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MEASURING CARDIArOUTPUT

.

1. THE TECHNIQUE OF DYE DILUTION
. 1

The volume'of blood a pexson s heart pqmpb per unit

time (that Fs, the rate at which it icumps brood) is '

called- the peson's cardi'ac oufrput. Normally itl a per-

son at rest this rate is about '5 liters pet minute. But
afte, strenuous exercise It can rise to more then 30 IS

. 6
liei's per minute. I can also be raised or,,,lowered-

* 'Signiticantly, by certain diseases of the biooa vessels,

heart, and nervous system. ,

, r.

V( In this unit we shall discuss a technique fOr
- ..- .

measuringcaidiac output known as dye dilution. The

technique works as follows.. At time t = 0.a known amount
Dof a dye is injected into a main Vein near the heart.
The dyed blood circulates"through'the right side of Ole

.

heart, the lungs: then the left side of the, heart, and
/

finally appears ifi;the 'arterial systel. The concentration

.),

.%. . I

of the-dye is monitdred at fixed time intervals,At at %
some convenient point Ed the arterial system. Typically,
At might equal one secOnd.... For purposes of the mathe; '

, matical development we shall assume the
. . .

monitoring 1s done in the ,aortarta near the )lgirt.. In .

4 A.Exercise 1 it will be assumed that*the dye concentration
-is Anitored in t branch artery_instead, and you will be

A
asked to make appropriate changes in the analysis that

*
fallows

.

'Normally it will take only a few seconds fdr the dye,
td1Tasi throue the heart and lungs once and begin to

a

'appear in the aorta. , A typical set of readings will be

as in Table. 1., where-we see one result of injecting

D = 5 mg of dye in q4aIn'vein'ne,Ar the heart at time A
= 0" seconds. , we plot these readings-.on,graph R4er.,

we ,get tlie points shownftin Figure 1.-

6 4.

1

o

Our question is How may we use the empirical data

'given in Table 1 to'determine the cardiac output? .

TABLE 1

Typical Data for the Dye Dilution Technique

Time (seconds): 0

Concentratibn: 0

(mg /liter)

1 2 3 4 5 6 7 8

0 0 0.1 0.6 0.9,1.4 .1.9 2.7

Time (seconds): 9 10 11 12 13 14 15 16 17.

Cincentraion: 3.0 3.7 4.0 4.1 4.0 3.8 3.7 2.9 2.2
(mg/litek)

.

Time (seconds) : ' 18 19 20 21 22 23 24.

Concentration: 1.5 1.1 0.9 0.8 0.9 d.9' 0.9
(mg/1 i ter)

0 L.

c 2

v

nr

c _
-

v

0C 1^
U

,
a'c 5 10 15

Time (seconds)

$

s

.

6 o:

20

. Figure 1. Typical readings in the dye dilution techniqqe.
when D = 5 mg of dye 'are injected,at time t = 0 seconds'.

25
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2., THE FORMULAFOR CARD/AC OUTPUT

2.1 Preliminary Illustration
.

,

Let, us-set the stage by considering a S.omewhat`.

trtificial simplified version of the question. Suppose

it were possible to set things ,up so eilZ of h_e dye

flowed through the heart exactly once in a 'time interval
a

Of length T seconds,tat a constant concentration of C mg/k.

(A record of our observations would look,something like

Figure 2.) Then we could express the amount Of dye by

the formula D = CV, where V is the volume (in ldtei-s) of,

blood flowing through the heart:in this time interval, or

V = D/C. The cardiac output R (the rate) would then be

"given b;heformula V = 1%1*(volume.= rate x time), which

can be written in the fprm

(11 R = V/T = D/CT,

where D, C, and T are\all known. Notice teat CT is the,i

area-of thexectangle in Figure 2.

I ,

C.

0

I

e

1

it

1

Time (seconds)

Figure 2. Idealized observations of dye concentration in

the aorta. 8

2

k

..

We cannot achieve this situation. Even if we 4ere to

wait a very extended period of time to achieve a constant

concentration of dye in the bloodstream, this would be
. .

useless since we would have no vay of knowing how'long

it the dye to pass the monitoring' point

once.'

How can we modify this simple algebraic comRutation

to analyze the data of Figure 1, where the dye concentra-

tion is not constant?

2.2 Rectangular AporoxiM'ation

-There are two essential differIncesbetween the

idealized observations of Figure 2 and the'realistic

observations of Figure 1. One is that in Figure 2 the

dye conce tration is cons'ant. \'the other is less striking

but-equall important in Figure4.2 we can identify a time

infervaL during which we kIlOw exactly how much dye has

passed by our monitoring point.

Let us consider this second difference first. Iii

Figure 1.we see that the dye concentration rises sharply,

then falls sharply, and then, just-when we think it is

going to fall off tp zero, it rises again. This second

rise occurs at about t-= 20seconds. Now, physi%logists

know that 20 seconds is just about long enough for some

blood passing through the aorta to make a round trip of

the body and the lungs, and reappear in°the aorta. ts

Apparently what is happening is that most of the dye

passes through the aorta in the first 14 or 15 seconds.

The dye concentration then falls off rapidly (from t = 15,

to t = 21).asathe rest of the dye trickles through. Then,

at about't = 21; a little dye, having completed its round

trip, appears fox...the second time and mingles with what

is left Of the "first-time-through" dyne to cause the jump

in the graph.

We mUst attempt,to pick out what part of the dye
! 6, C
3 concentration after t,= 21 is due to "first-time-thraugli

. of

rr *

. \\:
i
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dye. Notice that just before't = 21 (and especially from

t = 19 t6 t = 21) the.iye concentration is decreasing at

a pretty steady` rate. Let us assume that nfirstztime-

through" concentration continues to acrease at,this rate:

Then the graph of "first-time-through" concentration,

iinstead of rising at t =.21",- will pass through the points

A., B, and C as shown1in Figure 3.

/ .In Figure 3 we simply drew in A, B, and C by eye.

They are approximately: A (22,0.5), B.(23,0.3) nd
C (24,0).. Therjepresentat best, a.shrewd gu
there is no point in agonizing over their Axact location.,

By the end of this section we shall see that the portion
of the g ph after t = 2/ has only a small effect on our -

result.

Now w are ready to confront the first of the two

esstential differences mentioned at the beginning of this

0

s-
0

C

0

-

...-- ..., i f-i 1

I

I. I
I

4- I
. I. I I I 1

1 I I I I

I I
1

I
i

I 4,,I'
I. I

I II

I

I i I '
I I 1 ft--,

1
-1 : 1 :

r1

*I ! 4--,
1 , . . 1,-1

1

1 I ' . 7- -1
I 1 I I IA

I I ' I

1
- _ItiltIT-igI

1 ;111111y-,
I I I I I I I I 'C

10 "15 i 20

Time (seconds),.

Figure 3. Rectangular approximatUoil of the dye flow:

. 4

X10
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section. In Figure '3 we have drawn a fuceesion of
rectangle37 Each rectangle has base tt (the interval

between observations) and height c(ti) (the observed
'Concentration at time ti). ,In our example tt = 1. In

Figure 3 we have illustrated, for i = =,t6 = 6
and e(ti) c(6) = 1.4.

Now let us consider the time interval from ti to
t
i+1' of 'length At. At the beginning'of that interval

the dye concentration i,s observed to be c(ti). The volume
of blood flowing past our observation.point during the
time.interval:is-R.At. Recall that R is s: rate. If the

dye concentration were .constant for this time interval,

the tOtalamoubt of dye flowirig"th.rough in this interval

would bei6(tORAt, of R times the. area of rectangle num-
ber.i4n Figue 3.

°

:Me time interval At is rather small cowered to t b e

total time, involved, aid' the dye concentration newer

changes abruptly, so the error introduced by making this
approximation is not great.

S lnce we have assumed that the monitoring is done in

the aorta near the heart, 'all the dye must flow by our

monitoring point between t = 0 and t = T0. If we add all
the approximations Corregpondilig to the rectangles from
= 0 to t = T

0 we mult account approximately for the

total amount. of dye D:
.

(2) D = E c(t4)RAt = R ii.c(tdAt,
i=1 / i=1

where n is the number of rectangles. In our example,.

n = 23 if we count the first two "rectangles," from t = 1
to t = 3, each of which has "height" zero. Thus,

(3) R =
D.

*
40 c(t..)Ati=1

where the denominator is the-total area'of the rectangle
in Figure 3.

.6

)

t



The Definite , integral-.

o slifiCtly._ upon the

s.er,Irld'Values-c(t.),-aaa-tWobserver'-determined'Nalues

74d: At. Now let us note that underlying_ the empirical'

values plotted, in Figures 1 and 3 th4ie is a function

c(tYdefined, (but not obierved) for all t between t.= 0

and t =,'T0
(see Figure 4). This function may be approxi-

mated .by fitting. a Smooth curve, to the observed points

jti-,c(ti)1, 'nstag' the :es 'Suied poilitS A, B, and C at the

enth'. The -dinoliiitator' in (3) 'is 'ten an! estimate Of the

area under this cUrve. In fact it is one of the approxi-

kiting- sums' used in lefinlirg tbe- definite. integral'

c(t)dt lim c(t.3.)
. 11+0, 1=1

which we think of n and To as given, and set At To/n.

*46 0-

, *

We can no write

(4) R -
D

Ic(t)dt

°

We must use an approximation sign because our curve c(t)

is at best a,curve which fits the data well. We have no

way of knowing if it is exact.

3. COMPUTATION OF CARDIAC OUTPUT

3.1 Antidifferentiation.

-How we use Equation (4) depends on the nature of the

function c(t)-. It may be that a curve can be fitted to

the data points in Figure 1 which is the graph of a func-

tion c(t) whose antiderivative C(t) is known. In that

case we would use/ the° fundamental theorem of calculus to

compute

T
°

J

0

, . . c(t)dt = C(T0) - C(0)\

, t
.

and then

R'
41

C(T) - C(0)

:, -- : , - , : .

. . ,3 . 2 Numerical' Methods
. . .

.MO-re likely, 2however there will be no explicit.

rmuld for- c(t) , let- alone for its antiderivative . In

:this case we use one, of, a iariety, Of ways' to estimate
the denominator of Equation (4), and thus obtain .an .

,

approximation of R. 14 shall list several, and illustrate
somelaf them with the data of Table I. Recall that these

. - data were.ohtained wi,tb a dye dosage of D = 5 tag. r. -
,

"-

can use the denominatqr ,of EqUation (3).

This
,- ".*

uses the areas of the rectangles in Figure 3, rather

,curve-c(t " the 'area tinder the curve in Figure 4.

1.3



° In our example,

.421% 23
c(t-.)at = c(*ti)-.= 0

i=1 i=1

"h 1.,1 0.8.+ 0.5'+ 0%3 = 44.1.

0

+ 0.1 + .+....

In our example,

24'
10 c(t)dt = (040404 0.2 + 1.2+ 1.81- ... +2.2

.$1
a

+ 1;8 + 1.6 + 1:0 + 0.6 + 0)
' Then 0

.

:4 .
o = 4-(88.2) = 44.1. ,

R. tg. 44--.--- 44.1 --, 0:.113 liters/second /
-. As in part '(a)', R = 6.8 Liters/minute.

= 6.8 liters/minute. N.

...... -;.---..,
.- . (d) If the interval [a,b] is'divided into n equal

'(Although the, concentration nleasUrements were taken by the
.

parts (a = to, < t1_ < ... < tn-1 < tn =4 b], where n .is anrsecond, outpu't is usually measured in liters per minute.) even number, then the parabolic rule ,'al,so known as °
Notice that in making this computation ,wereplaced_ the _____. Simpson's rube, says:

..
°..............__ , '; lasithiee experimental points of Table 1 wits the points \

A "(22,0.5), B (23,0.3.), and b,(24,0). the reason for
doing thi,s was discussed in Section /.2.

1

lb b - a .c(t)dt. (.yo + 4y1 + 2y2 + 4y3 + 2y4 +....,4

,(b) More laboriously, but also, more accurately, we a
.

. '"_
could sketch_Figure 4 on a large sheet of graph paper and

+ 2yn:2 + 4yn.., + yn),
.

count the number of squares' that fall between 'c(t) and with
.--

. with the, notation of part (c) .the horizontal axis. We -would then multipljrthis toter
by the unit of area tepresenteds;by a single tquare? ,

(
In our example,

There ,are also mechanical devices, called planimeterg, , ..
with which it is possible to trace the boundary,ofa 24

. t
.

c(t)dt '4. 0 (0 + 4(0) + 2(0) I- 400.) + 21D.6)region and then read an estimate ofi the area of the region 3(24)
from a meter. Weicould use one of these instead of coUnt:

!ti ;.
+ 4(0.9) + :... + 2(0.9) + 4(0.8) + 2(0.5) .ing squares. ...

+ 4(0.3) + 0)
.

(c) If the interval ra,b) if. divided into n'equal *
<fro a.

parts [a = t < t
1

< ..... < tn-1 < to = LI), then the. 0
=-1-(132.2) ....

trapezoidal' zule says!: . ( .
. 4

b
= 44.1 (to the. nearest -tenth).

c(t)dt = -b---721-1-a.(yo + 2y1 + 2y2 + ...:,+ 2yn'_1 +yn); Again; R-= 6.8, liters/minute.
a - " t'-

where we have written y c(t1) for_ i= 0,1,2,...,n.

9

15
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I 4. EXUCISES'

i.,Assume the dye monitoring takei7Alace at a 8rinch artery which

receives only 1/10 of the .blood cominTirom the heart. What

-changes are necessary In the analysis contaihed In* Sect4ons 2.2

and 2.32 How does this affect Equations (3) and (4)?'

3.

Suppose c(t) --is measured -in t in secnild, and

D in milligrams. In what units should

ti

c(t)cit

be expressed.

3. Suppose that at time t the dye,concentration is

c(t) = -bt(t - To)

.

= -bt2 +

"

whereb and T
0
'are positive constants.

s. Graph c(0101
I

b. .Find R in terms of b, To,.and the total amount D of dye

Injected., .

4. Suppose c(t) is'as'shown in Figure 5.

Figure 5.

I'
T
0
/2

Time (seconds)

A hypothetical concentration curve.

a: Find R in terms of To, Co, and,thetotal amount" of dye

injected. ,,r/

b. How isitaffected if (1) T
0

is doubled and CO is kept

-constant? (2) To is' halved and CO is doubled?

5. Find R in terms of T0, CO, and D '(the total amount of dye

injected) if c(t) is as'shown is Figure -6.

/3 2T'/3

Time (seConds)

Figure 6. A hypothetical concentration curve.

6. liven attempt to determine cardiac output, 10 milligrams of dye

are Jnjected into a main vein near the heart. The dye.concen-
.

trationis monitored at the aorta. The following observations

are made: ,

Time (seconds): 0 1 2 3' 4.- 5 6 7 8
.

Concentration: 0. 0,1 0.2 0.6 1.2.02.0 3.0 4.2 5.5
(mg/literi4L 0

Time (seconds): 9 10 iv 12 13 14 15 16 17

Concentration:46.3 7.0 7.5 7.8 7.9 7.9 7.8 6.9 6.1

(mg/liter)

Time4(seconds): 18 19 20 21 22 23 24 25 26

Concentration: 5.4 '4.7 4.1 3.5 2.8 '2.1 2.2 2.1 2.2
(mg/liter)
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,
- - -

- -

a: Plot thesq observations on graph paper.

b., At wyt'time does recirculation begin?

c.- What points would yog6lidd to the graph corresponding -to A,

6, and C in Figure 3?

"

7. Calculate the cardiac output R from the data in Exercise 6:

a. using Equation (3) directly.

b. using the trapezoidal rule.

c. using the parabolic Nle.

5. ANSWERS TQ EXERCISES

1. Throughout Section 2.2, D and'R must be replaced by 0/10 and

R/10, respectively. Equations (3) and (4) are unaffected.

2. Milligram-seconds per liter.

3 a.

b.-.
6D

bT -3

0.

D

(btT0 - bt2)dt'

0

4. a.
2D

2/sec L
C , C T

k /min
0
T
0 0 0

`-s
$.

D .where A is the area ) cl

A' of the triangle ,'

r,b. (1) halved. (2) unchanged.

5. 2I:2 /sec = 112-2 /Min2C-T C T
0 0

.,; '

( D where A is the area
of the trapezoid . 1 13

6. a.

8

7

6

o
...,

$.

5

0

4'-'c

23
o -

2

1 .
0

5 10 15 '20
(

25 30=

b, just after 23 seconds.

Time (seconds)

c. A (24,1.2), B (25,0.7), C (26,0) is one possible answer.

,7. Did you Kemgmber to replace the last three day points i6.the

table-bl three 'Points approaching the t-axis? A (24:1.2),

B125, , C(26,0) will do.

a. The denominator of EqUetion'(1) is

26 26
rc(ti)At = I cal)
i=1 i=1

.Therefore,

ti

o + 0.1 + 0.2 + + 1.8 + 2:1 + 1.4 + 0.7 + 0

= 106.7.

R= -47= 0.094 liters/second

5.6 liters/minute.

b. 26

c(4)dt 2
(26)

° (0 + 0.2 + 02:7 + T.2 + + + 0)2

1

=
2
-(213.4)

= 106.7.
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As ti n. Pali 7a,, -11..:1 5.6 1 i ters/m)nute.

c(t)dt 26 - 0
0 4

3 2 (0 + :4 (0.1) + 2 (0,.2)° + 4(0.6)"+
b.

+.4(2M) + 2(1.4) + 4(0.7) °4-0)

44. 3
1

106.8.

Again, R = 5.6 liters/minute.
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1. DRUG DOSAGE PROBLEMS

1.4 Gradual Disappearance of a Drug from the.Body ,

The concentration in the b400d resulting from a

single'dose:of a drilg normally decreases with time as

t1e drug is eliminated from the body. (See Figure 1.)

I

time
1 2 4 5 6 7 8 (hours)

Figure 1. She egcentration'of 'a drug in the blood stream
-decreases with time.

1.2 'What is the Effect of Repeated Doses of a Drug1-

If doses of a drug were given at regular intervals,

"what would

the blood?
in Soie

happen to the concentration of the drug in

Would it behave as shown in Figuies 2 or 3,

other way?

4

0
Figure 3. Another possible effect of successive doses

ora drug.

1.3 How to Schedule for a Safe but Effective Drug Concentration

For most drugs there is a concentration below which

the drug is ineffective and a concentration above which

the drug is dangerous. How can the dose and the time

between dose's be adjusted to maintain a safe but effective

concentration?

0,L-highest safe level

o

0

Figure 4.

__ _ _ 4 .. __
1

i lowest effective level
1 1

1 I

1 I

--t
1

Le ----).
0 1

t i
time

,Safe but effective levels.

Co .= change in concentration'produced by one dose

to time between doses

2. A MATHEMATICAL MODEL OF DRUG CONCENTRATION

1 " To give a reasonable-tlialiet,to the two questions+ Figure 2. One 'possiblip effect of successive doses
-

1

27 2

of drug'. above, we develop formulas from which we can compute druga



concentration as a function Of time. The developmimt

depends on two assumptions. Tile first assumption is

quite reasonable. The second assumption is reasonable

in some circumstances but not reasonable in Ethers, and

limits the application of the model we are about to

describe.

2.1 The First Assumption
o.

The-first assumption, one that is borne out

by clinical evidence, is this: Whatever the mode of

elimination, the decrease in'the concentration of the

drug,:in the blood stream will be pYoportional to the

concentration itself. If the concentration were doubled,

thd rate of elimination is doubled also. If the concen-

tratiOn is reduced by a third, the rate of elimination
4

is reduced by a third. The amount being eliminated at

any given instant is a fixed fraction of the amount still

present.

To model this assumption mathematically, we assume

that the concentration of drug in the blood at time t

is a functiOn C(t) whose derivative C'(t) is given by'

the formula

cl) C'(t) -kC(t) .

In this formula k is a positive constant, zalled the

elimination constant of-the drug. 'Notice that C'(t) is

'negative, as it should be if it is to describe a

decreasing concentration.

2.2 Units of "Measurement

We usually measure the quantitids in Equation (1)

, in 'the following units:
t

28 3

t !hirs (hr)

C(t)- milligrams per milliliter of blood (mg/ml)

ar
C'(t)

111-1
=1 -1or mg ml hr

Glp

k hr
-1

2.3 Drug Concentration Decay. as a Function of Time

If we happen to know the concentration of :I drug at

a particular time, then we can predict the concentration

at any later time by integrating both sides of Equation

(1). Specifically, if Cois the concentration at t =0,

r then we calculate C(t) for every t >0 in the following

ways

First rewrite Equation (1) to get

t,(t1
C(f k

Then integrate from 0 to t;

Jto ---C-CTI"

rt

dt = -kdt
0

In .q .,(L/ -kt
c)

C(t)
toe-kt

Exercise 1. Starting with Equation (1)., carry out in detail the

steps that lead to Equation (2). [S.-1]*

To obtain the concentration at time t >0, we multiply the

initial concentration Co by e
-kt

. The graph ,of C(t) = Coe
-kt

looks like the one in Figure S.,

* This reference means that there is addtlonal explanation material
available in the Special Assistance Supplefnent at the back of the
unit.
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Figure 5 Exporiential model for decay of drug
concentration with time.

Exefcise 2. Suppose that the elimination constant of drug A is

k =0.2 hr , and that of drug B is k =0.1 hr -1. Givelithe same

inital.coperltration, which drug will have the lower concentration

4 hours later?'

2.4 The Second Assumption

Havillg-made an assumption about how ,drug concentrations

decrease with time', we need a companion assumption about

hclw they increase again when drugs are administered.

What we shall assume is that when a drug is taken, it

it diffused so rapidly throughout the blood that-the

grapy of the concentration for the'absorption period is,

for all practical purposeti vertical. That is, we assume

an instantaneous rise in concentnation whenever a drug

is administered. This assumption may not be as reasonable

for a drug taken by mouth as it is for a drug that is

injected directly into the blood stream. [g2]

By combining Assumptions 1 and 2, we arrive at the

graphs-in'Figures 2 through 4.

4

5

3. DRUG ACCUMULATION WITH REPEATED DOSES

3.1''Quantities to be Calculated

What happens to the concentration *C(t) if a dose

capable of raising the concentration /by Co mg /ml each

time it is given is administered at fixed time intervals

of length'to'? Does the drug accumulate? If so, to wht

level? The next graph shows one possibility, and suggests

a number of quantities that one should know howq4o

calculate. [S-3]

Figure 6. One possible,effect of'repeating equal doses.

3.2 Calculation of Resijal Concentration

-IfweletC.1-1 be the concentration at the beginning

ofthei-thinter,valandR.1 the residual concentration at

,tfie end of it, We can easily obtain the following table.

31 6



1

1

Aitle
.%

TABLE I

CALCULATION OF RESIDUAL CONCENTRATION OF DRUG

Ci-1

co

<
R.

multiply - e-kt
0

by e
-kt

0

add C
o

2 + -kt
0 C

o

-kt +C e-2kt A
-

C
0
+C

0
e-ktO +C

0e
2kt

C
0
e
-kt

0 +C e
-2kt

0 tC
0
e
-3kt

0
/3 .

*.7

rt-

n
'0' '0'

-kto kto

From the table we see that

R = lim R
C e-kt0

n+0% n e-kto,a0 --------
= ES-"

If a dose that is capable of raising the

concentration by Co mg/ml is repeated at

intervals of to hours, then the limiting

valve R of the residual concentrations

is given by the formula

C
(5) R =

kt
e 0 -1

The number k is the elimination constant/7'

Jif_the drug.

A

. .

Exercise 4. UselEq tio to find R for the values of C, k, and

(3) Rn = C
0
e 0+-kt

0

e-nkt
0

to given in Exerb e 3. How good an estimate
!%'

of R is Rio? P

' l %

is the sum of the first n terms of a geometric series.

The first term is Coe -kt.0 and the common ratio is e,-kt o.

-.Accordingly,

(4) Rn = C
0
e-kt0

Exercise Calculate R1 and Rio for Co 1 mg/ml, k 0.1 hr-1

and to = 10 hr. (To compare R10 with the result of Exercise 4,

assume that the data are given to unlimited accuracy.)

To return o Equation (4), noiice that the number
e-nkto is close to 0 when n is large. Irk fact, the

larger nsbecomes, the closer e
-nkto gets to 0. [i-4]

As a result, the sequence of Rn's has a limiting value,

which we call R:

32

3.3 Results for Lo Intervals Between Doses

The only meani g way to examine what happeqs to

th reldual concentration, R, for different intervals, to',

between doses is to look at R in comparison with Co, the

change in Concentration due to each dose. D7-4 To

make this comparison, we form the dimensionless ratio

R/Co by dividing both sides of Equation (5) by Co:

(67

C° e 0- 1

Equations(6) tells us that R /C0 will be close to 0

whenever the time to between doses is long enough to make
ektir 'As for the intermediate values of Rn, we can

see from table I that each Rn is obtained from Rn..1 by

adding a positive qyntity (Coe-
nkt0).

This means that

7 8

33
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ill the Rn's are positive, because RD is positive. It

. also: means that R islarger,than each of.tle Rn's. "In.

symbols;
_

.-
(7) 0 < 1 <'R

all

n
,

.

for all n.

The implication of this for 'drug dosage is that

whenever R is small; the Rn's are even smaller. In

particular, whenever to is long enough to make ekt0 >> 1,

the residual concentration from each dose is 4Mpst nil.. ..

The various administrations of the drug are then
. ,

essentially independent, and.tiie graph o C(t) looks

like the one in Figure 7. `

Figure

'2to 3t0

.

\"".
Drug concentration Tor loll intervals
between doses..

'3.4 liesults for Short Intervals Between Doses-

rf, however, the length or time to between dos es is
t..so shortAhat eJcpg is not very much larger than.1, then

Equation (6) shows thpt significantly greater
- .

than 4. The 'concentration will bui 4*up with repeate

doss izes'into an o ciliation between.

°R and R' + Co. [S-7] Se= Figure 8 on page 10.

>

1

t

10t0

when interval

to St
Q.

Figure 8. Buildup of drug concentration
;between, doses is short.'

4. DETERMINING .A DOSE SCHEDULE FOR SAFE -BUT EFFECTIVE
.

DRUG 'CONCENTRATION

4.1 Calculating Dose and Intei-val'

S uppose that a drug'is known, to beineffeCtivebelow

a concentration 'C1 and harmful above some higher concen-

tration C11. Is-it poss}ble to find,values of C0 and to

that will-produce a concentration C(t) that is safe (not

above CH) but.still effectIve (not below CL)? To whatever

extent-the model it valid the answer is-YES, and figure 8

gives us the clue for how to start.

We begin bylg ooking for values of Cy.and to that

make

(8) R = .CL and Co + R
f . .

Subtraction then yivos -

9

19) % Co = C H - CL ' °

do
iheii these values of R and C0 are substipited in Eqdhtion

. 0 1 ,

103 5
. .

*4 ,
.

11

(S), we find that
.

._

'I.

CI
1-

CL
'(10) C

L
.

kt ; ' ,
e'



. .

We-then solVe, for ekt° to obtain

° C okt H
(11) ,e o. 7 T1: .

When we take the logarithm of both sides of (11) and

divideboth.sides of the resulting equation by k, we

learn ,that

s (1.2)
C
H1

t'o - In 7r-.
'L

....Exercise 5., Solve Eq t Lion (10) for ekto to obtain Equation (11).

, \ .

Exercise 6.(Solve Equation (11) for to to obtiinsiquation (12).

4.2 Reaching an Effective Level Rapidly

To reach an 'effective level ,rapidly, administer a

,dose, often called a loading dose, that will immediately

produce a blood concentration of CH mgAM1. this can be
1 Cu

forMed every to = In hgurs by a dose that raises
L

the donceitration by Co ="CH-CL mg/ml.

b) ,Does (a) give enough information to 'determine the size of

each dose?

4-10.-Suppose that k = 0.01 hr-land to = 10 hrs. Find the smallest
1

n such that R
n
>--
2
R

11. Given C = 2 mg/ml, CL = 0.5 mg/ml, and k = 0.02 hr:', suppose

that concentrations below CL are not only ineffective but also

harmful. Determine a schemefor administering this drug (in

terms 9f concentration, and times of dosage.)

Suppose that k = 0.2 hr" and that the smallest effective

concentration is 0.03 mg /mi. A single dose that produces

a concentration of 0.1 mg/ml is administered. Approximately

how many, hours wit) the drug remain effective?
.

. s

6. ANSWERS TO EXERCISES

For detailOsolutions, see the sections of the

Special Assistance Supplement referred to in the brackets

after each answer,

1. See [S-/).

2.- C [S-8]< C B,

3. RI= 0.36788; R10 = 0.58195 ( .-9)

7 S. EXERCISES
4 4. R = 0.58198; R and R

10
agree to four decimal places. [5 -10)

. . .

. 5. See [5 -11]. .0

7. State two reasons why the model suggested in this unit seems to be t

See [5 -12].

agood one.
. -J ' ., 1

.7. See [S-13].

gz Suggest,?ther Phenomena for which the model described in the
8. See V-14).

xt
, I

Might be used. , ., , .

_I '
-, 9. a) t- 0 20 hours [s-is]

,9. a) If k = 0.0y hr-1,and the highest safe concentration is e 0

.-
b) No; but the first dose-could be as large as 2.72 times the

'Mies the lowestimffictive concentrati6i;,, find the length
.

-4. ., minimum effective dose. [5-16] . ..
_.c

4'C:of time between repeated doses that will assure safe,but. , 4
...,

effective 'concentrations.

36
aC

.
11

10. n = 7 (.5-17)

O

37'
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MODELI1A21-

Ugh .seldom,be asked to take an exarcon ',single

unity', an eicamian a *data; of units is usualusually 'made up from i'Pool

nuestiana similar to those below. .

A. .Aisume,thai the decay in concentration of a dtug

injected intothe blood- stream is given by C = Coe-lt,

and:thit. the drug i,:given inssush.a way that each dose

bake,s',4n instantaneous change in the
,

140, Of Co. Write, an expresOon that

,Concentration after. 3 doses spaced to

find$the concentration at.ttme 3to.

veliof concentra-

ves the residual

hou art; i.e.,

State at lease one deficiency.of the model described

in this unit.

.'SUgiest a situation.,-different from that des,cribed in

the-text-, to :which this model might'be.applied.

4. A, certain dose of a

r_

drtig,`i capable of-raiiing the

blood, 'ofihe d7S mg/ml each time

10111,aien.i The decay constant fOrthe drug is 0.1 hr-1;

.doses are given every our'hours.':-
Find,:ihe concentration of the,drug just before'

the third doSe. - '

Find the concentration Ydst-ifter)?e thitd dose.
. ,

S. _Given the drug above and the4nowledge that' the

,highest safe level of concentration Is 0:9 mg/ml and

the lowest effective level is,0.6 mg/ml, *vise a

'reasonable schedule (dose size and tide interval) for

administering -the drug.

15

P

8. ANSWERS TO MODEL EXAH

1. See table I, page 7 of text.

2. A drug taken orally, such as aspirin,'certainly takes

a finite time to diffuse into/the blood stream. Thus,

the assumption of an instantaneous rise in the level

pf concentration is not realistic for such drugs.

3. The concentration of active developer in a photographic

'developing solution might vary in a similar way each

time iepl-enisher is added to the solution. See ES-14)

for other examples.

4a. 0.5598 mg/ml

4b. 1.0598 mg /dal

S. to = 4.05 hr ; Co = 0.3 mg/m1

The first dose could be three times this amount.

4

O

41
16

1
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9. SPECIAL ASSISTANCE SUPPLEMENT

[S-1] Answer to Exercise 1:

Integration of *I: dt as -kt

yields In C(t) - In C(0) = -kt

and, letting C(0) = Co, In = -kt
Co

or e-kt
Co

and finally, C(t)
Coe-kt.

[S-2]

If the'time for the drug to diffuse through the body,
sufficiently to affect the desired organ is appreciable compared .

to the time between doies, then the assumption of a vertical
rise in the graph of concentration is a poor approximation.
Under these conditions, the graph of concentration versus time
for a angle dose might resemble the graph below:

C

t

After completing this unit, try to sketch how a series of
such doses might accumulate. If you would like to pursqe this
further, the equation of the,graph above is

C(t) CD
2

0
1(,1

_)(

6' 6

-kit_ .-k2t)

This equation is plotted at the top of page SA-2 for two dif-
ferent values of the diffusion constant )(I. The elimination
constant k2 isL1 hr-1 for both curves.

SA-1

t

0 10 20 30 ' 40 50 hrs.

Rise and fall of concentrationcwhen diffusion time is significint.

[S-3]

9

Looking at the first two steps of the diagram:

0

we see that C1 = Co +R1 , but R1 = Coe-kt°

kto 41Therefore, C1 = Co +Coe, . .

. Looking at the third step:

to 2to

we see that C2 nC0 +R2 , but R2 . eiie- kto

r = (Co +Coekt°)
e-kto

ej)e=kto +coe-2kto.

Therefore, e2 = Co +:(Coe-kto 4. cee-2kto)

, 1. CO 4. Coekt°.+ Coe 2k4
.
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I

. .

We reach the results given in Table 1 (page 7) by contiquing
this process. ,

[S-4]
-nkt

The term Coe is the increase in the residual
value at the beginning of step n.

C

Rn

-nkt
_ >Coe

Note that at the end of each dose period the residual
phcentration is greater than the last residual amount.
by a smaller and smaller increment.

Beginning with Equation

Use the fact that
lim e-nkto, 0.
n+0

Eliminate parentheses.

Multiply numerator
kto

(4) ,
-kto(

-nkto
Rn = Coe -----ruzi

-1,e '

R = ITI Rn = Coe --zk-f-,

S

-kto( 1

.

1-e u)

. C -Kt- e -K10

indodenominator,by a . eict0

[Sto]

001 and toncludiu that it is small. First of all, we do nqt
-know what .001 meads physically. It might mean .001 kg/M1,
which could'be a lethal concentration of many drugs, or itcould
mean .001 mg/ml, which might be an insignificant concentration.
The number .001 by itself is devoid of physical meaning or
magnitude. The second pitfall is that while .001 mg/ml might ,

+be an insignificant concentration of one drug, it might be a
very high dOseNof another drug.

SA-3

There are two pitfalls in looking at a value of R of

dm-
Na.

We can avoid both these pitfalls by not looking at the
absolute values of R but only at its size in comparison to Co
by taking the ratio of R to Co. Thus, if R is .001 ml and
Co is .0002 g/ml, then the.ratio

R .001 g/m1 c

Cb .0002 g /ml

and we see that R is several times larger than Co.

[s-7]
As Rn becomes larger, the concentration Cn after each

dose becomes lar r. The loss Auring the time period'after each
dose increase with larger Cn (assumption 1, page 3). Finally,
the drop 1 oncentration after each dose becomes imperceptibly
close t he rise in concentration Co due to each dose. When
this ondition prevails (the loss in concentration equalling the
gai ) the concentration will oscillate beo4eerrat the end of
each period and R+ Co at the start of each period.

[S-8] A

CA
to-

Coe
1(.
=

CB =.Coe
k
B
to

=

to Exercise 2: .

0
-40.2 hr-1)(4 hr) Coe-0.8

Coe
-(0.1 hr-1)(4 hr) a Coe0.4

e
-0.8 -0.4

< e ; 'therefore, 'CA < Ci

[s-9] Answer to Exercise 3:

Rn = oe-kto[i
e-nkto

I_ 0

k hr-1 ;Co .= 1 mg/ml ;

-kto

R1 =

B10

e-(0.1 hr"1)

C0(0.36788)(1)

C0(0.36788)(11-

C00.36788)('

to = 10 hr .

00 hr) .v-1
0.36788

= 0.36788 mg/M1

3212

60(9.36780(1 : 1232).

= C0(0.36788)(1.58190) = 0.58195 mg/m1
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[.5410] Armor to Exercise AiR
e o-1

Co 6. 1 mg/ml ; k = 0.1 hr-1 ; to = 10 hr.
ekto e(0.1 hr-.1)(10 hr) el. es 2.31828 '.

e

R = (0.58198)C0 = 0.58198 mg/ml2.71 a-1 1.71828

,10111111

[S-11] 'Answer to Exercise 5:

Cc

- C

Given C =
L to

ekto
CL

+1 . 51 .
CL

CL
CL

ek 0

solve for e
kto

BEIN11

[S-12] Answer to Exercise 6:

C'

Given ekto =
CL

solve for to.

Take ttlikl.egarithm of each side:
In(ekto)

Or Cl
= 1 n fr2:

L
C

kto = inkH )
-4

CH

to,...1111nH
1.

41,

[S-13] Answer to Exercise 7:

The model appears to be a good one because it is in
accord with several common practices of.prescribiAg.drugs;
it accounts for the practice of prescribing an initial dose
several times larger than the succeeding periodic doses.

.,The4nedel alio provides quantttatively for the pre-
diction of concentration leveli under varying conditions of dose
rates in terms of a single easily measured parameter, k.

What else would you need to know before you could
actually prescribe 'a particular' dose rate? ' r lr.

SA-5

e.

[S-14] Answer to Exercise 8:

Another phenomenon to which the model could be applied
is the consumption of alcohol. How often could a can of beer or
a cocktail be consumed and still not produce a concentration of
alcohol in the blood at which a person is legal$y drunk?

A very different phenomenon to which this model might
also be applied is the burning of an old-fashioned woo' stove.
Here 'the rate of burning oteat output is proportional to the
charge of wood placed in th stove. There is a maximum safe
level of burning to be reached as soon as possible, and a lower
level required to keep the cabin up to minimum comfort. As the
wood charge is consumed, the rate of burning, heat output, and
consumption of wood decrease.

%.4

Sketch possible graphs of heat output versus time through
several charges of woody (See Figures 7 - 8, "Heat Output of a
Franklin Stove, p. 5
podia, Vermont Crossr

.bf Jay W. Shelton, Woodburners' Encyclo-
ads l'rqss, Waitsfie1TIFF1TCTT 1976.)

[S-15] Answer to Exercise 9a:

4
CH° 9.

t = 1 n -c

L

given
C
H
T = e

and k = 05050 hr-1

to = 1 ..1-1n(46i (20 1;0M = 20 hr

L ro
/

[S-16] Answer to ,Exeraise 9b: a '

. .

No, 'not enough informaitio% is given to determine the
actual size of each dose. Wehave only tht ratio of the highest
safe concentration to the loweit effeitive concentration. If

the valve of one of these limits were,known, the other could be
calculated and the differgace in concentration to be produced by..
one dose determiqed. However, the actual dose' requixed, to pro;

duce this change in concentration would depend on the vojtype of
bloc "'in the patient and how quickly the d ?ug would sproad
through the entire blood system.

SA-6
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(S-17] Answer to Exercise 10:

Given: R.; ix' Coe-
kto (

'"k1
:.

" et 0
I. V 4 C

,. .'
and Ris Th-TO--, , find- n for R >IR .

.

- 1

_e-nkto

n 2

-Theabove implies L.
..0e-ktop

-kto '>.tri)(--ekto_,),- e

Some algebra leads to e 6141 > 61. 1).

. .". . e-nkto. .ri .1)Then.........-\' 2),

and )i,. e-nkto I1 ' .

1.

but also-given were k at 0.010 fir"1 tP i 10 hr

SO el
-nkto -n(.01 hr-1) (10 hr) e-0.1n.

Therefore," .e-0.1n l'
and e0.1n >2.

Taking the eogar m of each side:. 0.1n to e > In 2
or 0".1n > In 2

n > 10 In 2
n > 6.9.

'Therefore, the smallest nmust be 7.,

[S-18) Answer to Exercise 22:

. .1 H
G iven - t0 15 1

C

CL
le

044

9nde 4 k so 0.020 ht?-1 ,CH 2:0 C, a 0.50 mg/ml.

Then. In 02 5mg/ / ml
* (50'hr) In 402 hr ..

(501hr),(1,39) = 69 hr..
2.0 tioginq """7-

m t.5 mg/ml

reg/m1

9
t

. SA-7

1*

A

S

F4-

.1
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EPIDEMICS

1. STATEMENT OF THE PROBLEM

An epidemic is the spread of an infectious disease

through a community, affecting a significant fr.kEtiop. of

the population of thecomipnity. Typically, the-number

of infective persons might rise sharply at first, and

then taper off as the epidemic runs its course or is

brought under control. Figures 1 and 2 illustrate this.

There are two kinds of steps health authorities

can take to control an epidemic. They can attempt to

cure ,those who are sick, and they can attempt to prevent

the disease from spreading. Usually they will,pttempt

both.

Since the disease is infectious, it seems reasonable

thareducing contact between those who have or, catry it

and those who are susceptible to it will help prevent its

spread. Another means of controlling some epidemics is

to eradicate the source of infection, for example, rent
populations or mosquito breeding grounds. However, this

will be of no relevance by-the model we shall consider.

Reducing contact may be accomplished by reducing

the number of infective persons in any of several ways

depending on the nature of the disease and of the commun-

ity. For exam le, they may be quarantined, .6 y..may be

cured ass ing ecovery brings immunity and ds not

,leave them as cart Ts, or, in case of theif death, their

bodies may be quickly .removed.
."

l' t what rate, will this reduction have to be accom-% ._ , -4,.
plishe to keep the epidemic under control? Can we pre-

dict what yoftion of' the community will eventually catch

the disease,befOre the epidemic is over?

ri
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Figure 1. Typical course of an epidemic.
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Figure 2. Typical cumulative effect of an epidemic.
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1

2. THE.MODEL ,

4

Basic Assumptions

We shall make the following ,assumptions about the

-epidemic we are.modelling:

(a). The epidemic begins when a small number of in-.

fected persons (perhaps-returning from a trip abroad) are

introduced into a community.

(b) No one in the community has had the disease

before, and no one is immune.

(c) The epidemic is spread only by direct contact

between a diseased person, or a carriFr, and a-susceptible

person.

'(d) All persons who have had the disease and re-

covered are immune. However, some recovered persons may
Ai&

be carriers. .

A simplified Aeicription of the progress of the

eqidemic is shown schematically in Figure 3. . In that

figure we assume that each person is in exactly one group

at a time, and that changes are in the direction'of the

arrows only, For example, a quarantined person will not k

be released if he is still'a carrier.

We shall also-assume, fdr simplicity, that the total

population of groups.S, I,and P does not change during

or shortly 'after the epidemic. This means, for example,

that there are no births, no deaths...from other causes,

and no new people moving into the community. This assump-

tion is never realized, of course, but it is a reasonable

approximation to the truth if the epidemic is short.

3



"Susceptibles"

Persons who

have never had
disease mil are
not immune

size at time t
S(t)

I

"Infectives"

Diseased

persons still
at large

RecOvered

persons who are
carriers

size.at time t
I(t)

A
6

Figure 3. Progress of an epidemic,

2.2 Definition 61 the Variables

P

"Post-infective"
,

Recovered
persons now
immune e

QU'arantined

persons

Removed bodies

size of time t
P(t)

Let us call t = Olthe time at which.,the .epidemic'

begins, and let N = the total population. Let S(t), 1ft),

and P(t) be the nuMber of persons in groups S, rand P .

respectively at any time t.- Depending on the nature of

tip epidemic, t might be measured in houis, days, weeks,

or even months. Our basic assumptions tell us among

other things, thai S(0) = N (the total population), that

P(0) = 0," and that during and shortly after the epidemic'

. (1) S(t) + I(t) + P(t) = N .

The'numAr'who have caught the disease by time t is

P(t), or N ;.S(t).. ,

2.3 The Spread of the Disease ^.)
V

, 0

Each time a person catches the dfseased(tp desreases

by one and I(t) increases by Oil." How frequently this

happens is determined by how frequently a pe'rson. in group

comes' in contact WitH'one it grOup

What'is a resonable formula for the frequency of

thesse contacts? We would expect it to vary directly with

S(t) and.also.with I(t). Forflample, we would expect

that tripling 'the number of infeclives while holding the
4
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number of susceptibles,fixed would triple the contact

frequency. Similarly, we would expect that tripling the'

number of suiceptibles while holding fixed the number of

infectives ,would also triple the contact frequency. The

simplest formula which varies directly with S(t) and with °

I(t) is kS(t)%(t), where k is a positive constant. -

We shall assume that a fixed'fraction of these con-

., tacts results in the disease being transmitted from the

infective to the susceptible. Then the frequency with

which S(t) decreases by one is k,S(t)I(t) for some new

constant ki(0 < k, < k). In other words, the rate at

whfch-Sftl-is-changing-is
.

2.4 A Smooth Approximation

The lo-t sentence of Section 2.3 seems to be a state-

-ment about the derivative ("rate of change") of S(t).

Strictly speak-i-mg, S(t) cannot hive a derivative, since

its graph is not smooth. It must be a step function'

(Figure 4), with each step being of height one. But it

is easy 'to draw a smooth curve, as shown, which is an

excellent approximation to S(t), It-will never differ.

from the true valueby more th.an one,'which is assumed to

be a.tiny error coppared to the total ppulatibn. This

smooth curve has a derivative, and for it we have

.° (2) S'( ) = -k,S(t)Ilt)

from some con nt k, > 0..

2.5 Removal of Infectives

It'seems reasonable that the rate at which victims,

die from the disease, and thus enter group P, is propor-

tional to the number of inftctives at any, given time. We

shall extend this to in assumption that the rate of trans-
. fer from group I to group for any reason, is propor-

tional to the size of group I. That is, after

S
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"susceptibles"

smooth appfoximation

Figure 4. Approximation of 3(t) by a smooth curve.

"smoothing" as before,

(3) P'(t)

for some constant k2

Exercise:
. .

.. 4 ..1. Criticize'this model. For'example, ate the assumptions realis-

tic? Are they reasonably translated into mathematicqj terms? What,

if any, important aspects of the situation are not rePresented?
: .

3. CONTROLLING THE EPIDEMIC

3.1 Definition- of _ "Control "-

Recall that one questilon we asked was at'what'rate

must persons be transferred from group I'to group P to

keep the epidemic under control.
6

ti
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So far we have not aid precisely what we mean by

"under control." Let us recall how the epidemic begins.

The disease is introduced into the. community by a small

number of people. So I(0) is small, P(0) := 0, and

'S(0) = N. .

(A, word about the symbol = : When We say one expres-

sion is a good approximation to another, we almost always

are thinking of the percentage error, rather than the

actualaize of the error. For example, .ye might well

write 1001 = 1000, but would be very unlikely to write

2 = 1, even though 1001 - 1000 = 2 - 1 =.1.)

The more rapidly I(t) grows, the Woltthe-epidemic

ecomes Let us adopt as our definition of "under con -

t th t I(t) stops growing (i.e., I'(t) '< 0) after

some i me .

3.2 The Threshold Removal Rate

Can control be achieved in our model? We shall pre-

sent some calculations, and leave it to you to finish them.

Dividing Equation 2 by Equation 3:

1.
St (t..
P' (t). Kt S(t)

)S'(t
S(t) 2 131(t)

IS1(t) t)

S(
dt = -Kt JP:(t) dt

k,
In S(t) = -R7 P(t) c,

Putting t = 0 and recalling that P(0) = 0 we get

In S(0) = c

and so k
In S(t) = In S(0) - P(t).

59
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(4)

uWriting So = S(0) and solving for S(t):

-S(t) = Soe-k1
P(t)/k2

Now it's your turn.

Exercise:

2. (a) Use Equations 1, 2, and 3 to show that

I'(t) = (k S(t) - k2)I(t).
ir

(b) Show that S(t) is a decreasing function for all t.

(c) Using (b), show that, if t > 0and k2 2. k1S , thyn

k1S(t) < k2.

(d) .Using (a) and (c), show that, if t > 0 and k2-2.
vf

then I'(t) < 0.

Recall 'that k2 is the prOportionality constant which

tells us how fast persons are removed from grOup I to group

P (the one we can influence by quarantine, etc.), and lc,

is the one which tells.us how fast the epidemic is spread-.

ing. Exercise 2 shows that we can keep the epidemic under

dontrol if we can establish k2 > Soki. This criticarkralue

Sok, is called the threshold removal rate. It varies

directly with lc, and with So. "ut So = N. So we have the

not -veryvery surprising result that the tfzeshold.removal rate

varies directly with thettte at which the epidemic spreads

and with ike population.

Exercises: -,'--

3. A yet simpler (and less realistr) mo el of an epidemic would be

one without any provision for removal. An infectivb remains an

infdctive. If N = S(t) I(t), and if we make the same assum

tions as before concerning contact between infective and suscep-
_.

tibles, we get:

S1(t) = - k1S(t)(N - S(t)).

60
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Writing (0) = So, find an expression for S(t).

'(Hin Antidifferentiate

S'(t)

SSOSN - S(t)) kl

11Kby usingtheildentity
`..,.

1 1 v -
)

, u v - u u(v - u)4. . , , ._
ForytheS(t) obtained in Exercise 3, evaluate lim &(t).

.
t-... .

...- . 4 What does this imply about the size of the pidemic?...,

S. For the SU) obtained in Exetcise'3,,fi the time t when the

rate of the spread.,of the epidemic is at its maximum.

1
*-

4.1 Extent of the Epidemic

Now let us ask the question: supplpe.k2 is almost

but not quite equal to Soki, so we donEt quite'"control",

the epidemic. For instance, suppose 0.95 Soky < k2.< Sokr.

What paition 'of the community will eventually catch the

disease? For t > 0, we have remarked that the:Aumber who°

have caught the disease by time t is 1(t) + P(t). SO if

ihe.epib.e.mic lasts for time T i.e., = 0 for t > T),

the number we are looking for"; I(t) ± .P.(t . Let us call

this number the expent,.and wri it E.
.9

4: A MrLD EPIDEMIC

7

4.24.An Eqiiatioa for the Extent

To find E, we shall begin Gy Observing that P(t) is

defined fo!eallit > 0, not just for 0 < t < T. Figure 5. -
'shows the graph of a typica step, function P(t).starting
at rime and Wending well beyond t = T. It makes

t it clear that by.some time T*, later than T but pot too

much later, the slope of the smOoth approximailop must be

close to zero. That is: v,

(5) P(T*) = 0.

9
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smooth approximation. I

Figure S.' Smooth approkiMatiotr.to P(t).

./..

Equatibn 3 immediately tells us I(T*) =%O. But the sum

I(t),+ P(t) does not change after t = T*, and so

.(6). -E = I(t) +Wt.) = I(T*) +-P(T*). = P(T*).,

We.have assumed the total population doeT not change

wring or shortly after the epidemic. Specifically, let

us take this to mean during the time interval.0 < t < T*.,

Then, using Equations 3, 1, and 4 in that order, .

P'(t) 4 IcI(t) = ki(N ,-- P(01 - S(0).=

k2(4 - P(t) - Soe-1c1Pet)/k2),

throughout this interval., .Setting t =' T* and using-(S)

and (6) ,

,.. . .

(7) 0 = k2(N-- g - sc;t-klE/k).

62
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4,3 An Approximation for e 7k1E/k2 4

The appearance of both a linear and an exponential'
term in (7) Makes it very difficult; f not impossible,
.t; solVefor E. There is a way to circumvent this diffi-
colty, provided k1E/k2 is small. Recall thatftfor'any
positive x and any positive integer n

\'x r - ...'+ A:1)n )11-Er
e-sx x2

with an error of at most C11.4.1)1. Setting x kryk2
,n+1

and n = 2, we obtain the approximation

k E 1(cq .

1 -k-- -2-

e-klE/Ic2
1

. -

with an error of at most w 7lik14);
3

0

*

i,...
.4.4 Estiinatih0 theExtent , < , .1.

.Before we can use (8) we. must of course:as'Snre our-
'....selves that this error term is small enough for '9ur pox- r.,

poses, Recall that So = N; that' is, initially virtually
.,

..A
i

-.::.

. .

<,...
. %

everyone is susceptible. If make th,p very modestc e. we ma ,-,

A
4.

assumption that "virtually.everyol4".means rover 99t".*Cin t'
4,..

,.,

other. words, the persons who initially'introduce. the:dis.:

si+

5.

ease constitute less than one percent of the population),
a ',,,iS IP .. uthen we can show that E < 4N, With this restriction On , a.

E the maximum (trror in using ,(8) to estimate e-kliE/k2
.

works out.to be'less than one-half of one percent of the
. true value.

o

40
I11rt takes a lot of messy algebra, to prove these asser-16**-

Lions, and right now that would distract us from the main

argument. .So we shall leave that algebra for the appendix,
and proceed with our estimation.

it geplacing e-klE/14 in (7)**'by thelestimate given in
{8), and also .dividing (7)-by k2, gives us

63
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. 2 k2 I.

k 1 ki2E2
0 = N -.E - So 1 -

E
+

Since, again, So = N, we can also replace So by N,

E - N

obtain-

ing

cssi,(10)

0 Nik
E

+
k 2E2]

=: 1 1 -

k
1 __

k
2

7 k
2
2

E[IXIN 1 Nki2

-j 27- 0

2k22

E = NkI2 k2 lj

2k2 k2

hik;. k1 j

7 2[N -

since k
2 S Ok

1
'= Nk .

Exercises

f 6. (a) Assume k1 = 10:6, k2 = .95;,and N.4"106. Find the approximate

value for.the extent a of t epidemic.

.(p) Do the same for k2 = .99.

4.5 The Relative Removal

Sometimes k
2
/k

1
':'called the relative removal rate.

Its threshold value is So, which approximately equals N.

With this' terminology, (f0) says that in a mild epidemic,

that is, one for which the removal rate is very near its

, threshold;,the 'total number of persons infected sooner or

later is approximately 26, where 6 is the amount by which

the-relative removal rate falls shOrt of its threshold

°(S = N - k2/k1) ."

12
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In this appendix we shall.justify the assertion

made in the first paragraph of Section 4.4. Specifi-
ftally, if

(11) 0.95Sok2 < k2 < S:k2

(the epidemic is nearly but not quite "controlled") and if

(12) 0.99N < S, < N

*(over 99% of the population is init011y susceptC7- ible),

Yle can make a-very rough estimate of E graphically.

Writing

f(x) = N - x - SoCkix/k2

'we see that E is the positive root of f(x) = 0; that is,

Siathe x-coordinate of the point where the graph of f crosses

the Positive x-axis.

To get a rough idea what this graph looks like, we

first compute

.ra

f(0) = N S, > 0

(note f(0) is small since So = N) and

f(N) g -Soe -k Nil(
2 < :0

(since the exponential'function is always posi,tive),

thus showing that the graphicrosses the x-axis between

0 and We leave it to you (iee Exercise 7) to show

that f"(x < 0 for all x, and that therefore the graph is

concave downward and connot cross the positive x-axis

more. than once.

a
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Exercise:

7. If the function f is defined by

f(x) r." N - x - Sae-
klx/k2

for all real x, show that f"(x) < 0 for all x.

Combine this with the fact f(0) > Ora show the graph

of f crosses the ositive x-axis at most once.
A

It follows that if we can find any positi4e number,

M for which f(M) < 0, then we'can conclude4 < E < M (see

Figure 6). We shall now find such a M.

Equation 1.1 can be rewritten

k2
0:95 < rr < 1

o

or, taking reciprocals and reversing the inequalities;
P,

Sok'
1

1 < < b7.707

igOre 6. Graph of f(x) N - x -

(See .5-1 for additional

4

:14



From (12) we get At"

N < 039

and hence, multiplying by k4-/k2 and using 613),

(14)
k2N 0.99

11
-Id (0.99)(0.95)

With this inequality arid.a calculator, let, calculate

f(1),

N NT , -4(k )f(T) = N - - Soe 1 2

< N - 0.99Ne-
h(kiN/k2)

N(0.75 0.99e-
4i1/(0.99)(0.95)]

= N(0:75 0.7&) =.-0.01N 0.'

Thus T is an example of a point M such that f(M) 0.

4 Th6refore, 0 < E <

f.
,,Remember (Section 4.3) that the error in our esti-

-

,
1 k-mate of e. 1

E/k
2 is less than ,w k- . As we remarked in

Section 4.4, with E < 12N this works out to less than

one -half of one percent of the true value. We'll leave

the computational details to you (see Exercise 8).

Exercise:

8. (a) Show that if 0 < E < N/4, and if lc, and k2 are 'restricted

as in the text, then the error in using (8) to estimate

e-ktE/k2 is less than 0.0032.

(b) Show that, under the same cpnditions, the value. of

e-klE/k 2 is gYeatei thatY 0.76, so that the error of

part (a) is less than one-half of ope percent.

15
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6., ANSWERS Tb EXERCISES

'It The model is (as pointed out in Section 2.1) only Yeasonable

when short epidemics areaialyzed. ..The model does not consider

interference from other possible outbreaks or epidemics that

might occur during our time interval.

There is also no accommodation'for the spread of disease by

infected object4f(towels, water, infected air, bathrooms, etc.).

0

(1) S(t) + I(t) + P(t) =,N , ro

2. a) Given

(2) ,S1(t) = -k,S(t)I(t)

and , (3)- P'(t) = ql(t)

it follows that

1(t) = N - S(t) - P(t)-

I'(t) = -S'(t) - P'(t)

= k1S(t)I(t) - k2I(t)

=(k,S(t) - k2)I(t).

b), Given t >,0, we want to show that S'(t) <

.trivialcbecause't I(t)
.

fectious.r.

0. This is

> 0; the disease is in-

c) Given: t >'Q and k2'> klq; (or we could write k2 > k1S(0))..

At this point the epidemic has not started, but the instant

I)

t >-0, S(t) decreases implying that S(t) < So,

S(t) for SH'6'-we can write k2 > k,S(t).

Given: I '(t) = (k1S(t)

and k2 > klSr, (which

foildWthat k1S(t)

and

hence

S(t) -
.) N - So + SQe.Nk1t

- k2)IXt) , t > 0'

implies k1S(t) jfk2)

- k2 < 0'

1(t) > 0

'I'(t) t 0.

-Nk t
.NS e

68 .
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il

. iThis implillpthat eventually everyone becomes ill.

N So 1
- N1 In -73-- if So <241,

. 1
0 if So >

. 6. 81100,000

b) 20,000

7. f"(x) = -(92S
°
e-klx/k2

k
2

1k

8. a) In (8) the error Ifs most T -- We
r ik,E 1

I

0#
< 1

(Equation 14) .

-k2 (0.99)(0.95)

Let E =
N
- . Then the-tror fs at most4

have seen that

1 ( k; ,PI 1 3 1 . 1 kiN 3° 1111 1 .

T . k2 T -f 64 6 64 (0.99)(0.95)

.00277

0

N

then 4' tjfTz;kiN

From Equation (14) we then have

ic
1_ <
E kiN 1

1-
k2 T < 4 ,(0.99)(0.95)

Therefore,

4S 1 1
-0.26581.k2 4 x(0,99)(0.95) )

7



.12

(rounded down, not up, to be stri4 this inequality is

reserved), and

. k E
. - 1 -0.26581

t e k2 > e = 0.76658 .4

(rounding down again)..

1
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SPECIALASSISTANCg SUPPLEMENT

(5-1)

When a, $ > 0, the functions

(14) f(x) = -ae-Bx

have graphs like those shown below in Figure 7.
0

For example, Figure 8 Shows the graph of f(x) = -ex (obtaieed
.....-

by taking a = $ =

the points (0:-1)

0 1

1 4Equation (14)) as a smooth curve through

, (1
'

(2,4),.. .

,2 *;
3 4 x

t

71
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ri-

Subtracting x from -e-x pulls the graph of -e-x'away frOm

the positive x-axis: Figure 9 shows tie graph of f(x) = -x -c x
1as a smooth curve thAugh the points (0,1), (1,-1
e

-2

-3

-4

I -5

0 1 3. 4 S

I

t

The graph-of

(15)," f(x) 1 -x - ae-Bx. a,f3 > 0

behaves'iba4ically tle same way.

The addition o a constant N > 0 to the formula for f(x)
c k

translates the curvcj vertically upwar.d to produce a curve like

the graph of

f(w) = - w -
x0
.e-kiwik2

in Figure 6.

a Figure 9.

. 4
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4

A useful ,guide for functions involving e.

r.
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1. RADIOACTIVE TRACER TECHNIQ1
.

In the human bloodstream,potatsium ions (K + ) are

constantly.moving into and out of the red blood cell/

(erythrocytes); that is, thesurfaces of the erythro-.

cytes are permeable to K
+

ions. Ions move from the

plasma into the red cells at a certain rate, while

other ions yithin the tells move out into the plasma at

a certain rate. The determination of these two rates

.(that is, of the permeability of the cells surfaces to

K+ ions in both direc ions is of great help to,both

physiologists and doct rs in their efforts to understand

the structure and beha or of these cells, and thus

ultiMately to combat'bldoddiseases.

A technique to determine .these Petmeabilities works

as follows. A fixed quantity S of radioacetive K42+ ions

is introduced into the blood. Initially, all-these ions
'are in the plasma. The amount remaining in the plasma at

various subsequent times is determined by taking blood,

plasma samples and measuring the radioactivity present.

Our.problem is to determine the permeabilities from these
raw d4ta.

2. A CLOSED TWO COMPARTMENT MODEL

2.1 Notation-

We shall e tablish a mathematical model depicting
those aspects o the situation which interest us. Since

. ' A ike have no need to distinguiSh one red cell from another,

we shall represent, the blvdstrea schematically by two
boxes, one or other or plasma (Figure 1).

If t is the elapsed time since the introduction of the
K42+ ions, we shall denote the amount of 02+ ions in the
dboxes by C(t) and P(t) respec)tively. Thus, C(0) = 0
and P(0) =''S:

(I)

ti

' corpuscles

c(t)

tr

k1 C(t)

k
2
P(t)

(2)

plasmf

P(t)

Figure 1. Two Compartment Model of Bloodstream

2.2 Assumptions

We shall /hssume that this two compartment system is

closed; thit ,is, there is no loss of 02+ from the system. .

In our notation this says

(1) C(t) + P(t) = S.

We shall also assume that at time t the number of ions

. moving from Box 1 to Box 2 (upper arrow) per unit time

(the transfer.rate) is proportional to C(t), while the

transfer rate from Tox 2,to Box 1 is proportional to

P(t). If the respective constants of proportionality

\fthe coefficients of transfer) are positilie numbers

k1 and k2, our assumption says

(2) P (t) =--k2P(t) * ki.C(t) .

The units of k1 and k2 are reciprocals of time(for

example, min-1 or hr-1). In Equations (1) and (2), S

is predetermined by the experimenter and P(t) is observed
or

empirically, so C(t) can.b* easily computed. We must

figure out how to determine k1 and k2.



xw

3. HE -FORMULA FOR P(t)

We begin, by fi ding P(t) explicitly, It is easy

to solve for C(t) it Equation 1 and substitute the result

into Equation 2:

(3). P' (t) = -jk2P(t) + k1 (S - P(0)

(ki + k2) P(t).

For the moment let us assume.thaI P'(t) is never zero.

We-can theri Myrtle Equation (3) by itA right side:

t

1 2
1.

Sfnce P(0) = S, t e denominator if 'negative-(= -k2S)

when t = O. We c n conclude that itis always negative- -

it is never zero nd therefore.cannot change sign. Let

us multiply this last equation by -1 and then

'amti.diffeient,iate both sides:

I (k1;+ k2)1

tP(t))

kIS dt = - fldt = -t + C.

To antidifferentiate the left side, write

u = (k1 + k2) P(t) --kiS
p

af
dU .14.4.40 p,(0.-

:4411*'Thus we have

1 1 du
kr77-FF u

and since u > 0 we get

0

1
ln .0 = -t + Cki + k2 ,

1

k2
ln ((k1. k2).P(t) - k1S) = -t + C.

To.evalUate C, we ,set t =" 0 and use P(b) =

ln k2S /ki :+k2

Thus,

o \'

ep

k1 +
1

k2

.

(ln ((k1 + k2) P(t) - k1S) ln k2S) = -t

ln (1(1 + k2) F(t)= kiS = -t
k25:,.._,

In
((kL

2+S
k2) -

F(t) 4) = -(k1.+ k2)t

kl_ + k2 P(t) = k
l- 4 e

-(11
12S

+ k2)t

e-(k1-* k2)t)ptt) kS (VIM+
RI k2 tx2

P(t) klyk2

To obtain Equation 4 we had to assure thatr(ti
But this apparent restriction turns ou% to be no

restriction at all. For it is now a routine computatio&

to show That the function P(t) given by Equation 4

actually satisfies-Equation 3 for'all t (see EXerci'se 2)

and is.thus the function we seek. *Incidentally, it is

also easy to confirm that P'(t).is never zero (see

Exercise 2 again):-

(1 + e-(1 4 + k2)t1

. a

0.

Exercises

I. a) Obtain an expression for C(t) from Equations 1 and 4.
b) Obtain the following expression for C(t) by first using

Equations 1 and 2:

c' (t) = k2P (e) - kic (e) = k2 (s - C(t)) - kiC(e) '

. .
, / -',..

Show that thigfrresult agrees with the answer toe4aY. .

2. :a) Compute 131(e) if P(t)"is given by Equation ji. ,4:,
b) Showhat, for this P(t), P' (t) = kiS - (k1 -1:.k2) i12.(f).,4,

c) Show that, for this P(t), P'(t) is never zero. A li

. 81. 4
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. DETERMINING it AND k2
Sf

-
Computational 4Preliminaries

TO deterinirie ki and k2 from Equatio'
r

as t approaches infinity, fi the expressio
approaches .1, since e + kgt approaches 'ze

notice \1tha
entheses faumln sts,/:

Therefore, ".

Is)
1..

lim 11(J. ,4
k

kls

Let' thi iwaluekQ. ;Dividing...
N obtain

-4

.

. P :41

.". 2-.".

e' (k1 12,2)t

. .

a

et
and then
Exercise

do a little algebra to
4).

find k1 and- 1(2 (see
,

. ...-

Equation 4 by Qx\we

; (6)1ii (ILL 1) -(k1 + k2)t + ln rzx .
k
Ar, ..-.

The expression on the reft srde Of-Equation 6' is, ..-a new function of t. Let us -give. if a name:

'V

(7) g(t) = '.1.11.(PV 1).
Now Equatibn 6 tells us that, according to our model,

(8) g(t) +.k2)t +
E1'

.
, . .

. ,

so-`the graph. of .g(t), theoretically. at least, is a straight
line -with slope + k2 and Y- intercept in SO if "

we could. compute: g(t) 'Trost the' "eiperimenkai data ,", using_ ;- -Equatiori"6 "i and thery'plot the poirits (t, g(t).),;',' could .

?cciiraptish two ,thinis-: -
(a) f the. points come close to 'lying ;oa straight .

..,

line,:Weocould use thi;` faCt to "CoYfirm,the 'accuracy of--
our aodel'.. - -After it is the '0061 whichei by Equations -

6: iiridi'Predictt ;tihitthe,;Olnis will lig on a line;
slope in and y-

Intereitt b w could:' write

4 '
(t-3. (a) Evaluate D = lim C(t).'

tko .
(b)' 'Using (a)., evaluate

D
.II.' Solve Equatjons 9 for is1 a01(2_,in:tterms of m arld4b.-

4.2 ilbarmining Q

There is one taich, though. Equation 7 contains the
symbol Q. Now Q lim P(t) k kiS by definition.
But this is a dead end, since we don't know k1 and k2
in fact; we are trying to d termine "them..

Luckily, there is a way -lout. The, statement
Q = lim P(t) mea , in experimenter terms that the

t-*T,
observed amount P(t).: of K42+ ions in the Plasma appfoa4es
Q as an equilibrium amount. Experimental evidence

fconfirps that it is feasible to continue monitoiidg the
plasma until P(t) dOes mot Chang or changes very little
with Ifirther: passage of time. We can then take this '
nearly constantc value to be Q.
4.3 An-Example , .

4 :. To dllustrete this method of "det,ermining k1 and k2,
. let,us consider the data in Table 1 for a hypOthetical

pernieabirity study. , '
.

-(k
X
'4,

'

/
TABLE I

Hypothetical Data 'for Permeabillty.Study

-t(min) 500 11000 )500 2000 2500 13000 135b0 4000 14500 5000
P(t)r(mg) . 5.00 2.96 lZ.01. V.49 [L14 1.01

. .

0.97 10.92 0.87. 0.85 10.85



1 ibrium of about 0.85 mg, after t = about 4500 minutes.
It appears that P(t) is settling down to an equi-

.We shall take Q = 0.85 mg.

We can now use Equation I to calculate the values
of g(t):

(t ), Pt)g(t) = In (
P 1) In ( 0(85 1);

We get

t 0` 500 1000 1 1500' 2000 14 2500 3000' 3500 4000

9(i) 1,1.50 10.91 0.31 1-0.28 -1.08 -1.67 -1.96 -2.50, -3.75

It is impossible to lomputOg(45,400) or g(5060) on the,
is Io+f our data, because 41an 0:85 1) = in 0 is not

de .ined. This difficulty 'arises because aux data are
given to only, two decimal: places. Nith more precise

s measurements we might have found, for example, that
P(4500)'= 40.854 and P(50150).4=. 0.851. ""'"' '

.6

The points (t, g(t)) _are plotted in Figure 2. They
e close ito14ficog on a, straight, line. In Figurh 2 wee

have drawn .in, by eye,- what appears to be the "best-
fitting" straight -1-ine. In doin this-it is wise to. .

ii.4 a transparent straight edge,' so our view of the
points is not blocked. :14e:have triyccl

9to, draw the lin
so some bfthe..point are slightly above it, some .

slightly billoow It ,,and none too far from4it.'

, The linewe have drawn appears to have its
y-intercept at about b..-: L.55. It, also passes pretty
nearly' througy (500, 0:9) and (400, -3.5). There-fore its'

-3-.5 - 0.9 -4.4
.,..slope m is about,4000 - 500 3500 ,

1.26 x 10-3'.
D*

. .We could now use ealliations 9 'to' find k1 and k2. But J.

'if you have done' Exercie 3 you have discove,ed' that.
so ,_, _ .,,,,,,,iEcniations 9 can ; be rewritten_Aft, .

... -r7

b. .... , ,
> . .,

4

4

.2

1

0

-3

UMW EMMEN MOM= RIM MEM MI= MEM
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Plugging in b.
Figgre- 2.

= 1755 and m

0

.3
1.26 x 10 we get

k1 = 2 21
s

10 min
1

k2 =,1.04 x 10.3 min .

4.4 Some Comments on the "Best-Fitting" Line

(a)- Itt, is not irnporitant whether the lihe'palses
through any of the giVen _points. In fact it would be a
mistake simplY to draw the line determined by two -of the
points. We might be unfortunate enough _to- pick two
points 'which are litaccurate because of experimental'
error or roui4off error.

'sr,

t (b)1 In finding the s#opc Of the line; usetwo
pointion the line itself, ratfier than two .o? the giveii

k2, 7
1 +.. "'

4h. ,
VoilfftS--..:2 As ment ionedin 4.4 (a) ; some of' the° glveri
points are:pound', to. be s-tightly off.
"averages out" -these errors. ,

.

,:- r" (c) Altko in finding the Slope,.r
fairly fai.apart, ;f they are c'-lose

, ..
.9 85
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denominator in the slope formula will be small, and a.

slight error in reading the coordinates of one point may
result in a huge error in the slope.

S. EXERCISES

5. In a permeability study the function g(t) = 1n P(t)-- 1) has
been computed and plotted in Figure 3. Determine k1 and k2 for
this experiment. f

S
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Figure 3.

6. DeteAnine ki4and k2 from the following data for a hypothetical

, 7? Cons'ider a two compartment model, not.closed, in which P(t) is.
O ma ntained at a constant level (by continuous adjustment from the

ou ;tie, for 'example),. If P(t) = P
0 the determining equation for

C(t) becomes t

CeV4IP0 k1C(t).

(a) Find C(t) if C(0)41= 0.

(b) Find D =slim C(t)'.

(c) If Q=1 lirn P(t),

8. In the model present ed_jo4xercise 6, find the,time at which
C (t) s osa a maximum, and compute that maximum.

a

4

1.

Q

permeability

't(hours) f 0 .

study.

1 "2 3 4 5'

.
6 7 8 9

044
10

Pit) (ig), $.00 3.30 2.05 1.55 .1:28 1.20 1.1 ;13 1.12, 1.10 1.10

-

./
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6. ANSWERS TO EXERCISES

1p k1S
(1 -(k1 + ko t)

k1+ k2

(b) k1S
(1

e-(ki +12)t)
+ k2

2. (a). P'(t) =
k1 k1

- t21- (k1 + k2)

0

- (0,

-(k1 + k2)t= k2S e

k1S - (k1 + k2) P(t).*

-(ki +

= kg, - (k1
(kik+lsk2) 1 ,t e -(kl k2) t

it= k1S - k1S I + 12- -(k1 + k2)t
k1 ,-

-(k1 +,k2)t-k2S. e

kiAll three of the numbers k2, S, and e +
are

positive.

3., (a) ..k95
k+ k2

hi.
*2

.

-me
,k2

(b) k1 PO

= cr x. to 7" min k 1.5 x

6. k1.= 6.14^ ; Th2 O.8 hr1.

(a) .e.P0(1

(c)

.3Naxiniri-ccurs at t 0 (endpoint maximum) aid equals k21;0.

0

S.

1.

10-3 mjny
j

, - ."..:4; .88
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I

GROWTH MODELS

The behavior of the 'economy of a given society

over time is of interest not only to the economist,

but also to all citizens living in that society.

After all, the increasing abundance or, scarcity of

jobs, goods and services depends crucially on how

fast the economy is growing relative to the underlying

population. Thus it is not surpiising that words

like growth, stagnation-(and.more recently stagflation),

etc. have become commonplace even in the everyday

world of the nightly news broadcast.

. For their part mathematical economists have

developed'many different models, called growth models,

to describe the expansionary processes in an economy.

In this unit we will be studying a particular
. .4

model of growth, applicabl4 to planned economies in

xhich al.1 means of production are socially owned.

It was developed by the Russian economist G. A. Feldman

(1928) in connection with planning for the centrally

controlled Soviet conomy.

The purpose o this model ig to describe the be- J."'

havior overitime of a two-sector economy in which sectoral

investment allocations are controlled by a central authority

according to an overall economic plan.

4Ih
The impetus for the construction of Feldman's

model came in 1927 when theSoviet.Union embarked on a

sequence of 5 -year plans for the -' Xpansion of its

economy. The devastation,caused by the First World War

and the following Civil War had, to a large extent, been

overcome and prewar production-levels had been restored.

The first publication of the model occurred in the

November 1928 issue of tiie.Soviet State Planning

CommAsion's journal Planovoc KIoziastvo (The Planned

Ejonomy).

'94
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Alt bug)._ he model's direct impact on Soviet pl'b ning
policy formulation. is qUptionable, there is np aqubtst
its 'flavor' is well ihN,keeping with the initial seq nce "--.

of Soviet 5-year plans with their strong emphasis, on ,

' building up the heavy industry sector of_the_Soviet
. economy.

r Asian indication of the model's durability, we-

note that its main featuYes were duplicated in4he 1950's
(apparently independently of FeldMan',s work) by the Indian
ecenomisr Mahalonobis in his work on a planning model for
the*Indian economy.,

2
2., DEFINITIONS

2.1 Rate of Out ut and National Income

As is usually done in M. xian economics we divide
the economyanto two sectors the producer gopds sector
(Sector' I), producing gobds to be invested in production

' in both, sectors, (like drop forges,millingsmachines
4.

andss, y
tractors), and the copsume goods aeetor°(Sdctor II),,

producing goods,to be cons med nonproductively by the
population (like bagels,' eleviion sets; and footballs).

,
lWe assum (that botbsecto s ai;e producing a continuous

stream 4F goods.

i Before we can model/
do

the quantitative behavior of
the outputs in'these.seCtors over time, we must first

-define a quantitative measure of hovi much each sector.'

is producing at any given time. This We proceed to do

as follows:' let J(t,i) stand for ther"et output imeasured,

say, in dollars) of.Sgctof. I between time t and t me. u

(measured, say, in years with an appropriate point in.,

time chosen as t =,0).
-:-, -- .

The "net7 here means the output remaining after all
the "wear and tear" in the investment good's being used
in_ the two sectors has bd'en made good from the "gross"

output of Sector I. ,We use the net output,Isince only

o'
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this part the output of Sector 'I can be ,used to expand

the economy ver time.' The rest uf.the output of Sector.I,

i.e. the difference between the "gross" and "net"6Utputs,

is required just to keep'the economy at the level it had

already yeachtd,
s'

If we agiee that all of,the net output of Sector I

'goes for investment,, it seems appiopriate to call the

.quantity

t,
I
av

(t,u)
J(u-t u)

the (average) annual rate'of investment or the (average)

annuals rate of output in Sector Is over the time interval

- from t,to.u. (Note: 'the units here are dollars/year.)

The (instantaneous) annual rate of investment is thed

defined as

1(0 = lim I
av(t,t+At) = lim ..,,J(t,t+4t)

At+0 At+0 At
0

The quantity I(t) measures what the annual rate of

output in''Sector I is a'ipa given instant t of time.

Similarly we can, and do, define C(t), the

(instantaneous) arinvaZ rate of output in Sictor

The sumof the rates of output in the two sectors -

is,then called the national income! y(t) = 1(0-* C(t).

2.2 ClAn Analogy'

. 1.P
Ypu may haVe ndticed some similarity between

the.procedurei,we qsed to%define national incomeAnd

the one used,to deYine Instantaneous velocity in
04
first selne4,ter Calculus or Physics courses. Your

study of velocity probably began by defininiN t,

"distance" or "position" function s(t) which describe:

'the lo'cation of an object at time t'-- usually as

the direct distance froth some arbi.trary"Pminit,callecl,
1

zero. It then defined the average velocity over' the

time interval from t to u as

s(u) - s(t).
u - t

I



This average velocity ,and our average annual rate

of output each amount to a ratio of two'changes or

differpnces. The numerators look quite different, but

they really aren't.' In studying velocity it was pos-

sible to define a function s of time whose change from

time t to time.0 could be calculated by subtraction

and was just what you needed. There does not seem to

be a convenient way to do the analagous thing here.

Nonetheless, saying "J(t,u) is the net output betlieen

time t and time u" is' very similar to saying "s04 -

s(f) 1,s the net motion (change in position) between
$.time t and time u."

Thus national ,income can be thought of as the

derivative of a (somewhat fictitious) "cumulative

total output" function just as velocity is the deriva-

tive of the "cumulative total distance traveled" func-

tion. Table 1 further illustrates this analogy.

TABLE 1

Cumulative
total over

a time.
interval

Typical
units

Average rate
over a time
interval

Typical
upits

Instantaneous
rate at an

instant of time

I
typical

units

distance

traveled,
meters

.

.

average
velocity

meters
velocity

., .

meters
sec °sec

total net
output in
Sector I'
(sA)

,

dollars
average rate

of net

investmpnt

,

dollars
1

I(t) =.rate
of net

,- investment

.

.
dollars

year _, year

total, out-

put in
Sector II
(=B)

dollars
average rate
of output
in Sector II

dollars C(t) = rate
of output
in Sector II

.

dollars
7,;ii-year

total'

output
(=A+B)

dollars

.

average
national
incqme

dollars

.

Y(t)=I(t)+C(t)
= national

income

_

dollars
year year
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3. THE MODEL

3.1 Assumptions

t With the definition of 1(t) and C(t) in hand we

are ready to start building Feldman's mpdel.

We let 17(0 and Ic(t) stand for the net rates of

investment in Sectors I and II respectively.. The en-

tire output I(t) of Sector I is to be invested in Sectors

I and II. The central planning authority decides how to

split the investment pie between the two sectors and

allots a constant independent of time),opositive

fraction s of the output of Sector I to, Sector I (see

Figure 1).

Producer Goods

Sector_I

Consumer Goods

Sector II C(t)
1 I

Figure41. The net output of Sector I is produced at the
rate of'I(t) dollars per year. It is channeled

414r back into producer goods at the Late of sI(t)
dollars per ear, and invested in consumer
goods at th 4rate of (1-s)I(t) dollars per year.

4' NOW. we need t explOre the relationship between I(t),

C(tn$I(t) and Ic(t), all of which are assumed to,be
r

llifferentiable functions of t. We let-Kp(t) and Kc(t)
6

stand for -the capital etock,'1.e7-, the, quantity of invest-

ment goods invested ht,time tin the,Sectors J and IT re-

. speStively. By assumption, there is a stable relationship,

between the capital stock and the corresponding output in

each sector; i.e., capital-stock is proportional to outputs

. '
5
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i IC
P
(t)

(i) '1(t) vp 7 colistant or Kp(t) = vp I(t)

217 K (t) .

. , %
KC(t)

v
C = constant:or K

C
(t) 1-- v

C I(t)

The constants vp and.vc
.

in equations in (p'and (ii)

are called tye- capitaltutput ratios (for obvious reasons).
Foi the sake4f simplicity, we assume the constants have
a common valde v:

vp = vc,= v .

If we differentiate both sides of the equations in (i) and
(ii) and note that the rate of increase in the capital
stock k is precisely the corresponding rate of investment,
we obtain: .

Ip(t) = Kp'(t) = v I'(t)
.

and

Ic(t) = icc'(t) = v Ct(t1

We can sumwize the'di,scussion above in'the fol-
.

lowrng two assumptions of the Feldmen.model:
. -

Assumption 1: There exists s (0 < s <1)

' such that Ip(t) =' sI(t and

IC(t) = (1 - 's)

Assumption 2: I(t) and,C(ti) are diffe ntiable
%

and .I' (t) = I

P
(t) and C'(0 Ic(t) .

The crucial (and distinguishing) assumption of he
model is Assumption 1. The claim i makes would alMost

certainly be false in the a4sexceiof controlled alloca-
- tion aCcording to a plan. It'hlio focuses on the most

/ .. .

important parameter of the model, namely s. For, as

we shall see in the next section., it is the c Oice of
s that decides-how fast the economy grows, both

.
.
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overall (Y.(t)) and i terms of its sectors (I(t) and
C(x). ..

.
.

To avoid .any confu ion let us% stress again; in the

model presented above., .s and v are:time-independent

constants .(parametersl, w `ereas Ip(t),; Ic(t), I(t) end
C(t) are increasing functio s of the >v.-triable t(=time).

Finally we note that Asgomption 1 can b'e modified

to .allow the possibility of sm = 0 or s = 1, in which

cases one of the sectors does not grow at all. J3oth the
statement and derivation of tshe resu,l,ts of the model in
the case s = 0 or = 1 are considevrablY simpler thafi

' in the case 0<s<1. We ask you to gl:%, throug,h one such
derivation in Exercise li. \

Derivation of Results r
We suprrose, at° some starting point in time (con:7

veltiently taken ao be t = 0) the values of C, and
\ ialre known: I(0) = 10' C(0) = Co and Y(0) = Y0.

. Now the equations of Assumptions 1 and 2 can
Abe combined rd rewritten as:

' (1) I' (t) = 1(t)

I)

and

(2)
,

c".(t) = y- I(t).
.Dividing -both sides of Equation 1 by I(t) and

integraiin we obtain

Wtt? d t = s
0

t
I (t ) = Tsi t

0

log I(t - log' Io = log - 77--
0

r

IIt). evt
10

-.
(".

10 0 °
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For notational convenience we refine k = m- and obtain

I(t) = I e
kf

'CI) - 0 -

'Substituting Equation (3) into Equation (2)

and keeping in mind that k = we we obt n afters some

algebraic manipulation

C' (t) =,-,7-.ict ,

A4 1s
Lb e

...,a

t 1-p s , kt
se V '0 e .

1-s kt1-,- I() ke
,

.

Now we-can integrate easily-to get an expression for C(t).

'(4).

It

Ct(t)-

t

ke
kt

dtcit.=,iii I() 1

JO

t

C(t) - LICOQ=
e'

0

-v C(t) =
ed tie (ekt,_

1),
,

Adding Equatio;ls (3) and (4). yields

Y(t) = I(t) + C(t)
. .

...

,. 'it ' 1-s kt
= I e + G + I fe -'11)

0 0

i'

s ) .

1 '

0 s '

1-s ,
0'
lekt

'
at I

0
'(e

kt
- 1

r 1-s
I ) .(ekt.- 1):

."
YO 0̀0 _ s . o

since J41, ... co = Y0, 'and finally

Y(t) = I ,kt
. 0

O
(e 1).

A.

The relive rate of.gro/th of a differentiable quin-

tity"f(t).ig f'(t)/f(t). 'It measures Sot how fast the

quantity is changing in absolqte terms, but rathar how

fast it is ckanging relative to its oWn'size% ''From
.

. -,

(5)

. .

'8

1.
tk



Equations (1), (2), (4) and (5) we can obtain -expressions

for the relative rates of growth for I(t), C(t) and Y(t):

-(6)

(7)

rim s

ut) v

Ct(t

.

C t
e
-kt

+ 1

0 -s -5)

. (directly froll! (1))

Wtt4
. 1 s

1] ; -kt
+ 1

(Exercise 1)r

(Exerci'se 2)',

Extrclse 1

(a) Prove Equation (7)..

.(b) Show CP? 4 as 4
C t

Exercise-2

' (a) Prove Equation (8).

(b) Show Y t) as t

; z

k

3.3 The Average Propensity -to Save

Another importan, qualitity is a(t),''defined as the

'of investment (rate of output of ector I) to .the

national income ,

-

\

.
e.... IT 0 Tc(01...;-AN

%%
.

1

Thus a(t) measures the fraction of the. tot4 output

of the economy,.at a given point in time, which -is saved
...

(invested) rather than consumed. So its name, aithoug
....___.

cumbersoie, should not come as to surprise: a(t) is'

called the average propensity to save.

Ifwe let a
0
= a(0) = the ratio.of.I0 to Y0, then
,

.
9

7

4,b
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I e
kt

a(t)
=

. 0

Y +
s

kt
1)0 --(e

.

- 1) e-kt +
a0

4- I

If s > a
0
one can shoW (Exercise 3) thatw(t) isan

increasing , function of time. In any case, since

e7
kt.

+4) as t + 050,4V see that

lim a(t) = s.
t= .

-

That-is, thifaverage 15ropensity to save approaches the

fraction of investment devoted to Sector I as time

goes on. .)

Exercise 3,

Calculate a'(t). Use your answer to show that

.(a) '-m(t) is an increasing function if s > au :

eb) ,a(t1 is a decreasing function s <
2

ao.
. .

, 1

lExercise 4 .

.
4

.
: ..

. -SemPute a(t)_fer i = 5 and t =, 10if'a0 7 0.05,

s.= 9 .5, and v = 5.
.

..
. 41.

, .

6,

4. NUMERICAL EXAMPLES

Jethis section we providee results of calcula-

tions ofthe relative rates of growth of I(t),..C(t),

and Y(t) and of the average propensity to save a(t)

for some 'reasoniablervalues of the parameter 'of the '

model;namely, v = 1, 5; a0 = 0.1i 0.3; and s = 0.3,.0.7.

It-is certainly not un ual 'fOr an-economy to be

reinvesting 10% = 0.1) 9;30% (a0 = 0.3) of its '

-10
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total output. As for, the reasonableness of v or 5

(when time. is measured in years ''(see Exercise 51), ive

can refer to empirical determinations of the marginal

capital Coefficient.- In fact, (with time measuiedin

years), Feldman estimated the capital-output ratio v

to be 2.4 in the years 1928 -33. Leontief (1939) foqpti

comparab1e'ratios to range from 0.076 to 7,1 in

various branches, ofothe Ameriqpn economy.

We have Ted one high (Table 2) and one low

(Table 3) value of s in the computation to i llustrate

the effect 6f favoring one or the other of the two

seCtOrs for investment.

N
wt

p

N

-104
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I

TABLE 2

Sector I Favored r Investment (s = 0.7)

ao = 0. v = 5 = 0.3
a0

t
(years)/

I'/I

( %)

Y'/Y
( %)

C'/.
( %) a

I'/I

( %)

1"/Y

(%)

C'/C
( %) a .

1 14 2.3 0.8 0.11 14. 6.5
.

2.

5 14 3.5 1.3 0.18 14 '8.4 4.4 .

2D 14 '10.3 &.3 0.51 14 13.0 t 11.0 0.65

50 14 \ 13.9 13.8 0.70 14 14.0 .13.9 0.70

v= 1 a
0

= 0.1 . v = 1 a
0

= D.3

1 70 17.5 6.4 0.18 70 42.1 ' 21.8 0:4,2

5 70, 59.3 43.6' 0.59 70 67.7 61.7 0.67

20 70 70 70 0.70 -70 70 lb 0:10

50 70 70 70 0.70 70 70 70 0.70

TABLE 3

Sector II Favored for Investment (s = 0.3)

v = 5 a
0
= 0.1 v = 5 a0 P 0.3

t

(years)

II/I

r (%)

Y'/Y
( %)

ICYC

(%)

-s,

a

PA '

'(%)

Y' /,Y

(96)

C'/C

(90 a

1 6 2.1 1.6 0.10 6 . 6 '' 6 0.30

5 6
x
2.4 1.9 0.12 6 6 6 0.30

20 6 - 3.7 3.2 0.19 6 6 6 0.30

.,50 - 6 5.5 5.3 0.27 6 6 6 0.30

V= I. a
0

= v= 1 a
0
= 0.3

1

5

20

50

3D

30

30

30

12.1

20.7

29.9

30

9.6

18.3

29.8,

30

0.12

0.21

0,30

0.30

30

30

30

30

30
-
30

30

30 '

30

30

30

30

0.30

0.30

.0.30

0.30
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Exercise S

(al What are the units of v?
. .

a
(b) How does v get affected if we switch from dollars

to dimes as the measure of output?

(c) How does v get affected if we switch from years po

months as.the measure of time ?.

Exercise 6

I' C' Y'J4sume,40= 0.2, v=' 3. Evaluate --,- at t = 1
I e Y

for 1

(a) s = 0,1. .

(b) s = 0.6

rcj s = 0:9

5% CONCLWING REMARKS

r--In concluding, we make three remarks on this model: i7

1) I'/I is.given by and does not depend on a0;

i.e., it isig4te possible to have a very fast

growing sector I, while the initial average

propensity to save is Tow. This seems to have

happened in the Soviet Union.

2) Therelative,rates of.growth of the'na0.onal income

and the-consumer goods sector eventually approach

the growth of the producer goods sector (Exercises

, 1 and 2) .

'3) The average propelisity to save rises to s (provided

a
0

< s). The'empirical verification of this predic-.

ti,on of the model seems to have been a source of, .

controversy among economists. Different analyses

of the:Soviet economy have led to widely differing

estimafes: from a' remaining essentially constant

at :23 in the years 1928°to 1937, to a increasing

from .17 to .37 in the same time period. (See

Exercise 11.)

t
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6. EXERCISES

Exercise 7' ,

,

.

.

Given:- C
o

= 21
0' s = 0.75 and v = 3

_.

/ . (a) How many years must pass before the value of 1(0.
catches up with the vdlue of C(t).

(b) Sketch the graphs of I(t) and C(t). (Assume II) = 1.)

Exercise"g
\.,

Under what circumstances will -

C'(t) _
C(t) Y t 4(0

for all values of t?

(

(Hint: First' see when
C(t) ItCi(t) 1) and then

'

1 .1il r' (t)when _
YTET I(t)

Exercise.)

What is the relationship_between and a(t)?

Exiz5ise 10

In Feldman's model is it possibIe.to have

C'(t) < I'(t) Y'(t)
C-(t) t(t) q(t)

(Hint: First see when Cite) t
.1.

and
(t

then when I'(t) Y1
t

t

1(t)

Exercise 11.
K

Discuss possible reasons for Ae mistaken estimation,
of ci(t.) if I(t) and'Y.(6 are measured in current ices

and tiO infration rates in the two sectors- are di ferent.

Exercise 12
16

Suppos6,s,= 0 and define a formula for C(t) .,

107`
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Exercise 13

It takes not only capital but also labor to produce

output, What are the implicit assumptions of the Feldman

Modelabout the supply of labpr?

Exercise'14 .

What.are the implicit assumptions of the Feldman

model about international trade?

Exercise 15

Suppose we drop the assumptiop vp = vc = V, i.e.,

v
P
and V- are now two different constants How'does

this modify Equation (4)?

.7. REFERENCE

Domat, E.'D. (1957), Essays in the Theory of Economic

GrowA, Oxford Press, Oxford.
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a' (t)
-kttEs/a0 - 1)e + 1)

8. ANSWERS TO EXERCISES

ks(s/a0 - 1)0t

s > a
0' and negative if s < a0.

0,

4. a(S) = 0.077

a(.1P) = 0.116

S. (a) Unit is time; e.g., years.

(b) Stays same. .

(c) `v(months) = 12 v(year)

6. (a) I'll = 3.33% C' /C = 7.2% Y'/X = '6.5%

(b)' I'/I =-20% C'/C = 3.9% Y'/Y = 7.6%
(c) I'/I = 30% cvc = 1.1% Y'/Y = 8.4%

7. (a)i 3.66; years

8. a() = s

Y'*9. a(t) = v

10, "No.

is positive if

12. Ii(t) = I(t) = 0

= I0 = constant

1 -

v
s 10

Ct(t) = I(t) =

n
C(t)10

f
= tt(t)

I
C(t), = Co +
' s

C(t);
+ 1

s

s. P
(e0

177

1).vC
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-.. haye often been ;Called upon to make a mathematical
.

t-,- ---,
'-'),

.,.

.
,± .--" In your mathematical studies up to this point,

description" of a situation. This description usually

consisted of an equation of some tort. The familiar
_ .

/
"word problems') in an algebra course gave rise.to one

1(

or more linear equations, or perhaps a quadratic or

exponential equation. ,

. When the situation to be described contains a non-

uniform rate of change, the equation will contain a

derivative. It is then called a differential equation.
,,.

..,

PREFACE

you

4

It is the purpose of thismodule to show how to

describe certain physical situations by means of differ

ential equations and how to solve these equations by

simple graphical or numerical techniques.

The differential equations (DE's).treated in this

module willsbe ordinary (containing no partial deriva-

tives), ,first ardir (will containonloy first derivatives) ,

and of first degree (the derivative will not be raised
to any power higher than one)Y

I would like to express ;`appreciatidn to Mary' Jane

Meuenddrffir.and William U. Waltbn\bf PrOject.CALC for

theirextensi4v.help in preparing this modtife, and to

thelaany peo+-who reviewed the draft and offered
valuable suggestions.

)
Unit 81: PROBLEMS LEADING TO DIFFERENTIAL_ EQUATIONS

Chapter 1 The Optical Filter 3

Chapter` 2 The Saggift Beam Problem.. 6 °

Chapter 3 The Fish Pond-Problem' 8

Ghepter 4 Modeling the Optical Filter Problem 10

Chapter 5 Modeling them Sagging Beam Problem 18

Quiz #1 22

fr
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Chaptef 1 °

THE OPTICAL FILTER PROBLEM

I threw down my; pencil in frustration. Taking my
action as a signal, Polly and Herb did.aresame.

. Professor Arclet\dian't notice. He had' aozed'off;

his habit Whewhe gayeta test,-and he was snoring lightly :-
aunt, forming silent equations with.his lips:,

Herbheld the book poised above the floor. ,Hit

chubby face showed both discouragement and apprehension.
-He looked at me wiih a questioning smile. -That book.
Another reason for our discontent. Heavy. Complicated.

' Eighteen dollars. I knew it was unkind, but I gave Herb
the nod.

s
Five pounds of calculus Came crathing,to the flddr.

.Arclet sprang to his,feet, banging,his jcnees painfully on
the desk. He staggered to the ,blackboard-and began to ,

lecture, a'continUation of-the derivatiol begun in his
sleep.

0
"Professor Arclet,"1 interrupted. "We can't do

3'this test." .

'The exam is wh'a't he calls a pro -test. It was the 'cnW
.on differential equations. Atc.Iet always gave us'a pre-'.
'test When we got to a new topic, and thoselof us that
`.passed didn't have to come to 61ass-untilthe next, topic
-.came up. I neiri? 'Sassed afiy of these tests, but they did '

give'me soar ideas of.what was coming, and whattwas
-

aiipposed tei -be able to. d8 later on. Sometimes he used the
,-- same test af4r iie.finilhedithe topic.

.

"Well," he'said, Tubbing his sore knees and absently

staring opl at the Veriont landscape., "that means we need-
to go ,over this material. '.

,

. ..
.

There was
., ,

a groan from Polly; who had freckles and
. . .

.

wavy auburn hair. "But professor," she said, "differ-

ential equations stem to, so--nowhere! We spend all that

time and effort learning this stuff, andI'll bet we never ...

use it in a million years." olly's face was flushed and
%.

,her voice shook.

"Yeah, yeah," frOm Herb and me.

,Encouraged by this support, Polli'went on., "What, is

the stuff,good fqr? .4Can you;give us a single. example of

villeresomeoneusedgclifferbitial'equation to solve wreal.
important problem?"

Polly sat down to our applause. .

4,

Arcat was Silent foT a long time, his thick, bushy.

brows drawn.together in' concentration. This Was'our first
open rebellion, and I:vondered how would, handle it.

He shuffled around to the f nt of the desk and sat
on it. We knew thispifat symbolic - removing the barri'ers'

between student' and teacher. This usually meant that he

was going to iell'us not to think of ourselves as students
.

versus teacher, but as'a grouprof '1)41'e-seeking the truth
together. Instead, he just satith;fe, kicking his heels'

'against the side ,of the desk..
...

, "Let me tell you\a little story," he began-after.a
minute or two of thuiping. "It's'about a young friend of
mine, named Denis DrOpmoi2e."

Isetled ettfbrtably into,my seat, ready to doze.
,

,

- "Young-Denis," Arclet said, "was a proposal writer,.
t at the 'Deadly Nightshade SuUglats Company, back in the

'sixties.' One day, th company'received a request froi
_Ibt._Department of fl,fense to prepare a quotatioWfor a

At 1 41 "
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= 'hadAy needed'itea'.' Some tnmentioped foreigri imWer had

developed i-new weapon,:the iallistic Laser fdi 'gantry-

Nelitc"alizatich and Destruction, code nameBLIP6. Deni4's

,company was asked to:produce a protictive tyecover to bee

worn by soldiers: Sunglasses; geed Attached, Defensive,

Expendable; Shatterproof, code name SHADES%.

'S

-
a

t.

4

"The -DODhad sent along, a small sample of the lens

material to03e.used.' Only the thickness could be changed.

Another requirement was that the glasses reduce the ihten-,

city of the laser beat to 10 percentesfaits.yaltie.'
-

"Testing the'sample in the laboratory, the company

:disc6rered-that eth4 limmi thick material would reduce the

intehsityofa:laserbeia by 15 percent. 'Well, good.,',

:-..
siid:Al, the ,compapy's softspoken-chieiletigineer.'If one,

.?millimeterlif that material,,will remove 15 percent, then

-.six millimeo ters Wilk remove the requir4 g0 percent.. Denis,. .. ,

writeinto the proposal that we will make.?the lenses
, .

six MilliMeters thick.' -- -4
-

. ,

"Denis chuckled." 'Al,' he.said,-loud enough for
, .

everyone4n 'the office-to hear; 'yoU don't know,anything

°about optical'fiiters,-do you?' . ,

. "Al smiled up at Denis. 1You're fired,' he saidc'
softly."

The cliiebelL rang. Arclet's story grabbed Us; but

es0.4ielunCht-*e au ran out.

S

r-

Chapter 2

THE SAGGING BEAM PROBLEM

Today, Polly, Herb and I were not lake for class for

the first time inthe semester. Professor Arclet was

heated at the edge of the desk, exactly as we had left him

Yesterday.

"Denis Dropmore sat drinking beer at home," Arclet

b4an, "dreading the return of his wife. Howcould_he ,

break the aaws? At 5:30, Angelica Dropmore came home.
She looked distrelsed. Denis took his young wife by th'e, ,

hand. 'Honey,' he stammeted. 'Today I

"'Denis; I gotf4red,' wailed Angelica.

"Denis was whateypu'd call' flabbergasted. 'Angelica

poured out her story.
s

"'I. was at the bank, as usual, today, tidying up my ,

desk after the last customer left, and couldn't help hear-'

.ing Nichols and Dymes, those two creepy vice presidents,

havingabattle You know the ones-':always trying to

outdo each other.,

"'Nichols shouted, "Under the safe:"

"'Dymes"screamed, "No; you twit, it goes,under the

mIlispan." ' 4 t
.

"Angtlica raced oh,' 'Oall.had to dowith that heavy
safe comOi-insnext week:NThey found a location directly

over a,thirty-foot-lotig steel beam; but couldn't get it
cloier than six feet froM the end support. -Old Mr. Usury,-

_ the bank president, was afraid that bending of theileam
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.under that massive load would cause cracking of the
expensive marble floor tiles.. He told the two VP's

to install a thirdorertical column under the beam at
the,point where the sag would be greatest if the third
column-wasn't'there; Nichols wanted to put it diregtly
under the safe, while Dymes said no way, that the great-
est sag would be at the midpoint of the beam.

"',Remekber,'Denis, I studied structures in archi- ,

tecture "School, so Iknew better.

"The column should-Igo between

midDbint,' I blurted.
the safe and the

"'Two-pairi of eyes turne on me. 'Disbelief-and

contempt, I felt it inOheir stare. Nichols and Dykes
spoke in unison, agreeing with each other for-the first
time since they joined the bank.°

"'"YouAre fired," they said.'"

.)N

*
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Chapter 3.

c.

THE FISH POND PROBLEM

"Denis hated t4 burden his wife with further bad

news;" Arciet said, "but hated more to keep anything from
' her, so he told Angelica the events leading. p to his own
firing. However, after4puhlicly apologizing to Al for

his brash words, Denis had been told.thavhe,could have
his job back if,he brought in, by Monday morning, a com-
putatiOn of the correct lens thickness. That' was fine,.
tut even thoUgh he knew that Al's answer could not be

right, he, himself,-was not sure.howto go about finding'
. the correct answer.

o

"'Tears formed in Angelica's eyes but she brushed
them away. 'Well, at least we have plenty to eat, For
a while, anyway.'

"She was referring to the fish.,'

'S

Oa

!Ten' days ptevious, old Cy Seepage had put a dam
across a'stream running through his property in order
To trap some trout. Incensed by the blocking of their

favorite trout, stream, Denis and Mike Mossy had, the
following day,',opened the drain. Water flowed from the0
pond, carrying with it trout. Denis and Mike, collected

8
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them in a wire basket hidden by the dense, hillside
brush. They had left the basket in place day and night,
occasiohally'emptying it and storing the trout in Mike's.
.greeter. eiery day, old Seepage checked the level, of
the*pond; planning to net all the trout'as soon as the
pond was full. The level continued to rise, for water
floted in faster tharr.it could be drained out; Seepage
had no reason to 'suspect foul play.

"The Dropmore's telephone rang.

"It's for you:' Angelica handed
'It's Milp Mossy.'. She wrinkled her

"'Hi, Mike, what's up?'

' "'The pond is. Nearly full. Seepage says he's going
up tomorrow to catch and count the fish, and,half the town

the receiver to Denis.

nose.

is going up to watch.'

.

"That's' great, Mike. All ie have to do is divvy up
the fish we swiped.'

.

d

"'Er--that's whipPI called. I've got A proposition.
Let's each of uS:give a gliess at the-fish left in the
pond. The one comiig the closest-gets all the fish.
How about, it ?' i

"Denj.s was hesitant. Mike wasn't too bright, but he
was- lucky; always winning contests: Denise was finally
shamed into agreeing,.

"'How could you be so stupid,' Angelica cried, when
she heard what Denishad, done." 'Don't you remember that
both our families are,doming to dinner tomorrow night,
and I was going to serve'that trout? -Ten guests-coming
and no main.dish, and.no money ft either. What are we
going to do?"'

4 I r

9
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Chapter 4

'4ODELLINc THE OPTICAL FILTER 'PROBLEM

By now, Herb and Polly and I were all involved with
Denis and Angelica Dropmore. We begged Arclet to continue
the story even after the bell rang. He just shook his
shaggy head, so off we went, discussing-their problems

Continuously until class the next clay.`

Arclet came into the classroom with a cardboard carton,
and,dumped the-contents onto the desk. It was a funny col-
lection of junk: There was a desk lamp, measuring spoons,
wood blocks, a bag of peas, a hacksaw blade, and lots of
other things.S Arclet stood beside the heap, looking arch.

"Aren't you going to,cdntinue the story today?" we
wanted to know.

"This is the continuation of the story," he said

mysteriously, indicating the pile of junk with a grand
sweep of his Arm. He was a pain when he put on the
theatrits.

He cleared his throat. "To continue, we left Denis
on a Friday night, with a highly troubled mind. At eight
o'dlock, he received another 'phone call.' It was Mr.
Usury., the president of the bank. He was very kind, and
said he suspected that what Angelica said about the beam'

litwas correct. If she could come in by 8 AM on Monday with
somethipg that would convince him that she was right, Mr:
Usury would not only rehire her, but would give her a raise
as well.

"The challenge was now clear. Angelica and Denis
were facetwith three problems, one of which had to be
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solved by three o'clock.the following day, and the other

two by MOnday morning. .

"When Angelica came doWn Saturday.morninga she found

Denis asleep at the kitchen table. Heaped on the table

and the counters'were.the very items you see before you

now, and5sheets of papet covered with scrawled figures

and graphs lay strewn about the floor. He-had devised

ways to model the three problems. °

"Ii that, what You're going to show us now?" I asked
Professor Arclet.

:Not exactly," Arclet said. "That is what you're

going to show me."
o .44

Note only did Artlet make me perform an experiment

right,on the sf.ot, but he make me write it up as well,

Complete with .objective, steps, conclusion--the whdle

-bit. Much of the-following description is lifted right
out of my notebook.

Title: THE OPTICAL FILTER EXPERIMENT

, Objective: Yoyarn about filters.

At this Point' Arclet objected 'to my objective as

belm o-marildi:il I crossed it out and wrote:

3

objective: To bee show different equations can

arise-,tan a physiCal problem.

10,

,

Now Arclet objected to' my.objedtive as being too
:objective. .' 1

.. -,
.

"Make your objective more subjective," he urgec

"What I. mean," he said in responie t y vacant

look,, "is that :you should phrase .your bbjeCtive in terms
_._

a

of what, you will, be able to da after' the lesson, that
you compin't de before."

124
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So I wrote:

Objective: After this lesson,kr,should be able to

write a differential equation to describe

a physical problem. (If i't's real easy.)

Arciet sniffed at this, But let me go on to the

next step..

Materials: 1. Desk lamp with 60 watt bulb.

2. Photographic exposure meter w4tb a
scale graduated in EV (exposure value).

About 40 sheets of translucent tracing
paper, or typist's onionskin. These
will be our filters.

4. A sheet of glass large enough to cover
the front on the,lampliou&ing.

Procedure:

Stip.% 'Swivel the lamp upward, so '*et it points
at the ceiling. Place the glass over it;
and tape it in place. Place one sheet of
paper (filter) on the glass.

,0
Figure 1: Apparatus for the OpticalExperiment
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4

Stet 2:

;

,

Holding the meter right againt the filter
take a first reading. This will be the
starting value, so it should 7,rodt.ze a

needle deflection close to the top, f the
scale. if it's too high, cut dnwrig he
light by using more filters or a smaller
bulb. If too low, use a largerbulb:

Step 3':. Once you get this large deflection, tape
down the filters and mark the outli6e of
the meter on the top one so the meter
can always be returned to the same loca-
tion. Rotate the meter dial untiy,the
number ten of the EVAcale is oppOsite
the needle. '

Turnoff the lamp when not taking readings
so the paper won't overheat.

Step 4: Add filters, singly or in groups, each
time noting the meter reading and the
total number-of-fifters added: Do nbt
count the filters taped to the lamp, as
these were only used to adjust the start-
ing lhtensity, and to control the color of
the light reaching the meter.

.Step 5:. Keep adding filters until the light reach-
% iog the meter is so't4eak that no further

readings can be'obtalned.,

I

I wound up with a two-column

ing'something like this:4
.

I,Experlmental Data;,

2
t

Number
Filters

table of data

L
of Light-Level

(EV)

0

1-

2

1e0

7.5

5.5

A

1ook-

4

Plot of the Data:

Ob.

MINIMMINIIIMI
IBM NEM

4
6

hit

tg

-4

0

011111111111LIM=MIMELNM
AI=

MEMMIME
MINIIIIMMIMMIIIIMEIMRE
INIMENIMMMEMMI

10=1111111111=

MEMMILMEMIMIIMMIRII
1111111111111111111ICIIIIMMEM

EMI=NMI=MENMEMMEMMEM MOM
0 5 10 15

NuMBER OF FILTERS

a

Figure 2: Plot of Light Transmission
Vs. Number of Filters 0

After plotting the graph, I attempted $o explain to

the others who were looking over my shoulder.

"Now, it's pretty clear that not every filter is

absorbing the same amount of light, for if it was, the

curve wouldpe a-straight line sloping downward. ,It's

plain that each filter is' absorbing less light than the

one before it, because the reduction.A.light per filter

gets smaller, for each additional layer."

"That makes sense," respondethArclet. ",When we say

that a filter absorbs.; say, 25 percbnt, it means 25
eopercent of the light reaching the filter. Since less

light'reaches the farther filters, they absorb less.

other words: The amount absorbed depends upon

how much is present.

'tin other word ;: The'rave of ddcrease of /the light

jcv61 is proportional to the light level.

_
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-
"In other wordi: 'The rate of change of "L. id

proportional to L , if we let L represent'.the' light

level."

"How can you talk about a rate?" asked'Herb. ;The
filter.isn't moving."

"Quite sp," said Arclet, "but do we need movement
to have a rate of change? What, about interest rate,-e0"

"Oh, yeah," said Herb.

Arclet went to the bogrd and wrote,
.

[The rate of change of L] [Is] [Proportional to] [L]

"Now for an equation," he 'said. "There are foul

expressionach enclosed in brackets, and four of US:
A

Eachof us will write the proper) mathematical synbol below
one of the expressions. I'll go first." Under [Is] he
chalked in a huge equals sign, and, with sickening coyness,.
`handed-the chalk to Herb. "Next," he said.

Herb dashed tope board and, under' [L] , wrote "L"
and tossed the chalk to Polly.

Under [Pxopqrtional to] P wrote the pioportionality

symbol a, but just stood ere with a dissatisfied wrinkle.-

. 'in her nose.- "HoW can w have b. an equals sign and a
proportionality sign in t sameequation?" Her question
was directed at the bla b ard',.but Arclet answered instead.

"You cannot have b. h. Instead of the proportionality
symbol;, how about a ...."'

"Of course," said Polly, and she wrote:a constant of
proportionality, k. The equation now read,

[The rate of, change of Li kL

-and the chalk was passed to me.
-

15

I

Remembering that rate of change always meant a

deri'Vative, I wrote,

dL

cinder the remaining expression.

"Oh, I see," said Arclet mockingly. "The derivative
of L.with respect to I-don't-know-what: -Very. resourceful."

. Smarting, I wrote,

dLV
dt

kL

.

where t.sy total thickness of filters (}lumber Of filter
sheets)'.

. .

"Just one thing missing Arclet and, after
waiting a moient for one of us to supply'the missing thing,
went to the Lard and wrote a minus igre-with a big
flourish: :"The slopes are dll.negative, right?"

The equation was then,

dL. .RT -kL

;

/. ,

To see if this equation really held for my data, I
sketched in\ttr tangent to the curve at several pjoints.

I then measured the slope of those tangents°(risel-over.
run). At each point where I measured the slope, I read
t* ordinate L, add. divided the slope, (dL/dt), by the
ordinate io obtain k.

k = dL/di
Vt
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I got oximately the saae value for"k at all' of

-the taken.
.

4 .

.., .' 0-

.
.

4 Chapter 5 '

MODELLING THE SAGGING BEAM

"Not bad, not bad at.ill,"'Arclet said, as I returned

to my seat. ."Now take another look at that.04uation. Is

there anything different about it, or is like, all the

other equations we've seen so far?"

"It's got. a derivative in it," Herb said.

"Right!" Arclet was= encouraged by the ale ;t response,.

"And any equation containing a derivative is called

He waved his arms like a conductor, trying to get..0

to sing put the remainder of his sentence. We 'slat

there silent.

"A DIFFERENTIAL EQUATION," he hissed through his

teeth. ; "Class dismissed.w'
;->

"Today, we-will do another experiment," Arclet

said after, we'd settled into our seats. "TO begin,"

"But the story," we hdwlediw
- .

"Are you here forillearning, or for entertainment?"

eprofessor groWled. (We knew we tad One too fare)

. en, more softly -, "We:11 get back to the story. But

first itis important for,you Lo undeistand the experi-'
,,

ments that Denis Dropmore stayed -up vW night'tb.periOrm
-.F.

in his kitchen.

"Now, who will do this one? Polly, my:dear, come

up-here." .
,

Polly went up to the dysimnd performedthe experi-

Rent with some assistance from Arclet. The following

outline is-almost Word-for-word from the noses I took

that day'.
t

.
.

'

Title: THg BEAMXPERIMENT
. .

Objective: To be able to make a model of a beam deflection

probiM.

Materials: 1. Hacksaw blade

2. Sheetsa at -leait 8ibyq11 inches,
and at least inch thick

# 3. Two pans

4. Sheet'of rectangular graph pager

.

1 3 1
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Procedure:.

Step 1: Tape the graph paper to the board, so that
the edge of the paper Is even lvith, the edge

of the board.

Step 2:' Draw a line down themiddle of the paper,
parallel to the long edge.

Step 3: 'Drive the two nails into this mid-line.
Let them extend about 36.4nch. The distance
between the nails alould.be-'10 inches.

. Step 4: Prop the board into a vertical position.
Lay the hacksaw blade across the nails.

Step 5: Dne d a half inches frpm one of the nails,
put gainst the blade with the eraser end
of a pencil. Get an assistant to:trace the

`shape of the blade on the graph papei-.

Step 6: Changing the pressure against the blade,
draw several such deflection carves.

iR

Figure 3: Apparatus for the Beam Deflection.Experiment

19

Arclet pointed out that many physical problems required

. Special knowledge of the field in order to even write the

equation, and that this was one such Case.

/-
"Fortunately, I, happen to have a broad engineering

background'in addition to my mathematical training,",said

Arclet. "Now write this down." He tilted'his head back

and
.

defocUssed his eyes, as if he were reading something

off the idside of his skull. "The second derivative of

the vertical displacementy with respect to the position x

along the beam is directly proportional to the bending

moment M and inversely proportional to the product of the

modulus of elasticity E of the material and the moment of

inertia I of the beam cross-section."

This entire sentence was del.ilygred without taking a

breathand in a flat monotone, like a third-grader reciting

a poem on Parent's Day.

As with the opticil, filte problem, we wrote the

expression in braCketsan4 with less difficulty this time,

wrote the symbols beneath!

Y
.

( to

The second derivative)

to x

directly

{ i

of y with respect proportional

d2y

' dx2

or, d2y, M

dx2 E I

' k

and inversely)
proportional

to EI

1

E I

Arclet then pointed ofit that E was, in fact, the constaht

of proportionality in this equation, so that a separate k

was,not deeded. Our final equation was then,

d2y M

dx2 E 133
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.1
.L. "Don't wori3y' about this equation now, Arclet said»

"We'll go into it in' detail when I explain later hog we 4.01P
solved this problem numerically. For now, it's enough.
that You 'find the point of maximum deflection on yOur
tiacicsaw curve; and iterify that it lies between the lOad
and the midpoint, as Angelica had claimed."
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.thccurves-Poll,dreq orthi.deflecte&,hacksaw blade.

At the end of oUr .second tlesson in writing differ-
ential equations for different physical.problems, Arclet.'
gp,Veus the foiloWing quiz..

Quiz #1

I. If the rate at which heat is lost by a body is propor-

tional to the temperature difference between the body

and its surroundings, write a differential eqtiation

to describe this situation. '

2. An object moves in a medium offering resistance

proportional to the square root of its velocity at any

instant. Describe this situation with a differential

equation.

3. State in wordslhat'a differential equation is.,

for answers see page 67.

Mt,

.;
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Chapter 6

PROFESSOR ARCLET TO THE RESCUE

Today, Arclei was seated on the edge of his desk,

a signal that the story was to resume. We took our seats
in a hurry.

"You will recall,"/116 began, "that we left Denis

Dropmore asleep in a kitchen filled with the debris of

the wo-experiments we have just performed. Sweet

Angelica, fearing that her husband's mind might have

snapped under the stress of their troubles, woke him
gently.

"'Careful of the fish!' he shouted, pushing her arm

away from the little pile of green, split peas with which

he had unsuccessully tried to simulate the fish pond
problem.

"'There, there, Denis dear. Of course /,won't hurt

your little fishies. Now, you come upstairs and lie down

while I make some'phone'calls.'

"'No time, no time,' he cried, and began rushing

about the kitchen, rumpled and unshaven', counting piles
of split peas, an holding sheets of tracing paper up to
his swollen, red eyes.

"'So much to do, and so little time.' I feel tHat
I'm so close to an answer but rcipn't know4what to do
next.' .

"'Now, Denis, please lie ,dwn,,and let me call the
doctor.'

-,.."Denis stopped dead in his tracks.,

137
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"'The doctor? The doctor! His eyes were wild, and

he shook tlie hack4aw blade menacingly. ''Of course! I

need t4eJoctor. Angelica,you're a genius.' He ran to

the phone and called the only doctovof mathematics he

knew. .Me, Arclet, of course, Realizing the urgency of

his problems, I went over at once.

"At Denis' house, we exchanged the briefest of

greetings, and went right to work. I scanned the results

of his experiments, and was astounded at their cleverness.

Realize, of course, that he had no equations written, as
we have done, and I set about writing these. I sent Denis
off to take some measurements at the pond.

"He returned in an hour with the measurements and

estimates, and with the news that people had already.

egue to gather at the pond. MikurMossy was there,

annoyed that Denis didn't have his guess ready yet.

"Since the fish problem. required a solution sooner

than the other two, we tackled that first. We solved

it simply by drawing a tangent field.

"Class dismissed."

9

e.

0
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Chapter 7

TANGENT FIELDS, AND SOLUTIONS TO DE'S

Arclet was so obvious. He had left us hanging yester-

day, with that reference to tangent fields: today we were

suposed,to rush into class and yell, 'what is a tangent '
field? What is a, solution? Teach us., teach .vs. I hate
to admit it, but I was a littlb curious. Arclet came intia
'the room.

"Lesson today, right?" we asked. He winked and
begun writing on the blackboard.

Title: THE MEANING OF A SOLUTION TO A DIFFERENTIAL
EQUATION. INTRODUCTION TO TANGENT FIELDS.

Objectiye: 'By the end of this lesson, you should be able
to:

41
a) Verify-whether a particular equation, graph,

.or table of point pairs is a solution to a

given .dV.fferential equation.

b) Draw a tangent fieVd:

a) Use a tangent field to sketch a solution.

..

These preliminaries out of the way,rclet began
..to lecture.

ti

"When you solve algebraic equations, what do you
get, aside from a heidache?"

It looked as if we were in for one of Arclet's
: lighter lectures..

nrotr"get some number, the root, which is the value
of x at which the plot of the equatrion crosses the x -axis.
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-,the,:curit,troiikSansore..ihan,_one place, as-a,quadritic

may, 63itlaiirodi-4t each crossing Fine .

h"BUt',what-,,ilUes'Imean tosoivea differentia; equa-

tion? ,.What.sbri:--Of.aniwervtan we expect?,---WWItter?

Siiiefal:namherii 41 :equation? One objective of this unit

JS to help you toUldersianfl Oit-thesolution to a

4iffereptial'equationmsalis, and how-io recognize one. ,

thisxnit you should be able to examine

whatj.sciaisied,telhethe solution,of,a?particular DE, and

ceftain:whetheritAs,an impostor or not. We will

,..not4Ind-any.solutiOnskot..yetv ,

"Look it_thit,differentiat equation:

.+:.-2y a. 0

If we think in graphical ,terms, dy/4x is the,slOpe of some

:We,fcan:-represent,.-this:slope,hy m For

smplicity, we rewrite the DE using in

.
.

'ytt ;'2y x xi 0, ' ,

- ,

"AnY'three-numhers, m, x and.y that will-satisfy this

equation will be a solution Taie,-for'exaMple, m

2 Substitut1ng, we ge

1 t..2(2) 0

" I;

.

"It should e apparent, that there are infinitely tany.

such-coibidatiOns,thit will satisfy our equation." Just
4

_132.-0,any,valUes and y out,.of the air, and solve
.,

the'iquatioU for . -

'"quipose:thiit we.,piac the valuds1 and 3 for x

, '

and v.

27

Then .

x

1 2(3)

-3

.r.

Thus the set of numbers 1 and 3 will satisfy our

equation. Now compute three or four more sets,of'numbers

that will also work. To keep from getting too spread

out, take values Of x and y between 0 and 10.

"Got the numbers? All right, now plot them on a

sheet of graph paper, using x for the abscissa and y for
0.00'

the ordinate in thek4us'ua1 way. Alongside each point, write'

in the_ualue of m. You should now have something looking

more or less . ike this.

I

10

-
.S: 10 ,

pie 5: Slopes at VariOus.Points
°

"Draw a smooth curve through the points,. In fact,

tfy.to draw in your curve so that it will have the slope
,

required at. each 'point."

"It doesn't work, right? Don't worry, I didn't
expect it to. But now I ask you the following question.

'Instead Ofichdosing xand y at random, can you think of ,

some clever way of picking them so that when all the points

."; ,
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are-connected, the slopes at each pointjare precisely

`.those, required by the equation? Why should you go to all

this trouble? Because

WHEN YOU DO THAT, YOUR COLLEcTION,OFAOINTS

WILL, BE A SOLUI'ION.OF THE DIFFERFFIAL

EQUATION.

e I wouldn't ask you to do something that wasn't important.

"At this point, take five minutes t9 struggle with

*that problem; You can work by trial anderror if yoli

A good way to start would be to draw a shcqt line-through

eackr.of your points with a ilVe of the properalue.

Figure 6: Part of the tangent field for y'+ 2y = x 0

29 .
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'After five minutes, Arclet urnte on the beard, Tangent

Fields. He then continued/ to lecture.

"If you had 'graphically indicated the slopes at your

points, and had added more noints t\ your plat, you would

arrive at a diagram knohn as a tangentifield, cii%a direction

field. IT we sketch in a ctrme whose clo-e is always

'the same as that of the surrounding tangent field, we

, know that any point on the curve will satisfy the differ-

ential equation. The 'collection of points on theacurve

is therefore one solution of the DE.

field, and sketch in s veral.possible solutions."

"Now g9 ahead your own tangent

He gave us a few minutes to do that before

'continuing.

Different Forms oS a Solution

"The curves that you sketched previously are

solutionS to the differen4a1
.

equation. For the..

'moment, don't worryt4t there are an infinite

number of such curlYes. We wit? get to that problem

_later.. The informatipn in these ,curves can be ." 4,
presented in three different4waySi.

a) Graphically, as they are now.

0.

.

b) Numerically, as a.tatileof x,y pairs.
.

c) Analytically, as the equation.of the
.

curve connecting the points.
,

"In our next lesson wt* will solve a, DE graphically,

and obtain a curve. Later, do a numerical

solution and arrive at q table of Point pairs for

an answer. An analytic solution is obtainerby
3. *

manipulating the* differential equatioh. We're not
o -going to do that."

10it

vPi
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I raised my hands to clap, but Arclet's icy stare

:ftoppecifie' cold,

-Bouildify2COnAtimis. 4
,

J'Why.so.many solutions? At this stage in your

math career you should not be too surprised to get an

.lifinitenumber of poisibleanswervhen you reverse

'aimathematical_oieratiOn. °Wok What happened wIlen you

took the inverse of a trig function; or an anti-derivative.

Inssolving adiffeic4ial equAiOn, integration must

be performed, ant it, is the unknown constant of integra-) .

-tionwhich-makes the result indefinite. As with the

-anti- derivative, some additional informhtlion is needed

before the unknown constants can be evaluated. These

additional facts are called boundary conditiaite.

"For example, suppose'I told,you that, in our

previous probeem, e'slope had to be -7 when xAms

zero. Wouldn't merelye/diaw in the one curve having
the required slope Aereit crossed the y-axis, and

ignore the rest? Or, if you Knew th the curve had

to pass throughthe point-'(4; 5), this information

would exclude all possible curves b one:

."If youhave access to a c uter,,you might

enjoywritinga program to plot tangent pelds. Have

the progrdm print,numbers giving, the slope, at the,

proper coordinates' on the paper. If..you'havea plotter

available, 4'ou even can haVe it.drak in the_tangent

lines. Here is a tangent field produced by such a .

program.';

144r
4'.

A 4'

dittelevo

Figure 7. A Computer-Generated Tangept Field
7.

t

>.>
..
A.; 4.

1. ,
. 7

ono.,

4

.1111610

-4 4.

dN ' -kt
bNe , where k

.

0.5, and b = 0.5.

Ar clet,cqncluded the lesson'\by giving us the

following quiz.

.145
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or

Quiz /2

1 Verify that the equation

y y (in x + 1)

is a solution to the differential equation

by plotting it for values of x from 1 to 5, and meanr-

ing slopes of at least three points.

2. Given the differential,equation

ae ix_:_it

plot the tangent field, letting x range from 1 to -5

and y range from 0 to 5. Sketch in a possible

fIblution. 1 0

FOiNhsWers see page 68..

4.

)

Chapter 8

THE FISH POND PROBLEM SOLVED WITH ,A TANG T FIELD

4.,

"Time was of the essence," Arelet said, continuing

the tale. "Mike Mossy had just calledreminding Denis

of their agreement; if one of them-failed to make a

guess by the time the fish were counted, he forfeits his

share automatically. I worked furiously over the graph

while Etlisfed me the ,measurements he had taken and

Angelica did the computations on i pocket calculator.

"Here is -what Denis found at the pond.

. a) Water flowed into the pond at an estimated rate

of three gallons per minute.

VEach ten gallons flowing in7brought with it two

fish.

c).Greedy old Cy. Seepage hid gottep the .Fisll'and

Game Department to stock the pond free of

/01 charge by telling them he was going to allow

public fishini: They had put in one thousand

'trout the same. day that the dam was fihished.

.

iv1:-
41141 tet.100141 i+4*:

"4.
6 141,)+:.010 lel t

Figure 8. Fth Pond law Rates
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d) Since Denis and Mike had opened the drain after

one day of filling; the pond would then have

contained 4320 gallons.

e) Water ran out'the drain at the rate of 2 gal/min.

f) The pond was completely filled nine days after

the_opening of the drain, at which time it

contained 17,280 gallons.

"Denis anA'aV)gnlica-watched withawe and gratitude

as I developed my clever solution.
JP

"Let Q represent the number' of fish in the pond at

any instant. then,.

)
4Q . rate of change of the number of fish

Also, let

C = the concentration ok fish;

that, the numbef"Of fisl? per gallon of water, at any
' instant. We assume that the fish are evenly distributed

roughout the pond. Since water containing 0.2 fish per

gal on was entering at the rate of three galIons'per
t

minute, fish were coming in at the rate of 3 x 0.2 = 0.6
h per minute. - /

"Since water containing C fish per gallon °was leaving

at the rate of two- gallons_ per minute, fish were being

drained off at the rate of gc fish per minute, Here we

are making,the assumption that the drained water contains

the game concentration of fish as in any other place in
the pond.

"The rate of change of the number of fish in the pond

is obviously- [fish in] minus [fish out] or,

dQ '= 0.6 - 2C.

148

(equation 1)

35 44

The total amount of water, w, in the pond, if we start

- reckoning time at the opening of the drain, is,

W = 4320 + 3t - 2t = 4320 + t,

where t is in minutes.

"The concentration of fish is, then the total number

of fish divided by the total amount of water, or

C
w

=
4320 + t .

(equation 2)

By substituting equation 2 into equation 1, the rate of

change of the number of fish becomes,

dQ
- ,0.6 - 2C = 0.6

4320Q+ t '

which was the differential equation describing the fish
population in Oka pond.

4*

I

eta>

Q
%%Ails

Fisb
4

time (minutes)

10" 00. .404^11444. NNW

Figure 9a: The Start of Arclet's Graph

"the next step was to plot a tangent field. I let

tne abiscissa be time, in minutes, extending from zero
- to

)9 days x 24 hr/day x 60 min/hr = 12,960 min.

-.149 36.



PAcould also compute the number oflish in the pond at

time. zero. It was,

1000 + 4320 gal x 0.2- fish/gal = 1864 fish.

(See figure 9a.)

"I next computed slopesaevarioUs poin6 on the
1-'

graph, naturally takinglthem only where I expected the
.

curve tebe, computed them from the.drfferentia4,
*NWequation)

slope = 0.6 -

Now this was the graph:

.6

2Q
4320

Figure 9b: Arciet's Tangent field for the'Fish Problem.
S

1 g

and I could easily sketch A the curve showing the grbwth
of the-fish pdpulatibn. Where the curve intersected, the

12,960 minute' Pine was 'the number of .fish at the time- the

pond was full.

150 37.1

Figure 9c: Arciet's Solution to the Fish Problem

4

"Denis startled me by tearing the sheet from my

hand before the ink was dry, and flew out the door.

Angeliea and I waited for several hours. Their dinner

guests started to arrive, and we made feeble excuses

for hig absence! He returned home it six. We had a

very fine dinner of boiled potatoes, broccoli with

hollandaise sauce, pink chablis, and, oh yes, broiled

trontA

e

f

l

this. -

Arclet stopped speaking. His eyes wre,glazed

as he smacked his lipS and recalled that fabulous

difintr. Herb wanted to drop his calculus book again,

but.I said no. It frightened me when'Arcet got like

We slipped out after the bell rang, leaving the

professor sitting. on the edge of the desk, muttering

something about '1.47 sherbet.
ti
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Chapter 9

SOLVING DIFFERENTIAL EQUATIONS GRAPHICALLY
.

.

Today Arclet was allbnsiness,. He strode briskly

into the room, always a bad-sign, and began'i rapid-fire

barrage of questions. What was prong with his solution

of the fish problem? Why draw in ll those tangents

when only a few are needed? How.could you limit your

'work to only th4e needed? And so on.
.

I slumped in my chair. It was a good day to'lie low.

Confronted with a cpunter-bairage of silence, .1%,Alet

sullenly began the lecture-he'hici been softening us up
for. to wrote...dn the board,

Title:, GRAPHICAL SOLUTION OF DIFFERENTIAL EQUATIONS

Objective: Upon completion Of thisleseon, you should be ,.

able to solve a differential equation by a

graphical application of Eultar's Method...

,"In the las.t'unit we solved a differential equation
,

graphically py.plotting a, tangent field," Arplet began.'

"This is fine, but,it'takes more work thn-is-realles
"needed $y the end of this unit you should beable.to

Produce a graphical solution by the Mich easier Euler's
method. .

"I- will 'illustrate the lethod:bx doing an example.
We wish to solve the equation

li!x2
da 17%0

iv

0

4

'with the boundary condition that y = 1 when x.= 1. Suppose,

also, that we're interested only in the region between,

.= 1 and x = 10.

"We'start.by plotting our starting value, (1,1) on

rectangularsoordinate paper.. Now our differential

equation tells us what the slope at any point should be:,

,2

t
slope = m = .

Y

, At (1,1) the slope,should be
o

12
=M = 1 ,

so, through (1,1),we draw a short

Our construction should be:

1 A

a, 0 O.

line with a slop, of 1.

:" rim aidbJu":
.r"

sum
!.1111111 .:111111 1,0 MMMMM r11111111111:1111

r M

S11117 MMMMM

0 2, 3 4 °

Figure 10a: Construction for a Graphical Solution '

"Now we Step along the x-axis td a new, value of:

The, size of the'step is important; large steps give inaC.r

curate results and small steps are a lot'of1Work. I'm,

going to take steps . of 1 for

"At x ft-2, the value of

' drawn line, is 2. Mark this

this point, we draw, another short line

this aemonstiation.

y as read from our previously

point on the graph. Through`

having the reqUired
slope at this poin't, which is:

22m = =,2.

1.53
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4

At'x = 3, y has the value of 4, so the slope of the next
segient-is`

2
m = ir = 2.25 ,

"The process is repeated a;'far out as

this case until x = 10."
,

At this-point Arclet-pdused,dramaticqlly. ,Then he
flipped on his ever-ready overhead piojector, pulled out
-a transparency, and said triumphantly,

solution!" (see figOre /1)

We all ,groaned.

is needed', in

e.

.

41

it

:

y
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Av.
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slope scale fo graph:-

11111111111117

1 2 3 4 5 4

Figure 11. Graphical Solution of the Differential
d x2Equation =

Y
throughthe point OM.

For our quiz, Arclet gave us the following problem. 4\
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Quiz /3

Given the differential equation

2x

with the boundary conditions, y = 1 when x = 1, solve

graphically by EulePs method, taking intervals, delta

x of 1; and find the value of y when x equals 5.

For answer see page 70.,

OOP

Chapter 10

A GRAPHICAL SOLUTION OF THE FILTER PROBLEM'

.4

Hasn't it strange howArclet's story was requiring so

much work from us to be able to understand,it?..Bef2ne he

could begin hii narrative the following day, I Had 'DIY had

up.

"Professor, is this a true story?"- .'''. . .t,

)Arclet looked over my head, focussing his ; eyes on ,'

infinity, and sighed. "My boy, what issiruth?"
1

li

k
t N

Yo

I.

l

'

"Heavy," breathed Polly. .

"Bull," muttered Herb. . W
-. 7% , .

"To continue," .said the pfofessor, "Denis,,. Angelica, , a',
P

and I were groggy from;the huge meal, the challis, and the,.

cognac ,I had thoughtfully remenibered'to brj.ng;.so wedidn't-
7 . c

tackle the remdining,two problems after the-guests left .

but waited until the next morning.

"We dedded We-next most urgent. problem wa.s to

miele't)tethickness_of the sunglass lens,

a

deter-

14

,

"Angelita had persuaded.Mr. Usury to, let:Her into'the

bank, so, while Denis and I. worked'on the lens vrobldT,

she went off to take measurements on the steel beam.
t

"We had decided-to ADa graphical solution. On a .

sheet of rectangular paper, we took lens thicknossth,-"ino.

millimeters along the -abscissa, and light transmission L

along the ordinate, graduated frail zero
.

to 100%. Wei

marked out two known Taints: A transmissidn'Of 100 percemt

:at a thickness of zero, -and a transmission csf 85 percent

.157 44
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de,P
,st-a.thickieSi of 1mi. 'We connected the -two pq.ints,--and

measured: #e,slOpe'bfthe line.: guyraph was then:

70

0

50

40

30

20

I0

Lens thickness t (mm)
00

2. 4 G . /0 82. 54 . 14

Figure 12: Start of the Graphical(Solution

"If you.recall from our filter experiment; the

differential equation We arrived at was:

' di . ,,gi -k slope t
.

..

.
where L is the light transmitted, t is the filter thick- '

- ness, and k is a constant. We -had to firid k before we

could:-proceed with the construction. We solved DE for k,
, . ,-- , ,.

,-,. t ,

...slope
L ,

..
. . ,... :.:2

. at the ,first: point on our graph. .0.

,,,

45

7

Here.7 -= 100 and tine slope is 15, so

-15k = - = 0.15106 ,?

and we used that'lumber througho.A-the construction.

"Through'our second point (1,85) we drew a line with
a ..slopeof:

slope = -0.15(85J = -12.75 ,
.

and saii.that it intersected the line t = 2' at a transmis-
sionsion of 72.25. We 1ept repeating the computations and

the construction until our:curve dropped below the ten
percent transmission level. Here is the complete graph.

1DD

go

0

. 40
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"AsYou can.see,.the lens thicknest required was

C4mm. .

-"Denis could.now prove to his boss Al.that the

required lens thickness was. not 6mm, save his job, save

the eyesight of our fighting men, and keep his family

together. 6

"At that m9ment Angelica came home with measurements

of the steel beam. Her display of'gratitude and affec-

tion more than repaid' me for my efforts."

"WU gethim for this," I whispered to Herb.

0

O

160
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Chapter 11

SOLVING DIFFERENTIAL EQUATIONS NUMERICALLY

7
.41

"Yesterday yo expressed some doubts about the

veracity 'of my little story," Arclet began with some

sternness. "Well, this should settle the matter." He

tossed the 'phone book into my lap. 1%,opeited,it where

the-page-had-beln-turned downi and gazed-a-the name

circled in red.

Denis Dropmore, it said. Arclet would live to

regret .showing me that 'phone book.

"I would really like to coniinuethe-story," Arclet
said, "but.before you can understand what happened next,
it will be necessary first to have a lesson on the

numerical solution of' differential equations."

use the same equation we had for the graphical solution

as an example: .

x2- = slope m
ax y

with the starting value, y = 1, when x = 1. Wenow
increment x by some Chosen amount Ax: Let's take 1 for

our step size now, and later we'll see the effect of

making it smaller. <
.

"The slope of the curve, at our first point is,

I smiled. It was all. so clear now.

Arclet walked to thee board and began to write:

Title:. NUMERICAL SOLUTION1h DIFFERENTIA& EQUATION

Ob ective: Upon comple'tion of this lesson, ygu should

be able to carry out a numerical solution

of a differential equation by Euler's Method,
. by hand; on g calculator, or by computer.

-Then Arclet began:the lecture.

"If you'Ve understood the graphical solution of a

differential equation 6k-Euler's method:*the way to per-
form a nu:lexical computation shoUld be obvious.' We will

162 49'

x2 la
slope = = 17 . 1

Y ' $

=and the change in ordinate going from the first to the

second point will be the slope times the change in x, or

Ay = mAs(1) = 1

so the ordinate at the secondpoint will be

y + Ay = 1 + 1 =°2

/.

The second point'on_our curve is thus' t2,2).

"Repeating the computation, the slope 'at the second
.

4 4

point is,

2 72
6 slope = = = 2.

The change in ordinate is,

'y = mAx = 2(1) = 2 .

So the ordinate at the third point is

y + = 2 +'2 P 4.

The third'point is thus (3,4).

"We continue the computation in *similar way as

far. as we need to go, obtaining each ordinate yn from

the ordinate yn-1 of the preceding point, andithe slope

SO

.1.63
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mn..1 at the prectaingfooint by..thp equation:

Yn */i1n-2 Ax
0

°A computer really cones In handyiere: The follow-

'34 shortjrogram, written in BASIC,. is designed'*to

perforce this computation, taking a step'size Ax of 1.

PRINT "X"-, "Y", "SLOPE"
20, S=1
30 Y=1.
35 FOR X=1 TO010'STEP S
40 M=X+2/Y
50-PRINT X, Y, M
60.YM*S+Y .

TO-NEXT )C /'
"77-110110 END

"This program,will also print the slopes,

extra dividend. Here is .a RUN:

X Y . SLOPE
1 1 1
2 2 2
3 ' 4 2.S
4 6.25r- 2.56
5 8.81 2.837
6 11.647 3.090
7 14.738 3.324
8.. 18.063 3.543
9 21.606 3.748

, 10 25.355 3.943.

A

al an

Step size=4.0

".Now-that we have a program; it is an easy matter

tic determine-the effect of changinuthe''atep size.^ 6

Notice that the program-wai written so that my line

20-need lie changed: Taking a' step siie of /0.5 results

in the following tablpt

X ,Y SLOPE
1 -1 1
1.5 '1.5
2, 2.25 1.777 tepc,size= 0.5
2.5 3.138 1.991.4 c

.3 . .134 2.17'6
3.5 5.222* 2.34.5-

4 6.395 2.501,
4.5 7.646 2.648

P

*

5 8.970
5.5 10.364
6 11.823
65 13.345
7 14.92,8
7.5 16-.569

8 18.267
8.5 20.018
9 21.823
9%5 23.679
14I 25'.584

2.786
2.918
3.044
3.165
3.282
3.394
3.501
3.609
3.711

,3.811
3.908

"Now we reduce the step size to 0.1, ai the same

:time-rigging thf program toprint only at integral

values of x, to save time and space.

r.

c X Y'
20-1 1

2 2.357
3 (.253

.- 4 , 6.525
5

6

9.111
11.975

78. 15.091

9

18.440

10
22:006,
25.777r

c.,,

one final RUN,t,let's reduce the step

another order of dagnitUde.

X
-,
' -Y SLOPE

*
1 1 , 1 k

2= 4 2.378 ',1.681
3 4.2713 2.103
4 , 6.554 --a:441

c* Step size- 0.015, 9.143 2.734 -
6 12:010 2.997 .

'
c

18:479 . 3.463

2

l
.0.5. 128 3,238

9 22.048, 3.673C '

., 10 25,.821 3.872
,..

""At thiff point, it might be interesting to compare

..the final Value ofy obtaine0uting the various step

,siziS. Let's make another-table.

"In

4

SLOPE', )1

1

1. 69 6

6

2.452
2.743
3.006
3.246
3.470
3.680
3.879

Step size= 0.1

size by-

52
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11

step size`

a

ordinate at
x - 10

1.0
0.5'
0.1
0.01 ,

-Theoretical

zF.355
25.585
25.777
25.8Z1

25.8'26.

*At

A

'Not too bad. Even with our coarsest step, our
final value is less than two percent different from

the theoretically correct' answer, and with-our smallest

stepfi oueanswer is correct to four significant

figures." ,

Ir

Polly interrupted. "Where did that theoretical

value come from?"

"I was hoping you would be curious.- Remember
when I spoke about analytic solutions73*Now would
be a'good time for you to scan that chapter in your

text, and wE'1,1 get to it in a week or so."'

"I'll do that tonight,, professor," said.Polry..

Herb mutteredisomething inaudible.

At the end of the lesson, Arclet.gave the N
following take-home quiz. 4

53

a

Quiz #4

1. Given the differential equatiop

ddx T-2-LIT-cY

and the boundary condition

y = 3 wheR x = 1

do a numerical solution by Euler's method, taking

intervals no larger than 1, and find the value of

y when x equals 5. _You may program this problem

on the computer if you wish..

For answer see page 71.

4
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Chapter 12
't

A NUMERICAL SOLUTION TO THE SAGGING BEAM PROBLEM

Today Arclet began, "It was now Sunday night, and

we had just finished a supper of 'pan fried trout served
,

with,a.savory made of soy sauce, chablis anda touch of

dill. We attacked the last and most difficult of the
66,

three'problems.

."Angelica had 4one an admirable job, of collectrffrr-^-
4

the data for which I had seat her. We began by making'

,a diagram and carefully listing all we knew about the
. .

problem.

A

Se.fe

coNstb+
30,

Figure i4 Free Body Diagram of the Beam

.

"I drew in coordinate axes as shown, and indicated

the grces adtinepn the tieam. We felt-it reasonable

to .assume that all other loads,including'tfte weight of

-the-beam itself, would 'be negligible in comparison to
.

the 'weight;of the huge safe. '

"We found the dimensions of the beam cross-section

in one'of Angelica's architectufe books, and s gave the

Anoment of inertia. 4

168. 12,000 inch"'

S 55

'We also found the,modulus of'elasticity of steel,

'

E = 30,000,000 psi
-

"I took as my s erting point the differential equa-

tion for the deflection curve of a beam, which we wrote

in'class the other daY:

M
d e E I

where.y-is the vertical deflection at any point x along

the beam, M is the bending moment acting on the beam,
1.0

andE pnd I are as defined above.

. "Before solving the DE,, ii was necessary to know

how thbending moment M varied with position x. I

considered a section of heim to" the left of the

safe,

6
z 4

'rzY, IR,

.
Figure 15. Moments at (the Left End

.
.

and asked, '-What moment M would be required to keep that

section of beam ,in equilibrium ()seep at.from rotating) ?'

"It would have to be )

M me Ri

where R is the vertical reactionnt the left-end of the
-

. beam, and is the distance to, the section being eonsidered.

We can find R without too Much trouble,-by asking what.

/force R' is needed to keep the. entire beam from rotating
.

about the right hand support point.
.

. .1/4
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, Figure 16. Taking Moments About the Right End

"For equilibrium, we must have

30R = 6P ,

where Pis thp weight of the safe. The bending moment is
then,

M= Rx P.

x'
where x is in feet, so our differential equatiOn is

11L Px
dx ET

"Angelica had found the weight of the safe frob the
manufacturer's catalog, and we added some weight for
contents, and took P = 10,000 pounds. Putting in the known
values, I computed,

P .

(10,000 lb)TT
5(30,000,000 lb/in2)(12,000 in")

(1 x 104)

lo
x 10-1in-2

5(3 x 107)(1.2 x '10") in"

and converting to dimensions in feet

x 101in-20. 8 x 10 -7 ft -2
midnight.

ue now take the integral of both sides, we get

,2
= (8 x 10-7) =',2 + C

an equaticin giving us the-slo.pe at any distance x along
the beab. This is the differential equation we must solve.

"I decided to do a numerical solution by Euler's

Method. For a starting value, I knew that y haeto be

zero when x was zero.

"At this point, Dents, who had followed

solUtions, with much care, interrupted me.

"'How can you find'the slopes from that equation

when you don't know the value of C?'

"'We have another boundary condition we haven't

Used yet,' I replied. 'We know that the deflection y

also-has tobe zero at to other support, wher; x =030.

All we have to do is keep guessing at C until we find

one that gives a displacement ofzerso at the right end.

my previ10
11P,

We ought to get it in about fifteen tries.'

"'tut don't you have to do the entire computation,,

with each guess at C, before you know whether it is good
or not?' Denis asked in apprehension.' I.

"That's right."

"'And how long Will each computation' take?'

"About an. hour.

"There was a long silence. Mt was now a little past.

So our DE becomes,

. (8 x 10.2)x
dx

with all distances expressed in. f eet.

"It was time to play my trump card., I Went to my

car and returned with a portable teletype and 4n acoustic
...coupler. A quick 'phone call to.ths computation center

brought the full power of the college's massive c6iputer
into the DropmorS kitchen, and the little teletype

was soon spitting o'ut columns of figures.

.
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"Here, in BASIC, is the program I wrote:

5 PRINT "X", "Y", "SLOPE"
10 C = 11.7E-5
20 S = .5
30 FOR X = 0 to 30 STEP'S
40 M = 4E-7 * X+2 - C
50 PRINT X, 1ES *Y, 1ES *M
60 Y = Y + M*S
70 NEXT X

"To get a first guess for C that would not be too

wild, I assumed that the slope would be zero when x was

about'20 feet. Solving the DE for C,

0 = 4 x 107(20)2 + C

-C - -16'x 105

"I entered.this guess for C on line 10, ran the

program; and observed the final value of y. I then

changed C in a way that kept reducing the final deflectioni.

"The value of C that I finally used (11.7 x 105)

gave a deflection at the end of 0.0-5x 1Q-5ft, 4s compared

'to: the maxima deflection of 136 x 10-5 elsewhere on the

"Here is a copy of the final RUN.

.t72

X SLOPE
0 0 - -11.7

.5 - 5.85 -11.69
1 -11.695 -11.66
1.5 -17.525 -11.61
2 -23.33 -11.54
.2.5 -29.1 -11.45

3 -34.825 -11.34
3.5. -40.495 -11.21
4 -46.1 -11.06
4,5 -51.63 -10.89
5 -57.075
5.5 -62.425

-10.7

-10.49
a

6 -67.67 -10.26
6.5 -72.8 -10.01
7 -77.805 - 9.74

7.5 -82.675 - 9.45
8 -87.4 - 9.14

59

Maximum
Deflection

Here

X
8./m

9

9.5
10
10.5
11

11.5
12

12.5

13

13.5
14

14.5
15
15.5
16

16.5
17

17.5
18

18.5
19

19.5
20
20.5
21

21.5
22
22.5.
23
23.5
24

25

25.5
26

26.5
27

27.5
28

28.5
29

29.5

x 105

-91.97
-96.375
-100.605
-104.65
- 108.5

- 112.145

- 115.575

- 118.78

- 121.75

-124.475
-126.945
- 129.15

-131.08
-132.725
-134.075
- 135.12

- 135.85'

- 136.255

(-136.325)
-136.05
- 135.42

- 134.425

-133.055

-129.15
- 126.595

-123.625
- 120.23

- 116.4 ---

- 112.125

-107.395
-102.2
- 96.53
- 90.375
- 83.725.

- 76.57
- 68.9
- 60.705

-
51.975
:1.?7

-

- 11.505
5.00000000E-02

SLOPE
- 8.81
- 8.46 1

- 809
- 7.7

7.29

- 6.86
- 6.41
- 5.94

5.45
- 4.94

- 4.41
- 3.86

3.29
- 2.7

- 2.09
- 1.46
-, .81

- .14

.55

1.26
1.99

2.74

3.51
4.3

5.11

5.94

6.79

7.66
8.55
9.46
10.39
11.34

12.31
13.3

14.31

15.34

16.39

17.46
18.55
19.66

' 20.79
21.94

23.11
. 24.3

"Notice that the maximum deflection occurs just

over 17 feet from the end of the beam, between the safe

and tile midspan, as Angelica had predicted."

17:3
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Arclet'rose slowly to his feet. "And that, dear

class, is the end of the story. 'Denleand Angelica

both regained their, ohs, and were more highly regarded

than ever before. Convinced of-the power of mathematics::

in the hands of an expeit--they are both studying calculus
. .

e' in their spare time. I visit them often,- giving them

small tips to facilitate their studies, and the affection

and respect they shower uebnme is almost embarrassing.

"Nave a.good weekend, and remember that we have a

test on differential equitions on Monday." He strutted

out.
,

We sat there silent'f r a long time; heads hung down

and shak4ng slowly from side to side.

Finally Herb spoke, "Mat, didja call?"

"Yeah.
.

They never heard of Arclet!" p
.

"Cheat.' trick,"-Polly said.

"We've been had. Taken, conned, duped, used."

"Should we go through with the plan?"

"Let's vote."

Three thumbs, pointed downward. That night, I phoned

my brother in Seattle.

A

.174

I
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Chapter 13

THAT EXAM AGAIN

Today, ArClet seemed a different person. His hair

was brushed, he wore a well-pressed suit with a clean

shirt, and his shoes were shined. He strode into the

classroom, carrying a smart little attache case with metal

trim Instead of his battered, old briefcase.

"Who cares bout differential'equations?" he asked.

"I'll tell you .who carest Boeing Aircraft Company on the

West Coast cares, that's who." He'waved a telegram at us:

"Listen."

HAVE URGENT PROBLEM INVOLVING RIFF EQN. YOUR

NAME REF TO US. HOPE YOU CAN COME ASAP. YOUR

USUAL FEE PLUS TRAVEL EXPENSES PAID.

"I've arranged for a'Substitute teacher, who will

be here starting tomorrow. Sec you in a week.,"

, -

Halfway out the door, he stopped short.' "I nearly

forgot.. Finish thisatest today and leate it with my

substitute."

It was exactly the same exam that Arclet had used .

as a pre-test for this topic. In fact, the same test

that had prompted his whole ridiculous story.

We had come full circle.

175 62
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.0b

r
6. Given the differentiaj equation

x
. 4.14,

and the boundary conditions

e

t

. -' ''-:. y vr ,1 when'fx.,= 0 ,-- - ,..
. e....:,. Iv .. . ,

dire; numerical solution'taki°rN. Intervali.delia x of 1, \
And fincithe:Vitue '"of y when x'- '10 .. :

, Write a "dillirential equation to desdrile the following' -
-4; sitliationt. 513e- Is ure rtndef ine rur s rat; 1s. . '<:', .
..e) A body -fall* in a mediuni Offering resiltart, Prepor,-..

tionalto the speed ..at any.instant. ! ,-
iko' ..

b) ko.- particle`mors"in-a'horizontal line algled upon by
an ettradtivefOrceikicti varies In011fsely as the 7-
cube of the diStance: from a' fixed point.

c) The 'rate-pt noir frost i' tank of uniform crosS-
section is proportional to the square root...of the

":.,

.

.44

!ionic! .dePth..

A Answers to (filiz11
- B linswers-to Quiz 12 , .;. . 68

C -An swer to Quiz' #3'

D. Answer to Quiz :71
Answers to That Exam . 72.c

.

0

APPENDI.SU
I

. .

-.A

,;-)

.#

'd) !tedium decaiikees-at'a rats= proportional to. the
- ,present amotint.

?

Poke a,hole in Afcletss .fisit story by 'cajculatinghovt;
lishy' fish' greeter wogld have to hold '

, .

?e

I
o

lt

I.
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go.

Since the-agreement is excellent, we may assume that the equation

y (2r: + 1)

is a solution of the differential equation

x + 2y
gir 2r

. .

in the &Main -shown by the graph.

2._ CaltulitiOn of 2. for
ctx x

1 '0

. 3

.
0

2

3-

t

2 0
1

2
3

o

0.5

1.5

2:0
.1.5
1.0
0.5

TiogeOt. Field. for

c

.0,

'7

0 0 2.0
1 .25 1.75
2 .50. 1.50

3 .75 1.25

S.

etc.

le - y.
with two possible solutions.

4

el.
; ,s- ,

r

Anstier. Quiz'a 3

,
,

I.' Graphical solution of Lg-*
2_

through paint
.1x

4

,

.02..s.z5

mioneinm-::\rn-,c, gm
AaVinffillgill Imil
5B11111111111111EVAIIIIIImiammimuir....

g3mMill.......,........ i - AIMEni- I 42.

LEER :-: -:4: H AIMEE
qffillEINEE1
.EINIIIIENI

NEE FM
11 FM 11 M I
AreMilWIXOMI -7/

Mang
=1.11:1

AMMO....

--.PAFAMMEM

010=620

Asswmeck
valies

94

1.00

4 6.20

Celmlected Slopes' Weld

y
y

+rorti
graph

1+2.00_ .1. .71.SO 2.50a i
1WM= i =1.75 4.24.yr

41:4!....52:1142........_i n.i. 4.20'J.
4L:12.41 0 --I-4A( = 2.05' 8.25

:IMIFEN..... ..EBENEE
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Answer to Quiz #4
.

,

11
Given: dx 17x - 2xzy m'

and Euler's Method: yn = yn -1 + -1 Az,

we let Yo = 3; when xo = land tx = 1 for this calculation.

!its easiest to make a table for calculation as follows:

`.1

2

34

xn yn x - 2x4y
mix y + mtx

1, f,03

42 2.409

3 2.26

4. 2.200

,. 5 2.167

3

' 2:40
, 2 '-'19.20

2.260
r:-.4T376B

' 2.200

1-7717w

2.400
0.1395

17.20

2.260-cim 0.0599

2.200
-nr-m -0.0331

3400 - 0.600

2.400 - 0.140

2.260 - 0.0605

2.200 (1,043

The value of r.obtaiLlesizhen in =,5 will depend upon the step size

used, as ihown,j-n the table.-----
7 "."'

)*i.

step size y15):,

2.167 -t

2.521

.
2.551 .5.1

51

71

ot,

Answers to-That Exam

1. Differentiating the proposed solution,

e- 3 x-

cis 3(1 + Zn 42/
Substituting y and its derivative nto the DE,we get,

- 3 /n x

3(1 + /n x)2/3

Ai<

3{ 1 - x)1/3 }3 - s3-

3.14s(1 - In x) 1/3 12 ,

3x3 3x3 /n x x3

3x3(1 -'in Z2/3

2 - 3 Zn

3(1.- Zn x)2/3..
which verifies the proposed solutioA

2. Curve 3 is the only curve shown that can be a solutioce.

To determine if a curve is a possible solution, pick a convenient

point on the.e4Ame.metiure the slope of.the tangent line at that--
/

point and compare the measured slope with the derivative talc

lated by substituting the coordinates of the point into the

equation for the derivative,

x y.. I

Curve 11- At the point 1-1,1) the measured slope = 0,

1
= -6= undefined.

1

The measure slope of-0 fs-not undefined, therefore

the solution nnot be.curve 1. .

;:t

(at least < 10,021),

. 1 1
,

Curve, 2:

and 0.13 is not < 10.021, therefore the .solution is not
.

likely to tie -curve 2. .

Checking another point on curve 2 we have'at (0,0) the-

(17--
measured slope = 1.1,.but

J
= undefined, -andil.1- 0 0

undefined, therefore,theelbolution cannot-be curve 2.,
. .

4
is not

185. ic°



0.0
Curve'}: At (2,0) the measured slope = 0.5_and

O

3. The even points'are,plotted below, and the slope's at a- = 1-, 2,A II1 147 '', ":". and 3 are measured. These compare well with the slopes computed
sl ,.

from the DE, as shown in the table.Therefore the soLution.could becurvej.i

r- Curve 4: At (2,0)'the measured slope = 0 and

Since

Therefore the solution cannot be curve`4%.'

the solution is supposed to be one bf the curves, and it
cannot be curve-1, 2, or 4, but-could be curve 3, We might assume

that it must, be curve 3. It would be wise, however, to check
e

another point 'or two on curve 3.
,<N

Carve 3. At (4, 0.8) the measured slope = 0.32 and

. 0 3125 .4-0.5 "Ti3

which is in close agreement with tke measured slope.

At (7.5, 1.6) the measured-slope = 0.175,.and

0495.,

again in close agreement with the measured slope.

t

0

rs.

O.

2

-
:' 1..-- - .-- t---.- ...

..- -..
- _ - _

. .

.
, .- - ---

-

=l="Wipliral
Nom
.....=1111111111011E1=MIMIMENMSZIMIliEWA
EMMY!WM

E111

=
IIINSIMMININ

&MOM

-
.

.
.

Effieffinitgrgria2111:11111
iniffir

=WIEN10101111111111

NMI=
MEM 11111UNIN /11

.41/ A

ZBUISMI
IMMO

EM

Cr"AgMIMI W alINI=MIIIM=LAMOMNI fral:W=M1===.NOW
011111=11111MIMI

11111111O
iiMINIIINIMN!Feri=1
.11MILIINNOISIM=
IMINIMINU
WINININABINI

.11111111F=

Ws=
A E 1=111111111111111.11:11112111111011MINIM1111111

a=a1WIIIE
11110118IOW la

IM at EM MIME
.11==1112

==..=.11
MOM

I I
VIINIPIIIMMIINIIWu =II=

al
MIMII =MN =UM

SUMMON
AN

MOS - NONNI ==
1111111 IBMSNMI

MUNEWISM111111.1121111=111
mina=rum

as DOMIII NEM MEERmmissawsmasaswam
isimuts

sammems
is=srMmIormasormiMEM

MSUa
MEOW

snowMEMO rma irsarammi"MNIIIIIIIIINIMIMINIMIIIIIIIIMINNINIMENUM11111111111111111111a
NM BIM

$ IIIIIIIIMMIINI MIMMIIIIMMMIllil=IMOW UMWIWI OWE IIIIIMMRIENUCII
MINOIX INIUMMIolUS

0111111111==sa
I I IIIMO

MN IIIIUMMIO

=
MEMBEZINIMI

1=WM=
NIFEMI

_
MOW IMAMMU=

MOWN
0M=lIam=MCI

M
NIMPIIINSW

1111a111

IIIlltilEllit=
IMMOIIMI=1111=11=11allWIENMIME ffaii=IOWOWLS

IUMIN
SOW
ILWIIIIMMINZ

SE NMI=MI
Ita Man

II
II22222 MIS= MIMICA 117111 dal=MSMILE IWO

ERZIIIIIIKIMM=X
WYE NSW

111110111111111.11MBINI EJLVMII MIIII1 INUM011211RIM /SURmum
MOM

Irma
SO !BM

Km.
11111=1SSSSS allIMUNI11111111111,11W111111111=IMMINEll =MEIN MIIIIIIIIIIMIIIIION MIMI MINX MAIM II

11117 MIME MaIMIMINSO MIME 10111.11110111111111111111110051111111111JI
41121111111111111MEMMIIENIMMIIIM=1111111a111111111MIIMUNN SWAIM MPS 11111111MOMMIIIII111111g1 111WIIMIMIRIMIEE1AM ~SSW AN

Y
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Slope

3 - xy

,

1 -2.000 2.40 2.50

2 -0.793 0.55 0.57
.

3 -0.423 °
e
0.22 0.24
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4. Calculation of slopes at different, points for

-2K *

dx x

.

x 2y

1 0 1 - 0' 1

2 1 - 4

A 1 -
4

-7

3 0 9 3

2 .9 , 4. 5/3

4- 9 8 1/3
I

Thls'table is continued-and the_roOlts Plotted

4

;

,.

below.,
. .-

-s.

5. Graphical solution of x2 - y through the point (1,1).'dx

35,

30

t5

Mir-11111M M i
solution 0+

ct4

fkrol.4.11., po;$4 (1$

(slefte .oulcand above curve)

re

5

0
0

Y(7)=`-'34

0

t

3

0

2. 4 S 7

Use the same method ask in the answer to the iiroblem in

Quiz 13, page 74.

. 1.8

c

76
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6. )(numerical solution'withs,intervals

following table of point

of 1 unit yields the

pairs.

y

7c. Let R = the raie of flow from the,tank, and y F. the li) quid depth.,

Then, from the statement of the pgOtilem,
.

F = CI

But, the'rate of flow must also be proportional totherate at

which the wafer level is changing., Thus,

R = -C2 .

Setting the two expressions for rateequal to each other we have-

0

2

3

1.00

1:00

'1.50

2.,07'

4 2.66 -C2 clit- =c14.

'5* I Cr
Dividing by -C2, and letting k we have finally

e 3.86
z7T-

7 4.48 -di
dt

= .

8 5.08' ,Js
9' 5.69 8. The number of fish collected in Mike's fljtezer would equal the

10 6.31 difference between the number of fish that came into the pond

(For method see answers to Quiz 14, page 75.) and the number left 'in the pond when Cy Seepage counted them,

7a. Let Wbe the weight of,the body, and R be the resisting force.

Then by Newton's second law,of motion

E F = ma '

, dv _
w + m

but R = -kv where v - instataneous velocity, so

dk,W - kv = m
at

since the mass m = w/g

+ - g 0

7b. Let's be the distance from the fixed point, and F the attractive

force. Then,,

F ma

where )» is the particle mass-and a is

then -, des .

- --Tk =
m TET

.190 /

the acceleration 2 s
'

d2

dt '

I

1

77

or

(fish in (fish into (fish left
freezer pond in pond

Arclet used the tangent field method and calculated the fish left

in the pond to'be about

The fish into the pond wodld.be the number that v)ere carried in

by the water plus the number put in by the Fish and Game

'Department, that is

(12:960 min)(0.6.fish /min) + 1000 fish = 7776 fish + 1000 fish

= 8776 fish

8800 fish
0

Then the total number of fish caught in the basket would be

8800 fish - 3500 fish = 5300-fish

3500 fish (see figure 9c)...

Some freezer!

Some dinner!

1

N
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41 RADIOACTIVE CHAINS: PARENTS AND DAUGHTERS

ti

1. INTRODUCTION

1.1 Radioactive Decay

Radioactive decay is a first order reaction. This
means that if a radioactive substance is not being re-
plenis'hed in any way, then its amount (number of atoms)
N(t) decreases at a rate proportional to that amount:.

(1) N'(t) = -AN(t),
I.

where A is a positive constant known as the disintegration
constant or decay constant.

The elementary consequences of Equation (1) are ,

discussed in many elementaryCalcuius textbooks. In our#
fUhit 232 (kinetics of Single Reactant Reactions}' we

: discuss first order reactions in greater detail. In that '

unit,-you can discover how experimenters determined emPf?±
icallypat radioactive decay is a firsi order-process, .'
and whit this suggests about the mehanism of radioactivity.

,

1.2 Chains ,

When a radioactive substance A decays into a substance
B, A 'and B are referred to as the parent and the flaugfrter.

It may happen that B....itself is radioactive and is the

parent,of a new daughter C; and so on. In fact, this is
a very common situation.' There are three,chains like this,
beginning respectively with U 238 , U

235
, and Th 23

, whose
lengths au 19,17, and d3. They do not overlap, and

together accOU;;Nfor all naturally occurring radioactive
substances beyond Thallium (atomic number pfl.) o(111 the- .

periodic table. Each of these chains ends With a stable
(non - radioactive) form of lead.

196

. SETTING UP.THE EQUATIONS

2.1 Notation and Assumptions

We shall consider the relations p' between one

parent A and her radioactive daughter We shall write

N1(t) and N2(t) for their amounts/at t e t, and Xi and
X
2

for their decay constants: Figure l may help you

N
1
(t)

A
Al-1Iif

N
2
(t)

B

Figure 1. Schematic fepresentation of a radioact6e chain.

remember this notation. Since'the rate of decay'of B into

'C depends only on the amount of13 present, and not on the !
amount of C, we do not care whetlier C is §table

A-active.

Now imagine that at"the itistant t = 0 we hAve a

freshly prepared amount N0 of A, and none of B. That is,
ION M1(0) = No and N2(0) = 0. Imagine that the chain of

reactions in Figurd 1 then proceeds without externil.

interference.

2.2 The Equations. .

h

rinCe A is not being replenished, Equation -ti) applies-.

directly, and we have'

= -AiNi(t).
.

If B were not"being replenished, Equation (1) would

apply again, and N2(t) would be changing at the rite
J

2
N
2
(t). But B iq being replenished.' Each. atom of A

which decays becomes an atom of B, and this is happening
at the rate Aliii(t). So altogether we have

NZ(t) =
1
N
1
(t) - A

2
N
2
(t)

197
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Wetare confronted with the following system of

* equations:

(2 ) N (t) = .X1N1(t)

(3): 4(1) = XiNi(t) - X2N2.(t)

N
1
(0) =-N

0

N2(0.) = O.

,3. SOLVING THE EQUATIONS

3.1 ,Solving for N1(t)

3.2 Solving for N2(t)

Finding N2(t) is a bit more tricky. Applying

Equation (4) to Equation (3) we get ,

(5) N
2
(t) = X

1
N
0

-alt
- X2N2 (t).

Equation (5) p-tobably looks quite different from any

you have seen before. Let's try to make a shrewd guess

illY

what kind of solution it has. It s,that the derivative

of N2(t) is the sum of two terms, 11,10e-Xlt and A2N2(t).

With luck, this Might remind us of the product rule:

(6) if N2 (t)'= u(t) -v(t)
o

(t) = u(t)' v'(t) + v(t) u,(t).It is fairly straightforward to solve Equation (2) .

then N
2

for N
1
(t). This was done in Unit 232 and is probably done "`' Can we'pick u(t) and v(t) so the terms ip Equation (4)

t. ..
in your calculus textbook. We just diyide throughbyNi(t) match up with the terms in Equation (5)? Inother wvds,

can we sick u(t) and v(t) so that.and then integrate from 0 to t:

lIaNirt

Ni(t)

)

o
dt =

JO

This leads to "the equation:

Or .

dt.

ln.(N1(t)) - In (N1(0)) -X,t,

1. (N1(t)]
1
t

'

0

... since N
1
(0) = .11

0 . 'The usual absolute value signs are not
t ..

v
needed, becahse the quantities invplved are positive.

II- ,Finally, ..

. .

'1_ (4)
.'*-N

1
GO = N,,th e Alt 2

(7)

. and

(8) ,,v(t) u'(t) = -X2N2(t)?

u(t) v'(t) = X11,10e41t
r

.

Since N2(t) = u(t). av(t), Equation (8) cgh he rewritten
s

v(t) u'(t) = X2u(t)v'(t)

. and we arg in business`! The v(t) factors cancel out, leavilig

us with

u'(t) - A2u(t)

which Yooks very much like Equation (2) and. can be solVed

in the same way. Firgt,

10 W' iWT dt .-7 -fQ A24t"
t 11

Exercise 1.

Find a relationship between XI and-the half life of A (the half

life is the time t* at which N1(tft) = 100).

198

Therl, writing R = u(0),

Azt

u(t) =
r

r-

.199 I



Putting this into Equation (7) gives ki > 0 if t < t'
0

Re
-X

2
tvt(t) AiNoe

-Alt 2
(10) Ni (t) = 0 if t = to

= t < 0 if t > t
) c. 0

X
1
NO (X -X )t

v' (t) = R-- e 2 1 and .
. .

., < 0 if t < 2t0
.

If Al = X2 we 'feel confident you can complete this (11) N2(t)) = 0 if t = 2t
4. / 2

2t0

solution yourself (see Exercise 2)., > 0 if t > 2t0,
I

where
Al ... # A2,' then Al - Al # 0 and we can write

lnAi - 10,2

AlN0 (A2-Xl)t . ,---'
.

.1 to
A v(t) e 1 2

L where K is the constant of integration. Then

N
2
(t) = u(t):

X
1
NO

t
v(t) e 1 + KRe

-X
2
t..

.

Using the fact that N2(0) = 0," we get

0

X
1
NO

+ KR
),

2
-X'

1

.1 0
KR - -

N
1-71.--
2 1

1
N -X t

=.1e-X2t).(9)1 N2(ti = (e 1Al

Exercise 2.

Find N
2
(t) if 111 = A2.

'Exercise 3.

Assuming C is stable, .find the time at whtch the total radio-

activity {i.e., the total number of disintegrations of A-atoms and

B-atoms per unit time) is greitest.

3.3 Graphs of N1(t) and N2`-ft)

It is easy to confirm from Equation' (4) that Ni(t) < 0

for all t, that N1(t1.> 0 t, and that lira N1(t) = 0.
t-0*

With a little more work (see Rxerci6e 4) it cap be con-

firmed 'that, lim N2(t) = 0 and that
t+03

02 0
1 5

Therefore, the graphs of N1(t) and N(t) have the shapds

shown in Figures 2 and 3...

!.

Figure 2. Typical graph of N1(t) (amount of A as a function of time).

N2(;)

to 2t0

,Figure 3. Typical graph of N2(t) (amount of B as a fun tion of time).

'6
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Exercise 4

a. Show that lim N2(t) = 0.
t-)=)

b. Confirm Equation (10).

° c. Confirm Euation (11).

Exercise 5"

Find:the time at which the greatest amount of B will be.rresent.

Exercise 6

Zor the chain Et
210

-0.Po
210

4-Pb
206

Al = 1.37 x 10
-1

day andand

A
2
= 5.1 x 10 day

al Use-Exercise 5 to. determine when the amount of Po210 will be

greatest.
%

b. IE initially there are 10 -8 grams of Bi210, how manyagrams

of Po
210

will there be when it is at its maximum amount?. ,

4: EQUILIBRIUM

4.1 What is Equilibriumi'.. .....

.- .

In a continuing process such as the one we are dg:
cussing, it, is natura'I to ask about "equilibrium" of the
pxocess. Webster's Seventh New Collegiate Dictionary (1965)

defines equilibrium as "A static or dynamic state of
balance between opposing'f,ofces or actions." To a scientist,

"state of balance" means that certain measurable quantities
remain constant. But in practice scientists frequently use

the word "equilibrium" when the measurements under consider-

etion are nearly constant rather than actually constant.
There is good reason for this. The process wp are discussing
illustrates that reason nicely. We have been devoting our
attention to N

1
(ti and N

2
(t). For either of theee actually

to be constant over any time interval, its derivative would
have to be zero throughout that interval. But N'(t) < 0 for

mall t, and Ni(t) = 0 for only one t. So, strictly speaking,
it is impossible for either N1(t) dr N2(t) .to be "in equili-
brium." a

A
But N

1
(t) and N

2
(0., involve negative exponential func-

,

Lions. In fact, functions involving negative exponentials

202 1.7

occur fairly commonly in the description of physical and

chemical processes. The most basic negative exponential

function is #t, and if you know anything at all about'it

you know that it approaches zero very fast, so that, al-

though it is never constant, it is before long practically

equal to zero and therefore practically conS-Iant. This'

characteristic ("never constant,but practically constant")

carries'through to many of the more complicated functions

involving negative exponentials. The quantities-they de-

scribe never,actually reach their limiting values, but

usually came (and remain) extremely close to them within

a reasonable length of time--perhaps even so close .that the

difference is pot measurdble. Scientists often apply the

words "equilikrium" Or "steady state" to this situation.

There is one more thing we should say about the word

"equilibrium" before we move on 'to discussing specific

cases of it. The functions N1(t) and N2(t) are examples

of functions which come and remain extremely close 'to a
constant value (zero). But it Would be wrong to say that

they are therefore in equilibrium, even allowing fin- the

stretching of the definition which we j-dst discussed.) The

reason lies in the other part of the definition: "oppOtThg

forces or actions." There are no "OpPosingforces or
actions:" Rather than 'having two things happen which cancel

each other out we have nothing happening at abl (in the
limit). In plain English, virtually all of A will have

P decayed'into B and then into C, so that ther ewiI1 be vir-
4

tually none f A or t left.' It takes,no fanCy,mathematics,

to see this.. If C is radioactive it will eventually decay,

and so on, so that the limiting situation is that only the

stable substance at the end of the chain will remain.

There are, however, two situations involving radio-

active chains to which the word "equilibrium" is usually
applied. The first of these is known ag transient

brium. Another, known as secular equilibrium, can be
regarded as a special case of:the first.

203
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4.2 Sdme Comnients on Approximation

. Before we get into the mathematics of transient and

secular equilibrium, it will be wise to take g moment' to

discuss just what we mean by a"good approximation." When

scientistssayywo number's r and s are approximately equal,

they almost always mean that the difference between r and

s is small compared to either'of.the numbers. For example
they might'say 142 = 1000 (depending on the context), but

would almost never say 2 = 1.

meansr-s S = r r--- - 1 is small, or is near 1. In the numer-

icalical examples we just gave, 1002 1.002, which is very

near 1, but I = 2, which is much further from 1.

This interpretation of approximation can berOlied to
functions too. Let's look specifically at negative expo-

nentlal functions. If P and'Q are' any non-zero constants,

and if 'a and b are constants such that 0 < a < b, then

p.2) Pe
-at

+ Qe:bt ge(a-b)t

Pe
-at P

Saying r - s is small compared to (for example) s.

as t ce, since a - b is egative. Therefore, for t large
.

+ Qe
-btenough, Pe

-at
cab be approximated by Pe -at

. We

shall use this fact in the next section. '

4.3 Transient Equilibrium

It has often been observed that in many chains in-

volving a parent A 'and a radioactive daughter B, after a

while both parent and daughter appear to be decaying at the

same_rate, in the sense that in any given timelinterval (say

from t1 to t2, with t1 large enough).parent and daughter

each lose the same fraction of their initial amount---,p .,

N1(t2)/N1(t1) = N2(t2)/N2(t1). This phenomenon is called

transient equilibrium. Let us try to explain it mathe-

matically.

We can rewrite the equation of the preceding paragraph

N2(t2)/N1(t2) = N2(t1)/N1(t1). Inathei wordsthe observed

204,

result is that Nt(tr) /N1(t) iA a Constant. (This is why

the word "equilibrium" is ued_ in describing this phenom-

enon.) Why should this be so? Let's in *estigate this

quotient, starting with the formulas for N1(t) and N2(t)

given in Equations (4) and (9) respectively.
.

We know from Equation (9) that

A N
1

'N2(t) = T-71-
0(e -A

1
t

-.e
A
2
t
).

"2 '1
0If A <

2' Section 4.2 tells us that for t large enough

I NO
e
-alt

(13) N2(t).
2 1

We also know, from Equation (4), that

N
1
(t) = N

0
e
-alt

(which is exact). Dividing Equation (13) by Equation (4),
we get

N (t) A
2 . 1

(14)
TITTIT -T/Tr,

On the other hand, if A2 < Al then this does not go

through as neatly. Equation (13) has to be replaced by

N
2 (t) = AA

1
N
0

lA
e
-X

2
t

2

and then Equation (14) betomes

N2(t) Al e
(A

1
-A

2
)t'

1 2

A
A(1
1

This is a positive exponential. It does not have a finite

limit.,

So.the mathematics tells us that transient equilibrium

should be observed when Al < A2, but not otherwise. Sure

enough, this is exactly what happens.

Another way of.looking at transient equilibrium is to

compare the approximation given in Equation (13) directly

with Equation (4). The exponent -Alt is the same in both
cases. So for t large enough B behaves as if it had the

205
10



: °

same dec,ayconstant (and therefore the same half life*) as :

A. 5incp,k1 < X2 this apparent half-life is longer than B's

natural half life, an observation which should appeal to

'your. common sense even with no mathematics at all. After

all, two things aie-Hippeninq to.3, It qs decaying at its I,

natural rate, and it is being replenished at a certain rate.

Therefore you would expect its actual rate of disappearance

to be somewhat slower than if t were not being replenished.

This com n'sense observation may, help you remember which,

way t inequality A1< X2 goes for transient equilibrium.

'4.4 Secular Equilibrium
4..

We have said that transient equilibrium occurs whin Al

is smaller than A2. Now let us suppose thatX1,:is very

sMall, and very much smaller than A2. (Scientists. write

Xl<<X4.2 to mean Al is very much smaller 'than X2.1 This is

actually a very common occurrence. Forexample, in the

chain "
.

Ra2Z6'
f22

+ Rn + Po
218,

,

,Ra
226

has,a half life of about. 620 years. The decay conk-

,cant for the first step As X1 = 4.4,8 x 10
-4

yr
-1.

=

1.17x 10-6day-1. In contrast, .1422 has.a half lift of 3.84

days, so that A = 0.181 day-1 = 1.81 x 10-1day-1,

We know that whenever 0 < Al < t2, e-Xlt decreases to

zero more slowly than e -X
2
t

If X
1
<<X 2 , -the difference

in these rates is so great that long after e -X
2
t
has become

tiny enough to neglecein Equation (9), we oan still say

e
-alt

= 1. (When t = 200.4lays in the example given above,

e.
A
1
t

= 0.9997% and e -A 2t = 2 x 10 -16 Then we would have
-

A
4l

(15) N2(t) - N0
2 "1

and

(16) N1(t) = No,

both approximately constant.

*For the definition of htlfqlife and fts relation to the decay constant,
see Exercise 1. For more about half life; see IMP' Unit 232 (Kinetics
of Single Reactaalt Reactions).

' I- 11

2

Not only are N1(t) and N2(t) decreaslingat the same

rate, but this rate is so slow that they &re in fact vir-

tually constant. This situation is known as secular equi-

librium.. Again, as remarked inSection 4.1, we are

stretching the term-a bit, since the quantities involved

are not really constant. Here there is yet another abuse

of terminology, in that the "virtually constant" values of
/

N
1
(t) and N2(t) are not their limiting values. Eventually

(although perhaps none of us will live long enough to see

.it) these amounts'wiLl begin to decay noticeably, and

ultimately they will approach zero.

Remembgrw46 also remarked in Section 4.1 th at for all

their abqse of the term, scientists do -agree that it is

wrong to apply the word "equilibrium" to a situation in .

which "nothing is happening" (there are no opposing forces

or reactions). This is not a problem here. Plenty is

happening. New B nuclei are being formed, and'old ones are

decaying. The total number of B nuclei remains the same,

but they are not at all the same nuclei.. (The total number ,

of people in New'York City is about the same as forty years

ago, but they are certainly not the very same people.)

4.5 More Comments on, Approximation

One thing, about Section 4.4 may puzzle you. Adding

the approximations given in Equations (16) and (15) we

get
A
1N1(t)4+ N2(t) = No + T 7T N0 > N0.

"2-'1

But the total number of atoms, including those of C and

. possibly later substances, must always equal N0. How can

this be? 417

What has happened is that N1(t) has decreased by a

certain amount while N
2
(t) has increased by a lesser amount.

But there was a lot, of A to begin with, so the decreale is

small compared to the original amount, and N1(t)/No =.1.

On the other hand, there was none of B to begin with, and

even at secular equilibrium thge very little. Compared

4:0
12
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.

to this.amount, /he'increase 'is significant. It's as if

Exxon Oil -(A) were to pay you (B) $10i000'and you were to

use $10 of that money to bribe your Maihteacher (C), Exxon

wild still have essentially thetamse amount of money-as be-
.

fore,,- and you will be much 'better ofrfinanciagly,,even

though.the total of.Exxon's money and your money, when,

calculated precisely:1*in be less than before." The

numerical calculations in Exercise 7 may help ou see what

is going on.

Exercise 7

Use Exercise 5 to show that the-amount of Rn
22T

in the chain

of Section-4.4 is greatest at about t = 66 days.
.

(Requires a calculator.) For the values oft given below,

compute the precise amounts of Ra
226

and Rn
222,

as given by

Eqbations (4) and (9)s and' also the sum of these amounts.

Then compute the approximationa,given by Equations (15) and

(14), and also their 'sum. Tabulate and compare these results.

Take N
0

= 109 atoms, and make all computations to the nearest

'integer.

use t (in days) =

80,10,100;200,300,1000.

M.

. '1

*you will note that for this analogy it does4not matter whether your
math teacher is stable or not.

13
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5. ANSWERS TO'EXERCISES-
f

- at *: 1
1.. Ni(t*) = Noe .1 = N0.

e
- A

1 =
t* 1

2,

- Alt* = ln
2

= -ln 2

2. Writing A = AI 7 A2:

XN
0 (A-A)t

AN
01,

v'(t) = --R-- e R
XNn

v(t) = K

-At(
t

O, + =
ANN2(t) = u(t)v(t) = Ra teAt + RK e :At.0

Since N
2
(0) = 0, we have RK = 0 and

N2(t) = ANOte At.

.
3. Set D'(t) = 0, where D(t) = A1N1(t) + A2N2(t).

.

D'(t) = X lea) + N4(t)
1 1

A2N2(t)

2 -X t AIA2NO (
= -A

1
N +
0
e 1

A
2
-A

1

2[-A41-0
.

-
'A 1A 2 N 0 ) -X t

e I
A
2
-A

1

D'(t) = 0 when

Ale
-A1t

+ A2e-X21

2
AII2N0

-X t'
e .2 .

A
2
--A

1

12

A
2

A A

e

2

+ 1...2)
e
-A

1 =
t 1 2 -A t

1

2
A2 Al A A2 Al

2 2
%
1
(A

2
-A

1
) +

1
A
2

= e(A1 -A2)t
2

A
1
A
2

-
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L
X
1
(X

2
-X

1
) + A A

e(Xi7.X 2)t m 1
=

1
(2X

2
-X

1
)

'

X
2

A A2

lnX + in(2X -X
1
) - 2 In A2

t . 1
In

Al (91 1*1
1 2

A
1
-A

2
2' s--2--1'

.
X
1
-X

2
2

4; a. Use e-Alt 40'and eA2t-0.

,b.

N2(t)XINO LA
1 2

ex2t)
2 X

2
-X

1
t

when X
1
e
-X

1t' =l2 e X 2 t

. r
= e

(X
1
-X

2
)t2

X
.

= In
1

= ln ln X2

2

a

Since N2(0) 4-0, N2(t0) fromillysical considerations),

and lim N
2
(t) = 0, the des inequalities for N2(t) folldw.

t4.0

r A 1
1

X
1
N
0 (

X
2
e

-X t
2

when 2 -X
X
1
e

(

2
e
-X

2
t

et
4

2
)t

, etc.

Air X
1

(Use the, fact that 10 = 2 In .)

2. \\ln
X 1 - ln X

2

2

2
That 1.s,-at to =

-1 -2
5. This occurs when N2(t) = O.

Equation (10).

6. a. By Problem 5

ln
to

(1.37 10 ) - ln (51x 10
-3

).
-1

`1.37 x 10 - 5.1 x 10

210 c.

. 24.95 days.

by

15

ti
-2

N0
( -X t -X tiN (t ) = e 1 - e 2

2 0 A
2 1

(1.37x 10-1) x 10-8
1 e

-1.37x10-1x24.95
-e-5.1x103x24.95/

5.1x 10
3
- 1.3/x10 .

= 8.81 x 10
9

grams..

7. Column A gives the exact amount of Ra
226

.

Column B gives the exact amount of Rn
222

Column C gives the sum of columns A and B.

Column D gives the apprOxlmation of the amount of Ra
226

.

Column E gives the approximation of the amount of Rn 2 22.

Column F gives the sum of columns D and E.

t A B C D E
\

F

1 999,998,830 1070' 999,999,990 109 6464 1,000,006,464

2 999,997,660 1963 999,999,623

3 999,996,490 2708 999,999,198

4 999;995,320 3330 999,998,650

5 ,999,9 4,150 3849 999,997,999

6 999,9 80 4282 999,997,262

7 1)99,99 0310 4643 999,996,453

g 999,990,640 4945 999,995,585

9 999,989,470 5196 999,994,666

10 999,988,300 5406 999,993,706

20 999,976,600 6291 999,982,891 -

30 999,964,901 6436 999,971,336

40 999,953,201 6459 999,959,660
'11ft

50 999,941,502 6463 999,947,965

60 999,929,802 6464 999,936,266

66 999,922,783 6464 999,929,247

70 999,918,103 464 .999,924,567

80 999,906,404 6464 999,912,868

90 999,894,706 6463 999,901,169

100 999,883,007 6463 999,889,470

200 999,766,027 6463 999,772,490

300 999,64942 6462 999,655,523

ir

1000 998,830,684 6457 99,8,837,141.
II!
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STUDENT FQRM 1

Request for Help

Return to:
EDC/UMAP
55 Ch4pel St,
Newton, MA-02160

Student: ,If yom.have trouble with a specific part of this unit, please fill
out thil form and take it to your instructor for assistance. The information
you giv will help the author to revise the unit.

Your Name
Unit No'.

Page

OR
Section

OR

Model Exam
Problem No.() Upper

()Middle

1,9wei

Paragraph -Text
Problem No.

Description of Difficulty: (Please be Tecific)

Instructor: Please indicate your resolution of the.diffIculty itr,4his box.ti
(2)Corrected errors in materials. List Corrections here:

.z

Gate student better explanation, example, or procedure than'in unit:
Give brief outline of your addition here:

Assisted student in acquiring general learning and problem-solving
,

skills (not wing examples,from this unit.)

2 1 '2

Instructor's Signature

Please use%reverse if necessary: .e

S



NaMe-

Institutidn

STUDENT FORM 2
.

Unit Questionnaire,

Unit No.

Course4No.

Return to:
EDC/UMAP

' 55 Chapel St.
Newton, -MA 02160 '

Date

Check the choice for each question that comer closest to Yourrgersonal opinion.

1. How useful was the amount of dean in the unit?

Not enough detail to understand the unit,
Unit would have been clearer with more details
Appropriate amount of detail
Unit was occasionally too detailed,''but this was not distracting
Too much detail; I was often distracted

.2. How helpful were the problem answers?

Sample solutions were too brief; I could riot do t4ihterdliate steps
Sufficient' information was given to solve the problems
Sample solutions were too detailed; I didn't need, them

3. Except for fulfilling_ the prerequisites, how much did you use other sources (for
exaule, instructor, friends, or other books) in order to understand the unit,?

A Lot Soniewhat 'A Little Not at all

4. How long,was this unit in comparisonto the amount of time.you generally spend on
a lesson (lecturend homework assignment) in a typilal math orsc;ence courseR

Much . Somewhat About -Sotewhat , Much
Longer Longer the Same Shorter 1//` Shorter

5. Were any of the following parts of the unit confusing or distracting? (Chock
as many as apply.)

Prerequisites
Statement of skills and concepts (objectives)
Paragraph headings
Examples
Special:Assistance Supplement.(if present)
Other, please explain

6. Were any of the following parts of the unit particularly helpful? (Check as many

as apply.)
Prerequisites'
`Statement of skills and concepts (objectives)

Examples,

Problems
Paragraph headings
Table of Contents
Special Assistance Supplement (if present) 1

;4Other, please explain
I

Please describe anything in, the unit that you did not particularly like.

, ..,

Please describe anything that you found particularly helpful,°(Please use the back of

this sheet if you need more space.) ,..-

/--'

2/ 3


