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Invented Processes in Solution to Arithmetical Problems

James M. Moser and Thomas P. Carpenter

University of Wisconsin-Madison

This paper focuses upon problem-solving behaviors of primary age

children on one-step verbal or "story" problems involving the operations of

addition and subtraction. In previous writings (Carpenter & Moser, 1982)

we have presented a detailed semantic analysis of various verbal problem

types. Some might argue that routine verbal problems are not "problems"

in the true sense of the word, but are merely exercises that can be answered

in a simple fashion by children. There is a degree of truth in this asser-

tion and, for many children, these verbal problems are not problems at all.

They know how to analyze and solve them quickly and accurately. However,

many primary age children do not have the formal arithmetic skills and

procedures to algorithmically solve these problems. For these children,

verbal problems do indeed constitute a well defiled class of problems for

which clearly identifiable problem-solving behaviors have been observed.

Greeno (1980) speaks to this point when he writes "...significant processes

such as understanding, planning and organizing activity by setting subgoals

are very much present in a great many activities that students learn to

accomplish routinely. These routine activities, therefore, ought to be

counted for what they are, namely, as perfectly legitimate acts of problem

solving." (p. 13)

When children are presented a simple word problem for which they have

not learned the necessary algorithms, they often are able to derive a

solution on their own. This is basically the process of invention des-

cribed by Resnick (1978). She talks of invention as a process whereby



persons acquire new mathematical knowledge by constructing for themselves

new -rginizations of concepts and new procedures for performing mathematical

operations. In essence, it comes to youngsters figuring things out for

themselves as opposed to simple application of formally taught facts and

skills. That children exhibit inventive behavior when no instruction has

taken place has been documented by Croen and Resnick (1977) and by ourselves

(Carpenter, 1980; Moser, 1980). In this paper, we examine the procedures

that children 4nvent to solve word problems that normally would be solved

using an addition or subtraction algorithm. We include in this analysis

all behavior that has not been formally taught as part of the curriculum.

Some of the "invented behavior" may well have resulted from their learning

from others, either in school or at home. Further, inventive behavior. will

be attributed to children who may use learned behavior, but in a situation

different in context from the one in which the behavior was learned. In

other words, we do not wish to exclude consideration of learned behavior

and the possible effects of instruction.

Although this work is not to be considered as a report of an empirical

study, we do need to provide certain background information about the three

year longitudinal study that provides the data for our conclusions. This

includes a reasonably detailed description of the instruction received by

the subjects since we feel this'instruction may well have influenced the

inventive behavior of the children.

The major section of the paper examines the inventive behavior of

primary age children. The discussion is limited to three major categories

of behavior observed as the children attempted to solve verbal addition and

subtraction problems involving two-digit numbers. The first category cf

behavior includes solutions that involve knowledge of place value, but are
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different from the standard algorithms. The second category involves use

of algorithmic behavior, both with and without use of paper-and-pencil.

Included here are correct algorithms used by children before they receive

any formal instruction in addition or subtraction algorithms and "buggy"

algorithms (Brown & Van Lehn, 1982; Resnick, 1982) for subtraction after

the addition algorithm has been taught. The third considers processes used

on a problem that can easily be solved by using the subtraction algorithm

but whose semantic wording is so strongly oriented towards addition and

additive strategies such as forward counting that children tended to resist

use of the subtraction algorithm.

Background

The Longitudinal Study

In September 1978, the Mathematics Work Group of the Wisconsin Center

for Education Research began a three-year longitudinal study of about 100

first-grade children. The sample was taken from two elementary schools

in the Madison, Wisconsin area, one public and one parochial; both serve

middle to upper-middle class neighborhoods. Data collected included class-

room observations interested mainly in allocated and engaged time and certain

teacher behaviors, paper-and-pencil achievement monitoring tasks aimed

at assessment of mastery of selected arithmetic objectives, and pupil per-

formance on a set of verbally administered "story" problems in addition and

subtraction. The last set of data, which are the basis for this paper,

were collected by means of individually administered interviews given in

September, January, and May of each of the first three school years, except

for May 1981 during third grade. Our interest in this paper is centered

upon only the four interviews (January 1980, May 1980, September 1980, and



Table 3

Representative Problem Types

Task 1. Joining (Addition) Shelley had 12 coins. Her

brother gave her IS more
coins. How many coins did
Shelly have altogether?

Task 2. Separating (Subtraction) Jim had 35 pears. He gave

21 to Mary. How many pears
did Jim have left?

Task 3. PartPartWhole
(Subtraction)

There ire 28 heads on the
necks e. 16 are red and

the rest are white. How

Task 4. Pa ti Part Whole

(A ..A16,11)

Task 5. Comparison (Subtraction)

Task 6. Joining Missing Addend
(Subtraction)

many white beads are on
the necklace?

Allen has 11 apples. He

also has 18 oranges. How

many pieces of fruit does
Allen have altogether?

Tom has 16 crayons. His

friend Sally has 29 crayons.
How many more crayons does
Sally have than Tom?

Jane has 23 markers. How

many more markers does she
have to put with them to
have 37 markers altoOther?
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January 1981) and only upon those conditions in which the problems contained

two-digit numbers.

Six selected verbal problems were administered at each interview.

Fach of the six was presented in the order as listed in Table 1 under a

variety of conditions determined by number size and the availability of

problem-solving aids such as manipulative materials or paper-and-pencil.

For each, a set of about 60 cubes, divided equally between two colors, and

paper and pencil was provided. Under each condition at a particular admini-

stration, the wording of the problems was altered to prevent immediate

recognition of problem type by the subjects while still attempting to maintain

the semantic characteristics of the problems.

Two sets of six problems each were read to the children. The first

set involved number pairs for which no regrouping was required for a compu-

tational solution while the second used numbers for which regrouping was

required. The actual number trifles used are shown in Table 2. For the

six'problems, these six number triples were assigned under a Latin-square

design resulting in six sets of six problems each.

Table 2

Two-digit number triples used in Wisconsin longitudinal study

No Regrouping Regrouping

12, 15, 17 12, 19, 31

12, 16, 28 13, 18, 31

11, 18, 29 14, 18, 32

13, 16, 29
4

16, 17, 33

14, 21', 35 15, 19, 34
4,0

14, 23, 37 17, 19, 36
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Children's responses to the individual problems were recorded by the inter-

viewer and were coded into four categories: type of model; correctness;

process employed; and, if appropriate, type of error.

Instruction in Addition and Subtraction

Both schools in the study used the Developing Mathematical Processes

(DMP) program (Romberg, Harvey, Moser, & Montgomery, 1974) as the basis

for mathematics instruction. DMP has a strong emphasis upon problem solving

and as a result the children had been exposed to the various problem types

used in the interviews. For the longitudinal study, special units were

developed for instruction in the computational algorithms for addition and

subtraction. These units are briefly characterized here. Of particular

interest is the timing of instruction in relation to the administration of

the four problem-solving interviews. The first unit was taught in second

grade following the January 1980 interview. The unit begins with childrA

counting forward and backward from any number by twos, threes, fives, and

tens with care given when the counting bridges from one decade to another.

Number patterns and rounding are also taught. Basic problem types including

Join, Separate, Combine, and Compare are used. Suggested solution methods

include counting by tens and ones as well as use of manipulative materials,

especially small counting 'sticks already grouped together in tens and bound

by a rubber band. At first, horizontal number sentences are written to

represent problem situations, but the transition is quickly made to the

vertical form of citing with the first efforts assisted by the use of

a grid labeled wi_. "tens" and "ones". All numbers utilized are two-digit

numbers, and no problems require regrouping. Both addition and subtraction

receive equal emphasis.

8



7

The second unit was taught several weeks following the first unit and

preceding the administration of the second interview in May 1980. In this

unit, the children are asked to solve addition problems involving regrouping.

The- formal algorithmic process is motivated by the use of the bundled count-

ing sticks used in the preceding unit and also in an earlier unit devoted

to place value. At first, children solved by counting the sticks one-by-one,

then by using sticks grouped in bundles, regrouping as needed. Symbolic

recording of the work is done. This learning activity is greatly similar

to the mapping technique as described by Resnick (1982). Rather quickly, the

children are urged to move to the formal symbolic algorithm, with the tran-

sition once again eased by the place value grid described above. The

children are reminded to check reasonableness of answers by estimation and

by rounding addends to the nearest ten and then mentally adding the rounded

numbers. Some subtraction is reviewed, but only with numbers requiring no

regrouping.

The third unit was taught in September 1980 when the children were third

graders. The third problem - solving interview was given prior to the begin-

ning of this unit. This third unit is similar to the second unit described

above, except that the emphasis is upon subtraction and the algorithm for

regrouping. One feature of this unit is the checking of addition and sub-

traction problems by using the inverse operation. In earlier arithmetic

units involving "basic fact" addition and subtraction, analysis of verbal

problems to decide which operation to use was centered around explicit

discussion of the part-part-whole relationship. Appeal to this same part-

part-whole analysis is made to make the checking by the inverse operation

reasonable.
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The final unit was taught during late Fall 1980, preceding the admini-

stration of the last problem-solving interview in January 1981. This fourtl-

unit is essentially a review of instruction on the computational' algorithms.

The expectation was that by completion of this unit, children would be able

to correctly apply the two-digit algorithms to a variety of verbal

Addition and subtraction problems. Not all types of verbal problems were

covered, some of the more difficult comparison problems having been delayed.

Solving problems in all areas of mathematics--geometry, measurement,

and arithmetic--is the emphasis of the curriculum used by the subjects of

the longitudinal study. In particular, verbal problems in addition and

subtraction are used early in the program and serve as a motivating rationale

for learning standard computational procedures such as memorization of basic

facts and algorithms. This technique would appear to be strikingly differ-

ent from other more traditional instructional programs in which abstract

symbolic arithmetic is taught prior to application to problems, generally

in a rather context-free setting. Thus, when confronted with a problem

situation for which a standard procedure was not available, the children

in this study were encouraged to seek a solution using whatever means

they had, rather than give up. Consequently, the effect of instruction

cannot be ignored as we consider the invented processes that children use

in their attempt to solve arithmetic problems.

Inventive Behavior of Primary Age Children

in earlier writings (Carpenter, 1980; Moser, 1980) we presented evi-

dence of inventive.behavior by children solving verbal addition and subtrac-

tion problems contaiL:n7 one-digit addends. In this section, we examine

invented strategies for problems involving two-digit addends. In some cases,
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the invented strategies reported here are variations of those observed with

the. smaller number problems while in other instances, they ate unique to

two-digit problems.

The extension of counting strategies to two-digit problems provide

one example of invention. Children used a variety of counting strategies

to solve one-digit problems. Fuson (1982) documents some of the keeping-

track mechanisms used by younger children, many of which we also observed

during administration of the one-digit problems. With such smaller num-

bers, keeping track can usually be effected mentally or by using some

su'set of one's ten fingers. However, with larger two-digit numbers, keeping

track can involve using the fingers on at least one,hand more than once

or some complicated mental operations. These keeping-track mechanisms

provide one example of a kind of invention, since they were not formally

taught.

One second-grade student used cubes as a tracking device. The problem

was a Separate problem (Problem 2 from Table 1) with the numbers 23 and 37

(37 - 23 = 0). This child elected to Count Back, beginning with "37,

36, . . ." After several numbers, he seemed to realize that he would have

a difficult time keeping track of all 23 words in the sequence. After

several moments of sil:-.nce, he constructed a set of 23 cubes. Heathen

recommenced his downward count, removing one cube from the set for each

word spoken. When the set was exhausted, he triumphantly looked up and

pronounced the correct answer.

Non-Standard Solutions

The Counting strategies that children use for one-digit problems are

tedious for two-digit problems and provide a great deal of opportunity for

I
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counting errors. Since most children had no formal instruction in addition

or subtraction algorithms at the time of the first interview, they were

forced to either rely on the time consuming counting stategies or invent

alternative procedures. Many children used their knowledge of place value

together with their understanding of counting strategies or knowledge of

one-digit number facts to arrive at unique solutions. Here are some

examples of these strategies.

i) For interview task //6 (Join/Subtraction) involving the given

numbers 15 and 28: "15, 25, 26, 27, 28. The answer is 13."

Counting up from the given addend 15 to the given sum 28 was faci-

litated by one quick count of 10 (15 to 25).

ii) For interview task 113 (Combination, missing part) involving the

numbers 31 and 19: "1 think o'f 31 as 30 and 19 as 20, so the answer

is 11." Even though an error was made, this strategy involves

knowledge of place value and basic facts (3 - 2).

iii) For interview task 013 involving the numbers 32 and 18: "32 take

away 10 is 22. Twenty-two take away 8 is 24!" This example

involves breaking 18 into JO and 8 together with an incorrect

application of the subtraction algorithm.

The incidence of observed usage of this type of alternative procedures is

listed in Table 3.

Table 3

Percentage of Place -Value Procedures

Interview Range*

1 O 13%

2 1 8%

3 5 13%

4 3 - 8%

*Ranges of values over the two-digit problems in each interview
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When counting was involved as part of these strategies, b,.th upwara-

and downward counting was used on each subtraction problem. The choice of

upward or downward counting was not based on problem structure as it wa,

in the smaller nu-5er problem interviews. While the frequency of use ot

these strategies is not ,overwhelming, it by no means i I either.

bsrantiAI number of children did use this type or strategy as a con-

structi..n of a method to solve problems that took intc account aspe,ts cat

lue and other numerical relationships.

ntinuing a pattern of behavior that we observed in the earlier phases

the :onWudinal those children who did use thi eneC.11 t.vile or

'trite,-°: were -lective in that use. That is to say, they did net use thi-

strategv Jniersally over all Problems type', and all problem conditions.

example, some children were able to use a standard algorithm success-,
si.btraction problems or which regrouping was not required

bat then switched rnative strategy when'confronted with problems

.-ntarnIng numbers requiring regrouping. But even then, alternative strategy

not use-d subtraction problems within A single interview. There

is utticient number of incidences of t':1- behavior to enable us LI

this selective be:ravir_,

°,e f Algori

might to expected, the correJt tise of Algor!thms ito-reAseu oer time

advaace's paralleling in;- in-.7-trthtion in algorrthi,i-

4_oser, 19SI

;Ald

the incidencr. of Algorithmik use pri,c

emetervie ot "buggy algorithms during tr.stru,rion

szlifcestr. Another ocurence of inventive behavior tNic paper, of

1-7crit!ms is taken t3 mean behavior, Dither written (and e.tsi1.
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or men411 (a's reported by subjects upon questioning by tie intirviewer),

that taUes into account the place value Of each digit in a two-digit number

and then determines answers for the one's place and the ten's place sepa-

rately. In identifying algorithmic behavior, we did not differentiate

whether operations were done in reverse order (tens before ones) or the

y
. method by which basfic fact for each place was determined. If there Eras

..- a basic,tacl.e<7 made, t at was noted but not classified as an incorre t

or Z'buggy" algorithm. Table 4 presents selected data on the,6se of algor3 hms

on- three protillim tasks that require regrouping. The actual wording of

these tasks is Oven in Table 1.

Problem
Ivpe

Join,Additron

Separate

A,. end

,.

Table 4

Use of Algorithms- for
Two-Digit Problems Requiring Regrouping

Interview Problem
Correct

11119lizit1.1____ "Buggy"
AlgorithmUsed Used Correctly

1 62 25 21 1

69 69 53 7

75 60 45 5

4 92 92 86 3

45 14 3 8

2 23 58 2 49

33 40 3 34

75 88 69 18

43 10 7

39 35 3 21

3 47 2k 3 18

70 40
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1
Note the percentage of algorithmic use in Interview 1 which took'

place prior to any formal school instruction in the use of algorithms.

Slightly higher percentages were observed for the non- regrouping problems

in terms of use while much higher percentages in terms of correctness were

seen,pprticularly for subtraction. It is impossible to tell how much ,of

this behavior was truly invented by the children and how much was due to

outside-of-school influence such as parental direction.

There are striking differences between the use of algorithms for addi-
,

tion and subtraction. Beforeany instruction, about 20 percent of the children

were able to use algbrithmic behavior to solve two-digit addition problems

that required regrouping. However, even after instruction in regrouping

for addition, only 3 pe'rcent could construct an appropriate subtraction

algorithm. In fact, instruction on addition tended to encourage the use

of a buggy algorithm that ignored regrouping.

The data from the last three interviews reveals further interesting

results. Between Interview 1 and Interview 2, there was direct instruc-

tion on the regrouping addition algorithm. Use of the addition alA'ithm

jumps sharply followed by a slight decline over the summer. The large

jump from the third to fourth interview for addition appears to represent

a consolidation of learning some of which is due to instruction in subtrac-

tion and additional review in addition.

An interesting result is the large increase in the "buggy SmallerFrom-

Larger (Brown & Van Lehn, 1982) subtraction algorithm at Interview 2.

Apparently the instruction on the addition algorithm has cause many child-

ren to extrapolate its procedures to subtraction. According toirown ank7)

Van Lehnis Repair Theory, generation of a buggy algorithm can onlys'bccur

1
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if there is some sort of algorithm already in existence but that some

perturbation in its correct use takes place, the faulty repair of which

results in the bug. Most children make a very superficial extension of the

addition algorithm to subtraction, ignoring the regrouping involved in the

process. The use of buggy algorithms for subtraction was much higher than

was the case for addition. In fact, before children had instruction in

addition, very few invented buggy addition algorithms.

Why more children don't invent the correct subtraction regrouping

algorithm rather than the incorrect buggy one is not clear. It is clear,

though, that once the correct algorithm is taught directly (between Inter-

view 3 and Interview 4), most children are successful in its use. A direct

corollary to the increased use of the buggy subtraction algorithm at

Interview 2 is the pronounced drop in percentage of correct responses for

the problems to which the buggy algorithm has replaced counting solution

procedures.

Solutions to Join Problems

Children's performance on the Join, Missing Addend problem deserves

special mention. Although this problem is solvable by subtraction of the

two given nymbers in the problem, the semantic structure tended to keep many

children from using the subtraction algorithm. On the administration of

the smaller number versions of this problem in the Other phase of the

longitudinal study, almost all children used an additive strategy. This

carried over into the two-digit problems. Use of / the subtraction algorithm,

either the b;.:-..6y one prior to formal instruction or the correct one subse-

quent to instruction, was much higher on the other three subtraction
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probleMs (Table 4). The reason for this may be seen in the instruction

associated with subtraction. The rationale for the standard algorithm for

subtraction is based strictly upon a subtractive or "take-away" notion.

For the other three subtraction problems used in the interviews, this take-

away interpretation is not inconsistent. However, for a large percentage

of the subjects in our study, "take-away" appeared to be contradictory or

inappropriate for a problem part of whose wording included "How many more

must be added on to...?" Most`children realized that the addition algor-

ithm was not appropriate, but they could not relate the additive nature

of the action in the problem to the subtraction algorithm. The solution

involved a choice strategy, and in this instance, a choice not to use

a learned or invented algorithm. Rather, the decision was made to revert to

on addition on or counting up strategy, which reflected the problem struc-

ture. The data in Table 4 indicate that about one-third of the almost 100

subjects made this choice.

Discussion

A consideration of children's number concepts cannot be divorced from

a consideration of the effect of instruction. The alternative counting stra-

tegies appear to be on the lower end of the scale along the dimension of

being influenced by instruction. They are related to the earlier invented

strategies involving use of counting sequences, either forward or backward.

Yet, the amplification and extension of the counting sequence strategies

to the alternative strategies often involved place value properties

which are learned outcomes of instruction. Knowledge of place value also

would appear to be a pre-requisite for invention of any algorithms as we

have defined them. But this brings us back to the very first discussions
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in this paper about the nature of inventive behavior. To think of invention

as building out of nothing is too narrow. InventiA is a rearrangement of

elements into similar structures. For example, for most students, the

subtraction "buggy" algorithm is invented only after instruction on the

addition algorithm. in most cases, the elements learned in instruction

provide some limit to the range of invention.

The data we have presented also suggest that instruction has a bearing

upon changes in invented behavior. There was substantial change between

interviews, reflecting instruction that took place during that period of

time, yet there was almost no change over the summer when no instruction

had taken place. What change did take place over the summer was a slight

reversion back to earlier behavior.

The effect of instruction can also be observed by comparing our results

to those from a study by Collis and Romberg (1981). That study used almost

2".

the same procedures as the ones we have,u,sed, but found some strikingly

different results. Third grade students in Tasmania, Australia were indi-

vidually interviewed on the same verbal problems with the same number size

as reported in this paper. Yet, only one:Thitd used algorithmic procedures,

arzdespite the fact that they had regeive4 f Orma i instruction on how to

compute. Unlike DMP, which was used in the study discussed in this paper,

their instruction on computation was taught only in a symbolic context,

free of application to "real" problems. This seems to indicate that

y.

instruction has a major effect upon the range" application of learned

strategies, and any chat rization of children's formal or invented

mathematics concepts and'prode s needs to consider the role of instruction.
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