o . . e ) ’ ‘ » - . ““’I“
. The derivation of the partials for X°X is more complicated. Again begin ;f
b Y
with the equality and observe that the right, hand side is equal to 2ero -+ v -~ .
‘ g after the derivatives with respect to each elemegt of X'X are taken. - ' i R
. o K ) . ¥ )

»



»
2
A r
. ~ * [}
9(XX)B _.9(X°Y) . :
> = > =0, j=1,2,...p .
X X).., a(¥XX).. 2 JT 0l e e By .
a( )JJ' ( )JJ'. i'=is-. 5Py . / ‘
\ 9(X“X)B - [a(x'x) ] ) [ 9B ] .
ot—— = s B+ (XX) | o |20
LaXX) .. X X).. AXX).. ’
. XXy E X5 ® B30
L /
(X"X)3B ' _[a(x'X) ]B = -D.. B
X X).., LIX™X).. ~ 3T
_( 3”' .9( )JJ. i3
- . p
¢ Consequently,.
'S " B S T : »
: srore— = -(XX) " D..,B, j=1,2,...,p
o \ IXX).. 19 d729La 0000y
O . ( )JJ' . e, .
* e
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" Appendix C ' . . ¢

v The Survey Regression Procedure . " ' .

¢
. . . .
. . .
. ) .
. [ e B 5
» M . &

’ ) R ‘{‘ > . boud ) N
This appendix provides a brief description of a flexible program developed .

by the autlors for estimating. regression parameters and associated standard-
- ' errors from data arising from survey samples. The procedure employed is based \

on a Taylor Series L1nearlzat;on approach, desctlbed in Append1x A. The o ,

program, entitled SURREGR, has been 1ncorporated 1nto an existing stat1st1c, )
o 'analysm package, Statistical Analysis Syg’tem (SAS), asUsers Manual for the

«program is providedain Appendlx D.

2 . v

: “I. GENERAL . " o :
g ' . v i . . .l . P «
¢ - . 2 e

b L o ; i
v *  One of the most d1ff1cu1t t%asﬁcs in prov1d1ng a new, flexible, statlst,;.cal . -
’ ' computer prdgram 1&, 1n conv1nc3.n prograﬁmers who know little about stat1st1cs . -
and statf%tlcxans "an"d s’ocial st1ent1sts who know 11tt1e about programnung to - © '
. use it. Expenence has"shown ﬁl%p sdt;,agtlsglccaif programs that stand alone with ' ‘, .
" the1r own speclahzed‘a contro}. ~card‘s(s are %v.ol@do whexiever possible. For maxifum
.o utility,, these programs heed’ to. operate,e w:.thind! sys,;:emq whic¢h takes care of « R
interfacing with the user; however, it is e ‘remely tfme-ctmsummg to- des1gn
and implement such a: system. Therefore, 1t zas dl;clﬂathat the survey .regresg‘lon
p‘rogram would be wr1tten to run under an ex1sf:1ng" stat1 kical system - e
- s¢ Several stat1st1ca1 pacitages, BMDP, S}’SS &IRIS, and SAS were rev1ewed3
© , and, among these, rt was determ;.ned that SAS pqg,sessed ’the best data management S e ‘

eré as fol&ows' o . Lo

. : capab111t1es. The particular advantages of

a) the ab}hty t?extehmvely mani 1ate the! input data, ’ - .

’ _b) the immediate ava11ab111ty of other types o££stat1st1cal analyses, g ..

’e

V - Y free format of procedure 1nformatlon statemexf?k " .
, . d) comprehenswe error chgckmg‘for data, and procedure 1nformat1on . e

? . statements, - . O RN .
. o e) procedure output as a SAS data set which is" ava11ab1e for* further

3
S

S L analysis, and - . . : &
L ; f‘) thesdynamc allocatlon of Q:ore which ewles, f1ex1ble programm1ng

[

" within systqm core and time hﬁutatlo% ;& . -
1

.
.
' (N . . ’ " - ~ !
Pl . . . . - - .
. . . d - N .
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Furthermore, programming details and technical _assistance were readily
o)/ ilable W1th1n the lotal tomputing facility, the Tr1angle Universities
Cémputation Center (Tucc). Consequently, it was dec1ded that: the survey
regression program would be written as an SAS proCedure The SAS documenta-

tion was proV1ded by Barr, Goodnight, Sall, and Helwig (1976 and 1977).

. / "
\\&\ ) .« II. COMPUTATIONAL Pﬁ?CEDURES . .
s b \
The survey regressiqn procedure SURREGR has five main funct1ons )
Qi a) }nterpretat1on of user. 1nput ! J, I % (
b) accumulat1on of sums of squares and ‘cross praducts, - ‘

c) a solut1on for™ the regres51on coeff1c1ents, ‘o .

d) ‘general mean sqiare errors, and = - ¢ )
. -

!3_ ‘tests of hypothesis. . - . ‘ : —*\YQJ

J
The approach taken for each function is dlscussed in the following subsections.
1 %
‘ > '3

’

’ ’ ’
A. Interpretation of User Input .

1 »

. _ This function is controlled by the language module which is nndependent

of the computational pprt of the program and is responS1ble for the parsing of

+the SAS language statements Although the 1anguage module must be written in

IBM 360 assembler language, SAS macros are proV1ded for the standard parsing

- of the variable l1sts, opt1ons, and parameters The ph}Qosophy for the parsing /
of the model statement is borrowed from the SAS general linear models procedure,

. GIM. The GLM language model was modified to allow for mult1p1e model statements
w1th1n one execution of SURREGR and to permit effects and interactions formed

by categor1c~l dependegt variabiles. For all’ categorical var1ab1es that are

declared as effects or interactions in the model statement SURREGR generates ot
the required number of binary (0,1) variables, q;. These dummy variables are
defiped as . o o
' ’ . - N - . + ; ‘ . l T ‘ .
1, i? an observation has a particular yalue for that L N
q;.= “ivariable; o - X (c.1)
AL 0, otherwise J AT

* =¥
Only after all 1nformat1oﬁ statements are parsed W1thout error W1ll SAS execute

the computational part of the program. . ‘ . -
N L . o : - o - e
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B. Accumulation of Sums of Squares and Cross Products l .

The X'WX and X WY matrices are computed as the second main function of -
the procedure. " These matrices aig acéumulated as sums of squares and cross

products of variables over .all observations. In other words, the actual X, Y,

-~

and W matrlceskg;f never formed. However, the W matr1x can be represented as o
a square diago ‘matrix with the numbef of rows and columns equal to the

number of observat1ons and with equal diagonal element contaln1ng an observa-

with one. exceptlon--there may be more than ond column gllocated for an effect f »

(which .may be a classificatory variable.) In ract1ons among continuous and

- tion's weight. The X and Y matr1ces are defined in Section II of the report
i
| class1f1catory gaf1ables are permitted. -

‘ . .

|

.
a

i C. A Solution for the Regression Coefficients ' |

To compute such a solution, the inverse of X WX must be found.™ The o
Cholesky decompos1t1on technique described by Wilkinson and Reinsch (1971). is
used to compute a standard matr1x rgverse unless X WX is s1ngular In this
‘case, a general1zed 1nverse is computed. This jnverse, A l, for a matrix, A,
must satlsfy the follow1ng conditions: : .. -~ .
: A= AA"IA ',‘ L C ' (C.2)
and ) J . : - ' }
2. -1 _ ,-1,,-1 ’ . . cor - Lo
l‘ A'Jh-iccf.A th A AA’ .l ' f | ti (Cg?;: d’(C ;) i ‘ ’d(:/.”’ ‘ J
‘A check for the numerical accuracy of equations (C.2) an .3) is provide |
(-:ince some ill-conditioned matrio:; may be subject to large numerical errors. ﬁ\\\§‘\\
Each term on the right-hand side of the equations is evaluated and compared
with the correspond1ng element on the left-hand side. The maximum difference”
found betWeen any two elements of either comparigon is reported to the user.-
If any deviatipn exceeds a set tolbrance,'the user is given a warning message;
however, the program will continue. Subsequently, the regression coefficients,

are compute by the *formula in (A. 14) g1ven in Appendix A.

. 4 . - .
- . | W ' L Lt

* . D. General Mean Sq%?ge Errors‘
. This computation requires that the file be reread and that the TayYorized J(//\\

deviations defined in Append1x A, eqhat1on (A. 38) be computed. These deviations '
v L s wl ~ ' : |

5o-c - L0
S -
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may be rewrltten 1n the notation of this appendlx as -

) r(h!lJ) [X (hej) {Ynej) - X(hej)B}IW(Re3), (c.4) ¢
%
where r(hgj) is a column vector;and W(h2j) = 1/P(h£j); other notations.are
defined in Appendi¥ A and are not repeated here. The‘fblleﬁing sums and sums -
of squares and bross;products are computed .
™ .. - -
. .n(h‘e) ﬂ - . ‘s
r(he) =72 r(hej) , . (C.5)
j=1 - . :
| ' \{ ‘v -," "n(h) ‘ . ' - . ’ ) -
. rr’(h) = X . r(h@)r’(he) , N : , S (C.6) .
. g=1" SR i :
[+ : n(h) : i ‘\\
r(h) I r(hf)r (he)', : " (c.7)
ziy/' T
The va;lance-covarlance matrlx is then accumulated over strata and adJusted by ,
x WX) following these accumulations to yield the variance covariance matrix ¢
2. specificall
Sb' pecifically, o &
2 ’ -1 H 4 4 ” '1' y -
s2= (x0T [ I [{a)rz (b)) - x(b)r" M)}/ Ta®)-1IEW) . (c.8)
h=1 N ' :

) . h
» . . . A
.

E. Tests of Hypothesis |

The last ma}or function of the program is to compute the tests of hybo- v
thesis first for the entire model and then for each effect. The null hypothe- .

sis for any of these‘tests;may be writfen as

. H:B =B =,;'... =B = 0,(for @m), = ( . ©c9 s

against the alternatlve hypothe51s

o
-~ ~

7

. 1: B #0 (for ome k, m<k<n) . (c.10)
‘ e -~ - .
For a partlcular hypothdsis, the prpgram*ﬂetermlnes its rank, d, and a dxp ; 3;
matrlx, c, SQQE\:rat~th;1g1ven hypothesis is in the form CB = 0; The value of
d is n-mtl, ifall of the- pqgameters, Bm’ m+l’ .o Bn’ are est{mable.
Otherwlse the value of d is less than n¥n+l.
If the parameters were normally d;strlbuted the test statistic would be
a llRelxhood ratio. cr1terion which would have an approx1mate F distribution
. for large samples. If Sg is the variance-covariance matrix of B with degrees 5,
. * ’ |
- , U: n . .
, 52 . . .- ° B
o3 :




3 . T
: ‘ ’ - ! ‘
' . s . sto o <
b ‘ of freedom, e, equal to the number of PSU's minus the ndnber'hf strata,SSHen ]
' the test statistic’from Folsom.(1974), A ' ” i o *
Ty, &3y (e 850w, (c.11)"

’

’

-

is an approximate F w1th d and e degrees of freedow under the null hyggthesis.
o . ( .

'
v
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DESIGN FEATURES o

14

-

L3

-

yThe SURREGR procedur% is "designed to produce a regression amaysis for

To achieve th1s end,

sample survey data.

been incorporated into the program.'

a number of unique . feaﬁures have
The following attr1butes place SURREGR in

2 .class apart from the standard regress1on packages of. BMDP, SPSS, and SAS:

data file which

s considered, to be a f1n1te popuiat1on.

f) SURREGR has the a ll1ty to select mu1t1p1e random samples from a

This

permits* emp1r1ca1 evaluat1on of the performance of the stat1st1cs

a) SURREGR accounts for the correlat1on between observations d—-‘fb the
. . sample des1gn. e . :
i . b) THere is no program limit to the number of models which may be
specified in one procedure. ) o "o
d) Rffects and 1nteract1ons are allowable in 1ndependent and dependent
variables.’ : . L .
d)' Standard tests o’ hypotheses are prov1ded ahd n.the case of a \_;;
non-full-rank hyb thes1s, a test of the estfﬁ;;I:!subhypotheses is
. ‘ ‘
\ made. ¢ . d\ : . . |
%) Checks are made t estab11sh the éondition of (X WXJ * -

1
. and tests generated{hy the program. ‘ \
\ . . . N
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£ . 'Appendix D.

o B User's-Manual for the SURREGR Procedure

t ' .

¢ .
N I s "

SURREGR is a procedure which prevides a means of producing appropriate
tests'of hypotheses for regression models in sample survey situations. The
procedure offers many useful options and operates in three modes, which
differ only in the method by which the variance-covariance matrix of the
regressidn coefficients is calculated. SURREGR was developed.principally
to handle regressidn analysis for sample survey data; hence, the default
mode of the procedure will incorporate a stratified multistage sampling ,
design into the variance-covariance computation Another mode of the "
' procedure relies onghe ordinary least squares est1mate for the variance-
covariancé matrix. Finally, a weight may be used for a weighted ordinary

least squares ‘analysis.

~_.&he Procedure SURREGR Statemegt ' .
PROC SURREGR optlons and parameters,
The optlons and parameters for the ‘PROC SURREGR statement are grouped
by function. ] _ - \
FILE OUTPUT - B ‘ SN
DATAOUT (abbreviated DOUT) ) ¢
- Th1s option produces a SAS f11e which contains for each model ‘the _

3

regresslon coeff1c1ents, the var1ance-covar1ance matrix, the F test values,
ot A

and their associated degrees of freedom. A ney record is generated for

each different value of a dependent effect. Thé data record structure and

output variable names and descriptions follow:

MODEL Model number f . . x
. DVAR Depeudeut variable number . L }
NCELL Number of columﬁs of .the X matrix T .
NTESTS ~ Number of F test values . T b
CHECK ° . This varlable equals zero if the XX inverse matrlxnls . I;
. ‘ acqutable.: L ; ) s

- -~ - e -



?
Al L, s

.~ BOO1l-B_ The regress1on coeff1c1ents (beta values) Each variable

o

<

- o " Rame for a—regress1on'toeff1c1ent starts with a B and emds—

., with a three-dlglt number with leading zeros, which is the

24

‘e « ' A
v ‘e

. . .
. .
T r - - - . »
N . .
- A . - A .
. . 4 -~ .

B " B . 58 . ¢ f -,

5. ¢ . N

. . . N .

N

colump of the X matrix to which the regression coefficient <

2o
corresponds. B00l, for example, represents thegfhtercept .
. ' - value if an intercept was included in the model. , ’
Vool-v. ; _The variance-covariance matrln of~the_regress1on coeffi- -
. cients. The matrix is output’in lower triangular form. hy
rows. The variable namé starts with a V and ends with a
e ) ( three-dlglt number W1th leading zeros, which is the pos1t10n
:' ? ‘of the var1ab1e in the lower t;rangular matrix. ) ’
FO01-F_ ' The F test values from the tests of~hypothe51s for the -
entire model (FO01) ang for each independent effect
(F002-F_ _T_) . e )
DO01~-D, The degrees of freedom associated with each E test value. .
« T It is 1mp6rtant to reallze that the spec1f1cat10n of the output data .
set cannot be made W1th the standard SAS two-level format" A separate ’
. parameter ig needed for each level. . P j
. . DDNAME=__ _ QabbreV1ated DDN) ' ' ) . "
. ‘. : ‘Thls parameter -is used with the DATAOUT optlon to specify
> _. the DDNAME 1n a JCL statement which describes the 0S data
s . _ set for the output file. If DDNAME is omitted a temporary
. T f11e will be used. : " a
DSNAME= (abbreV1ated DSN) - . - T !
- o . DSNAME is used\wmth the DATAOUT optlon. ,It is a s1x-character
- " name fot" the output data. set. If DSNAME 'is omitted the
. C. name, DUMMYM, w111 be generated by ‘the prqcedure. Since‘ #
' . each different model produces a different data set, a two- J
) . ) character suffix to the six-character data set name is added
- ]f T - by the procedure to identify the model number. IThese two : |
.o characters range from 01 throuih the ‘number of models.~ ' g
RESIDUAL T ‘ . \ N -~ L
This option allows}for output to an SAS datalset of the:unweighted |
predicted.and residual values associated with each level of each.dependent
¢ v

AT g 4
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effect for each model. There is one output record for each observation in

~

the input file. The output variables afe . &
MOlPRDOl-MOlPRD _The predlcted values. The variable name beglns with
the letter M, followed by a tWo digit number, the letters
PRD, and a two-d1g1t number w1th leadlng zeros for the

dependent effect level. For-example, the predicted value

L 4

for the second continuous dependent variable in the fourth

model is MO4PRDO2.. _ .

-

MOIRSDO1-MOIRSD. _The residuals. T
(Destription the Same as for predicted values.)

\
OUT=_ _ _.This parameter is assoc1ated w1th the RESIDUAL option. It

.

prov1des the procedure with a stahdard one- or two-level SAS

data set name. If it ,is om1tted the’ next WORK data set will

* be used. .

"PRINTED OUTPUT ]
The hypathesis testing results and the checks on the inverse of XX
°are printed by. defauit . o R
. NOPRINT This option suppresses all prlnted output.

BETA BETA prints a solution to the normal equatlons and the

L4

variance-covariance matrix for that solution. It should be

noted that’ singularities 1n the X matrix produce ﬁespond-

1ng zeros in the regre551on ‘coefficients and 1n t ariance-

~—

covarlance matrlx There is no, reparameterlzat1on

&

XPX  This. optxpnoprints the XX matf/; and 1ts—1nVerse. '

.

AN

MODES OF. OPERATION *
Computation of the variance-cévariance matrix using Taylorized devia=-

1

tions -and a sampling structure is default.
0Ls OLS requests ordinary least squares Enalysiy. )
WLS WLS:-requests weighted ordinary fegst éduares analysis.
b oraywis'  TAYWLS will compute ‘WLS and then will repeet the-analyéio

I3

using the sampling structure and Taylorized deviations.
N - .




FILE INPUT . — 7 AR

.

DATA=_ _ _This parameter dpecifies a standard one- or two-level SAS
data set name to ‘be used by the procedure as the input data.‘.ﬂ
If DATA are omitted, the current $AS data set will be used.

L

- .t

PROGRAM CONTROL ° 23 ;o o -

i

MISSPSU  This option is for Taylorized deviations and is only needed
' when no more than one PSU (pr1mar€'sampl1ng unit) in a //f E
- . "stratum has v data. A divisor used 1n;comput1ng the
variance-covariance matrix of the regression coeff1c1ents is
corrected from the number of PSUs in a stratum with valid
N datarminns 1 tosthe total-ﬁumbeQ of PSUs in a stratum minus 1.
TOL=_ _ _The absolute tolerance used to compute all‘relativeitolerances
in the nrogfam is set at*~10'8 unless this parameter is .-
‘as;igned a different value. )
PLACES=_ _ _The number of digits used for all 33tfix printing is set

to 8 unless this parameter is‘assigned a different value.

°
~ N

PROCEDURE INFORMATION STATEMENTS ¢ vy

Model Statement . ’ ’ 4 j‘ : ..

v )

MOBEL dependent effects = independent effects/list of options;

LY

The MODEL statements allow the user to list one or multiple dependent ﬂ&

effects with any number of 1ndependent effects An effect may be 4 s1ngle Il
variable or a main effect, or 1t ma§ be composed of a group of variables. >
When there is more.than one var;;ble in an effect, each_var1able must be

joined to the next with either ay * indfcating crossed variables or a ( ) ' ‘;fj?

indicating a nesting structure. -An effect may contain continuous or discrete
variables, but only discrete var1ab1es may be nested. 'Variables_whicﬁ are
combined into one effect must be 11§ted.w1tH the trossed and then the

nested groupings. Only one level of nesting is allowéd.

Exagples of correctly formed effeqts: —

A*B A crossed with 'B. . . .,
A(B) A nested within B. i

A*B(C) "A crossed with C nested within B.

A(B'C) " A nested within B d&ossed with C. N

. Note ‘that an * is not to be used before the ( or

. ) o between B and C. . ’/:7' l .
. 0 " ‘, ‘ 3 \y

- N /
60 ' ESE) ¢ . S

.- .
Iy . . -
. ) o,
. - . .
* . Y R . -+ X
v . N
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Examples ,of incorrectly formed effects:

”

A*(B) . The * is not allowed.

N - A(B) ! - i ifi ‘ “nestlng

: X1-X10 or *QEAII variables must be 1nd1v1dua11y listed.
. A*(Xh:X?) . The t‘" option of SAS is not valid in the ‘MODEL

§ - ' statement. . ' . v
. { *"NOINT Only one option is avallable for a pgrtlcular ~
. MODEL statement: Unless NOINT is specified,

.2 SURREGR will assume an 1nterqept for the model.

CLASSES STATEMENT (abbreviated ‘CLASS)
CLASSES list of var1ab1es; in “order for a var1ab1e
to be treated as discrete, it must ‘be in.the CLASS

‘., . " statement. CLASSES Al-A4 is a valid CLASS statement.
PSU STATEMENT © . ¢ . . . . e e

1
~

PSU variaBle name; PSU gives the name of the vari-
bl t
able containing” a numer1cal pr1mary sampllng un1t

1dd1cator . ‘

',
« ‘ 3

STRATUM STATEMENT (abbrev1a}ed STR) - *

<

’ STRATUM variable name, STRKTUM gives the name of .

the var1ab1e conta1n1ng a npmerical representation .

\

8 " for each strdtum. Remcmber that the data set must
‘be sorted by PSU thhln stratum for a Taylorized -

. = - deviation compﬂtatldn of the var1ance-covar1ance
T matrix® v

'Y -

+

WEIGHT STAIEMENT (abbrﬁv1ated WT) L@ - *
’ WEIGHT variablé name; WEIGHT g1ves the n;me of the
sampllng weight var1ab1e . k
~ 'LEVELS STATEMENT C - . .
| LEVELS. 11st of numbers separated by blanks; a”

<
'

level is the number of values available for a
part;cular discrete var1ab1e. That variable mustrl
be coded from 1 through the maximum value available.
. o J -7 There must be a level specified for each variable
listed in the CLASSES statement and the levels
B s must” be ordered exactly as the variables in the
. a ' ‘CLASSES statement If there are varE’bles in the

"; /1'0,, . ) + 6{} &A




- qy ¢
CLASSES statement which all have the same number \
. . . of levels, then the notation can be shortened.
- Four consecutive variables with two levels each ’
‘ . may beswritten as: R
E ., LEVELS/4*2} or LEVELS 2.2 2 2. '
Certain modes of SURREGR require different procedure information . ‘
statements: s ' ’ , ’
M ~f ., "~ )
. _' P
+ *Taylorized s Lo ¢y
Statement Deviations oLs WLS . - TAYWLS \
MODEL required required required rgquired e
CLASSES optjonal optional optional optional.
PSU 'rthited . irrelevant . irrelevant . . required °,
STRATUM required irrelevant .irrelevant * required
WEIGHT :fquired not allowed} requlred R required )
LEVELS quired w1th the classes statement - > - Lo -
- __/ « 1 . hd - (
, | =
» COMPUTATIONAL METHODS AND NOTES ° : C
~ 2 v . »
The X Matrix ’ o . . Lo .
The X matrix 1s a matrix with a row for each observatlon The number

‘of columns is the sum 6f the number of locatlons needed to hold each effect

\w1th1n the a*b*c available locations is (x-1)*b%*c + (y-l)ﬂc + z.

plus one column for the 1ntercept if necessary

or an effect with continuous varlables crossed together requires-only ‘one

A,contlnuous main effect’

column. A discrete main effect requires columns equal to the number of

levels for-that variable. When discrete variables are crossed or nested,

?he number of columns is 'equal -to the product of the levels for each variable.
The values of the effect are located within, the program as well as for .
output by varying the value of the last variable most rapidly. If an : -
effect is defined at A*B*C where A has a levels, B has b levels, and C has

c levels, then the actual location of an observation A=x, B=y, and C=z

Note that

XX 1s accumulated once for alk dependept variables in a model. In order

to have different treatments for different dependent varlables, a separate

MODEL statement must be used ‘for each dependent variable.

- * ~
’

{
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e cmacxs ON THE INVERSE . \ ‘. - ‘
. The sums of squares and cross products matrix for the independent

- .

=\ . éffects in a model statement, X X, is 1nverted as 3 part of the least

squares procedure. The 1nverse, (X X) , is a generalized inverse. There

2 ) " s a check provlded on +the condltlon of the inverse. Each element of X'X ’

. is compared with that of XX (X X) XX and then each element of X X)
[ ¥~ is compared with that of (X X) lgx (X X) . A relative deviation equal

to (the check value m1nus the actual value)® divided by the.actual value is

A2

compared with the program s .set tolerance t1mea 100. If any deviation
oo s exceeds thegﬁet,tolerance, the user is given a -warning message.
THE VARIANCE-COVARIANCE MATRIﬁ OF THE® REGRESSION COEFFICIENTS )

v - If no optlon relating to the variance-covariance mafrix is spec1f1ed

a between-PSU (primary’ sampllng unit), within-stratum, generalized mean -

o ' squares error (GMSE) is computed. This GMSE is derived for the regression - -

Pr, ble? using the technique of Taylo§1zed 11near12at10n y1e1d1ng a Taylorlzedi

. . . dekiation which'is incoxporated in the computations.
d /u -~ . "
For the OLS option, the- variance-covariance matrix is (XX)~ 142,

Lo ’?: (Y'Y.- bXY) / (N-r) -

where Y 1s a vector’ of all observat1ons fbr one dependent effect b is a

. vector of regre581on coeff1c1ents for that dependent effect, N is the

. number of oﬁeervatlons, and r is the rank of X

4

. For the 'WLS option, the varlante-covarlance matr1x has the same formula
‘as “for OLS except that each product of dependent and 1ndependent effects -

observatlon has been multiplied once by that observation's welght

3 ~ s

.

wHYPOTHESIS TESTING c T

-

¥

The last major function of the program i% to compute the tests of

_hypothesis first for thq entire model and then for each effect. These

tests exclude the intercept. The null hypothesis for any of these tests

-

‘may be written as . )

’ o % . H,:B_ =B =.«..=Bn=0(forn3m),.




s

L .
against the alternative hypothesis

« H, : B, # 0°(for some k, m < k < n}. * 1
1 Pk SkIa N

. - .o : c e
For a’ partlcular hypothe51s, the.program determines its rank, d, of the '
estlmable subspace of th hypothe51s and a dxp matrix, C, such that the
.parameters CB are egtimable and rank C is d. The value of 'd isn - m + 1,
if all of the pafameters, Bm; Bm + 10 e ﬁn’ are estimable. Otheéwise,
the value of d is less thanan - m + 1.

If the parameters were normally" d;strlbuted the test statistic would

be a 11ke11hood ratio criterion which would have-an-approx1matg F dlstrlbu- .

degrees of freedom, e, equal to the number of PSUs mlnus .the ﬁumber of

strata minus the rank of X°X, then the test statlstlc,

¢ »

' : _ ,e- d+1
N F'd,e - (

=) (B’ (cs ¢)™L (cB) : S -

~

is an approximate F with d and e degrees of freedom under the null hypothesis.

For OLS, e is equal to the number of observations minus the rank of X'X.

- " »

”~
.

tion for large samples. If 82 is the. varlance-covatlance matrlx of B w1»h I

.
L ety




