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Text: UNIT 84

RECOGNITION OF PROBLEMS SOLVED BY

EXPONENTIAL FUNCTIONS

by

Raymond J. Cannon
Department of Mathemaitcs

Stetson University
DeLand, FL 32720

916/77

1. INTRODUCTION

The purpose of this unit is to help you zecognize

problems which can be solved by use of the exponential

function, and to show you some of the wide variety of such

problems. You will learn how to actually solve such

problems in Units 85 -88.

2. THE EQUATION y' = ky

Problems whose solutions involve the exponential

function all have one thing in common! the rate of change

of the quantity being measured is proportional to the

quantity itself. Knowing the mathematical language will

enable us to develop the mathematical machinery needed to

solve theseltproblems. Let y stand for the quantity being

measurei. You are familiar with the concept of rate of

change expressed in mathematical terms; rate of change

is given by the derivative, in this case written y'. The

phrase "proportional to" means "is a constant multiple of."

We let k stand for the constant.

(

The rate of :

(The quantityof the quantity is proportional to
being measuredbeing measured

y

With this translation, we can say now that each problem

whose solution. involves the expOnential function

satisfies th( mathematical equation y' = ky.

3. GRAPHICAL PROBLEMS

3.1 Geometric Meaning of y' = ky

If you are given the graph of a function of x, you

can use,a straight edge to draw lines tangent to the graph

at various points and then find the slope of the tangent

line as you would for any straight line (the change in y

divided by the change in x). Now recall the geometric

significance ofqhe derivative: it is the slope of the

tangent line. Thus, the slope of the tangent line is

also the value of y'.

If the curve is the graph of an exponential function,

then it satisfies the equation y' = ky, or` if y # 0,

y'/y = k. We may use the method above to check whether

or not a given curve is the graph of an exponential function

by evaluating y'/y at various places.

3.2 Example of a Graph that Satisfies y' = ky

(See next page.)
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Figure 1. Example of a graph that satisfies y' = ky.

2 3

The curve also goes through the point (0, 1), and

the tangent line has been drawn at this point. The slope
of this line is approximately .5 which gives us the value
of y'; the value of y at the point of tangency is 1 and
y'/y is .5/1; or .5. You probably now suspect that this

.graph satisfies the equation y' = .5y. You may wish to
confirm this suspicion by trying the same process at some
other point on the graph. Do not be upset if your cal-

culations give y' /y as approximately .55 or .45; these
are only approximations. We will assume the curve is

exponential if the values of k agree to within ten percent
of each other. You should At get numbers like 2.3 or .1
as approximations. You also need not feel you have to

extend the tangent line down to the x-axis to compute

the slope. But it is easier if you always let the change
in x be 1 or 2 or 10, etc., because the slope is then easy

to figure from the change in y.

3.3 Graphical Exercises

Choose at least three points on each of the following ,

graphs and draw the tangent line at each of these points.

Use the slope of these lines to estimate y' and fill in

the table accompanying each graph.

We have drawn a line tangent to the graph at (2.5, 3.5)

and computed its slope by extending the tangent-line down

to the line where y = 0; from this oint we move one unit

to the right, and then go back up to the tangent line.

The point where we meet the line again has 1.7 as its

y-coordinate. Since we started with y = 0, our change in

y is 1.7, which remains unchanged when divided by our change

in x which is 1; the slcoe of this tangent line is 1.7. The

quotient y'/y is 1.7/3.5 or approximately .5.

8 3
9
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Figure 2. Is this the graph of an exponential functjon?

TABLE I

a) Are the numbers in the last row approximately the same?

b) is Figure 2 the graph of an exponential func'tion?
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Figure 3. Is this the graph of an exponential function?

TABLE II

Y'

yVy

a) Are the numbers in the last row approximately the s..me?

b) Is Figure 3 the graph of an exponential function?
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Figure 4. Is this the graph of an exponential function?
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a) Are the numbers in the last row approximately the same?

b) Is Figure 4 the graph of an exponential function?

TABLE III

12

4. 5

4

3

2

1

11.1h1111111
viinumn*turn
MI=

Ire°!!111110.1

11,111111r

mv:11

.
EL

raligil-a114-

Anffilr

.....

a

Li"

-mil

.

Iii-H

""pego
OR

rim
is
gas=

-:-

i

_1

4
1_

1-
1+ 4_

n _

,-4

--t

-1
i-

1 2

Figure 5. Is this the graph of an exponential function?

TABLE IV

y

Y'

yl /y

a) Are the numbers in the last row approximately the same?

b) Is this a graph of an exponential function?
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4. WORD PROBLEMS

4.1 Some Key Phrases

People often have difficulty with "word" or "story"

problems because they do not know how to get started.

This section is to help you get started on some word

problems by being able to recognize key words or phrases

which indicate that the solution of the problem will

involve the exponential function. We saw the general

phrasing of such problems in Section 2 of this unit, and

now we look at some specific instances.

Sometimes you are lucky enough to see a phrase that

is very close to the general phrase given in Section 2,

such as "the rate of change of the cost is proportional

to the cost." Sometimes the phrase is slightly disguised,

as in "the acceleration is proportional to the velocity";

here you must recognize that acceleration is the rate of

change of the velocity. Another way of saying the rate of

change is proportional to the amount is to express this

proportion as a percentage, as in "increasing at the rate

of six percent per year." This phrase would translate

to the mathematical equation y'= .06y. It is important

to distinguish between a growth rate that is constant,

say $6 por year and, as we have here, a growth rate that

is a constant percentage, six percent per year. In other

case:, the proportionate rate of growth is not given as a

yearly rate, but in terms of how long it takes the quantity

to increase or decrease by a given factor. You will

recognize this in phrases such as "doubles every eight

years", "increases by a factor of three every two years",

"has a half-life of thirty minutes", or "decreases by a

factor of 1/5 every twenty years." The concepts of half-

life and doubling-period will be dealt with in greater

detail in Unit 85. For now, try to develop recognition

14

9

of such phrases; your computational skill will be

developed later.

4.2 Example of Word Problems that Involve y' = ky

Example 1

The Navy is testing a new torpedo, and launches one from a

submarine. Because it contains enough air to offset the weight of

the metal, it is weightless in the water anj therefore stays at a

constant depth. The torpedo misses its target and heads toward

open ocean. Two miles from the launch its motor stops. At .'Is

instant it is traveling 80 miles per hour, but the water resistance

slows the torpedo at a rate proportional, to its velocity. Three

miles from launch it is traveling at 40 miles per hour. Since the

torpedo is a threat to navigation, it must be recovered. It can be

picked out of the water it It is going less than one mile per hour.

How soon can the Navy recover the torpedo, and how far down range

should they go to make the recovery?

Discussion of Exam le 1

One of the eifficulties of word problems is that

there tends to be more information given than is really

necessary to solve the problem. Another is that the

information needed to completely solve the problem is not

needed to begin the solution. The first task in solving

this problem is to write the correct equation governing

the change in velocity of the torpedo. This equation is

gi,en by the "w- :er resistance slows the torpedo at a Kate

proportional to its velocity." This contains one of our key

phrases, and if v is the velocity, we have v' = kv. The

solution of this problem involves the exponential function.

4.3 Another Word Problem

Example 2

A fossil is found in a cave, and taken to a laboratory to be

analyzed. It is found to emit about seven rays from carbon-14 per

10



gram per hour. A living body radiates at a rate of 916 rays per gram,

per hour, and radioactive carbon -14 has a half-life of about 5,600 years.

Approximately how old is the fossil?

Discussion of Example 2

The word half-life was given earlier as a term that

indicated a rate of change proportional to the amount of
a quantity present. The term half-life can be expressed%

as a percentage rate of change. In this case the percentage

is given as 50 percent per 5,600 years, instead of an annual
rate of percentage. If we let C(t) be amount of carbon-14

at time t, then the solution to the problem involves the

solution to the equation C'(t) = kC(t). Again, how to

determine k, and how to solve this equation will be dis-

cussed in Unit 85.

4.4 Exercises

A question is posed in epch problem to make the

problem seem more-like those you will encounter later;

you are not expected.to be able to solve these problems

now. You are expected only to answer questions (a) and

(b) following each problem statement.

5. The Security Union Bank advertises that it pays fife percent

interest on saving' accounts, and the interest is compounded

continuously.' If you opened a $1,000 savings account with this

bank today, how much money would be'in the account a year from

today if you make no withdrawals or deposits?

a) Is the rate.at which your account is growing a constant

percent?

b) If a(t) is the amount in yot'ir account at time t, does a(t)

satisfy the equation alt) = ka(t) for some constant k?

6: Roger wants lo go scuba diving for lobsters. He must be able to

Clive to a depth of 100 feet. It is a cloudy day, and on his Jight

la 11

meter at home, Roger notes that the amount of light at the

surface of the water is 400. Roger does not have an underwater

lamp and is dependent on natural light. He knows from previous

experience that evcry 20 feet of water will reduce the amount of

light by one-half. Roger needs a reading of 40 on the bottom to

see the lobsters. Can Roger plan on lobster for dinner, or

should he defrost the hamburger?

a) If L(d) represents the amount of light it depth d, is

L'(d)/L(d) a constant?

b) Does the solution to this problem involve the exponential

function?

7. A rock is dropped from a cliff towards the ocean. The velocity

at time t is proportional to t, and the constant of , proportionality

is 32. If the cliff is 50 feet above the ocean, when does the

rock hit the water?

a) If p(t) represents the distance the rock has fallen, does

p'(t) = kp(t)?

b) Does the solution to this problem involve the exponential

function?

8. Anne has just spent $5,000 for an automobile. She knows that it

will depreciate at a constant rate of 17 percent per year. For

how much will she be able to sell the car in six years?

a) If p(t) is the price for which she can sell the car in t

years, is p'(t) /p(t) a constant?

b) Does the solution to this problem involve an exponential function/

9. A curve in the plane satist:es the following geometric condition:

the slope of the line tangent to the curve at any point is three

times the x-coordinate of that point. The curve passes through

the point (1, 4). What is the y-coordinate of the point on the

curve when x = 2?

a) Does this curve satisfy y' = ky?

b) Does the solution to this problem involve the exponential

function? 12

1_7



10. A piece of pottery is taken out of a kiln where it his been

baking. Its temperature when removed ?rom the kiln is 2300°F,

and it is placed in a room where the temperature is kept at

75°F. Newton's law Of cooling states that the rate at which a

body cools is proportional to the difference in temperature

between the body and the surrounding room. (Note that the rate

of cooling is equal to the rate at which the difference in

temperature between the body and the room decreases.) After one

hour, the pottery's temperature Is 2000°F. When will it be

safe to touch the pottery with bare hands:

a) Let F(t) be the difference between the temperature of pottery

and the temperature of the room. Is F'(t) = kF(t)?

b) Does the solution to this problem involve the exponential

function?

11. A certain factory has been dumping its chemical wastes into a

river which flows into a lake. The chemical wastes of the

factory cause a rash on the skin when their concentration in

the water is 30 parts per million; they in.itate the eyes at

a concentration of five part; per million. The factory ,topped

dumping its waste into the river a month ago, and the concen-

tration the lake was then at 75 parts per million. The clean

water of the river entering the lake mixes with the polluted

water of the lake; then, as the river flows out of the lake, some

of the polluting materials are carried off. The flow of the

river is constant; together with our mixing assumptions, this

means that the rate at which the waste material is being carried

off is proportional to the amount of waste in the lake. The

chemical waste now inythe lake amounts to 70 parts per million.

How long will it be before people can swim in the water without

getting a rash? Without their eyes burning?

a) If c(t) is the amount of chemical waste at time t, is c'(t)

proportional to c(t)?

b) Does the solution to this problem involve the exponential

function?

18
13

12, A drug is injected into the bloodstream of a patient. Enough

of the drug is given so that its concentration in the bloodstream

is three times its effective level. The rate at which the drug

is eliminated is p portional to the amount in the bloodstream.

After ten minutes, a sample of the patient's blood shows that

the level of the drug is 2.7 times its effective level. How long

will the level of the drug remain above its effective level?

a) If a(t) is the amount of drug in the bloodstream at time t,

is a'(t) = ka(t)?

b) Does the solution to this problem imiblve the exponential

function?

5. ANSWERS TO EXERCISES

1. The entries in your first two rows will depend on the

choices of y you made, but your entries in the last

row should all be about 0.17.

a) yes, b) yes

2. The entries in the last row should differ considerably.

For instance y' < 0 when 7 = 4 at one point, and y' > 0

when y = 4 at another point.

la) no, b) no

3. This is harder than No. 2, but again the values in the

third row should differ. y' is near 0 when y = 1 and

is near 2 when y = 12. This makes it more difficult

to answer but the answers are

a) no, b) no

4. Each entry in the last row should be about -1.0.

a) yes, b) yes

5. a) yes, b) yes

6. a) yes, b) yes

7. a) no; p'(t) = 32t, not 12p(st), b) no

i4
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8. a) yes, b)yes

9. a) no; y' = 3x, not y' = 3y, b) no

10. a) yes, b) yes

11. a) yes, b) yes

12. a) yes, b) yes

6. MODEL EXAM

---- 1. The Security UniOn Bank advertises that it pays five percent

interest on saving accounts, and the interest is compounded

continuously. If you opened a $1,000 savings account with

this bank today, how much money would be in the account five

. years from today if you make no withdrawals or deposits?

a) Does solution of this problem involve an

exponential function?

b) Why or why not?

N

2. A jet is traveling at 1,300 miles per hour. The jet's engine ,

burns out, and the plane is being slowed by the resistance of

of the air. The deceleration rate is proportional, to the square

of the velocity of the airplane. After five minutes, the plane

is traveling at 1,100 miles per hour. How long is it before

the plane is traveling at 800 miles per hour?

a) If v(t) represents velocity of airplane at time

t, is v' (t) = kv(t)?

b) Does solution of this problem involve an

exponential function? Why or why not?
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Fill in the following table for various values of y.

y

y, /y

Is this the graph of an exponential function? Why

or why not?

7. ANSWERS TO MODEL EXAM

1. Yes, because the bank adds to the account at a rate

proportional to the total amount in the account at

any time, i.e. it adds at the rate of five percent

cf the account balance per year.

2. a) No, the deceleration is proportional to the

square of the velccity. The rate of change

equation should read

v'(t) = k[v(t)]2

b) No, beause the rate of change of velocity is not

proportional simply to the velocity but to the

square of the velocity.

3. No, because y'/y is not approximately the same for

all points.

21
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Text: UNIT 85

EXPONENTIAL GROWTH AND DECAY

by

Raymond J. Cannon
Department of Mathematics

Stetson University
DeLand, FL. 32720

9/6/77

I. INTRODUCTION

The words half-life and doubling period were ,

emphasized in' Unit 84 as key words (or concepts) in

recognizing problems solved by expOnential functions.

This unit takes a closer look at these concepts, and
0

develops formulas that express the amount of the

quantity as a function of time.

2.,,RB1/IEW OF EXPONENTS

Since we will have needi.of the expression 2 t/k
, we

want to review what the exponent means when t and k are

integers; what it means when t and k are not integers will

be dealt with later. We will use the letter b to represent

an arbitrary positive number. In the expression b t/k , b is

called the base, and t/k, the exponent.

If t is a`positive integer, then bt is b multiplied

by itself t times. For example, 23 = (2)(2)(2) = 8. What
is 23?

If t is:a negative integer, t:en b-t =
(1)t libt.

Thus, 2-3
.T1 5 5-1) (1) (1) (1) What is 2-3?() 2 2 2 2 33:-

=

If k is 'a. positive integer, then b 1/k is the number a

such that ak = b, and b1/k is called the kth root of b.

Thus; 81/3 = 2 since 22 = 8. What is 321/5? 321/5
=

since 25 = 32. What is 641/3? .' What is 642/3?

26
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3. POPULATION GROWTH AND DOUBLING TIMES

a 3.1 Computation of a Doubling Period Given Annual Percentage Growth

-Let us suppose that country A has population that
is growing at the rate of three percent per year. Do you

think of this as rapid growth or sloK growth?

If the country had 10,000,000. people in 1975, how long

will it take the population to double and reach the

20,009,000 level? Take what you think is a reasonable

guess. . We- can-work out the answer and see how

good .your guess was.

That the population grows at a rate of three percent

per year means the population in a given year is 1.03

times the population of the previous year. Thus, the

population in 1976 will be 10,300,000 = (1.03)(10,000,000)

The populaiIon in 1977 will be (1.03)(10,300,000) =

10,609,000. To compare'this to the 1975 population,. write

10,609,000 as (1.03)(1.03)(10,000,000) which is

(1.03,32(10,090,000): The population in 1978 will be

(1.03)(10,609;000) = (1.03)(1.03)2(10,000,000) \=

(1,03)2(10,000,000).

This pattern is made clearer when we look at the data

in the form of a table as in Table I.

Exercise

1. Fill in Table I. Use a calculator to do the multiplications.

(See next page.)
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Careful,
watch the

JumP-

TABLE I

Year Population

1975 (1.03)° (10,000,000) - 10,000,000

1976 (1.03)1 (10,000,000) = 10,300,000

1977 (1.03)2 (10,000,.000) . 10,609,000

1978. (1.03)3 (10,000,000) - 10,927,270

1979 (1.03)0(10,000,000) .

1580 0.05)000,000,000 -

I990 0.04:1(10,000,000) -

2000 (1.03)0(10,000,000) ...

How close was your guess to the value 20,937,779?

In 25 years, the populatiOn has more than doubled! In

fact, the population doubled in less than 23 years.

(How to compute the actual doubling time will be shown

in a later unit.) What will the population be in the

year 2025? To answer this question, we want to compute

(1.03)5° (10,000,000). As a short cut in this computation,

note that (1.03)45(10,000,000) = 20,937,779 means that

(1.03)25 = 2.0937779. This means (1.03)5° = [0.0325(2)) =
[(1.03)25]2 = (2.0937779)2.

In 25 years from 1975 to 2000 the population increased

by a factor of 2.0937779, and in the next 25 years from
2000 to 2025, it increases by the same factor. We may

,express the population in 2025 in the following equivalent

, ways: (1.03)50(10,000,000) = (2.0937779)2(10,000,000) =

(2.0937779)(20,937,779) = 43,839,059.

Exercises

2. Find the doubling period of each quantity from the following

tables.

28
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TABLE II

G,OWTH OF BACTERAA

Time Number of
Bacteria

9 a.m. 1,400

10 a.m. 1,764

11 a.m. 2,222

12 noon 2,800

1 p.m. F.,528

2 p.m. 4,444

3 p.m. 5,600
----

a) Doubling period is

TABLE III

--INCREASING COST OF AUTOMOBILE

Year Cost of Car

(dollars)

1971 2,500

1974 3,1149

1977 3,967

1980 5,000

1983 6,298

1986 7,534

b) Doubling period is

3. Use the estimate that the population doubles every 24 years in

country A to complete Table IV.

TABLE IV

Year Population

1975 10,000,000

1999 20,000,000

2023

2 047

Using the same doubling period, we

see that the population must have gone

from 1(10,000,000) to !0,000:000 in 24

years, Thus, the population in 1951

was . In 1927 the

population was If we

know the doubling period, we can say

what did happen, as well as what will

happen.

3.2 Computation of Doubling Period from Graph of an Exponential Function

. The graph of an exponential growth function is given
in Figure 1 (page 5). Notice the value of the function is

8 when x = 6. To find the doubling period, we must see
what x is when y = 16; when the graph crosses the line

29 4
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TABLE V

A

Year

B

Year
Minus
1975_

C

.

Population

w
1927 2,500,000

1951 -24

1975 0 10,000,000

1999 24 20,000,000

2023 48

2047 80,000,000

Let t represent the entry in column B and verify

that the corresponding entry in column C is

2
t/24 (10,000,000) by completing Table VI.

TABLE VI

Year t
(2/24)

2(t/24) (10,000,000)

-48
2-48/24 2-2 k

1951 0 2
-.

1975 0 2
0
. 1

-

.1999

2023

2047 72 2
72/24

.1 2
3

Is the populationin each year as computedby you in

Table VI.the same as the population given in Table V?

It should be.

32

The last column in Table VI gives us our formula for

the population in any year;

P = (10,000,000)2
t/24

where t is the number of years measured from 1975.

Assuming the population doubles every 24 years,

we can say the population in 1995 will be (10,000,000)2
20/24

and that the population in 1960 was (10,000,000)2
-15/24

4.2 Formula for Growth of a Bank Account

Tom's father put $100 in the bank for Tom. The bank

paid interest on the savings 'account so that the amount

doubled every 12 years. In 1960 Tom had $400. When did

Tom's father start the account? You can answer this

'question without a formula such as the one we worked out

in Section 4.1, but let's use a formula anyway. Then

we can use it to answer a question about the amount at a

time when is not an integer.

Since we know how much was in the bank in 1960, we

use 1960 as our starting point. The doublipg period

is 12, so we have k = 12 and the amount in the bank is

given by 400(2
t/12

), We want the value of t so thal

(400)(2t/12) = 100.

That means 2
t/12

= , Now,
1 ,1
T = kyJcv = 2

-2
. Thus, we1,

have TT = -2,-so t = -24. The account had $100 in

(1960 - 24) or in 1936.

When did the account have $200 in it?

But how much did Tom have in 1966? There are several

ways to find out. If we continue to use 1960 as our

starting date, we want to compute

(400)(2
(66-60)/12

) = (400)(2
1/2

)

(400)0.4142) = $565.68.

33 8



We'cou ldihave used the actual starting date of the account,

1936, and computed (100)(2 (66-36)/12
) = (100)(2 5/2 ). Use

the fact there was $200 in 1948 to do the computation.

From these calculations we see that the amount can
be exietsedIfts A02t/12.where A

o is fhe amount in a given

year, and t is computed starting at that year. We call
the year we start with initial time, and Ao is the initial
amount.

Exercises

NU these exercise:. use 21/2 = 1.4142.

5. Compute the amount inTom's bank account by' using a different

initial time and amount. Fill in Table VII by 'icing 1972 as

the initial time. You have already)Computed A to be $800.

TABLE VII

Year t A
o 2f 711-1

1954

1960

1972

1973

)534

6. A utility company has discovered that the use of electricity in

Central City is doubling every eight years. Fill in Table VIII.

(See next age.)

ti
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TABLE V111

Year Kilowatt Hours

1962

1966

1970 2,000,000

1974

1978

1982

Can you compute the usage in 1971?

Hint: 2
1/8

.8 = 1.0905.

Usage in 1971 was about kilowatt hours.

7. The graph of a function was given by Figure 1 in Sectipn 3.2.

We saw that the doubling period of that function is 2 and that

the graph passes through (6, 8).. If we let our initial time

equal 6, initial amount equal 8, and the doubling period k

equal 2, wehave a formula for the function: y 8(2)
(x-6)/2

a) Use the fact that the graph goes through (4, 4) to

obtain another formula for the function.

b) Use the fact that the graph goes through (0, 1) to

obtain another formula for the function.

5. HALF -LIVES

5.1 Half-Life of the Charge in a Capacitor

Some quantities, instead of increasing exponentially,

decrease exponentially, and instead of a doubling period we

speak of a halving-period or more commonly a half-life.

Peter walks in on Fred who is conducting an experiment
in the Physics Lab. Fred has charged a capacitor with a

10

35



90 volt battery, and then made a circuit, so the voltage

in the capacitor is dropping. Peter is an observant

person, and notices the needle on the voltmeter is slowing

downiS the voltage gets smaller. He decides to make the

following table, which he starts with the voltmeter

reading 50 volts.

Seconds
Elapsed

Voltage

0 50

59 45

126 40

201 35

288 30

390 25

516 '1 20

678 15

, 10

5

Peter had written

Seconds
VoltageElapsed

906 to

1,296 5

But after Peter had filled in the

table this far, the needle was

dropping ver" slowly, and Peter wanted

to go to supper. He said, "Gosh,

Fred, you'don't have to sit here and

watch that thing any more, I can

til you how to fill in the table."

Fred did not believe him, and

challenged him to predict the entries,

Can you, do it?

Seconds

Elapsed
Voltage

10

5

Fred asked Peter how he was able to

predict, and Peter told him, "Look,

Fred,it dropped from 50 to 25 in 390

seconds, from 40 to 20 in 390 seconds,

from 30 to 15 in 390 seconds, so it

will drop from 20 to 10 in 390 seconds, and from 10 to 5 in
390 seconds. The charge has a half-life of 390 seconds."

Fred was impressed, but not convinced. Peter said "Fred, if
I can tell you how long you had been conducting this

experiment before I came in here, will you believe me?"

36

Fred said he would. Peter gave Fred a time, and they

both went to supper immediately. How many seconds had

Fred been doing the experiment before Peter walked in?

5.2 Half-Life of Radioactive.Carbon

One of the most common uses of the term "half-life"

is to describe the rate at which a radioactive element

emits particles and thus changes int% another element.

Anthropologists use the amount of Carbon-14 found in

fossils, together with the knowledge that the half-life

of Carbon-14 is about 5,600 years, to estimate the age

of the fossil.

Another radioactive isotope is Carbon-11, which

decays into boron roughly at the rate of 3 1/2 percent

per minute. Table IX contains two entries showing the

amount of Carbon-11 in a given mass of material. Fill

in the missing entries, and then answer the questions.

Exercise

8. TABLE IX

Time Amount of C
11

3:00

3:20

3:40 24,000

4:00 12,000

4:20

4:4C

What is the half-life of C
11

?

Can you tell how much there was at

3:50?

To answer this last questidg, we use

a formula like the one for growth;

however, now we have a halving period and

A(t) t (24,600) ( 1
1 r/20

where t is

the number of minutes from 3:40. At

3:50 the amount is

1 10/20 lt1/2
(24,000)( (24,000)(-2 1 = (24,000)(.707) . 16,968.

37
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0 '6. ANSWERS TO EXERCISES

TABLE I

Year Population

1979 (1.004 (10,000,000) = 11,255,088

1980 (1.03)5 (10,000,000) = 11;592,740

1990 (1.03)25(10,000,000) - 15,579,674

2000 (1.03)25(10;000,000) 20,937,779

4 2. a). Three hours, b) Nine years.

TABLE IV

Year Population

1975 10,000,000

1999 20,000,000

2023 40,000,000

2047 86,000,000

4. a) (6.6, 10), b) (3, 2%8), c) (10, 32) and

(12, 64), d) (-2, .5), e) (-3, .35).

40
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Section,4.1: TABLE v

A

Year

B _____

Year
Minus

1975 Population

1927 -48 2,500,000

1951 -24 5,000,000

1975 0 10,000,000

1999 24 20,000,000

2023 48 40,000,000

2047 72 80,000,000

TABLE VI

Year t
2t/24

2
t/24

(10,000,600)

1927 -48
2-48/24 2-2 1

v(10,000,000)

1951 -24-----72454 2-1 1
z

1

/
410,000,000)

1975 0 2
0/24

2
0
- 1 1(10,000,000)

1999 24 2
24/24

= 2
1 = 2 2(10,000,000)

2023 48 2
48/24

2
2

- 4 4(10,000,000)

2047 72 272/24 23
8(10,000,000)

41.
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Section 4.2: Account had $200 in 1948.

S. TABLE VII.

6.

Year t
A 2t/12

1954 -18 (1300)27-----747 .

. (800)(2)3/2 . $282.84

1960 -12 (800)2-12112 - (400)

1972 ,....0 800

1978 6 1,131.37 '

1984 12 1,600

TABLE VIII

Year Kilowatt Hours

1962 1,000,000

1966 1,44.4s214

1970 2,000,000

1974 2,828,427

1978 4,000,000

1982 5,656,865

2,181,000 kilowatt hours in 1971.

7. a) y 4:2x-4/2, b)'-' y * 2
x/2A

Section 5.1: Fred had been working 331 seconds.

42
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8.

ti

TABLE IX

Time Amount of C
II

A

3:00 96,130

3:20 48,000

3:40 24,000

4:00 12,000

4:20 6,000

4:40 3,000

9.

Half -life of 20 minutes.

1a) At 3:10, there was approximately (24,000)(7) -30/20

(24,000)(23/2) = 67,882.

b) At 4:10, there was approximately

(24,000)(4)3/2 = (24,000) (.3536) = 8,485.

10. a) (-3, 10) and (0, 5), b) c) (9, .625),
d)

,3

(-9, 40)., e) y 5(1)x/j.

7. MODEL EXAM

1. If the following table gives data for number of bacteria,

and this number is growing exponentially,

a) Fill in the table, and answer the questions that

follow.

43
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Number of
Sacterla

Time

1:40

1:45

1:50

1:55

4,000

________.-----"°'. 2:05

8,060 2:10

2:15

2:20

'JO The number of bacteria doubles

every minutes.

c) A formula for the number of bacteria

is 111(t) = . The initial

time is . And t is

measured in starting at

d) Write a formula for the number of

bacteria where the initial time

is 1:50.

2. Ihe half-life of a radioactive isotope is four minutes.

a) Fill in the following table and answer the

questions b and c.

Mount Time

9:20

9:22

100 9:24

9:26

9:28

9:39

9:32

b) Write a formula for the amount of

isotope with 9:24 as an initial

time, and use it to compute the amount

at 9:30.

A(t) =

A(9:30) =

c) Write formula with 9:22 as the

starting time, and use it to

compute the amount at 9:30.

A(t) =

A(9:30) =

44
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1. a)

.4. a)

8. ANSWERS 10 MODEL EXAM

Number of
Bacteria

Time

1,000 1:40

),414 1:45

2,000 1:50

2,828 1:55

4,000 2:00

5,657 2:05

8,000 2:10

11,314 2:15

16,000 2:20.

Amount Time

200 9:20

142 9:22

100 9:24

71 9:26

5b 9:28

35 9:30

25 9:32

45

(last place accuracy tl)

b) Bacteria are doubling every

ten minutes.

c) A(t) = 4,000(2"10), initial

time is 2:00 and t is

measured in minutes starting

at 2:00 (or 7.1talar answer).

d) A(t) = 2,000(2t/10).

to

(last place accuracy ±2)

b) A(t) = 100 (1)t/4

A(9:30) = 100 (1)6/4

100()3/2 = 35.

c) A(t) = 142(i)t/4;

A(t) = 142
(1)8/4

(142) (-1)2,-.= 35.
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DEVELOPMENT OF THE FUNCTION y = Aecx

by

Raymond J. Cannon
Department of Mathematics
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'DeLand, FL 32720
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1. INTRODUCTION

There are several physical quantities that have

\\"doubling periods" or "half-lives". Unit 85 of this

dule shows that the amount of such a quantity with a

dO4bling perit,d of length k is given by the formula

A 2qk where A
o is the amount at a starting time, and t

is the, time measured from that starting time. The

corresmnding formula for quantities with half-lives is
1 t/k\Ady .\ These formulas have many applications and it

is worth sOme time learning how to evaluate them for every

value of t (to give meaning to 2 /7 for example), and how

to compute their derivatives (to enable us to talk about ,

instantaneous rate,of change 7S well as doubling rate).

2. SIMPLIFICATION OF THE EXPONENTIAL FORMULAS

2.1 Establishment of Formula y e bt

Before rib get into the computations involved in

finding a formula for the derivative of an exponential

function, we want to simplify the notation used. The

first step in thesimplific&tion is to assume the initial
amount A

o
is 1; we will remove this assu,..rzion later. The

next simplificatiqn is one of notation only. we rewrite
2
t/k (1/k)tas 2 which we'again can rewrite, this time as
(2

1 /k
)
t

. Since k is a constant the number 2 1/k is also
a constant. If we let b stand for this constant we may

rewrite the expression 2t/k as simply bt.
1

50

We may go through a similar argument to also rewrite

(7)
1 t/k

in the form bt; this time b is playing the role of

the constant (12)
1 /k

Thus, functions of the form y = bt include functions

that have a doubling period as well as functions that have

a half-life. We will now investigate functions of the

form y = b
t
where the exponent t is the variable. It is

for this reason that y = bt is called an exponential

function, and b is called the base.

2.2 The Base Must Be Positive

Because numbers of the form 2 1/k and ( 1 ) 1/k are

positive, and because we want bt to be defined for all

possible values of t, we make the restriction that in

everything that follows b > 0. Note that if we allowed

b to be equal to -9 for example, them bt would not be

defined when t = .; no real numbe is the square root of
-9.

3. THE DERIVATIVE OF A(t) =,,bt

3.1 The Distinction Between xn and bt

Now that we have simplified the notation, wu try to

compute the derivative. We have no forMula that we can

use because the variable is in the exponent. The rule

that worked for xn , where the exponentis constant ana the

variable is in the base, does not apply; x
n
and b

t
ars

completely different kinds of functions:

Previous Functions (?olynomials)

rlconstant

variable

51
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New Functions (Exponentials)

variable

v.

constant

3.2 Finding the Derivative of b
t

We will not prove that an exponential function does

have a derivative; we take that as an unproven fact and

seek a formula for the derivative. We will calculate

all the following limits assuming they do indeed exist.

To find the derivative of bt, we must go back to the

definition and devel4 a new formula. If A(t) = bt, we

use the three step method (CALC, Module II, Unit D-6).

Remember:,

A'(t)
A(t + h) - A(t) lim

h+0 h+0

1.
AAFind a formula for.

AA A(t + h) - A(t) = bt+h - b
t

; by definition.

AA b
t+h

b
t

, by dividing both sides by h.

2. Simplify algebraically.

A at Ut+h bt
iF ; from step 1

IFbtbh - bt
IF

; because bt+h
=btbh

h
= bt (b

---/r--1 ); because btbh-
bt bt(bhAA

3

3. Let h approach zero.

A'(t) = lim
AA
17; bye definition

h+0 "

t b
h

- 1
A'(t; = lim b (--/T--); from last expression in step 2

h+0

h

A'(t) = b
t

lim (
b - 1); because b t doe= not depend

+0

on h.

- - 3.3 An Important Property of the Exponential Function

Now we pause and examine what we have. The expression

1,11

lim

does not involve t; it is a. number that depends only on

the base b. We have discovered that if

then

where

A(t) = bt

h -
A'(t) = A(t)(lim u

1
)

h+0
0

bh - 1
lim --/---
h+0

is a constant. More simply, if A'(t) = bt, there is a

constant c such that 10(t)). cbt = cA(t).- That is, an

exponential function is ro ortional to its own derivative.

This would be a very easy formula, to remember and use i

we could find a base b with

b 1
c = lim 1,

--IF--
h+0

53
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.OF

if we can find such a base,,we will have A'(t) = A(t).

That is, A(t) will be an exponential function which is

equal to.iti own derivative. Is there such a base?

We cat try different bases, and. see if we can find one.

bh - 1
4. VALUES OF" THE FUNCTION L(b) fin

114.tim E--
,

0

4.1 Introduction to the Function L

Since we are interested in the value

bh - 1c = lim

-for vario 1 values of b, we are lonkingat_a_lunetion_of

b. We can give it the name L, and write 1,(b) = c where

bh - 1L(b) = lim .

, 11+0

by evaluating

2
h

1h
1

1 for values of h near O. If we look at

h

1 1 1 1

7' 16 '
312, etc.,

then 2
h

can be calculated easily on hand calculators

that have a ,quare root key. Rounding off in the fourth

decimal place, we have:

2
1/2

= /7 = 1.4142, and

21/4
=

2(1/2)(1/2) 2112 //7 = 1.1892,

which is obtained by entering 2 and pushing the square

root key twice.

Next,
4.2 Computation of L(b) for Various Values of b

21/8 2(1/4)(1/2) /g 7T
4.2.1 b 1

This is an easy limit to evaluate since lh = 1 for

every value of h. Fill in Table I.

2

0

TABLE 1

1
1

1

1r

1

IS
1

32

i

b"4

1

Tiff

1

256"

0 0

We have just disco'vered L(1) = O. This means if A(t) = lt,

then A'(t) = L(1)A(t) = 0 A(*) = O. This verifies what

you already knew for-if A(t) = It = 1, then A(t) is a

constant function so its derivative is O.

4.2.2 b 2, 3, 4

We try to estimate

L(2) lim 2

11+0 5 6

6

To calculate this, enter 2 and push the square root key

three times, getting 2 1/8 = 1.0905. Now to compute

2
1/8

1/8 '

first compute 2
1/8

, then subtract 1, and finally divide by

$.. Of course, dividing by y is the same as multiplying

by 8, and it may be easier fodo,it that way on your cal-

culator.

Compute

2
h

- 1

for h = yiy. Enter 2, push the square root key four times,

subtract 1, and multiply by 16. Does your answer agree

with the one in Table II? (Do not worry about accuracy in
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the last place.) If not, try it again, this time keeping

track of each intermediate value computed.

Exercises

1. Check the next entry in Table II, and then fill in the missing

entries.

TABLE II

Table for b = 2

h
1

Y
1

V
1

I
1

TT i
1

TV
1

TYE
1

ITC
h

2 - .

.8214 .7568 .7241 7084 .7007

2. To estimate L(3), check-the entries given in Table III and fill

in the missing entries using four-place accuracy.

TABLE ill

Table for b = 3

h
1

7
1

V
1

U
1 I J

'16 32

1

Tq
1

Tiff

1

13-6

h
3 1

1.4641 1.2643 1.1776 1.1081
h

3. To estimate L(4), check and complete Table IV.

TABLE IV

Table for b .= 4

h
1

V 1 I 116 .,TV

I

-23C

4
h

- 1

1.6569 1.4481
h

We look now at the completed tables and use them to

say: L(2) is some number near .69 a.d L(3) is approximately

1.10. What would you guess as an approximate value of L(4)?

. Actually, L(4) = 1.3863, correct to A places.

56 7

5. DEFINITION OF THE NUMBER- e

5.1 A Graph of the Function L(b)

We haip'seen

b

the

1

following:

2 3

L (b) 0 about .69 about 1.10 about 1.39

It seems that as b gets bigger, L(b) also gets

bigger. We substantiate this impression by estimating

L(b) where b = 1.5, 2.5, and 3.5. We will then draw a

graph of the function c = L(b).

Exercises

4. Use h = to fill in Table V.

TABLE V

b 1.0 1.5 2.0 2 5 3.0 3.5 4.0

Approximation

to L(b)
0.00 .69 1.10 1.39

5. Use the data from Table V to draw a graph of the function

c = L(b), 1 < b < 4. (See Figure 1 on the next page.)
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5.2 The Value of b for Which L(b) A 1

We see from Exercises 4 and S that there is a number
b between 2.5 and 3.0 for which,L(b) = 1. This number is
denoted by the letter e following the notation used by the
Swiss mathematician Leonhard Euler (pronounced "oiler")
(1707-1783). Thus, L(e) = 1 where e is a number` between
2.5 'and 3.0. Using this notation, we can write A(t) = e

t
,

and we have the formula

A'(t) = A(t)L(e)

and since L(e) = 1 we have

A'(t) = A(t).

9

Thus, e is the base such that Art_) = et implies that

A'(t) = A(t). (Of course, this result ddesn't depend on

what letters we use for the variables; for example, if
y = e;`, then y' = ex = y.)

Exercise

6. Optional

Write a computer program tnat enables you to fill in Table VI.

TABLE VI

b Approximate
value-ofL(b)

2.50

2.55

2.60

2.65

2.70

2.75

2.80

2.85

2.90

2.95

3.00

6. DEVELOPMENT OF THE FUNCTION y = ecx

6.1 Writing y = bx As y = ecx

The function y = ex is very special because of the nice
formula for its derivative, but what about all the other

59
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bases and their exponential functions y = bx? In this

section we will see that if b is any positive base, then

there is.a number c with b = ec, and the function y = bx

can be written as y =
(ec)x = ecx:

When an eXponential function is written in the form

y = ecx the derivative is easy to compute. First we show,

given b, how to find c so that bx
ecx.

6.2 Solving the Equation et = b

Given a number b > 0, we want to find a number c so

that ec = b. We divide the search for such a number into

threp cases depending on the value of b: b > 1, b = 1 or

b < 1.

6.2.1 b > 1

We knOw e is somewhere between 2 and 3 and so we can

write e > 2. Now given b > 1, find some number rpso

that 2n > b. Because e > 2 it follows that en > 2n.

Combining the statements en > 2n and 2n > b, we can say

e
n

> b. Now look at the section of the graph y = e
x

that

lies hbove the interval (0, n) on the x-axis.

(See graph on next page.)
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Figure 2.

n

The graph starts at the point (0, 1) on thL left

and goes up as it moves to the right, ending at the point

(n, e
n
). Since e

n > b > 1, the graph begins at h^ight 1

below the line y = b and ends at height en above the line

y = b. Somewhere, the graph must have crossed the line

y = b.

What are the coordinates of that point of intersection?

Let c denote the x-coordinate. Since the point is on the

graph y = ex, the y-coordinate must be ec. But the point

is also on the line y = b. so its y-coordinate must be b.

But the point can only have one y-coordinate, and we

must have b = ec. The x-coordinate of the point on both

the graphs y = ex and y = b is the value c we were looking

for.
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1

Exercises

7.. Use Figure 3 (page 14), the graph of y = ex.* to solve the eouation

ec = b for different values of b. Remember, what you want is tha

first coordinate of the point where the graph y = ex crosses the

line y = b. Figure 3 shows how to estimate the value.of c when

b = 1.5, and when b = 3.0. Now complete Table VIII.

b 1.0 1.5

c 0 .4

TABLE VIII

2.0 2.5 3.0

1.1

3.5 4.0

8___Compare_the_va1ues of c you computed_in_Exerclse___7_wah_the_valmes-....

of L(b) computed in Exercise 4. Can you guess what the relationship

is between c and L(b) = L(cc)? (We return to this relationship in

Section 7 of this unit.)

6.2.2 b = 1

This case is easy. If b = 1, then we want the value

of c such that ec = b =1. But el) = 1 (in fact In

number iaised to the power 0 equals 1). So here we have

= 0.

6.2.3 b < 1

We could go through the same kind of argumeatvas in
1 1

Section 6.2.1, using this time F < ., finding a number n
1 1

with --ry <,Tff <,b, and drawing the graph and solving for c.

Instead of presenting this argument in detail, we use the
1

result of Sectton 6.2.1. If 0 < Fb < 1, then - 1, and we

kno'w from Section 6.2.1 that there is a number, which we

call, d this time, with ed = Taking reciprocals of both
1 1sides we have b = .ja; we may rewrite as e -d and we have

*How these values of e
c
were computed will be explained in

Unit 87 of this module.

P2,

13

4 -r

3

2

y = 1.5

-2

t

f

0

0 .4

Figure 3.

1

1.1
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now the equation b = e -d . The number we are searching

for is -d; if we write c = -d, we have b = ec.,

For example, we let b = 1
7 and" "solve for c in the

1 1equation e
c 1

= T. If b = .7, then K- = 2; we know e
.7

= 2,

so (e .7
)
-1

= 2
-1

and e .7 '
= 2 -1 "

=
1
7 . The value of c is

-.7.

- Exercises

9. What is the value of c so e c =
3

(e
1.1

= 3) C =

10. What is the value of c so e c = .4? c =

ift-IIKE-FWFE-3 to sketch the curve y = e x for -2 < x < O.

7. FORMULA FOR DERIVATIVE of y = =
ecx

7.1 L(ec) = c

In Section 4 we defined a new function, which we

called L. This function presented itself when we were

computing the derivative of,A(t) = bt and we discovered

that A'(t) btL(b). If we substitute ec for b in the

expressions for both the'function and its derivative we

have A(t) = (ec)t = eat and A'(t) ectL(ec). The purpose

of this section is to establish that L(ec) = c, a fact

that you may have guessed at when you did Exercise 8. We

give two proofs that L(ec) = c. The first proof uses the

definition of the function L and properties of derivatives.

The second proof is easier but uses the chain rule for

derivatives. If you are not familiar with the chain rule

you.may skip Section 7.1.2. If you have worked with

exponentials and logarithms before you may recognize that

the formula L(ec) = c means that the function we have

called L is the same as the.natural logarithm; you may have

seen L(b) written as ln(b) or logeb. Please see the

appropriate unit on logarithms for further discussion of

this function -and its derivative.
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7.1.1 First proof that L(ec) = c

This pro s a bit sneaky; it uses one algebraic

and two notational tricks. We start with the definition;

of L(ec);
chT -L(ec) = lim 1

.

We now perform our algebraic trick, which is to

multiply numerator and denominator 'Jy c:

c(e
ch

- 1)
ch

L(e
c

) = lim lim c(e 1).c-h c-h
11-0

Next,-we- perform -our first notational trick and write

c.h as d:

e
d

- 1L(e
c

) = lim

The next step is not tricky, but uses a propel:y of

limits: we factor the constant c out of the limit to

get

Vec) = c lim e - 1
.

This is "legal" becau-se-C do6--Or-Tenend.on h. Next, we

use a second notational trick: since c is fixed, then as

h 0, it is also true that ch O. But ch = d, so we

have d 0 as h O. This means we can replace h 0 by

d 0, and write

e
d

- 1
L(e

c
) = c lim

d-P-0

Lastly, e was chosen precisely so this limit is 1: that

is, e is that number with

e
d

-lim --a--1 1.

We put 1 in for the limit and have

L(e
c

) = c-1 = c

and have established the fundamental relationship L(ec) = c.
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7.1.2 Second proof that L(ec) = c Examples:

i.We start with A(t) = ect, and let u(t) = ct. Recall
If y = e 3x

, then y' = 3e 3x .

y'
1 x/2that in Section S e was defined so that if w = eu then ii. If y = ex/2 , then y =.7.e .

e . Now dw dw dudw u du
, 1 x/4°- au at-

c so if w eu e
Ct

, then aF au' 3-1 iii. If y = ex/4 , then y = Teeu ec-t.
c . In other notation, with w = A(t), we

iv. If y = e -2x
, then y' = -2e-2x.

=have A'(t) ect c. We also know from the definition of

-ethe function L that A'(t) ectvec). V. If y = e-x, then y' (-1)e =-x
-x

Equating these two

expressions for A'(t) gives us ectc = ectijec);
divide

Exercise
both sides by the (non-zero) quantity ect and obtain

12. Find the following derivatives:
cc k.,1.(e).

i. If y . e
10x

, then y' = i

7.2 The Derivative of ec x
y'

cec x
.

ii. If y = e
x/7

, then y' =
In Section 3'we discovered the following formula:

bt bh - 1

iii. If y . y' =if A(t) = bt

iv. If y = e-x/2, then y' 7
then A'(t) = b lim (I---).

In Section 4 we let L(b) stand for this limit so we could

then y' .
114.0

v. If y = e

write A'(t) = btL(b), and then calculated some values of
L(b). In Section S we defined e to be the number with
L(e) = 1, so that if A(t) = et, then A'(t) = et. In

Section 6 we rewrote b as ec, and,we were able to say that
if A(t) = ect, then A'(t) = ectL(ecj. In Section 7.1 we
established the formula L(ec) = c, and we are now able to
say:

if A(t) = ect,

then A'(t) = cJt.

Changing the notation we may write:

if

then

ecx,

y' = ecxL(ec) = ec (c).

If we put the c factor in front we have

Y
cx

y' = cecx.

66

7.3 Other Forms of the Derivative

7.3.1 Review of the derivative y = bx

Recall that in Section 3 we found that if y = bx,
then y' = L(b)bx. Let us use this formula directly, and

then find another form for writing the derivative formula.

Examples:

a) If y = 2x, then y' = L(2)2x. In Section 4 we used
Table II to see than. L(2) = .69: we use that information

again to write the derivative of y = 2x as y' = (.69)2x.

/-* If y = Sx, then y' = L(5)5x. We did not approximate
L(5) in Section 4, but we may use h 256 to do so now.

1/256
L(5) -

5
,

1/2S6 256 (51/256

= 1.61.

This enable, us to say the derivative of y = 5x is
y' = (1.61)5x.

17
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Exercise

13. Use either the information tabulated in Section 4, or h =
1

to complete these problems.

a) If y = 3x, then y' = L(

4
b) If y = 4", then y' =

c) If y = 6x, then y' =

)3X 3X.

d) If y a (4)x, then y' =

7.3.2 eL(b) = b; b > 0

This is the fundamental relationship we will be using

to convert an arbitrary exponential function to one whose

base is e. This equation says that the number with
e
c

= b is the .same as the number L(b). Because this is so

important, we state it again. The number c that we found

in Section 6 with ec = b is the same nun-flower us,the number

L(b) we encountered in Section 4; c = L(b).

To establish this relationship we let b > C and c be

the number so that

(*) ec = b.

Apply the function L to both sides of '(*) to obtain

equation (**)L(ec) = L(b). Use the result of Section

L(ec) = c, to rewrite the left hand side of (**)

and obtain

(***)c = L(b).

We can substitute this expression for c into equation (*)

to arrive at the result e L(b)
= b. /

Examples:.

L(2)x
a) If y = 2x, we can rewrite y = and now use

formula from Section 7.2 to.write y' = eL(2)xL(2).

b) If y = 5x, then y = eL(5)x, and y' = L(5)eL(5)x.

19
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Exercise

13.1 Rewrite answers to Exercise 13 using base e.

7.4 The Derivativ: of y =
bkx

If you are given a function in the form y =
bkx

you may think ;,r this as y = (bk') x, so that y' = L(bi() bkx.

For example, if y = '23x, we may. rewrite this as y = (2')x

= 8x and y' = L(8)8x = L(23)23x.

As an alternative, you can rewrite y = bx as y =
eL(b)kx.

Now y' L(b)k eV"' kxsince L(b)k is a constant.

For example, if y = 23x then y =
eL(2)3x

and y' =

L(2)
eL(2i3x

3L(2)
L(2)3x

)z

Exercise

14. Write each of the following in three ways:

=
32x Nsyl )32x )32x )e_.

b) y 53x >Y1 =

c) = 5
x/2

Y1 =

d) y = (1)x = 2-1X = 2-4==-4>y1 =

8. FORMULA FOR DERIVATIVE OF
Aecx

We now remove the assumption we made in Section 2 that

A
o

= 1. Let A be any constant and remember that

(Ay)' = A y'. Then if y = Aecx, we have y' = (Aecx), =

A(e
cx

) = ) = Acec .

Examples

i. If y = 2e3x, then y' = 2 3e3x = 6e3x.

ii. If y = -2ex/3, then y' = -2
lex/3 4ex/3.

1 1
iii. If y = T

4x
, then y' = (i-) 4e

4x
= e

4x
.
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Exercise

15. Compute the following erivatives:

i. If y = -5efx, then

ii. If y = 4e8x, then y' =

iii. If y = 5e
x/5

, then y'

iv. If y = 2 2x, then y' =

I -3x
v. If y n --e , then y'

3

9. ANTIDERIVATIVES OF EXPONENTIAL rUNCTIONS

9.1 Formula for Antiderivative of ecx

We have seen that the derivative of y = Aecx

y' = Acecx; if we want to find a function whose derivative

is ecx, we should start with one of form Aecx where Ac = 1.

From this we get A = -e-,which means that an antiderivative
of ecx is lecx.

Thus,

Or

ANTIDER [ecx] tecx

fecxdx lecx

where k is an arbitrary constant. To check this result,
'otice that

[lecx [Lecx],

(e
cx

)' + 0

= 1 (ce c )

= ec .

21

Examples:

i. The antiderivative of e7x is 7x
+ k.

ii. ANTIDER [e e
1/3x 1 x/3 3ex/3

fe-Sxdx .1 e-5x

iv. fe
x/2dx .2e-x/2

Exercise

16. Compute the following antiderivatives, and check your work by

taking the derivative of your answer.

i. The antiderivative of e
4x

is

ii. ANTIDER [e-2x] =

fe-xi5dx =

iv. fe
x/6

dx =

fe-2xdx

9.2 Formula for Antiderivative of y = Aecx

As with derivatives, the constant A causes little

trouble, since fAydx = Afydx. This gives us the formula

fAecxdx = Ale cx + k.

Examples:

i. f6e3xdx = + k = 2e3x + k.

ii.
pse4xdx 4x lize4x

iii. foe -2xdx = 6(.4)e -2x .3e-2x

iv. f-Sex/3dx = (-5)(11/3)ex/3 + k = -1Sex/3 + k.

v. f4e-x/6dx = (4)(71ee-x/6 + k = - 24e-x/6 + k.

vi. .(.3)(4)e-2x 3e-2x
K.

2

71
22



Exercise

17. Find the following antiderivatives.

f_3e6xdx

if. j8e4xdx =

iii.
fie6xdx
'2

iv. j-2exi6dx =

v.
r_le -x/6dx

'

vi. j2e-6xdx =

9.4 formula for Antiderivative of y = Abmx

With c = L(b) we have

cmxdx A
fAbmxdx =

cmx
+ k

cm

from Section 9.2; translating back to a form that does not

involve c we have

A -cmx A
b
mx

+ k.ER e + k L(b)m

Exampl

i.
f5.34xdx f5(34)x.x

d = j5.81xdx
5 x

L(81)
81 + k

f5.34xdx peL(3)4xdx 5 L(3)4x + k

9.3 Formula for Antiderivative cf y = Abx
L(3).4c

5
3
4x

+ k.

Simply rewrite y = Abx as y = A e
L(b)x and anplyso

L(3) 4

the formula fro:i Section 9.2.
Exercise

jAbxdx = fAeL(b)xdx = A
eL(b)x

+ k
L(1b) 19. Find the following antiderivatives.

1,

Lib)
"

0 +
''

i: j23xdx =

Examples:
f4.32xdx

i. f2xdx Thy 2x ... k
f3.5-2xdx

f5.3xdx
5 x

uTy73 + k.

Exercise

18. Find the following antiderlvatives.

13.4xdx =

ii. (-2.5xdx =

f5(1)xdx =
2

72
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10. SUMMARY

We have found a number e so that

, h
1 ,

,,m
h+0

We have calculated 2.5 < e< 3.0.

Given a number b we were able to find a number c

such that ec = b and to identify c as L(b). If y = bx

we have y = e L(b)x and y' = L(b)bx. Finally, we found
fecxdx (becx feL(b)x 40))

k and that jbxdx =

e
L(b)x

+ k = (- (b))bx + k.

73
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We were able to find c two ways:

bh - 1
1. c = lim L(b).

h-1.0

2. c is the x-coordinate of the point on graph y = ex

(Figure 4) whose y-coordinate is b.

11. ANSWERS FOR UNIT 86

TABLE I

Table for b = 1

h 1

7
1

Ti
1

8
17 1

32
1

A.
1

128
1

.2316

1

h -1 000000100h

Exercise 1

TABLE II

Table for b = 2

h 1 1 I

2 '4

1

8
1

1-6.
1

.5T
1

;V
1

1123

1

256-

- 1

.8284 I .7568 .7241 .7084 .7007 .6969 .6950 .6941h

Exercise 2

TABLE III

Table for b = 3

h
1

I
1

V
1

8
17 1

32
i

;V
1

II8
I

-2-6
h

:.--L 1.4641 '1.2643 1.1776 1.1372 1.1177 1.1081 1.1033 1.1010
.3.-..h

Exercise 3

TABLE IV

Table for b = 4

h
1

V
17 1

TV
1

Ig
4
h

- 1

1.6569 1.4481 1.4014 1.3901h

74

Exercise 4

b

= L(b)

Exercise 5

1.50

1.00

0.50

0.0

1.0 1.5

TABLE V

2.0 2.5

0.00 .41 .69 .92

3.0 3.5

1.10 1.26

4.0

1.39

-,4_ (6)
...._. _

,

___ .........

1

1

1

I

I 6'

t

I CI

Exercise 6

(Using BASIC)

20

*

* List
0010 FOR B=2.5 TO 3 STEP .05
0020 LET Y=256*(Bt(1/256-1)
0030 PRINT B,Y
0040 NEXT B
0050 END

30 4.0

* RUN
2.5 .917969
2.55 .937744
2.6 .957275
2.65 .976318
2.7 .995117
2.75 1.01367
2.8 1.03174
2.85 1.04956
2.9 1.06689
2.95 1.08398
3.0 1.10097 5

25 END AT 0050 26



Exercise 8

L(ec) = c

Exercise 9

c = -1.3

Exercise 10

1.5

TABLE

2.0

VIII

2.5 3.0 3.5 4.0

Exercise 13

L(3)3x =

L(4)4x =

L(6)6x =

L(-1)(.)x

1.10 3x

1.39 4x

1.80 6x

= -.69(1)x

a)

b)

c)

d)

y'

y'

y'

y'

=

=

=

=

.4 .7 .9 1.1 1.3 1.4

c = -.9(e
.9 = 2.5 and .4

Exercise 11

1.0

03
-x

e = lx

45)

=MUM MEW
11111111111MMIM 'ME=

MEM MIRE EMMAMOM MN= EINEM UMREM MU=MIEN WA= MIME
MEM EERIE FAIII11111aaa
1111E11E1111E1MM MIMI MEI
1111M111111111M1111111 I MIME
MOM 2111111M EMI MallZEMIN EMS EMI' =RIM

Exer..se 12

v.

y' = 10e10x

1
Y' =

x/7

y' = -3e -3x

8yl = -8x/9 76

Exercise 13.1

a) y' = L(3) eL(3)x = 1.10e
1 10x

b) y' = L(4) eL(4)x = 1.39e
1.39x

c) y' =.1(6) eL(6)x = 1.80e
1.80x

d) F eL4)x = -.69e
- 69x

Exercise 14 (three of each of the following)

a)
32x L(9)32x

21.(3)
ell,(3)x

y' = 2L(3) L(9) e2L(3)x

h) y' = 3L(5) 53x = L(125) 53x = 3L(5) e3* L(5)x L(125)e3L(8)x
1 1 1

c) y' = IL(5) S(f)x = L(t/.)5(7)x = 11(5)e(T)L(8)x

= L(I) eL(8)*()x -

d) y' = -L(2)2-x = L(-12-)(4)x = -L(2)e
1

Exercise 15

i. y' = -30e6x

ii. y' = 2e8x

iii. y' = ex/5

iv. y'
e2x

v. y' = a-3x

Exercise 16

i.4xTe + k

27 1 -2x-e + k

77

L(2)x L(1)eLyx

28



iii. -5e X /5 + k

iv. 6e
x/6

+ k

-2x
v. -1---e

2

iii.
1 -6x

e +

Exercise 17

i.
6x + k

2e
4x

+ k

2.

1.

iv. -12ex/6 + k
\

4.

v. 3e
-x/6

+ k
5.

6.

vi.
1 -6x

i. + k

8.

3.

Exercise 18

L(4) '
1.6

-2 K, 10. If e = 5, then for what x does ex = .27

11. If e2.3 = 10, then e-2'3 =
iii 5 (1)x . 5 1 x

L(1/2)t2' 7177)-(D + k 12. Since e
1.6

= 5, if y = 5x, then y' = (
)5x.K or

13. Since e
1.6

= 5, .then 5x - eExercise 19
x.

i. + A or .11-01q - A 14. Since e
1.6

= 5, then f5xdx =1:1-872

L(9) J ''''' 2L(3) '

L(1/25) 0 ' ''''' -2L(5)'
+ k or , 41

3

-L(25)
5
-2x

+ k

ry lb

78

12. MODEL EXAM

1 5 1Use h 13.6 to estimate lim

h40

Define the number e.

Use the following table to give an interval of b of length

.2 that contains e.
S

b 2.0 2.2 - 2.4 2.6 2.8 3.0

lim b
h

- 1

-.69 =.79 =.88 =.96 =1.03 =1.10h40 h

If y = e
5x

, then y'

If y = 7e
-2x

then y' =

if y = 3e
-x/8

, then y' =

fe3xdx =

4e2xdx =

3
29

30

79
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13. ANSWERS TO MODEL EXAM
e

2. e 1e is the such that lim = 1.

1

ii. e is the number such that if y = ex, then y'

3. 2.6< e < 2.8.

4. y' = 5e5x

y' -14e2x

6.
ie -x/8

7. fe3xdx 3 3x + K

fe2xdx

9. fie -4xdx =

10. x = -1:6

11. .1 or iTr.

e-4x

12. y' (1.6)5x

5x cl.x

14. f5xdx = 1-1 + K

so

= ex.
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1. INTRODUCTION

We have seen that exponential functions have many

applications; that an exponential function with base b,

y = bx, can be written as y = ecx for the right choice

of c, and that this way of writing the function gives us

simple differentiation and integration formulas. In

working a problem involving an exponential function, we

may want an answer expressed in decimal form rather than,

for example, in the form e3 - The purpose of this

unit is to show several methods fur computing decimal

approximations to ex for any value of x with particular

emphasis on the value x = 1.

It is not necessary to cover all of these methods

at one time. You may prefer to save Section 4 for a

more general discussion of differential equations.

Similarly, Section 6 may be used as a specific appli-

cation in a more general discussion of polynomial

approximations.

2. METHOD 1: APPROXIMATION OF e

USING ITF DEFINITION

The number e can be defined as the number that makes

eh - 1
Lim --77-
11+0

equal to one. More generally, the function L(b) is

defined by the equation

bh - 1
L(b) = lim --IF--

h-0.0

and we can compute approximate values of L(b) for various

values of b. We find that L(b) increases as b increases,

and we cab use this property to approximate e 1- Table

1

85

below. From the approximations of L(b) in the table we

conclude that 2.5 < e < 3.0 because 0.92 < 1 < 1:10.

We can then take the midpoint of the interval from 2.5

to 3.0 to be our approximation to e, and say e = 2.75.

TABLE I

Approximations to L(b) for Assorted Values of b from b=1 to b=3.5

b 1.0 1.5 2.0 2.5 3.0 [3.5

L(b) 0.00 0.41 0.69 0.92 1 1.10 1.25

To refine our approximation for e, We can make

another set of approximations to L(b) for values of b

near 2.75 (Table II). 1e conclude from these that

2.70 < e < 2.75. If we again take the midpoint of the

interval to be our approximation of e, we conclude that

e = 2.725. We could continue in this vein by using

smaller values of h, but this method is somewhat indirect

and yields only an approximation for e rather than a

general formula for ex. A slight modification of this

idea, however, results in a direct method for approximating
e
c
for any value of c.

TABLE II

Approximations to L(b) for Assorted Values of b from b =2.55 to b =2.60

b 2.60 2.65 2.70 2.75 2.80

L(b) 0.96 0.97 0.99 1 1.01 1.03
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3. METHOD 2: ec = (1 +

3.1 Deve.opment of the Formula

Since

it follows that

when h is ners O.

c L(e
ech

= lim LELL ,

e
ch

- 1
c

This approximation is our starting point for Method

2 which, step-by-step, goes as follows:

Multiplying both sides by h gives ch
ech

Adding 1 to both sides results in ch +
ech.

Letting h be of the form i gives ci + 1 = e
c(1/n)

Raising both sides to the n
th

power yields

'L(1

n
(ec(1/n))

n

n

Rewriting this last expression, we have the formTla

ec = (1 + E)

In particular, for c = 1 we have e = ('1 ,n) .

The closer h =
1 is to 0, the better the approxi-

mation.mation. Put another way, the larger the value of n,

the better the approximation.

We will do some computations to test this method.

n

3.2 Calculator Hints

We can compute numbers like
31/256 on a hand cal -

r'ilator by entering 3 and then pressing the square root
1

key eight times since y = 13.6. Similarly, we can

87
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compute X256 by entering x and then pressing the squaring'

key eight times. This makes it particularly easy to
ncN

compute (1 +
n
) when n is a powe f two. This computa-

c
tion is made even easier by noting that 1 + =

n + c

Using n = 16, and c = 1, we can' approximate e by entering

16 + 1 = 17, dividing by 16, and squaring four times:

16 2 2 2 2

) ) ) = 2.6379.

Exercises

Use the method just described

to complete Table 111, rounding

off to four decimal places.

2. Construct a table similar to

Table III for higher powers of

2 and fill it in. The entries

you obtain should obey the fol-

lowing two rules: (1) The numbers

(2I1)n are all smaller than e,

and (2) they increase as n

increases. Does your extended

table follow this pattern? If

net, the reason may be a round-

off error in your calculator.

The more accurate your calculator,

the higher value of n you can

enter but eventually, because of

TABLE III

n
n +

1)n =(--17--) e

2 2.25

4

8

16 2.6379

32

64

128 2.7077

256

512 2.7156

1,024 ,.

the repeated multiplications, round-off error wi!! begin creating

trouble. For what bower of 2 does your calculator start to

show round-off error?

.f that number is small, such as 214 = 16,384, Section 3.3 will be of
special interest to you, but be sure '4 do Exercise 3 rirsr.

88
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n

-3.-- Here we approximate --
-1

= e using our formula e = .-----
ne

c in + c
.

1

If we set c = -1, we have a
-1

=
n

n
fl---- . Fill in Table IV

rounding off to four decimal places.

TABLE IV

n 16 64 = 26 256 = 28 1,024 = 210

1

0 l n

3.3 Various Uses\of the Formula to Obtain Better

Approximat;onS'

Your last entry in Table IV should have been 0.3677.

Since this is apKoximately 1
, its reciprocal is approxi-

matelymately e. Co'nput 0.3677 to four places':
0.3617

Using n . 1.024 in Exercise 1, e = 2.7170. If we average

these two approximations, e.= 1(2.7196 + 2.7170) =

This, in fact, is the correct value of e, rounded off to

the fourth place. One approximation is too big; the
a

which is another approximate formula for e.

n/2n + n /2

= ii7

Exercises

4. Use this formula to complete Table V. Keep six-place accuracy.
1

TABLE V

(For n = 256, divide 257 by 255 and square 7 t mes.)

n 256 = 28 512 = 29 1,024 210
2,048 = 211

_
n + 1

n/2

_

other is too

tend to cancel

an exact answer,

The computation

sometimes one

Since e-1
n )n

small,

each

only

has to
n

and when we average them, the errors

other. Of course, we are not getting

a generally better approximation.

here involves a "sneaky trick," but

be devious to avoid round-off error.

by taking reciprocals we have

have the formula

5.

4.1

We already

fn + 11/1

e.
n 1-

e
n )

If your answers agree with those on the answer sheet, page 24,

then the last entry is the correct vaiue of (. to six places.

Even if your calculator has round-off error and your answers

did not agree to six places, compare your answers to four

places against the best approximation you were able to get

in Exercise 1. This formuia gives much better accuracy than

did the previous one.

1

In the beginning of Section 3.3 we wrote e as up and later

."Iction 3.3 we wrote e as 4.1. Think of another devious

way to write e and use your way to approximate e.

4. METHOD 3: THE EULER METHOD

Description of the Method

This method uses a set of straight line segments to
and using each formula

e2 e e

once, we have

+ lin-

approximate the graph of y = ex. We can improve the

approximation by changing the length of the straight
. line segments: the shorter the segments, the better

E-7Tin in n - 1 )

Now take the sqqare root of both sides:

I/2

e (e.e)14 =

5 90
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the approximation. The method which produces such a

curve is called the Euler Method.

The property of the curve y = ex we use depends

upon the special nature of e: y = ex. is the function

for which y' = y. Geometrically this means at each

point of the curve y = ex, the slope of the tangent

line (which is y') is equal to the distance of the

point from the x-axis (which is y).

We will use the Euler Method to approximate y = ex

only on the interval 0 < x< 1, producing curves which

will have different "left-hand" and "right-hand" slope,

at a finite number of special points. However, the

"right-hand" slope at each such point will be the same

as the y-coordinate of that point. These ideas will be

clearer after an example.

4.2 First Approximation

Our first curve will have two special points,

corresponding to x = 0, and x = 0.5. We know the _

curve y = e
x

goes through the point (0,1) since

e° = 1. Because the second coordinate of this point

is 1, ti': .augent line to the curve also has slope 1

(remember y' = y). We d...aw this tangent line from

Y 0 to x = 0.5.

Tne y coordinate at the right end of this line

segment, (that is, at x = 0.5) is y = 1.5. At the

point (0.5, 1.5) we start a new line segment whose

slope is equal to the y- coordinate, namely 1.5; this

new line segment well extend from x = 0.5 to x = 1.

We want tc know the Value of y when x = 1. Recall

a property of straight lines: if m is the slope of

91 7

2.5

2.0

1.5

1.0

0.5

0

ey

0.75

IIIIIIIIIIII
111111111IN MIN

BUM ION
0 0.5

Figure 1.

1.0
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the line, then Ay = m(Ax).

We use this to compute

the y-coordinate of this

segment when x = 1: we

have Ax = 0.5 and m = 1.5

which gives Ay = 0.75.

The final height is the

height we started at

(1.5) plus the change

in height (Ay = 0.75),

and 1.5 + 0.75 = 2.25.

Thus, the""curve" in

Figure 1, which consists

of two line segments,

has the value '.2 at
'V

x = 1 and thus yields

the approximation

e = 2.25,

8



4.3 Second Approximation

3.0

2.5

2.0

1

1.5

1.0
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11111111111
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Figure 2.

"93

1.0

For our next

approximating function,

we chop the interval

from x = 0 to x = 1

into five equal .sub-

divisions, so that

Ax = 0.2 for each. As

before, the graph will

start with slope equal

to 1, but will change

slope at x = 0.2, 0.4,

0.6, and 0.8.

1

9

Exercises

6. Complete Table VI and then sketch the graph, using Figure 2.

TABLE VI

x-coordinate y-coordinate
tSlope o line Icz.r-

ing the point

0.0 1 1.0

0.2 1 + (1)(0.2) = 1.2 1.2

0.4 1.2 + (1.2)(0.2) = 1.44 1.44

0.6 1.44 + (1.44)(0.2) = 1.728
1

0.8 '1.728 + (1.728)(0.2) = 2.48832

1.0

The graph y ex always lies above our approximation. As these

approximations approach the exponential curve frOm below, the

y-coordinate corresponding to x = 1 will approach y = el = e.

Thus, our first approximation to e using Ax = 0.'5 was 2.25.

Our second approximation using Ax = 0.2 was 2.48832.

7. Instead of making all the computations involved in Exercise 6,

you can sketch the graph quickly using the following method:

A straight line through (x,y) with slope y must also pass

through the point (x-1, 0). Hold a ruler so that its edge

goes through the point (x,y); now rotate it [keeping (x,y) -

on its edge] so that it a:so goes through the point (x -1, 0).

In this position, the ruler s edge gives a straight line

passing through (x,y) with slope y. Use thic method to

draw the approximate graph of y = ex on Figure 3 fbr the five

segment case (Ax = 0.2) and compare it with the numerical

computation in Exercise 6. (The first three segments have

been done.) What approximate value for e do you obtain by

this graphical procedure?

94
10
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x

0.5 f.0

8. Approximate e by completing Table VII using tx = 0:1. Notice
11

the constant ratio property: Each y value is To- of the

previous y value. New y = Old y + (Ax)(old y) = (1 +Ax) (old y).

Keep four places of accuracy for your value of y.

95

TABLE VII

x y Ax y

0.0 1.0 0.1

0.1 1.1 0.11

0.2 1.21 0.121

0.3 1.331 0.1331

0.4

0.5

0.6

0.7

0.8

0.9

1.0

What approximate value for e do you obtain in this case?

9. Use the method of Exercise 7 to sketch on Figure 4 the

approximating curve, with tx = 0.1. Use the results in

Table VII to plot points and sketch curve in Figure 5.

Compare the approximations.

96



iliumNEN NE NEIMMUCI

11 I1111111111
NE MEN 2 0 MEIN EMMENMIN EM.

EN ENNINNEENNEENE EN
EN EMMEN =EM
NNE NENNINNEENI MEE
ENE ENIMINNEENEENMEU.S IMENIENNIN MENNE
EN

11111 111,1111

IPI 11111111MINNNINNEN
NEE= MAIN INN ME0MENG ANN
INNEMIINENENNEEN MEER
ENMINIIINNIIINEENEENEN
NEGENNERNE MIME MIENCONE NUM NNE= MINE

-1.0 -0.5 0
Figure 4.

97

0.5 1.0

3.0

2.5

2.0

1.5

1.0

0.5

MEM MENNE
"MENNE
NNEININNENNEMO Man
MINN MIME
1=1111

o 0.5

Figure 5.

13

5. COMPARISON OF METHOD 3 WITH METHOD 2

The approximations in Method 3 are not very accurate,

although we do get some feel for the shape of the curve

y = e
x

by sketching the graphs of the approximations.

In fact; Methods 2 and 3 yield the same approximation

for e when the n in Method 20and the Ax in Method 3 are

related by the equation Ax = R.

Exercises

10. a) Compare the estimate of e with Ax = .5 obtained in

Section 4.2 with the estimate in Exercise 1 with n = 2.

b) Compute (1 + 0.2)5 and compare with the estimate

Ax = 0.2 in Exercise 6.

c) Compute 1 + 7 and compare with the estimate for
1

e obtained in Exercise 8.

11. a) Compute [1 + [1 + i)1 , 11 + ,
[1 i) 3'

[1 + )4 and [1 + 15. Compare these values to the
5 5

values of the y-coordinates in Figure 2.

b) Compute (1.1)°, (1.1)1, (1.1)2, (1.1)3, . . . , (1.1)10

and compare with y-coordinates computed in Exercise 8

and plotted in Figure 5.

c) Letting Ax = can you find a patterp that enables you

to fill in Table VIII with the same values you would

get if you used the Euler Method?

TABLE VIII

L x 0
4

n
...

n n

I Y 1

r

11 +1j
n(1+71

-1

2

.

98
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6. METHOD 4: TAYLOR POLYNOMIALS

6.1 Description of Taylor Polynomials

Here is another way to produce functions approximating

ex. The approximating functions are polynomials and the

higher the degree of the polynomial, the better the approxi-

mation. -This method is named after the English mathe-

matician Brook Taylor (1685 -1731), although it was dis-
.

covered by James Gregory and published in 1688 when

Taylor was three years old. It is the most powerful

of the four methods in this unit.

The only value of the function y = ex which we are

able to write in exact decimal form at this stage in our

work corresponds to x = 0; that is

e° = 1.

The first derivative has the same value as.the function

because y' = y. Consequently, we also know that

y'(0) = 1.

But we can get even more ,information about this function

by taking derivatives of both sides of the equation y' = y.

(This gives y" = p. so that

y"(0) = y'(0) = 1

If we continue this process, we discover, letting y
(n)

stand for the nth derivative of y, that y(n)(0) = 1 for

every n. The polynomial of degree n that we are about

to construct (using this information) is called the

Taylor polynomial of degree n for y = ex centered at

x = O.

We know that we can get a straight line approximation

to y = e
x by looking at the line tangent to curve at (0,1).

The equation of this straight line is y = x + 1. x + 4

is a polynomial of degree 1, and for reasons that will

15

98

be obvious later, we write PI (x) = x = 1. We will always

mean y = e, whenever we use y. P1(x) has two essential

features: P1(0) = y(0) = 1 and P1'(0) = y'(0) = 1. We

should get a better approximation if we ask for a poly-

nomial which has the same value as y = ex, the same

first derivative, and the same second derivative at

x = 0. We look for the polynomial of lowest degree

that satisfies these three conditions. Therefore let

us write the general form of a polynomial of degree two

P2(x) = a + bx + cx2.

Now

P
2
(0) = a = 1, since y(0) must = 1.

P2'(x) = b + 2cx,

Also

SO

Finally

SO

P
2
'(0) = b = 1, since y'(0) must =

"(x) = 2c,

P2"(0) = 2c = 1, since y"(0) must = 1.

This gives us c = 1. Thus our second order polynomial

approximation to y = ex is

x2
y = P2(x) = 1 + x + 7

Exercises

12. Using Figure 6, graph the poiinomial P2(x) for -2 < x < 2,

and show that P2(1) = 2.5. We call this the second degree

approximation of e.

100
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13. Fill in the following computations which will give us the

third degree approximation of e. We start with an arbitrary

polynomial of degree three and then solve for the
%

coefficients

101
17

by evaluating, at x 0:successive derivatives of the

arbitrary polynomials and equating each of them to 1.

We start with

P3(x) = a + bx + cx2 + dx3; 1 = P3(0) = a, so a

P.11(x)= b + 2cx + 3dx2; I = P (0) = b, so b =

Pp(x)= ; 1 = P 1(0) = 2c, so c =

p (x)
; 1 = Pm (0) = so d =

3 c ---

P3(x) + x + X 2 + X3.

Now you know what P3(x) is. What is P3(1)?

the third degree approximation to e.

14. Compute P4(X) and P4(1).

. This is

6.2 Factorial Notation

The symbol ! has special meaning to mathematicians

when it fo],lows a positive whole number: n! is read

"n factorial's and it is defined to be the product of

all positive integers less than or equal to n. In

symbols n! (n-1)n. As examples,

3! =.1-2.3 = 6; 4! = 1 2.3.4 = 24; 5! = 1.2.3.4.5 =

6! =

Using this notation, P2(x) = 1 + x + 11X2 and
1

1

1P3(x) = 1 + x
2

X
2

T/X
3

. Use this notatior to

express P (x) . P,(x) =
4 4

Exercises

15. Can you guess what Ps(x) is? Ps(x) =

Verify your guess by taking the first 5 derivatives of your

w'ess and checking that they all equal 1 when x = 0. Use

t this guess to estimate e:

e = Ps(1) =

102
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6.3 Discussion of Accuracy of These Approximations

A proof of how accurate these approximationg are

will have to wait, but P5(1) is within .00162 of e,

and is too small. Next,

1 7171416 161718
Pe (x) = 1 + x + x + + .x + -x + + x +

and P5(1)1 se 2.7182788 which again is too small, but is

within .11000031 of e.

Not4P9(1) = Pe(1) + What is P5(1)?

We do not have to restrict our evaluations to the

case,x = 1, but can use these polynomials to approximate

for every x. Again, however, we must postpone a rigor-

ous discussion of how good the approximation is. .

Exercises

16. Compute P4(1) . This is approximately

e1/2 so square the approximatiop. [P4[1)12=

Compare this to P4(1).
2

What is a better approximation to e, P4(1) or [P4(1)] ?
1

(Use the value of e given in Section 6.3 above )

17 Compute P1/2k)
1

to e1/8. What is,IP44) )81 . Compare this to

P4(1), and to [P211)121 ,24 Which of the three

is the best approximation to 0

. This is an approximation

.

6.4 General Behavior of These Polynomials

,The approximating polynomials were picked to behave

like ex for x = 0. It would seem therefore that.we can

draw a conclusion about the behavior of these polynomials:

the closer x is to 0, the better the approximation.

This behavior is shown by the results of Exercises 16

and 17 where we found that P" ($} is closer to elie than

19

103

P4(4] is to e1/2, and that P44) is closer to e1/2 than

P4(1) is to el = e. We can make a further test of this

behaviOrby computing P4(2). Compute P,(2): P,(2) =

. We know 2.718 <e < 2.719;

consequently (2.718)2 < e2 < (2.719)2, or '

7.387524 < e2 < 7.392961.
if

Your computations should show that P4(2) is not a very

good approximation'to

Exerotse

18. Compute the following numbers:

P5(2) =

P6(2)

P,(2)

P3(2)

From the results of Exercise 18 as well as previous

exercises, we can draw another conclusion about these

polynomials: the higher the degree of the polynomial,

the better the approximation. This goes with our previous

conclusion: the closer x is to zero, the better the

approximation. Writing these more formally, we have:

1. If x is fixed, and n > k, P
n
(x) is closer to

e
x

than is Pk
(x).

2. If n is fixed, and 0 < a < b, then Pn(a) is

closer to e
a

than P
n
(b) is to e

b
.

"

Exercise

19e Use Figure 7 to graph P4(x) on the interval -2 < x < 2.

Compare this with the graph in Exercise 12 and then compare

each to the graph of ex drawn in Figure 8. See how these

graphs support the two conclusions given above.

104
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7. SUMMARY

Of pie four methods, the last is by far the most

efficient. In fact, by computing P12(1) we have

e = 2.718281828 and this approximation is accurate

0
to the ninth decimal place. We should note that ix

spite of appearances, the decimal expansion of -e doeS'

not have a repeating block. The number e is irrational.

0 8. ANSWERS TO EXERCISES

4

TABLE III

n
(21 n 11"
(---171 - e

2 2.25

4 2.4414

8 2.5658
4k

16 2.6379

32 2.6770

'64 2.6973

128 2.7077

256 2.7130

512 2.7156

1,024 2.7170

TABLE IV

'21 16 = 24 64 = 26 256 = 28 1,024 .210

1. = (L.:_ir 0.3561 0.3650 0.3672 0.3677

1 . '1
.. 2

0,

23

Questions in Section 3.3: 0 7677 = 2.7196; ,e = 2.7183.

Q. 4.
TABLE V

(For n = 256, divide 257 by 255 quare 7 times.)

n 256 = 28 512 2 . 2101,024 2,048 = 211

e =

n/2

+ 2.718296 .718285 2.718283 2.718282
- lj

6.

CABLE VI

x-coordinate y-coordinate
Sloft of line

eaving
the point

0'.0 1 1.0

0.2 1 + (1)(0.2) = 1.2 1.2 .

0.4 1.2 + (1.2)(0.2) = 1.44 1.44

0.6 1.44 + (1.44)(0.2) = 1.728 1.728

0.8 1.728 + (1.728)(0.2) = 2.0736 2.0736

1.0 2.0736 + (2.0736)(0.2) = 2.48832 2.48832

\

.<

108
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TABLE VII

x y Ax y

0.0 1 0.1

0.1 1.1 0.11

0.2 1.21 0.121

0.3 1.331 0.1331

0.4 1.4641 0.14641

0.5 1.6105 0.16105

0.6 1.7716 0.17716

6.7 1.9487 0.19487

0.8 2.1436 0.21436

0.9 2:3579 0.23579

1.0 2.5937 0.25937

9. See page 27 for graph for Exercise

10. a) They are the same, 2.25.

b) They are the same, 2.48832.

c) They are the same, 2.5937.

11. a) They are the same.

b) They are the same.

c)

TABLE VIII

9.

x 0 1
n

2

n

3

n

4

n
....

k

n

n

n

y 1 (1+1
p

) (1+12
n

(1+13
n 11 -illy

1
(14n-lk

_

-(l 4r
n
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13. P31(x) b + 2c.x 3dx1; 1 P3I (0) b,

P3"(x) 2c + 6dx; 1 a Ps" (0) so c

Ps,(x) a 6d; 1 P3'(0) 6; , so d

P3 (x) 1 + x + iX2 + iX3

P3(1) I + 1 +14-ia 23 a 2.6666....

14. P4 (x) " 1 + x + + 3 + -214- x4

P4(1) +I +I+ i-+-2-14.-

Examples in Section 6.2

51 120; 61 720

P4(x) 1 + x + 2ly2 + 31x3 +

15. 83(x) 1 + x 41-1-1 x2 + 1
31 +x3 1

2

so b 1.
1

2

2.70833....

+ 3-1X
,

NW 1 + 1 +1+ i+
24 120

2--
120

= 2.71666....86

Example in Section 6.3
P3(1) = 2.7182816 or 2.7182815.

16. p441 21212
ifir A. 104 . 1.6485475

11,4[1112 . 2.717346

P4(1) = 2./08333...

fp,[1112
is the better approximation.

17. P1110 + kr) 2 4. )3 p11

0 I (1+ gl = 1.1331482

[P4 g = 2.7182768

k Wit is the best approximation to e.

Example in Section 6.4

P4 (X) a 1 + X 4' ;2

P (2) 1 + 2 + 44) +- 1(8) + 14-(16) 7.
2 2

29

113

18.

19.

P5(2) = 7 + 741)-(2)s 7.2666....

P6(2) = P5(2) + 4(2)6 7.35555....

P7(2) = P6(2) + 3A1(2) 7 = 7.3809524

P8(2) = P7(2) + 7.3873016.
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9. MODEL EXAM

Part I

1.

2.

Complete this expression: e2 =

Use a hand calculator with a squaring

Ej )100
1 + Toy j

key to compute

11025)1°24.

0152.4.

3. The number klyx is an approximation,to

4. If may be difficult to get a good approximation to e,

using the formula (11+1)n, because of

in the calculatorbeing used.
n + 1) ED

5. What is the missing exponent? (-17:7 = e.

Part II

1. Use the Euler Method to sketch a curve that approximates

y = e
c

for 0 < x < 1 with Ax = 0.25.

. 2. Use the Euler Method to fill in the following table which

gives an approximation to y = ex: 0 < x < 2 with Ax = 0.4.

x 0 0.4 0.8 1.2 1.6 2.0

y

Part III

Let P
n
(x) denote the Taylor polynomial of degree n. centered at

x = 0 that approximates y = ex.

1. What is P
2

(x)?
1 1

2. Is 1 + x + ix
2 + Tx 3

the same as P3(x)? To answer, either

show that it satisfies the defining properties of P3(x), or

that it does not.

3. Use P4(x)',to approximate e.

4. If we hold the value of x fixed, then how does Pn(x)-e,ange

as n changes? 10

5. The general reason [60 is a better approximation to e

1/2
than is C6(2)] is that

31

10. ANSWERS TO MODEL EXAM

Part I

2 110,

100J

1024

e1

4. round-off error

n + 1r2
5. = e

Part II

1. See answer graph on next page.

2.

x 0 0.4 0.8 1.2 1.6 2.0

y 1 1.4 1.96 2.744 3.8416 5.37824

Part II

1. P (x) = 1 + x x2
2

2. 1 + x + 2x2 + x3 # P3(x), by looking at its third

derivative. If f(x) = 1 + x + ji x2 + x3, then fm(x) = 2,

while, by definition, P3 "(x) .1 1.

3. f
4
(x) = 1 + x + 2x2 + x3 + 11- xi', so e Pi (1) = 2.708333...

4. As n gets larger, Pn(x) gets closer to ex.

5. The smaller the value of x, the closer Pn(x) is to ex.

11.6

32



Answer to Noel Exam Part 11, Question 1.

2.50

2.25

2.00

1.53

1.25

1.0

0 0.25 0.50 0.75 1.00

117
33



0

umap UNIT 88

MODULES AND MONOGRAPHS IN UNDERGRADUATE
MATHEMATICS AND ITS APPLICATIONS PROJECt

HOW TO SOLVE PROBLEMS INVOLVING

EXPONENTIAL FUNCTIONS

by Raymond J1 Cannon

CO
of co.+ of swain A. so fft

1.0104.C11W SAWS

0

1mitof.

10 1$ 20 nse

INTRODUCTION TO EXPONENTIAL FUNCTIONS

UNITS 84-.88

edc/umap /55chapel stinew ton, mass. 02160

HOW TO SOLVE PROBLEMS INVOLVING

EXPONENTIAL FUNCTIONS

by

Raymond J. Cannon
Department of Mathematics

Stetson University
DeLand, FL 32720

TABLE OF CONTENTS

1. INTRODUCTION 1

1.1 Challenge Problem 1

2. HOW TO SOLVE FOR y GIVEN A POINT AND SLOPE
AT THAT POINT 2

3. HOW TO SOLVE FOR y GIVEN TWO POINTS ON
THE GRAPH

3.1 A Typical Problem and Its Solution

3.1.i How to Solve for k

3.1.2 How to Solve for A
o

Given k 7

4. WORD PROBLEMS 8

5. ANSWERS TO EXERCISES

6. MODEL EXAM 17

7. ANSWERS TO MODEL EXAM 18

119



Intermodular Description Sheet; UMAP Unit 88

Title: HOW TO SOLVE PROBLEMS INVOLVING EXPONENTIAL FUNCTIONS

Author: Raymond J. Cannon
Department of Mathematics

. Stetson University
DeLand, FL 32720

Review Stage/pate: IV 6/12/78

Classification: EXPN FNCTN/SOLVING EXP PRDBS

Suggested Support Material: 0

References:
Riggs, Douglas Shepard, The Mathematical Approach to Physiological

Problems, The MIT Press, Cambridge, Massachusetts, 1963,
w' Chapter 6.

Simmons, George F.:Differential Equations, with Applications and
Historical Notes, McGraw-Hill Book Company, New York, 1972,
Chapter 1.

Prerequisite Skills:
1. Be able to approximate values of ex (Unit 87).
2. Be able sto recognize problems that may be solved with exponential

functions (Unit 84).
3. Be familiar with the terms half-life and doubling period (Unit 85).
4. (Recomme.ded, but not essential) Be faiiliar witn the limit

b
-

L(b) = lim k (Unit 86).
M4.0

Output Skills:
1. Given a point on the graph of y = Ae

kx
, and the slope of thp

graph at that point, be able to find A and k.
2. Given two points on the graph of y = Aekx, be able to find A

and k. -

3. Be able to solve elementary problems' whose solutions involve
exponential functions.

Other Related' Units:

Recognition of Problems Solved by Exponential Functions (Unit 84)
Exponential Growth and Decay (Unit 85)
Development of the Function y = Aecx (Unit 86) .

Numerical Approximations to y = ex (Unit 87)

120 © 1978 EDC/Project UMAP
All rights reserved.

r

MODULES AND MONDGRAPHS IN UNDERGRADUATE

MATHEMATICS AND ITS APPLICATIONS PROJECT (IMP)

The goal .of UMAP is to deve op, through a community of users
and developers, as system of it tructional modules in uplor9raduate
mathematics and its applications which may be used'tc supplement
existing courses and from'which complete courses may eventually
be built.

The Project is guided by a National Steering Committee of
mathematicians, scientists, and educators. UMAP is funded by a
g.ant from the National Science Foundation to Lduc.ation
Development Center, Inc., a publicly supported, nonprofit
corporation engaged in educational research in the U.S. and abroad.

PROJECT STAFF

Ross L. Finney
Solomon Garfunkel

Felicia Weitzel
dr

Barbara Kelczewski
Dianri Lally
Paula M. Santillo

NATIONAL STEERING COMMI

W.T. Martin .

N, Steven J. (trams

Llayron Clarkson
Ernest,J.Jienley
Donald'A.

William F. Lucas
Frederick Mosteller
Walter E. Sears
George Springer
Arnold A. Strassenbu
Alfred B. Willcox

The Pro ect would
Hbilpern, L. . Larsen,
all others who assisted

This material was
Science Foundation Gran
expressed are those of
the views of the NSF, n

TTEE

rg

Director
Associate Director/Consortium

Coordinator
Associate Director for Administration
Coordinator for Materials Production
Project Secretary
Financial Assistant /Secretary

MIT (Chairman)
New York University
Texas Southern University
University of Houston
SUNY at'uffalo
Cornell University
Harvard University
University of Michigan Press
Indiana University
SUNY at Stony Brook
Mathematical Association of American

like to thank W.T. Fishback, Ruth R.
and Dou ,glas F. Hale for their reviews and
in the production of this unit.

prepared with the support of National
t No. SED76-19615. Recommendations
the author and do not necessarily reflect
or of the National Steering Committee.

121



HOW TO SOLVE PROBLEMS INVOLVING

EXPONENTIAL FUNCTIONS

by

Raymond J. Cannon
Department of Mathematics

Stetson University
DeLand, FL 32720

6/12/78

1. INTRODUCTION

The general form of an exponential function is

y = Aoekx; this formula contains two arbitrary constants:.'

A
o

and k. In order to specify a particular exponential

function, therefore, two pieces of information will be

required. A given problem will generally provide, the

information by either 1) giving a point on the graph of

the function and the slope of the graph at that point, or

2) giving two points on the graph. Our choice of e as

the base makes the first case particularly easy,-and we

show how to solve both types of problems in this unit.

Before presenting these techniques in detail, however,

we pause to present you with the following as indicative

of the type of problems you will be able to solve.

1.1 Challenge Problem

A warm body coals at a rate proportionarto the

difference between it and tle surrounding medium. Suppose

you are in the cafeteria and you must leave in ten minutes

for your next class. You have a cup of hot coffee and a

small container of cold milk. You should begin drinking

your coffee in five minutes. Will your coffee be colder

if you pour the milk in now, or wait five minutes before

adding the milk?

1

122

2. HOW TO SOLVE FOR y GIVEN A POINT

AND SLOPE AT THAT POINT

An exponential funstion passes through the point

x = 2, y = 4 with slope 3. That is the value of y at x = 1?

Solution to Example 1:

To answer this question, we want to know the particular

exponential function whose general form is y = Aoekx . We

must use the information we are given to solve for Ao and

k. Because (2,4) is on its graph, we know that when x = 2,

y = 4 and substituting these values in the expression

y = Aoe
kx

we get our first equation:

-4= A
o
e
k 2

The slope is also given: this is information about

the derivative. If y = Aoekx, then y' = k(Aoekx), and

y' = ky; we can solve for k immediately: k = y. At the

point (2,4) the graph has slope 3 so we use the values

y = 4 and y' = 3 to obtain k = = -. We substitute this

value of k in Equation 1 to produce the equation 4 =

A
o
e
(3/4)2

= A
o
e3/2; solving for Ao, we have

-3/2A
o

= 4e

We now have A
o

= 4e-3/2 and k = substitute these values

in y = Aoekx to obtain

y = 4e -3/2
e
3x/4

= 4e3x/4 - 3/2

= 4e(3x-6)/4.

As an alternative way of writing this function, we could

. use'one of the methods developed in Unit 87 to approximate

Ao = 4e
-3/2

. If we use e = 2.72, then e
1/2

=

(1.65); (1.65) 3 = 1/(1.63)3 = 1/4.49 = .Ll,

123
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.

and 4(.22) = .88. We could say Ao = .88 and

y = .88e3x/4.

Here is another example using this method.

Example 2:

Whtt exponential function goes through the point

(3, 4) with slope 1.

Solution to Example 2:

Set
Aodkx. Since k =

Y
, we have k = 1/2T _ 1

Now let x = 3 and y = 4 in the equation y = A
°
e
kx and

obtain 4 = Aoe
k3 1

; substitute k = /1- in this lagt equation

and you have 4 = A
o
e
3/8

; solving for A
o

we have A
o

= 4e
-3/8

We may now use values k =
1

'

A
o

=
8

equation y = A
o
e
kx to write our answer

y = 4e-
3/8ex/8 4e(x-3)/8.

Alternatively, we may approximate

= 4(.69) = 2.76 and write

y = 2.76ex/8 .

4e
-3/8 in the

as

A = 4e -3/8
o

Exercises

I. Find the exponential function that goes through (0, 8) with

slope 4,

k= A
o

= . y=

2. Find the exponential function that goes through (2, 12) with

slope 3.

i) 9k . A
o
= r

in Use some approximation techniques to write A
o

in decimal form.

A
o

= y =

124
3

3. HOW TO SOLVE FOR y GIVEN TWO

POINTS ON THE GRAPH

3.1 A Typical Problem and Its Solution

We have

the value of

to solve two

to work a little harder in this cash, since

k isn't so easy to find. What we must do is

simultaneous equations involving k and Ao.

Example 3:

Find the exponential function that passes through

(0, 4) and (2, 6).

Solution --to Example 3:

Let y = A
o
e
kx

.

A
o
e° = A

o
1 = A

o
.

of y when x equals

6 = A
o
e
k.2

. Since

we substitute this

6 = 4e-
7k,

or elk =

Using x = 0, y = 4 we have 4 = Aoek° =

(In general notice that A
o

is the value

0.) Using x = 2, y = 6, we have

the first equation gives us Ao = 4,

value in the second equation and get
6 The solution of this equation

involves a function introduced in Unit 86 of this module,

where it was called simply L. We pause in our solution of

Example 3 for a brief review of this function. (The

module on the logarithm function gives a more detailed

treatment of this function, and different ways to

evaluate it.)

3.1.1 How to Solve for k

The function L(b) is defined by the equation

b
h

1
L(b) = lim --/F--,

h+0

and this equation can be used to obtain a decimal

approximation to L(b). There are two important properties

that we will use in solving these problems. We label them

for future reference:
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(*) h(ec) = c, and

eL(b)
=

These formulas were developed in Unit 86.

Example 4:

Solve fork if e
k

= 5.4.

Solution to Example 4:

. .'.
A
o
e'..-- k.2.

Since e
k = 5.4, it follows that L(e

k
) = L(5.4).

(1) 15

Now use (*) to write L(e
k

) = k, and we have k = L(5.4). Use x = 6, y =.135 to get
We can leave the answer in this exact form, or use a

method developed in Unit 86 tó obtain a decimal approxima-
135 = A

o
e"(2) .

1
f

tion. If we let h = 1,024
(a "small" number), we have We get one equation involving only k by dividing Equation 2

L(5.4) ...- 1,024(5.4
1/1,024

- 1) = 1.69,
byEquation 1. (More specifically by dividing the left-

hand side of Equation 2 by theleft-hand side of Equation 1,

and so
.

and also by dividing the right-hand side of Equation 2 by

k = L(5.4) = 1.69. the right-hand side of Equation 1.)

Example 5:

This is the most difficult example. Neither Ao nor

k it readily apparent. Find the exponential function

that passes through the points (2, 15) and (6, 135).

Solution to Example 5:

Set y = Aoekx. Use x = 2, y = 15 to get

Exercises

In each of the following exercises, solve for k using the function L

and then obtain a decimal approximation using h =
1

3. If e
k

= 3.3, then k =

4. If e
3k

= 1.8, then k =

5. If e. = .5, then k =

We return to the solution of Example 3 which we left

when confronted by the equation elk = 1.5. We ,can solve

this now using the L function. Thus using (*), L(1.5) =
2k, 1

L(e j = 2k and so K = 71(1.5). We already ha,Te Ao = 4,

and so our function is

y = 4e
(1,(1.5)/2)x

We can use (**) to rewrite this as y = 4(1.5)x/2 .

126 .
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135 ?toe
k6

15
A
o
e

The result is

(3) 9 = e
6k - 2k

= e
4k

.

Thus using (*)

we find

L(9) = L(e
4k

) = 4k,

k = "49) .

We substitute this value of k in Equation 1 to solve for

A
o

:

(L(.2./ 2)

15 = A
o
e 4 = A

o
(e

L(9)
)
1/2

;
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A
o

= S.

Thus, cur.function is y = Se (L(9)/4)x , which we can rewrite

9x/4. .

3.1.2 How to Solve for Ao biven k

In the above example we used (**) to write e
L(9)

We emphasize use of this formula with an example and some

exercises.

Example 6:

Solve for A if AeL(16)/4 = 12.

Divide Equation 2 by Equation 1, getting

9 A0e4k

2Y --7R
A
o
e

Or
1 e

4k
4k 2k

- e
2k

T 7k e

Applying the function L to both sides we have

L(1) = L(e2k1 2k

so that
1 1

'I% = TL(T).

Now substitute this value of k back into either (1) or

(2) and solve for Ao. Using (1). we have

27 = A0 e
2(1/2)L(:/3)

Aoe
L(1/3)

1
= Ao. T and Ao = 81.

Exercises

Solution to Example 6:
6. Solve for A if Ae

1(8)/3 = 10. if =

12
AeL(16)/4'. A(eL(16).1/4

) which by using (**)

we can say = A(16)1/4 = A 2. Thus, 12 = 2A and A = 6.

Example 7:

Find the exponentia: function whose graph goes

through the points (2,27) and (4,9).

Solution to Example 7:

Let y = Aoekx. Set x = 2 and y = 27 to obtain

(1) 27 = A
o
e
2k

.

Let x = 4 and y = 9 to obtain

(2) 9\.= A
o
e
4k

g 7

7. Solve for A if

1(1/8)

Ae
3

= 10.

N =

o

8. What exponential function goes through the points (3, 1') and

(6, 50)?
. -

4. WORD PROBLEMS

You learned in Unit 84 how to recognize word

problems solved by using exponential functions. After

recognizing such a problem, you must then analyze the

way the data are given in the problem. Are two points

given, or one point and the slope?
8
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Example 8 :

The Surety Savings and Loan Company pays 5.25

percent interest compounded continuously. If a savings

account contains 1700. yight now, how much will be there

in six months?

Solution to Example 8: '

Let y(t) be the amount in account at time t.

Obviously only one point is given: right now 'the account

has $700. Let t = 0 correspond to now, so Ao = 700 and

our function is = 700ekt. The rate of 5.25 percent is a

yearly rate, so t is in units of years. The percent

increase of 5.25 means XI = 5.25 percent = .0525, and so

k = .0525. Our function is thus y = (700)e .0525t, where

t is measured in years. Since six months is one-half of

a year,'the amount in six months will be (700)e0525/2

Using a calculator and P4(x), x = .0525-77-- = .02625, we have

P4(.02625)= 1.0266. Thus, the amount in the bank will

be (700)(1.0266) = $718.62.

Example 9:

A biologist is studying a certain species of bac-

terium. At 1 p.m. she starts with 1000 bacteria. The

temperature is kept constant and when she returns at

3 p.m. there are-8000 bacteria. ,What formula gives the

number of bacteria under these conditions?

Solution to Example 9:

Discussion:

We will measure time in minutes wit% ' p.m. as our

starting point. Let A(t) be the number of bacteria t

minutes after 1 p.m.; we know that the function has the

form A(t) = A
o
e
kt

. Sj.nce 1 p.m. corresponds to t = 0 and

there were 1000 at that time, we know the point (0,1000)

is on the, graph. Furthermore 3 p.m. corresponds to

9
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t = 120 and the point (170,8000) is on the graph. We now

proceed as in Example 7 and. find the exponential curve

through the points (0,1000) and (120,8000).

Solution:

Let A(0) = 1000 and t = 0 to find

(1) 1000 =4,0ek.° = A9.

Next let A(120) =-8000 and t = 120 to find

1(120 .

A
120k

(2) '8000 -o'
e

Note that (1) gives us Ao directly and we substitute

the vIlN \,ki= 1000 'nto Equation (2) to obtain 8000 =

1000e or

8 e
120k

.

Apply the function L to both sides and we have

vo120 k) = 120k.

Solving, k = L(8)/120 thus A = 1000 and k = L(8)/120;

our function is A(t) = 1000e4 1000-
(8)/120)t 8t/120.

Remark on Example 9:

If we wish to find the doubling period for this

species we would want to know for which t is A(t) = 2A0;

this gives us the equation

1000o(L(8)/120)t = 2000

or
o(L(8)/120)t

Apply:kng the L function to both sides we have

(L(8)/120)t = L(2).

Multiply both sides by 120, 1,(8)t = 120-L(2) and

1414)(1/.t

If you are familiar with logarithmic function you

know we can write L(8) = L(23) = 3L(2). (This was also
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derived in Unit 86, Section 7.4.) The doubling period

. f,cir the species (at this temperature) is found to be

120
(21
L(2) 1203 = 40 minutes.

3L

Exercise

9. A country is growing at a rate of three percent per year. If

it had 10,000,000 people in 1975, what will the population be

in the year 20001

Example 10:

We solve Exercise 11 of Unit 84 which is repeated

A certain factory has been dumping its chemical wastes

into a river which flows into a lake. The chemical wastes

of the factory cause a rash on the skin when their'

concentration in the water is 30 parts per million; they

irritate the eyes at a concentration of five parts per

milli The factory stopped dumping its waste into the

rive a mon,t,h ago, and the concentration in the lake was

then at 75 parts per million. The clean water of the

rive entering the lake mixes with the polluted water of

the lake; then, as the river flows out of the lake, some

of he polluting aterials are carried off. The flow

of he river is constant; together with our Inning

as mptions, this means that the rate at which the waste

ma erial is being carried off is proportional to the

am At of waste in the lake. The chemical waste now in

th lake amounts to 70 parts per million. How long will

it be before people can swim,in the water without getting

a ash? Wiehout their eyes burning?

S lution to Example 10:

Let c(t) be chemical concentration at time t, with

t measured in months. Take the time when the factory
11
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stormed dumping as initial time (t= 0) so we have

c(0) = 75. A month later corresponds to t = 1, and

c(1) = 70. So the curve passes through (0, 75) and (1, 70).

Using (0, 75) we see Ao = 75. Thus c(t) = 75e
kt

. Now

75ek.1, so ek = 774 and k = 144).using (1, 70) we get 70 =

The function is c(t) = 75e
L(70/75)t

or

c(t) = 75(74)t.

We want to know when c(t) < 30; we have to solve for t in

the inequality

7eL(70175)t < 30,

which is equivalent to

e
L(70/75)t 30.

<

70
By (*), this is the same as L(73)t < L(3075).

79 70
Since Ts < 1, L(--) is negative and dividing by a

negative number reverses the inenualitv. so we want

t >

F30 70
(73) s' L(75)].

Using h = 216' we have

30
L(73) = -.915

70
L(73) -.069.

30 70
Thus, L(73) s L(7-5-) = 13.3.

It will take over 13 months from the.time the company

stops dumping its waste into the river for the pollutant

level to drop below 30 parts per-million.
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Exercises

10. Use this methodto solve 75e
1.(70/75)t

< 5.

.Answer: $ >

11. Use (**) to wri e eL(7°/75) as ip a to c(t)
75

75(29-)t.

Now take successive values of t =, 2, 3, 4, . . ., and see

when c(t) < 30. For what t is c(t) < 5? Compare these

results with previous' answers.

12. If a bank pays fly percent interest compounded continuously,

how long doe it for a saving's account to double in

size?

13. Go back to Unit 84 And find the exponential function that

solves Exercises 1, 4, 6, 8, and 12.

134 13

1. k=

a

5. ANSWERS TO EXERCISES

Ao = 8, y = 8ex/2

2. k ="1 A = 12e -1/2,T' o
e , y =

ii) A
o

= 7.28, y = 7.28ex/4

3. k = L(3.3) = 1.197

4. k-
5.

6.

7.

L(1.8)
3

196

k = L(.5) =
0

A = 5

A = 20

-,6922

8. or y = 2(54/3

03t
t = 0 in 1975 so population is

.03)25 = (10,000,000)e.75 . Using
(e1/4)3

(1.284)
3
= 2.117 and

population = 21,170,000.

=

9. y = 10,000,000e

10,000,000 e(

e = 2.718, e
3/4

12e(x-2)/4

10. t > 39

mg
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11.

* RUN

t = 1 e(t) = 70
2 65.3333

3 60.9778
4 56.9126

5 53.1184
6 49.5772
7 46.272
8 43.1872

9 40.3081
10 37.6209

11 -_ 35.1128

12 32.772
13 30.5872
14 28.548
15 26.6448
16 24.8685
17 23.2106
18 21.6632

19 20.219
20 18.8711
21 17.613
22 16.4388
23 15.3429
24

t-; ,

14.32

25 13.3654

26 12.4743
27 11.6427

28 10.8665
29 10.1421
30 9.46595
31 8.83489
32 8.2459
33 7.69617

34 7.18309

35 6.70422
36 6.25727

37 5.81012

38 5.45078

39 5.08739
40 4.74823
41 4.43168
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12. To solve for t in &CI St > 2 or .05t > L(2),
t > 20L(2): Using h = 216' L(2) = .694, so
t > 13.88 years, or about 14 years.

13. Repeat of the following: N

Exercise 1: k = .17, and goes through (0, 1),
17x

Exercise 4: k 2. -.5, =
2,..5e-x/2

Exercise 6: L(d) = (400)()d/20 ,

L(100) = (400) (1-) = ,.-2-5 4- 12.5 and

C
Rog er should start defrosting.

Exercise 8: P(t) = $5,000e .17t

P(6) = $ 5,000e -1.02 = $1,803

Exercise 12: The curve goes through (0, 3) and
(10, 2.7); the problem is asking for

.t wh y= 1. y 3e 01x
. S et y = 1

and solve for x; x = 110 minutes.

1\.37
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6. MODEL EXAM

. 4

Given,an exponential function that passes through the

point (1',8) with slope 4, write the exponential function

in the form

\- kx'r 7 Ae

2. Given an exponential function that passes through

and (3,6), write the function In the form

kx
y Ae

3. A fossil is found in a cave, and taken to a laboratory to

analyzed. It Is found to emit about seven rays from

carbon-14 per gram per hour. A living body radiates at a

rate of 918 rays per gram, and radioactive carbon-14 has a

half-life of about 5,600 years. Approximately how old is

the fossil?

7. ANSWERS TO MODEL EXAM

'y (8e-1/16)ex/16 = 7.5eX/16

4(1)1/2e L(3/2)
2

x.

3. The fossil is between 39,000 and 40,000 years old.
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