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ABSTRACT

. S
For tests used to make pass/fail decisions, the relevant standard error

of measurement’ is the SEM at the passing score. If the test is highly L.

. stratified, this SEM- should be estimated by a split-halves approach. A
' §

-
i}

formula and its derivation are provided. .
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Estimation of the Conditional
Standard Error of Measurement
for Stratified Tests

. -

] - -

-

The standard error of measurement (SEM) is .a measure of the inconsistency

. \\tin the scores of a particular group of test-takers. 71t is largest for test- .

— .
. .

takers with scores-in the range of 50 percent cbrréct;. it is muck smaller for

s :
test-t-akers with nearly perfect scores. On many tests used to make pass/fail\\\\

- [ , -

decisions, the test-takers’ scores tend to cluster in the range of 80 to 90

N - .

percent correct, while ‘the passing,score tends to be in the lower tail of the

Y . ; e }_

distribution, in the range of 60.to 70 percént correct. In this case, the SEM-
for the fullngroup of test-takers will be much,sﬁallér than the SEM for those

o test-takers with scores near the passing score. But the test-takers with .

* L}

‘scores near the passigg score are the ones for whom the reliability of the test

is most important. For them, érror of measurement can make the difference ’

>

between passing and failing. Therefore, when a test is 'used to make pass/fail

- .

N decisions,-%he ‘important SEM is not the SEM for the full group of eest-takers,

£ .

: T . 3
but the SEM at the passing score; which will often be sybstantially larger.
One simple solution to this problem is to estimate the, SEM at the, passing
N ’

. score by the formula for the standard devi?tioq of a binomial distribution: )

§ - . N N . -
) ' . ! ’
‘ AR SEM.P = { PQM ~ P) /M
' : k : - ,’ . . .
. * .

where.P is the passing score (number of correct answers) and.M is the maximum
AT <

[ N a

possible score, i.e., the number of questions on the test (sée Lord, '1957).

L . L ) . o .
This solution’considers the SEM as the standard error of the sum of & simple
.- . N

ranﬂm# sample of items., For many teats this assumption may'be reasonably close

L .

b to ‘the truth. But on éﬁny tésts the content is .highly stratified and the
( » = . .

]
. . . ~
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test~takers’ knowledge varies cons1derab1y "frém one content category to another,

In these cases, the binomial formula will tend to-overestimate the SEﬁ at the

Why does the binomial formula overestimate the conditional SEM for strati-

figd tests? It assumes that a test-taker’s probability of answering correctly

is the same for all questions on the'test. But if the test content is highly

stratified, this assumﬁtion is likely to be quite wrong for,many testrtakers.

Suppo$¢ ) ' ~
For example, ouppors a test contains ten questlons, twe from each of five
%

’ L]
content areas. And suppose a test taker knows the right answers to 90 per cent
of the questions in the first content area, 30 percent in the second, 70

[}

percent in the third, 20 percent in the fourth, and 90'ﬁercent‘in the fifth.§
L

R . . i
The SEM for this test-taker is actually given by

A -

)

20300 (.10) + 2(.30)(.70) + 2(.70)0.30) + 2(%20)(.80) + 4(.90)(.10)
’ ,7’
=1.23. ) ' '

»

but the binomial approach yields the estimate

- . 4 B
V10 €.60)(.40) =135 ¢

because the test-taker’s-expected total score is six questions, or 60 percent

correct, - ' : I

[

The\usual procedure for éstimating the_overall SEM (i.e., for the full group

of test—takers) on highly_ stratified tests is to use.the split-halves method.
. N . . N . * . -
The purpose of this paper is to propose an adaptation of the split-halves
- ] / | . .
method for .estimating the SEM at the passing score. This solution uses the

data-ﬁ(oﬁ,only those test-takers with test scorés at the passing score. To
» - -

° ¢
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< ~ . . .
estimate the SEM for these test-takers by the split-halves method, first split

the test 1n%o halves as 51m11ar in content and dlfflculty as p0531b1e. Then \

.

compute separate half~test scores for each test-taker whose total (full test) Co,

L y.score is at the passing score. ‘Let Xii and X2i represent the two half-test "

.
-

] ' scores for the i th test- taker, and let n represent the number of test-t akers N e
z - , . . :
with scores at the passing scdre. Then estimate the SEM at tﬁe passing s dore .

" . N N
. ) . \ . A ) ¢
P .

by the formula: a
. 12 -
Z (xpy = %9) ‘.
i=1 '

i [ T o

The derivation of this formula is based on the assumption that, for .

\
»

1
Sl N

any individual test-taker, the scores on the two half-tests are independent

y B

. random variables with thg, same meanghd' var'iance, ‘For any given test-taker,
e ‘ . .

-
»

. i tpe SEMIwill be the square root of

)

. Var (Xl. + XZﬂ . -

-
\

Var (X ) T Var (X ) + 2 Cov (Xli’ 21) .

-
|

‘ \\ « = 2Var (Xli)_ .
because’of the assumptions of independence and equal variance of the“half-test
. » v
’ . . . . . ' .
scores. . ) . ) N
5 : -
To estimate Var (Xli) from the two half-test scores we can use the

‘e

t .
formula . i . : e

: | ;
\ - ‘ 21 o2 ' .
8 TN- Z‘(xri X . :
- " . r=1 Y . !

.t

ERIC .. w-~ .7 . - - S .

s . . - . .



Q '
-~ . -
\ ~4- -
4 * —— s .
where N = 2 (for the two half-tests) and ¥ is the average of the two half-test
scores. Thus our estimate of the variance of Xli‘ is
. . v .
'y P 2‘ r ) 2 |
A - + ‘ - o
[y - 0y "21)], tXgy Ay Y "21)1 )
A ~ , A 2 f‘ . 2 -
- [;5("11 T x2-i)] ey, - "11)] '
' ‘ ’ - ) e 2 ° ‘ 1o .
i Tyt ' ey
, — - ‘
" . This estimate refers ta an individual test-taker. It cin be averaged over all
, . . '
. p . . .
test-takers with total scores at’ the passing"gcore, yielding the estimate
h . n T.
A\ 1 2 . ‘
Var (X,,) =7 z T TUA b
i=1
¢ . -
Since the variance of the tgtal test score is twice the variance of each
. half-test score, we ‘have the estimate ‘ -
4 *
'’ = X ?
‘ ) Var (X11+X21) 2 Var ( 11) .\ ‘ . \
[; »
. 1 2
) , = Th Z Gegy = %)
Y .
N . , . i=1 . Vg
- ) " .
The square root of #his quantity will provide ar’ estimate of the $EM at the
paséin§ score. * B
» !
\
= -
~ v \
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