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’ ‘/ i / ) . Our question ig: How may we use the empirical data
T . MEASURING CARBIA;,"OUTPUT . "given in Table 1 to ‘determine the cardiac output?
0 ’ * f . . N
.’ . S - . . . L
) ot - + TABLE 1
€ - 3 £ 1. ' THE TECHNIQUE OF DYE DILUTION 0" . TybicaI'Data for the Dye Dilution Technique
- . - T N A N .
~ . L .

, . " The volume:of bloqd a -pex: heart 3 per unit - :
e volume:o °’¢ @ pe‘r%s cart pupps per umit o . Ti;‘e (seconds): 0 1 2 3 4 5 6 7 8
t1me (that is, the rate at wh1ch it pumps blood) is

< calleé« the pekson's cardiae output Normally M a per- . *con?;;;;?at?: ° .0 0 0'.‘ 0°6ﬁ0'9‘|"" -|\°9 2.7
son at rest th1s rate is about 5 liters per minute. But . . N . : .
’ * afteg strenuous exercise it can rise to more than 30 M - Time (seconds): 9 \10- 11 12 13 14 15 16 17
~ " liters per minute. It can also be raised or lowered - - Cqncentration: 3.0 3.7 4.0 4.1 4.0 3.8 3.7 2.9 2.2
* s1gn1f1cant1y, by certzn diseases of the blooa vessels, ’ (mg/Titet) . i, R
. heart, and nervpus system. . ’ . Time (seconds): “18-,19 20 21 22 23 24 -
A ¥ ' In t-h1s unit we shall discuss a technique for - c°")ée"t"‘?“°"’ 1.5 1.1 0,9 0.8 0.9 0.970.9 / :
’ ’ measur1ng.,card1ac output known as dye dzlutwn . The (mg/Titer) - - < - .
:.,-. ' technique works as follows.. At time t = (. a known gmount A ' T
. D of a dye is injected into a main Vein near the heart o e T " : ’
’ * The dyed blood c1rcu1ates through “the right 51de of tHe ) ) . . " { ) ©
" heart, tzhe lungs, then the left side of the, heart, and , ~hro ) ' * ®e . -
. f1na11y appears, ifi;the arter1a1 systedm. The concentration C T . ~ e
"" t *of the* ‘dye 15 monitdred ‘at fixed time interyals At at °, - n ’ : . ) ~ S
some conven‘ient point in’ the arter1a1 system. Typically, A 3l o .
i * At might equal ong second. . For purposes of the mathe; * ‘§ ) : . * y °
- » matical development in th1s unit, we shal]l assume the ‘ E - 5 g ' . ¥ .-
‘ mon1tor1ng s dome in the aorta near ‘the heart In . o g D : . .0 - .
4 - 4, Exercise 1 it will be assumed that “the dye coﬁcentrats.on - ‘s 27 - ° o
- o is n{on1tored in ? bxanch ar'tery 1nstead, and you will be / .'Ié . ." . . .
o o asked to ‘make appropriate changes in the analys1s ‘t‘hat ' ) % L .- . . .
fd’llows. v . . . . ¢ L ' - o -
. . - | . S * oo ® ;000
R o HNormally it W111 take only a few sgconds for the dye. ... e ‘ c . . ‘e
td Pass through the heart and lungs 0nce and begm to ., L I - s N . )
* appear in the aorta. TA typ1ca1 ‘set of readmgs will be ° . ) y \ - Y A
’_ as in Table 1, where'we see one resu.lt of 1nJect1ng © S ¥ ‘°'s ; o 1'0 % 1:5 26 . 2‘5
. K Dl= 5 mg of dye in armam vein’ ne,ar the heart_a\t\t.me ] i , . o _Time (seconds) ’ )
Ve es = 0" seconds. If. we plot thEse read1ngs ©on_graph paper- . . Figure 1. Typlcal readings in the dye dilution techniqye,
we .get f\e points shown“m F1gure > R . v . when D = 5 mg of dye ‘are injected at time t = 0 seconds’. )
b .- - T - ) _ . '% , . . . » . '
i by i 6 D ) e - |
* Q ° - . ! ! ot i
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-artificial simplified version of the question.

- 2.

THE FORMULA -FOR CARDIAC OUTPUT

+

2.1 Preliminary Illustration ~

» Let, us'Set‘the';tage by considering a ‘somewhat’
Suppose

[

it were possible to Set things ,up so diZ of th/_dye .

) flowed ‘through the heart exactly once in a time interval

of léngth T seconds tat a constant concentration of C mg/%.
1A record of our observations would look:something like
Figure 2.) Then we could express the amount of dye by

the formula D = CV, where V is the volume (in liteTs) of.
blood flow1ng through the heart ’in this time interval, or

= D/C. The cardiac output R (the rate) would then be
*given by‘ghe,formula V= RT (volume rate x time), whigh
can be qritten in the ﬁprm . K .
(1) ~* R =V/T=D/CT, ’ .

5
where D, C, and T arenall known.- Notice that CT is the
area of the .rectangle in Figure 2. -

N N - .
> [} v ¢ \
. NV e : ‘e - \
. o ‘
cl----- 1? 00000000000 T ¢
) ! N "
i ‘ ! 1 =
§ .l l A . o
'.:’: ! |’, 'S
., Be ‘l N o . i
Ao 5 1 b .
C - . ] .o . » I -
3 R
gv . i . B - : )
- ] Y . ’ .
- 7 Fe
A - . |
—o—o! ! oo
. 0 R L N ] .
~J ot N T X v
. o ¥ Time (seconds) .t ..
» . )
Figure 2. ldealized observations of dye eoncentration in ~ -~
. the aorta. 8 ﬁ : o
- ) ’ . 3w
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“but equall

. The dye ooncentration then falls off rapidly.(from t =

.. - ~ . .. )
. >, .
- -

We cannot arhieve this
wait a very extended period qf time to achieve a constant

situation. Even if we Were to
concentration of dye 1n ,the bloodstream, this would be
useless,‘51nce we would have no way of knoW1ng how' leng

it ;pok a11 the dye to pass the monitoring poLnt exactly

once - ¢

How can we modify this simple algebraio comou;ation
to analyze the data of Figure 1, where the dye concentra-

tion is not constant? . .
. N :
2.2 Rectangular Approximation s .
- There are two essential differgnces- between the o

idealized observations of Figure 2 and the ‘realistic

One is that in
VThe other
important-—in Figure..2 we can

observations of Figure 1. Figure 2 the

dye concentration is ¢onstant. is less striking
QY identify a time
interval during which we know exactly how much dye has

passed by our monitoring point. - . .

>
-

Let us condider this seconq difference first. In
Figure 1. we see that the dye concentration ;ises sharply,
then falls sharply, and then, just-when we think it is

going to fall off tp zero, it rises again. ;

rise occurs at about t =

This second
20/seconds. Now physfblogists
" Xnow that 20 seconds is Just about long enough for some

blood passing tlirough the aorta to make a round trip of

‘ the body and the ludngs, and reappear in°the dorta.

Apparenfly what is happening is that most of the dye
passes through the aortd in the first 14 or 15 seconds.
15,
Then,
215 a little dye, having completed its round

to t = 21) asnthe rest of the dye trickles through.
at about't =
trip, appears for sthe second time and -mingles w1th what

"is left of the "first- time through" dye to cause the Jump

concéhtration after ¢ =

in the graph s,

We mhse’attempt to pick out what part d€ the dye '
21 is due to "first-time- through"

L ’ . . . . N '
i3 Y <
© B I's ™ X 9 c .

|>
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d;e. Notice that just before't = 21 (and especially.from
t =19 té t = 21) the.dye concentration is decreasing at
a pretty steady_rate.
through" concentratzon continues to déerease at this rate.
Then the graph of "first-time-through" concentration,

Let us assume that "firstitime-

. Ahstead of tising at t =217 will pass through the p01nte

PR A ruiiext provided by R

, B, and C as shown{dn Figure 3.

/ JIn Figure 3 we simply drew in A, B, and C by eye.
They are approximatély: A.(ZZ 0.5), B. (23,0.3),

C (24 0) They-represent,‘at best, a «shrewd gu

there is no point in agonizing over their £xact locatlonr
By the end of this sectlon we shall see that the portion
of the g ph after t = 21 has only a small effect on our
final resfilt. e . .o N

. Now we are ready to confront the first of the two
esdential differences mentioned at the beginning of this
’ .

- e

-
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In Figure'3 we have drawn a Qucoessaon of
rectangles: Each rectangle has base At (the interval
between observations) and height c(ti) (the observed

section.

.In our example At = 1"
Figure 3 we have 111ustrated for i = 6 ti =t
and e(t ) = c(6) = ' C

Now let us coﬁsider the time interval from ts

j+1» Of length At. At the beginning of that interval

the dye concentration is observed to be c(t ). The volume
of blood flowing past our observation. point durlng the
time- 1nterva1 is—RAt. Recall that R 1s‘a rate. If. the
dye concentratlon were constant for thlS time interval,

the tota1 ramoyht of dye flow1ng through in thlS interval
would bevc(t JRAL,
ber i &in Flgure 3.

of R times the. area of rectangle num-

The time interval At is rather sma11 compared to the
total tlme,lnvolved, aqd the dye concentratlon hever )
changes abruptly, so the érror 1ntroduced by maklng this
approximation is not great. '

§1nce we have assumed that the monitoring is done 1n'
the aorta near the heart, a11 the dye must flow by our
mon1tor1ng point between t = 0and t = T0 If we add all
the approx1matlons‘correspondiﬁg to the rectangles from #
=0 tot =T, we must account approximately for the
total amount.of dye D:

Ll

R ~

N : ' BN
(2) At = R Z c(t, )At
/ 1=1
where n is the number of rectangles. In our examplé,

n =23 if ye Fodht the first two "rectangles," from t
to t = 3, each of which has "helight" zero. Thus,

. 4 '

(3) R x —D-
7 'izfc(ti-)At

.

where the denominator is the-total area ‘of the rectangles
in Figure 3. . . .6
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We can noW write .
. . - < ¥
~ R = D RN <" (’;-
”Ta’f_f'" - . ' -
c(t)dt N t . 1

\values plottedfrn'F1gures 1 and 3 thgre 1s a fu ctlon ! 0 — e ' ' ‘ .m

c(t) defzned (but not observed)‘for all t between t.= 0 We must use an approximation sign because our curve c(t) '

: and t= T0 (see F1gure 4). This functlon may be approxi- - is at best a,curve whiéh fits the data well. We have no ' ..

mated by. flttlng a Smooth curve, to “the observed points . way of knowiné if it is exact.

[tl,c(t )J, usrng the assumed polnts A, B, and C at the . . L - . .
The denom1nator in (3) is then an: estimate of the ’ 3. COMPUTATION OF CARDIAC OUTPUT )
4area under this curve. “In fact 1t is one, 6f the approxi- ) - !

matang sums’ used rn definxng the def1nrte integral © 3.1 Ant1d1fferent1atlon -

1. Ggi ' ?d 2 T ‘ . . .,’ , “How we use Equatlon (4) depends on the nature of the . "
e "\‘f ; c(t)dt f'%iz 1§ic(t )At,g@ S ’ function c(t)- It may be that a curve can be fitted to )
AT 0. ‘ SR v : ) the data points in Figure 1 which is the graph of a func-

# in wh1qh we th1nk °f n/and T as g1ven and set At = TO/n' . tion c(t) whose antiderivative C(t) is known. In that ’
% " . case we would usezthe fundamental theorem of calculus to
o . - - compute ' -
R Ty L ) 8 ’ §
. cc(t)dt = C(Ty) - (:(0)}3
oo 0 R ! k3 .
and then o .
] PP A e . ‘
N 3 2- Numer1cal Methods ‘ ' _ .. i

i

L.

,n_

More likely, however, there w111 be no explicit
£ormula forwc(t), letvalone for its ant1der1vat1ve. In
.this case we use one of a var1ety of ways to estimate ®
] the denom1nator of Equation 4), and thus obtain an .

. approxi£2£1on of R. W% shall list several, and 111ustrate
some -0f. them wrth the data of Table 1. Recall that these
data were obta1ned w;th a dye dosage of D= 5 mg.

) (a) We can use the denominator of Equation (3).
',”Thzs uses the areas of the rectangles in Figure 3, rather 7 sy
,than the area qnder the curve in F1gure 4. T )
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g

k4

s 2Y cregpat = Fe(tr=0+0+01% 0.6 Feee N
- 1= 1= N . ~ .
) - & 1.1 +0.9°+ 0.8+ 0.5+ 0.3 = 44.1,
. - ", . . ) ° P N
Then e R . \
' ’ s hd
R = Do —ji— 5 02113 11ters/second
S U S Y 3 :
= 6.8 liters/minute. "

* (Although the concentratlon meaSUrements were taken by the
second, output is usually measured in liters per minute.) '
Notlce that in making this computation we_teplaced the = __, .+
‘Tast three experimental p01nts of Table 1 W1tﬁ the points

A ‘22, 0.5), B (23,0. 3), and C .(24,0).

doing thxs was dlscussed in Section 5 2.
. -

(b) More 1abor;pusly, but also more aceurately, we
could sketch F;gure 4 on a large sheet of graph paper and
count the number of squares'that fall between ‘c(t) and
We ‘would then multlply this tota?
by the unit of area representedaby a single Square .

-

The reason for .

“the horizéntal axis.

There .are- alsd mechaﬁlcal deV1ces, called planmetersJ ,
with which it is pos§1b1e to traqe the boundary,of a ¢
region and then read an estimate of the aréa of the region

from a meter. 'We.could use one of these instead of count-

"ing squares. . - h
« (c) If the interval [a,b] 1§ d1V1ded into n-équal
parts [a = t0 < t1 < ma. < tn 1 < t = b], then the
‘e e I
trapezvzdal sule sayst, : { : T Y
b N :
.J c(0)dt = St g+ 2y1 MR AR AR

a.
. ' e « N

c(ty) fori'= 0,1,2,...,n.

where we have written Y, =

ot 28 - 0° '
c(t)dt=m(0+0+0¥0.2+1 2+1.8+ +2.2
j' L . R . RN
.- . +1:8+ 1.6+ 150+ 0.6 + 0) {
AN ’ ‘ LA
‘ _1 _ - . . b,
= 5(88.2) =44.1. , ,
/ . ’
. As in part-(a), R ~ 6.8 liters/minute. ) _

(d) 1If the 1nterva1 [a,b] is’ d1v1ded 1nto n equal o7
parts [a = tg- <ty < Sthy Sty = b}, where n is an -
even number, then the parabolic ruZe, also known as ° o
Szmpson s rube, says: s,

- \ »
¥ b . ® . R *Mj _
’ C(t)dt‘:’b-a( ‘+4 + 2 3+ 4 + 2 +»
. = In Yo Y1 Yo Y3 Yg *oen -
- - o - ' -

", e . 2yn_*2 * 4yn-1 * yn)”, .
with the. notation of pgrt (c). -

In our example, . L ’ i

, -

24 T : h ° . b

<24 -0 . .
J c(t)et = 3 [0 +4(0) + 2(0) * 4(0n1) + 270.6)
40 ’ '
4 » +400.9) + ... + 2(0.9) + 4(0.8) + 2(0.5) . .
» A 2 R
v + 4(0.3) + 0] . .
© = 3a32.2) . . -
. . ' :
. = 44.1 (to the.nearest -tenth).
Again; R-= 6.8 liters/minute.

. . . ‘

o w
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, 1. EXERGISES  » -
’. “’o .

f. . Assume the dye monitoring takes?“place at a branch artery which
+ « recelves 6nly 1/10 of the blood comin&‘from the heart What
- changes are necessary in the analys!s contained i Sectjons 2.2

» " and 2, 3? How does this, affgct Equations (3) and (4)7*
‘ L - Ny LU
- . - A
' 2. Suppose c('t)« is measured.in milligrams/liter, $in secohd§, and
" D inmilligrams. In what units should S e .
» . ! ‘ A v
" : T0 . v a - .
) - c(t)de -~ ‘ . I
. R ’ o - ©
P . < .
- be, expressed. ] . T s
. 1 ‘}_I N . ' ) : A [
- g * . e
- 3. Suppose that at time t the dye.concentration is \

. S
c(t) = -bt(t - T)) = -bt® + br¥y,

where*b and To‘are positive constants. - ¥ Do
. & Graph c(t)4 . « ¢
b.‘-i.!n'd R in termg of b, To,\and 'the total amount D of dye
i L Injected. . . . ’ N
: 7 B N & ¢
- 4. Suppose c(t) s as"shown in Figure 5.\ .
;‘:i“‘ ) - . .,
) T | ) . ;
‘Zf;;‘,. ! §A . > - ‘ L4 ‘
5‘;’5'- g e ¢ y
Ly -23
O I Pl b §
"3 C - 3
85 |- §
gg 3 . By ‘
(&) = B
LI .
t
£
’ TO/Z T0 3
v ", e, Time (seconds) .
Figure 5. A hypothetical concentration curve.
s T . . ‘
e A S U l";' R T

5.

')

<

a. Find R in terms of TO’

b.

Find R xn terms of T
|nJected) if c(t) Is as’ shown in Figure 6.

Injected

"How is~k affected if (1) T,
<onstant? (2) T0

4

0’ and, the .total annount(D of dye

is doubled and c0 is kept

is  halved and C0 is doubled?

L]
0, and D (the total amount of dye

- 4 e
ot 5
. ~
}

:3

Q -~

2% : .

o = . M . .
E

e .

C~

. 0O

U E ]

[ = [

g | :

L L *
®/ /3 e T,
03, To 0 .
Time (seconds) . :
. - [ 4
Figure 6. A hypothetical concentration curve.
) ’ ¢

In.an attempt to determine cardiac output, 10 milligrams of dye

are Jdnjected into a main veln near the heart.

tratlon Is monitored at the aorta.

are made'

The dye .concen-
The foliowing observations

> . - «
v [

Time (seconds): 0 1 2 3 K5 6

Concentration: @

(mg/literh. e

- v

- -

-7 8

0.1 0.2 0.6 1.2,2.0 3.0 4.2 5.5

.
A L]

Time (seconds): 9 10 12 13 14 .IS 6 17

P et o

(mg/1iter)

L.

-

Concentration: ,6.3 7.0 7.5 7.8 7.9 7.9 7.8 6.9 6.1
M - S

Time, (seconds): 18 19 20’ 21 22 23 24 25 26
5.4 4,7 4. 3.5 2.8 2.1 2.2 2.1 2.2

Loncentration:
<(mg/iiter)

.




“Plot fhesg observations on graph paper.

b. At what' time does recirculation begin?

L]
c. ~What points would yo&,‘a‘&d to the graph corresponding—to A,
B, and € in Figure 37

-yt

." Calculaté the cardiac output R from the data in Exercise 6:

a. using Equation (3) directly. ' )

b. ‘using the trapezoidal rule.

c. uSil;lg the parabolic Fule.

/
\ °

5. ANSWERS TO EXERCISES

.
oy -

1. Throughout Section 2.2, D and ‘R myst be replaced by 0/10 and
R/10, respectively. Equations (3) and (4) are unaffected.

)

2, Milligram-seconds per liter.

30 de. C(t)‘ (i’To o*bToz‘) :

(th0 - btz)dt'

°

)

20 ! 1200 D «where A is the area -[\
T 4/sec Co 0 . &/min [ A? of the tr:angle ] {

o8

b. (1) jmalved. (2) unghanged.

. X

'3 o 902 D where A is the area
2/sec ¥/min. [ = A of the trapezoid .

c. A (2‘0,1.2), B (25,0.7), C (26,0) is one possible answer.

-

Concentration
(mg/Viter)

{
_15
Time (sec'onds)

b. just after 23 seconds.

-~

*

Did you r.emember to replace the last three data points irr.the
table bi three Points approaching the t-ax:s? A (24, I 2)

kS

B (25, c(26, 0) will do.

The denominator of Equation (1) is

26 26 «
c(t Nat I c(ﬁi)
i=| i=l

0+ 0.1 +0.2+ ...4+2.8+2:1+1.4 +0.7+0
106.7. '

. Therefore,

V

= —6— —6— 0 09‘4 liters/second

o

= 5.6 Iiters/minute.

/ .
% .
26 - 0 ! ]
(0+0.2+0.4+T.2+ ...+ 2.871.14 + 0)
2(26) =) .

.

|
,5(213.14)

106.7.
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N E - N =
o 1. DRUG DOSAGE PROBLEMS .

i i e~ - = - T,
:; 1.N Gradual Disappearance of a Drug from the.Body .
The concentratlon in the bdood resulting from a )
single‘dose of a drug normally decreases with time as
f the drug is elimlnated from the body (See Figure 1.)

v“l ’ - ,
2 [ : ‘
H )]
h wrf
o § N
. od
N e -
3 o
H o} «
N »

< 5 ’

((g)Qb .

o time

N 1 2 3= & 5 6 7 8 (hoursf>

Figure 1. Jhe ea:centration’of'a drug in the blood stream

A : sdecreases with time.
X . . L

2;‘ 1.2 “What is the Effect of Repeated Doses of a Drug?- . {

If doses of a drug were given at regular intervals, -
‘what would happen t9 the concentration of the drug in
the h}ooZ& Would it behave as: shown in’Figufes 2 or 3,

or in some othér way? . ,
I ' ? : :
3 - ’ -
0
-~y
o -
=
- -
§ =
2 o
| i
% ‘e
£ .
[
-y g \
‘ , time
.0 P A ’ L e S . R
R ,Figure 2. One’possibla effect of successive doses
o + L Ofa grug‘. . LI > \ ‘
.\‘1 B Lo o ;] L . 1
[C:. : o
i e

’

'

concentration in blood

time

>

0 : ¢+ .
Figure 3. Another possible effect of successive doses
of* a drug. .

/
1.3 How to Scthedule for a Safe but Effective Drug Concentration

For most drugs there is a concentration below which
the drug is ineffective and a concentration above which
the drug is dangerous. How can the dose and the time

between doses be adjusted to maintain a safe but effective

concentration? . . N
A
8 ,,—-hlghest safe level
SCh-q~— -l - — —_—-
A& e it
& Cq
gCL“‘ —..——I—i | —
et | lowest effective level
e ! | ‘
I [} |
e i I
5 ]
3 :"’-to_»l .
5 - \ | time
0
. 0 3
Figure 4. Safe but effective levels. . >
& Cy = change in concentration produced by one dose

ty = time between doses

2.°A MATHEMATICAL MODEL OF DRUG CONCENTRATION

-
~

To give a reasonablé” answer~to the two questions
/
above, we develop formulas from which we can compute drug

. 4 A

»
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concentration as a function 6f time. The development
depends on two assumptions.

quite redsonable,

THe first assumption is

The second assumption is reasonable
in some circumstances but not reasonaﬁle in 8thers, and

_limits the application of theJmodel we are about to
describe. . S e -

2.1 The First Assumption Co -

The - first asspébtion, one that is borne out
by clinical-evidence, is this: Whatever the mode of
elimination, the decrease in!the concentration of the
drugs in the blood stream will be proportional to the
cénceptration itself. 1If the concentration were doubled,
the rate of elimination i doubled also. If the concen-
tratidn is reduced by a third, the rate of elimination
is raduced by a third. The amount being eliminated at
. any given ingtadi is a fixed fraction of the amount still
present, ° ’

-
.

“~o model this assumption mathematically, we assume

« that the concentration of dryg in the blood at time t -
is a functidn C(t) whose derivative C'(t) is given by
Jthe formula “o *

@ 5 (e s -ke(e) . Coe y

In this formula k is a positive qgﬁs%ant, «£alled the
elimination constant of- the drug. ‘Notice that C'(t) is
‘negative, as it should be if it is to describe a

decreasing concentration.
. %

2.2 . Units of Measyrement '

v
We usually measure the quantities in Equation (1)
1
. in the following units:
4 v

N

. 28 . BN

Q . 1

ERIC | I

A i1 7ext provided by ERic: e N . -
: »

‘v\‘ .

: Y

t hours (hr)
C(t)- milligrams per milliliter of blood (mg/ml)
e L= ’
cr(r) D&Ml o g mytlpr!
k hr~? ' :

\

2.3 Drug Concentration Decay. as a Function of Time

If we happen to know the concentration of # drug at
.a particular time, then we can predict the concentration
at any later time by integrating both sides of Equation
(1). Specifically, if C, is the concentration at t=0,
then we can calculate C(t) for every t >0 in the following
~ wak‘ -
First rewrite Equation (1) to get
et
t

’

~
-

= -k

Then integrate from 0 to t;

t t
I %—E%dt=]-kdt L
. 0 0 .
. 1n £ = gt w -

0
5 s

“2) c(t) = Cye”*t, .

-

g
.

Exercise 1. Starting with Equation (1), carry out in detail the

- steps that lead to Equation (2). [S-1]# \ A
' . - 2
To obtain. the cpncentration at time t >0, we multiply the

<" initial coneentration Cy by ekt

"looks like the one in Figure S..

4
rg 3

* This reference means that there is additlonal explanation material
available in the Special Assistance Supplement at the back of the

unit. N
225) | ., 4

.~ » . °

: ,
> v
. ) '

L
1

The graph wf C(t) =C0e'kt

137
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[AruiToxt Provided by ERIC

', injected directly into the blood siream.

0 : ; —

Figure 5. Exponential model for decay of drug
concentration with time. '

Exefcise 2. Syppose that the elimination constant of drug A is
k=0.2 hr-l, and that of drug 8 is k=0.1 hr-l.
initjal.cqgncqtration, which drug will have the lower coficentration

4 hours later?

Given the same

-
'

2.4 The Second Assumption

' Havihg-made an assumptibn about how -drug concentrations
v decrease with time, we need a companion assumption about

* how they inqreasg again when drugs are administered.

wyat we shall assume is that when.a drug is taken, it

is diffused so rapidly throughout the blood that “the
graph of the concentration for the*absorption period is,
for all practical puﬁbosesl vertical. That is, we assume
an.instantanbous rise in concentﬂation whenmever a drug
This assumﬁtion may not be as reasonable
for a drug taken'by mouth as it is for a drdg that is

(st2] .

is administered.

By combining Assumptions 1 and 2, we arnive at the
»
graphs -in*Figures 2 through 4. ’

- . 4

.

. v N -
30 \
- - -
. et Y
-
. e 0

- ' .

- N

N

.

3. DRUG ACCUMULATION WITH REPEATED DOSES

3.1\\Quantities to be Calculated
\

What happens to the concentration C(t) if a dose
capable of raising the concentration/by C, mg/ml each
time it is given is ddministered at fixed time intervals
of length'ty? If so, to what
level? The next graph shows one possibility, and suggests

Does the drug accumulate?

a number of quantities that one should know hongo
calculate. -[5-3] *
2

-

Figure 6.

One possible effect of ‘repeating equal doses.

-

~

b
3.2 Calculdtion of Resjj@gl Concentration

= If we let Ci-l be the concéntratioq at the beginning

of the i-th interyval and Ri the iesidﬁgl concentration at
. the end of it, we can easily obtain the following table.

- . L -

()
i
o




e

' o~
- -2 ’ . -~ .
TABLE | - T
CALCULATION OF RESIDUAL CONCENTRATION OF DRUG
Y N .
- - c1-1 - . - Ri
i . : C, ———multiply:——/) coe'kto .
by e-kto / . )
/ - add C
2 ‘ Co+coe'kto 0 c g“k€0+coe'2kt0

0 N\ )

S -kt - - -2kt, . . -
3 CpeCe 0 e Ho cpeMoage o s g ekt
» . C e
P ~ . - ’ .
n ‘Coe'kto + - *C e "kt
L}
. From the table we see that
£3) R = Cpe Kto+. . . %Cpe % f

- - i ) - -'

is the sum of the first n terms of a geometric series.
. . -

The first term is Coe'kfo and the common ratio is e‘kto.

. Accordingly,

'(3) R

G / A}
t Exercise 3. Calculate Ry and/klo for Co = 1 mg/ml, k = 0.1 hr’l
and tg = 10 hr. (To compare Ryp with the result of Exercise 4,

assume that the data are given to uglimited accuracy.)

¥ <
~
E

To rétur%_to Equation (4), noticg that the number
e Mkty ;¢ close to 0 when n is large. In fact, the
larger n'bécomes,,the closer e "kto gets to 0. [s5-4]
As a result, the sequence of Rn's has a limi}igg value,
- which we call R: ’

;32 :

-

.

ERIC-
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. .

®©
. -ktg
R =1limR_ = Coe Y.
e M 1o e™Kb0, 0 o Vo
' R TR L T~ T ;
‘ e ool ol .
ekt -1
LI i

If a dose that is capable of raiéing the

concentration by C; mg/ml is repeated at
“

intervals of t; hours, then the limiting

valaé R of the residual concentrations A
. is given by the formula ) -
1]
' C
{
) S Rs ———20 |
. (5) ekto _ g ", ’

The number k is the elimination qonstant7
Sf_the drug. %

Ty

Exercise 4. UsefEqudtiomd5) to find R for the values of Cy, k, and .

to;giVen in Exerdiée 3. How good an estimaég of R is R7 |

'

.o \ )

- N

3.3 Results for LJ&Q intervals Between Doses

The only meani g way gé examine what happens to
th res%ﬁual concentratian, R, for different fIntervals, t,,
between'doses is to look at R in comparison with C,, the
' {5-6] To
make thés comparison, we form the dimensionless ratio
R/Cy by dividing both sides of Equation (5) by Cg:

. change in concentration due to each dose.

(67 oI ) .
~0_ e -1 . v
* Equation (6) tells us that R/C, will be close to 0
whenever the time tj between doses is long enough to make
ekt 55 1. 'As for the intermediate values of R, we can
see from Table I that each R, is obtaired from Rp-j by

adding a positive quantity (Coe'"kto). This means that

33 -
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“ 3.4 ﬁesults for Short lntervals Between Doses- -

POt

413 the Rp's are positive, because Rg is positive. It ..
also’ means that R is larger than each of the Ry's.. “In-

symbols, ‘ . ; T

. sem ? "- . ‘
M ocken T
for all n. ' ) - N

. The implication of this for drug dosage is that _ ~
vhenever R is small, the R, 's are even smaller. In
particular, whenever t, is long enough to make ekto >>1
the’ re51dua1 concentratlon from each dose is a}ﬁpst nil.
The varlous administrations of the drug are then
‘essent1ally independent, and .the graph o{,’(t) looks
lxke the one in Figure 7.

po IR

L4

between doses., ' . -

If, however, the length oF time t, between doses is
so short Sthat € 51_15 not very much 1arger than- 1 then

than <. The c0ncentrpt10n w111 build. up W1th repeate

. doses izes'into an oscillation betweern,

Ei gure 7~ Drug concentration ?or Ishg intervals - L IR —

(8) . R=.C;, and Cj+R = FH'- o . '
Subtraction then y;glds Sz . - 1
L - ° - '
() % Cp=Cy-Cp. _ )
When these values of R and, C0 are subsfqiuted in Eqtation .
(S), we f1nd that . T : s .
. C,-Ci - .
10y - ¢ =0 LT ., . .
. L~ Kty L ] SN L
Yue L _° . E)E; 10 *
R \ b \
- N L * - <

- s t
o Y. ] " s — dn,
0 ty . Sty : . 10t -
B N - &
Figure 8. Buildup of drug concentration when interval R
c . ‘between, doses is shorts - e *

¥ L)
- ‘. -

4. DETERMINING A DOSE SCHEDUL59£0R SAFE. -BUT EFFECTIVE

a .

DRUG 'CONCENTRATION L.

4.1 calculating Dose and Intefval’ . : -

%uﬁoose that a drug”is known, to be ‘ineffective. below
a concentratlon CL and harmful above some h1gher concen-
tratlon Cyi- Is-it poss;ble to find values of C, and to
that w111°produce a c0ncentrat10n C(t) that is safe (not
above’ CH) but still efﬁéctgve (not below CL)° To whatever
extent “the model # val1d the answer is-YES, and Figure 8
gives us the clue for how to start. . . .

We begln bz‘dooklng for values of Cc.and t, that

make . " R
. » .' Q.V,——"\




We. then solve, for ekt0 to obtain ) .

3 Co . .

(11) . §ekto‘ a Cﬂ . o ' . <
* "L

y
.

" When we take the lggaritﬂh of both sides of (11) and
& .»divide both.sides of the resulting equation by k, we N

. -

.; » learn that

n'n
[ el 3=
.
.
.
£

: s (2) ty = ]12 1n

‘k’ -Exercise §.; Solye Equzion (10) for et to obtain Equation (11).

Al ~ -
_Exercise 6. Solve Equa%ion (11) for t, to obtain_Equation (12).
. l9 o

v: 0 —
3 -

4.2 Reaching an Effective Lével Rapile

)
.

. To reach an effect1ve level rqp1d1y, administer a
. dose, often called a Zoadzng dose, that will 1mm$§1ate1y
produce a blood concentrat1on of Cy mgMl. This can be

3l £
» foIltwed every t, = f 1n éﬂ- hours by a dose that raises

th doncentration by C, ="Cy - C, mg/ml. e
_ e con Y o Tttty Me .o : y
. - ‘a ‘
. , S. EXERCISES o

State two reasons why the model suggested in this unit seems to be

agoodOne. o, "o ’3". -

Suggest other phenomena for which the model described in the iext
lnfght be used. - . - ' .

-

a) If k=0.08nrt, and the highest safe cc;\nceqtration ise
* fités the lowest;effective concentraﬁ’ﬁ find the length

of time between repeated doses that will assure saferbut.

L&

“
Lx
e

—w

o .~ effective concentrations. ';“\.\ ¥ o %,
\,, \}‘ s ) . ) A . ” ( .~ . R
SERIC 0 T

B Ao rovasa vy v RO o TR R -
o e T ST e
A A IS RS S

- Sl .
M ’
b) ,Does (a) give enough irformation to determine the size of
each dose? .

.*Suppose that k = 0.01 hr"™and t, = 10 hrs. Find the smallest

1
n such that Rn>-2-R .

/
. sivenyz mg/ml, C; = 0.5 mg/ml, and k = 0.02 hr}, suppose
that concentrations below CL are not only ineffective but also
harmful. Determine a scheme for adminlst{ering this drug (in

terms Qf concentration, and times Of dosage.) —~

12. Suppose that k = 0.2 hr™! and that the smallest effective

concentration is 0.03 mg/m}. A single dose that 'Eroduces

a concentration of 0.1 mg/ml is administered. ’\pprox?mately

how many, hours wil) the drug remain effective?

il )
—_—

. % " "

o 6. ANSWERS TO EXERCISES

For detailgj'solutions, see the sections of the
Special Assistance Supplement referred to in the brackets

after each answer. z
: ° . i

1. See [s-1]. , .
. . .
2. CA < C,B(' [s-8] . ‘ . .
3. R, = 0.36788; R,, = 0.58195 [5-9] X .
) [N
4, R=0.58198; R and R, agree to four decimal places. [s-20] - .
5. See [is-11]. R . : \
;6. See [5-12]. -
+7. See [5-13]. . ,
[ ~
8. See [.?-14]. .
9. a) ty= 20 hours [s-15] )
b) No; but the first ddse.-could be as large as 2.72 times the
¢ minimum effective dose. [S-16] —
: .
10. n=7 {[s-17] '
. 12
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11 bring the concentration to
[s-18]

[s-19]

A

Glve an initlial dose that w

Follow this every 69 hours by-a dose that will

-

About & hours.

J .

D

-

raise the concentration by 1.5 mg/ml.

2mg/ml,’

12.




‘Though you ulll seldon be'asked to take an exam:on a slngle )

.~

Assume that the decay in concentrat1on of a drug
Qinjected dnto’ the blooq stream is given by € = Coe kt,
gnd thét the drug is given in su;h a way .that each dose

¢f1ndfthe concentrat1on at. time 3to.

R .. LN

w

. . "W .
‘21 State at leasf one def1c1ency of the model de§cr1bed
1h this, un1t. ) '
;S.ASﬁgéest'a situationy'different from that described in
Z the text, to wh1ch th1s model mlght be ‘applied. -
N . ) .w. ,:. .
4 A certatn dose of a drug is capable of raising the
:blood concentrat1on ‘of. the ;aghﬁby 0.5 mg/ml each time
'~1t is™ aken. The decay constant for'the drug is 0.1 hr’};
do$es are glven every four hours.’

P1nd the concentratzon ‘of the drug just before

. the ‘third dose. . 2. i

Find the concentration fﬁst”after\the thifd dose.
”5. Given the drug above and the: knowledge that' the s
h1ghesb safe leveI of concentration is 0.9 mg/ml and

.reasonable schedule {dose size and t1me 1nterva1) for
adm1n1ster1ng “the drug, Cw

40

8. ANSWERS TO MODEL EXAM

See Table I, page 7 of text.

A drug taken orally, such as aspirin, certainly takes
a finite time to diffuse.intolthe blood stream. Thuys,
the assumption of an bnstantaneous rlse in the level
of concentration is not rea115t1c for such drugs.

L4
.

3. The concentration of active developer in a photographic
* developing solution might vary in a similar way each
time replenisher is added to the solution. See [s-14]
for other examples.

4a. 0.5598 mg/ml
4b. 1.0598 mg/ml
. tg = 4.05 hr; Cg = 0.3 mg/ml . ¥

.The first dose could be three times this amount.




9. SPECIAL ASSISTAI:JCE SUPPLEMENT

[s-17] Answer to Exercise 1:
' "t et t
integration of L 3 dt = L -kt
t
“yields In €(t) = In c(0) = -kt

and, letting C(0) = Cos In Cct) = -kt

sych doses might accumulate.
further, the equation of the graph above Is ¢

0
or~ C_((:_t)_ - o Kt . i -
0 .
and finally, o e(r) =cet,
— - -
[s-2]

1f the ‘timeﬁ for the drug to diffuse through the body

sufficiently to affect the desired organ is appreciable gompared ,
to the time between doses, then the assumption of a vertical
rise in the graph of concentration Is a poor approximation.
Under these conditions, the graph o
for a $tngle dése might resemble the graph below:

c

& T t

After conpleting this unit, try to sketch how a series of
If you would like to pursye this

c(t) .:’co [El‘:xl_l.] [e'-kxt __'e--kzt} .

This equatfon Is plotted at the top of page SA-2 for two dif-
ferent values of ‘the diffusion constant ky. The elimination
constant kp is 0.1 hr=! for both curves. .

f caocentration versus time :

0 10 20 30 - 4o 50 hrs.
Rise and fall of concentration<when diffusion time is sIgnificgnt.

e N * ~
[5-3] . - . ‘
Looking at the first two steps of the diagram:

-

Ry ). -

we sée that C) = Cg+Ry, but R; = Cge K%0

Therefore, Cy = Cq+ Cge, Kt0 .

* + Looking at the third step: ~

13

1
Ca .
R ()

0’ tg 2ty .
we see that C; = Co+Ry, but R, = Eﬁe-kto
~ = (o +Coe *E0) g7k

= Cpe Kt0 4 coe2kt0

»

Theréf’org, ¢y = Co +Iéoe'kto +Coe;2kt°)

2

=Co+ Coe-kto + Coe-zkt‘o. .




(AN

.
> .

this process. .

~r

.o . ‘
MWe reach the results given in Table ! (page 7) by continuing
. A

E)

[3.4] e '-‘ _-nk‘t . ’ ° L e——————
. The term Cge Is the Increase in the residual
value at the beginning of step n. ¢

r
-

. .

e

. %
Note that at. the end of each dose period the residual
Foncentration Is greater than the' last residual amount _
by a smaller and smaller increment.

r.3
[s-5] ‘ ° -nktg
. kto 1-e
Beginning with Equation (4), R, = Cge .l_—e-r(q
Use the fact that " < ¢ -kt 1 )"
. R=1im R, = Coe  O|——pr|
dim e "kt & g a0 " 0° 1-e tOJ
J ™* . -
. . ¢ e'kto -
Elim¥nate parentheses. = ‘—E-e’—.k-t?
gﬁultlply numerator kto ‘- C i
and denominator by e 0. e*to -

g

[.?:6] There are two pitfalls in looking at a value of R of
»001 and eoncluding that it Is small. First of all, we do nat
- know what .001 means physfcally. It might mean .001 kg/ml,
which could be a lethal concentration of many drugs, or It .could
mean .001 mg/ml, which might be an insignificant concentration.
The number {001 by itself is devoid of physical meaning or
magnitude. ' The second pitfatl is that while .001 mg/ml might ..

e an lnsfgniflcant concentration of one drug, it might be 2
very high dbse\of another drug. . . - SA-3

44

We can avoid both these pitfalls by no? looking at the.
absolute values of R but only at its size in comparison to Co
by taking the ratio of R to Cy. Thus, if R is .001 g/ml and
Co is .0002 g/ml, then the.ratio .

- R L]

R . 001 g/ml . :
Ty - 0002 o/l ~ ° -t

and we see that R is several times larger than Cj.

R4
a

[s-7] o7 .

As R, becomes larger, the concentration C, after each
dose becomes larger. The loss during the time period 'afte'r each ;;
dose increases/with larger ¢y (assumption 1, page 3). Finally, -

oncentration after each dose becomes imperceptibly
he rise in concentration Cp due to each dose. When
ondition prevails (the loss in concentration equalling the
gaih) the concentration will oscillate betwe at the end of
each period and R+ Cy at the start of each period.

ry
Y §

[s-8] - Amnt:o Ezercise 2: .
L4
. - -1 -
€a = Coe katg & e {0.2 he™ 1) (4 hr) _ Coe 0.8

- - -1 -
Cg =Coe kgto » ¢ e (0.1 hro1) (4 hr) - Coe 0.4 ,
e“O'8 < e'°°" ; ‘therefore, €y < Cg

A

[5-9] Answer to Exercise 3: | .

1 - e'nkto]

) -kt
Rn = COE 0[ 0

. 1-e
. o “ .
Co.= 41 mg/ml ; k =.0:1 hrol to = 10 hr,

ekto o ~(0.1 hrol) €10 hr) oy = 0.36788 ‘ ‘

Ry = Co(0.36788) (1) = 0.36788 mg/ml

.

°

-e-10 . - ’
€o(0.36788) (ll_%-) = Cp ((_)-36788)(: - :(;0(7)0 ). *

co(0-36788) (32233 = ¢o(0.36788) (1.58190) = 0.58195 mg/m]

Rio

o 1




. .- ’ .
° . "= ko : .

[5210] ° answer to Ezercise 4:

- . - /
to = 10 hr.

=el=2.71828 4
*z 71528 —°g—9‘ (0. 58198)00 = 0.58198 m/m

Co = 1 mg/mi ; k = 0.1 hr-l;
okto = (0.1 hr71) (10 hr)

i

-~ 0 v ]
v "

= . »
[s-14]  Answer to Ezercise 8: -

— Another phenomenon to which the model could be applied
Is the consumption of alcohol. How often could a can of beer or
a cocktail be consumed and still not produce a concentration of
alcohol in the blood at which a pergon is legalty drunk?

A very different phenomenon to which thts model might
also be applied is the burning of an old-fashioned woo$ stove.
Here ‘the rate of burning or%heat output is proportional to the
charge of wood placed in thé stove. There is a maximum safe
level of burning to be reached as soon as possible, and a lower
level required to keep the cabin up to minimum comfort. As the
wood charge is consumed, the rate of burning, heat output. and
consumption of wood decrease.

Sketch possible graphs of heat output versus time through
several charges of woo (See Figures 7 -8, "Heat Output of a
Franklin Stove", p+« Sgif Jay W. Shelton, Hoodburners' Encyclo-
pedia, Vermont Crossr ads Press, Waitsflield, VT 05673, 1976.

{5-11] _ -Ansver to Exercise 5: ’
o » ’ ‘
- _H . ktg .
Given cL :“T(:% 3 solve for e Y, . .
Yy .
[5-12]  Answer to Ezercise 6:
c; . .
Given eto . -c-'i » solve for tg.
. kton T (CHT .
‘Take tiklogari thm ofOeach side: In(e 0) - In[EL]
c L3
- ktg = In|—
. ‘ PUE .
- . . ” . . l c
A . to. = -6'1n[-—-] ,
. L T

“ actual Ly prescribe a particular’ dose rate? *

*
Ansguer to Exerme 7:

The model appears to be a good one because it is In
accord with several common practices of.prescrnblﬁg drugs; f.e.,
it accounts for the practice of prescribing an initial dose
several times larger than the succeeding periodic doses.

{s-13]

Thewdel also provides quantitatively for the pre-

vdlctlon of concentration levels under varying conditions of dose

rates im terms of a single easily measured parameter, k.
What else would you need to know before you ?uld

SA-5

¢
[s-15]  Answer to Exertise 9a:
1 c .4 .‘, 3
H .
to*—In— =~
k CL ° . ‘ . —
CH d:, . ’ 3
given T-=e¢ and k= 0:050 hr-l ° G
L Lo - el s
¢ 1 & 2 ‘7.. . *
0 Wln(e') % (20 hr)(.l) = 20 hr = ’4, .
- ) ~ PR :
N4
4 T’; " 4 . .
[s-16] ‘Answer to Exercise 9b: Al C ..

No, 'not enough Informa®ioX is given to determine the
actual size of each dose. We- have only th& ratio of the highest
safe concentration to thé lowest effective concentration. If
the value of one of these {imits were known, the othe; could be
calculated and the differepce in concentration.to be produced by, .
one dose determiged. However, the actual dose’ requlred to pro-,
duce this change in concerfration would depend on the volqge of
blod#™in the patient and Rowsquickly the drug would sptead’®
through the entire blood system. %

. -

AN s R T




R A g ¢ o vt ) .
St ) x » , . Y .
~ . A . :
L . hd " . e » * . ) o" - "
b - . T . - < c ’ -
"} [5-17] _ Ansuer to Exercise 10: s - v . - ’ T | b T
C ¢ ektn(1-e""KE0 . —— | [5-19]  Answeirato Exergise 32: ° . ‘
Given: R = Cge o['—T] - . , . -
Coe g R 0.1 no .
o ) .’;. ¢ 4. ¢l ) ©
and R R g , find-n for Rn > 2R. ~ .
A0 ‘ . i enktgy s 0.03 "Q—; )
| -The above impties coekto[l-€ )5 (h__to ‘ i ‘ e .
e < a-ktg 27 Kkt . qy . |
;o 1-e ™ (e 1) .
¢ * ) X . T4 2
Some algebra leads to -e-":&" > (—%—- 1). R ¢ - ' , .
.- . ekt " . . - e adlin Bo 1 3o 1010 mg/mi
Then— " e %< (1-3), . . trxne "oz hrT " (0.0 mg/mi
Y : -
and & e 1y ~ ' = (5 h) 1n(3.33) = (5 hr) (1.20) = §.00r . -/
but alsogiven were Kk = 0.010 hr-l. "ty = 10 br 7 . ' . ’ °
- o~
. - - -1 - z - )
so e MKt o on(.01 hr™1) (10 hr) | -0.1n - R . s
. v . - ) S ! ) *
. ?Th‘erefore, . e 0.1n <-;— and e°°l" >2, . . . '
Taking the fogarjghn of each side: 0.1n Ine > In 2 - ' . . &
L - .- o or 0:1n > In 2 P * '
o . » ns>10 1n2 / ’ . .
. . : R n>6.9. T - ' ~ g -
“Therefore, the smallest n-must be 7. . m . B ) ’ *’
! ‘ 7 — y ; .
:" . . * 01 R ] ) v ’ : .
. [5-18] © Answer to Exercise 11: . X ‘ ¢
o e . -1 H ' * & o N
- Given =~ tg = ¢.1n T:: . e . - ], < ’ )
N . L } - » . ., “ N ,:
‘gnd, -z k =0.020 hr'l  C, ¥ 2.0 ng/ml ;-C, = 0.50 mg/ml. . L
. ) L ; . P . * . L b
[ Then. . . tg = 5y pe1 0G5 ngfay - (50°br)1n b ~ :
1o o Ty = e S : o :
. zoom/ﬂ“1 —_-'--—T—_-— ~—:—_'-_.-—~ '—‘:-,- - " -
SR | Co = 1.5 mg/ml . ‘ ..
"{‘0',50 g/ A 3‘ / ) . .
.or Tl ; = t - y
’ . 0 .’ 7 P \ 49
‘ E3 i .\' - : . . » ,
K J « SA-7 o ’ SA-8 4
K . . L e
. , . .
‘ ) . - ,: ' - ‘ LB P y”
oy ‘ ; - £ 5 " a2 ° - IR
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\ EBIDEMICS ,,—\\\\

1. STATEMENT OF THE PROBLEM

v

An epidemic is the spread of an infectious disease
through a community, affecting a significant fnquign of
the population of the-community., Typically, the ‘number
of infective persons might rise sharply at first, and
then taper off as the epidemic runs its course or is
brought under control. Figures 1 and 2 illustrate this.

There are two kinds of steps health authorities
can take to control an epidemic. They can attempt to
cure .those who are sick, and they can aftempt to’frevent
the disease from spreading. Usuallys, they wil;”?ttempt‘
both.

L4 =~ N
‘ . - - - Mlou P ’
Since the disease is infectious, it seems reasonable

tha?kreducing contact between those who have or, catry it
and those who are susceptible to it will help prevent its
spread. Another means of controlling some epidemics is
to eradicate the source of infection,‘for example, rfdent
populationé or mosquito breeding grounds. However, this
will be of no relevance in“the model we shall consider.

Reducing COntactlmay ée accomplished by reducing
the number of infective persons in any of seve{hl ways
depending on the nature of the disease and of the commun-
ity. For example, they may be quarantined, they may pe
ecovery brings immunity and d§§2k90t
.leave them as carrrers, or, in case of their death, their
bédies may be quickly removed. o '

~
Q

VAt what rate will this reduction have to be accom-
plished to keep the epidemih under control? Can we pre-
dict what poftion of’ the community will eventually catch
the disease before the epidemic is over?

- .

—
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Figure 2. Typical cunulative effect of an epidemic,
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¢ 2. THE MODEL ,
< - : . L a
2.1 Basic Assumptions ) ) - ,

*
° ‘ ~ rw

.* We shall makp the following assumptions about the
-epidemic we are modelling: . '

(a) . The epidemic begins when a small number of in-
fected persons (perhaps returning from a trip abroad) are
introduced into a community. . ’

(b) No one in the community has had the disease
before, and no one is immune.

(c) The epidemic is spread only by direct contact
between a diseased person, or a carrigr, and a’ susceptibie
person.

“(d) All persons who have had the disease and re-
covered are immune. However, some recovereqagersons may
be carriers. .

.

A §3mb1ified,de§cription of the progress of the
eqidemic is shown schematically in Figure 3. . In that
figure we assume that each person is in exactly one group
at a time, and that changes are in the direction'of the

arrows only» For example, a quarantined person will not L |

be released if he is still‘a carrier.

We shall ;lso'assume, for simplicity, that the total
population of groups, S, I,-and P does not change during
or shortly after the epidemic. This means, for example,
that there are no births, no deaths. from other causes,
and no new people moving into the community. This assump-
tion is never realized, of course, but it is a reasonable
approximation to the truth if the epidemic is short.
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"Susceptibles" > "Infectives" J'Post-infectives"
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.+ | disease and are at large * immune &
not immune —_— ™ . .
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: . * | carriers 1l —— .
. N Removed bodies
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size at time t sizeeat time t '¢ | - size at time t .
S(t) Igt) P P(t) b ®
-
Figure 3. Progress of an epidemic, -~ e :

2.2 Definftion of the Variables

“Le't us call t = O-the time’at which» the .epidemic

begins, and let N = the total populat1on Let S(t), Iq(%), .
and P(t) be the number of petsons in groups S, fand P . -
respectively at any time t.- Depending on the nature of 1

“

the ep1dem1c, t m1ght be measured in hours, days, weeks,

or, even months Our basic assumpt1ons vell us among
EERY

other th1ngs, that S(0) = N (the total population), that .

P(0) = 0, and that during and shortly after the ep1dem1t

¢! sct) + I(t) + P(t) = . .. ’
"The" numbdr * who have caught the d1sease by time t 1s ,
.I(t)+P(t), orN.,S(t) N R -
L ) v ," . .1 ’ -
2.3 The Spread of the D1sease R P S » ’
-
< * Each t1me a person catches the disease S(t) decreases »
by one and I(t) increases by Qﬂ& " How frequently this RN

happens, 1s determineq by how frequently a person.1n group

S comes’ in contact witH one in gYoup T .
~ ~ . N
What'is a regpsonable formula for the frequency of

these¢ contacts? We would expect it to vary directly with
S(t) and, also'wfth I(t). Fozlggampie, we would expect
that tr1p11ng %he Aumber of 1nfect1ves while hold1ng the -
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number of susceptlbles fixed would triple the contact
frequency. Slmi&arly, we would expect that tripling €he
number of suﬁceptlbles while holding fixed the number of
] infectives would afso triple the contact frequency. The - )
- Simplest fo;muia‘which varies directly with S(t) and with °

- _o I(t) is kS(t)I(t), whe;e k is a positive constant. .

We shall assume that a fixed fraction of these con-
.~ tacts results in the dise#se being transmitted from the
infective to the susceptible. Then the frequency with -, »

- which S(t) decreases by one }5 k,S(t)I(t) for some new .
constant k, (0 < k, < k). In other words, the rate at .

—which—Stt}—is—changing—is~k, S(t) I'(t)— T T T

-

o O 8

2.4 A Smooth Approximation B

. The last sentence of Section 2.3 seems to be a state- .

-ment about the dérivative (“rate of change") of S(t).

»Sdrlqtly speakimg, S(t) cannot have a ‘derivative, since
its graph is not smooth. It must be a step function:

-~ o (Figure 4}, with each step being of height one. But it

N —\,h_is easy ‘to draw a smooth curve, as shown, which ig an

—.

. p]
excellent approximation to S(t). It will never differ . N v
from the true value/by more than one,'‘which is assumed to '
be a-tiny error compgred to the total populativbn. This T

smooth curve has a derivative, and for it we have
. s . y

.0 (2) stt) = -k,S{t)I(1)

-

, from some cons#dnt k, > 0.

ii \ - . 2.5 Remoyal of Infectives

< * ,

It “seems reasonable that the rate at which Qictimq'

o ' . die from the disease, 3nd thus enter group P, is propor-
tional to the number of infectives at any given time. We~

* ' shall extend this to an assumption that the rate of trans- .
fer from group 1 to group P,  for any reason, is propor-
tional to the size of group I. That is, after -

ommmemE ; . ‘ N
‘h\‘




"'susceptibles"

v

.

Figure 4. Approximat'ion of .S(t) by a smooth curve.

.

"smoothing " as before,
(3) P'(t) = kpI(t)"

for some constant k, >,0.

’ Exerc:.se :

. - <
1. Crit1cize this model. For’example, are the assumptions realis-
tic? Are they reasonably translated into mathematicq} terms" What,
if any, important aspects of the situation are not rep'resented?

.~*. L] . ‘: X
3. CONTROLLING THE EPIDEMIC

N .

z

3.1 Definition of "Control" __ S

. Recall that one ques-tif)n we asked was at*what’rate
must persons be tmansferred from group I"to group P to
AY
keep the epidemic under control.
- .




So far we have not §a1d prec1se1y what we mean by
"under control."” Let us recall how the ep1dem1c begins. °
;1 The disease is introduced into the. community by a small .
~;!‘ numbér of people. So I(0) is small, P(0) } 0, and N
ST s(0) = Ny . . '

i (A,word about the symbol = : When we say one expres-'

' sion is a good approximation to another, we almost always
are thinking of the percentage error, rather than the
actualeesize of the error. For example, .we might well

write 1001 = 1000, but would be very unlikely to write

2 = 1, even though 1001 - 1000 = 2 -1 =.1.) . '

The more rap1d1y l(t) grows, the worgg the- epidemic

some ‘ti me v

-

4 3.2 The Threshold Removal Rate

Can control be achieved in our model? We shall pre-
sent some calculations, and leave it to you to fipish them.
. Dividing Equation 2 by Equation 3: .
* ToS8'(t
T » P'(t).

. .o
. st (t
o STt

S K S'(t) -
1 R EICH

S(t) : «

"

L

p! (t) . - . -

. .

JP (t) dt

713?

1
=

in S(t) L p(t) # c. .

¢ 2 _\h . -

Putting t = 0 and recalling that P(0) = 0 we get

In S(0) =
\ . g
and so

e

- " 1n S(t) = 1In S(0) - ]':-i- P(t),

~
~y

.
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. . .Writing S¢ = S(0) and solving for S(t):
G -k, P(t)/k : . .
o 4) (1) = spe P (/K . - -
‘= Now it's your turn. . ’ ’
g Exercise: . . .
) 2. (a) Use Equations 1, 2, and 3 to show that
. M R .
. I'(t) = (KS(t) - k,)I(t). ’
< .
(b) Show that S(t) is a decreasing function for all t.
: \
(c) Using (b), show that, if t > 0.and k, > k,S , then
k,S(t) < k,. ] .
(d) .Using (a) andJc), show that, if t > 0 and k,"> klﬁo', ) ;

!
then I'(t) < 0.

N 3

-

Recall that k, is the proportionality constant which >
tells us how fast persons are removed from grbup I to group
P (the one we can influence by quafantine, etc.), and k,
is the one which tells us how fast the epidemic is spread- .’
ing. Exercise 2 shows that we can keep the epidemic under
€ontrol if we can establish k, > Sok,.

This critical” value

S,k, is called the threshold removal pate. It varies’ ’
. . d1rect1y with k, and with §, \Qut S = So we have the J
” " 7 hot very surprising result that the thr shold removal rate .
varies d1rect1y with the\Tate at which the epidemic spreads t* :
and with §§e population. ] . °
Exercises:s—— . s, ’

3. A yet simpf!g (and less realistfc) :;ﬂél’of\an epidemic would be
one without any provision for removdl.  An infective remains an’
infective. .1f N = é(t) + I(t), and if we make the same assump- :
tions as before concerning contact between infective and suscep-

i tibles, we get: ‘- ‘

S'(t) = -kiS(t)(N - S(1)).

+

e
1
-
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\have caugh't the disease by time t is I(t) + P(t).

. the number we are looklng for i

Writing
* (Hint

. AR S'(t .
. s(ti(N - sttjj = -k

*

0 = So, find an expressxon for S(t).
Antidifferentiate

Q\by usmg the \identxty
1

o _ v

a- 'lﬂv -ui') N

For the S(t) obtamed 1n Exercise 3, evaluate lim 2(t).
too
What doss this imply about the 51ze of the idemic?

+

v u

-
.

For the S{t) obtained in Exercise:3,. f1 the time t when the

rat‘é of the spread.-of the epidemic is‘at its maximum.

. o -
t . .

[ B
A MILD EPIDEMIC

1

Extent of the Epidémic

—

.1

suppgse, k, is almost
but not qu1te equal to Spk;, so we do nbt quite "control'
the epldbmlc For instance, suppose 0. 95 Spky < kas < Spki?
What poftion of the community will Lgventually catch the
d}sease7 For t > 0, we have remarked that the-number who®
So if
0 for t > T),
Lot_us call

Now let us ask the question:

fheaep1ﬁem1c lasts for time T (i.e., S'(t)

I(t) + P(t .

this number the extent,,and wri
* « ¥ .

' 4.2, An Eqltatiop for the Extent

* at ¥ime t°=~D and g¢xtending well beyond t

®"

RPN

A FullToxt Provided by ERIC
/

To £ind E, ,we shall begln Ey bbserv1ng that P(t) is
defxned for® aZL’t > 0, not Just for 0 < t < T. Figure §
shows thg graph of a typical step function P(t) starting
It makes
1t clear that by .some time T*, later than T but not too
much later, the slope of the smooth approxlmat}on must be .
close to zero., That is: »

(5) ¢

.
.

P'(T*S = 0, -




{

!

|

|

{
».end of epidemic

o L3 l

“post-infectives”

smooth approximation .
~

._.__._.;-1 rep—

e m e m

.

-

/ . et .
Equation 3 immediately tells us I(T*) ~0° But the sum

I(t}_+ P(t) does not change after t = T*, and so o
(6)- . ‘E = I(t) +'P{tﬂ = I(T*) +fP(T*) = P(T*).,

We have assumed the total populatﬁon does” not change
uring or shortly after the ep1dem1c Spe;1f1cally, let
us take this to mean during the time interval.0 < t < T*.,

Then, us1ng Equations 3, 1, and 4 in that order,
P'(t) £ k3I(t) = k3(N = P(th - S(t))e-=
R k'ZS(N - P(t) - soe"klp(‘t)/kZ)\ .

o>
throughout this interval, ‘Settipg t = T* and usinﬁl(SJ
and (6)

(7) 0 - ko (N"- § . s(;'e'klﬁ/k"-)».”




. .- . « .
4.3 An Approximation for e” k1E/k, L - - .
; i > . t .
o The appearance of both a linear and an exponential R .
- term in (7) makes it very d1ff1cu1t; if not 1mp0551b1e, . ﬁi
e .to solve for E. Therée is a way to circumvent this d1ff1- Y ;;
- culty, prov1ded k E/k2 is small. Recall ‘that éfor any .. .o
positive x and any'positive integer n T ‘?i. S
Tae A [
. - s A 3 -t
R S N < 1y (.1yn X7
’ . \ e. =1 X + 3T ces ¥ ‘(._1) TTT. P -
by ’ . , n+1 . ' ’
ji with an error of at most T__le Setting x = k(E/k, A e ..
v, and n = 2, we obtain the approximation > T - .
Ly . ’ . @ N . . “
f e 3
- . . k E o T .
;. “kiE/ky _ o 0 kjEYy2, , e
‘fl“l , (8)( e K = 1 'k_z ";2‘ 2‘ ] . .\:L . ] “ )
-, ’ 1(k1E}3 R - S
ot ¢ with an er f at most [ ]-a' Lot
o ror of at most g% LR
e . i ~ - 1 4:8
) 4 4 Estmatmj) the Extent’\rl Y A

i

Kefore we can use (8) we must 6f course: assUre our-
selves that this error term is small enough for ‘pur pur-~
poses, Recall thax Sg = N; that is, 1n1t;a11y v1rtua11y

3 C gveryone is suscept1b1e. If we make thg very modest

:' i assumption that "virtually- everyoﬂé" means over 99%", (in
W other words, the persons who initially introduce the d1s~
i "ease Const1tute less than one percent of the populatxon)
et " then we can ghow, that E < 4N, With this restrlctlon on
Qg% E the maximum ®rror in using (8) to estimate_ e’ ¥E/k2

o . - works out+to be'less than one- “half of one percent of the
. » true value, .

@

. [} A‘i(. °

',ﬁ&n& o It takes a lot of messy algebra.to prove these asser-
tzons and right now that would distract us from the main

- argument. So we shall leave that algebra for the appendix,

- and proceed with our estimation.

- I3
0%

R * Replacing e -kiE/kz in (7) by thelestmate given in
{V' {8), and also d1v1d1ng (7) by k,, gives us

-

11
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. . k,E 1 k,2E2
J(9) 0=N-E-§ [1- + ! .
0 -]-(12_ z k22
Since, again, So = N, we can also replace So by N, obtain- .
. ing ’
- kKE 1 k,2E2 .
:‘ . b0 = N& E - N [1 - —lq + Vi —1-('2—2— . v
N ) \ -
. klN Nkl
- " -1 - E|l =0
: E ['ET ] 2k, 2 '
P - v A T
. 2k, [klN 1]
E = Nk12 2 ) -
& . 2k k
- (10) E=—2|N--2 ]
) Nk,. k, .
e . . ~ k .
4 = 2[N - —2'] * °
- k], -
.o since k, = S k,"= Nk,. ’ A : :
-l / -
- : Exercises: . ~ -
* 6. (a) Assume k, = 1076, k, = .95; and N-<"105. Find the approximate
f.'.- . . value for- the extent E of th§ epidemic. )
" _‘ . « (b) Do the same for k, = .99.
4.5 The Relative Removal
’ Sometimes 1<2/k1 called the‘ relative removal rate.’
Its threshold value is S, which approximately equals N.
. With this’ terminology, (190)‘ says that in a mild epidemic, L
. o ) .
that is, one for whic_sl the removal rate is very near its
, threshold’.the total number of persons infected sooner or
later is approximately 26, where & is the amount by which ' -
'1‘, . the relative removal rate falls short of its sthreshold
L. . . v *
2 ‘ (6 = N k,/k,). N - 2 .
V - » ‘ 5.2
v " b i)
: 64 ‘ . * ‘
, )
K - - P




. _ 5. APBENDIX
oo . ’ -

In this appendix we shall.justify the assertion
made in the first paragraph of Section 4.4. Specifi-

cally, if . - e

! . 3

5 (11) 0.955k, < k, < Sk, :

v (the epidemic is neafly but ﬁbt'quite "controlled") and if
(12) . 0.99N ¢ S, <N’

(over 99% of the population is 1n1t1ally suscégz;ble), o

e —then-E-cgNr— o - - .

We can make a.very rough estimate of E graphically.
. Writing ' ‘ , o
A £(x) = N - x - Soe'klx/kz

¢, pwe see that E is the positive root of f(x) = 0; that is,
g the x-coordinate of the point where the graph of f crosses .
the positive x-axis.

To gé% a rough idea what, this graph looks like, we
’ first compute ‘
f(0) =N-5,>0
- (note £(0) is small since S, ='N) and .

. * \ f(N) = -Soe'klN/kz <0 “

(since the exponential function is always positive),

thus showing that the graphrcrosses the x-axis between

0 and NQ\\We leave it to you (sSee Exercise 7) to show
"(x

O , = ;
VA that f < 0 for all x, and that therefore the graph is
concave downward and connot cross the ‘positive x-axis .

. more. than once. i

Raa. . - : K TN
L ".
‘ ‘13
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Exercise:

7. If the function f 'is defined by

: "% ) = N-x-sefiVke
.. ’ . * Vol
A for all real x, show that f"(x) < 0 for all x.

Combine this with the fact £(0) > Ojto show the \graph ,
: ~

1

of f crosses the (osiiive x-axis at most once.

-~ H
¥
\ 4
o i

It follows that if we can find any positiye number,

M for which f(M) < 0, then we’ can conclude% ¥ E < M (see

Figure 6). We shall now find such a M. | .
i . : by . g
Equation 1.1 can be fewritten |
. , \ \
0.95 K, 1 | B
R < < ‘
Sk \ ‘
. o * .
or, taking reciprocals and reversing the inequalities,
M »”
S,k 1 ’ it .
.(13) 1 < T < m
» f(x) *
N
0 N-S ; ) -
( o) N
* + Y X
’5,% .
I
U
3 | )
|
i | R
. |
. I
"4 3 { ‘
|
. [[ (N, /"s’oe-klN/kz)
- ! .
Figure 6. Graph of f£(x) f: N - x oe'klx/kz-
M (Sce 5-1 for additional /information.) ARY
I l -
; > | . .
N 4 A
E s .
. ) - %
I
" ”. 7' M A + 1




,;‘ . . I)

. and hence, multiplying by k,7k, and using (13), . . —
:T~ - _\ .

S (14) LN [ L X3 « 1 '
: . k. k0.99 k, (0.99)(0.95)

° 'w1th this 1nequal1ty and,a calculaty&r calculate

, f(z), o _ -

1 -

: L e b sy

< 3 N - 0.99Ne ¥ (K1 N/K) p

£ N(0.75 - 0.99¢ ¥11/(0.99)(0.95)]

’ = N(0.75 - 0'765) = -0.0IN 0.

. ; Thus %! is an exan’lEle of a point M such that f(M) 0. .
T Thérefore, 0 < E < %— . -t
. oy . .

¢ .Remember (Section 4.3) that the error in our esti-

mate of e Ki E/k, is less than 3[511(&] . As we remarked in [°

Section 4.4, with E < 4N this works out to less than

Y ' -
> . one-half of ome percen&_of the true value. We'll leave .
. the computational details to you (see Exercise 8).
. ‘ ‘ : &
. - EY
o Exercise:

8. (a) Show that if 0 < E < N/4, anqd if k, and k, are frestricted
4 as in the text, then the error in using (8) to estimate

. ek E/k2 is less than 0 0032. )

.
-4
-

(b) Show that, under the same cpndltlons, the value: of

i e -k E/k, is g'reatez than 0.76, so that the error of
f,oe .part (a) is less than one-half of ope percent.




6.  ANSWERS TO EXERCISES

The model is (as pomted out in Secnon 2.1) only feasonable
when short ep1dem1cs are - analyzed ~The model does not consider
interference from other possible outbreaks or ‘epidemics that
might occur during our time interval.

There is also no accommodation’for the spread of disease by R
infected objects '(towels, water, infected air, bathrooms, etc.). °

>
- v

«a)’ Given ’ <, -

‘

() S(t) + 1(t) + P(z), =
(2) s'(t) = -k,S(t)I(t)
and . (3) P'(t) = kfi(t)
s
it follows that
. (1) = N - S(t) - P(1)-
» I'(t) = -8'(t) - P'(b)
klsgtjr(':) - k,I(t)
, K S(E) - kI,

-

N

5 - ) I
b), Given t > 0, we want to show that S'(t) < 0. This is

« trivial-because-t s 0\1mp11e§ I(t) > 0; t@‘hsease is in-
< fectious. NS , A .

c) (ix\ven. t >'Q¢ and k, "> kls_s (or we could write k, > i;lS_(O)).-,
At this point the epidemic has not started, but the instant
~ t >:0, S(t) decreases inplying that S(t) < 8,. Substituting
‘ S(t) for S"we can write k, > k,S(t)(.

cx;eﬂz I'(t) = (k,S(t) - k,)I(t) , t > 0‘
g k; 2 k,S, (which implies k,5(t)
follo\ds‘that k,S(t) - k <0
and - Iy >0
hence 'I'(t) z 0.
’ ? 'Ns e Nk}t
~ S(t) =

IN-s, + sqe‘f‘,k 1t

3
-

-




Py

0. ; This impli’that: eventually everyone becomes ill

1 N-Sp . 1
m In T if So <_2‘N,

0 if 5, TN\

a). 100,000
as -

b) 20,000
¢

* 2 -
fr(x) = _F_:J_] See kxX(kz &
> - s
In (8) the error ¥ .at most ! —

LN
3 [ iz’ . We have seen that
'kﬁ

1 ion 14 .
2o 1 14).
k; < (0.99)(0.95) - (Fauation 14). -

8. a)

’

.

J P ]

(0.99) (0.95)

then

From Equation (14) we then have

JL
4

*

1
3’ (0 99) (0.95)

R -
Therefore,

KiE
X
2

1 1 .
"7 10,997(0.95) - -0-2658L

I .

AR Ty TN e
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A /rese‘rved), and .
. k,E '
. o ~0.26581

v ~
» N °
N -

(rounded down, not up, to be sur¥ this inequality is

<~

e k; >e

.

= 0.76658 ‘a

iy e
- -

' (rounging down’ again)._

;,,..»\ 5 . ¢
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SPECIAL JASSISTANCE SUPPLEMENT

B

PAruiText provided by exic [
NAeS gL .

~

{s-13

"When a, B > 0, the functions

(14) £(x) =

-Bx

-ae

have graphs like those shown'-below in Figure 7.
. o

»

o

£f(x)

/

. . Y eX
For example, Flgure‘s shows the graph of f(x) = -e (obtaiged

the points (0,-1), (1

l';y taking a = 8 = IWation (14)) as a smooth curve through

010
(2’-e_;’“'

0 1

2

Figure 7.
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Subtfacting x from -e”* pulls the graph of -e"* ‘away from
the positive x-axis: Figure 9 show‘s tae graph of f(x) =e.x-e
as a smooth curve thrgugh the points (0,1), (1,-1 -—),

(2 2--),_.. ¢

S . ) ) f’xgurc 9.

“The graph of ¢ ‘
(5)m £ 2 -x - ae %, a3>0
‘behavcs' badically the same way. 7

The addltxon ol a constant N > 0 to the formula for f(x)

M translatc's “the curvg vertically upward to produce a curve like
the graph of - '

T f(w)

in f-‘igure 6. ) (s .
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useful guide for functions involving e.
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1.” RADIOKCTIVE TRAcéR TECHNIQUé ' . 1

I .
“ corpuscles _T_).

constantly moving into and out of the red blood cells c(e)
(ferythrocytes); thaf is, the- surfaces of the erythro- .
cytes are permeable to K" ions. Ions move from the <
plasma into the red cells at a certain rate, while = - kyP(t)

In the human bloodstream\pot3351um ions (K ) are

other ions within the %tells move out into the plasma at i N

a ggrtéig rate. The determination of these two rates Figure 1. Two Compartment Hodel of Bloodstrean
{that is, of the permeability of the cells surfaces to

k' ions in both directions is of great help to-both R ‘
Physiologists and doctqrs in their efforts to understand 2.2 Assumptions

‘the structure and beha ior of these cells, and thus

ultiRately to combat bldod diseases.

We shall hssume that this two compartment system is
elosed; that is, there is no loss of K*2* from the system. -
. -

A technique to determ;ne .these petmeab111t1es works In our notation this says . .
Y

«

as fol{ows. A fixed quantity S of radioactive Ku2+ ions 1y C(t) + P(t) = " @
is introduced into the blood. Initially, all’ theSe ions :
are in the plasma. The amount reﬁaining in the plasma at
various subsequent times is déterminéd by taking blbod
plasma samples and measuring the radioactivity present,
Our .problem is to determine the permeabllltles from these

raw dgta.

We shall also assume that at time t the number of ions
moving from Box 1 to Box 2 (upper arrow) per unit time -
(the transfer_ rate) is proportional to C(t), while the
transfer rate from ‘Box 2.to Box 1 is proportional to
; P(t). If the respective constants of proportionality

: . : \{the coefficients of transfer) are positive numbers
A CLOSED TWO COMPARTMENT MODEL ky and kz, our assumption says o
. ) (2) °  PU(E) = -kpP(1) % kiC(t).

E]

2.1 Notation- The units of k; and k, are reciprocals of fime‘(for a

We shall ejtablish a mathematical model depicting example, min-! or hr-!). 1In Equations (1) and (2), S
those aspects of\ the 51tuat10n which interest us. Slnce is predetermined by the experimenter and P(é) is observed
We have no neéed to d15t1ngu1sh one red cell from another, . empirically, so C(t) can.b® easily computed. We must
we shall represent the blgpdstrea schematically by two figure out how to detgrmine k; and kp. 7
bOxes, one for cells,.the other for pIasma (Figure 1). , -
If t 1s the elapsed time since the introduction of the
K*2* ions, we shall denote the amount of K?2* ions in the
. sboxes by C(t) and P(t) respe t1ve1y. Thus, C(0) =
;. and P(O) ‘='S,
&
1{1c

Foc Provised oy £ [
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HE~FORMULA FOR P(t)
Ling P(t) explicitly. It is easy

to so;ve for C(t) in Equation 1 and, substitute the result
_into Equation 2:

(3, - P

- We begin, by fi

koP(t) + ki(S - P()
1S - (ky + k) P(t). !

-
-For the moment let|us assume.that P'(t) is never zero.
“* ~We-can then divide] Equation (3) by it$ right side: )

“ when t = 0. We can conclude that it-is always negative--
) it is never zero and therefore cannot change sjgn. Let
i'r " us multiply this last equation by -1 and then

antidifferentiate both sides:

P! (t) - .
NS | ) s gt = - e = cec
a7 'Y - . - ~
. To antidifferentiate the left side, write )
ST T us kv k) P(E) - kaS S
C . N ° . -
: . g 7O k) RS ,
) " Thus,, we have-. ' N »
1 1 du ) -
k,—uafaaff“”’t*c' S ‘ p
" and éipcé u > 0 we éet '.’ -
s S ) e
m n u = -t + C,
’ or-‘- - '
. .
« 1 - .
) kl_"’rz- In ((ky. + kz).P(t) - k;S) = -t + (;.
,5:*1 I'Tq_evaiﬁatelé,'we)set t =0 and use P(0) = S:
B o 1 A : . ' Yo
,k> o 1 - 1 . ‘1n k S =‘§C. " ’
. O ' R l'+»_2 2 . ’ « .l P
B o o P T i R AR

-

¢

also easy to confirm that P'(t).is never zero (sqe
" Exercise 2 again)!

Thus, : ’ )

. -~

1, ) D
K+ % (In (Cky + k2) P(t) - k;S) - In k,S) = -t -
~ . . >
. (kg + k) P(t) - k48 = -t
kl'l'kzln L zkzs( l'

N .. .

1n [(_kLk%SELl P(t) - ]lz—zl] = '(klf.kz)t v . e
' knS
1+ Kp

#

. »
[]1:_’2:'1 - (K1o+ gz)t] .7

. .

iy [1efg etz L
l 2 l b . R ’
.2 T ) ’
To obtain Eq¥ation 4 we had to assupe that-P'(t} F# 0.,
But this apparent restriction Eurns out to be n
restriction at all.

. . PlY)

L]

s P(t)

o

For it is now a routine computatiof
to show that the function P(t) given by Equation 4
actually satisfies: Equation 3 for'bll t (see Exercise 2)
and is.thus the.function we seek. ‘Incideﬁtally,pf% is

Exercises st

1. a) Obtain an expression for C(t)} from Equations 1 and 4.
-, b) Obtain the following expression for C(t) by first using
. g
Equations 1 and 2: . » !

, L CU(t) = kaP(t) - kiC(t) = ko(s - c(t)) - kic(t) \; K
a £ ; . v

Show that thi®result agrees with the. answer to‘-(a)’. . . T

2. :a) Compute P'(t) if P(t)"is given by Equation 4. o

b) Show that, for this P(t), P'(t) = k;S - (k; +.k) #(£).

¢/
c) Show that, for this P(t), P'(t) is never zero. , - Y ) ,?‘( B

N o ‘ ! "
: — ®

Ve
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4 DETERMINING kl AND ke : " and then do a 11tt1e algebra to

.

Ta: 1 meputatmnai gPrehmznarles PN . : Exercise 4). RSN
LS M .
y ¢

s To det\ermne ky and k; from Equatlo ice s&h\ —

‘as t apprOache‘s 1nf1n1ty,"the expressm Cises * . e

)‘~
approaches .1, since (kl kz)z approaches ze _ (a) Evaluate D = 1im C(t).

Therefore, p ) ) : : . . e “Q .
S e - e * (b} Using (a).,, evaluate 7.

;\"’(S) N 11m P(m k——lTk S - : 4,% Solve Eciuatjons 9 for ky aﬂn:'xd kz/in.‘-terms of m aria;b.“
*3 o . . ’ bl .
M 4 . . . R r‘.- .

. Let us-&:all th:.swalue\Q D1v1d1ng Equatioﬁ 4 by Q\we o , - = .
x obtam _ R . ":-_ . - " 4.2 ) Aé'}ermmmg Q
: ’ v’ T *

P

L. - M . " . - T
3.1 . 1;1 ‘(kl 'l_csg)_t There is bne tatch, though. Equatmn 7 contal-ns the
r N

. . - - . _ lim . ks
~ N . . . 3 s.ymbo.l Q. Now Q —'t,,'m P(t) = m by .defmn:lon. .
But this is a dead end, 'since we don't know k1 and kz .-

(6)111 (—é&l - 1)= -(ky + k2)t . 111.]]:—2; C - -- .
RN -, : © in fact; we are trylng to d termine “them. . ‘v :
, The express1on on the 1eft side" o”f-Equati on 6 is 3 .

Luckily, there is a wayout. -The-,statenrent

'a new functmn of t. Let us glve it a name. - ; T )
. o - ) . Q = 1im P(t) mﬁ:a/{, .in experimental termsy that the
4

R o (t’ . . - .t
(7 (t) 1“ ( "1) . observeﬁ amoun¥ P(t). of K"z“ ions in the plasma approanes

N'ow Equatmn 6 tells us that, accord1ng to our model Q as an equ111br1um amount. Expenmental ev1dence ‘-‘ ‘
. ¥ X ] : . ] conf1rys that it is feas1b1e to continue monltormg the
(8) - (t) = '(kl +.k2)t +dn Elz e . B plasma until P(t) dOes not chang or changes very little
' s : ' ) ) with ¥urther: pagsage of time. W}can then take this °.
so“the graph. of g(t), theqretlcally at least, is a stra1ght Lo nearly constants value to be Q Yoy Wt p
11~ne thh slope - (k1 + kz) and y- mtercept 1n i—l.’ So if ° . .
1 : 4 3 An- Example LV N .
we could co;npute g(t) i-‘rom the experimental data,:usmg\ . i :

Equatlon 6,, and then plot: the poa_nts (t, g(t)o), we eould ’ ; .2 To qllu.strate this method of determlnmg k1 and kz,

3ccomp11sh two thlngs" i - e e R . 1 1et us considet the dita in Table 1 for a hypothetical Lo

(a) If the. po1nts come close to 'lymg on+a straight . permeab11‘1ty SItUdy' ST K
13.ne, we —could use tlus fact to co?lfn'm the *accuracy of: ' .. / ' M

ou;r lode1.~ After 811; 1t 1s the Jnodel wh1ch by Equatmns - : _ypothetical Data ‘for Permeability . Study

G;and 8’pre&1,cts tha't‘the pomts will’ lieon & 11ne.a . o T . .
- “fq ) 1 » . S . .

‘ L ib) IB thls Stralght 1mﬁ has" 510pe m and y- R O "~ =tlmin) | o_| 500 J1000 [1500 J2000 [2500 |3000 l3soo lhooo lhsoo lsooo
I - . GG Rac?
‘i\ntemept b wé could“wl 1te R S - R _P(t) (mg) { 5.00 {2 96 ]z or Ii ho Ii 14 |1 o |o 97 Io 92 Io 87 Io 85 lo.85

2

. < <




- < Yoo < 7. < - v LY
:R ; = Qv ’ >
. " . " » . . . . ":' °
' ‘ ’ B ey - " - ‘
A . i S '
, It appears that P(t) is settling down to an ‘equij 2 I T T :‘LQ RESEEERANENERN N - .
librium of about 0.85 mg, after t = about- 4500 minutes. —t ;
* We shall take Q = 0.85 mg. ‘," - Nt EmEE .
. 1 ) u I T r 'JE * 1T RS i
. +We can now use Equation ¥ to calculate* the value< ' Jngas TIN™TS ] 7 T 4 "
of, g(t): : : CR : - T
s .t 0 H - 1 I\ |
Y \ i ‘. A]
' - P(t), _ = P(t) . N AN !
8(1-’-) = In ( :'Q‘—" 1) = 1n ( .88 1): . , o . ~ T NEVEEE .
We get , ' o ol T T .
. » ’ ‘s " y + .- -1 i l ’

. » o g S 55 0 B 0 H -
A ¢ ] o I 500 |1000 l 1500° | 2000 [ 2500 | 3000" | 3500 | 4ooo X i > - ‘ — '
. o(d 1. 50 to.91 {o.31 |-0.28 |-1.08 |-1. 67 |-1.96 |-2 50,{-3.75 . ‘ diridh i T+

- L i RN LI 1
. It is impossible to Yompute- g(4500) or g(5000) on the, JE SanpaE vERANEE
S bdgis of our aat;l, ‘because 1n (%1-2—% -1) = 1n 0 is not Lo ) 445 4ie i \L lf -
‘c defined. “This drfflculty arlses because our data are - -1 —— il — : . #
- - . ' a ~+—
_ given to onlys two decimal’ places. *With more precise "0 500 1000 ~T50¢ 2060 o0 3000 OIY 'lIOOOI i
1 meagurements we might have found for example, :*.hat . . . Fig;:.refz,. o '
, P(4500) '=-0.854 and P{5000) "= 0.851. = ™ -« '+ | L, \ R
, - . Plugging in b-= 1,55 and m = 1.26 x 10 we get
. . Ihe points (tz g(t)) aare plotted in Figure 2. They ’ . o 1 : et
S o oS ying . ) - k; = 2.21 x, 10" min 0
s . “are close “to lying on a straight lipe. In Figure 2 we - o . . -
i have drawn in, ‘by eye, what appears to be:the "best- ko =1.04 x 10" min' T -
S & ~
. ) flttmg" straight -l4ine. In domg this- 1t 1s wise to . 4. 4 Some Comments on the "BeLt Flttmg" L°1ne . -, B
: u\{'g a transparent stralght edge, SO our view of the ., » ! v
pomts is not blocked. We have tri to draw the lme\ N (a)- 13: is not 1mportant whether the lihe’pa ses

®

" so somg ‘ofc the ,ponlts are slightly above it, some
sllghtly b‘ow it, and none too far fromdit,'

. The lme we have drawn appears to have its

Y- 1ntercept at - about b = I,55. It also passes pretty '

_nearly’ through (500 0:9) ‘and (400, -3.5). Therefore its'
-5 - 0.9 _ -4.4 _ -3,
s}ope’m is aboutl — 35-0-0- § 1.26 x 10 . ;

\..We couwld now use f.qgatlons 9 “to* f1nd kl and kz ~But
if you have done Exercﬂse 3 yoy hjej d1scove§ed that. |

_through any of the gwen points. In fact it would be a
mistake s;mply %0 draw the 1#ne determined by two-of the
points. Wé mlght be unfortunat,e enough to pl(:k two
points ‘which are 11Yaccurate because of experlmental

error or roux;doff error. - .
’ (b) ! In f1nd1ng the s&opg 8f the line; use two .
. pomt{on the 1line 1tse1f, rather than two of the glven
po‘ﬁﬁ:s.f‘As ment;.oned ‘in 4. 4(a), Some of* the" given

,:_ oints are bound“ to. be s-Ilghtly off The 11rge in effect

- =* - * . .
zﬁqUatlons' 9 ‘can®be rewrxttenﬂ Lt . . e aVerages out" theSe errors ' s o, .
, . st -
‘ e *
. : \ .o . " (¢) A1§o in f1nd1ng the slope, use, two po1nts
a . . ‘., L.
. . - % L falrly far apart, JIf the,y are close together, then. the
N p.3 .f‘_ -t 7 P o f ' , .3‘
. cep om0 LR - RS
.. . L, - ‘. At e N °
. @ x o N oot . N 85
BT . S A T - S el e ’ . W ke

s




L ) A4 . N
=i
of . .o ' )
denominator in the slope formula will be small, and a.
slight error in reading the coordinates of one point may N
. result in a huge error in the slope.
‘ 5. EXERCISES e 7 .
. P(t) oG ;
5. ina permeablhty study the functlon g(t) = In (—= 1)‘has
° / been computed and plotted in Flgure 3. Determlne k1 and k, for
. this experiment. s T g ‘
. T . ' T
3 * . )
2 R RN i I i S ol ]
- 3 A - 1 RATIEN DAY gon
Tt o TIV1 e oL
N LTI T e RS Skt s ” .
' RN Euue sunns Raty FEUFS RIS WP .
* Cn ke uad Eeall muttd FEoke BN
B 1 .': : ,l .L‘ ;_._',\.*._ -t e . »
. NERSEN! LIERE S I - . R
; N EEnsna ey SHEed ERgse SORL) b
: N RS Sl 12 ‘- : 2
4 4 el -—--‘i—l——*—,o L2 S
= i 56 Bl et nll B P
. AR T : P UDR I
- ' 0 —T i IS N 1 { . :
- ma e e
&l SR ianaaEs; e i
o n = bty
2 > 1 - — b s : 1- .L
EMUN S0 B Sl
I
[} _! 2 -
’ ‘ = f # L
3 4 -
P . d i R 1]
. -2 3 - 1] i
0 500 1,000 1,500. 2,000 -
. - ' . . "' timé (in minutes) . R
. . T Fiqure 3. T
¥ .. ( - ‘ R
6 Détermine kg ‘and ka from the followlng data for a hypothetical )
‘e permeablllty study. . ¢ . ‘-
. . M .
‘ ~t’(ho::ur.'.)" 1 )2 3 6 | 8 1 9 ].10
¥
5 P(t) (ing). 4 fs 30 [2 05 ll 55 ll 28 Il 20 1.15 .13 1. 12,|1.1o [1.70
¢ ’ [ .- Vs . '
': . ey R
, 86 - ST
* N .
v PR t o ’ - - . . .
RIC. *»" 7, o, : , .
- R A s IR LT e T B
R R BT XY £ - ~ - - -

L] Q .
. 7, Consider a two compartment model, not»closed, in which P(t)
‘o mafntained at a constant level (by continuous adjustment from the
. oufiside, for examplel If P(f) = 0 the determining equation for
c(t) becomes ) vt .
C(t) = k1Py - KyC(t).
t
. (a) Find ¢(t) if c(0) =
“ (b) Find D = tim c(t):
[ N . ' ® a» °
{c) 1f Q= 1imP(t), find D. - N Co
. f‘” ’ . ’ N
, . Cir .
8. In the model presented_ja &xerc:se 6 find the,time at which %
c'(t) te $ oa a maximum, and compute that maximum.
» Fs ~ > .
o ® ¢ / .
-~ N .
e, -
\. -
.(
4
' \
. -~
, oy A
f s .
. “‘ . A P
~ - .
. ¢ - ..
e N .
- - %
4 . . ’
. ) 4 ~ )
4 - ﬁﬁ
[ 4 87 o
;;' . .-
. - ¢ o
b 3
N t-1
» -f
.. . v ’ +10
- ) A . L




6. ANSWERS TO EXERCISES

(a). s - KIS (1, ke (K + ko)t
1. (a,)s PR, (1+kl e )

) g 0 - et Ry

(@)« pt(t) =

- Ez ‘(kl + kz)t
kl + kz k] (kl + kz) €

.
«

T = kgse Tkt ke

&) kiS = {ky + k) P(t) =
U= kgs - (k4 kS |
3 1 Z\W 3

= Ki$ - k;$ [1 s k2 ol + "2)‘]
kl "

-{kq +'k2)t .

. = -kS e
(c} A1l three of the numbers ks, S, and e.(kl *+ kz)tﬁg‘;e
N k]

" positive.
*,

3.. (@) _.kps
ky + ko

‘I+_el;
Ky = 3.0°x.907% min"}; kZ/= 1.5 x 1073 mjn-ll,n ,
8

kl = 0,14 A’r’l, hrol, o g

g (a) ,%:Po(l - e:/‘l t)

.

k. Y

‘ ',. (b) Ef' Po . ﬁ . R
' N ': ) . ‘ w’ J"‘ El
. (C) 'T:'L e Yoa. ' o

2 ). : - .

\8. ﬂaximuroccurs att =20 (endpoint maximum) agd equals kzPo
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_ ‘1. GROWTH MODELS

The behavior of the tconomy of a given eociety
over time is of iﬁteﬁest not only to the economist,
but also to all citizens living in that society.
After all, the increasing abundance or\scercity of . R

jobs, goods and services depends crucialiy on how

fast the economy is growing relative to theyunderlying

population. Thus it is not surprising that words
* like growth, stagnation—(and'more recently stigflation),
etc. have become commonplace even in the everyday . \4
world of the nlghtly news broadeast. .

. For the1r part mathematical economists have

developed'many different models, called’growth models,

to describe the expansionary processes in an economy.
- . \ -«

In this unit we will be studying a parficular ]
model of érowtﬁ, applicablé to planned economies in- “
. i which all means of production are socially owned.

. It was developed by the Russian economist G. A. Feldman
(1928) in connection with planning for the céntrally -

contrglled Sovietyiconomy.

The pu;ﬁose of this model is to describe the be- £

o havior over'time of a two-sector economy in which sectoral .

investment allocétions are controlled by a central authority

according to an overall economic plan.
i .

) ' The impetus for the construction of Feldman s *
model came in 1927 when the Soviet:Union embarked on a
seéquence of 5-year plans for theﬂ?Xpan51on of its
economy-. The devastatlonﬂcaused_by the First World War
and the following Civil War had, to a large extent, been
overcome and prewar production levels had been restored.
The{flrst publication of the model occurred in the
NoVember 1928 issue of the" Sov1et State_Planning
Comm1551on s journal Planovoc Kh021astvo (The Planned ,

Economy) . o . ’ N

L

; : - : . n
. .
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B Altﬁough,,he model's direct impact oA\Sov1et plagning
policy formulatlon_ls qugstlonable, there is no dqubt. that

its 'flavor' 1s weJl innkeeping with the ipktial sequense‘_’//,;yz

of SoV1et 5- year plans with their strong emph851s.0n
» -

building up the heavy indusggy sector of the Soviet

. ‘5' econmomy. - 1 _— -
" + As,an indication of the mode1's durability, we- R
, note that its main features were dupllcated in<the 1950's o

- Capparently independently of Feldman's wdrk) by the Indian ; -
ecoénomist Mahalonobis in his work on a planning model’ for T

the *Indian econdﬁ?‘\\\

P ~‘°~‘- L)

e : : 2., DEFINITIONS . J
NN L o : .
'S oe { . > .
R 2.1 Rate of Output and Nationél Income :

* in both sectors, (11ke drop forges, m1111ng mach1nes and

populatlon (llke bagels,‘ elev151on sets, and footballs). K\
We assumg<that both secto s are’ producing a ContJnuous .
‘stream (g goods.

¢ Before we can deey the quantltatlve behavior of ¥o
- . the outputs 'in “these. sectors ovér time, we must first N

- define 4 quantitative measure of how much each sector,
K is producing at .any given time. This we proceed to do
"t as follows:' iet J(t,qﬂ stand for the™met output (measured,

‘ say, in dollars) of, Szctor 1 between time t and tfme u
ik (measured say, in years with an approprlate po1nt in
&tlme chosen as t = 0) . .- : o /

°

The "net" here means the output remaining after all ..
° the "wear and tear" bn the investment goods being used
e 1n the two sectors fias bden made good from the "gross" . - -
' “output of Sector I. We use the net output,;s1nce only




this part of the output of Sector ‘I can be used to expand
the economy. Jover time. * The rest of.the output of Sector I,
i.e. the d1f£erence between the "gross" and "net" dutputs,
is required just to keep’ the economy at the level it had

.

already reachéd. * . P . .
4

If we agfee ‘that ail of the net output of Sector I
goes for investment, it seems app?ogriate to call the

- . * . o

.quantity ot

< ' - J(t,u)
) Iav(t,u) = _L_}_,

’ u-t

4

~ )

tﬂe (avenhge) annual raterof investment or the (average)
. annual.rate of output in Sector F over the time interval
~ from t,to ,u. (Note: ‘the units here are dollars/year.)
The {znetantaneoue) annuaZ rate of znvestment is then

deflned as . .
1(f) = 11m I (t,t+At) = lim _ J(t,t+At) . '
. - b At0 At+0 At :

~

The quantlty I(t) measyres what the annual rafe of
, output in’ Sector Iis at.a given instant t of time.

S;mlrarly we can, and do, deflne C(t), the
(tnetan%aneoue) annyual rate of output in Séetor II.
The sum-of the rates of output in the two sectors -

- is then ealled‘the national income: y(t) = I(t) '+ C(t).
2.2 &An Analogy "~ 4 : N
s " * * "You may have notited some similarity between

s the. procedureswe ysed to~define national 1ncome-and
. - the one used=to de?lne 1nstantaneous velocity in
flrst sehes@er Calgulus or Phy51cs courses. Yoyr .,
study of velocity probably began by deflnlnﬂgh .
"distance" or "position" function s(t) which descrlbigpi é

v

) the lotation of an object at time t -- usually as -3
; the d1rect distance from some arbitrary *poink calleq
zero. It then defined the average vélocity over’ the
time interval from t to u as’ . .
. ’ ! . : ’ oo
s(u)- - s(t). ‘ . v .
. \ u - . . . 7 7
. it ’ .
o8 < 7 - -3

~ ! . 1 *
- ? .
E lC l s * ; ‘
N A }
i o R . . - . . p
s f e .

Syt 3 . s * .
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’ This average velocity a;d our average annual rate
of output each amount to a ratio of two ‘changes or
. differgnces. ‘ The numerators look quite different, but
they really aren't.’ In studying velocity it was pos-
sible to define\a function ; of time whose change from -
¢ time t to time.u could be calculated by subtraction
. and was just what you needed. There does not _Seem to
be a convenient way to do the analagous thing here.
. Nonetheless, saying "J(t,u) is the net output betyeen
time t and time u" is' very similar to saying "sgy), -
s(t) is the net motion (change in position) between
time t and tlme u. " §

N 4

S

Thus natlonal income can be thought of as the

¢ "derivative of a (somewhat fictitious) "cumilative .

total output" function just as velocity is the deriva- L
“tive of the *'cumulative total distance traveled" func- *
tion. Table 1 further illustrates this analogy.

N

TABLE 1

C mugl o AN

. Cumulative % !
- total over Average rate Instantaneous
a time, | Typical| over a time | Typical rate at an Typical
*| interval | units interval upits |instant of time| units
1 . . P
distance average meters . meters
. traveled- | Petérs velocity sec velocity *sec  |*
- total net ' ‘ , _ » e ]
output dn | oo (EVET2ES FALE | dollars I(tgf'A::te " | doltars | °
‘ BN
S?ZR?I I investment year “I° investment year
total- out- . n . - )
put in dol1 ay;rag: r:te dollars C(E) - ra:e dollars
Sector 11 4 dollars| of outpu —year 0 outpu _'__year .
-(=B) in Sector I1I in Sector Il N
e |-
) total’ average Y(t)=1(tf;C(t)
output dollars | national QQ%&E}E = national - 99%£E§3
(=A+B) N incqpe e income Y
< ° » -
' . 3 . \ . 4:
. . o
: 37
. ’ -z ‘ *
Yo - : * -~ N :
o -

. - . s -
EMC ’ ' ’ .
i o .

-




y <) 3. THE MODEL

—
\ =
« N ~

3.1 Assumptions

. A =
' ¢ With the definition of I(t) and C(t) in hand we
v are ready to start building Feldman's mpdel. ‘ N
. We let IP(t) and IC(t) stand qu the net rates of
. investment in Sectors I and II respectively. . The en-
tire odtput I(t) of .Sector I is to be invested in Sectors
N I and II. The central plannlng authority dec1des how to
4 spl*t the 1nve5tment p1e betweqp the two sectors and
7 allots a cqnstant ‘(i.e., independent of time),.positive v
. fraction s of the output of Sector I to, Sector I (see
« Figure 1). N '
. . ‘
. , - ,
- Producer Goods 4!
. Sector_ I ‘
L )
. '; (1-s) I(t) v ‘
' \ Consumer Goods .
.- X -——-—" N ¢ e -
- ‘ | Jgp Sector 11 OGRS , _ / . .
~\\‘N - ¢ on
Fxgure..l + The net output of Sector I is produced at the
rate of I(t) dollars per year. It is channeled « .
- -y . back into producer goods at the rate of sI(t) . -
- ®  dollars per year, and invested in consumer ‘
- goods at thd'rate of (1-s)I(t) dollars per year, Ll

® Now. we need t

explore the relationship bétween I(t), '

R
C(t&}slp(t) and I,(t), all of which are assumed to be

fferent1ab1e functlons of t.

“We let’ Kpft) and Ke (t)

tand for -the eapital stock, ﬁ el the quantity of 1nvest-
ment goods 1nvested at.time t in the Sectors I and IT re-

-spe&tlvely

By assumptlon, there is a stable relatlonshly

between the capltal stock and the corresponding output in

each sector, i.e. 3 capital stock is proportlonal to outputi

\




-
~
.

S I %65 ‘ : >
. ‘ (1) MO = Vp = copstant or kp(t) Vp I(t) o
: . D) . ‘ ' . LAl
ol ke ’ :
' (11)_ W = Ve constant:or Kc(t) = YC I(t)

i}
i}

~:{‘h‘e constant$ Vp and'vC in equations in (é)lanhv(ii)
are called the capital “output ratios (for obvious Teasons).
Fot the sake/S% 51mp11c1ty, we assumeé\the constants have
a common value v: . L

VP=VC*=V. \ . . ’

If we differeﬁtiate both sides of the equations in (i) and

(ii) and note that the rate -of increase in the cap1ta1

stogk k is precisely the correspondlng rate of 1nvestment
, We obtain: ., . t

) “., | Ip(t) Kp'(t) = v - I'(1) T
and : N | .

Ig(t) =K' (8) = v - C'(z)

(h

3

" {
+ We can summarize the'discussion above in‘the fol-

. 0y la . A

lowing two assumptions of the Feldman model:

Assumption 1: There exists s (0 < s <1)

' such that Ip(t) * sI(t) and’ .
. Ie(®) = (1 &%) I(t)- : , .
Assumptlon 2: I(t) and.C(gJ are diffe nt1ab1e
r= .

and I'(t) = i (t) and C'(t) =

, i

The cruc1a1 (and dlstlngulshlng) assumptlon of the
model is Assumption 1. The claim it makes would almost

certainly be false in the absence.bf controlled alloca- -
- tion according to a plan. ' It‘%ISO focuses on the most -

important parameter of the modeI namely s. For, as
we shall see in the next sectlon, it is the ch§1ce of
- s that decides how fast the economy grows, bot

\
- »
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constants (parameters), w hﬁ;eas Ip(t) Io(t), I(t) and '
C(t) are 1ncreas1ng functiops of the yé%lable t(=time).

Finally we note that Asfgmptlon 1 can be modified
\_ to-allow ‘the possibiiity.of s =0ors = 1,:in which
cases one of the sectors does not grow at all. Both the -
N statéﬁEﬁf_Eﬁa'der1vat1on of qpe resq}ts of the model in v
Ghe case s = 0 or s =1 are cons1dén@b1y simpfer thaf
*in the case 0<s<1 - We ask you to éh through one such
derivation in Exercise 12. \ .o

v
N
3 .

3’2 Derivation of Results .

We suppose, at’ some starting point in time (con-

vediently taken:to be t = 0) the values of I, ¢, and . .
ﬂ' - - -
\Jgge knéwn: 1(0) = IO’ c(0) = C0 and Y(0) f Yo. -
N Now the equations of Assumptions 1 and 2 can . ) M -J
be comb1ned ?pﬁ rewritten as: . ¢ 1. .
SN (1)A I'(t) = _‘5; I(t) ) - . .4‘ o
* and - . -t )
:}/r . Y s v, . .
(2) C'(t) =-== I(t). .
¥ AN ! v ! ,
. . L
Dividing *both sides of Equation 1 by I(t) and - ‘

s 1
=l 7 dt . .
- 0‘('
-
=St ' ‘
3 '“a- (’7 .
-1og'10-1og£{‘§i=%t N
. ' '
I(8) . V° o
. o .
2 7 ,
¥ L] -
< R > .
/
100. 0
~ ’ -
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For notational convenience we Jefine k = % and obtain
. ) ‘ kf ’ .
3) . I(t) = . >

-Substituting Equatien (3) into Equatron (2)
and keeping in mind that k = %, we obt in aften some

algebralc manipulation . . f. .
. N = 1l-s .kt ~
, < Cc' (t) - v .I.O [ '
s =15 s ke
: ~ 15a v I0 € ' L.
. SS kek . . )

Now we can 1ntegrate ea<11y to get an express;on for C(t)

< ) t ' coo
- [C(t)dt=1510 kektd‘t S,
- 0", 0
‘l . . . ‘ t N o
.- - e_1-s -kt
, Ct) - G =5~ Ipe™
® » 0 . v!
. i ' .
-‘,.\‘(4) e C(t)~c01+-- 0(e - 1).
, Adding Equatlons (3) and (4) yields
7 Y(t) = I(t) + C(t) ’ .
~ R b 1s . Kkt TR
‘ = Tget * G+ Iy e )
. “ . H
- AT Kty 1-s . okt
o " - * Iy (e - 1‘) +dg*+ €y * =Igle
. SRR 5 SNCATE VN

* since }4;+ CQ 0, and finally . o
(5) ' 'Y(t)=Y‘{_o ,
S. 1)

The rel%%xye rate of .groyth of a d1f¥erentlab1e quan-
t{ty.f(t) is £r(t)/£(t). “1t measures not how fast the -
"° w v quantlty is changlng in absolqte terms, but rather’how .
fast it is changlng :elatlve to its own~51ze. “~From ~

ES %
2 . . g~
‘A'\ - . k) b .
.
*
- - . . - -~
‘ . ° U . . -
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Equatzons 1), (2), 4) and (5) we can obta1n.express1ons
for the re1at1ve rates of groyth for I(t), C(t) and Y(t):

-(6) ) . (directly from (1))

4 A}

OR

(Exercise 1)

-
-

(Exercise 2).

Exercise 1

(?); Prove Equation (7)2
C'(t s

-(b) Show agtﬁ)— -+ v as + o,

5

Exercise -2

(a) Prove Equation (8).

» Yore -
(b) Show 7%5% + % as t » o,

© - A}

3.3 ~The Average Propensity.to Save

- " Another importan quantity is u(t);‘defined as the ~
+ . ratio of 1nvest@ent {rate of output of Sector 1) to the

nat1ona1 income

,0

\ .
Thus u(t) measures thé fraction of the. totq} output
_ of the economy, at a g1ven po1nt in t1me, which is saved
(invested) rather than consumed. So its name, althoug
cumbersome, should not come as a surprise: a(t) is
called the average propensity to save.

[

. If'we let o, = a(0) = the ratio of [, to Y, then
0. 4 ~0 0
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If s > ao one can show (Exercise 3) that o(t) isran
1ncrea51ng function of time. In any case, dince ) .

~ kt+0ast+°°,wese'ethat

Ceo \ - lim a(t) S. - . P
. treo v . z,
T <
That-.is, thq average propensity to $ave approaches the
fraction of investment devoted to Sector I as time- :
goes on. . —_— . . ) - ..

. . . N ! LI

“g : " Exercise 3 : ¢
" Cdlculate a’(t). Use your answer to show that
.(@) ~a(t) is an increasing fumction if s > ay! . \

N ¢b) ' -a(t) is a decreasing functLox;'-I’f. s < age” E v

. . . . . ' . Lo
Exercise 4 <, . L, RARST' o

.- (.,"omﬁute a(t) for t = 5 and t =, ‘lo‘.if‘ao = 0.05, -,

h . . h 2 ¢ (N )

s-= 9.5, ahd v = §, . ! e Y .

A .

. ." . -:,‘?K;: - *

. - 4. QIUMERICAL EXAMPLES

. 'I.n"this section we provide ‘ghe results of calcula-

, tions of.the re1a’t1ve rates of growth of I(t), L(t),

" and Y(t) and of the average propensity to save a(t)
Lt fgr some reasontibid values of the parameters of the .
model; namely, v =1, 5; a; = 0.1; 0.3; and s = 0.3, 0.7.

R N
o e

ro . It-is certainly not unyguwal ‘for am econo'my to be
. reinvesting 10% o = 0-1) or'80% (ay = 0.3) of its  \ CoB

‘ : “10




total output. As for- the reasonableness of v =.1 or 5.
fwhen time. is measured in years [see Exercise 57), we
can refer to empirical determinations of the marginal
capital coefficient. 1In fact, (with time measured- 1n
years), Feldman estlmated the capital-output ratio v

to be 2.4 in the years 1928 33. Leontief (1939) foynd
comparable‘ratios to range from 0.076 to 7,1 in

various branches ofy the Amerigan economy. :

We ha;e ed one hlgh (Table 2) and one low
(Table 3) valu;‘;f s in the computations to xllustrate
the effect 6f favoring one or the other of the two
sectors for investment. ‘

N
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. . TABLE 2
. - 14
r' : :
Sector I Favored f@lr Investment (s = 0.7} .
. (Y=S ,ao=0.2 ‘ v=S§ a, = 0.3
. e /1 fyey Jee. /1 vy Jee
(yearsy %) (%) %) ol %) (%) c %)) a .
« 1 14 2.3 0.8 lo.11 || 14. 6.s | 2. .
. S 14 . 3.5 1 1.3 lo.18 || 14 8.4 4.4 a v
) 14 *10.3 &3 |o.s1 || 14 13.0 11.0 | 0.6S N
' S0 14 \ 13.9 13.8 0.70 14 14.0 .13.9 0.70 .
R , . . N W
- - - = ’ RIS
) v=1 . 065=0.1 v=1 ao-D.S
1 " 70 17.5 | 6.4 Joas| 70 [ 421 | 218 ] 0.42
s 70 $9.3 | 43.6* fo.s9 || 70 67.7 | 61.7 | o0.67] . ]
;* 20 70 70 70 0.70 || - 70 70 7 070 .
$0 70 70 70 0.70 || 70 70 70 0.70|"
: ) » " '
-. -3 \ ’
, TABLE 3 N -
L] - \
Sector II Favored for I?vestmen% (s = 0.3) _' ‘
£ ovss - Vs o s 0.3 o
» . v = ao—o.l B} v = \ L ao.- . ..
B t /1 Yy o leve - st Ty |esc > ’
(years) | © (%) (%) &) ra (%) (%) %) o
i 1 6 2.1 1.6 | o.10f 6 .6 1 6 | o0.30
S 6 72.4 1.9 | 0.2 6 6 | 6 0.30 .
.| 20 - 3.7 3.2 | 0.19)) 6 6 "6 0.3
1. so . R 5.3 | 0.27)) 6 ‘6 6 | 0.30
N .
C — .
. v=1‘ a0=0.1 ve=1 a0=0.3
o 1 3D 12.1 9. 0.12] 30 30 30 | 0.30
[ sy
3 30 20.7 18.3 | o.21l 30 30 30 ' | 0.30) .
"l 20 30 29.9 29.8, | 0.30f 30 30 30 |.0.30) ,
A " S0 30 30 +f 30 0.3f 30 | 30 [ 30 [ 0.3 e
\ v |
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' ¢ ~ 12
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Exercise § - \Ky -
(a) What are the units of v? . L .

(B)\ How does v get affected if we switch from dollars

to dimes as the measure of output?
) -

’ (c) How does v get affected if we switch from year; 3o .
.. months as.the measure of time?, ) <
T Exercise 6 o }
A = 0.2, v =3, Eval LS -
. §sumen_q.0‘- by V"‘ . va Q‘t'e ey at‘t
R for d > .
) (a) s=20.1.. .. ' . ,
' h = '
(b) s = 0.6 @ . e
" (e s =000 o - g
s . -
P 5. CONCLUYPING REMARKS P o
D ) ke
In concluding, we ‘maKe three remark¥ on this model:"® .
e 1) I'/1 is’ g1ven by 2 7 and does not depend on ags
. : 1 €.y 1t is qu}te p0551b1e to have a very fast
L grow1ng sector I, wh11e the initial average
' propens1ty to save is Iow This seems to have
. ’ happened in the Soviet Union. .
HEN 2) The;relatlverrates of . growth of the natjional income
. and the consumer goods secfor'eventually approach , .
the growth of the producer goods ‘sector (Exercises * -
’ . 1and 2). ° - / ' -
V4

‘3) The avérage propepsity to save rises to s (prov1ded ) .-
ag < s}. The’ empirical ver1f1cat10n of this pred1c-
tion of the model seems to have been a squrce of. .
controversy among economists. Different analyses -
of the-Soviet economy have led to widely differing
estimafes: from o' remaining eséentially constant

at .23 in the years 1928 “to 1937, to « increasing
<from .17 to .37 in tPe same time ﬁeriod, (See

Exercise 11.) . . T 13 -
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) - then when TTLT— . ' .
. i :

. - 1 .
6. EXERCISES 3
. . \ ’
[4
- X
Exercise 7°* v . N e

Given: - C0 = 210, s = 0.75 and v = 3

-3
-4 -(al’ How many years must pass before the value of I(t)

catches up with thg vdlue of C(t).

(b) Sketch the graphs of I(t) and C(e). (Assume I, = 1.)

- LA .
Exercise § . - ~

» Ufder what circumstances will -

for all values of t? -

) o
. . (Hint: Flrst see when g%%%l = %ltt) , and then -

- . " when YTiTl TTLTL .)

’

Exercise.d

Y!
Y(t

Exgrcise 10 o ) .

) In Feldman'é model is it possibie tb have
'(t] 'gt '(t) *
_ (Hint: First see when CTL§1 T%L§l , and ) v

.. What is the relationship\between ) and aft)?

. .

Exercise ;;
- : < ‘
Discuss p0551b1e reasons for fﬁe mistaken est1matLon
of a(tg if I(t) and Y{t) are measured in current zflces

and the infl%ation rates in the twWo sectors s are di

2

.

ferent .

Exercise 12 N .

, Supposé s = 0 and detive a formula for'C(t)“
- r . . -

oo Loos 8 .

RN S e \
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Exercise 13 .

It takes not only capital but also labor to produce
output, What are the implicit assumptions of the Feldman
Model'about the supply of labor? f

ExerC1se ‘14

What.are the implicit assumptions of the Feldman
‘e '
model about international trade?

\

ExerC1se 15

€

Suppose we drop the assumptiop Vp = Vo T vV, i.e.,
vP'and vC are now two different constants, How does
this ‘modify Equat 10{1 (4)? )

-7. REFERENCE
o’ ¢
Domar, E.'D. (1957), Essays in the Theory of Economic
Growth, Oxford Press, Oxford.

.




8. ANSWERS TO EXERCISES

]
L]
ks(s/ag - 1)e bt .
5. a'(t) = Xt = is positive if
tes/ao - Be + 112
s > ag, and negative if s < oy
lb\) ’
4. a(S5) = 0.077 , &
a(10) = 0.116 "
S. (a) Unit’; is time; e.g., years.
(b) Stays same.
() "'v(fnonths) = 12 v(yearsl)
6. (a) '/ = 3.333C/C = 7.2% Y'/Y = 6.5
(b)" I'/I =208 C'/C =3.9% Y'/Y = 7.6%
Typ(e) I'/I s 308 C'/C=1.1% Y'/Y = 8.4%
7. (a), 3.66 years
. g. g = s R
9. ar(§)=v-Ytt -
10+ ‘No. *
12. I'(t) = 2I(t) =0 .
R (:t’) = I, = constant
cree) =18 qqpy = 20
o I g )
L _to, gt
c®)ly = tlg
L ' IO | ©
C(t) = CO + —v—t
" 1 Vp =
. o - s,
15, C(t) = C, + v Ip (e¥P - 1)
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PREFACE
. — . : P
o In.your ﬁaihematicaf&studies up\to this point, you
, have often been called upon to make a mathemat1ca1
f“"*““**—"a“Bcr1pt10n" of a situation. This descr1ot1on usually
cons;sted of an equatlon of some §ort. The familiar
wgrd problems” in an algebra Ccourse gave rise.to one
or hore linear equations, or perhaps a quadratic or

‘

) .
exponent1a1 equation. P Unit 81: PROBLEMS LEADING TO DIFFERENTIAL EQUATIONS

- N ’

(. 4
When the situation to be described contains a non- Chapter
uniform rate of'ehange, the equation will contain a

1
Chapter 2
derivative It is then called 2 dszerentzaz equatzen Chapter 3 The Fish Pond-Problem " . . .
4
5

The Optical Filter

The Saggirkg Beam Problem - . .
It is the purpose of this module to show how to Ehepter

descr1be .certain phys1cal situations by means of differ- Chapter Modeling the Sagglng Beam Problem

ential equatlons and how to solve these equations by ) Quiz #1 ., . . . . ... ..

s1np1e graph1cal or numerical technlques . .

Modeling the Optical Filter Problem

The differential equations (DE's)'trea;ed in this
modulé will be ordinary (containing no partial deriva- -
tives), fzrst arder (will contian -only firet derzvattvea),
and of first degree (the derivative will not be ralsed Y-

-

to any power h1gher than one) ¥ . e : .

¢

I would 11ke to express ﬂ% apprec1at1dh to Mary'Jane
Neuendorffer nd Wllllan u. Walton\Qf Project .CALC fo: :
.the1r extensive help in preparrng this moﬂule and to’
the nany-peop gfwho reviewed the draft and offered
valuable suggestlons. ‘
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' s e LN "Well " he said, rubb1ng his sore knees and absently
¢ ) - L staring opt at the Vermont 1andscape,, "that means we need -
- . T : _to go over th1s mterial. % - . U o
. . Chaptet 1 ° ot N 't There was ‘a’ groan from Polly, who had freckles and
= 5T . .-« *  wavy auburn hair. "But professor," ,she said, "differ-
THE OPTICAL FILTER PROBLEM ’ -, ent1a1 equat1ox;s seem %o, so--nowhere' "We spend all that
- - . *  time and effort 1earn1ng this stuff, and -1'11 bet we never -
e . I threw down my.pencil in frustration. Taking my N use it in a million years." I:olly s face was flushed and \
f;‘_:_ action as a signal, Polly and Herb did_thre same. o her voice ‘shook. ‘ . -~ . “
. . Proféssor Arclet.,didn't notice. He had dozed‘ off; Y ‘ "Yeah, yeah," from Herb and me. fA
K . ? P - . . Y .
his habit when*he gav&a test,” and he was snor1ng ~11ght1y ] Encouraged by this support, Polly\ went on. , "What is ,
. now, forming s:l.lent equat1ons with his 1ips,, ° . " the stuff.good for? ¥Can yougive us a single. example of (
' Herb. held the book poised above the floor. .Hi% "> where someone used @ d1ffer‘ént1a1 equation to solve a'real.
: - RS
chubby face showed both discouragement and apprehension. important problem"" i . “ *
‘He looked at me with a questioning smile. - That book. . - Polly sat down to our applauSe . -
“ - Another reas T our discontent. Complicated. . \ ‘
R on £° T ¢isconten l:leavy omplicate . T Aro\let ‘was s11enﬁ for a long.time, his th1ck bushy.
x Eighteen dollars. I knew it was unkind, but I gave Herb -
¥. the nod . . ) " . - brows drawn. toge‘ther im concentration. This was’ our fiyst -
‘. . y P open rebellion, and I.wondered how would handle it. ) .
" Five pounds of calculus cam hing .to the £1 . , )
Arcl tls Zn nt : cf C: ub ¢ c:as e . ef I:Okr He shuffled around to the friont of the desk and sat .
rcle T o his, fe
g P & * ¢ ang1ng is knees painfully on : on it. We kﬁew this was symbol1c -removmg the barr1ers o — .
v the desk. He staggered to the blackboard -and began to , _ ’ :
L - between student’ and teacher This usually meant that he
A 1ecture, a contlnuat:l.on of-the derivatich begun in hijs
) 1e , - was going to te11 us not to think of ourselves as students
L sleep. - - "
A P . ' versus teacher but as‘a group® of pe@le see‘k1ng the truth
7 "Professor Ach.et " I 1nterrupted "We cain't do ¢ together. Instead he just sat’there, kicking his heels- i
. 3 . ¢ . .
this test." . R L .- ) X ’aga1nst the s1de ©of the desk. r . .
"The exam is what he calls a pre-test. 1t was thé 'one' - , "Let me- te11 youg\"a 11tt1e story," he began af.ter a -
‘ ;\ .on differential equations. ArcIet always gave us” a pre-" . miftute oxr two of thumpmg. "It's about a young fr1end of
. T test when we got to a new top1c, and ‘those .of us that - ’ mine, named Denis Dropmoi’e e . .
‘.passed d1dn"t ‘have to ¢ to ¢las 1t o ’
\ ‘P ong s until the next. top1c : I- setfled c?mf’ortably 1nto my seat, ready to doze.
.Came up. B | nevel‘ passed ahy of these t:ests, but they did o . :
~ give mé some ideas of .what was coming, and what ¥.was . ey "Young Den1s," Arelet Sald "was a proposal writer .-
;;‘,.sdpposed to be able to-do later on. Sometmes he used the ‘ .t oat the Deadly Nightshade Sunglass Company, back m the
:+ same test aft r 5e .£inighed’ the topic. ) *  ‘'sixties.' One day, t}ng company ‘feceived a request from
. ‘ ) » ' ' ) _theDepartment of Dgfense to prepare a quotation®for a
N . N . ‘;,&- .y ) .. o
. 116 ] . - . ) . . , (D) ‘ . ‘.‘ . . 11./ . ‘Y 4 \
L . ' R - L 4 e A ’. . ) . . v
(“—‘.‘ig;“ : e - : ) ey . f ° * :




*-badly neededfitehi' Some unment1oped fore;gn pOWer had .
devzloped @ new weapon, : Ithe Ballistic Laser for Ipfantry -

Neutra11zat1on and Destruct1on, code name BLIND Den1s s
.company was ‘asked to’produce a protective eyecover to be- '
worn by soldiers: Sunglasses, Head Attached Defensive, , -,
. Expendable, Shatterproof, code name SHADES.‘ . -
Q'_':’ , - . Q( @ ”
. ! . « ., .
= HE 'r o » Ty N\ — . - i
v - ) Nad - I A .
- ‘ . . y
. f}t' - :
S— . ; R =~
v ’t r ,
Pt , . .
e - . 4
et -~ [} v\ - e

©
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"The ﬂOD\had sént along a $mall samp1e of the -lens.
~material to be.used. Only the thickness could be changed.
Another requlrement was that the Blasses reduce the 1ﬁten-
91ty of the 1aser bearh t&ﬂlo percent 6§§1ts.va1ue. '

- "Test1ng the sample 1n the 4aboratory, the company
N d1scovered -that thé lmm th1ck materiaY would reduce bhe
£, 1ntens1ty of - a Iasen-beam by 15 percent. 'Well, good., ! M
- sdid A1, the cpmepy s softspoken ch1ef‘ehg1neer."1f one,
,1 ’m1111meter of that materzal\y111 remove 15 percent, then »
- -s1x m1111meters wilt remove the reguarlﬂ 90 percént. , Denis,
wrne\}nto the proposal that. we will make /the lenses

';f' s1x m1111meters thick. ", Y : R T o .

N
~

°°rhe clasﬁsbgll rang. Arclet s story grabbed us but :
,5q~gid 1unch We ala ran.out. 6‘ -~

\hand.

ing N1chols and Dymgs
“having.a “battle.

': . "Denis chuckled 'Al, he sa1d “loud enough for -/
) everyone Jn the o£f1ce to hear, 'you don't know anyth1ng
’ ','about optical leters, do you?’ LT SRR
T "Al sm11ed«up at’ Dén1s. 'You're,fireé,' he saidé/ - T
: softly." T ‘ . T - . v - .

| . > R . »
. . P -
D - -
~ ° . } L * .
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T coo Chapter 2° - -
P b Iy -
" l /
THE SAGGING BEAM PROBLEM s

v

+  Today, P6lly, Herb and I were not lage for class for)
the first time in-the semester., Professor Arclet was

Seated at the edge of the desk, exactly as we had left him
yesterday- - Ce -
"Denis Dropmore sat drinking beer at home," Arclet
began, "dreading the return of his wife. How could he
break the mews? At 5:30, Angelica Dropmore _came home. .~

She looked distréksed. Den1s took his young wife by the- ,.,

1
fle stammered 'Today 1 ...}
41 h

"'Denis, I got fired,' wailed Angelica.

'Honey, !

"Denis was what’ypu d ca11 flabbergasted Angelica
poured out hér story. N ‘ ‘
L 2N .

- "'y was at the bank, as usual, today,°tidying up’ my
and couldn't help hear--

desk after the 1ast customer left,
those two’ creepy vice pres1dents,

You know the ones--always trying to

outdo each other - . ) . -

""Nichols shouted, "Under the safe:"” ‘
"’Dymes screamed, "Noé you tuit,'it goes .under the
mldspan " . o ‘\‘ . . t '

AY
"Ang$11ca raced on,.'It "allshad to do with that heavy
safe com1ng in .next week.~ hey found a locat1on directly
over azth1rty foot-long steel beam, but couldn t get it 3
cLoser than six feet from the end support. -0l1d Mr,. Usury,~
the'bank President, was afraid that bending of thé}keam'

s -

-




.

wnder that massive load would cause cracking of the
expensive marble floor tiles. He told the two VP*"s

» to install a third, vertical column under the beam at
the point where the sag would be greatest if the third
column-wasn't’ there. Nichols wanted to put it directly
under, the safe, while Dymes sa1d no way, that the great-’
est sag would be at the m1dpo1nt of the’beam

"'Remember,'Den1s, I studied structures in archi- .
tecture School, so I~knew better

"'The column should” go between the safe and the
m1d§01nt,' I blurted : /

i 1 - -
d)on me.

"'Two 'pair§ of eyes turne Disbelief -and
‘ contempt, I félt it in, their stare. Nichoks and Dymes

spoke 1n unison, agreeing with each othgr for- the first
time since they joined the bank.

+

~

.""You're fired," they said.'"

0w
5

»z

H

" her, so he told Angelica the events leading up to his own

. the correct answer.

Chapter 3.

THE FISH POND PROBLEM

"Denis hated ty
news,™ Arclet said,

g

burdee.his wife with further bad
"but hated more to keep anything from
firing. However, afterqpuﬁlicly apologizing to Al for .
his brash words, Denis had been told that he .could have
his job back if, he brought in, by Monday morning, a com-
putat1on of the correct lens thickness. That was f1ne,,
ut even tholigh he knew that Al's answer could not be
right, he himsel#£, ~was not Sure.how .to go about finding"

,

"'Tears formed in Ange11ca s eyes but she brushed

them away. 'Well at 1east We have plenty to eat.
a while, anyway.'

For

-

"She was referring to the fish.

,Lxen days pTev1ous, old Cy Seepage had put a dam.
across a stream running through his property in order
fo trap some trout. Incensed by the blocking of their
favor1te trout stream, Denis and Mike Mossy had, the
following day, opened the drain.

Kater flowed from the ¢/
pond, carrying f;th it trout.

Denis and ﬂike,coliected




¢

P iy v
o

: . s
thiem in a wire basket hidden by the dense hillside
brush. _They had left the basket in place day and nlght
occa51ona11y emptylng it and storlng the trout in Mike's, °
freezer. Every day, old Seepage checked the level of
the\pond planning to net all_xhe trout-as soon as the
pond was full. The level continued to rise, for water
floWed in faster tham.it could be drained out.

Seepage -
had no reason to suspect foul play.

-

"Thg Dropmore's telephone rang. "

"It's for you.' Angelica handed the receiver to Denis.

"Ft's Mlke Mossy.' She wrinkled her nose.

"'H1, Mike, what's up?'

- ""'The pond is. Nearly full. Seepage says he! s going
up tomorrow to catch and count the flSh, and half the town

is 301ng up to watch !

A .o . J
"'That's’ great, Mlke A1l we have to do is divvy up

the fish we sw1ped ! p o

"'Er--that s wﬁx{l called I've got & proposition.
" Letts each of us give a guess at the- flSh left in the
pond. The one_comL?g tye closest’ gets.all the fish.
How about, it?' | -

‘
—

"Denis was -hesitant. Mike wasn't too bright, but he
, Was lucky; always winning contests.

Denis was finally
£
shamed into agreeing, -. .

"'How could you be so stupIﬂ ! Angellca cried, when
she heard what Denis had done.” 'Don' t you remember that
. both our fam111es are, c0m1ng to dinner tomorrow nlght
and I was going to serve that- trout? . Ten guests’ coming

and no main dish, and.no money<égft either. What are we
going to do?'™

¢ - . "

.

. Chapter 4

- $ODELLING THE OPTICAL FILTER PROBLEM

~

By now, Herb and Polly and I were all involved with
Denis and;Angelica‘Dfopmore. We begged Arclet to continue
the story even after the bell rang. He just shook his
shaggy head, so off we went, dlscu551ng their problems

contlnuously until class she next day.'

~

Arclet came 1nto the classroom with a cardboard carton,
and, dumped the contents onto the desk.
lection of junk:

It was a funny col-
There was a desk lamp, measuring spoons,
wood blocks, a bag of peas, a hacksaw blade, and lots of
other things.s Arclet stood beside the heap, looking arch.

"Aren't you going to’cdntinue the story today?" we
14
wanted to know.

"ThlS ie the continuation of the story,” he said '
mysterlously, indicating the pile of junk with a grand
sweep of his 4rm. He was a pain when he put on the
theatrics. '

He cleared his throat. "To continue, we left Denls
on a Friday night, with a highly troubled mlnd At e1ght
o'célock, he rece1ved another 'phone ca11. It was Mr.

Usury, the Ere51dent of the bank He was very kind, and
said he suspected that what Angelica said about the beam '
was correct. If she could come in by 8 AM on Monday with
something that would convince him that she was right, Mr’
Usury would not only rehire her,
as well.

but would g1Ve her a raise

"The challenge was now clear. Angelica and Denis
were faced with three problems, one of which had to be

l. v

10




. solved by three ) clock the fo11ow1ng day, and the other
‘two by Monday morn1ng.- ‘ BN

] "When Ange11ca came down Saturday’ morning, she found
" Denis asleep at the kitchen table. Heaped on the table
" and the counters were-the very 1tems you see before you
’now andssheets of paper covered with scrawled figures
and graphs Jay strewn about the floor. He -had devised
ways to model the three problems.. <
‘ “Is that what you're going to s%ow us now?" I asked

1S

Professor Arclet. , . . .

“ {Not exactly," lrclet said. "That is what you're
g go1ng to show me." ,

. . a

Nov only did Artlet make me perform ap exper1ment
right on the sbot, but he make me write it up as well,
‘complete with ob3ect1ve, steps, conclusion--the whdlé
bit. Much of the- following descr1pt1on is lifted right
. out of my notgbook '

Title: THE OPTICAL FILTER EXPERIMENT
- T
,Ob]ecttve§ To learn about filters.

' 4 R

At this point' Arclet objected ‘to my objective as

o-"narrow.”" I crossed it out and wrote.
O,:

Ob[ectlve. "To see haw different equatzons can
arpse\tgqnczphyazcaz problem. '

R
Now Arclet ObJeCted to my object1ve as be1ng too

: object1ve. R : 2
- « ° . M

"Make your objective more éubjectiye," he urged.
‘"What 1. mean," he said in response t y, vacant
look "is that'you _should phrase\your prect1ve in ‘terms
of what you will be able to da after the lesson, that

you coq;dn't do- be£ore." e

So I wrote:

Objective: After this legson,; I»should be gble to
mrtte a differential equation to describe
a physzcal problem (If I't's real easy.)

Arclet sniffed at this, But let me go on to the

next step. - . ) -

Materialg: 1. Desk Iamp with 60 watt bulb.

Photographlc expOSure meter witbh a
scale graduated in EV (exposure value).

About L0 sheets of translucent tracing
paper, or typist's onlon skin. These
will be our filters.

-

A sheet of élass large enough to cover
the front on the, lamp housing.
- £

Lo
Procedure:

Y

Step.1: - Swivel the lamp upward, so'that it points
at the ceiling. Place the glass over Tt,
and tape it in place. Place one sheet of
paper (filter) on the glass.

Figure 1: Apparatus foigthe Optlgai~Expe}lment

P . .
ur <
» 125
0y . .

“2
2




o \
Plot of the Data:

] /
Holding the meter right again3t the filter
take a first rcading. This will be the
starting value, so it should ;roduce a
needle deflection close to the top 4f the
scale. If it's too high, cut dowrf the
light by using more filters or a smaller
bulb. If too low, yse a larger bulb:

Once you get this large deflection, .tape
down the filters and mark the outlife of
the meter on the .top one so the meter
can always be returned to the same loca-
tion. Rotate the meter dial untilithe
number ten of the EV scale is opposite
the needle. ~

W

EVEL (EV)

Turn-off the lamp when nor\iaking read ings
so the paper won't overheat. ~

LaeusL

o

Add fllters, singly or in grouﬁé, each 10 1S
. time noting the meter reading and the MBE FILTERS

total number-of ‘filters added: Do not NuMBER oF FILTE

count the fjlters taped to the lamp, as .

these were only used to adjust the start-

1 , PR
ing Intensity, and to control the color of . . I
the light reaching the meter. flgure 2 Ple; o:uzbgtto:r:?fféizlon

o

Keep adding filters ‘until the Ifght reach-
iog the meter Is so weak that no further
readings can be obtalned.

After plotting the graph, I a;tehpted to explain to

. v 3o e the others who were looking over my shoulder.
I wound up with a two-column table of data look- ) :

y . " 3 L 3 3
ing'something like thiss . . Now, it's pretty, clear that not every filter is A/
. % absorbing the same amount of light, for if it was, the
. ) ] , . . : s )
Experinental Data;, ) curve would ppe a-straight }ine sloping downward. oIt's

¥

[N .

-

+ ) I plain that each filter is absorbing Zees light than the
Number of nghqieVel one before it, because the reduction. in ‘light per f11ter

Filters . (=) gets smaller, for each ddditional layer.”

10’0
7.5
5.5

i "That makes sense,” responded:Arclet. "When we say

that a filter,absorbs; say, 25 percent, it means 25
percen§ of the lighy reaching the fiZterf' Since less
light reaches the farther filters, they absorb less.

""In other ' words: The amount absorbed depends upon
how muah is present, “

"In other wordg: The rate of deécrease of~the light
,level <s proporttonal to the light level.




: "In other words: -The rate of change of* 'L . i8
L, if ve let L repreeenttthe*light

proportional to

" level.” .~ '.
. - . .

. "How can you talk about a rate’" asked Herb. !“The
f11ter~15n't moving." . , .

v L N .
"Quite sp," said Arclet, 'but do we need movement
to have a rate of change? What about intgrest rate, eh?"
[

"Oh, yeah," said Herb. °

Arclet went to the board and wrote,

.

[The rate of change of 1] [Isj [Proﬁdntional to] [z]

- »

"There are four
expre;szon;fleach enclosed 1n?brackets, and four of us:
Each of us will write the proper mathematical symbol below

- one of the expressions. 1I'l11 go first." Under [Is] he
chalked in a huge equals sign, and, with sickening coyness,
”handed "the chalk to Herb. "Next," he said. :

"Now for an equation," he 'said.

Herb dashed to the board and, under [z], wrote "
+ and tdssed the chalk to Polly. .

.

Under [Propqrtional to] Pg
" vsymbol =, but Just stood
-in her nose.- "How can wel have bg
proportionality sign in the€ same equat10n°"
was directed at the bla brard"but Arclet answered instea

wrote the proportionality

an equals sign and a

"You cannot have bo'th.

Instead of the proportionality
symbol, how about a ...." -, ’

"Of course,' sa1d Polly, and she wrote a constant of
pxoportxonalzty, k. The equatlon now read,

" S .
[The rate of, change of 1] = k. °

-

Her question C '
d ~

sketched .in the tangent to the curve at severalsjelnts.
1 then measured the slope of those tangents “(ri

)

Remembering that rate of change always meant a

<

der1%at1ve, I wrote, P

N dL
1 o~ ‘a?
'O

uUnder the remaining expression.

"Oh, I see," said Arélet mockingly.
of F, with respect to I-don't-know- whar

"The derivative
-Very. resourceful. "

Smarthg, I wrote,

/

dL _
v ;odt s

PR

" where t'7 total thlckness of f1lters (umber of filter

sheets) ~

"Just one thing misSsing now," said Arclet and after
wa1t1ng a moz:nt for one of us to supply . ‘the missing ahlng,
went to the ard and wrote a minus %1gQLW1th a big

flourish, <"The slopes are dall negative, right?"

hY
The equation was then,

¢ .“/\xp . . )

-

To see if this equat;on really held for my data, I

over.
run),. At each point where I measured the slope, I read
thg ordinate L, and. divided the slope, (db/dt), by the
ordinate o obtain k., =

. .

_dr/dé

>




N . I got ox1mate1y the same value for k at all of
: »the taken. - . ;
"Not’ bad,

to my seat.
there-anything different about it, or i

not bad at.dll," Arclet said,

like, all the

other equations we've seen so far?" e

"It's got. a derivative in it," Herb said.

* "Right!"

_ He waved his arms like a conductor, trying to getgs
¢ to sing put the remainder of his sentence, We sat

there silent. ’ .-

"A DIFFERENTIAL EQUATION," he hlssed through his

~ * teeth. f"Class dismissed.'’

S 3 o

P
IS I

e,

as I returned
""Now take another look at that,égquation. Is

Arclet was:encouraged by the alegt response.
*And any equabaon conta1n1ng a derivative is called......."

b

' ments that Denis Dropmore stayed- up @ll nlght to’ perform

* chapter, 5 ° -

' MODELLING THE SAGGING BEAM

\ —

34 ‘
* "Tedav, we 'will do another experiment," Arclet

sald after we'd settled intd oug seats. "T6‘beg1n "

-

"But the story," we hdw}edg A .

"Are you here forglearning, or for entertainment?"
e profeSsor growled. (We knew we had gbne too fare)
en, more 50ft1y: "Wel!ll get back té the story  But

first it!s 1mportant for,you to, understand <he exper1-

P
in his kitchen. ' . .

v

"Now, who will do thls one? Polly, my.dear, c&he

up ~here." .- : .
Polly went up to the deskand performed- the experi- .
_Ment with some asslstance ?rom Arclet. The'following
outline is-almost word-for-word from the noges I “took

that day- . . i3 e i
A R - Y . .

‘ ) Les e ) .

Title: THE BEAM: EXPERIHENT - .

Obiect{ve: To' be able to nukz a modeZ of a beam defiectmon

. prvb’bn . ’ . ‘
Hacksaw blade o ’ * Fﬁ?""‘—%

2. Sheet of wood, at- least 8%-by:ll inches,
. - ‘and at least T inch thick . . !

Materials: 1,

s

' - 3. Two nalls ° . :
- 4. Sheet‘of rectangular graph gyger ) ..
L0 :
5. Ruler o k&,




Procedure:.
Step 1:

- v SteP 3

« Step &:

e - . Step 5:

- . \

o

~ : .« Step 2!

K
Step 6:
»

o ’4
Tape the graph paper to the board, so that

" the edge of the paper is even with the edge

of the board.

Draw a llne down the 'middle of the paper,
parallel to the 1éng edge.

" Drive ‘the two nails into this mid- Iine
Let them extend about %, dinch. The distance
between the nalls should'be *10 inches.

Prop the board Into a vertical position.
Lay the hacksaw blade across the nails.

push@gainst the blade wlth the eraser end
of a¥pencil. Get an assistant to.trace the
“shape of the blade on the graph paper.

Changing the pressure against ?he blade,
draw several such deflection curves.

P

One@d a half inches from one of the nails,_

-

Arclet p01nted out that many phy51ca1 problems requlred
. Special knoWledge of the field in order to even write the

equation, and that this was one such case.’

"Fortunately, I happen fB have a broad engineering
background 'in addition to my mathematical training," said
Arclet. "Now write this down." He tilted his head back
and ‘defocussed his eyes, as if he were reading something
off the inside of his skull. "The second derivative of
the vertical displacement-y with respect to the position =z
along the beam is directl} proportional to the bending
moment ¥ and inversely proportiomnal to the product of the
modulus of elasticity E of the material and the moment of
inertia I of the beam cross-section."

This entire sentence was dehlvered without taking a
breath.and in a flat monotone,
a poem on Parent's Day.

like a third-grader reciting

As with the opticdl filt>¥/£;ob1em, we wrote the
expression in brackets and; with less difficulty this time,
wrote the symbols beneath®

.
Y ©

The second der1vat1ve is direbtly and invgrsely
of y with respect proportional M proportional
to x . to to BT
d*y . - . 1
P SR oo S
. - ) ‘
or, E_Z =k M <
. dz? EI N

Arclet then pointed oJ& that E was in fact, the constant
of proportlonallty in this equation, so that a separate k

was _not ﬂeeded

-

Our final equation was then,
. "

: 133




: B ,j:\ %; . : . ( 4: . ] v s ; N \ .
. “1 - .
‘., ‘ ) ™ '

"Don't won‘)c about this equanon now," Arclet sa1d , - ) -
"We'll go into it in detail when 1 explain later how we * ’ ‘ ¢
solved this prob’lem numerically. For now, it's enough - * ‘ & a
-that you *find the point of maximum deflection on your . s o N
hacksaw curve,~and \(enfy that it lies between the load . ) Y
’and the midpoint, as Angelica had c1a1med " -

/ . >
0 k-
— —~ Quiz #1
o) o) , o ~
1. 1f the rate at which heat is lost by a body is propor-
3 T 1 tional to the temperature difference between the body
= A ‘ : ° and its surroundings, write a differential equation
" . to describe this situation.
A Detlection ELPQY\MCV\“' 2. An object moves in a medium offering resistance -
i .
! : ! E ! . proportional to the square root of its velocity at any "
q Al
. i . ™ Instant. Describe this situation with a differential
H H
. ! : s, equation. .
~ Y B i . - ... . .
ol e : i ; 3. State in words what ‘a differential 2quation is.,
1 ! ST . ’
. L i L b I P '
o I BN N '
~ T o — . » ! N \ -
i v ; e —— : ' . H
T 1 [ 2 { :
e ot I DB e o e 3 or answers Ssee page 67 te
T | L2
; Thcorc*l‘al ‘point o - )
= Mumuu acclu‘t’ou .
5 f.,::t::::!. 4B L L . )
., "s«-ﬂ,« ", S : X p) . ’
-
<,-a P . > N ' >
4 At the end qf our second 1esson in wr1t1ng differ-
~ entzal equa,t:v.ons for d,szerent phys1ca1 problems, Arclet’ - 1,3’-3 )
gaye us the follouung quiz. . - .
: e -
. - - \
" , ' ‘-’F
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ey ! . 1 Chapter 6
- ¢ PROFESSOR ARCLET TO THE RESCUE
Y a .
' " Unit 82: SOLVING, DIFFERENTIAL EQUATIONS GRAPHICALLY | - Today, Arclet was seated on the edge of his desk,
s ) . ) oL . . a signal that the story was to resume. We took our seats

> Chapter 6 Professor Arclet to the Rescue . . . oo, . . .. . 24
Chapter 7 Tangent Fields, and SQIutIons toDE's . ..... 26
Quu#z 33

in a hurry. v . P
N - "You will recall,"’hé‘beégn, "that ﬁe left Denis

y e . Dropmore asleep in a kitchen filled with the debris of
.Chaptér 8 The Fish Pond Problem Soived with a Tanggnt Field 34 4

- " 3! . the ‘two- experiments we have just performed. Sweet
€| . P
. ‘Chapter 9.. Solving ‘Di ere\r:tia Equations Graphically e v . 39 Angel;ica, fearing that her husband’s mind might have

. Quiz #3 . . . e Cee et e+ 43 snapped under the stress of their trOubles, woke him
Chapter 10 A Graphical Solution to ‘the Filter Problem . . . . &4 gently

"'Careful of the fish!' he shouted, pushing her arm

. away from the little pile of green, split peas with which
he had unsuccessully tried to simulate the fish pond
problem. £ -

""'There, there, Denis dear. Of c0ursé=I'won't hurt
your little fi;hies. Now, you come qpsta1rs and lie down
while I make some'phone calls.' -

» . "'No time, no t1me' he cried, and began rushing .

- about the kitchen, ruppled and unshaven, counting p11es

’ of split peas, an’ holding sheets of tracing paper up to
his swollen, red eyes. - -

*"'So much to do, ‘and sQ little time." I feel that
I'm so close to an answer but I’ don't knomqwhat to do

next.' T L. . }
- . .
Ny : "'Now, Denis, please lie 'down, .and let me call the
T doctor.' - - . ’
. ;..,"Denis stopped dedd in his tracks . -
. . ’ oy
235 - . 137 - :
. _— . o 24
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"!'The doctor? The doctor! His eyes were wild, and
"he shook the hacksaw blade menacingly.

Angelica,—-you're a genius.'

'0f course! F

need tie Jostor. He ran to

" the phone and called the only doctor'of mathematics he

knew. .Me, Arclet, of course, Realizing the urgency of
his problems, I went over at once.

"AY Denis' house, we éxchanged the briefest of
greetings, and went right to work. 1 scanned the results
of his experiments, and was astounded at their cleverness.
Realize, of course, that he Had-no equations written, as
we have done, and I set about priting these. I sent Denis
off to take some measurement$ at the pond.

"He returnéd in an hour with the measurements and
estimates; and with the news that people had already.
beguni to gather at the pond. Mike Mossy was there,
annoyed that Denis didn't have.his guess ready yet,

“Since the fish problem.reQuired a solution sooner
.. than the other two, We tackled that first. We solved
it simply by drawing a tangent field. '

"Class diSmissed."
’ .

Chapter 7

TANGENT FIELDS, AND SOLUTIONS TO DE'S

Arclet was so obvious, He had left us hanging yester-

day, with that reference to tangent fields: today we were

suposed to rush into class and yell, what is a tangent ~
field? What is a.solution? I hate
to admit it, Arclet came into

‘the room.

Teach us, teach ys.
but I was a 1ittlé curious.

""Lesson today, right?" we asked.
began writing on thé blackboard.

~

Title:

He winked and

THE MEANING OF A SOLUTION TO A DIFFERENTIAL
EQUATION. INTRODUCTION TO TANGENT FIELDS. .

Ny

Objective:

By the end Sf this lesson, you sh;uZd be able
to: ) ' : h T

a) Verify-whether a particular eduation$ graph,

.or table af point pazrs 18 a solutton to a
given ‘dif ferential equation. -

b) Draw a tangent field.

c)'Use a tangent fteld to sketeh a solution., -+

These pre11m1nar1es out of the way, Arclet began

- to 1ecture ¢
’ ~
"When you aoZve algebraic equations, what do you
get, aside from a headache’"‘

It looked as if we were in for one of Arclet's

I lighter lectures. .- .

4

. !You ‘get some number, the root, which is the value
of x at which the plot of the equation crosses the x-axls.
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1s to help you to understand what the 'solution to a. -’ ‘

Thus the set of numbers -S, 1 and 3 will satisfy our )
differential equathon means, and how-'to recognize one,
- After* compIeting this unit, you .should be able to examme . equation. Now cdmpute three Qr four more sets, of numbers
uhat is:claimed .t be the solution of-a,particular DE, and & that will also work. To keep from getting too spread

say for certain whether it is -an impostor or not. We will * Tout, take vdlues of x and y between 0 and 10.’ . PR
'not fznd any salutipns. Not yete -, i : : "Got the numbers? All right, now-ulot'them on a ‘
"LOok at, th:.s; differential equation. - ) ~ T sheet of graph paper, using x for the ;a.chissa and y for
g . .‘ R ] \ \ f‘ TN . : ) the ordvinate in the'usual way. Alongside each point, write
\ /\gl *:2y ¢ *z - 0,. R f”, . in the_value of m. You should now have something looking
: » o . ) ‘ &;. . more or less, ’ike this. ) ‘ :
ES;\:&; s ,If we think in graphical terms dy/dx is the, slgpe of some. ’ R K , to o
e O curve y. -«f(x) “We. ccan’: regresent this ;slope by m." For o T 10 | : . .
suplicity, we rewrite the DE using me. o e.,‘ ) ) T oy 3 P . . o
: D : $ e =L S .
Yoee : R = mEdg " 3 E.

: '"Any three numb.ers, m, :c and y that wi‘ll*’satisfy this , -
% eguation Will ‘be"d solution. Take, for example, m =1, S ' < G .

. . “Instead of,chOosing x and y at random, can you think of .
some clever way of picking them so that when all the points —\

‘ A : _ . m=z- 2y
2 oes 1t£mean to solve a dszerentzal equa-. A ) . s = 1 - 2(3) ’ . )
tion? l'lhat ‘sort-of, ansaer« £an we expect?—va*’n"umher’ o . , ) y - _ ) ¢ :
-Several numbers? An° equatmm One obJective of this unit '\ .* ) =S o . v . :3‘

. ®
‘:;-: = 5, and y t‘ 2. “Substituting, we getge . L . .
. . e . . C o L] 2
R +'2(21\- 5= 0 N te el T R
e . e L = \ . o gu~re 5. Siopes at Various _Points T '
Sl "It should be apparent that there are 1nfin1te1y many c ’ 5. ‘ ' . ]
such combinations that will satisfy our equation. . Just. ' "Draw a smooth curve through the points. - In fact,
f’:piék“any values for .z and y out of the air, and solve try to draw in your curve so that it will have the slope
: tbe equation for L e IR - required at. each poznt. . ‘ . . o
g "Suppose th?t e pick the valués 1 and 3 for z and y.- _ "It Jdoesn't work, right? Don't wog‘ry, I didn't -
2 S ,, o ) " expect 1t to. But now I ask you the following question.

: , 141 R TI




,

'are'connected, the slopes‘at each poxntJaro ntec1se1y
“those, rcquxred by the equat;on’ Why should you go to all
this t.uub1e9 Because : . . .

WHEN YOU PO THAT, YOUR COLLECTION OF POINTS

WILL BE A SOLUTION.OF THE DIFFEREVTIAL

,EQUATION.

-

I wouldn't ask you to do'something that wasn't important.

"At this point, take five minutes to struggle with

‘that problem.” You can work by trial and error if yop like.

A good way to start would be to draw a short line - through
each of your polnts, w1th a slqpe of tne proper value.

" field, and sketch in s

‘continuing.

- .
* After five minutes, Arclet wrote on the brard, Tangent
Fields. He then hontinueﬁ’to lecture. )

"If you had graphically indicated the slopes at your
points, and had added more noints ﬁp your pl&t, you would
afrive at a diagram known as a tangent, field, or,a direztion
field. 1If we sketch in a cgfve whose cleve is always
the same. as that of the surrounding tancent field, we
know that any point on the curve will satisfy the differ-
ential equation. The ‘collection of points on theoeurve
is therefore one solution of the DE.

"Now gb ahead ands?Pmplete your own tangent
veral possible solutions.”

. .

. ¢
- He gave us a few minutes to do that before

Different Forms of a Solution

} "
"The curves that you sketched previously are

solutions to the differentyal equation. For theo
moqent, don't w0rry'th§t there are an infinite = -,
number of such curves. We will get to that problem
larer. THe informatipn in these gyrves can be

presented in three dlfferent‘ways I
Y
a) Graph1cally, as they are now

-

b) Numerlcally, as a table of r,y pairs.

I3

c) Analyt1cally, as bhe equatlon of the -~
curve connectlng ;he points. . ’

Y "In our next 1esson wé will solve a, DE graphzcaLly,
and obtain a curve. Later, We'll do a numerical
solution and arr1ve at g table of p01nt pairs for
an answer. An analytzc solution is obtained”by
man1pulat1ng the d1fferentlal equatlon. We're not

going to do that,"

- ¢
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: I ralsed ny hands to clap, but Arclet's 1cy stare - . e >3 . L \ ,
topped g cold A .- -~ Figure 7. A Computer-Generated Tangept FI_?ld . . ﬁ o
Boundarn(:ond\uons _.'i o . Lo . , . / .
RO : . 3 ~ N PN

- i
"Why so. nany soluuons" At this stage in your

N e

I
2
z

: math career you should not be too surprised to get an . } l l l 'c e [: q, I / /" / Y PRI R
. 1nf1n1te number of poss1b1e answeri when you reverse . - - - .
T a mathemaucal operation. °kbbk what happened when you * d I l\. I T R B I Y | /' [ 7 r -~ e :
too.k the inverse of a trig functzon or an anti- -derivative. . R A PO ] d R R A4 /\/ —
In solvmg a d1ffe{a1:1a1 equat;lon, 1ntegrat10n must . ' .. N . LY 3|
;': be performed, an{ 1t is the unknown constant of 1ntegra- A l L ‘l l l l l ' 1 I '/ a4 /-//, = -
“tion-which makes the result indefinite. As with the - S T I T N I I B I I C A A il _
ant:l-denva.t:we, some add1t10na1 1nformat,;10n is needed - f YT p — "t
before the unknown constants can be evaluated. These ’ |4 J I ! . [ 41 /r\é e / - Ly -
3ddlt1ona1 facts are called boundary condmi:&ons.n . =~ *l l . ' ,' l l L ‘~I { /'" / / *
- $ *) . - - . ’
; "For example, suppose ‘I told you that, 1n our - l l I‘ |- | | . l [ 1] / v )
revious probZem, ghe ‘slope had to be -7 when ) . 1./ ;
: pe had €0 be -7 uhen = vas e cm =N
zero. Wouldn't merely /draw in the one curve hav1ng . <. - <, »
. the required slope where 'it crossed the y-axis, and T l ' ' l /' l ' / / and -, '3' '—'
ignore the ‘rest? Or, if you Knew that the curve had I | l l‘ l»‘ 11 147/ 7 b/ i .’.'.
to pass through the point- (4; 5), th1s information % - - SN
would exclude all’ poss1b1e curves by on} . ) l ' l l 1 ' I /4 ,/ 2/ ,' N ’
.4‘; . - . - . O A
_"If you have access to a copputer, (you‘mght T ‘ ' [ l ' " ' 'I I / /'- R g e -.7 t 'k
::JOY wr1t1ng :a program to plot tangent fields. . Have A T I A B N R Y 2 Vv ket L‘.;._.- —— .
e program print_numbers giving, the slope, at the S . oy A1 : C o
) prope:; coordinates® on the paper. If you *have a plotter * ! : i I '{' ’ I \/ % <, / - ( _: e . g
: available, fou even can have it draw in the.tangent " ) | 1 . I/ ) / ‘/ - —— = I ;T
lines. Here is a tarigent field produced by such & . =3 6 .« -4 -2 0 2 4. . 6 g ‘
program." . .- ) - <t Lo ‘
- - . . . A) N *
, . ' %- bNe':kt, where k = 0.5, and b = 0.5, _ . 4 .
. b0 S, £ ~ * )
. . Co ST o

.
. .-

Arclet: cqncluded t.he 1esson\by giving us the

folléwmg quiz. o . © . - ) C T
R . . . . - ot A .
. K . S 32 ‘
O o YN Py
. e .140 e PR 2t '




Quiz #2

-

Verify that the equation

y'g-(lpxﬂ) ’

is a solution to the differential equation
=Zt2y
E-%

-

by plotting it for values of x from 1 to 5, and measur~
ing slope§ of at least three points,

_ Given the differential equation
@y
- z

plot the tangent field, letting x range from 1 to'5 .«
and y range from 0 to 5, Sketch in a possible

L

' “Solution. -

‘Chapter 8

THE FISH POND PROBLEM SOLVED WITH A TANGENT FIELD

‘-

“"Time was of the essence," Arclet said, continuing
the tale. "Mike Mossy had just called, rem1nd1ng Den1s

of their agreement; if one of them~fa11ed to make a
) :

guess by the_time the fish were counted, he forfeits his
share automatically. I worked furiously over the graph
while D#nis fed me the,measurementg he had taken ‘and
Angelica d1d the computations on a pocket calculator.

""Here 1svwhat Denis found at the pond.

. a) Water flowed into the pond at an estimated rate
of three gallons per minute. ’ )
Each ten gallons flowing in’ brought with it two
fish. .’ v
c) ..Greedy old Cy Seepage had gotten the Fish ‘and
Game Department to stock the ponﬂ free of
. charge by telling them he was going to allow
© public fishinﬁ: They had put in one thousand
‘trout the same day that the dam was fihished.

-3 égn\n s*qr{’ iR . 'j d

% 2 fish per qul 4320 al .;(3%)& (z

“ERIC

S
- s
o




d) Since Denis and Mike had opened the drain after
" one day of fillinmg, the pond would then have
contained 4320 gallons. ) )
e) Wate;‘ran out ‘the drain at the rate of 2 gal/min.
f) The pond was completely filled nine days after
* the opening of the drain, at which time it
contained 17,280 gallons.

"Denis and\An watched with"awe and gratitude

»

. as I developed my clever solution. ‘ .

: "Let Q represent the number of fish in the pond at
;i, ‘any instant. {hen,‘ :

0 ) §§~= rate of change of the number of fish

ST : _ b} . '
% Also, 1let ‘

ﬁfu - € = the concentration of fish; .

that/fg: the numbef“of fisq per gallon of water, at any
instant. We assume that the f1sh are evenly distributed
< roughout the pond. Since water contain1ng 0.2 fish per
) gal on was.entering at the rate of three galrbns per
\ninute, fish were c m1ng in at the rate of 3 x 0.2 = 0.6
};per m1nute. o f .

1

"Since water conta1n1ng c f1sh per gallon®was leaving
at the rate of two~gallons per m1nute, f1sh were being
drained off at the rate of 2C fish per minute. Here we
are making 'the assumﬁtion that the drained water contains

" the Mame concentration of fish as 1n any other place in
the pond -

"The rate of change of the number of fish in the pond

e is obviously [fish in] minus [£ish out] or, S
. sg e 0.6 - 20 . (equation 1)

CERIC © -

?

The total amount of water, W, in the pond, if we start
- reckoning time at the opening of the drain, is,

W= 4320 + 3t - 2¢ = 4320 + £,

where ¢t is in minutes.

L] . .
- "The concentration of fish is, then the total number

of fish divided by the total amount of water, or

' eo
® C = g = Q
W 43720 + .

n

(equation 2)

By substituting equation 2 into equation 1, the rate of

change of the number of fish becomes,

v
- . deQ _ ; - o .29
gF = 0.6-20=0.6- gz,

-

" which was the d1££erent1a1 equation descr1b1ng the fish

-

population in thg pond

qoo0 4 @
hm‘ﬂ‘
3 of .
Fa,lt 3
o001 ,
2000 4 o
1864
1000 - -
L4 '
time (ma'nu‘l"es) t
o 1 a 2 N PPN A
] 1080 fese . 60“"1 450 wose Rase

Figure 9a: The Start of Arclet's Graph

© * M .
"The next step was to plot a tangent field.

I let

t?@ abiscissa’bp time, in minutes, extending from zero

to +

®

>

9 days x 24 hr/day x 60 min/hr = 12,960 min .’
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Incould also compute the number of fish in the Ppond at

-

time. zero. It was, - ) . That's
. ’ .. . Wt .
1000 + 4320 ga] x 0.2 fish/gal = 1864 fish. - .
. o' ’ .
(See’ fzgure 9a ) . . o ¢ - . .
G, ' -
) * "] next computed slopes at’ varlous pomts on the
5 graph naturally taking:them only where I expected the Sea=ausiSRPNa
. curve to*be,, -1 computed them from the d1fferent1dl, ’ 1BeA” R
3 e R cne PRy . i
equatlon) . J ) e - “ el PP APR RN ) o
y o 1" 0.6 ’ 2Q - . ;1\ st 217 ’
slope = 0.6 - - =~ L, - s _ e . O
. . . . P 370+t < = ’r; : T time (minutes) - t
— . ’ : - - . . . 2 N 2 2 " "
Now this was the graph: . .- . ” © %% 1000 4080 Coss  §0ss  isess  Ilese
. LR " et . . 12900 min  ov “lday{‘ .
- . '.’ v » ‘
: ? oo 4 @ : N ° . Figure 9c: Arclet's Solution to the Fish Problem
“--.Im - ) - . .
'] N o
¢ ' - Fish P s s he * e *
‘ » *
. A - P - .
-t seeot " ——— ,:::: , "Denis startled me by tearing the sheet from my
L ¢ ‘ g TSy *  ’ 7 hand before the ink was dry, and flew out the door.
\NSN S~ s,y . . X .
. - N :__,’,: :,:,: .' . Angelica and I waited for several hours. Their dinner
. . z'?r--«—az s ¢ .0 guests started to arrive, and we made feeble excuses '
ot R ::f::::::’ o 3o R for hi$ absence! He returned home ét six. We had a
e - I R ) N . » very fine dinner of boiled potatoes, broccoli with
. ) . :::::" > R . hollandaise sauce, pink chablis, and, oh yes, ‘broiled
AR IRy . . ¥ o trout.'s
- rrra . 'tirne‘(mmu:‘fes) - t‘ : . ~ L
. %o 1000 . 4o B Com  Bese  rems. i v Arclet stopped speaking. *His eyes were. glazed -
- . . . . . * 7 = as he smdcked his lips and recalled that fabulous ‘
, . - . . ’ VAR dinner. Herb wantéd to drop his calculus book again,
K Figure 9b: Arclet s Tangent field for the Fish Problem . / but I said no. It frightened me when -Arclet éat like
< . - this. © T .
© and I could easily sketch Px\x the curve showing the growth ’ We slipped out after the bell rang, leaving the
o .of the-fish populatibn. Where the curve intersected, the ‘ proféssor sitting. on the edge of the desk, mutter:.ng N
< 12,960 minute fa.ne was ‘the number of .fish at the t?ime the - something about w sherbet. -
N - . ~ )
Pond was full ST : . ' . ) )
Ty
3 . -
. P ’ »
L - 38 .
} .o . - ” L4 .
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: o . <D
® ° ' h t ° - [ '
R . a - - . < v »
' 'with the 'boundary condition that y = 1 when :c= 1. Suppose,
, . , ) also, that we're interested only in the reglon between |
. - =1 and z = 10. ) . AT
. : Chai)ter 9 o e - "We'start by plotting our starting value, (1,1) on
: v . . ~ . rectangular ‘eoordinate paper. Now our difféerential )
__ SOLVING DIFFERENTIAL EQUATIONS GRAPHICALLY &g equation tells us what the slope at any pojint should be:
v ’ - " )y . ‘ . 1 = = 3:2 " ., ow
- Today Arclet was all’ busmess. He strode briskly ., ( SI0pe =m = o — A
* into the room, always a bad —s1gn, and began a rapid-fire ~ At (1,1) the slbpe.should be )
. barrage of questions. What was yrong wi'th h1s solution .
S 2 . < N
of the fish pi'oblem" Why draw inall those: tangents " N i m*= % =1, .
{ > when only a few are needed? How. could you limit your , t . . ..
. "work to only those needed" And so on. _ so, through (1,1).we draw a short line with a s_lop/e of 1,
S . . Our construction should be: 4o e
I slumped in my chair, It was a good day to'11e low. \ ° .
. Confronted with a counter- barrage of silence, Arglet L 5 pHIE ’*;_. 1,, fi—][_:—;ﬁ-r—: o |
_ .+ sullenly began the lecturé -he had been softenmg us’up PR A R npesspaeyiaigidp akul il
i for. t{e wrote on the board, 2 . Lo o : asas
‘ IS * L 3 3 . '
u 11t
T1t1e.1 GRAPHICAL SOLUTION OF DIFFERENTIAL EQUATIONS » 4
7. . N 2 H . -l ,
T Objective: ' Upon compietwn of this lesson, you should be - . Bamns TL .
- able to eolve a dszerentzaz equatwn by a ’ ' ¥ W xS ;
. graphzcal application of Ewjer's Method.n- - -~ \' 0 : HH H X+ °
S ‘ .o . < ) | . 0 | X 2 3 4 ¢ ,A o -
' "In the 1as_t unit we solved a d1fferent1a,1 equatlon .. Figure 10a: Construction for a Graphical Sotution ’ .
graph1ca11y by plotting a, tangént field,” Arclet began. - ' C o .
"This is fine, but it takes more Work than .is' really™ " ‘. "Now we step along the z-axis td a new, value 8f z...
needed "B)' the énd of this unit you should be able o - . The, size of the’step is important; large steps give inac- -
?
produce a graphical 501ut10n by the‘ fiuch eas;e; Euler's  Curate results and small steps are a lot af: work. I'm
method. ., . - N . - . ". gomg to take steps ‘of'1 for¥his aemonstmt1on
"I will 111ustrate" the xhethod by~ demg ‘an example. - "At z =2, the value of y as read from our previously
We w1sh to solve the equation: ’ * drawn line, is 2. Mark this point on the graph. Through‘ '
e gt P S ( ‘ this point, we draw another short line havmg the required
. 3%" ¥ RPN e, L T8 slope at this point, wh:Lch is:
. ~ - 22 e
" m = = 2., .
, T > -1):3 .
] [ "._ b % . A0
. » . . . - -
N 4




@
s
Caleulated Nt y from
Slopes - . qraph

| 2.0

| - 4.0

|- 6.25

-

F lgure—tObv,—CoanuaEiwofitheeonstrucﬁorf—ww- By "

L - é "“ 3
- ; W .

. A -

At'z = 3, y has the value of 4, so the slope of the next
segment *is ) . . . . ;-
" -m=142-_=2.z,5.,‘

1
[
i

cale

L]

1
o

X

e S

"The process is repeated as far out as is needed, in

this case until x = 10." * - i -y : ¢
-~ ﬂ *  SBe

At this- pomt Arclet. paused dramatlcally Then he

f11pped on his ever-ready overhead projector, pulled out e

-~8 transparency, and said triumphantly, "Vlola the fmal. ’ X J, 1 " means ofa dr‘gﬂmq"l:nanq\e
* solutiont" (see figlire 11) : ‘ A | e IS

o WA AT and daight edge, fmv‘*“e\
We all,groaned. - ) e . R/ o o=_gsi mOR SLEES SRR !

T
:

i

) T
-1 '-
1

_A.

B P

it Silo
PRI
i

.y

75 Slqpes were travisferred by

slope scale to the qraph."
FEShaswenee cus B SUONS THOTTINNTTOREY
" 4 K 6 7
Fl.gure 11. Graphical Solution of the leferential
: Equatlon Z‘é-—. through the point {1, l)

N L}

] -
~

For our quiz, Arclet gave us the following problem. \
»> . . . ’

o 155.
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1.

N W

Given the differential‘equatlon

S ;:‘;%1;.‘:——'2“* o

-

with the boundary conditions, y = 1 when z = 1, solve
graphically by Eulet's method, taking intervals, delta
z of 1; and‘flggﬂthe value of y when x equals 5.

Ny

o

ped

.

T4

Chapter 10

| oW
. A GRAPHICAL SOLUTION OF THE FILTER PROBLEM- °* .
B > ‘; ) P .' :‘
Wasn t it strange how-Arclet's story was requ1r1ng S0 v
much work from us to be able tg understand itn Befene he .
* could begin hif§ narrative the following day, I had my haﬁd -
up. I
‘ hProfeésor;‘fs this a true story’"“"."~ e 05/ (:\3‘“‘“‘

~

-at a thickness of zero,'and a transmission of 85 percent

YArclet looked over my head, focuss1ng h1s eyes on
infinity, and sighed. 'My boy, what is, iruth”" .W V

. -
“Heavy," breathed Polly. ¥ . 'i/‘:
. > . t % R
"Bull," mittered Herb. ’ . ~ e,
"To contlnue ".sa1d the professor, "Den1sw 4nge11ca, L eoaY,

and I were groggy from,the huge meal, the chaﬂT&;, and the, . .

cognac I had thoughtfully remembered‘to br}ng,.so we *didn’ t«,

tackle the remdining, two problems after the guests left . J
but waited unt11 the next morning. Tty

L3 . <

"We deélded the next most urgent.problem was to deter- P. v
nine the thickness _of the sunglass lens, d -

- )

»

"Ange11Ca had persuaded.Mr Usury to let.Ker into* the ‘.

bank, so while Denis and I worked on’ the 1ens Erobbém, s
she went off to take measurements on the stee1 beem. ’ . e
. ¢ x
"We had dec1ded to do a graphical Solution. On a ., s

sheet of rectangular paper, we took lens thicknesss#ing Tee -
millimeters along the absc1ssa, and 11ght trahsm1551on L

along the ordinate, graduated from zero to '100%. Wep )
marked out two known points: & transm1ssion of 100 percent -

157"
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. at a. th:ckness of Imm. "k

100 and the slone is ‘-5,

v .thure 13.

connected the “tho pqantS"'dnd ~:T3;. Here 7 = s0 7 . ‘ -
"measured ;he slope 6f the lane.; Ou graph was then. - .15 . i .
‘ . . P\ o . . k = - 100 = 0-15 , . ,
o %\ L R - = . T s < . -
T — and we useq that-numbe; throughout -the constructlon.
. ;# . : . — ! "Through ‘our second point (1 85) we drew a line with
.&% : " ’ ) . a <lope of; . - )
= SR . Lo e :
0o N : ' . .. _ : ,
o . R : slope = -0.15(85) = -12.75 , ' .
| : . 0 I
nf ! . , : 4 and sauuthat it 1ntersected the line ¢t = 2 at a transmls-
o} : ~ sion of 72.25. Wé ?ept »repeating the computatlons and
] < .
-1 , ) - the construction umtil our curve dropped below the ten °
< S0f : ’ . P . ’ . percent transmissioh level. Here {is the complete graph.
] v, : . . . .
1 * s . .-
;40._: ]DDE: 1T 1 1 5P .
' N ‘ . i |
. i, . . &
L : . .\/ X ) ‘, QD TX i - -
;/ . . C . : . . N 1. -
20}F . : 2 . : :
] L4 . - -
' ¢ -
T . ’ '
‘lo- ! - - - . "
-4 Lens thmkness t (mm) — ‘ it i ol s
bo~ e N B DI
Figure 12: Start of the GraphicaﬂSolutlm - 1= - 3 ey ] .-
L. .t \\ ', g And ¥ .
.- "If you recall from our filter experiment; the ' 50 ‘al . 3( s b .1
e . 5 1N : " M
di ferentlal equatxon we arrived at was: o . ©0 EL
. dL h C &' . 40 ‘2' , )
- - , - . . . -
B ' 3? k = slopem______:___:_* ) . - E .
- where I is the llght transm1tted t is the filter tthk' T ‘ ':EE
ness, and k is a constant. We had to find k before we - . o
could _proceed thh the construct1on. We solved DE for k%, - G
..", . " o ’ . _ .’i-:,:l/ ‘ B - — T
: k=-5—1-g2-, ‘ == - »
t-/ } : : ‘ -'— e ad _ESYTI '
‘ 3 Le\\s th\c\mess tb (mm) Iz = ,
N 3 b 0 B il e o WIS 10 <>
'2 4- ‘6 8 lo“ 12 13~ 1%

fe oo a:. .
Graphical Solutioq of F=- kL for k = 0.15




*,\ﬂAs:ypg‘can.§qe, the lens thickness required was

. -

ﬂll. . "; N < N . y .

‘ “"Denis coula.iov{ prové to his boss-Al.that the
5 ﬁeg’uirgd lens thickness was.not 6mm, save his job, save
© the eyesight of our fighting men, and keep his family
together. - . L . : ‘

_ "At that mgmer;t Angelica came home with measurements
"~ "of the steel beam. Her display of gratitude and affec-
" tion more than répaid me for my efforts." '

LN -

- "Ne'll get-him for this," I whispered to Herb.

L
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© "Unit 83: SOLVING DIFFERENTIAL EQUATIONS NUMERICALLY

e 7 -

Chapter 11 Solving Differential Equations Numerically . . .
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SOLVING DIFFERENTIAL EQUATIONS NUMERICALLY

. 7
o, N "
SN "Yesterday yo*lexpressed some doubts about the

) e veracity of my little story," Arclet beggﬁ with some

sternness. '"Well, this should settle the matter." He
tossed the 'phone book into my 1ap. Ieope%ed it where

. B

use the sarxe equation we had for the graph1cal sblution

.

as’ an ecxample:

~ , . ) '
3 2 .
> de _ z%, slope m
dr  y

with the sfarting value, y = 1, when z = 1.

increment = by some chosen amount Ax.

We now
Let's take 1 for
our step size now, and later we'll see the effect of

making it smaller, ' . ‘

.
B

"The slope of the curve, at our first point is,

8 2 2 .
= x2° 2 1° -
slope = 7— ‘ T 1 -

the—page-had—beenfturned down—fand—gazed a —the name—— K
&
circled in red. Vg

g Denis Dropmore, it said. Arclet would live to -
P regret showing me ‘that 'phone book. B
i : ) .
S "I would really like to continue the-story," Arclet °

said, "bug.before you can understand what happened next,
it will be necessary first to have a lesson on ‘the M
numerical solution of differential equations."

»

I smiled. It was all so clear now.

L3

. Arclet walked to the board and began to write:

- . »
.

o Title:, NUMERICAL SOLUTION’gf DIfFEREkTIAL«EQUATIO&?B-

- Objective: Upon :bmpZe¥ion ef this ieason, you should
. - be able to carry out a numerical solution
of a differential equation by Euler's Method
. by handy on ¢ ealeulator, or by computer. .
p el , ‘ \
"I@en Afclet began'the lecture. ‘-

“If you've understood the graphxcal solut1on of a
differenfiil equation by Euler's method, the way to per-
form a nuwexrical computation should be obv1ous. e will

D teridene o 3

"‘and the change in ordlnate go1ng from the first to the
second point will be the slope t1mes the change in =z, or

4 mA:i_j/l(l) =1

so the ordinate at the second point will be
. Al ‘.‘

. Ay:

v y + 48y =1+1=0°2_+

LI 4
The second point’on_our curve is this’ {2,2).

=~ .
"Repeatlng the computat1on, the slope ‘at the second
point is, : “ .

- - .

2 2 . .
: slope = 5— = %T =2, >
The change in ordinate is, ,
. LS ’
y = mbz = 2(1) = 2. \

So the ordinate at fhe third point is

y +Ady =2 +2z= 4, * L

The third“point is thus (3,4). °

"We cénq}nue the computation in a similar way as
far.as we need to go, obtaining each ordinate yn from
the grdinate ¥n-1 of the preceding point, and<the siope

] ' R N
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- ’hﬁ-;'gt‘the preceding point by. the equation:

e Un = #nos Wiﬁ-: bz .

RPN . .

) ""A conputer really comes in handy ‘here." The follow-
- ing short.program, written in BASIC, is de51gned”to -

perform this computation, taking a step 'size Az of 1.

. 10 PRINT nxn-’ uyn’
M . 20 S=1 ,
30 Y=1 LA
. 35S FOR X=1 TO:10"STEP S - .
40 M=X42/Y <« - .
e . - S0-PRINT X, Y, M : E ' :
S : 60° Y=MASSY .. : A
- 70°NEXT X 7 ‘ o
s f~hs§b snn < e <

SN -

"SLOPE" ' T )

- -

"This progra: will also pr1nt the slopes, i; an
extra dividend. Here is a RUN: = °

-l

X Y . SLOPE sV
i 1 1 1 ‘
Fa s 2 \-\. 3 ' 2 S : '
ot 3 6.25" %:56 Step size=1.0
- s 8 81- 20837 . Lﬂ v
6 11.647. +3.090 - >
) 7.7 0 14.738  3.328 N o
B ‘8., 18.063  3.543 .
.o 9 “ 21.606 3.748 o Te
e .10 25.355  3.943. v

HNou that we have a progran, it 1s arr easy matter Lo
“to deternzne-the effect of changingythe Step size.  a-

-Notjce that the program:was written so thatsonly line ot

2.176 C :
2.345 .o ‘
. 2.50L . W

S

20-need be changed. Taking a step s1ze of /0.5 results o "
- in the following tableq D s o
. , <’
- . * . - ) N
R ?1' '¥1 ) SLOPB - R ",
1.5 ’1.5 105 . .
. 2, 2.25 - 1.777 ' Stepusize=0.5  °
. 2.5 . 3.138  1.991 ¢ ¢

T 3

7 ' _— .
5 ° 8.970  2.786 Co <::f’-
5.5 10.364  2.918 1
6 11.823  3.044 ca
6.5 13.345  3.165 .
. 7 ' 14.928  3.282 , :
: 7.5 16.569  3.394 *
.. .8 - 18267 3l503 . '
, 8.5 20.018 ° 3.609 Lo
o' 21.823 3711 - -
. 9.5 23.679 3811 ° : oo
i ” 2%is8s S

3.908

)
v

: 7 )
"Now we reduce the step size to 0.1, at the same

time-rigging thf program to print only at 1ntegral .

values of z, to save time and space. L
/ -
- R - . .;, . ] / . * ‘
o x N O SLOPE" . ’ -
< a1 1 1 . .
2 2.357 1. 696 S e .
- 3 4.253 Zr&g6 . .
- 4. ' 6.525 "~ 2.452 A
5 9.111 . - 2.743 ‘o om - '
6  11.975  3.006 Step sizez 0.1 T T
. 7. 15.091 3.246 - e
DL 8 18.440 3.470- J .
. - 9 22,006 ... 3.680 . ' . .
. - 10 25.777 ;3,879 . . -
f . "In one final RUN hlet‘s reduce the step s1ze by ¢
another order of ﬁaggitude.o . ' .
. T LT O~ . S . s .
.- L XY SLOPE , .ot W
S a1 1° -1 \ : _
2 «2.378 “J1.681 - -
3 4.278  .2.103 ,ﬁf - :
T4 « 6.554 27441 ¢ NP 5 E
5. ' 91143 G 2.8 . Stép size= 0.01 ) .
. 6 12.:010 £.997 . . . ,
‘g " +15.128 3,238 ‘ . s
' . 18:479 . 3.463 ' *
9 22.048. 3.673 «
LN 10 -~ 25.821 3.872 . : )

“'At thig po1nt, it might be\1nterest1ng to compare
“the final value of*y obtained ‘using the various step
.sizes. Let!' s make another “table.




;M

.

step size

v = ~

ordinate at

s = 10

. . &

1.0
0.5
0.1

0.01

-Ihéoretxcal.‘

25.355

25.585 . :
25.777

25.821

25.826.

L4

“"Not too bad. Even with our coarsest step, our
final value is less than two percent different from”

.the theoretically'correct‘anéwer, and with-our smallest -

2

] 4

4

>

stepi our answer is correct to four significant
flgures " . v .

- .
A

- .

Polly 1nterrupted
value come from?"

"Where d1d that theoretxcal

-
"I was hop1ng you would be cur1ous.‘ Rémember
when I spoke about analytzc solutions?: ‘Now would

i be a’ good time for you to scan that chapter in your
text, 'and we'll get to it in a week or so."’ .
’ "I1'11 do that tonight, professor," said Polry.-
Herb mutteredlsomethzng 1naud1b1e.
At the end of the lesson, Arcletcgave the ’\
follow1ng take-home quiz. L
. nq# . . [ i‘
. T . - : *
b ,
- I's
) -, _
7o AN “ * s '
_’4 o - Fl . s R
N . . U o > p LI S B
.. . - . W );‘ . 5!
4 “a @y ¢
_ , AP |
. "
<~. . 53
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A

[
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For answer see page 71,

A

A \ |
. N - ‘
2 -
[ ‘,' L .
-
3 Quiz #4
1. Given the difﬁgrentia] equatiop . e
. N
dy . _ ¥ ,

dx x = 22y >

-

and the boundary condition

Yy=3when =1
, .

do a numerical solution by Euler's method, taking
intervals no larger than 1, and find the value of
Y when z equals 5. . .You may program this problem

on the computer if you wish..

-

i

-

< N -




’ Chapter 12

|
- A A NUMERICAL SOLUT&ON TO THE SAGGING BEAM PROBLEM =~ -
“;‘;’ K K- ) )

Today Arclet began, "It was now Sunday n1ght, and

we had just Finished a supper of ‘pan fried trout served
) w1th a savory made of soy sauce, chablis and.a touch of
e "dill. We attacked the last and most d1ff1cu1t of the

7 three problems. -

. ‘ W'Angelica had 40?e an adm1rab1e Job of collectimprr—"~
.the data for which I had serit her. We began by making'
a déagram and carefully listing all we knew about the

-

problem. .- . .
ST, P N : . )
e . : L k‘ 1 o - . ’
N L Sfe, o
\‘ ': Ed I‘ "'4 M
R v ot .
- a P < .
Colvmwn . ' Colomn. S
* . 4————————- 30 i
F)gure lk Free Body Dlagram of the Beam

. * <A

"I quw in coordinate axes as shown, and indicated
the forces act1ng,pn the beam. We felt-it reasonable -
to .assume that a11 other loads, including tHe weight of
- 'the :beam itself, would ‘be negligible in compar1son to
the welght of the huge safe, L

-1
-

- ’
. e

. "We found the dimensions of the beam cross-section
<in one ‘of Angelica's arch1tectufe books, and it gave the
agoment of inertia. , ol

168

I = 12,000 inch* ,

.
’
y .

‘We also found the modulus of'eiasticity of steel,

Y

"E = 30,000,000 psi

"I took as my sierting point the differential equa- --
tion for the deflection curve of a beam, which we wrote
" in’'class the other dal: t

. dy _ M . : h
Exg - § :
where y-is the vertical deflection at any point z along

. the beam, M is the bending moment acting on the beam,
and £ and I are as defined above,

’g ‘-

. . "Before solv1ng the DE, it was necessary to know
how the’ bending moment M varied with p051t1on z. 1
considered a sectlon of beam lyihg to the left of the

‘ sake (: .
s . )
. Figure 15. Moments at:the Left End
L .~ N . . . i
and asked, 'What moment ¥ would be fequired to keep that
section of beam°in equilibrium (kgep ‘it from rotating)?:
. , ) -~ RS v . -
"It woyld have to be ) '
M = Rz S

v
.

where R is the vertical react1on .at the left*end of the

. beam, and z- is the distance to, “the sectlon being eon51dered
We can find R without too much trouble,"by asking what.
/force R'is needed to keep the. entire beam from rotat1ng
about the right hand _support point. » | .

169 i
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- Figure 16. Taking Moments About the Right End

"For equilibrium, we must have

v

30rR = 6P,
- hd )
where g_is the weight of the safe. The bending moment is

then,

. I3

k4
M=rRzs=%z, .

where xz is in feet, so our differential equation is
d? Px
ot % '

"Angelica had found the weight of the safe from the
manufacturer's catalog, and we added some weight for

. contents, ahd took P = 10 OOO‘pounds. Putting in ‘the known

' values, I computed ' *

P (10,000 1b)
5ET ~ 5(30,000,000 1b/in®) (12, ooo in*) \
. (1 x 10%) [ ] -

] 5(3 x 107 (1.2 x 10%) 1n® (18 X 207)in
} -7 and convertzng to dimensions in feet ‘

Il ‘P . . - L3 2 -- -
o m=[-1-1-8-x107]1n’t?1:4—f;?—]=8x107ft2

* So our DE becomee, i ' \‘ .

' a—’igqsxlo-’)z |
todz* ”

",with all distances expressed in feet.

RJ!:}':_

0 o | ,1'7'0 L ! j ,s%,

. -

"If we now take the integral of both sidés, we get
/ +

D ° R 2 .
ﬁf (8 x 10 {)%r + ¢ =-slope,

an equation giving us the slope at any dlstance x along
the beaim. This is the differential equat&on Ve must solve

"I decided to do a numerical solution by Euler's
Methed. For a startiﬁg value, I knew that » had”to be
zero when x was zero.

"At this point, Denis, who had followed my’ p?ev%s
solﬁtions with much care, interrupted me. .

"'How can you find" the slopes from that équation
when you don't know the value of C?' y -

"'We have another boundary condition we haven't
used yet,' I replied. 'We know that the deflectioh y
also has to'be zero at\the other support, where 4 = ¢ 30.

‘All we have to do is keep guessing at C until we find

one that gives a displacement of.zero at the r1ght end.
We ought 'to get it in about fifteen tries.

N

"' But don t you have to do the entire computation,
with each guess at C, before you know whether it is good
or not?' Denis asked in apprehension.’ 7 .

"That's right."

"'And how long will each computation take?'

. \
"About an. hour. <o
v

"There was a long silence. *It was now a little past
midnight. '

"It was time to play my trump card.. I went to my
car and returned with a portable teletype and gn acoustic

~coupler.” A quick 'phone call to’ the computation center

brought the full power of the college's massive computer
into the Dropmore's kitchen, and the little teletype
was soon spitting out columns of figures.

PV - -

o~
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- .

"Here, in BASIC, is the program I wrote:

*

A 5‘ PRINT nxn, nyn’ "SLOPE"
' - 10 C = 11.7E-5
. 208 =.5 : \
. 30 FOR X = 0 to 30 STEP#S
40 M = 4E-7 * X42 - C ~ ?
50 PRINT X, 1ES5*Y, 1ES*M
. 60 Y = Y + M*S -

". - 70 NEXT X

"To get a first guess for ¢ that would riot be too
wild, I assumed that the slope would be zero when x was -
about 20 feet. Solving the DE for C, Lo

0 =4 x107(20)% + ¢
€ = -16% 10°°%

"I entered.this guess for ¢ on line 10, ran the
I then -
changed ¢ in a way that kept reducing the final deflection,

R program; and observed the final value of y.

~ "The value of C that I finally used (11.7 x 10 °)
gave a deflection at the end of 0.05x 10™° ft, gs compared
"to the maxim®h deflection of 136 x 10" elsewhere on the

i ‘e bea%’ - N , . . i .
- "Here is a copy of the final RUN. o
X Y x10° SLOPE -
] 0o - -11,7
. .5 - 5.85 ~11,69 W
. 1 ~11.695 ~11.66  * -
© . . 1.5 .  =17.525 -11.61
2 . =23.33 ¢ -11.54 - &
- 2.5 7 --29.1 ~11.45 .
N 3 * -34.825 .  ~11,34
3.5, ~40.495 -11.21 J—
‘ . & -46.1 °  -11.06
‘ 4.5 -51.63 - ~10.89
. 5 ~57.075 ~10.7 .
172 5.5  -62.425  -10.49 * °
6 ~67.67 ~10.26 W
. 6.5 -72.8 -10.01 T, .
. 7 ~77.805 - 9.74
. 7.5 - -82.675 - 9.45
oo ] -87.4 - 9.14
’ : , , t . -
O ‘ . " T . ’ 59
ggiéé; ESN S

2

x e . Y

Maximum 16.5 -
Deflection 17
Here -+

"Notice that the
over 17 feet from the

and the midspan, as-Angelica had predicted.”

- ““\\\\
» +
x 10° SLOPE
-91.97 - 8.81
-96.375 - 8.46 |
-100.605 - 8,09
-104.65 - 7.7
-108.5 +7.29
-112.145 6.86
-115.575 . - 6.41
-118.78 . - 5.9
-121.75 = 5.45
~124.475 - 4.94
-126.945 ‘ - 4.41
-129.15 - 3.86
~131.08 s - 3.29
-132.725 - 2.7 .
-134.075 2.09
-135.12 - 1.46 "
-135.85° -, .81
-136.255 - L14
(-136.325) .SS
~136.05 1.26 .
-135.42 1.99
-134.425 2.74
~133.055 3.51
-131.3 4.3
-129.15 5.11
-126.595 ‘ 5.94
-123.625 6.79
-120.23 . 1.66
-116.4 8.55
~112.125 9.46
-107.395 10.39
-102.2 11.34
- 96.53 12.31
- 90.375 13.3
- 83.725 14.31
- 76.57 . 15.34 1
- 68.9 ¥ 16.39
- 60.705 17.46
- 51.975 18.55
- 42.7 19.66
- 32.87 © 20.79
- 22.475 - 21.94 °°
11.505 . 23.11°
5.00000000E~02 24.3 .

maximum deflecfion occurs just
end of the beam, between the safe

173
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:;i:: Arclet ‘rose siqwly to Kis feet.) rAnd that,_de%r
i class, is the end of the stef& *Denis’and Angelica
#.w . both regalned their jobs, and were more h1gh1y regarded
" than ever before. Convinced of the power of mathematics--
SR in the Kands of an expert--they are both studying ca1cu1u§
2*- in their spare time. I visit them often, giving them

. small tips to facilitate their stud1es, and the affect16n

. and respect they shower upon me 1s almost embarrassing.

"Have a-good weekend, and remember that we have a
test on differential equations on Monday." He strutted

’ out. L i _
-

.; , * We sat there s11ent for a long time; heads hung down
=0 and shakjng slowly from sidg to side.
T Finally Herb spoke, "Mat, d1dJa ca11°"
o -"- "Yeah. They never ‘heard of Arcletl" - ¢ )
!r ""Cheap 1r1ck "'Polly said. s
f% - "We've been had. Taken, -conned, duped, used."
- :
o "Should we go through with the plan?"
;55 "Let's vote." . ,

Three thumbs pointed downward. :That night, I phoned

my brother in Seattle. . .
. 1] ‘- - q
’ L4 ’
. ‘ . 7
'S
> ”
‘. ° ‘G <
p 14 . 61
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. . Chapter 13

' o THAT EXAM AGAIN

Today, Arclet seemed a different person. His hair
was brushed, he wore a well-pressed suit with a clean
shirt, and his shoes were shined. He strode into the
classroom,carrying a smart little attache case with netal

trim 1nstead of his battered, old briefcase.

"Who cares about d1fferent1al equations?" he asked.
“"I'1l tell you~who caresr. Boeing Aircraft Company on the
West Coast cares, that's who." He:waved a telegram at us.’

<

"Listen."
HAVE URGEN[ PROBLEM 1 LVING DIFF EQN. YOUR
- NAME RER TO US. HOPE'YOU CAN COME ASAP. YOUR -

USUAL FEE PLUS TRAVEL EXPENSES PAID.

"I've arranged for a substitute teacher, who will

be here starting tomorrow. See you in a week.!

Halfway out the door, he stopped short. "I nearly
forgot.. Finish th1s test today and leave it with my
‘substitute."

It was exactly the same exam that Arclet had used -
as a pre-test for this topic., 1In fact, the same test
that had prompted his whole gidiculous story.

We had come full circle. -
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. © . THAT EXAM _ ‘
1. -Given the differential equation 3. Given the different{al equation ’
N . -
g ’ 3.3 : ’ dy .3~ '
v Y. . - z —l- .
- &= 2 ' Z ~
determine whether the eq‘;ation B e VEI"fY whether the fOl lowing table of pO'"tS represents
e L e i \ “ . a solution by checklng at least 3 points.
o ymsz¥l-incx v ;
is a solitl o X Yo - "
s a soldtion, - ' B .
‘ ' 0.5 " -4.586 -
\ 2. -Only one of the curves graphed below is a possible ; . :g “ “fggg .
. . a1,
solution to the differential equation, _ . o 2.0 -0.793
- ' T 2.5 -0,568 .
i’l.. L . , 3.0 o -0.k23
-y . 3.5 = -0,323 .
N 4o X -0,250
Check enough points to determine which curve represents 4.5 -0.195 -y
a solution, ‘ . 5.0 -0.153 N P
T I zase; susasssns ; 4, Plot a tangent field for the differential'gguation
i & -' :' 3 i1 ’-:] . N - . d
L oo’ sanee v . 2 _- ’ . \
7t frrE R QL = u . o
Jl T 1 1 d‘:""" { . -
+ } s where 1 & x§5and0§y§5 o .
it i : ‘8 \
iy AR T Sketch in 2 possible solutions.
i i;rg } i t 1 ; Hit ‘i PF. ]
! Teagy bias psaasteen 58 tAns 15 ey enns . 5. _Given the differential equation ’
pus 4 Fas e 1453 3 T + L4-+-44 . ) |
T i e e T :
+ =+ v s taifisinisaiytss > t : ) . =2 -y,
P e = i : =3 - with the boundary conditions ] /
t t denyus ;.,4 i 1 - . >
* H i $ y=1whenz=1,
18 ¢ 3 L
s ; find a solution graphically, taking intervaié, del%
Y of 1 and find the vaiue of y when z = 7. - o
+- « . " .\
e 4
HH . ¢ _
i : .
: i - -n ”iﬁﬁ ; 11 . “ -~ o
- 2 3 4 - £ 7 6 7 * [} " ' J ) 17 {
- , X N L )
178 . e coL i 63 h s . '
. - p . - t - c‘ . ‘ - * R . , .
i M e * 4 - ___A_ - &~
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6. Given the differcnttaf equation

S

M TSy

"*and the boundary comﬂtions

AR}

o ‘ o APPENDIGES T
o ~"y_'whena_o,w°:. . s L R T ) e

.

*
. %
* .

- - . ‘s . g . . ¢ )
te & a numerical SOIution.. takln,g Inervals, delta z of 1 /\ Answers to Q“"' #‘
<> and flnd-"the value of- Y whencz =10 . L f R"‘s"‘ers‘w iz £2

* c \An,swer to Quiz #3°
i . -
7 Hrtte 2 dlff{rentfal equatlon to descrlbe the fo]?ow ng\t e . D' Apswer to Quiz #4 .

‘E Answers to That Exam

\

sltuation;. ’Bg‘sure Lto deflne ,xour sygbols,
.a) A-body falls, in a medlum offerlng reslstan‘te prepor-eﬂ
: tional.to the speed at any .instans. ° \‘ o
A partlclé moves “in a horlzontal line ac‘f'ed upon by
an attractive force" wﬁich vartes lm’ﬂ'sely as_the =
cube of the dlstance from & flxed point. K !
The. rate,of ﬂm’w frouta ‘tank of uniform cross-
sectlon Is proporttona] to the square root of the -
4 ng!d depth. . - N “ e

Radivm decomons *at ‘a rate- proportlonal to.the

"Pl"SCﬂt aaount. 3 - .
[ . A 7

8. Poke a.hole in Arctet‘s fls‘\ story‘ by calculatlngohov! PR
Wah y flsb Mke"s f‘reezer woulﬁ have to hol&. .t !

.e
€.
-

—en

s AL, e s




AN L -t VR . s DEEEN

" o - . J . -
. " = 4 e
' ' ) ' ' v ‘
R ) i Answers to zluiz 11 . . ) Answers to Qui?% 2 a{." ar
‘; ~ . - R . . b oo
° 1. The equation y = — (g = + I) Is plétted below, and the slopes
L “-1. let: u = temperature at any time t . ) are measured at, & = 2, 3, and z, ~
) T Uy = ;e’werature of surroundings .. . i . ) R N\
“ ~$.‘ then, . .- \ ’ . y - s H
¢ . ' N . : : sul
S B ] Zt-.-. -k{u t uo) . . . . ) 6 ¢
- _ which.ls known as Newton's law of cooling. ' f’\ T
* ° . ‘o - 3 ’ ,{
, 2. Let R be the resisting force of the medfum on the object. . sk .
The Statement of thé problem glves -, . . . ] 4 .
. = k. | , . - .
' Assuming R to be the only force acting on the object Newton s . , ' -

! sec%d law gives = . Y ! @ i .
CN— =g, - : B ‘ ‘
L . . ] .

s where.m is the object's‘mass and a is the object's acceleration. 3
o £Substituting (2) .into’(l),glves_ Lt . Fri - 5
:‘ * . ‘;) " . Lm = 'kv- ' S N ) . :
"' Acceleration Jds deflned as the rate of change of velocity, or : s .
iy ~ \ A . ‘,. -
iy ~T¥ . % L . = « :
' which when subm:uted Into (3) glves » + - ) . ‘ )
P -1 B . . ' 1 Sems ] . -
F L4 .- m - . . { = -
. (5)»\3‘ . 3- . ‘ ‘ . , o ;
. 3 dlfferentlatéd equatlon desc(lblng the sysyém, ) PN X - x B '
‘ .0 11 R _::'
lf addltlonal#-ces acted’on the body, equation’ (j wouild have ° ) ‘o ] — R z 3> . % 5
to be modified Yo accoun‘t for them. One additional force, R, . ' ) . . . .
driying the object” through the.medlum would, lead to the follow- ‘. : " ‘e o ’ ‘ .-
i dlff erit . - A
ng. er h‘ eqnqtlon W . . 3 | ., A cou?arlson wl:tathe slopes calcufated from the DE is glven in
. ' m 3"" P - ko, . the tdble. ) ‘ - ‘e -
n" . v . . . o
. L) - v e ! «‘ ° R ’ ‘J“ N 2 ¢ * P v
i .. -3 «See‘text page 7. T .- 7 e T . < z + 2y  Measpred . )
#q . Lot *. .og . g be 0T e YL TE | Slope ‘
S L - AL R vy e M ‘ :
T * R, T T E ok T T IR T PR g
. T g 4 3.15 1.55 ~ 1.55 . o
. . . -, - . -
A . re L . oAy T h 184,77 1.69 1.75 :
A e oA, . o . . 181 ‘
. 68’

FullToxt Provided by ERIC. -



\ Sin’ce the a;greemnt’.ﬁ excellent, we may.assume that the equation | E - Ansver t.o Quiz'i?, ' . .
o . " . : . . . . dy =+ 2g . .
o is a solution of the differential equation . 1. Graphical so“ft'on'Of Fr * gz + through paint “'Il) .
- . Az T ’ : " ‘
o ’;"’_‘::—. . dz ‘_2.7.‘ ' . C. T ’ . r il
in tflle domatn 'shown by the graph. , - - - . g O B I ¢
) . - > St Y g L i
s Gy g . 8 .
. 2 _fa_'lfulatl?n‘of‘% for s _y.a: = 2 z | . . ‘
; % T sy, .. ' e ” ]
' ’ Tt ¥ hy L4 7 v, :
¥ ~ d [~ y -3 % N e
- . ’ o} ® L,y Tt e~ — . ] .
‘ 1ot o |2%, N N
. . N a1 L . " . 6 ) . -
2\ L] 2 R ~0 . » . A
o . . ' .3 3 |-1 R
o 2| ollco | 2.0 ' ) e, - “ >
< T || 0.5 ].1.5 : . J Assclagneo.L Calculated Slopes” Pieyx't
‘ » 2 N 1 4 1.0 - vaides ) 2v+2
L Xt2y m
— 3fli1s |05 - - R x ¢l|. FT=_ ookl
. ’ - 0 0 2.0 ! . -
¥ . v 1+ 1.00 . '
. " ’ 1. .25} t.75 N ’ 1+2.00._ - + .
T ) 50 s . . . = 11200, 2 :150|250 :
) ' 3 1.25 o '

2 2.50-

o
W
kN
144yl

¢ \
.o RER00. T c1S) A

_etc. T ) ’ a - e T .
' ; R ) 2 3 4267 '

-1

~
2

T'an.g‘e.t'st.Ffelc_l. for % = l-‘b'_?il with two posslble.' s;olutions. :
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’ o Answer to Quiz #4 . )

2]

.
I.‘ Given. % ;—_‘%- m, i,
and Euler's Method: y, = Yn-1 * nt,'.,.l Az,
‘we let go = 3. when %, = leand Az = 1 for this calculation.
B It is easiest to make a table for calculation as follows:
.!' Zn ¥n : a:'- - oom, " mAz y + maz’
“:s..‘ Y 1 3 Vil ‘ . /
- . 3 3 00
C o - =T ) -0.600 . 0 - 0.600 .
. Py i Vs e 340
; 1 2 2.k00 e - )
- * 2,40 2.400 . !
. o -} 77=19.20 1'7"—'.20 =0.1395 2.400 - 0,140
E 2 3 2.260. y :
: - . 2,260 _2.260 _ - ; 2.
2 3 =%, 37.68 "0-0599 | 2.260 - 0,060 \
© 3,1 & 2200 . ‘
i *_2.200 _2.200 _ PP
N .. . -~ 70, ko 0.03?! 2,200 0;@3-
k1.5 2167 ¢ oL,
7. ~'v . . . . Ly
- The'value of yobta ned when z = 5 will depend upon the step slze : .
d,as shown Jn the table.—-.. ’
' ) 5 o ¥ 4 o v
. . step size y{5)
» k = - ‘ " * [ 4 ¥
P 2 2.167 -« ’
) .0 1 a2.5: .
v .q > -
;oo / .2.549., /)
‘ . "7 0.001 2.551 o v
: . ] SR :
. re - - A
* \ ,: ". ¢~ . :

T .- . . .
- ..
2. ot . J
e e o L % * - o 5w «”‘ .
Q L Ty - -7 .

_ Curve 1.

[§ -
U ]

- s R

Answers to That Exam .

Differentiating the proposed solution,
.y, 2-3inx
dr 301 + Inx)¥

‘.2-§an 2 3 l-‘.an)‘hP-x‘

3(1 + In 2)2/? 3{z(1 - In 2)V2)2
[ . ==313_3z3znx1__‘x3
33 (1 - In D) ¥?
‘ L 2-3Ingz
3(t-- In :x:)zl3 N

_whlch verlfles the proposed solutlorf‘

Curve 3 is the only curve shown that can be a solutiom. 7 _
To determine if a curve is a possible solution, pick a convenien:
point on theacur've,em?snre the slope of the tangent line at that”
point ¥nd compare the measured slope wi'th the derivatlve calc /
lated by substituting the coordinates of the point into the

equation for the derivative, R
. % -
T - y" [
’
At the point {~1,1) the measured slope =
% -l
. dt T
¢ The measured slope of -0 {s—not undeflned therefore
the solutlon nnot bewcurve 1.

0, b

1 s
T undefined.

Curve 2: At (9.59. 1.96)- the measured slope = 0 (at least < |0.02)),
» but -%_ 1 N . )
s 950 1.9 - 7,5 - 013 . .
and 0.13 is not < |0, OZI, therefore the sglution is not
likely to be curve 2. . * .
° _ Checking a‘hother point on curve 2 wé have at (0 0) the
) measured slope = 1.1, but R
7 . . '
. A ]
. %- 0,1 o™ %- undefined and; l 11is not
- undefined therefore the/olutlon cannot- be curve 2.

Ly © 185 ®
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. - - V,\' - “u . ~ R TN - .o ‘~
. . & >
- . ©
g Curve’S: At (2,0) the measured slope = 0.5.and -~ -
&
1 | - -l
KN ="== 0,5.. . - .
£ - . % -_ 2 -"0 % .57‘ . ‘ .
Tex . ) Therefore the solution «could be curve.3.
> . » Curve 4: "At (2,0) the measured slope = 0 and . .

,; . %;TI—E; 0.5 . T4 “'-E-'.s;,. ' &

B

. A

Thegefore the solution cannot be curve &y .

. a + il
-

Since the so.lution is supposed to be one bf“ the curves, and it

e

: '} LI .} ' '
. . dx

- “T-038"32

¢
which is in close agreement with tfgmeasured slope’

= 0.3125, |

- . At (7.5, 1.6) the measured-slope = 0.175, -and - ,
. i - 1 . = .-l—- Y * ,!v ' o
. N I T1.6 53705, . -
4 , again in close agreement with the measured slope. )
' . . R - AR v L. 12 .
. - / . o™ <
e : : . : . |
~ ’J . . . o
T ) [ ‘ . . e ST

cannot be curve-1, 2, or &, butcould be curve 3, we might assume _’a—.-.,
. —< " v
that it must be curve’3. It would be wise, however, to check
- , - v
. another point ér two on curve 3. s -
. T : @ . -

Carve 3. At (4, ©.8) the measured slope = 0.32 and . - v

3. The glven points’are plotted below, and the slopes at x = 1, 2

and 3 are measured. These compare well with the slopes computed
. %

from the Dé, as shown in the table.

3
Ny
L% S
:
1
1
: T
[
Ky
- T r; 1 : i
| NE PR § } 4 — T tr
'xr ﬁT T cl 'I T : ]Ir T
3 y: - n P 0 PREIN ot
/4 Y g 1110 1 1
P 17 e | 1 — [
[1’, - —
‘3 ife ILI’ LI LS 1) ’ j TR FENR N
+ T T T} IH R ?
g !l’- = §Il . H 1 LIRS
L = .
1 M f — 1
+ [ BEEES 8 I 3
H— e B W R R E LN A N
: L i I ST JERAEREN
- 1 Vo4 T MR 1 + v
Bl e e e e e e e s
. - + + 11t Tt
¢ p— ::. :' R L it 1 1
| IS T T T 0 L1 .§] T L
1 0
l." : I H L) IR T 'Tr 1 :: +
H—H—tH—1 Tt L8 im s i)
», — T T [ ) ' 1 1T
“ T T 1 n n T e P S
~ RS N TS S SR A BN I ITNSSRSPESEES DI /N TR T
1 v N -

. .. & - Measured 1 3 - ay
: ) ] . . . ) o . Ty . y S]ope \232‘ P ,
_,‘:". ’ = ‘ . * : ‘ ’ ’ ) b
o e A . . 1 ~2.000 . 2.50 2.50 .
e < o, v . R . ) o " . . i 2 -0.793 . 0.5% 0.57 .
g Vo ' o : -0.423 * | ®o0.22 0.24 )
. e oo Lo . . -
v . A -~ v - «
» . - .
a :. l\ . N N . ﬁ : .
: - . | 187 .
- .- 186 T . | S
" B * 73 B ¢ ‘ .. 74
e R - s . BTN -_- s :‘ - ¢ - v
; sy S HT L T . . e \i:, P @l Ll e, . R v, , , P
% e A % ‘.,‘, o S a0 IR <o DR S . ' P - ) N
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- Sl ;) A
-

\J

. Calculation of slopes at different, points for .
. 4' ~ (23

-, ' e

. (2
This table Is continued ‘and the resuits plotted below. .
< Flo b

»
x|y | A | % ‘
1 0 1-0 1 1
2 |7 t-4,] 3
. N "¢ ¢
h “1 -8, -7
3 0 9 -0 3
LA N 9 -k, 5/3°
k, “’ 9 v8 ‘/3
I \.

.-
- A

—

i/
i //

.

/),

T~

/
/

\
e

IS

Quiz #3, page 74.

® - I
e BEREERERREEEEEER
, Graphical solution of
dy 1 ¢
13 A e
throuqh +he po.mf (b 1)
30 (sloves \ndicated above curVe.)
vy v+ "as - -
. [ 2 9
’ : z; o £
ORI % » T 17
- 4 #]e N J7j, )
£ ~ 4
o =
- = - 5/
. 1/
.5 Z8
3 1t
Q /]
0 ! 1
o 2 3\ 4 - §

Use the ‘same methq&&n in the answer to the problem in

o189 L.
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\~\;\‘ . rouk ;" ’ 4
' .t ‘ 3, 4, ! ) . . < ' \: N k] ’y N
6. A numerical solution with,intervals of 1 unit yields the Jc. Let R = the rate. of flow from the tank, and y = the ||Jqui_d depth.
following table of point pairs. ’ Then, from the statement of the peoblem, .
A &
. P=Cy Yy . ’ 4
z Y But, the ‘rate of flow must also be proportionai to' the ‘rate at A
0 1.00 which the water level is changing.. Thus, ,
I \ . el
. 2 *1.50 -
3 2.07 Setting the two expressions for rate equal to each other we have™
4 .l 2.66 ‘ ¢ o -C, 3% ¢ /y'. ¢
» - ¢ - -
.\5 3‘26‘ . -0 : ' 'Dividing by ~C,, and Ietting gl= k we have finally ,
6 3.86 2 ~
“ 4 . - c e
Y 448 . . . Lo kg T .
8 | s.08° | v ‘ R ’ S
9 5.69 ' ] ) .+, 8. The number of fish collected in Mike's freezer would equal the
. 10 _6.31 . di'fference between the number of fish that came into the pond
(For method see answers to Quiz #4, page 75.) and the number left %n the pond when Cy Seepage countéd them,
7a. Let W'be the weight of,the body, and R be the resisting force. . or ’ [f'Sh i"] = [f'Sh '"t°] - [f'Sh |5ft] ’ S
Then by Newton's second law.of motion ’ - - ’ - freezer pond . in pond } -
3 . .
EIF="mg* Arclet used the tangent field method and calculated the fish left
. - -y & - ’ .- in the pond to “be about 3500 fish (see figure 9c)
A= & (
R = “kp where v = instataneous velocity, so The fish into the pond wotild, be the number that i\ere carrleti in ‘.
dz; by the water plus the number put in by the Fish and Game :
V- kv =m H— . . - . @ ! ’
- i at . » s Department, that is | - .
since the mass m = W/g . R (12:960 m:n)(O 6. fish/min) + 1000 fish = 7776 fish + 1000 fish
. N
@k _gao , . . = 8776 fish
: . ‘- 4 8800 fish
Let x be the distance from the fixed point, and F the attractive Then the total number of fish caught in the basket would be
Then, . . s 8800 fish - 3500 fish = 5300-fish
F=. _k!_ = ma Coe L ) . Some freezer! N
1] z / . ,
where'm Is the particle mass-and a is the acceleration, gtx ’ R , K seme d‘”me‘f'~ )
‘. X d’ r, : . ) ) F , ) )
- ;!- m F : .\Q, L}
’ v
» ]
¢ ! - o
. *
. 197/ o
v g . . * s .o . . .
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¢ RADIOACTIVE CHAINS: PARENTS AND DAUGHTERS

INTRODUCTION

1.1 Radioactive Decay

4

.. Rad1oact1ve decay is a first order reaction. This
means that if a radioactive substance is not being re-

plenished in any way, then its amount (number of atoms)
N(t) decreases at a raae propoytional to that amount:-,

(1) N'(t) = ’ ’

=AN(t), . Y
where X is a p051tLve constant known as the dtsgptegratton
constant ‘or decay congtant.

.-

The elementary consequences of Equation (1) are .

discussed in many elementary.calculus textbooks. In our

ﬁ Uhlt 232 (inettcs of Single Reactant Reacttonsf we

' discuss first order reactions in greater detail.

ZERIC

In that °

unit,you can discover how experimenters determined empil

1ca11y hat radioactive decay is a first order process .
"and whét thlS suggests about the _methanism of rad10act1v1ty

1.2 Chains - .

When a radloact1ve substance A decays into a substance
B, A"and B are referred to as the parent and the daughter.
It may happen that B itself is radioactive and is the
parent.of a new daughter C, and so on.
a very common situation.®

In fact, this is
There are thrée ,chains like th1s
238 y235 ana Th%3?, whose
They do not overlap, and

r all naturally occurring radloactlve
substances beyond Thallium (atomlc number §1) dp the- .
periodic table. Each of these chains ends yith a stable
(non-radivactive) fonm of lead. - )

=,

beginning respectlvely with U
lengths are 19,:17, and 43,
together accourt

Q

Aruitoxt provided by Eic:
- -

.~ remember this notation.

‘actlve i \

q
1nterference . -

\J ‘g

v

SETTING UP.THE ERUATIONS

N

\ ‘
2.1 Notation and Assumptions

We shall consider the relations
parent A and her radioactive daughtery We shall write
Ny (t) and N (t) for their amounts/at t{me t, and A\, and

2 for the1r decay constants. Figure l'may help you

Nl(c) Nz(t)

Figure 1. Schémaéic fepresentation of a radioactfve chain.

P

Since ‘the rate of decay’of B into

" C depends only on the amount of ‘B present, and not on fhe ,

amount of C, we do not care whether C is &table or .radio---

»

N

‘ 1 "Now imagine that at™the iMstant t = 0 we have a
That is,
Imagine that the chain of

freshly prepared.amount Ny of A, and none of B.
N, (0) = Ny and N, (0) = 0.
reaét1ons n F1guré 1 then proceeds without extermgl
s

2.2 The Equations.

t
egince A is not being replenished, Equat1on €3] app11e5~

directly, and we have- .

1 . N > -

N, (t) = ANy (D). <.
If B were not ‘being replen1shed Equatlon (1) would

apply again, and N (t) would be chang1ng at the rdate

JAZN (t). Each.atom of A

wh1ch decays becomes an atom of B, and this is happenlng

at the rate Alﬂl(t)

But B zq being replenished.

,So altogether we have

* szt) = AlNl(t) - AZNZ(t).r

L




es
.

|

We are confronted with the following system of
® equations: -

€3] Nj(E) = -A N (1) . )
“ - N ) \
(3) 2(t) = 2 Np(t) - A,N,(t)
Nl(O) ='N0 . - -
Ny(Q) = 0. - ; ‘
.3. SOLVING THE EQUATIONS
3.1 Solving for N,(t) - &§
“ It is fair1§ straightforward to solve Equation (2)
for Nl(t). This was done in Unit 232 and is probably done

" in your calculus textbook.
and then integrate from .0 to t: -

tONT(t 2 : . -
, . —}(—)— dt = - txl de.
. o Np(t) 0 ] :
s . ’
’ This leads to-the equation: , 0
' 1IN (£)) - 1n (Ny(0)) = -Xt, >
. s -,
or . : ‘ .
o - [N (D) v .
’ 1n ~N—] = -Xlt, R
4 ° ) 0 '
since N, (0) = No “The usual absolute value szgns are not
) needed becahse the quantities 1nvolved are positive.
Flhally, v L. . -
) =N (t) = qu'kltf ’

’ )
.

.t Exercise 1. o
\ Find a relationship between )‘1 and -the half life of A (the half
life 1is the time t* at which N, (t*) = 31N°)

1\t . \\

EI{I(?‘ ’ o L :';

T
r

We just diyide through- by N, (t)

3.2 Solving for Né(t)

F1nd1ng N (t) is a bit more tr1cky
Equat1on (4) to Equat1on (3) we get

C(5) Ny(t) = A Nge At AN, (1)

170

Equation fS) ptrobably looks qdite d

you have seen before. Let's try to make

what kind of solution it has. It

of Nz(t) is the sum of two terms, 1Yo
With luck, this nfight remind us of the p
(6) 1f Np(t) "= u(t) --v(t) N

i . g
then N(t) = u(t) - v'(t) + v(t)
.
match up with the terms in Equation (5)7?

can we pick u(t) and v(t) so that

M u() - ovi(t) - AlNoe_xlt
. . , e
‘and -
(8) o “V(t) u’(t) = 'AZNz(t)? )

.
- I3

Since N,(t) = u(t). - aw(t),

v(t) - u(t) = -ault)vin)

»

and we ar¢ in business?

Can we’ pick u(t) apd vft) so the terms ig Equation (§)

Equation (8) can Be rewritten -

The ¥gt) factors cancel out,

Applying

ifferent from any
a shrewd guess

?'s .that the derivative
Noe *1% and AN, (t).

roduct rule:
o
-

< u!(t).

\
In other words,

<

'leavrhg

L4 N

~

)

us with e
- . 7
Cut(e) = -au(t)
which looks very much like Equation (2) aﬁd.can be solved
in the same way. TFirst, . 7
' t u'(t) [t
T
Theh, writing R = u(0), _
’ ) Oln[g%t—)-] = 'Aﬁ;t
’ u(t) = RetAZt,

ﬁ




* \ N ‘
. Y . s, “
o ‘. . .
Putting this into Equation (V) gives ' I >0 if t< t .
“Atonce) = AN.e-Mt oL . (10) Np(t) { = 0 if t =t
. : Re "27vi(e) = Mg . , <0 if t> t . ,
. J) A . * L AR 0
- vovr(t) = —— e(xz'xl)t. T and . . ) ‘ (
P . <0 ift< 2t X
: 1f Ay = A, we ‘feel confident you can com~plete this 11 /' N'Z'(t), =0 if t = 2t ' ,
solution yourself (see Exercise 2). N s 0 ift > ZtO’
\ . .
] ‘If Ap# oAy, thianz - Ay # 0 and we can write _ where - 1n; - 1m,
. 170 " (R2-Ap)t ' Ol ty = 3o
v(t) = e + K . 17%2 .
o O AR | ~
. v NN - Therefore, the graphs of N;(t) and N,(t) have the shapes
« where K is the constant of integration. Then . o graphs © 1(8) 2(t) \ ‘ P
< . ‘ shown in Figures 2 and 3., '
' N,(t) = u(t) - v(t) = ;3£¥L e Mt + kre A2t B -
2 ' 27" . - v N(® ' ,
ool Using the fact that N (0) = 0, we get N Nof
AN .
) B SR '
2 "1
> - N * LlNO .: . . \ —_ N
. KR = - .
AN X ¢
e 170 - TLeamALt ’ :
. O M) =T (e ME sethty, o
2™ ; ~
. <
. . L . 0 t
Exercise 2. T . C . ] -
Find N,(t) 1f A} = A,. . . ) > Figure 2. Typical graph of N,(t) (amount of A as a function of time).

. ~ R

"Exercise 3. .
. Assuming C is stable, .find the ‘;me at which the total radio~ Nz(;)
activity (i.e., the total number of disintegrations of A-atoms qnd

B-atoms per unit t:lme) is grefltest. N T
< —_—
3.3 Graphs of N;(t) and Nytt) R ! ‘
. It is easy to confirm fron Equation (4) that N (t) <0 '.
C\ for,all t, that Nj(t}>0 fox all t, and that lim N; (t) = 0.
. b ) tro
o With a little more work (see Bxercise 4) it cap be con- , ‘
§ fnmed “that, 1im N (t) = 0 and that \ 0 . ) 2t X t
L] . . . t - ']
A 4+ . , JFigure 3. Typical graph of Nz(t) (amount of B es a fun tion of time).

Q ".200 . ) . 5 , \ . ‘ ,
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Exercise 4 . A
) a. Show that 1lim N,(t) = 0. '
-)9& )
. .- b. confirm Equation (10). - .
° Y ec. Confirm Esuacion (11). . ,
Exercise 5° . T .7
’ Find 'the time at which the greatest amount of B will be.present.
. R o C
Exercise 6 '
For the chain Bizw-'Pozw-’szoe, )\1 =1.37 x 10-1 day-1 and
Ay = 5.1 % 1073 day 7L, ' ' .
a\ Use Exercise 5 to.determine when the amo¢nt of'P0210 will be
[ greacest . ., , \
el -8 210
. b, IE 1n1tially chere are 10 grams ®f 8i" ", how many#grams
of P0210 will there be when it is at its maximum amount?. ,
o . - N
] o~ °
4. EQUILIBRIUM
4:1 What is Equilibriun?"", - . ’ rakl

-In a continuing progess such as the one we are die- -
cu551ng, it is natural to ask about "equilibrium'" of the
process. Webster s Seventh New Collegiate Dictionary (1965)
defines equ111br1um as "A static or dynamic state of
balance between opp051ng fofces or actioms."

To a scientist;
"state of ‘balance" means that certain measurable'quantities
remain constant. But in practice scientists frequently use
*the word "qqu111br1um" when the measurements under consider-
-+ ation are nearly constant rather than actually constant. ~ R
., There is good reason for this.
, . illustrates that reason bicely. )
attention to N (t) and N, (t). For either of thesge actually
to be constant over any t1me interval, its derivative would
have tb be zero throughout.that interval. But Ni(t) < 0 for
»all t, and N'(t) = 0 for only one t. So,. strictly speaking,
it is 1mp0551b1e for either Ny (t) or N (t) to be "in equili-

brium." - “ ; e
4
But N (t) and N (t) 1nvolve negatlve exponential func-

The process wg are discussing
We lave been devoting our

’

tlons In fact functlons involving negative exponentials

RIC - <02 . N

L ’ . -
s . N
e

cases of it.

- tually none of A or f left.

. o
bccur fairly commonrly in the description of physical and
chemical processes. ‘
fhnp%ibn is ébt, ang if you know anything at all about it
you know that it approaches zero very fast, so that, al-
though it is never_constant, it is before long practically
equal to zero and therefore practlcally constant This’

The most basic negative exponential

¢

characteristic ("never constant,but practlcally constant")
carriesvthrough to many of the more complicated functions

involving negative exponentials. The quantities *they de-

scribe‘never.actually reach their limiting values, but

ysually come (and remain) extremely close to them within
a reasonable iength of time--perhaps even so close .that the
difference is pot mbasurdble Scientists often apply the

words "equ111§r1um" or "steady state'" to this situation.

There is one more thing we should say abeut the word
"equilibrium* before we move on to discussing spec1f1c
The functions Nl(t) and Nz(t) are examples
of functions which come and remain extremely close ‘to a
constant value (zero). " But it would be wrong to éay that
they are therefore in equilibrium, even allowing for the
stretchiﬁg of the definition which we just discussed.) The
reason lies in the other part of the definition: "oppdgThg
fbrées or actiqps.'" There are no "dpposing. forces or
Rather than ‘having two things happen which cancel
each other out, we have ﬁothing happening at aN (in the
limit). In plain English virtually all of A will have
decayed’into B and then into C,

actions."

so that there will be vir-
It takes .no fancy mathematlcs
If C is radioactive it will eventually decay,
and so on, so that the Iiﬁitinﬁ situation is .that only the
stable substance at the end of the chain will remain.

to see this.

» L]
There are, however, two situations involving radio- *+

active chains to which the word "equ111br1un" is usually
applled The first of these is known as transient equili-® -— -
brium. Another, known as gecular equilibrium, can be
regarded as a spéc1a1 case of ‘the first.

- . ' = [ 8
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+ means -——— = —
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4.2 Some Comments on Approximation

~ —

. Before we get into the mathematics 6f transient and

secular equilibrium, it will be wise to take 4 moment to
discuss just what we mean by a ''good approximation." When
sgientists'say)Fwo numbers r aﬁd s are approximately equal,
they almost always mean that the difference between r and

s is small compared to either’of .the numbers.
they might’say 16b2 =
would almost never say 2 =

For example

1000 (depending on the context), but
r

1. ’

Saying r - s is small compared to (for example) s
IS - L. is small, or % is near 1. In the numer- .

ical examples we just gave,.%%%%

3
= 1.002, which is very
near 1, but % = 2, which is much further from 1. )
This interpretation of appro;imation can be_fpﬁlied to
functions too. Let's look specifically at qggptive expo- - -
nent{al functions. 1If P and"Q are any non-zero constants,

and if 'a and b are constants such that 0<a<b, then -

-at -bt

" Pe + Qe _
.LIZ) pe~at )

1+ Qelable,y

Therefore, for t large
+ Qe'bt cah be approximated by Pe 2%, we
shall use this fact in the next section. ° \/

as t + =, since a - b is negative.

enough, pe 2t

4.3 Transient Equilibriuﬁ

It has often been observed that in many chains in-
volving a bqrent A and a radioactive daughter B, after a
while both parent and daughter appear to be decaying at the
éame'rate, in the sense thgt in any given time.interval (say
from t1 to t,, with t1 large enough) parent dnd daughter t

result is fhat NZ(QQ/Nl(t) is a tonstant. (This is why .
the word "equilibrium" is used in describing this phenonm-
enon.) Why should this be so? Let's inwestigate this
quotient, starting with the formulas for N,(t) and Nz(t)
given in Equations (4) and (9) respectively. .

We know from Equation (9) that

AN .
N,y (1) = (e 21t - e7Apty,
2 N :

s

i §
If Ai < XZ’ Section 4.2 tells us that for t large enough

AN

~ 7170 -t
N,(t) = e "1,
SR A

(13)

We also know, from Equation (4), that
. T ~A,t ’
Nl(t) = Noe 1

(ﬁhich is exact). Dividing Equation (13) by Equation (4),
we get ’ ’

N, (t) A .
(14) 2(t), 1

On the other hand, if Ay <A, then this does not go
through as neatly.

A1Ng -Apt
Ay=A e. e '
1742

Equatian (13) has to be replaced by

\

Nz(t) =

and then Equation (14) ﬂééomes . .
N, (t) A .
2 1 (A-2,)t
= 17279 .
NG " X 7 ’

This is a positive exponential. It does not have a f%}ite

limit., . . -

So.the mathematics tells us that transient equilibrium

each 1ose the same Jraction of tﬁeir initial anount = fay-—y —-

Nl(té)/Nl(tl) = Ny(t,)/N,(t;). This phenomenon is caffed
transient equilibrium. Let us try to explain it mathe-

'maticaily.

We can rewrite the equation of the preceding paragraph
Ny () /Ny (ty) = Np(ty)/N (). In ‘other words,'th? obserVei'
. s ’ .

. . . 9

».

should be observed when A <1,, but not otherwise. Sure
enough, this is exactly what happens.

PY) .
Another way of looking at transient equilibrium is to
compare the approximation given in Equation (13) directly
with Equation (4). The exponent -Ayt is the same in both
cases. So for t da}ge enough B behaves as if it had the
. : 23() 10
- N o J)




same decay constant (and therefore the same half 11fe*) as [
A. Slncgrx <A, this apparent half life is lomger than B's
natutal half life, an observation which should appell to -
‘your. common sense even with no mathematlcs at all. After

. all, two things are"h“ﬁpen1ng to ‘B. }t 4s decaying at its \

. natural rate, and it is being replenished at a certain rate.

.t Therefore you would expect :its actual rate- of disappeargnce

to be somewhat slower than if ‘it were not being replenished.

nmén ‘sense observation may help yod remenber which,

inequality Ay <A, goes for transient equilibrium.

\ ’

‘4,4 Secular Equilibrium _ .

‘e

. We have said that transient equilibrium occurs when M
is émaller than X,. Now let us suppose that'k1
small,.and very much, smaller than A,.

-is very
(Scientists. write

o

A1<<A§ to mean Ay is very much smaller ‘than Ay J) This is

. actually a very common occurrence For- example in the
chain PR )
3. Ra220° —an‘zz . Pozm’ .,

226 has,a half life of about 1620 years 'The decay con§

-1 >

Ra
.tant for the first step fis Ap = 4.8 x 10° yr

’ 1.17 x 10 6day 1. In contrast, R# 2 has, a half 11£9 of 3 83
days, so that A; = 0.181 day'1 = p.81 x 10~ .day .
’ ‘We know that whenever 0 < A < Xi, e Mt decreases to
‘ . zero more slowly than e AZt. 1f A1<fA23 ‘thexdifference

has become
we oan still say

in these rates is so great that long after e
¢ tiny enough to neglect’ in Equation (9),

. e Mt =+, (When t = 200 jays in the example given above,
- o et = 0.99977, and e *2% = 2 x 10716 Then we Would have

%

f
’ N

(15) Np(t) = r‘r No ,

and’ . i ‘ A ) )
_(16) Ny (£) = Ng, °
~both approximately constant. -,

*Por the definition of half'life and f£ts relation to the decay constant,
see Exercise 1. For more about half life,” see UMAP Unit 232 (Ktnettcs
of Single R@actaﬁ? R@acttons) . . 1

ERIC) 26}0'__ T

. possibly later substances, must always equal No-

—a””

Not only are N; (t) and N, (t) decreaming at the same
ratez but this rate is so slow that they are in fact v1r—
tually constant. This situation is known as secular eqyz—

librium, Again, as remdrked in'Section 4.1, we are

stretch1ng the term-a bit, since the quantities involved
are not really constant. Here there is yet another abuse
of terminology, in that the "virtuallyoconstant" values of
Nl(t) and Nz(t) are not their limitingoéalues. Eventualiy

(although perhaps none of us will "1ive long enough to see

-it) these amounts’'will begin to decay noticeably, and

ultimately they will approach zero. .

Remember +w€ also remarked in Section 4.1 that for ail
their abyse of the term, scientists do-agree that it is ‘
wrong to apply the word "équilibrium" to a situation 1n
which "noth1ng is happening" (there are no opposing forgces
or reactions).

, This is not a problem here. Plenty is

happening. New B nuclei are being formed, and 'old ones ar

decaying. The total number of B nuclei remains the same,
, (The total number

of beople 1n New'York City is about the same as forty year

but they are not at all the same nuclei.

. ago, but they are certainly not the very same people.)

4.5 More Comments on Approx1mat1on

One th1ng about Sect1on 4.4 may puzzle you. Adding

the approximations given in Equations (16) and (15) we

‘ »

get

. -

®= Ng * 1A Ng > Ng.

including those of C and

Nl(t)‘ + Nz(t)

But the gotal number'of atoms,
How can
this be? . h - ¥ .

’ .

what has happened is that Nl(t) has decreased by a
certainh amount while N (t) has increased by a lesser amoun
But there was a lots of A to beg1n with, so the decrease is
small compared to the original amount, and N (t)/N = 1.
On the other hand, ‘there was none of B to beg1n Wlth and
"even at secular equilibrium thif §; very little. Compare

~

e

S

t.

d
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* to this.amount, the increa.se°is éignifi;:ant It's as if
Exxon 0il- (A) were to pdy you (B) $10 000" and you were ‘to
use $10 of that money ‘'to bribe your math .teacher (C). Exxon

+ wild still have essentially thegame amount of money “as be-
. {  fore, and you will be much 'better off fmanc1a~11y, even _
though .the total of-Exxon s money and your money, when,
cdlculated precisely, ¥4ill be less fthan before.* The
numerical calculations in Exerc1s\e 7 may help §ou see what

-

is going on. . . .
“'Exercise 7 ' s -
" a.. Use Exercise 5 to show that the ‘amount of Rn222i in the chain -
' ) of Section- 4 4 is greatest at about t = 66 days. -
, b. (Requires a calculator ) Bor the values of-t given below,
e\ compute the precise amounts of Ra?'26 and Rn222 ‘as given by

quat:ions (4) and (9)¢ and also the sum of t:hese amounts.
Then compute the approximat:ions _given by Equations (15) and .

* (14), and also their wum. Tabulate and compare these results.
’ Take N‘o = 107 afoms, and make all computations to the nearest R
¥ integer. -
- u,set(indays)=1234557891020304050606670
- . ’ 80,90,100,200,300,1000, -
. - N ) .
) . . 4
A . \
& : . '
. ~ :
' - )
:'_.1,,,, L4
s k ﬁ.’ L
0 ’ .
“ L4 t -

.
< ]

*You will note that for this analogy it doesgnot matter whether your
math teacher is stable or not. . 13'
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5. ANSWERS TO ‘EXERCISES v .
PURL A |
. ‘ N, (t*) Noe -1 3 No.
=At* 1
1 =3 .
TS ~ L
. , -Alt:* = ln2 In2 .
t*x ;}1‘;_2 . .
. 1 2
3 . t
2. Writing A=A = 2,r i ]
. .
AN . AN
\ = —2 (A-A)t = —42 )
v'(t) e i ,
AN ' . .
. v(t) = —RQ t+K ‘
. AN o 4 -
. Ny(8) = u() () = Ré‘*‘{;ﬁg t+ x] = ANgte ™ E + RreME. :
*
Since N2(0) = 0, we have RK = 0 and -
. ¢
-\t
Nz(c) = )‘_Not:e . .
. . - .
3. Set: D' (t) = 0 where D(t) = A N (t) + A (t:)
D'(t) = AN (t) + AN (t) .
N . Y
2 ) e At .
= -XINO 1 T Y [- 1 17+ Aze 2 ]
271
-~ 2 2
. ATALN A AN .
- (""% No - xl .2x 0] -\t xl _2)‘ 0 At
271 271 '
D'(t) = 0 when
2 2 )
- I ) Mt AAy -t . ) \
)‘1 + P 1" = o © 2
2741 » 2
L a2 2 "
AT(A-20) +ATA _
12 1 172 e()‘l )‘Z)t

2
X Ay .




. . 7, . .
i ' . ] A.N Cva . A . N
: ey v A LA A A Nt = lo(e"‘lt-e"‘zt] . .
L A 1M 12 _ 711 (2A.1.) k. N, (tq A, .
. 2 -T2 VW .
. . . , A A
. - 2 2 -1 -8 | -1, i3
. ] (1.37x1077) x 10 -1.37x10 x24.95__-5.1x10"°x24.95
. 1 A lod; + in(22,-2)) - 21n3, i ’ = 3 —le . -e ”
T t = ——— In| —= (2A -2 )= - - . 5.1x10° - 1.37x10 l -
A=A 2" M A A
. , 1742 5 . 1742 X ; .
P o \ = 8.81 x 1077 grams. ot -
) At 0%and e~ Mt o : - 226 L
» 4 a. rUse e '1"+0’and e +> 0. 7. Columm A gives the exact amount of Ra““". -
N b ' A1“() -\t ALt R Column B gives the exact amount of anz‘z. * .
b, Nz(t) = ﬁ—-lle 1" + Aze 27| =0
27" . Column C gives the sum of columns A and B. N .
T a A Column D gives the approximation of the amount of RaZZG.
“At -At .
when Aje T17.= d,e 72 Column E gives the approximation of the amount of RnZ2Z, . ;
| - o
N . \ ’ Column F gives the sum of columns D and E. . e
1 \ N
. 4 t A B c D E |° \ F ‘
-1 | 999,998,830 | 1070°| 999,999,990 | 10° |e464 |1,000,006,464
2 | 999,997,660 | 1963 | 999,999,623
‘ 3 999,996,490 | 2708 | 999,999,198 | .
4 | 999,995,320 | 3330 | 999,998,650
- o . 5 1-999,994,150 | 3849 | 999,997,999 Y Y
Since NZ(O) - 0, Nz(to) D El‘:om., ysical considt'erations), 6 4282 | 999,997,262 v .
and t_:l;: Nz(t) = 0, the dgs g\e inequalities for Nz(t) fo?.lqw 5 899,997810 | 4643 999,996, 453 -
Ry
N = 5 8 | 999,990,640 | 4945 | 999,995,585 . \
B A r3 1_’? [)\fe At Aoe™ x 9 | 999,989,470 | 5196 | 999,994,666 * .
o N 27r ) ' . 10 | 999,988,300 | 5406 | 999,993,706 * Y *
when Afe 2 20 | 999,976,600 | 6291 | 999,982,891 .
. e 30 | 999,964,901 | 6436 | 999,971,336
[ At e . 40 | 999,953,201 | 6459 | 999,959,660 - . .
’ - - X
50 | 999,941,502 | 6463 | 999,947,965 ‘ =
Lo . A, 2 A . , - *
‘ (Use the fact that 1m [ Tl] - 210k, . 60 | 999,929,802 | 6464 | 999,936,266 v
2 2" ) 66 | 999,922,783 | 6464 | 999,929,247
\lnA, - 1n2A .
5. This occurs when Né(t) = 0. That g.s,q,at to = Al "y 2 » by 70 999,918,103 | 6464 999,924,567 : i
\ Equation (10). 172 . 80 | 999,906,404 |, 6464 | 999,912,868 ]
. , - . 90 | 999,894,706 | 6463 [ 999,901,169 | ) 7
6. a. By Problem 5, ‘ - C 100 | 999,883,007 | 6463 | 999,889,470 Y v -
1n (1.37x 1071 - 1n (5.1x 1073 24.95 4 . 200 | 999,766,027 | 6463 | 999,772,490
tg ™ ) 3 = 24.95 days.
1.37x10° - §,1%10 . 300 | 999,642,062 [ 6462 | 999,655,523
- : ' 1000 | 998,830,684 | 6457 | 998,837,141 * ] v |,
. 15 ’ ¢ . m
210 - o . . ' 16




Return to: .

. A STUDENT FQRM 1 EDC/UMAP
) L~ . . , 55 Chapel St.
o ‘ - Bequest for Help 74 Newton, MA-02160
. - ; Co v
Student: If yoy, have trouble with a specific part of this unit, please fill
out thi form and take it to your instructor for assistance, The information
you give will help the author to revise the unit.
" Your Name o . Unit No. . .
¢ —_— A
Page : ’ -
age_______ AP Model Exam
| Section .
O Upper OR —_— 0 Problem No.
R S . . \ )R — .
OMiddle _ Paragraph | . Text .
I N
i O Lower ‘ ' . . . Problem No. - .
. Y 3
Description of Difficulty (Please be specific) [ )
. ' ?
. . .
' v 4 ¢ " AN .
) L * {—\
1]
. o ! ' \ »
-/ e [ 4 - . R
- £ - .’
Instructor: Please indicate your resolution of the .difficulty i this box,
-———x . ] . . N . 3 A 1,
O Corrected errors in materials. List corrections here: s . -
2, e — —
Gave student better explanatiom, example, or procedure than in unit. 1
, Give brief outline of your addition hére: .
. ' r.
\\\ /n £y
Jd° o O Assigted student in acql;iring general learning and problem-solving . ,
,8kills (not uBing examples from this unit.) - . )
13 . _/ <‘ v
/ . ’ \ y ) . . ' .
212 § e
b ) ' ‘ Instructor's Signature o . . ‘. )
L . . .,"l e ! v < \

] R R .
. Please use:reverse if necessary. . v -




- T . ’ Return to: = .
s STUDENT FORM 2 EDC/UMAP - '

’ o T " 55 Chapel St.
) Unit Questionnaire . Newton, MA 02160 °

. . N N

. Naﬁe ) Unit No. ) ) " Date ) T

- s Institution . ', CoursewNo.

Check the choice for each question that comes closest to yourpersonal opinion.
N o e
1. How useful was the amaunt of det2il in the unit? - . %@}

___Not enough detail to understand the unit, - R .
~___Unit would have been clearer with more detaiB . - o
____Appropriate amount of detail ! )
Unit was occasionhlly too detailed, but this was npt distracting
4 —__Too much détail; I was often distracted ’ N . . -

)

’
Y

-
.2. How helpful were the;problemaanswers9 .

v

% .
N : Sample 'solutions ‘were too brief; I could fot do thdginterqgg%ate steps |
’ . Sufficient’ information was given to solve the problems . .

Sample solutions were too detailed; I didn't need. them o R
. B . . * 2 : R 2 < - s < >
- " 3. Except for fulfilling the prerequisites, how much did you use other sources (for ~
example, instructor, friends, or other books) in order to understand the unit}

___Alot Somewhat A Little ;T ___Not at all

l

¢

; 4. How long was this unit in comparison, to the amount of time. you generally spend on
‘a lesson (lecgure ‘and homework assignment) in a typical math or science coursef

. Much Somewhat About B ‘Sqmeghat ) Much
c . Longer Longer ) " the Same o Shorter Y i Shorter
a N .
5. Were any of the following parts of the unit confusing or distracting? (Check
s as many as apply.) . . A

-

A ]

Prerequisites
____ Statement of skills and concepts (objectives) s . ' ‘
Paragraph headings - C o ‘
Examples C N
-+ Special: Assistance Supplement (1f present) . ‘ .
Other, please explain . -
' 6. Were any of the following parts of the unit particularly helpful? (Check as many
as apply.) . ) :
. Prérequisites - C L. -,
‘Statement of skills and concepts (objectives) . . .. :
. Examples, .. L
Problems ' -
‘ Paragraph headings
Table of Contents - ,
Special Assistance Supplement (if present) . ' “ ,
Other, please explain - * ' . N . ~
- - (¥4

Please describe anything in, the unitﬁthat:you did not particularly lihe. ,

>

L

L

-

AL s

-
"

- 1)
v i

-

Please describe anything that you found particularly helpful ‘&Please use the back of

P

*

K

e 47 - i P
) M") P . . ) .
:EI{[C .« . . hd . —/o\ 2/] !% N ' : -,

i" this sheet if you need more space ) e 3 SN




